WorldWideScience

Sample records for automated patient-specific health

  1. Assessing the accuracy of an inter-institutional automated patient-specific health problem list

    Directory of Open Access Journals (Sweden)

    Taylor Laurel

    2010-02-01

    Full Text Available Abstract Background Health problem lists are a key component of electronic health records and are instrumental in the development of decision-support systems that encourage best practices and optimal patient safety. Most health problem lists require initial clinical information to be entered manually and few integrate information across care providers and institutions. This study assesses the accuracy of a novel approach to create an inter-institutional automated health problem list in a computerized medical record (MOXXI that integrates three sources of information for an individual patient: diagnostic codes from medical services claims from all treating physicians, therapeutic indications from electronic prescriptions, and single-indication drugs. Methods Data for this study were obtained from 121 general practitioners and all medical services provided for 22,248 of their patients. At the opening of a patient's file, all health problems detected through medical service utilization or single-indication drug use were flagged to the physician in the MOXXI system. Each new arising health problem were presented as 'potential' and physicians were prompted to specify if the health problem was valid (Y or not (N or if they preferred to reassess its validity at a later time. Results A total of 263,527 health problems, representing 891 unique problems, were identified for the group of 22,248 patients. Medical services claims contributed to the majority of problems identified (77%, followed by therapeutic indications from electronic prescriptions (14%, and single-indication drugs (9%. Physicians actively chose to assess 41.7% (n = 106,950 of health problems. Overall, 73% of the problems assessed were considered valid; 42% originated from medical service diagnostic codes, 11% from single indication drugs, and 47% from prescription indications. Twelve percent of problems identified through other treating physicians were considered valid compared to 28

  2. An automated workflow for patient-specific quality control of contour propagation.

    Science.gov (United States)

    Beasley, William J; McWilliam, Alan; Slevin, Nicholas J; Mackay, Ranald I; van Herk, Marcel

    2016-12-21

    Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated-mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.

  3. An automated workflow for patient-specific quality control of contour propagation

    Science.gov (United States)

    Beasley, William J.; McWilliam, Alan; Slevin, Nicholas J.; Mackay, Ranald I.; van Herk, Marcel

    2016-12-01

    Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated—mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.

  4. Automated identification of brain tumours from single MR images based on segmentation with refined patient-specific priors

    Directory of Open Access Journals (Sweden)

    Ana eSanjuán

    2013-12-01

    Full Text Available Brain tumours can have different shapes or locations, making their identification very challenging. In functional MRI, it is not unusual that patients have only one anatomical image due to time and financial constraints. Here, we provide a modified automatic lesion identification (ALI procedure which enables brain tumour identification from single MR images. Our method rests on (A a modified segmentation-normalisation procedure with an explicit extra prior for the tumour and (B an outlier detection procedure for abnormal voxel (i.e. tumour classification. To minimise tissue misclassification, the segmentation-normalisation procedure requires prior information of the tumour location and extent. We therefore propose that ALI is run iteratively so that the output of Step B is used as a patient-specific prior in Step A. We test this procedure on real T1-weighted images from 18 patients, and the results were validated in comparison to two independent observers’ manual tracings. The automated procedure identified the tumours successfully with an excellent agreement with the manual segmentation (area under the ROC curve = 0.97 ± 0.03. The proposed procedure increases the flexibility and robustness of the ALI tool and will be particularly useful for lesion-behaviour mapping studies, or when lesion identification and/or spatial normalisation are problematic.

  5. An automated technique for estimating patient-specific regional imparted energy and dose in TCM CT exams

    Science.gov (United States)

    Sanders, Jeremiah W.; Tian, Xiaoyu; Segars, W. Paul; Boone, John; Samei, Ehsan

    2016-03-01

    Currently computed tomography (CT) dosimetry relies on CT dose index (CTDI) and size specific dose estimates (SSDE). Organ dose is a better metric of radiation burden. However, organ dose estimation requires precise knowledge of organ locations. Regional imparted energy and dose can also be used to quantify radiation burden. Estimating the imparted energy from CT exams is beneficial in that it does not require precise estimates of the organ size or location. This work investigated an automated technique for retrospectively estimating the imparted energy from chest and abdominopelvic tube current modulated (TCM) CT exams. Monte Carlo simulations of chest and abdominopelvic TCM CT examinations across various tube potentials and TCM strengths were performed on 58 adult computational extended cardiac-torso (XCAT) phantoms to develop relationships between scanned mass and imparted energy normalized by dose length product (DLP). An automated algorithm for calculating the scanned patient volume was further developed using an open source mesh generation toolbox. The scanned patient volume was then used to estimate the scanned mass accounting for diverse density within the scan region. The scanned mass and DLP from the exam were used to estimate the imparted energy to the patient using the knowledgebase developed from the Monte Carlo simulations. Patientspecific imparted energy estimates were made from 20 chest and 20 abdominopelvic clinical CT exams. The average imparted energy was 274 +/- 141 mJ and 681 +/- 376 mJ for the chest and abdominopelvic exams, respectively. This method can be used to estimate the regional imparted energy and/or regional dose in chest and abdominopelvic TCM CT exams across clinical operations.

  6. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation.

  7. Health Track System—An Automated Occupational Medical System

    OpenAIRE

    Compton, Jack E.; Hartridge, Anne D.; Maluish, Andrew G.

    1980-01-01

    The development of an automated occupational health and hazards system is being undertaken at the Department of Energy by Electronic Data Systems. This system, called the Health Track System (HTS), involves the integration and collection of data from the fields of occupational medicine, industrial hygiene, health physics, safety and personnel. This in itself is an exciting prospect, however, the scope of the system calls for it to be installed throughout DOE and contractor organizations acros...

  8. Nursing operations automation and health care technology innovations: 2025 and beyond.

    Science.gov (United States)

    Suby, ChrysMarie

    2013-01-01

    This article reviews why nursing operations automation is important, reviews the impact of computer technology on nursing from a historical perspective, and considers the future of nursing operations automation and health care technology innovations in 2025 and beyond. The increasing automation in health care organizations will benefit patient care, staffing and scheduling systems and central staffing offices, census control, and measurement of patient acuity.

  9. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  10. Patient-specific hip prostheses designed by surgeons

    Directory of Open Access Journals (Sweden)

    Coigny Florian

    2016-09-01

    Full Text Available Patient-specific bone and joint replacement implants lead to better functional and aesthetic results than conventional methods [1], [2], [3]. But extracting 3D shape information from CT Data and designing individual implants is demanding and requires multiple surgeon-to-engineer interactions. For manufacturing purposes, Additive Manufacturing offers various advantages, especially for low volume manufacturing parts, such as patient specific implants. To ease these new approaches and to avoid surgeon-to-engineer interactions a new design software approach is needed which offers highly automated and user friendly planning steps.

  11. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    Energy Technology Data Exchange (ETDEWEB)

    LaBrecque, D J; Adkins, P L

    2009-07-02

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the

  12. Patient-Specific Modeling in Tomorrow's Medicine

    CERN Document Server

    2012-01-01

    This book reviews the frontier of research and clinical applications of Patient Specific Modeling, and provides a state-of-the-art update as well as perspectives on future directions in this exciting field. The book is useful for medical physicists, biomedical engineers and other engineers who are interested in the science and technology aspects of Patient Specific Modeling, as well as for radiologists and other medical specialists who wish to be updated about the state of implementation.

  13. Health care professionals’ perspectives on automated multi-dose drug dispensing

    Directory of Open Access Journals (Sweden)

    Bardage C

    2014-12-01

    Full Text Available Background: During the 1980s, manual repackaging of multi-dose medications from pharmacies in Sweden was successively substituted with automated multi-dose drug dispensing (MDD. There are few studies evaluating the consequences of automated MDD with regard to patient safety, and those that investigate this issue are not very extensive. Objectives: To investigate Swedish health care professionals’ perceived experience of automated MDD and its effects on patient adherence and patient safety. Methods: Three questionnaire forms, one for physicians, nurses, and assistant nurses/nursing assistants, were developed based on reviews of the literature and pilot testing of the questions in the intended target groups. The target groups were health professionals prescribing or administrating MDD to patients. A sample (every sixth municipality was drawn from the sampling frame of Swedish municipalities, resulting in 40 municipalities, about 14% of all municipalities in Sweden. Email addresses of general practitioners were obtained from county councils, while the municipalities assisted in getting contact details for nurses, assistant nurses and nursing assistants. A total of 915 questionnaires were distributed electronically to physicians, 515 to nurses, and 4,118 to assistant nurses/nursing assistants. The data were collected in September and October 2012. Results: The response rate among physicians, nurses and assistant nurses/nursing assistants was 31%, 43% and 23%, respectively. The professionals reported that automated MDD reduces duplication of medication, contributes to correct dosages, helps patients take their medication at the right time, and reduces confusion among patients. Fifteen per cent of the physicians and about one-third of the nurses and assistant nurses/nursing assistants reported that generic substitution makes it more difficult for the patient to identify the various medicines available in the sachets. The physicians did, however

  14. Patient-specific simulation of tidal breathing

    Science.gov (United States)

    Walters, M.; Wells, A. K.; Jones, I. P.; Hamill, I. S.; Veeckmans, B.; Vos, W.; Lefevre, C.; Fetitia, C.

    2016-03-01

    Patient-specific simulation of air flows in lungs is now straightforward using segmented airways trees from CT scans as the basis for Computational Fluid Dynamics (CFD) simulations. These models generally use static geometries, which do not account for the motion of the lungs and its influence on important clinical indicators, such as airway resistance. This paper is concerned with the simulation of tidal breathing, including the dynamic motion of the lungs, and the required analysis workflow. Geometries are based on CT scans obtained at the extremes of the breathing cycle, Total Lung Capacity (TLC) and Functional Residual Capacity (FRC). It describes how topologically consistent geometries are obtained at TLC and FRC, using a `skeleton' of the network of airway branches. From this a 3D computational mesh which morphs between TLC and FRC is generated. CFD results for a number of patient-specific cases, healthy and asthmatic, are presented. Finally their potential use in evaluation of the progress of the disease is discussed, focusing on an important clinical indicator, the airway resistance.

  15. Toward patient-specific articular contact mechanics.

    Science.gov (United States)

    Ateshian, Gerard A; Henak, Corinne R; Weiss, Jeffrey A

    2015-03-18

    The mechanics of contacting cartilage layers is fundamentally important to understanding the development, homeostasis and pathology of diarthrodial joints. Because of the highly nonlinear nature of both the materials and the contact problem itself, numerical methods such as the finite element method are typically incorporated to obtain solutions. Over the course of five decades, we have moved from an initial qualitative understanding of articular cartilage material behavior to the ability to perform complex, three-dimensional contact analysis, including multiphasic material representations. This history includes the development of analytical and computational contact analysis methods that now provide the ability to perform highly nonlinear analyses. Numerical implementations of contact analysis based on the finite element method are rapidly advancing and will soon enable patient-specific analysis of joint contact mechanics using models based on medical image data. In addition to contact stress on the articular surfaces, these techniques can predict variations in strain and strain through the cartilage layers, providing the basis to predict damage and failure. This opens up exciting areas for future research and application to patient-specific diagnosis and treatment planning applied to a variety of pathologies that affect joint function and cartilage homeostasis.

  16. How Automation Can Help Alleviate the Budget Crunch in Public Health Research.

    Science.gov (United States)

    Muennig, Peter A

    2015-09-01

    In an era of severe funding constraints for public health research, more efficient means of conducting research will be needed if scientific progress is to continue. At present major funders, such as the National Institutes of Health, do not provide specific instructions to grant authors or to reviewers regarding the cost efficiency of the research that they conduct. Doing so could potentially allow more research to be funded within current budgetary constraints and reduce waste. I describe how a blinded randomized trial was conducted for $ 275,000 by completely automating the consent and data collection processes. The study used the participants' own computer equipment, relied on big data for outcomes, and outsourced some costly tasks, potentially saving $1 million in research costs.

  17. How Automation Can Help Alleviate the Budget Crunch in Public Health Research

    Science.gov (United States)

    2015-01-01

    In an era of severe funding constraints for public health research, more efficient means of conducting research will be needed if scientific progress is to continue. At present major funders, such as the National Institutes of Health, do not provide specific instructions to grant authors or to reviewers regarding the cost efficiency of the research that they conduct. Doing so could potentially allow more research to be funded within current budgetary constraints and reduce waste. I describe how a blinded randomized trial was conducted for $275 000 by completely automating the consent and data collection processes. The study used the participants’ own computer equipment, relied on big data for outcomes, and outsourced some costly tasks, potentially saving $1 million in research costs. PMID:26180952

  18. Neural Network Based State of Health Diagnostics for an Automated Radioxenon Sampler/Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.

    2009-05-13

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA’s complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.

  19. Centralized automated cataloging of health science materials in the MLC/SUNY/OCLC shared cataloging service.

    Science.gov (United States)

    Raper, J E

    1977-04-01

    Since February 1976, The Medical Library Center of New York, with the assistance of the SUNY/OCLC Network, has offered, on a subscription basis, a centralized automated cataloging service to health science libraries in the greater metropolitan New York area. By using workforms and prints of OCLC record (amended by the subscribing participants), technical services personnel at the center have fed cataloging data, via a CRT terminal, into the OCLC system, which provides (1) catalog cards, received in computer filing order; (2) book card, spine, and pocket labels; (3) accessions lists; and (4) data for eventual production of book catalogs and union catalogs. The experience of the center in the development, implementation, operation, and budgeting of its shared cataloging service is discussed.

  20. Accelerating Chart Review Using Automated Methods on Electronic Health Record Data for Postoperative Complications

    Science.gov (United States)

    Hu, Zhen; Melton, Genevieve B.; Moeller, Nathan D.; Arsoniadis, Elliot G.; Wang, Yan; Kwaan, Mary R.; Jensen, Eric H.; Simon, Gyorgy J.

    2016-01-01

    Manual Chart Review (MCR) is an important but labor-intensive task for clinical research and quality improvement. In this study, aiming to accelerate the process of extracting postoperative outcomes from medical charts, we developed an automated postoperative complications detection application by using structured electronic health record (EHR) data. We applied several machine learning methods to the detection of commonly occurring complications, including three subtypes of surgical site infection, pneumonia, urinary tract infection, sepsis, and septic shock. Particularly, we applied one single-task and five multi-task learning methods and compared their detection performance. The models demonstrated high detection performance, which ensures the feasibility of accelerating MCR. Specifically, one of the multi-task learning methods, propensity weighted observations (PWO) demonstrated the highest detection performance, with single-task learning being a close second.

  1. Skin Biopsy and Patient-Specific Stem Cell Lines

    Science.gov (United States)

    Li, Yao; Nguyen, Huy V.; Tsang, Stephen H.

    2016-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells permits the development of next-generation patient-specific systems biology models reflecting personalized genomics profiles to better understand pathophysiology. In this chapter, we describe how to create a patient-specific iPS cell line. There are three major steps: (1) performing a skin biopsy procedure on the patient; (2) extracting human fibroblast cells from the skin biopsy tissue; and (3) reprogramming patient-specific fibroblast cells into the pluripotent stem cell stage. PMID:26141312

  2. Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.

    Science.gov (United States)

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-07-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behavior in the home and predicting clinical scores of the residents. To accomplish this goal, we propose a clinical assessment using activity behavior (CAAB) approach to model a smart home resident's daily behavior and predict the corresponding clinical scores. CAAB uses statistical features that describe characteristics of a resident's daily activity performance to train machine learning algorithms that predict the clinical scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years. We obtain a statistically significant correlation ( r=0.72) between CAAB-predicted and clinician-provided cognitive scores and a statistically significant correlation ( r=0.45) between CAAB-predicted and clinician-provided mobility scores. These prediction results suggest that it is feasible to predict clinical scores using smart home sensor data and learning-based data analysis.

  3. A study of automated self-assessment in a primary care student health centre setting.

    Science.gov (United States)

    Poote, Aimee E; French, David P; Dale, Jeremy; Powell, John

    2014-04-01

    We evaluated the advice given by a prototype self-assessment triage system in a university student health centre. Students attending the health centre with a new problem used the automated self-assessment system prior to a face-to-face consultation with the general practitioner (GP). The system's rating of urgency was available to the GP, and following the consultation, the GP recorded their own rating of the urgency of the patient's presentation. Full data were available for 154 of the 207 consultations. Perfect agreement, where both the GP and the self-assessment system selected the same category of advice, occurred in 39% of consultations. The association between the GP assessment and the self-assessment rankings of urgency was low but significant (rho = 0.19, P = 0.016). The self-assessment system tended to be risk averse compared to the GP assessments, with advice for more urgent level of care seeking being recommended in 86 consultations (56%) and less urgent advice in only 8 (5%). This difference in assessment of urgency was significant (P self-assessed and GP-assessed urgency was not associated with symptom site or socio-demographic characteristics of the user. Although the self-assessment system was more risk averse than the GPs, which resulted in a high proportion of patients being triaged as needing emergency or immediate care, the self-assessment system successfully identified a proportion of patients who were felt by the GP to have a self-limiting condition that did not need a consultation. In its prototype form, the self-assessment system was not a replacement for clinician assessment and further refinement is necessary.

  4. Improved radiographic outcomes with patient-specific total knee arthroplasty.

    Science.gov (United States)

    Ivie, Conrad B; Probst, Patrick J; Bal, Amrit K; Stannard, James T; Crist, Brett D; Sonny Bal, B

    2014-11-01

    Patient-specific guides can improve limb alignment and implant positioning in total knee arthroplasty, although not all studies have supported this benefit. We compared the radiographs of 100 consecutively-performed patient-specific total knees to a similar group that was implanted with conventional instruments instead. The patient-specific group showed more accurate reproduction of the theoretically ideal mechanical axis, with fewer outliers, but implant positioning was comparable between groups. Our odds ratio comparison showed that the patient-specific group was 1.8 times more likely to be within the desired +3° from the neutral mechanical axis when compared to the standard control group. Our data suggest that reliable reproduction of the limb mechanical axis may accrue from patient-specific guides in total knee arthroplasty when compared to standard, intramedullary instrumentation.

  5. Ecological Momentary Assessments and Automated Time Series Analysis to Promote Tailored Health Care: A Proof-of-Principle Study

    Science.gov (United States)

    Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith GM; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter

    2015-01-01

    Background Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. Objective This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. Methods We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher’s tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). Results An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Conclusions Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis

  6. Automation of Health Management, Troubleshooting and Recovery in Lunar Outpost Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall Phase-II goal is to develop the technologies and tools that can aid the automation of operation by providing intelligent decision support in situations...

  7. Effects of Vessel Tortuosity on Coronary Hemodynamics: An Idealized and Patient-Specific Computational Study.

    Science.gov (United States)

    Vorobtsova, Natalya; Chiastra, Claudio; Stremler, Mark A; Sane, David C; Migliavacca, Francesco; Vlachos, Pavlos

    2016-07-01

    Although coronary tortuosity can influence the hemodynamics of coronary arteries, the relationship between tortuosity and flow has not been thoroughly investigated partly due to the absence of a widely accepted definition of tortuosity and the lack of patient-specific studies that analyze complete coronary trees. Using a computational approach we investigated the effects of tortuosity on coronary flow parameters including pressure drop, wall shear stress, and helical flow strength as measured by helicity intensity. Our analysis considered idealized and patient-specific geometries. Overall results indicate that perfusion pressure decreases with increased tortuosity, but the patient-specific results show that more tortuous vessels have higher physiological wall shear stress values. Differences between the idealized and patient-specific results reveal that an accurate representation of coronary tortuosity must account for all relevant geometric aspects, including curvature imposed by the heart shape. The patient-specific results exhibit a strong correlation between tortuosity and helicity intensity, and the corresponding helical flow contributes directly to the observed increase in wall shear stress. Therefore, helicity intensity may prove helpful in developing a universal parameter to describe tortuosity and assess its impact on patient health. Our data suggest that increased tortuosity could have a deleterious impact via a reduction in coronary perfusion pressure, but the attendant increase in wall shear stress could afford protection against atherosclerosis.

  8. Knee Replacement for Women with Patient-Specific Instructions

    Medline Plus

    Full Text Available Knee Replacement for Women with Patient-Specific Instructions Click Here to view the BroadcastMed, Inc. Privacy Policy and Legal Notice © 2017 BroadcastMed, Inc. All rights reserved.

  9. Development of a fully automated network system for long-term health-care monitoring at home.

    Science.gov (United States)

    Motoi, K; Kubota, S; Ikarashi, A; Nogawa, M; Tanaka, S; Nemoto, T; Yamakoshi, K

    2007-01-01

    Daily monitoring of health condition at home is very important not only as an effective scheme for early diagnosis and treatment of cardiovascular and other diseases, but also for prevention and control of such diseases. From this point of view, we have developed a prototype room for fully automated monitoring of various vital signs. From the results of preliminary experiments using this room, it was confirmed that (1) ECG and respiration during bathing, (2) excretion weight and blood pressure, and (3) respiration and cardiac beat during sleep could be monitored with reasonable accuracy by the sensor system installed in bathtub, toilet and bed, respectively.

  10. Study on hemodynamics in patient-specific thoracic aortic aneurysm

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The objective of this study is to investigate the hemodynamics in patient-specific thoracic aortic aneurysm and discuss the reason for formation of aortic plaque.A 3-Dimensional pulsatile blood flow in thoracic aorta with a fusiform aneurysm and 3 main branched vessels was studied numerically with the average Reynolds number of 1399 and the Womersley number of 19.2.Based on the clinical 2-Dimensional CT slice data,the patient-specific geometry model was constructed using medical image process software.Un...

  11. A conceptual framework for automating the operational and strategic decision-making process in the health care delivery system.

    Science.gov (United States)

    Ruohonen, Toni; Ennejmy, Mohammed

    2013-01-01

    Making reliable and justified operational and strategic decisions is a really challenging task in the health care domain. So far, the decisions have been made based on the experience of managers and staff, or they are evaluated with traditional methods, using inadequate data. As a result of this kind of decision-making process, attempts to improve operations usually have failed or led to only local improvements. Health care organizations have a lot of operational data, in addition to clinical data, which is the key element for making reliable and justified decisions. However, it is progressively problematic to access it and make usage of it. In this paper we discuss about the possibilities how to exploit operational data in the most efficient way in the decision-making process. We'll share our future visions and propose a conceptual framework for automating the decision-making process.

  12. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  13. Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record.

    Science.gov (United States)

    Hu, Zhen; Melton, Genevieve B; Arsoniadis, Elliot G; Wang, Yan; Kwaan, Mary R; Simon, Gyorgy J

    2017-03-16

    Proper handling of missing data is important for many secondary uses of electronic health record (EHR) data. Data imputation methods can be used to handle missing data, but their use for analyzing EHR data is limited and specific efficacy for postoperative complication detection is unclear. Several data imputation methods were used to develop data models for automated detection of three types (i.e., superficial, deep, and organ space) of surgical site infection (SSI) and overall SSI using American College of Surgeons National Surgical Quality Improvement Project (NSQIP) Registry 30-day SSI occurrence data as a reference standard. Overall, models with missing data imputation almost always outperformed reference models without imputation that included only cases with complete data for detection of SSI overall achieving very good average area under the curve values. Missing data imputation appears to be an effective means for improving postoperative SSI detection using EHR clinical data.

  14. Convolutional Neural Networks for patient-specific ECG classification.

    Science.gov (United States)

    Kiranyaz, Serkan; Ince, Turker; Hamila, Ridha; Gabbouj, Moncef

    2015-01-01

    We propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB).

  15. Health Care in Home Automation Systems with Speech Recognition and Mobile Technology

    Directory of Open Access Journals (Sweden)

    Jasmin Kurti

    2016-08-01

    Full Text Available - Home automation systems use technology to facilitate the lives of people using it, and it is especially useful for assisting the elderly and persons with special needs. These kind of systems have been a popular research subject in last few years. In this work, I present the design and development of a system that provides a life assistant service in a home environment, a smart home-based healthcare system controlled with speech recognition and mobile technology. This includes developing software with speech recognition, speech synthesis, face recognition, controls for Arduino hardware, and a smartphone application for remote controlling the system. With the developed system, elderly and persons with special needs can stay independently in their own home secure and with care facilities. This system is tailored towards the elderly and disabled, but it can also be embedded in any home and used by anybody. It provides healthcare, security, entertainment, and total local and remote control of home.

  16. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    Science.gov (United States)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  17. Old scissors to industrial automation: the impact of technologic evolution on worker's health.

    Science.gov (United States)

    Teodoroski, Rita de Cassia Clark; Koppe, Vanessa Mazzocchi; Merino, Eugênio Andrés Díaz

    2012-01-01

    To cut a fabric, the professional performs different jobs and among them stands out the cut. The scissors has been the instrument most used for this activity. Over the years, technology has been conquering its space in the textile industry. However, despite the industrial automation able to offer subsidies to answer employment market demands, without appropriate orientation, the worker is exposed to the risks inherent at the job. Ergonomics is a science that search to promote the comfort and well being in consonance with efficacy. Its goals are properly well defined and clearly guide the actions aimed at transforming the working conditions. This study aimed to analyze the activity of cut tissues with a machine by a seamstress and the implications on their body posture. The methodology used was the observation technique and application of the Protocol RULA, where the result obtained was the level 3 and score 5, confirming that "investigations and changes are required soon". Conclude that using the machine to tissue cut should be encouraged, but in conjunction with orientations for improving posture while handling it. It seeks to prevent dysfunction of the musculoskeletal system that prevents employees from performing their work tasks efficiently and productively.

  18. Patient-specific modeling of human cardiovascular system elements

    Science.gov (United States)

    Kossovich, Leonid Yu.; Kirillova, Irina V.; Golyadkina, Anastasiya A.; Polienko, Asel V.; Chelnokova, Natalia O.; Ivanov, Dmitriy V.; Murylev, Vladimir V.

    2016-03-01

    Object of study: The research is aimed at development of personalized medical treatment. Algorithm was developed for patient-specific surgical interventions of the cardiovascular system pathologies. Methods: Geometrical models of the biological objects and initial and boundary conditions were realized by medical diagnostic data of the specific patient. Mechanical and histomorphological parameters were obtained with the help mechanical experiments on universal testing machine. Computer modeling of the studied processes was conducted with the help of the finite element method. Results: Results of the numerical simulation allowed evaluating the physiological processes in the studied object in normal state, in presence of different pathologies and after different types of surgical procedures.

  19. Automated Methods to Extract Patient New Information from Clinical Notes in Electronic Health Record Systems

    Science.gov (United States)

    Zhang, Rui

    2013-01-01

    The widespread adoption of Electronic Health Record (EHR) has resulted in rapid text proliferation within clinical care. Clinicians' use of copying and pasting functions in EHR systems further compounds this by creating a large amount of redundant clinical information in clinical documents. A mixture of redundant information (especially outdated…

  20. Patient-Specific Pluripotent Stem Cells in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Serpen Durnaoglu

    2011-01-01

    Full Text Available Many human neurological diseases are not currently curable and result in devastating neurologic sequelae. The increasing availability of induced pluripotent stem cells (iPSCs derived from adult human somatic cells provides new prospects for cellreplacement strategies and disease-related basic research in a broad spectrum of human neurologic diseases. Patient-specific iPSC-based modeling of neurogenetic and neurodegenerative diseases is an emerging efficient tool for in vitro modeling to understand disease and to screen for genes and drugs that modify the disease process. With the exponential increase in iPSC research in recent years, human iPSCs have been successfully derived with different technologies and from various cell types. Although there remain a great deal to learn about patient-specific iPSC safety, the reprogramming mechanisms, better ways to direct a specific reprogramming, ideal cell source for cellular grafts, and the mechanisms by which transplanted stem cells lead to an enhanced functional recovery and structural reorganization, the discovery of the therapeutic potential of iPSCs offers new opportunities for the treatment of incurable neurologic diseases. However, iPSC-based therapeutic strategies need to be thoroughly evaluated in preclinical animal models of neurological diseases before they can be applied in a clinical setting.

  1. Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index.

    Science.gov (United States)

    Acharya, U Rajendra; Mookiah, Muthu Rama Krishnan; Koh, Joel E W; Tan, Jen Hong; Bhandary, Sulatha V; Rao, A Krishna; Fujita, Hamido; Hagiwara, Yuki; Chua, Chua Kuang; Laude, Augustinus

    2016-08-01

    Posterior Segment Eye Diseases (PSED) namely Diabetic Retinopathy (DR), glaucoma and Age-related Macular Degeneration (AMD) are the prime causes of vision loss globally. Vision loss can be prevented, if these diseases are detected at an early stage. Structural abnormalities such as changes in cup-to-disc ratio, Hard Exudates (HE), drusen, Microaneurysms (MA), Cotton Wool Spots (CWS), Haemorrhages (HA), Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in PSED can be identified by manual examination of fundus images by clinicians. However, manual screening is labour-intensive, tiresome and time consuming. Hence, there is a need to automate the eye screening. In this work Bi-dimensional Empirical Mode Decomposition (BEMD) technique is used to decompose fundus images into 2D Intrinsic Mode Functions (IMFs) to capture variations in the pixels due to morphological changes. Further, various entropy namely Renyi, Fuzzy, Shannon, Vajda, Kapur and Yager and energy features are extracted from IMFs. These extracted features are ranked using Chernoff Bound and Bhattacharyya Distance (CBBD), Kullback-Leibler Divergence (KLD), Fuzzy-minimum Redundancy Maximum Relevance (FmRMR), Wilcoxon, Receiver Operating Characteristics Curve (ROC) and t-test methods. Further, these ranked features are fed to Support Vector Machine (SVM) classifier to classify normal and abnormal (DR, AMD and glaucoma) classes. The performance of the proposed eye screening system is evaluated using 800 (Normal=400 and Abnormal=400) digital fundus images and 10-fold cross validation method. Our proposed system automatically identifies normal and abnormal classes with an average accuracy of 88.63%, sensitivity of 86.25% and specificity of 91% using 17 optimal features ranked using CBBD and SVM-Radial Basis Function (RBF) classifier. Moreover, a novel Retinal Risk Index (RRI) is developed using two significant features to distinguish two classes using single number. Such a system helps to reduce eye

  2. Monitoring individual cow udder health in automated milking systems using online somatic cell counts.

    Science.gov (United States)

    Sørensen, L P; Bjerring, M; Løvendahl, P

    2016-01-01

    This study presents and validates a detection and monitoring model for mastitis based on automated frequent sampling of online cell count (OCC). Initially, data were filtered and adjusted for sensor drift and skewed distribution using ln-transformation. Acceptable data were passed on to a time-series model using double exponential smoothing to estimate level and trends at cow level. The OCC levels and trends were converted to a continuous (0-1) scale, termed elevated mastitis risk (EMR), where values close to zero indicate healthy cow status and values close to 1 indicate high risk of mastitis. Finally, a feedback loop was included to dynamically request a time to next sample, based on latest EMR values or errors in the raw data stream. The estimated EMR values were used to issue 2 types of alerts, new and (on-going) intramammary infection (IMI) alerts. The new alerts were issued when the EMR values exceeded a threshold, and the IMI alerts were issued for subsequent alerts. New alerts were only issued after the EMR had been below the threshold for at least 8d. The detection model was evaluated using time-window analysis and commercial herd data (6 herds, 595,927 milkings) at different sampling intensities. Recorded treatments of mastitis were used as gold standard. Significantly higher EMR values were detected in treated than in contemporary untreated cows. The proportion of detected mastitis cases using new alerts was between 28.0 and 43.1% and highest for a fixed sampling scheme aiming at 24h between measurements. This was higher for IMI alerts, between 54.6 and 89.0%, and highest when all available measurements were used. The lowest false alert rate of 6.5 per 1,000 milkings was observed when all measurements were used. The results showed that a dynamic sampling scheme with a default value of 24h between measurements gave only a small reduction in proportion of detected mastitis treatments and remained at 88.5%. It was concluded that filtering of raw data

  3. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms.

    Science.gov (United States)

    Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver

    2015-11-01

    The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future.

  4. Warehouse automation

    OpenAIRE

    Pogačnik, Jure

    2017-01-01

    An automated high bay warehouse is commonly used for storing large number of material with a high throughput. In an automated warehouse pallet movements are mainly performed by a number of automated devices like conveyors systems, trolleys, and stacker cranes. From the introduction of the material to the automated warehouse system to its dispatch the system requires no operator input or intervention since all material movements are done automatically. This allows the automated warehouse to op...

  5. A patient-specific scatter artifacts correction method

    CERN Document Server

    Zhao, Wei; Niu, Kai; Schafer, Sebastian; Royalty, Kevin; Chen, Guang-Hong

    2015-01-01

    This paper provides a fast and patient-specific scatter artifact correction method for cone-beam computed tomography (CBCT) used in image-guided interventional procedures. Due to increased irradiated volume of interest in CBCT imaging, scatter radiation has increased dramatically compared to 2D imaging, leading to a degradation of image quality. In this study, we propose a scatter artifact correction strategy using an analytical convolution-based model whose free parameters are estimated using a rough estimation of scatter profiles from the acquired cone-beam projections. It was evaluated using Monte Carlo simulations with both monochromatic and polychromatic X-ray sources. The results demonstrated that the proposed method significantly reduced the scatter-induced shading artifacts and recovered CT numbers.

  6. Automated identification of patients with a diagnosis of binge eating disorder from narrative electronic health records.

    Science.gov (United States)

    Bellows, Brandon K; LaFleur, Joanne; Kamauu, Aaron W C; Ginter, Thomas; Forbush, Tyler B; Agbor, Stephen; Supina, Dylan; Hodgkins, Paul; DuVall, Scott L

    2014-02-01

    Binge eating disorder (BED) does not have an International Classification of Diseases, 9th or 10th edition code, but is included under 'eating disorder not otherwise specified' (EDNOS). This historical cohort study identified patients with clinician-diagnosed BED from electronic health records (EHR) in the Department of Veterans Affairs between 2000 and 2011 using natural language processing (NLP) and compared their characteristics to patients identified by EDNOS diagnosis codes. NLP identified 1487 BED patients with classification accuracy of 91.8% and sensitivity of 96.2% compared to human review. After applying study inclusion criteria, 525 patients had NLP-identified BED only, 1354 had EDNOS only, and 68 had both BED and EDNOS. Patient characteristics were similar between the groups. This is the first study to use NLP as a method to identify BED patients from EHR data and will allow further epidemiological study of patients with BED in systems with adequate clinical notes.

  7. Automated health alerts from Kinect-based in-home gait measurements.

    Science.gov (United States)

    Stone, Erik E; Skubic, Marjorie; Back, Jessica

    2014-01-01

    A method for automatically generating alerts to clinicians in response to changes in in-home gait parameters is investigated. Kinect-based gait measurement systems were installed in apartments in a senior living facility. The systems continuously monitored the walking speed, stride time, and stride length of apartment residents. A framework for modeling uncertainty in the residents' gait parameter estimates, which is critical for robust change detection, is developed; along with an algorithm for detecting changes that may be clinically relevant. Three retrospective case studies, of individuals who had their gait monitored for periods ranging from 12 to 29 months, are presented to illustrate use of the alert method. Evidence suggests that clinicians could be alerted to health changes at an early stage, while they are still small and interventions may be most successful. Additional potential uses are also discussed.

  8. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  9. Improved patient specific seizure detection during pre-surgical evaluation.

    LENUS (Irish Health Repository)

    Chua, Eric C-P

    2011-04-01

    There is considerable interest in improved off-line automated seizure detection methods that will decrease the workload of EEG monitoring units. Subject-specific approaches have been demonstrated to perform better than subject-independent ones. However, for pre-surgical diagnostics, the traditional method of obtaining a priori data to train subject-specific classifiers is not practical. We present an alternative method that works by adapting the threshold of a subject-independent to a specific subject based on feedback from the user.

  10. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty.

    Science.gov (United States)

    Schiavazzi, Daniele E; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L

    2017-03-01

    Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Using an EPID for patient-specific VMAT quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, M.; Kumaraswamy, L.; Bailey, D. W.; Boer, S. de; Malhotra, H. K.; Podgorsak, M. B. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2011-03-15

    Purpose: A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). Methods: VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. Results: Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. Conclusions: This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.

  12. Additive manufacturing of patient-specific tubular continuum manipulators

    Science.gov (United States)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  13. Accounting Automation

    OpenAIRE

    Laynebaril1

    2017-01-01

    Accounting Automation   Click Link Below To Buy:   http://hwcampus.com/shop/accounting-automation/  Or Visit www.hwcampus.com Accounting Automation” Please respond to the following: Imagine you are a consultant hired to convert a manual accounting system to an automated system. Suggest the key advantages and disadvantages of automating a manual accounting system. Identify the most important step in the conversion process. Provide a rationale for your response. ...

  14. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  15. Respiratory gated radiotherapy-pretreatment patient specific quality assurance

    Directory of Open Access Journals (Sweden)

    Rajesh Thiyagarajan

    2016-01-01

    Full Text Available Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany in conjunction with "Real-time position management" (Varian, USA to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA phantom (Computerized Imaging Reference Systems type is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%. Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84% for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.

  16. Patient-Specific Variations in Biomarkers across Gingivitis and Periodontitis.

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Nagarajan

    Full Text Available This study investigates the use of saliva, as an emerging diagnostic fluid in conjunction with classification techniques to discern biological heterogeneity in clinically labelled gingivitis and periodontitis subjects (80 subjects; 40/group A battery of classification techniques were investigated as traditional single classifier systems as well as within a novel selective voting ensemble classification approach (SVA framework. Unlike traditional single classifiers, SVA is shown to reveal patient-specific variations within disease groups, which may be important for identifying proclivity to disease progression or disease stability. Salivary expression profiles of IL-1ß, IL-6, MMP-8, and MIP-1α from 80 patients were analyzed using four classification algorithms (LDA: Linear Discriminant Analysis [LDA], Quadratic Discriminant Analysis [QDA], Naïve Bayes Classifier [NBC] and Support Vector Machines [SVM] as traditional single classifiers and within the SVA framework (SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM. Our findings demonstrate that performance measures (sensitivity, specificity and accuracy of traditional classification as single classifier were comparable to that of the SVA counterparts using clinical labels of the samples as ground truth. However, unlike traditional single classifier approaches, the normalized ensemble vote-counts from SVA revealed varying proclivity of the subjects for each of the disease groups. More importantly, the SVA identified a subset of gingivitis and periodontitis samples that demonstrated a biological proclivity commensurate with the other clinical group. This subset was confirmed across SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM. Heatmap visualization of their ensemble sets revealed lack of consensus between these subsets and the rest of the samples within the respective disease groups indicating the unique nature of the patients in these subsets. While the source of variation is not known, the results presented clearly

  17. Patient-Specific Variations in Biomarkers across Gingivitis and Periodontitis.

    Science.gov (United States)

    Nagarajan, Radhakrishnan; Miller, Craig S; Dawson, Dolph; Al-Sabbagh, Mohanad; Ebersole, Jeffrey L

    2015-01-01

    This study investigates the use of saliva, as an emerging diagnostic fluid in conjunction with classification techniques to discern biological heterogeneity in clinically labelled gingivitis and periodontitis subjects (80 subjects; 40/group) A battery of classification techniques were investigated as traditional single classifier systems as well as within a novel selective voting ensemble classification approach (SVA) framework. Unlike traditional single classifiers, SVA is shown to reveal patient-specific variations within disease groups, which may be important for identifying proclivity to disease progression or disease stability. Salivary expression profiles of IL-1ß, IL-6, MMP-8, and MIP-1α from 80 patients were analyzed using four classification algorithms (LDA: Linear Discriminant Analysis [LDA], Quadratic Discriminant Analysis [QDA], Naïve Bayes Classifier [NBC] and Support Vector Machines [SVM]) as traditional single classifiers and within the SVA framework (SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM). Our findings demonstrate that performance measures (sensitivity, specificity and accuracy) of traditional classification as single classifier were comparable to that of the SVA counterparts using clinical labels of the samples as ground truth. However, unlike traditional single classifier approaches, the normalized ensemble vote-counts from SVA revealed varying proclivity of the subjects for each of the disease groups. More importantly, the SVA identified a subset of gingivitis and periodontitis samples that demonstrated a biological proclivity commensurate with the other clinical group. This subset was confirmed across SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM. Heatmap visualization of their ensemble sets revealed lack of consensus between these subsets and the rest of the samples within the respective disease groups indicating the unique nature of the patients in these subsets. While the source of variation is not known, the results presented clearly elucidate the

  18. Poster — Thur Eve — 51: An analysis of the effectiveness of automated pre-, post- and intra-treatment auditing of electronic health records

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A.; Seuntjens, J.; Parker, W.; Kildea, J. [Dept. of Medical Physics, McGill University Health Centre, Montreal, QC (Canada); Freeman, C. [Dept. of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada)

    2014-08-15

    We describe development of automated, web-based, electronic health record (EHR) auditing software for use within our paperless radiation oncology clinic. By facilitating access to multiple databases within the clinic, each patient's EHR is audited prior to treatment, regularly during treatment, and post treatment. Anomalies such as missing documentation, non-compliant workflow and treatment parameters that differ significantly from the norm may be monitored, flagged and brought to the attention of clinicians. By determining historical trends using existing patient data and by comparing new patient data with the historical, we expect our software to provide a measurable improvement in the quality of radiotherapy at our centre.

  19. Spacecraft Health Automated Reasoning Prototype (SHARP): The fiscal year 1989 SHARP portability evaluations task for NASA Solar System Exploration Division's Voyager project

    Science.gov (United States)

    Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius

    1990-01-01

    A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.

  20. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  1. Patient-Specific Predictive Modeling Using Random Forests: An Observational Study for the Critically Ill

    Science.gov (United States)

    2017-01-01

    Background With a large-scale electronic health record repository, it is feasible to build a customized patient outcome prediction model specifically for a given patient. This approach involves identifying past patients who are similar to the present patient and using their data to train a personalized predictive model. Our previous work investigated a cosine-similarity patient similarity metric (PSM) for such patient-specific predictive modeling. Objective The objective of the study is to investigate the random forest (RF) proximity measure as a PSM in the context of personalized mortality prediction for intensive care unit (ICU) patients. Methods A total of 17,152 ICU admissions were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. A number of predictor variables were extracted from the first 24 hours in the ICU. Outcome to be predicted was 30-day mortality. A patient-specific predictive model was trained for each ICU admission using an RF PSM inspired by the RF proximity measure. Death counting, logistic regression, decision tree, and RF models were studied with a hard threshold applied to RF PSM values to only include the M most similar patients in model training, where M was varied. In addition, case-specific random forests (CSRFs), which uses RF proximity for weighted bootstrapping, were trained. Results Compared to our previous study that investigated a cosine similarity PSM, the RF PSM resulted in superior or comparable predictive performance. RF and CSRF exhibited the best performances (in terms of mean area under the receiver operating characteristic curve [95% confidence interval], RF: 0.839 [0.835-0.844]; CSRF: 0.832 [0.821-0.843]). RF and CSRF did not benefit from personalization via the use of the RF PSM, while the other models did. Conclusions The RF PSM led to good mortality prediction performance for several predictive models, although it failed to induce improved performance in RF and CSRF. The distinction

  2. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V.; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  3. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    Science.gov (United States)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  4. Automation or De-automation

    Science.gov (United States)

    Gorlach, Igor; Wessel, Oliver

    2008-09-01

    In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.

  5. Automated Contingency Management for Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Increasing demand for improved reliability and survivability of mission-critical systems is driving the development of health monitoring and Automated Contingency...

  6. An automated, broad-based, near real-time public health surveillance system using presentations to hospital Emergency Departments in New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Chiu Clayton

    2005-12-01

    Full Text Available Abstract Background In a climate of concern over bioterrorism threats and emergent diseases, public health authorities are trialling more timely surveillance systems. The 2003 Rugby World Cup (RWC provided an opportunity to test the viability of a near real-time syndromic surveillance system in metropolitan Sydney, Australia. We describe the development and early results of this largely automated system that used data routinely collected in Emergency Departments (EDs. Methods Twelve of 49 EDs in the Sydney metropolitan area automatically transmitted surveillance data from their existing information systems to a central database in near real-time. Information captured for each ED visit included patient demographic details, presenting problem and nursing assessment entered as free-text at triage time, physician-assigned provisional diagnosis codes, and status at departure from the ED. Both diagnoses from the EDs and triage text were used to assign syndrome categories. The text information was automatically classified into one or more of 26 syndrome categories using automated "naïve Bayes" text categorisation techniques. Automated processes were used to analyse both diagnosis and free text-based syndrome data and to produce web-based statistical summaries for daily review. An adjusted cumulative sum (cusum was used to assess the statistical significance of trends. Results During the RWC the system did not identify any major public health threats associated with the tournament, mass gatherings or the influx of visitors. This was consistent with evidence from other sources, although two known outbreaks were already in progress before the tournament. Limited baseline in early monitoring prevented the system from automatically identifying these ongoing outbreaks. Data capture was invisible to clinical staff in EDs and did not add to their workload. Conclusion We have demonstrated the feasibility and potential utility of syndromic surveillance using

  7. The effects of local street network characteristics on the positional accuracy of automated geocoding for geographic health studies

    Directory of Open Access Journals (Sweden)

    Zimmerman Dale L

    2010-02-01

    Full Text Available Abstract Background Automated geocoding of patient addresses for the purpose of conducting spatial epidemiologic studies results in positional errors. It is well documented that errors tend to be larger in rural areas than in cities, but possible effects of local characteristics of the street network, such as street intersection density and street length, on errors have not yet been documented. Our study quantifies effects of these local street network characteristics on the means and the entire probability distributions of positional errors, using regression methods and tolerance intervals/regions, for more than 6000 geocoded patient addresses from an Iowa county. Results Positional errors were determined for 6376 addresses in Carroll County, Iowa, as the vector difference between each 100%-matched automated geocode and its ground-truthed location. Mean positional error magnitude was inversely related to proximate street intersection density. This effect was statistically significant for both rural and municipal addresses, but more so for the former. Also, the effect of street segment length on geocoding accuracy was statistically significant for municipal, but not rural, addresses; for municipal addresses mean error magnitude increased with length. Conclusion Local street network characteristics may have statistically significant effects on geocoding accuracy in some places, but not others. Even in those locales where their effects are statistically significant, street network characteristics may explain a relatively small portion of the variability among geocoding errors. It appears that additional factors besides rurality and local street network characteristics affect accuracy in general.

  8. Combining population and patient-specific characteristics for prostate segmentation on 3D CT images

    Science.gov (United States)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei

    2016-03-01

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.

  9. Flow topology in patient-specific abdominal aortic aneurysms during rest and exercise

    Science.gov (United States)

    Arzani, Amirhossein; Shadden, Shawn

    2012-11-01

    Abdominal aortic aneurysm (AAA) is a permanent, localized widening of the abdominal aorta. Flow in AAA is dominated by recirculation, transitional turbulence and low wall shear stress. Image-based CFD has recently enabled high resolution flow data in patient-specific AAA. This study aims to characterize transport in different AAAs, and understand flow topology changes from rest to exercise, which has been a hypothesized therapy due to potential acute changes in flow. Velocity data in 6 patients with different AAA morphology were obtained using image-based CFD under rest and exercise conditions. Finite-time Lyapunov exponent (FTLE) fields were computed from integration of the velocity data to identify dominant Lagrangian coherent structures. The flow topology was compared between rest and exercise conditions. For all patients, the systolic inflow jet resulted in coherent vortex formation. The evolution of this vortex varied greatly between patients and was a major determinant of transport inside the AAA during diastole. During exercise, previously observed stagnant regions were either replaced with undisturbed flow, regions of uniform high mixing, or persisted relatively unchanged. A mix norm measure provided a quantitative assessment of mixing. This work was supported by the National Institutes of Health, grant number 5R21HL108272.

  10. An automated online instrument to quantify aerosol-bound reactive oxygen species (ROS) for ambient measurement and health-relevant aerosol studies

    Science.gov (United States)

    Wragg, Francis P. H.; Fuller, Stephen J.; Freshwater, Ray; Green, David C.; Kelly, Frank J.; Kalberer, Markus

    2016-10-01

    The adverse health effects associated with ambient aerosol particles have been well documented, but it is still unclear which aerosol properties are most important for their negative health impact. Some studies suggest the oxidative effects of particle-bound reactive oxygen species (ROS) are potential major contributors to the toxicity of particles. Traditional ROS measurement techniques are labour-intensive, give poor temporal resolution and generally have significant delays between aerosol sampling and ROS analysis. However, many oxidising particle components are reactive and thus potentially short-lived. Thus, a technique to quantify particle-bound ROS online would be beneficial to quantify also the short-lived ROS components. We introduce a new portable instrument to allow online, continuous measurement of particle-bound ROS using a chemical assay of 2'7'-dichlorofluorescein (DCFH) with horseradish peroxidase (HRP), via fluorescence spectroscopy. All components of the new instrument are attached to a containing shell, resulting in a compact system capable of automated continuous field deployment over many hours or days. From laboratory measurements, the instrument was found to have a detection limit of ˜ 4 nmol [H2O2] equivalents per cubic metre (m3) air, a dynamic range up to at least ˜ 2000 nmol [H2O2] equivalents per m3 air and a time resolution of ≤ 12 min. The instrument allows for ˜ 16 h automated measurement if unattended and shows a fast response to changes in concentrations of laboratory-generated oxidised organic aerosol. The instrument was deployed at an urban site in London, and particulate ROS levels of up to 24 nmol [H2O2] equivalents per m3 air were detected with PM2.5 concentrations up to 28 µg m-3. The new and portable Online Particle-bound ROS Instrument (OPROSI) allows fast-response quantification; this is important due to the potentially short-lived nature of particle-bound ROS as well as fast-changing atmospheric conditions

  11. Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy

    NARCIS (Netherlands)

    Malan, D.F.; Botha, C.P.; Valstar, E.R.

    2012-01-01

    Purpose Automated patient-specific image-based segmentation of tissues surrounding aseptically loose hip prostheses is desired. For this we present an automated segmentation pipeline that labels periprosthetic tissues in computed tomography (CT). The intended application of this pipeline is in pre-o

  12. 3D reconstruction of patient-specific femurs using Coherent Point Drift

    Directory of Open Access Journals (Sweden)

    Shaobin Sun

    2013-02-01

    Full Text Available This paper dealt with the problem that the overlapping digital radiographs couldn`t reflect the 3D space information of the patient-specific femur in the orthopaedic surgery diagnosis. A 2D-3D non-rigid registration method based on Coherent Point Drift was proposed to realize the 3D reconstruction of the patient-specific femur before the surgery, which used biplanar digital radiographs of the patient-specific femur and the CT volume data of a generic femur. With the advantages of low cost, fast imaging speed and little radiation to the patients and doctors, this method provided more effective 3D imaging information for the femur diagnosis and preoperative plans. The registration experiments showed that the proposed method recovered the 3D model and the pose of the patient-specific femur effectively with a fast, accurate and robust registration result, which had satisfied the needs of clinical application.

  13. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    Science.gov (United States)

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  14. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis

    OpenAIRE

    Gattinger Johannes; Bullemer Christian N.; Harrysson Ola L. A.

    2016-01-01

    Aim of this study was to prove the possibility of manufacturing patient specific root analogue two-part (implant and abutment) implants by direct metal laser sintering. The two-part implant design enables covered healing of the implant. Therefore, CT-scans of three patients are used for reverse engineering of the implants, abutments and crowns. Patient specific implants are manufactured and measured concerning dimensional accuracy and surface roughness. Impacts of occlusal forces are simulate...

  15. Automating Finance

    Science.gov (United States)

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  16. Development of an integrated CAD-FEA system for patient-specific design of spinal cages.

    Science.gov (United States)

    Zhang, Mingzheng; Pu, Fang; Xu, Liqiang; Zhang, Linlin; Liang, Hang; Li, Deyu; Wang, Yu; Fan, Yubo

    2017-03-01

    Spinal cages are used to create a suitable mechanical environment for interbody fusion in cases of degenerative spinal instability. Due to individual variations in bone structures and pathological conditions, patient-specific cages can provide optimal biomechanical conditions for fusion, strengthening patient recovery. Finite element analysis (FEA) is a valuable tool in the biomechanical evaluation of patient-specific cage designs, but the time- and labor-intensive process of modeling limits its clinical application. In an effort to facilitate the design and analysis of patient-specific spinal cages, an integrated CAD-FEA system (CASCaDeS, comprehensive analytical spinal cage design system) was developed. This system produces a biomechanical-based patient-specific design of spinal cages and is capable of rapid implementation of finite element modeling. By comparison with commercial software, this system was validated and proven to be both accurate and efficient. CASCaDeS can be used to design patient-specific cages with a superior biomechanical performance to commercial spinal cages.

  17. Heating automation

    OpenAIRE

    Tomažič, Tomaž

    2013-01-01

    This degree paper presents usage and operation of peripheral devices with microcontroller for heating automation. The main goal is to make a quality system control for heating three house floors and with that, increase efficiency of heating devices and lower heating expenses. Heat pump, furnace, boiler pump, two floor-heating pumps and two radiator pumps need to be controlled by this system. For work, we have chosen a development kit stm32f4 - discovery with five temperature sensors, LCD disp...

  18. Automation Security

    OpenAIRE

    Mirzoev, Dr. Timur

    2014-01-01

    Web-based Automated Process Control systems are a new type of applications that use the Internet to control industrial processes with the access to the real-time data. Supervisory control and data acquisition (SCADA) networks contain computers and applications that perform key functions in providing essential services and commodities (e.g., electricity, natural gas, gasoline, water, waste treatment, transportation) to all Americans. As such, they are part of the nation s critical infrastructu...

  19. Marketing automation

    OpenAIRE

    Raluca Dania TODOR

    2017-01-01

    The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the...

  20. Orbital and Maxillofacial Computer Aided Surgery: Patient-Specific Finite Element Models To Predict Surgical Outcomes

    CERN Document Server

    Luboz, V; Swider, P; Payan, Y; Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan

    2005-01-01

    This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific Finite Element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the Mesh-Matching method, followed by a process that corrects mesh irregularities. The Mesh-Matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to Computer-Assisted maxillofacial surgery, and more precisely to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven F...

  1. From Patient-Specific Mathematical Neuro-Oncology to Precision Medicine

    Directory of Open Access Journals (Sweden)

    Anne eBaldock

    2013-04-01

    Full Text Available Gliomas are notoriously aggressive, malignant brain tumors that have variable response to treatment. These patients often have poor prognosis, informed primarily by histopathology. Mathematical neuro-oncology (MNO is a young and burgeoning field that leverages mathematical models to predict and quantify response to therapies. These mathematical models can form the basis of modern precision medicine approaches to tailor therapy in a patient-specific manner. Patient specific models (PSMs can be used to overcome imaging limitations, improve prognostic predictions, stratify patients and assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research in the war on cancer. This review focuses on the growing translation of PSM to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific mathematical neuro-oncology.

  2. Development of a patient specific artificial tracheal prosthesis: design, mechanical behavior analysis and manufacturing.

    Science.gov (United States)

    Chua C H, Matthew; Chui, Chee Kong; Rai, Bina; Lau D P, David

    2013-01-01

    There is a need to create patient specific organ replacements as there are differences in the anatomical dimensions among individuals. High failure rates in tracheal prosthesis are attributed to the lack of mechanical strength and flexibility, slow rate of growth of ciliated epithelium and leakage of interstitial fluid into the lumen. This paper proposes a methodology of design, simulations and fabrication of a patient specific artificial tracheal prosthesis for implantation to closely mimic the biomechanical properties of the natural trachea, and describes the prototype device and its materials. Results show that the patient-specific trachea prosthesis has mechanical properties approximate that of normal tracheal rings. The user centric tracheal prosthesis is demonstrated to be a promising candidate for tracheal replacement.

  3. Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions.

    Science.gov (United States)

    Votta, Emiliano; Le, Trung Bao; Stevanella, Marco; Fusini, Laura; Caiani, Enrico G; Redaelli, Alberto; Sotiropoulos, Fotis

    2013-01-18

    Recent computational methods enabling patient-specific simulations of native and prosthetic heart valves are reviewed. Emphasis is placed on two critical components of such methods: (1) anatomically realistic finite element models for simulating the structural dynamics of heart valves; and (2) fluid structure interaction methods for simulating the performance of heart valves in a patient-specific beating left ventricle. It is shown that the significant progress achieved in both fronts paves the way toward clinically relevant computational models that can simulate the performance of a range of heart valves, native and prosthetic, in a patient-specific left heart environment. The significant algorithmic and model validation challenges that need to be tackled in the future to realize this goal are also discussed.

  4. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  5. Mesh structure-independent modeling of patient-specific atrial fiber orientation

    Directory of Open Access Journals (Sweden)

    Wachter Andreas

    2015-09-01

    Full Text Available The fiber orientation in the atria has a significant contribution to the electrophysiologic behavior of the heart and to the genesis of arrhythmia. Atrial fiber orientation has a direct effect on excitation propagation, activation patterns and the P-wave. We present a rule-based algorithm that works robustly on different volumetric meshes composed of either isotropic hexahedra or arbitrary tetrahedra as well as on 3-dimensional triangular surface meshes in patient-specific geometric models. This method fosters the understanding of general proarrhythmic mechanisms and enhances patient-specific modeling approaches.

  6. Patient specific root-analogue dental implants – additive manufacturing and finite element analysis

    Directory of Open Access Journals (Sweden)

    Gattinger Johannes

    2016-09-01

    Full Text Available Aim of this study was to prove the possibility of manufacturing patient specific root analogue two-part (implant and abutment implants by direct metal laser sintering. The two-part implant design enables covered healing of the implant. Therefore, CT-scans of three patients are used for reverse engineering of the implants, abutments and crowns. Patient specific implants are manufactured and measured concerning dimensional accuracy and surface roughness. Impacts of occlusal forces are simulated via FEA and compared to those of standard implants.

  7. An effective algorithm for the generation of patient-specific Purkinje networks in computational electrocardiology

    Science.gov (United States)

    Palamara, Simone; Vergara, Christian; Faggiano, Elena; Nobile, Fabio

    2015-02-01

    The Purkinje network is responsible for the fast and coordinated distribution of the electrical impulse in the ventricle that triggers its contraction. Therefore, it is necessary to model its presence to obtain an accurate patient-specific model of the ventricular electrical activation. In this paper, we present an efficient algorithm for the generation of a patient-specific Purkinje network, driven by measures of the electrical activation acquired on the endocardium. The proposed method provides a correction of an initial network, generated by means of a fractal law, and it is based on the solution of Eikonal problems both in the muscle and in the Purkinje network. We present several numerical results both in an ideal geometry with synthetic data and in a real geometry with patient-specific clinical measures. These results highlight an improvement of the accuracy provided by the patient-specific Purkinje network with respect to the initial one. In particular, a cross-validation test shows an accuracy increase of 19% when only the 3% of the total points are used to generate the network, whereas an increment of 44% is observed when a random noise equal to 20% of the maximum value of the clinical data is added to the measures.

  8. Patient-Specific Simulation of Implant Placement and Function for Cochlear Implantation Surgery Planning

    DEFF Research Database (Denmark)

    Ceresa, Mario; Mangado Lopez, Nerea; Dejea Velardo, Hector;

    2014-01-01

    We present a framework for patient specific electrical stimulation of the cochlea, that allows to perform in-silico analysis of implant placement and function before surgery. A Statistical Shape Model (SSM) is created from high-resolution human μCT data to capture important anatomical details...

  9. Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty.

    Science.gov (United States)

    Huijbregts, Henricus J T A M; Khan, Riaz J K; Sorensen, Emma; Fick, Daniel P; Haebich, Samantha

    2016-08-01

    Background and purpose - Patient-specific instrumentation (PSI) for total knee arthroplasty (TKA) has been introduced to improve alignment and reduce outliers, increase efficiency, and reduce operation time. In order to improve our understanding of the outcomes of patient-specific instrumentation, we conducted a meta-analysis. Patients and methods - We identified randomized and quasi-randomized controlled trials (RCTs) comparing patient-specific and conventional instrumentation in TKA. Weighted mean differences and risk ratios were determined for radiographic accuracy, operation time, hospital stay, blood loss, number of surgical trays required, and patient-reported outcome measures. Results - 21 RCTs involving 1,587 TKAs were included. Patient-specific instrumentation resulted in slightly more accurate hip-knee-ankle axis (0.3°), coronal femoral alignment (0.3°, femoral flexion (0.9°), tibial slope (0.7°), and femoral component rotation (0.5°). The risk ratio of a coronal plane outlier (> 3° deviation of chosen target) for the tibial component was statistically significantly increased in the PSI group (RR =1.64). No significance was found for other radiographic measures. Operation time, blood loss, and transfusion rate were similar. Hospital stay was significantly shortened, by approximately 8 h, and the number of surgical trays used decreased by 4 in the PSI group. Knee Society scores and Oxford knee scores were similar. Interpretation - Patient-specific instrumentation does not result in clinically meaningful improvement in alignment, fewer outliers, or better early patient-reported outcome measures. Efficiency is improved by reducing the number of trays used, but PSI does not reduce operation time.

  10. Automated analysis of long-term bridge behavior and health using a cyber-enabled wireless monitoring system

    Science.gov (United States)

    O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen

    2014-04-01

    A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP

  11. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  12. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    Science.gov (United States)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  13. Home automation as an example of construction innovation

    NARCIS (Netherlands)

    Vlies, R.D. van der; Bronswijk, J.E.M.H. van

    2009-01-01

    Home automation can contribute to the health of (older) adults. Home automation covers a broad field of ‘intelligent’ electronic or mechanical devices in the home (domestic) environment. Realizing home automation is technically possible, though still not common. In this paper main influential factor

  14. Automation 2017

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2017-01-01

    This book consists of papers presented at Automation 2017, an international conference held in Warsaw from March 15 to 17, 2017. It discusses research findings associated with the concepts behind INDUSTRY 4.0, with a focus on offering a better understanding of and promoting participation in the Fourth Industrial Revolution. Each chapter presents a detailed analysis of a specific technical problem, in most cases followed by a numerical analysis, simulation and description of the results of implementing the solution in a real-world context. The theoretical results, practical solutions and guidelines presented are valuable for both researchers working in the area of engineering sciences and practitioners looking for solutions to industrial problems. .

  15. Marketing automation

    Directory of Open Access Journals (Sweden)

    TODOR Raluca Dania

    2017-01-01

    Full Text Available The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the technical progress, the marketing fragmentation, demand for customized products and services on one side and the need to achieve constructive dialogue with the customers, immediate and flexible response and the necessity to measure the investments and the results on the other side, the classical marketing approached had changed continue to improve substantially.

  16. Evaluation of a patient specific femoral alignment guide for hip resurfacing.

    Science.gov (United States)

    Olsen, Michael; Naudie, Douglas D; Edwards, Max R; Sellan, Michael E; McCalden, Richard W; Schemitsch, Emil H

    2014-03-01

    A novel alternative to conventional instrumentation for femoral component insertion in hip resurfacing is a patient specific, computed tomography based femoral alignment guide. A benchside study using cadaveric femora was performed comparing a custom alignment guide to conventional instrumentation and computer navigation. A clinical series of twenty-five hip resurfacings utilizing a custom alignment guide was conducted by three surgeons experienced in hip resurfacing. Using cadaveric femora, the custom guide was comparable to conventional instrumentation with computer navigation proving superior to both. Clinical femoral component alignment accuracy was 3.7° and measured within ± 5° of plan in 20 of 24 cases. Patient specific femoral alignment guides provide a satisfactory level of accuracy and may be a better alternative to conventional instrumentation for initial femoral guidewire placement in hip resurfacing.

  17. A review of rapid prototyped surgical guides for patient-specific total knee replacement.

    Science.gov (United States)

    Krishnan, S P; Dawood, A; Richards, R; Henckel, J; Hart, A J

    2012-11-01

    Improvements in the surgical technique of total knee replacement (TKR) are continually being sought. There has recently been interest in three-dimensional (3D) pre-operative planning using magnetic resonance imaging (MRI) and CT. The 3D images are increasingly used for the production of patient-specific models, surgical guides and custom-made implants for TKR. The users of patient-specific instrumentation (PSI) claim that they allow the optimum balance of technology and conventional surgery by reducing the complexity of conventional alignment and sizing tools. In this way the advantages of accuracy and precision claimed by computer navigation techniques are achieved without the disadvantages of additional intra-operative inventory, new skills or surgical time. This review describes the terminology used in this area and debates the advantages and disadvantages of PSI.

  18. Anisotropic Finite Element Modeling Based on a Harmonic Field for Patient-Specific Sclera

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2017-01-01

    Full Text Available Purpose. This study examined the influence of anisotropic material for human sclera. Method. First, the individual geometry of patient-specific sclera was reproduced from a laser scan. Then, high quality finite element modeling of individual sclera was performed using a convenient automatic hexahedral mesh generator based on harmonic field and integrated with anisotropic material assignment function. Finally, comparison experiments were designed to investigate the effects of anisotropy on finite element modeling of sclera biomechanics. Results. The experimental results show that the presented approach can generate high quality anisotropic hexahedral mesh for patient-specific sclera. Conclusion. The anisotropy shows significant differences for stresses and strain distribution and careful consideration should be given to its use in biomechanical FE studies.

  19. Anisotropic Finite Element Modeling Based on a Harmonic Field for Patient-Specific Sclera.

    Science.gov (United States)

    Jia, Xu; Liao, Shenghui; Duan, Xuanchu; Zheng, Wanqiu; Zou, Beiji

    2017-01-01

    Purpose. This study examined the influence of anisotropic material for human sclera. Method. First, the individual geometry of patient-specific sclera was reproduced from a laser scan. Then, high quality finite element modeling of individual sclera was performed using a convenient automatic hexahedral mesh generator based on harmonic field and integrated with anisotropic material assignment function. Finally, comparison experiments were designed to investigate the effects of anisotropy on finite element modeling of sclera biomechanics. Results. The experimental results show that the presented approach can generate high quality anisotropic hexahedral mesh for patient-specific sclera. Conclusion. The anisotropy shows significant differences for stresses and strain distribution and careful consideration should be given to its use in biomechanical FE studies.

  20. MRI is more accurate than CT for patient-specific total knee arthroplasty.

    Science.gov (United States)

    Frye, Benjamin M; Najim, Amjad A; Adams, Joanne B; Berend, Keith R; Lombardi, Adolph V

    2015-12-01

    Previous reports have stated that MRI is less accurate than CT for patient specific guide creation in total knee arthroplasty (TKA). Twenty-three TKAs were performed with CT-based guides and 27 with MRI-based guides. A mechanical axis through the central third of the knee was achieved in 88.9% of MRI-guided TKA versus 69.6% of CT-guided TKA (p=0.07). There were nine component outliers in the CT group (39.1%) and two in the MRI group (7.4%, p=0.00768). The relative risk of having an outlier using a CT-based guide was 5.28 times that of an MRI-based guide. Superior overall alignment and fewer outliers were achieved with the use of MRI compared with CT. MRI is the best imaging modality for surgeons wishing to utilize patient specific guides for TKA.

  1. Automated Safety Incident Surveillance and Tracking System (ASISTS)

    Data.gov (United States)

    Department of Veterans Affairs — The Automated Safety Incident Surveillance and Tracking System (ASISTS) is a repository of Veterans Health Administration (VHA) employee accident data. Many types of...

  2. Patient Specification Quality Assurance for Glioblastoma Multiforme Brain Tumors Treated with Intensity Modulated Radiation Therapy

    OpenAIRE

    Al-Mohammed, H. I.

    2011-01-01

    The aim of this study was to evaluate the significance of performing patient specification quality assurance for patients diagnosed with glioblastoma multiforme treated with intensity modulated radiation therapy. The study evaluated ten intensity modulated radiation therapy treatment plans using 10 MV beams, a total dose of 60 Gy (2 Gy/fraction, five fractions a week for a total of six weeks treatment). For the quality assurance protocol we used a two-dimensional ionization-chamber array (2D-...

  3. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases.

    Science.gov (United States)

    Morlacchi, Stefano; Colleoni, Sebastian George; Cárdenes, Rubén; Chiastra, Claudio; Diez, Jose Luis; Larrabide, Ignacio; Migliavacca, Francesco

    2013-09-01

    Computational simulations of stenting procedures in idealized geometries can only provide general guidelines and their use in the patient-specific planning of percutaneous treatments is inadequate. Conversely, image-based patient-specific tools that are able to realistically simulate different interventional options might facilitate clinical decision-making and provide useful insights on the treatment for each individual patient. The aim of this work is the implementation of a patient-specific model that uses image-based reconstructions of coronary bifurcations and is able to replicate real stenting procedures following clinical indications. Two clinical cases are investigated focusing the attention on the open problems of coronary bifurcations and their main treatment, the provisional side branch approach. Image-based reconstructions are created combining the information from conventional coronary angiography and computed tomography angiography while structural finite element models are implemented to replicate the real procedure performed in the patients. First, numerical results show the biomechanical influence of stents deployment in the coronary bifurcations during and after the procedures. In particular, the straightening of the arterial wall and the influence of two overlapping stents on stress fields are investigated here. Results show that a sensible decrease of the vessel tortuosity occurs after stent implantation and that overlapping devices result in an increased stress state of both the artery and the stents. Lastly, the comparison between numerical and image-based post-stenting configurations proved the reliability of such models while replicating stent deployment in coronary arteries.

  4. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Isaac Canals

    2015-10-01

    Full Text Available Induced pluripotent stem cell (iPSC technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration.

  5. A Patient-Specific Airway Branching Model for Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Nor Salwa Damanhuri

    2014-01-01

    Full Text Available Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps. Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA in patients diagnosed with acute respiratory distress syndrome (ARDS. A scaling factor (α was used to equate the area under the pressure curve (AUC from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median α value of 0.58 (IQR: 0.54–0.63; range: 0.45–0.66 for these ARDS patients. Significantly lower α values were found for individuals with chronic obstructive pulmonary disease (P<0.001. Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific α values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.

  6. [Establishment of hemophilia A patient-specific inducible pluripotent stem cells with urine cells].

    Science.gov (United States)

    Hu, Zhiqing; Hu, Xuyun; Pang, Jialun; Wang, Xiaolin; Lin Peng, Siyuan; Li, Zhuo; Wu, Yong; Wu, Lingqian; Liang, Desheng

    2015-10-01

    OBJECTIVE To generate hemophilia A (HA) patient-specific inducible pluripotent stem cells (iPSCs) and induce endothelial differentiation. METHODS Tubular epithelial cells were isolated and cultured from the urine of HA patients. The iPSCs were generated by forced expression of Yamanaka factors (Oct4, Sox2, c-Myc and Klf4) using retroviruses and characterized by cell morphology, pluripotent marker staining and in vivo differentiation through teratoma formation. Induced endothelial differentiation of the iPSCs was achieved with the OP9 cell co-culture method. RESULTS Patient-specific iPSCs were generated from urine cells of the HA patients, which could be identified by cell morphology, pluripotent stem cell surface marker staining and in vivo differentiation of three germ layers. The teratoma experiment has confirmed that such cells could differentiate into endothelial cells expressing the endothelial-specific markers CD144, CD31 and vWF. CONCLUSION HA patient-specific iPSCs could be generated from urine cells and can differentiate into endothelial cells. This has provided a new HA disease modeling approach and may serve as an applicable autologous cell source for gene correction and cell therapy studies for HA.

  7. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Science.gov (United States)

    Canals, Isaac; Soriano, Jordi; Orlandi, Javier G.; Torrent, Roger; Richaud-Patin, Yvonne; Jiménez-Delgado, Senda; Merlin, Simone; Follenzi, Antonia; Consiglio, Antonella; Vilageliu, Lluïsa; Grinberg, Daniel; Raya, Angel

    2015-01-01

    Summary Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration. PMID:26411903

  8. A Numerical Multiscale Framework for Modeling Patient-Specific Coronary Artery Bypass Surgeries

    Science.gov (United States)

    Ramachandra, Abhay B.; Kahn, Andrew; Marsden, Alison

    2014-11-01

    Coronary artery bypass graft (CABG) surgery is performed to revascularize diseased coronary arteries, using arterial, venous or synthetic grafts. Vein grafts, used in more than 70% of procedures, have failure rates as high as 50% in less than 10 years. Hemodynamics is known to play a key role in the mechano-biological response of vein grafts, but current non-invasive imaging techniques cannot fully characterize the hemodynamic and biomechanical environment. We numerically compute hemodynamics and wall mechanics in patient-specific 3D CABG geometries using stabilized finite element methods. The 3D patient-specific domain is coupled to a 0D lumped parameter circulatory model and parameters are tuned to match patient-specific blood pressures, stroke volumes, heart rates and heuristic flow-split values. We quantify differences in hemodynamics between arterial and venous grafts and discuss possible correlations to graft failure. Extension to a deformable wall approximation will also be discussed. The quantification of wall mechanics and hemodynamics is a necessary step towards coupling continuum models in solid and fluid mechanics with the cellular and sub-cellular responses of grafts, which in turn, should lead to a more accurate prediction of the long term outcome of CABG surgeries, including predictions of growth and remodeling.

  9. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks.

    Science.gov (United States)

    Canals, Isaac; Soriano, Jordi; Orlandi, Javier G; Torrent, Roger; Richaud-Patin, Yvonne; Jiménez-Delgado, Senda; Merlin, Simone; Follenzi, Antonia; Consiglio, Antonella; Vilageliu, Lluïsa; Grinberg, Daniel; Raya, Angel

    2015-10-13

    Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration.

  10. The Effect of Patient-Specific Cerebral Oxygenation Monitoring on Postoperative Cognitive Function: A Multicenter Randomized Controlled Trial

    Science.gov (United States)

    Ellis, Lucy; Murphy, Gavin J; Culliford, Lucy; Dreyer, Lucy; Clayton, Gemma; Downes, Richard; Nicholson, Eamonn; Stoica, Serban; Reeves, Barnaby C

    2015-01-01

    Background Indices of global tissue oxygen delivery and utilization such as mixed venous oxygen saturation, serum lactate concentration, and arterial hematocrit are commonly used to determine the adequacy of tissue oxygenation during cardiopulmonary bypass (CPB). However, these global measures may not accurately reflect regional tissue oxygenation and ischemic organ injury remains a common and serious complication of CPB. Near-infrared spectroscopy (NIRS) is a noninvasive technology that measures regional tissue oxygenation. NIRS may be used alongside global measures to optimize regional perfusion and reduce organ injury. It may also be used as an indicator of the need for red blood cell transfusion in the presence of anemia and tissue hypoxia. However, the clinical benefits of using NIRS remain unclear and there is a lack of high-quality evidence demonstrating its efficacy and cost effectiveness. Objective The aim of the patient-specific cerebral oxygenation monitoring as part of an algorithm to reduce transfusion during heart valve surgery (PASPORT) trial is to determine whether the addition of NIRS to CPB management algorithms can prevent cognitive decline, postoperative organ injury, unnecessary transfusion, and reduce health care costs. Methods Adults aged 16 years or older undergoing valve or combined coronary artery bypass graft and valve surgery at one of three UK cardiac centers (Bristol, Hull, or Leicester) are randomly allocated in a 1:1 ratio to either a standard algorithm for optimizing tissue oxygenation during CPB that includes a fixed transfusion threshold, or a patient-specific algorithm that incorporates cerebral NIRS monitoring and a restrictive red blood cell transfusion threshold. Allocation concealment, Internet-based randomization stratified by operation type and recruiting center, and blinding of patients, ICU and ward care staff, and outcome assessors reduce the risk of bias. The primary outcomes are cognitive function 3 months after

  11. The patient's perspective of the feasibility of a patient-specific instrument in physiotherapy goal setting: a qualitative study

    NARCIS (Netherlands)

    Stevens, A.; Moser, A.; Koke, A.; Weijden, T.T. van der; Beurskens, A.

    2016-01-01

    BACKGROUND: Patient participation in goal setting is important to deliver client-centered care. In daily practice, however, patient involvement in goal setting is not optimal. Patient-specific instruments, such as the Patient Specific Complaints (PSC) instrument, can support the goal-setting process

  12. The patient's perspective of the feasibility of a patient-specific instrument in physiotherapy goal setting : a qualitative study

    NARCIS (Netherlands)

    Stevens, Anita; Moser, Albine; Köke, Albère; Weijden, Trudy van der; Beurskens, Anna

    2016-01-01

    Background: Patient participation in goal setting is important to deliver client-centered care. In daily practice, however, patient involvement in goal setting is not optimal. Patient-specific instruments, such as the Patient Specific Complaints (PSC) instrument, can support the goal-setting process

  13. Patient-specific in vitro models for hemodynamic analysis of congenital heart disease - Additive manufacturing approach.

    Science.gov (United States)

    Medero, Rafael; García-Rodríguez, Sylvana; François, Christopher J; Roldán-Alzate, Alejandro

    2017-03-21

    Non-invasive hemodynamic assessment of total cavopulmonary connection (TCPC) is challenging due to the complex anatomy. Additive manufacturing (AM) is a suitable alternative for creating patient-specific in vitro models for flow measurements using four-dimensional (4D) Flow MRI. These in vitro systems have the potential to serve as validation for computational fluid dynamics (CFD), simulating different physiological conditions. This study investigated three different AM technologies, stereolithography (SLA), selective laser sintering (SLS) and fused deposition modeling (FDM), to determine differences in hemodynamics when measuring flow using 4D Flow MRI. The models were created using patient-specific MRI data from an extracardiac TCPC. These models were connected to a perfusion pump circulating water at three different flow rates. Data was processed for visualization and quantification of velocity, flow distribution, vorticity and kinetic energy. These results were compared between each model. In addition, the flow distribution obtained in vitro was compared to in vivo. The results showed significant difference in velocities measured at the outlets of the models that required internal support material when printing. Furthermore, an ultrasound flow sensor was used to validate flow measurements at the inlets and outlets of the in vitro models. These results were highly correlated to those measured with 4D Flow MRI. This study showed that commercially available AM technologies can be used to create patient-specific vascular models for in vitro hemodynamic studies at reasonable costs. However, technologies that do not require internal supports during manufacturing allow smoother internal surfaces, which makes them better suited for flow analyses.

  14. Validation of a Cochlear Implant Patient Specific Model of the Voltage Distribution in a Clinical Setting

    Directory of Open Access Journals (Sweden)

    Waldo Nogueira

    2016-11-01

    Full Text Available Cochlear Implants (CIs are medical implantable devices that can restore the sense of hearing in people with profound hearing loss. Clinical trials assessing speech intelligibility in CI users have found large inter-subject variability. One possibility to explain the variability is the individual differences in the interface created between electrodes of the CI and the auditory nerve. In order to understand the variability, models of the voltage distribution of the electrically stimulated cochlea may be useful. With this purpose in mind, we developed a parametric model that can be adapted to each CI user based on landmarks from individual cone beam computed tomography (CBCT scans of the cochlea before and after implantation. The conductivity values of each cochlea compartment as well as the weighting factors of different grounding modes have been also parameterized. Simulations were performed modeling the cochlea and electrode positions of 12 CI users. Three models were compared with different levels of detail: A homogeneous model (HM, a non-patient specific model (NPSM and a patient specific model (PSM. The model simulations were compared with voltage distribution measurements obtained from the backward telemetry of the 12 CI users. Results show that the PSM produces the lowest error when predicting individual voltage distributions. Given a patient specific geometry and electrode positions we show an example on how to optimize the parameters of the model and how to couple it to an auditory nerve model. The model here presented may help to understand speech performance variability and support the development of new sound coding strategies for CIs.

  15. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders.

    Science.gov (United States)

    Brennand, Kristen J; Marchetto, M Carol; Benvenisty, Nissim; Brüstle, Oliver; Ebert, Allison; Izpisua Belmonte, Juan Carlos; Kaykas, Ajamete; Lancaster, Madeline A; Livesey, Frederick J; McConnell, Michael J; McKay, Ronald D; Morrow, Eric M; Muotri, Alysson R; Panchision, David M; Rubin, Lee L; Sawa, Akira; Soldner, Frank; Song, Hongjun; Studer, Lorenz; Temple, Sally; Vaccarino, Flora M; Wu, Jun; Vanderhaeghen, Pierre; Gage, Fred H; Jaenisch, Rudolf

    2015-12-01

    As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.

  16. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders

    Directory of Open Access Journals (Sweden)

    Kristen J. Brennand

    2015-12-01

    Full Text Available As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.

  17. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  18. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  19. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method

    Science.gov (United States)

    Kaneko, Naoki; Mashiko, Toshihiro; Ohnishi, Taihei; Ohta, Makoto; Namba, Katsunari; Watanabe, Eiju; Kawai, Kensuke

    2016-12-01

    Patient-specific vascular replicas are essential to the simulation of endovascular treatment or for vascular research. The inside of silicone replica is required to be smooth for manipulating interventional devices without resistance. In this report, we demonstrate the fabrication of patient-specific silicone vessels with a low-cost desktop 3D printer. We show that the surface of an acrylonitrile butadiene styrene (ABS) model printed by the 3D printer can be smoothed by a single dipping in ABS solvent in a time-dependent manner, where a short dip has less effect on the shape of the model. The vascular mold is coated with transparent silicone and then the ABS mold is dissolved after the silicone is cured. Interventional devices can pass through the inside of the smoothed silicone vessel with lower pushing force compared to the vessel without smoothing. The material cost and time required to fabricate the silicone vessel is about USD $2 and 24 h, which is much lower than the current fabrication methods. This fast and low-cost method offers the possibility of testing strategies before attempting particularly difficult cases, while improving the training of endovascular therapy, enabling the trialing of new devices, and broadening the scope of vascular research.

  20. Effect of voxel size when calculating patient specific radionuclide dosimetry estimates using direct Monte Carlo simulation.

    Science.gov (United States)

    Hickson, Kevin J; O'Keefe, Graeme J

    2014-09-01

    The scalable XCAT voxelised phantom was used with the GATE Monte Carlo toolkit to investigate the effect of voxel size on dosimetry estimates of internally distributed radionuclide calculated using direct Monte Carlo simulation. A uniformly distributed Fluorine-18 source was simulated in the Kidneys of the XCAT phantom with the organ self dose (kidney ← kidney) and organ cross dose (liver ← kidney) being calculated for a number of organ and voxel sizes. Patient specific dose factors (DF) from a clinically acquired FDG PET/CT study have also been calculated for kidney self dose and liver ← kidney cross dose. Using the XCAT phantom it was found that significantly small voxel sizes are required to achieve accurate calculation of organ self dose. It has also been used to show that a voxel size of 2 mm or less is suitable for accurate calculations of organ cross dose. To compensate for insufficient voxel sampling a correction factor is proposed. This correction factor is applied to the patient specific dose factors calculated with the native voxel size of the PET/CT study.

  1. Patient-specific biomechanical model as whole-body CT image registration tool.

    Science.gov (United States)

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-05-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images.

  2. Simulations of blood flow in patient-specific aortic dissections with a deformable wall model

    Science.gov (United States)

    Baeumler, Kathrin; Vedula, Vijay; Sailer Karmann, Anna; Marsden, Alison; Fleischmann, Dominik

    2016-11-01

    Aortic dissection is a life-threatening condition in which blood penetrates into the vessel wall, creating a second flow channel, often requiring emergency surgical repair. Up to 50% of patients who survive the acute event face late complications like aortic dilatation and eventual rupture. Prediction of late complications, however, remains challenging. We therefore aim to perform accurate and reliable patient-specific simulations of blood flow in aortic dissections, validated by 4D-Flow MRI. Among other factors, this is a computational challenge due to the compliance of the vessel walls and the large degree of membrane deformation between the two flow channels. We construct an anatomic patient-specific model from CT data including both flow channels and the membrane between them. We then run fluid structure interaction simulations using an arbitrary Lagrangian-Eulerian (ALE) formulation within a multiscale variational framework, employing stabilized finite element methods. We compare hemodynamics between a rigid and a deformable wall model and examine membrane dynamics and pressure differences between the two flow channels. The study focuses on the computational and modeling challenges emphasizing the importance of employing a deformable wall model for aortic dissections.

  3. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method.

    Science.gov (United States)

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Nguyen, Tam H; Miller, Michael J; Paulino, Glaucio H

    2016-07-01

    Large craniofacial defects require efficient bone replacements which should not only provide good aesthetics but also possess stable structural function. The proposed work uses a novel multiresolution topology optimization method to achieve the task. Using a compliance minimization objective, patient-specific bone replacement shapes can be designed for different clinical cases that ensure revival of efficient load transfer mechanisms in the mid-face. In this work, four clinical cases are introduced and their respective patient-specific designs are obtained using the proposed method. The optimized designs are then virtually inserted into the defect to visually inspect the viability of the design . Further, once the design is verified by the reconstructive surgeon, prototypes are fabricated using a 3D printer for validation. The robustness of the designs are mechanically tested by subjecting them to a physiological loading condition which mimics the masticatory activity. The full-field strain result through 3D image correlation and the finite element analysis implies that the solution can survive the maximum mastication of 120 lb. Also, the designs have the potential to restore the buttress system and provide the structural integrity. Using the topology optimization framework in designing the bone replacement shapes would deliver surgeons new alternatives for rather complicated mid-face reconstruction.

  4. Computational Simulations of Inferior Vena Cava (IVC) Filter Placement and Hemodynamics in Patient-Specific Geometries

    Science.gov (United States)

    Aycock, Kenneth; Sastry, Shankar; Kim, Jibum; Shontz, Suzanne; Campbell, Robert; Manning, Keefe; Lynch, Frank; Craven, Brent

    2013-11-01

    A computational methodology for simulating inferior vena cava (IVC) filter placement and IVC hemodynamics was developed and tested on two patient-specific IVC geometries: a left-sided IVC, and an IVC with a retroaortic left renal vein. Virtual IVC filter placement was performed with finite element analysis (FEA) using non-linear material models and contact modeling, yielding maximum vein displacements of approximately 10% of the IVC diameters. Blood flow was then simulated using computational fluid dynamics (CFD) with four cases for each patient IVC: 1) an IVC only, 2) an IVC with a placed filter, 3) an IVC with a placed filter and a model embolus, all at resting flow conditions, and 4) an IVC with a placed filter and a model embolus at exercise flow conditions. Significant hemodynamic differences were observed between the two patient IVCs, with the development of a right-sided jet (all cases) and a larger stagnation region (cases 3-4) in the left-sided IVC. These results support further investigation of the effects of IVC filter placement on a patient-specific basis.

  5. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors

    Science.gov (United States)

    Sellgren, C M; Sheridan, S D; Gracias, J; Xuan, D; Fu, T; Perlis, R H

    2017-01-01

    Engulfment of synapses and neural progenitor cells (NPCs) by microglia is critical for the development and maintenance of proper brain circuitry, and has been implicated in neurodevelopmental as well as neurodegenerative disease etiology. We have developed and validated models of these mechanisms by reprogramming microglia-like cells from peripheral blood mononuclear cells, and combining them with NPCs and neurons derived from induced pluripotent stem cells to create patient-specific cellular models of complement-dependent synaptic pruning and elimination of NPCs. The resulting microglia-like cells express appropriate markers and function as primary human microglia, while patient-matched macrophages differ markedly. As a demonstration of disease-relevant application, we studied the role of C4, recently implicated in schizophrenia, in engulfment of synaptic structures by human microglia. The ability to create complete patient-specific cellular models of critical microglial functions utilizing samples taken during a single clinical visit will extend the ability to model central nervous system disease while facilitating high-throughput screening. PMID:27956744

  6. Patient-specific computer modelling of coronary bifurcation stenting: the John Doe programme.

    Science.gov (United States)

    Mortier, Peter; Wentzel, Jolanda J; De Santis, Gianluca; Chiastra, Claudio; Migliavacca, Francesco; De Beule, Matthieu; Louvard, Yves; Dubini, Gabriele

    2015-01-01

    John Doe, an 81-year-old patient with a significant distal left main (LM) stenosis, was treated using a provisional stenting approach. As part of an European Bifurcation Club (EBC) project, the complete stenting procedure was repeated using computational modelling. First, a tailored three-dimensional (3D) reconstruction of the bifurcation anatomy was created by fusion of multislice computed tomography (CT) imaging and intravascular ultrasound. Second, finite element analysis was employed to deploy and post-dilate the stent virtually within the generated patient-specific anatomical bifurcation model. Finally, blood flow was modelled using computational fluid dynamics. This proof-of-concept study demonstrated the feasibility of such patient-specific simulations for bifurcation stenting and has provided unique insights into the bifurcation anatomy, the technical aspects of LM bifurcation stenting, and the positive impact of adequate post-dilatation on blood flow patterns. Potential clinical applications such as virtual trials and preoperative planning seem feasible but require a thorough clinical validation of the predictive power of these computer simulations.

  7. Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach.

    Science.gov (United States)

    Díaz-Zuccarini, Vanessa; Di Tomaso, Giulia; Agu, Obiekezie; Pichardo-Almarza, Cesar

    2014-01-01

    The development of a new technology based on patient-specific modelling for personalised healthcare in the case of atherosclerosis is presented. Atherosclerosis is the main cause of death in the world and it has become a burden on clinical services as it manifests itself in many diverse forms, such as coronary artery disease, cerebrovascular disease/stroke and peripheral arterial disease. It is also a multifactorial, chronic and systemic process that lasts for a lifetime, putting enormous financial and clinical pressure on national health systems. In this Letter, the postulate is that the development of new technologies for healthcare using computer simulations can, in the future, be developed as in-silico management and support systems. These new technologies will be based on predictive models (including the integration of observations, theories and predictions across a range of temporal and spatial scales, scientific disciplines, key risk factors and anatomical sub-systems) combined with digital patient data and visualisation tools. Although the problem is extremely complex, a simulation workflow and an exemplar application of this type of technology for clinical use is presented, which is currently being developed by a multidisciplinary team following the requirements and constraints of the Vascular Service Unit at the University College Hospital, London.

  8. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    Science.gov (United States)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  9. An automated swimming respirometer

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; JOHANSEN, K; BUSHNELL, PG

    1984-01-01

    An automated respirometer is described that can be used for computerized respirometry of trout and sharks.......An automated respirometer is described that can be used for computerized respirometry of trout and sharks....

  10. Configuration Management Automation (CMA) -

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  11. Autonomy and Automation

    Science.gov (United States)

    Shively, Jay

    2017-01-01

    A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.

  12. Workflow automation architecture standard

    Energy Technology Data Exchange (ETDEWEB)

    Moshofsky, R.P.; Rohen, W.T. [Boeing Computer Services Co., Richland, WA (United States)

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  13. Clinical Potentials of Cardiomyocytes Derived from Patient-Specific Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Kwong-Man Ng

    2014-10-01

    Full Text Available The lack of appropriate human cardiomyocyte-based experimental platform has largely hindered the study of cardiac diseases and the development of therapeutic strategies. To date, somatic cells isolated from human subjects can be reprogramed into induced pluripotent stem cells (iPSCs and subsequently differentiated into functional cardiomyocytes. This powerful reprogramming technology provides a novel in vitro human cell-based platform for the study of human hereditary cardiac disorders. The clinical potential of using iPSCs derived from patients with inherited cardiac disorders for therapeutic studies have been increasingly highlighted. In this review, the standard procedures for generating patient-specific iPSCs and the latest commonly used cardiac differentiation protocols will be outlined. Furthermore, the progress and limitations of current applications of iPSCs and iPSCs-derived cardiomyocytes in cell replacement therapy, disease modeling, drug-testing and toxicology studies will be discussed in detail.

  14. Ansys Fluent versus Sim Vascular for 4-D patient-specific computational hemodynamics in renal arteries

    Science.gov (United States)

    Mumbaraddi, Avinash; Yu, Huidan (Whitney); Sawchuk, Alan; Dalsing, Michael

    2015-11-01

    The objective of this clinical-need driven research is to investigate the effect of renal artery stenosis (RAS) on the blood flow and wall shear stress in renal arteries through 4-D patient-specific computational hemodynamics (PSCH) and search for possible critical RASs that significantly alter the pressure gradient across the stenosis by manually varying the size of RAS from 50% to 95%. The identification of the critical RAS is important to understand the contribution of RAS to the overall renal resistance thus appropriate clinical therapy can be determined in order to reduce the hypertension. Clinical CT angiographic data together with Doppler Ultra sound images of an anonymous patient are used serving as the required inputs of the PSCH. To validate the PSCH, we use both Ansys Fluent and Sim Vascular and compare velocity, pressure, and wall-shear stress under identical conditions. Renal Imaging Technology Development Program (RITDP) Grant.

  15. Wall Shear Stress Prediction Using Computational Simulation on Patient Specific Artery with Aneurysm

    Directory of Open Access Journals (Sweden)

    Yunus Muhamad

    2014-07-01

    Full Text Available An aneurysm is formed when a blood vessel becomes dilated or distorted. It will cause the vessel to expand to a size greater than its original diameter. In this study, Wall Shear Stress (WSS of cerebral artery with aneurysm was predicted using Computational Fluid Dynamics (CFD. WSS in the artery is one of the indicators for brain artery disease progression. Based on the results, the maximum value of blood velocity and WSS on patient specific artery with aneurysm are 3.23 m/s and 60.1 Pa, respectively. The location of high WSS is before and after the aneurysm bulge. The WSS is above the normal physiological value where the artery wall is exposed to high stress. Hence, the vessel at this location is anticipated to become weaker and could be further dilated.

  16. Patient-specific modelling of pulmonary airflow using GPU cluster for the application in medical practice.

    Science.gov (United States)

    Miki, T; Wang, X; Aoki, T; Imai, Y; Ishikawa, T; Takase, K; Yamaguchi, T

    2012-01-01

    In this paper, we propose a novel patient-specific method of modelling pulmonary airflow using graphics processing unit (GPU) computation that can be applied in medical practice. To overcome the barriers imposed by computation speed, installation price and footprint to the application of computational fluid dynamics, we focused on GPU computation and the lattice Boltzmann method (LBM). The GPU computation and LBM are compatible due to the characteristics of the GPU. As the optimisation of data access is essential for the performance of the GPU computation, we developed an adaptive meshing method, in which an airway model is covered by isotropic subdomains consisting of a uniform Cartesian mesh. We found that 4(3) size subdomains gave the best performance. The code was also tested on a small GPU cluster to confirm its performance and applicability, as the price and footprint are reasonable for medical applications.

  17. Ionization chamber array for patient specific VMAT, Tomotherapy and IMRT QA

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, Sotiri, E-mail: Stathakis@uthscsa.ed [Department of Radiation Oncology, Cancer Therapy and Research Center at the University of Texas Health Science Center, San Antonio TX 78229 (United States)

    2010-11-01

    The evaluation between measured and calculated dose is essential in the patient specific quality assurance procedures for intensity modulated radiation therapy. The high complexity of volumetric arc radiotherapy, Tomotherpay and intensity modulated radiation therapy deliveries attributed to the dynamic and synchronization requirements of such techniques require new methods and potentially new tools for the quality assurance of such techniques. Studies evaluating the dosimetric performance of EDR2 film and a 2D ionization chamber array quality assurance device have been performed in our institution. Our results showed that differences between the detector systems are small. The respective gamma index histograms showed that when 3% dose difference and 3mm distance to agreement are used, more than 90% of the evaluated points were within the tolerance criteria

  18. Colorectal cancer driver genes identified by patient specific comparison of cytogenetic microarray

    Directory of Open Access Journals (Sweden)

    Mohammad Azhar Aziz

    2014-12-01

    Full Text Available Colorectal cancer (CRC, which has high prevalence in Saudi Arabia and worldwide, needs better understanding by exploiting the latest available cytogenetic microarrays. We used biopsy tissue from consenting colorectal cancer patients to extract DNA and carry out microarray analysis using a CytoScan HD platform from Affymetrix. Patient specific comparisons of tumor–normal pairs were carried out. To find out the high probability key players, we performed Genomic Identification of Significant Targets in Cancer analysis and found 144 genes to form the list of driver genes. Of these, 24 genes attained high GISTIC scores and suggest being significantly associated with CRC. Loss of heterozygosity and uniparental disomy were found to affect 9 genes and suggest different mechanisms associated with CRC in every patient. Here we present the details of the methods used in carrying out the above analyses. Also, we provide some additional data on biomarker analysis that would complement the findings.

  19. Splintless orthognathic surgery: a novel technique using patient-specific implants (PSI).

    Science.gov (United States)

    Gander, Thomas; Bredell, Marius; Eliades, Theodore; Rücker, Martin; Essig, Harald

    2015-04-01

    In the past few years, advances in three-dimensional imaging have conducted to breakthrough in the diagnosis, treatment planning and result assessment in orthognathic surgery. Hereby error-prone and time-consuming planning steps, like model surgery and transfer of the face bow, can be eluded. Numerous positioning devices, in order to transfer the three-dimensional treatment plan to the intraoperative site, have been described. Nevertheless the use of positioning devices and intraoperative splints are failure-prone and time-consuming steps, which have to be performed during the operation and during general anesthesia of the patient. We describe a novel time-sparing and failsafe technique using patient-specific implants (PSI) as positioning guides and concurrently as rigid fixation of the maxilla in the planned position. This technique avoids elaborate positioning and removal of manufactured positioning devices and allows maxillary positioning without the use of occlusal splints.

  20. Characterization of the transport topology in patient-specific abdominal aortic aneurysm models

    Science.gov (United States)

    Arzani, Amirhossein; Shadden, Shawn C.

    2012-08-01

    Abdominal aortic aneurysm (AAA) is characterized by disturbed blood flow patterns that are hypothesized to contribute to disease progression. The transport topology in six patient-specific abdominal aortic aneurysms was studied. Velocity data were obtained by image-based computational fluid dynamics modeling, with magnetic resonance imaging providing the necessary simulation parameters. Finite-time Lyapunov exponent (FTLE) fields were computed from the velocity data, and used to identify Lagrangian coherent structures (LCS). The combination of FTLE fields and LCS was used to characterize topological flow features such as separation zones, vortex transport, mixing regions, and flow impingement. These measures offer a novel perspective into AAA flow. It was observed that all aneurysms exhibited coherent vortex formation at the proximal segment of the aneurysm. The evolution of the systolic vortex strongly influences the flow topology in the aneurysm. It was difficult to predict the vortex dynamics from the aneurysm morphology, motivating the application of image-based flow modeling.

  1. Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery.

    Science.gov (United States)

    Plantefève, Rosalie; Peterlik, Igor; Haouchine, Nazim; Cotin, Stéphane

    2016-01-01

    During the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data. In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method. We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w.r.t. the quality of the intra-operative data.

  2. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  3. Development of a patient-specific dosimetry estimation system in nuclear medicine examination

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H. H.; Dong, S. L.; Yang, H. J. [Dept. of Biomedical Engineering and Environmental Sciences, National Tsing-Hua Univ., Taiwan (China); Chen, S. [Dept. of Medical Imaging and Radiological Sciences, Kaohsiung Medical Univ., Taiwan (China); Shih, C. T. [Dept. of Biomedical Engineering and Environmental Sciences, National Tsing-Hua Univ., Taiwan (China); Chuang, K. S. [Inst. of Nuclear Engineering and Sciences, National Tsing-Hua Univ., Taiwan (China); Lin, C. H. [Dept. of Biomedical Engineering and Environmental Sciences, National Tsing-Hua Univ., Taiwan (China); Yao, W. J. [PET Center, National Cheng Kung Univ. Hospital, Taiwan (China); Jan, M. L. [Physics Div., Inst. of Nuclear Energy Research, Atomic Energy Council, Taiwan (China)

    2011-07-01

    The purpose of this study is to develop a patient-specific dosimetry estimation system in nuclear medicine examination using a SimSET-based Monte Carlo code. We added a dose deposition routine to store the deposited energy of the photons during their flights in SimSET and developed a user-friendly interface for reading PET and CT images. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The S values for {sup 99m}Tc, {sup 18}F and {sup 131}I obtained by the system were compared to those from the MCNP4C code and OLINDA. The ratios of S values computed by this system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which are comparable to that obtained from MCNP4C code (0.94 to 1.20). The average ratios of S value were 0.99{+-}0.04, 1.03{+-}0.05, and 1.00{+-}0.07 for isotopes {sup 131}I, {sup 18}F, and {sup 99m}Tc, respectively. The simulation time of SimSET was two times faster than MCNP4C's for various isotopes. A 3D dose calculation was also performed on a patient data set with PET/CT examination using this system. Results from the patient data showed that the estimated S values using this system differed slightly from those of OLINDA for ORNL phantom. In conclusion, this system can generate patient-specific dose distribution and display the isodose curves on top of the anatomic structure through a friendly graphic user interface. It may also provide a useful tool to establish an appropriate dose-reduction strategy to patients in nuclear medicine environments. (authors)

  4. The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees.

    Science.gov (United States)

    van der Giessen, Alina G; Groen, Harald C; Doriot, Pierre-André; de Feyter, Pim J; van der Steen, Antonius F W; van de Vosse, Frans N; Wentzel, Jolanda J; Gijsen, Frank J H

    2011-04-01

    Patient specific geometrical data on human coronary arteries can be reliably obtained multislice computer tomography (MSCT) imaging. MSCT cannot provide hemodynamic variables, and the outflow through the side branches must be estimated. The impact of two different models to determine flow through the side branches on the wall shear stress (WSS) distribution in patient specific geometries is evaluated. Murray's law predicts that the flow ratio through the side branches scales with the ratio of the diameter of the side branches to the third power. The empirical model is based on flow measurements performed by Doriot et al. (2000) in angiographically normal coronary arteries. The fit based on these measurements showed that the flow ratio through the side branches can best be described with a power of 2.27. The experimental data imply that Murray's law underestimates the flow through the side branches. We applied the two models to study the WSS distribution in 6 coronary artery trees. Under steady flow conditions, the average WSS between the side branches differed significantly for the two models: the average WSS was 8% higher for Murray's law and the relative difference ranged from -5% to +27%. These differences scale with the difference in flow rate. Near the bifurcations, the differences in WSS were more pronounced: the size of the low WSS regions was significantly larger when applying the empirical model (13%), ranging from -12% to +68%. Predicting outflow based on Murray's law underestimates the flow through the side branches. Especially near side branches, the regions where atherosclerotic plaques preferentially develop, the differences are significant and application of Murray's law underestimates the size of the low WSS region.

  5. SU-E-T-603: PBS Prostate Plan Robustness: A Tool for Patient Specific Setup Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S; Song, L; Chen, C; Chang, C; Chon, B; Tsai, H; Soffen, E; Cahlon, O; Mah, D [Procure Proton Therapy Center, Somerset, NJ (United States)

    2015-06-15

    Purpose: Fiducial markers are commonly used for setup of prostate patients using orthogonal radiographs. After aligned with the markers, the displacement of the bony anatomy relative to the planned DRR can be up to 10 mm. Such offset can potentially have significant dosimetric effects because it changes the radiological path length of protons in differing amounts of bone. It is imperative to develop a method to evaluate its impact on target coverage and hence establish patient specific setup tolerance for prostate proton PBS treatment. Methods: Prostate patients were planned in RayStation according to the PCG protocol with bi-lateral beams. The primary planning objectives are: (1) 100% of CTV receives full prescription dose; (2) 98% of the prescription dose covers at least 98% of the PTV; (3) OARs meet criteria per protocol. For each patient 108 dose perturbations were automatically generated using an in-house script, which considered the isocenter shifting in S-I and A-P directions (up to ±15 mm with an interval of 6mm) as well as the range uncertainty (±3.5%). The target coverage was evaluated on the contour shifted along with prostate to mimic the daily treatment. Results: The minimum CTV coverage as a function of offsets in S-I and A-P directions is presented in a 2D contour map. The offsets along A-P direction generally have greater impact than along S-I direction. Both the CTV D98%>98% or CTV V98%>98% are achievable for most patients if the offset is <10 mm in either direction despite of range uncertainties. Conclusion: We developed a method to evaluate the plan robustness for proton PBS prostate treatment. It can provide patient specific setup tolerance of bony structure offset. For our current planning approach, a 1 cm displacement is acceptable. This approach can be generalized to other target structures that move relative to bony anatomy.

  6. Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy

    Directory of Open Access Journals (Sweden)

    X. Ronald. Zhu

    2015-04-01

    Full Text Available An intensity-modulated proton therapy (IMPT patient-specific quality assurance (PSQA program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR system in the QA mode and the accelerator control system (ACS in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS. The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.

  7. Dose reconstruction for real-time patient-specific dose estimation in CT

    Energy Technology Data Exchange (ETDEWEB)

    De Man, Bruno, E-mail: deman@ge.com; Yin, Zhye [Image Reconstruction Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Wu, Mingye [X-ray and CT Laboratory, GE Global Research, Shanghai 201203 (China); FitzGerald, Paul [Radiation Systems Laboratory, GE Global Research, Niskayuna, New York 12309 (United States); Kalra, Mannudeep [Divisions of Thoracic and Cardiac Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States)

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  8. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-04-01

    Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate.

  9. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?

    Science.gov (United States)

    Reinbolt, Jeffrey A; Haftka, Raphael T; Chmielewski, Terese L; Fregly, Benjamin J

    2007-05-01

    Variations in joint parameter (JP) values (axis positions and orientations in body segments) and inertial parameter (IP) values (segment masses, mass centers, and moments of inertia) as well as kinematic noise alter the results of inverse dynamics analyses of gait. Three-dimensional linkage models with joint constraints have been proposed as one way to minimize the effects of noisy kinematic data. Such models can also be used to perform gait optimizations to predict post-treatment function given pre-treatment gait data. This study evaluates whether accurate patient-specific JP and IP values are needed in three-dimensional linkage models to produce accurate inverse dynamics results for gait. The study was performed in two stages. First, we used optimization analyses to evaluate whether patient-specific JP and IP values can be calibrated accurately from noisy kinematic data, and second, we used Monte Carlo analyses to evaluate how errors in JP and IP values affect inverse dynamics calculations. Both stages were performed using a dynamic, 27 degrees-of-freedom, full-body linkage model and synthetic (i.e., computer generated) gait data corresponding to a nominal experimental gait motion. In general, JP but not IP values could be found accurately from noisy kinematic data. Root-mean-square (RMS) errors were 3 degrees and 4 mm for JP values and 1 kg, 22 mm, and 74 500 kg * mm2 for IP values. Furthermore, errors in JP but not IP values had a significant effect on calculated lower-extremity inverse dynamics joint torques. The worst RMS torque error averaged 4% bodyweight * height (BW * H) due to JP variations but less than 0.25% (BW * H) due to IP variations. These results suggest that inverse dynamics analyses of gait utilizing linkage models with joint constraints should calibrate the model's JP values to obtain accurate joint torques.

  10. Patient-specific independent 3D GammaPlan quality assurance for Gamma Knife Perfexion radiosurgery.

    Science.gov (United States)

    Mamalui-Hunter, Maria; Yaddanapudi, Sridhar; Zhao, Tianyu; Mutic, Sasa; Low, Daniel A; Drzymala, Robert E

    2013-01-07

    One of the most important aspects of quality assurance (QA) in radiation therapy is redundancy of patient treatment dose calculation. This work is focused on the patient-specific time and 3D dose treatment plan verification for stereotactic radiosurgery using Leksell Gamma Knife Perfexion (LGK PFX). The virtual model of LGK PFX was developed in MATLAB, based on the physical dimensions provided by the manufacturer. The ring-specific linear attenuation coefficients (LAC) and output factors (OFs) reported by the manufacturer were replaced by the measurement-based collimator size-specific OFs and a single LAC = 0.0065 mm-1. Calculation depths for each LGK PFX shot were obtained by ray-tracing technique, and the dose calculation formalism was similar to the one used by GammaPlan treatment planning software versions 8 and 9. The architecture of the QA process was based on the in-house online database search of the LGK PFX database search for plan-specific information. A series of QA phantom plans was examined to verify geometric and dosimetric accuracy of the software. The accuracy of the QA process was further evaluated through evaluation of a series of patient plans. The shot time/focus point dose verification for each shot took less than 1 sec/shot with full 3D isodose verification taking about 30 sec/shot on a desktop PC. GammaPlan database access time took less than 0.05 sec. The geometric accuracy (location of the point of maximum dose) of the phantom and patient plan was dependent on the resolution of the original dose matrix and was of the order of 1 dose element. Dosimetric accuracy of the independently calculated phantom and patient point (focus) doses was within 3.5% from the GammaPlan, with the mean = 2.3% and SD= 1.1%. The process for independent pretreatment patient-specific Gamma Knife Perfexion time and dose verification was created and validated.

  11. Automation in Clinical Microbiology

    Science.gov (United States)

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  12. Patient-specific Monte Carlo dose calculations for 103Pd breast brachytherapy

    Science.gov (United States)

    Miksys, N.; Cygler, J. E.; Caudrelier, J. M.; Thomson, R. M.

    2016-04-01

    This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for 103Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV {{D}90} of up to 11% and skin {{D}1~\\text{c{{\\text{m}}3}}} of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ({{D}90} on average 10% and up to 27%) and underestimates dose to the skin ({{D}1~\\text{c{{\\text{m}}3}}} on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images studied

  13. Automated DNA Sequencing System

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  14. Patient Specification Quality Assurance for Glioblastoma Multiforme Brain Tumors Treated with Intensity Modulated Radiation Therapy

    Directory of Open Access Journals (Sweden)

    H. I. Al-Mohammed

    2011-01-01

    Full Text Available The aim of this study was to evaluate the significance of performing patient specification quality assurance for patients diagnosed with glioblastoma multiforme treated with intensity modulated radiation therapy. The study evaluated ten intensity modulated radiation therapy treatment plans using 10 MV beams, a total dose of 60 Gy (2 Gy/fraction, five fractions a week for a total of six weeks treatment. For the quality assurance protocol we used a two-dimensional ionization-chamber array (2D-ARRAY. The results showed a very good agreement between the measured dose and the pretreatment planned dose. All the plans passed >95% gamma criterion with pixels within 5% dose difference and 3 mm distance to agreement. We concluded that using the 2D-ARRAY ion chamber for intensity modulated radiation therapy is an important step for intensity modulated radiation therapy treatment plans, and this study has shown that our treatment planning for intensity modulated radiation therapy is accurately done.

  15. Induced radioactivity in a patient-specific collimator used in proton therapy

    CERN Document Server

    Silari, M; Mauro, Egidio; Silari, Marco

    2010-01-01

    This paper discusses the activation of a patient-specific collimator, calculating dose rates, total activities and activities per unit mass of the mixture of radionuclides generated by proton irradiation in the energy range 100-250 MeV. Monte Carlo simulations were first performed for a generic case, using an approximate geometry and on the basis of assumptions on beam intensity and irradiation profile. A collimator used for a prostate cancer treatment was obtained from the MD Anderson Cancer Center (MDACC), Houston, USA, from which a number of samples were cut and analyzed by gamma spectrometry. The results of the gamma spectrometry are compared with the results of Monte Carlo simulations performed using geometrical and irradiation data specific to the unit. The assumptions made for the simulations and their impact on the results are discussed. Dose rate measurements performed in a low-background area at CERN and routine radiation protection measurements at the MDACC are also reported. It is shown that it sh...

  16. Linear elastic properties of the facial soft tissues using an aspiration device: towards patient specific characterization.

    Science.gov (United States)

    Luboz, V; Promayon, E; Payan, Y

    2014-11-01

    Biomechanical modeling of the facial soft tissue behavior is needed in aesthetic or maxillo-facial surgeries where the simulation of the bone displacements cannot accurately predict the visible outcome on the patient's face. Because these tissues have different nature and elastic properties across the face, depending on their thickness, and their content in fat or muscle, individualizing their mechanical parameters could increase the simulation accuracy. Using a specifically designed aspiration device, the facial soft tissues deformation is measured at four different locations (cheek, cheekbone, forehead, and lower lip) on 16 young subjects. The stiffness is estimated from the deformations generated by a set of negative pressures using an inverse analysis based on a Neo Hookean model. The initial Young's modulus of the cheek, cheekbone, forehead, and lower lip are respectively estimated to be 31.0 kPa±4.6, 34.9 kPa±6.6, 17.3 kPa±4.1, and 33.7 kPa±7.3. Significant intra-subject differences in tissue stiffness are highlighted by these estimations. They also show important inter-subject variability for some locations even when mean stiffness values show no statistical difference. This study stresses the importance of using a measurement device capable of evaluating the patient specific tissue stiffness during an intervention.

  17. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  18. Patient-specific modeling of individual sickle cell behavior under transient hypoxia

    Science.gov (United States)

    Li, Xuejin; Du, E.; Dao, Ming; Suresh, Subra; Karniadakis, George Em

    2017-01-01

    Sickle cell disease (SCD) is a highly complex genetic blood disorder in which red blood cells (RBC) exhibit heterogeneous morphology changes and decreased deformability. We employ a kinetic model for cell morphological sickling that invokes parameters derived from patient-specific data. This model is used to investigate the dynamics of individual sickle cells in a capillary-like microenvironment in order to address various mechanisms associated with SCD. We show that all RBCs, both hypoxia-unaffected and hypoxia-affected ones, regularly pass through microgates under oxygenated state. However, the hypoxia-affected cells undergo sickling which significantly alters cell dynamics. In particular, the dense and rigid sickle RBCs are obstructed thereby clogging blood flow while the less dense and deformable ones are capable of circumnavigating dead (trapped) cells ahead of them by choosing a serpentine path. Informed by recent experiments involving microfluidics that provide in vitro quantitative information on cell dynamics under transient hypoxia conditions, we have performed detailed computational simulations of alterations to cell behavior in response to morphological changes and membrane stiffening. Our model reveals that SCD exhibits substantial heterogeneity even within a particular density-fractionated subpopulation. These findings provide unique insights into how individual sickle cells move through capillaries under transient hypoxic conditions, and offer novel possibilities for designing effective therapeutic interventions for SCD. PMID:28288152

  19. Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review.

    Science.gov (United States)

    Chalkia, M T; Stefanoyiannis, A P; Chatziioannou, S N; Round, W H; Efstathopoulos, E P; Nikiforidis, G C

    2015-03-01

    Neuroendocrine tumours (NETs) belong to a relatively rare class of neoplasms. Nonetheless, their prevalence has increased significantly during the last decades. Peptide receptor radionuclide therapy (PRRT) is a relatively new treatment approach for inoperable or metastasised NETs. The therapeutic effect is based on the binding of radiolabelled somatostatin analogue peptides with NETs' somatostatin receptors, resulting in internal irradiation of tumours. Pre-therapeutic patient-specific dosimetry is essential to ensure that a treatment course has high levels of safety and efficacy. This paper reviews the methods applied for PRRT dosimetry, as well as the dosimetric results presented in the literature. Focus is given on data concerning the therapeutic somatostatin analogue radiopeptides (111)In-[DTPA(0),D-Phe(1)]-octreotide ((111)In-DTPA-octreotide), (90)Y-[DOTA(0),Tyr(3)]-octreotide ((90)Y-DOTATOC) and (177)Lu-[DOTA(0),Tyr(3),Thr(8)]-octreotide ((177)Lu-DOTATATE). Following the Medical Internal Radiation Dose (MIRD) Committee formalism, dosimetric analysis demonstrates large interpatient variability in tumour and organ uptake, with kidneys and bone marrow being the critical organs. The results are dependent on the image acquisition and processing protocol, as well as the dosimetric imaging radiopharmaceutical.

  20. Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Zi-Bing Jin

    Full Text Available Retinitis pigmentosa (RP is the most common inherited human eye disease resulting in night blindness and visual defects. It is well known that the disease is caused by rod photoreceptor degeneration; however, it remains incurable, due to the unavailability of disease-specific human photoreceptor cells for use in mechanistic studies and drug screening. We obtained fibroblast cells from five RP patients with distinct mutations in the RP1, RP9, PRPH2 or RHO gene, and generated patient-specific induced pluripotent stem (iPS cells by ectopic expression of four key reprogramming factors. We differentiated the iPS cells into rod photoreceptor cells, which had been lost in the patients, and found that they exhibited suitable immunocytochemical features and electrophysiological properties. Interestingly, the number of the patient-derived rod cells with distinct mutations decreased in vitro; cells derived from patients with a specific mutation expressed markers for oxidation or endoplasmic reticulum stress, and exhibited different responses to vitamin E than had been observed in clinical trials. Overall, patient-derived rod cells recapitulated the disease phenotype and expressed markers of cellular stresses. Our results demonstrate that the use of patient-derived iPS cells will help to elucidate the pathogenic mechanisms caused by genetic mutations in RP.

  1. Patient-specific analysis of blood stasis in the left atrium

    Science.gov (United States)

    Flores, Oscar; Gonzalo, Alejandro; Garcia-Villalba, Manuel; Rossini, Lorenzo; Hsiao, Albert; McVeigh, Elliot; Kahn, Andrew M.; Del Alamo, Juan C.

    2016-11-01

    Atrial fibrillation (AF) is a common arrhythmia in which the left atrium (LA) beats rapidly and irregularly. Patients with AF are at increased risk of thromboembolic events (TE), particularly stroke. Anticoagulant therapy can reduce the risk of TE in AF, but it can also increase the risks of adverse events such as internal bleeding. The current lack of tools to predict each patient's risk of LA thrombogenesis makes it difficult to decide whether to anticoagulate patients with AF. The aim of this work is to evaluate blood stasis in patient-specific models of the LA, because stasis is a known thrombogenesis risk factor. To achieve our aim, we performed direct numerical simulations of left atrial flow using an immersed boundary solver developed at the UC3M, coupled to a 0D model for the pulmonary circulation. The LA geometry is obtained from time-resolved CT scans and the parameters of the 0D model are found by fitting pulmonary vein flow data obtained by 4D phase contrast MRI. Blood stasis is evaluated from the flow data by computing blood residence time together with other kinematic indices of the velocity field (e.g. strain and kinetic energy). We focus on the flow in the left atrial appendage, including a sensitivity analysis of the effect of the parameters of the 0D model. Funded by the Spanish MECD, the Clinical and Translational Research Institute at UCSD and the American Heart Association.

  2. Feasibility study of patient-specific surgical templates for the fixation of pedicle screws.

    Science.gov (United States)

    Salako, F; Aubin, C-E; Fortin, C; Labelle, H

    2002-01-01

    Surgery for scoliosis, as well as other posterior spinal surgeries, frequently uses pedicle screws to fix an instrumentation on the spine. Misplacement of a screw can lead to intra- and post-operative complications. The objective of this study is to design patient-specific surgical templates to guide the drilling operation. From the CT-scan of a vertebra, the optimal drilling direction and limit angles are computed from an inverse projection of the pedicle limits. The first template design uses a surface-to-surface registration method and was constructed in a CAD system by subtracting the vertebra from a rectangular prism and a cylinder with the optimal orientation. This template and the vertebra were built using rapid prototyping. The second design uses a point-to-surface registration method and has 6 adjustable screws to adjust the orientation and length of the drilling support device. A mechanism was designed to hold it in place on the spinal process. A virtual prototype was build with CATIA software. During the operation, the surgeon places either template on patient's vertebra until a perfect match is obtained before drilling. The second design seems better than the first one because it can be reused on different vertebra and is less sensible to registration errors. The next step is to build the second design and make experimental and simulations tests to evaluate the benefits of this template during a scoliosis operation.

  3. Concise Review: Patient-Specific Stem Cells to Interrogate Inherited Eye Disease.

    Science.gov (United States)

    Giacalone, Joseph C; Wiley, Luke A; Burnight, Erin R; Songstad, Allison E; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-02-01

    Whether we are driving to work or spending time with loved ones, we depend on our sense of vision to interact with the world around us. Therefore, it is understandable why blindness for many is feared above death itself. Heritable diseases of the retina, such as glaucoma, age-related macular degeneration, and retinitis pigmentosa, are major causes of blindness worldwide. The recent success of gene augmentation trials for the treatment of RPE65-associated Leber congenital amaurosis has underscored the need for model systems that accurately recapitulate disease. With the advent of patient-specific induced pluripotent stem cells (iPSCs), researchers are now able to obtain disease-specific cell types that would otherwise be unavailable for molecular analysis. In the present review, we discuss how the iPSC technology is being used to confirm the pathogenesis of novel genetic variants, interrogate the pathophysiology of disease, and accelerate the development of patient-centered treatments. Significance: Stem cell technology has created the opportunity to advance treatments for multiple forms of blindness. Researchers are now able to use a person's cells to generate tissues found in the eye. This technology can be used to elucidate the genetic causes of disease and develop treatment strategies. In the present review, how stem cell technology is being used to interrogate the pathophysiology of eye disease and accelerate the development of patient-centered treatments is discussed.

  4. Surface mesh to voxel data registration for patient-specific anatomical modeling

    Science.gov (United States)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  5. Patient specific quality control for Stereotactic Ablative Body Radiotherapy (SABR): it takes more than one phantom

    Science.gov (United States)

    Kron, T.; Ungureanu, E.; Antony, R.; Hardcastle, N.; Clements, N.; Ukath, J.; Fox, C.; Lonski, P.; Wanigaratne, D.; Haworth, A.

    2017-01-01

    Stereotactic Ablative Body Radiotherapy (SABR) is an extension of the concepts of Stereotactic Radiosurgery from intracranial procedures to extracranial targets. This brings with it new technological challenges for set-up of a SABR program and continuing quality assurance. Compared with intracranial procedures SABR requires consideration of motion and inhomogeneities and has to deal with a much larger variety of targets ranging from lung to liver, kidney and bone. To meet many of the challenges virtually all advances in modern radiotherapy, such as Intensity Modulated and Image Guided Radiation Therapy (IMRT and IGRT) are used. Considering the few fractions and high doses per fraction delivered to complex targets it is not surprising that patient specific quality control is considered essential for safe delivery. Given the variety of targets and clinical scenarios we employ different strategies for different patients to ensure that the most important aspects of the treatment are appropriately tested, be it steep dose gradients, inhomogeneities or the delivery of dose in the presence of motion. The current paper reviews the different approaches and phantoms utilised at Peter MacCallum Cancer Centre for SABR QA.

  6. Complexity metric as a complement to measurement based IMRT/VMAT patient-specific QA

    Science.gov (United States)

    Götstedt, J.; Karlsson Hauer, A.; Bäck, A.

    2015-01-01

    IMRT/VMAT treatment plans contain treatment fields with MLC openings of various size and shape. Clinical dose calculation algorithms show limitations in calculating the correct dose in small and irregular parts of a MLC opening which leads to differences between the planned and delivered dose distributions. The patient-specific IMRT QA is often designed to compare planned and measured dose distributions and is therefore heavily dependent on the measurement equipment and the evaluation method. The purpose of this study is to develop a complexity metric based on shape and size of MLC openings that correlates to the dose differences between planned and delivered 3D dose distributions. Different MLC openings are measured and evaluated and used to determine a penalty function to steer the complexity metric and make the complexity scores correlate to dose difference pass rates. Results of this initial study show that a correlation was found between complexity scores and dose difference pass rates for static fields with varied complexity. Preliminary results also show that the complexity metric can distinguish clinical IMRT fields with higher complexity.

  7. Commissioning and validation of COMPASS system for VMAT patient specific quality assurance

    Science.gov (United States)

    Pimthong, J.; Kakanaporn, C.; Tuntipumiamorn, L.; Laojunun, P.; Iampongpaiboon, P.

    2016-03-01

    Pre-treatment patient specific quality assurance (QA) of advanced treatment techniques such as volumetric modulated arc therapy (VMAT) is one of important QA in radiotherapy. The fast and reliable dosimetric device is required. The objective of this study is to commission and validate the performance of COMPASS system for dose verification of VMAT technique. The COMPASS system is composed of an array of ionization detectors (MatriXX) mounted to the gantry using a custom holder and software for the analysis and visualization of QA results. We validated the COMPASS software for basic and advanced clinical application. For the basic clinical study, the simple open field in various field sizes were validated in homogeneous phantom. And the advanced clinical application, the fifteen prostate and fifteen nasopharyngeal cancers VMAT plans were chosen to study. The treatment plans were measured by the MatriXX. The doses and dose-volume histograms (DVHs) reconstructed from the fluence measurements were compared to the TPS calculated plans. And also, the doses and DVHs computed using collapsed cone convolution (CCC) Algorithm were compared with Eclipse TPS calculated plans using Analytical Anisotropic Algorithm (AAA) that according to dose specified in ICRU 83 for PTV.

  8. Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness.

    Science.gov (United States)

    Voß, S; Glaßer, S; Hoffmann, T; Beuing, O; Weigand, S; Jachau, K; Preim, B; Thévenin, D; Janiga, G; Berg, P

    2016-01-01

    Computational Fluid Dynamics is intensively used to deepen the understanding of aneurysm growth and rupture in order to support physicians during therapy planning. However, numerous studies considering only the hemodynamics within the vessel lumen found no satisfactory criteria for rupture risk assessment. To improve available simulation models, the rigid vessel wall assumption has been discarded in this work and patient-specific wall thickness is considered within the simulation. For this purpose, a ruptured intracranial aneurysm was prepared ex vivo, followed by the acquisition of local wall thickness using μCT. The segmented inner and outer vessel surfaces served as solid domain for the fluid-structure interaction (FSI) simulation. To compare wall stress distributions within the aneurysm wall and at the rupture site, FSI computations are repeated in a virtual model using a constant wall thickness approach. Although the wall stresses obtained by the two approaches-when averaged over the complete aneurysm sac-are in very good agreement, strong differences occur in their distribution. Accounting for the real wall thickness distribution, the rupture site exhibits much higher stress values compared to the configuration with constant wall thickness. The study reveals the importance of geometry reconstruction and accurate description of wall thickness in FSI simulations.

  9. PATIENT-SPECIFIC BLOOD DYNAMIC SIMULATIONS IN ASSESSING ENDOVASCULAR OCCLUSION OF INTRACRANIAL ANEURYSMS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; WANG Sheng-zhang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2009-01-01

    According to recent studies, there are various potential predictors for surgical outcome for cerebral aneurysms. An accurate surgical outcome assessment would help make better-informed decisions and avoid the risk of rebleeding. It is well known that hemodynamic factors play an important role in the pathogenesis and treatment of intracranial aneurysms. In this article, a computational fluid dynamic analysis is applied to one patient-specific model of the cerebral aneurysm located at the tip of basilar artery, by which the differences of hemodynamic parameters before and after endovascular treatment may be evaluated. Based on the model, we show that the flow behavior near the neck of the aneurysm sees great differences after endovascular treatment as compared with that before treatment, which also affects the wall shear stress and the displacement distribution. In addition, our whole simulation process is based on a series of CFD commercial software packages, which are easily available for doctors to implement such a method in their daily practice. These results would be used to assess the outcome of endovascular treatment for the aneurysm occlusion.

  10. Patient-specific structural effects on hemodynamics in the ischemic lower limb artery

    Science.gov (United States)

    Xu, Pengcheng; Liu, Xin; Song, Qi; Chen, Guishan; Wang, Defeng; Zhang, Heye; Yan, Li; Liu, Dan; Huang, Wenhua

    2016-12-01

    Lower limb peripheral artery disease is a prevalent chronic non-communicable disease without obvious symptoms. However, the effect of ischemic lower limb peripheral arteries on hemodynamics remains unclear. In this study, we investigated the variation of the hemodynamics caused by patient-specific structural artery characteristics. Computational fluid dynamic simulations were performed on seven lower limb (including superficial femoral, deep femoral and popliteal) artery models that were reconstructed from magnetic resonance imaging. We found that increased wall shear stress (WSS) was mainly caused by the increasing severity of stenosis, bending, and branching. Our results showed that the increase in the WSS value at a stenosis at the bifurcation was 2.7 Pa. In contrast, the isolated stenosis and branch caused a WSS increase of 0.7 Pa and 0.5 Pa, respectively. The WSS in the narrow popliteal artery was more sensitive to a reduction in radius. Our results also demonstrate that the distribution of the velocity and pressure gradient are highly structurally related. At last, Ultrasound Doppler velocimeter measured result was presented as a validation. In conclusion, the distribution of hemodynamics may serve as a supplement for clinical decision-making to prevent the occurrence of a morbid or mortal ischemic event.

  11. Reconstruction with a patient-specific titanium implant after a wide anterior chest wall resection

    Science.gov (United States)

    Turna, Akif; Kavakli, Kuthan; Sapmaz, Ersin; Arslan, Hakan; Caylak, Hasan; Gokce, Hasan Suat; Demirkaya, Ahmet

    2014-01-01

    The reconstruction of full-thickness chest wall defects is a challenging problem for thoracic surgeons, particularly after a wide resection of the chest wall that includes the sternum. The location and the size of the defect play a major role when selecting the method of reconstruction, while acceptable cosmetic and functional results remain the primary goal. Improvements in preoperative imaging techniques and reconstruction materials have an important role when planning and performing a wide chest wall resection with a low morbidity rate. In this report, we describe the reconstruction of a wide anterior chest wall defect with a patient-specific custom-made titanium implant. An infected mammary tumour recurrence in a 62-year old female, located at the anterior chest wall including the sternum, was resected, followed by a large custom-made titanium implant. Latissimus dorsi flap and split-thickness graft were also used for covering the implant successfully. A titanium custom-made chest wall implant could be a viable alternative for patients who had large chest wall tumours. PMID:24227881

  12. Validation of a population of patient-specific adult acquired flatfoot deformity models.

    Science.gov (United States)

    Spratley, E Meade; Matheis, Erika A; Hayes, Curtis W; Adelaar, Robert S; Wayne, Jennifer S

    2013-12-01

    Adult acquired flatfoot deformity (AAFD) is a degenerative disease resulting in malalignment of the mid- and hindfoot secondary to posterior tibial tendon dysfunction and increasing implication of ligament pathologies. Despite the complex 3D nature of AAFD, 2D radiographs are still employed to diagnose and stage the disease. Computer modeling techniques allow for accurate 3D recreations of musculoskeletal systems for the investigation of biomechanical factors contributing to disease. Following Institutional Review Board approval, the lower limbs of six diagnosed AAFD sufferers were imaged with MRI, photographs, and X-ray. Next, a radiologist graded the MRI attenuation of eight soft-tissues implicated in AAFD. Six patient-specific rigid-body models were then created and loaded according to patient weight, graded soft-tissues, and extrinsic muscles. Model function was validated using clinically relevant kinematic measures in three planes. Agreement varied depending on the measure, with average absolute deviations of < 7° for angles and <4 mm for distances. Additionally, the clinically favored AP talonavicular coverage angle, ML talo-1st metatarsal angle, and ML 1st cuneiform height showed strong correlations of R(2) = 0.63, 0.75, and 0.85, respectively. Thus, computer modeling offers a promising methodology for the non-invasive investigation of in vivo kinematic behavior in pathologic feet and, once validated, may further be used to investigate biomechanical parameters that are difficult to measure clinically.

  13. Effects of Degree of Surgical Correction for Flatfoot Deformity in Patient-Specific Computational Models.

    Science.gov (United States)

    Spratley, E M; Matheis, E A; Hayes, C W; Adelaar, R S; Wayne, J S

    2015-08-01

    A cohort of adult acquired flatfoot deformity rigid-body models was developed to investigate the effects of isolated tendon transfer with successive levels of medializing calcaneal osteotomy (MCO). Following IRB approval, six diagnosed flatfoot sufferers were subjected to magnetic resonance imaging (MRI) and their scans used to derive patient-specific models. Single-leg stance was modeled, constrained solely through physiologic joint contact, passive soft-tissue tension, extrinsic muscle force, body weight, and without assumptions of idealized mechanical joints. Surgical effect was quantified using simulated mediolateral (ML) and anteroposterior (AP) X-rays, pedobarography, soft-tissue strains, and joint contact force. Radiographic changes varied across states with the largest average improvements for the tendon transfer (TT) + 10 mm MCO state evidenced through ML and AP talo-1st metatarsal angles. Interestingly, 12 of 14 measures showed increased deformity following TT-only, though all increases disappeared with inclusion of MCO. Plantar force distributions showed medial forefoot offloading concomitant with increases laterally such that the most corrected state had 9.0% greater lateral load. Predicted alterations in spring, deltoid, and plantar fascia soft-tissue strain agreed with prior cadaveric and computational works suggesting decreased strain medially with successive surgical repair. Finally, joint contact force demonstrated consistent medial offloading concomitant with variable increases laterally. Rigid-body modeling thus offers novel advantages for the investigation of foot/ankle biomechanics not easily measured in vivo.

  14. Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    CERN Document Server

    Jia, Xun; Gu, Xuejun; Jiang, Steve B

    2011-01-01

    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water ...

  15. Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model

    Science.gov (United States)

    Stamatopoulos, Ch.; Mathioulakis, D. S.; Papaharilaou, Y.; Katsamouris, A.

    2011-06-01

    The velocity field in a patient-specific abdominal aneurysm model including the aorto-iliac bifurcation was measured by 2D PIV. Phase-averaged velocities obtained in 14 planes reveal details of the flow evolution during a cycle. The aneurysm expanding asymmetrically toward the anterior side of the aorta causes the generation of a vortex at its entrance, covering the entire aneurysm bulge progressively before flow peak. The fluid entering the aneurysm impinges on the left side of its distal end, following the axis of the upstream aorta segment, causing an increased flow rate in the left (compared to the right) common iliac artery. High shear stresses appear at the aneurysm inlet and outlet as well as along the posterior wall, varying proportionally to the flow rate. At the same regions, elevated flow disturbances are observed, being intensified at flow peak and during the deceleration phase. Low shear stresses are present in the recirculation region, being two orders of magnitude smaller than the previous ones. At flow peak and during the deceleration phase, a clockwise swirling motion (viewed from the inlet) is present in the aneurysm due to the out of plane curvature of the aorta.

  16. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.

    Science.gov (United States)

    Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C

    2014-02-01

    Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole.

  17. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    Science.gov (United States)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  18. The Effect of Femoral Cutting Guide Design Improvements for Patient-Specific Instruments

    Directory of Open Access Journals (Sweden)

    Oh-Ryong Kwon

    2015-01-01

    Full Text Available Although the application of patient-specific instruments (PSI for total knee arthroplasty (TKA increases the cost of the surgical procedure, PSI may reduce operative time and improve implant alignment, which could reduce the number of revision surgeries. We report our experience with TKA using PSI techniques in 120 patients from March to December 2014. PSI for TKA were created from data provided by computed tomography (CT scans or magnetic resonance imaging (MRI; which imaging technology is more reliable for the PSI technique remains unclear. In the first 20 patients, the accuracy of bone resection and PSI stability were compared between CT and MRI scans with presurgical results as a reference; MRI produced better results. In the second and third groups, each with 50 patients, the results of bone resection and stability were compared in MRI scans with respect to the quality of scanning due to motion artifacts and experienced know-how in PSI design, respectively. The optimized femoral cutting guide design for PSI showed the closest outcomes in bone resection and PSI stability with presurgical data. It is expected that this design could be a reasonable guideline in PSI.

  19. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system

    Directory of Open Access Journals (Sweden)

    N Byrne

    2016-04-01

    Full Text Available Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports. The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015. The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods.

  20. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory.

  1. Patient-specific modeling of left ventricular electromechanics as a driver for haemodynamic analysis

    Science.gov (United States)

    Augustin, Christoph M.; Crozier, Andrew; Neic, Aurel; Prassl, Anton J.; Karabelas, Elias; Ferreira da Silva, Tiago; Fernandes, Joao F.; Campos, Fernando; Kuehne, Titus; Plank, Gernot

    2017-01-01

    Aims Models of blood flow in the left ventricle (LV) and aorta are an important tool for analysing the interplay between LV deformation and flow patterns. Typically, image-based kinematic models describing endocardial motion are used as an input to blood flow simulations. While such models are suitable for analysing the hemodynamic status quo, they are limited in predicting the response to interventions that alter afterload conditions. Mechano-fluidic models using biophysically detailed electromechanical (EM) models have the potential to overcome this limitation, but are more costly to build and compute. We report our recent advancements in developing an automated workflow for the creation of such CFD ready kinematic models to serve as drivers of blood flow simulations. Methods and results EM models of the LV and aortic root were created for four pediatric patients treated for either aortic coarctation or aortic valve disease. Using MRI, ECG and invasive pressure recordings, anatomy as well as electrophysiological, mechanical and circulatory model components were personalized. Results The implemented modeling pipeline was highly automated and allowed model construction and execution of simulations of a patient’s heartbeat within 1 day. All models reproduced clinical data with acceptable accuracy. Conclusion Using the developed modeling workflow, the use of EM LV models as driver of fluid flow simulations is becoming feasible. While EM models are costly to construct, they constitute an important and nontrivial step towards fully coupled electro-mechano-fluidic (EMF) models and show promise as a tool for predicting the response to interventions which affect afterload conditions. PMID:28011839

  2. The patient’s perspective of the feasibility of a patient-specific instrument in physiotherapy goal setting: a qualitative study

    Directory of Open Access Journals (Sweden)

    Stevens A

    2016-03-01

    Full Text Available Anita Stevens,1,2 Albine Moser,1,2 Albère Köke,1,3,4 Trudy van der Weijden,2 Anna Beurskens1,2 1Faculty of Health, Zuyd University of Applied Sciences, Heerlen, 2Department of Family Medicine, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, 3Adelante Centre of Research in Rehabilitation, Hoensbroek, 4Department of Rehabilitation Medicine, Maastricht University, Maastricht, the Netherlands Background: Patient participation in goal setting is important to deliver client-centered care. In daily practice, however, patient involvement in goal setting is not optimal. Patient-specific instruments, such as the Patient Specific Complaints (PSC instrument, can support the goal-setting process because patients can identify and rate their own problems. The aim of this study is to explore patients’ experiences with the feasibility of the PSC, in the physiotherapy goal setting. Method: We performed a qualitative study. Data were collected by observations of physiotherapy sessions (n=23 and through interviews with patients (n=23 with chronic conditions in physiotherapy practices. Data were analyzed using directed content analysis. Results: The PSC was used at different moments and in different ways. Two feasibility themes were analyzed. First was the perceived ambiguity with the process of administration: patients perceived a broad range of experiences, such as emotional and supportive, as well as feeling a type of uncomfortableness. The second was the perceived usefulness: patients found the PSC useful for themselves – to increase awareness and motivation and to inform the physiotherapist – as well as being useful for the physiotherapist – to determine appropriate treatment for their personal needs. Some patients did not perceive any usefulness and were not aware of any relation with their treatment. Patients with a more positive attitude toward questionnaires, patients with an active role, and health

  3. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis.

    Science.gov (United States)

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Miller, Michael J

    2014-09-01

    With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction.

  4. SU-E-T-149: Brachytherapy Patient Specific Quality Assurance for a HDR Vaginal Cylinder Case

    Energy Technology Data Exchange (ETDEWEB)

    Barbiere, J; Napoli, J; Ndlovu, A [Hackensack Univ Medical Center, Hackensack, NJ (United States)

    2015-06-15

    Purpose: Commonly Ir-192 HDR treatment planning system commissioning is only based on a single absolute measurement of source activity supplemented by tabulated parameters for multiple factors without independent verification that the planned distribution corresponds to the actual delivered dose. The purpose on this work is to present a methodology using Gafchromic film with a statistically valid calibration curve that can be used to validate clinical HDR vaginal cylinder cases by comparing the calculated plan dose distribution in a plane with the corresponding measured planar dose. Methods: A vaginal cylinder plan was created with Oncentra treatment planning system. The 3D dose matrix was exported to a Varian Eclipse work station for convenient extraction of a 2D coronal dose plane corresponding to the film position. The plan was delivered with a sheet of Gafchromic EBT3 film positioned 1mm from the catheter using an Ir-192 Nucletron HDR source. The film was then digitized with an Epson 10000 XL color scanner. Film analysis is performed with MatLab imaging toolbox. A density to dose calibration curve was created using TG43 formalism for a single dwell position exposure at over 100 points for statistical accuracy. The plan and measured film dose planes were registered using a known dwell position relative to four film marks. The plan delivered 500 cGy to points 2 cm from the sources. Results: The distance to agreement of the 500 cGy isodose between the plan and film measurement laterally was 0.5 mm but can be as much as 1.5 mm superior and inferior. The difference between the computed plan dose and film measurement was calculated per pixel. The greatest errors up to 50 cGy are near the apex. Conclusion: The methodology presented will be useful to implement more comprehensive quality assurance to verify patient-specific dose distributions.

  5. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangjun [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wu, Kui [Department of Radiotherapy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province (China); Peng, Guang; Zhang, Yingjie [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Bai, Sen, E-mail: baisen@scu.edu.cn [Radiation Physics Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2014-01-01

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS.

  6. Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases

    Science.gov (United States)

    Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku

    2015-03-01

    Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.

  7. Nanomedicine-Based Neuroprotective Strategies in Patient Specific-iPSC and Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Shih-Fan Jang

    2014-03-01

    -based neuroprotective manipulations in patient specific-iPSCs and personalized medicine.

  8. Patient-specific FDG dosimetry for adult males, adult females, and very low birth weight infants

    Science.gov (United States)

    Niven, Erin

    Fluorodeoxyglucose is the most commonly used radiopharmaceutical in Positron Emission Tomography, with applications in neurology, cardiology, and oncology. Despite its routine use worldwide, the radiation absorbed dose estimates from FDG have been based primarily on data obtained from two dogs studied in 1977 and 11 adults (most likely males) studied in 1982. In addition, the dose estimates calculated for FDG have been centered on the adult male, with little or no mention of variations in the dose estimates due to sex, age, height, weight, nationality, diet, or pathological condition. Through an extensive investigation into the Medical Internal Radiation Dose schema for calculating absorbed doses, I have developed a simple patient-specific equation; this equation incorporates the parameters necessary for alterations to the mathematical values of the human model to produce an estimate more representative of the individual under consideration. I have used this method to determine the range of absorbed doses to FDG from the collection of a large quantity of biological data obtained in adult males, adult females, and very low birth weight infants. Therefore, a more accurate quantification of the dose to humans from FDG has been completed. My results show that per unit administered activity, the absorbed dose from FDG is higher for infants compared to adults, and the dose for adult women is higher than for adult men. Given an injected activity of approximately 3.7 MBq kg-1, the doses for adult men, adult women, and full-term newborns would be on the order of 5.5, 7.1, and 2.8 mSv, respectively. These absorbed doses are comparable to the doses received from other nuclear medicine procedures.

  9. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  10. Nanomedicine-based neuroprotective strategies in patient specific-iPSC and personalized medicine.

    Science.gov (United States)

    Jang, Shih-Fan; Liu, Wei-Hsiu; Song, Wen-Shin; Chiang, Kuan-Lin; Ma, Hsin-I; Kao, Chung-Lan; Chen, Ming-Teh

    2014-03-04

    manipulations in patient specific-iPSCs and personalized medicine.

  11. On the use of biomathematical models in patient-specific IMRT dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Heming [UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Tome, Wolfgang A. [Department of Radiation Oncology, Division of Medical Physics, Montefiore Medical Center and Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2013-07-15

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.

  12. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaodi Qiu

    Full Text Available The development of a technique to induce the transformation of somatic cells to a pluripotent state via the ectopic expression of defined transcription factors was a transformational event in the field of regenerative medicine. The development of this technique also impacted ophthalmology, as patient-specific induced pluripotent stemcells (iPSCs may be useful resources for some ophthalmological diseases. The lens is a key refractive element in the eye that focuses images of the visual world onto the retina. To establish a new model for drug screening to treat lens diseases and investigating lens aging and development, we examined whether human lens epithelial cells (HLECs could be induced into iPSCs and if lens-specific differentiation of these cells could be achieved under defined chemical conditions. We first efficiently reprogrammed HLECs from age-related cataract patients to iPSCs with OCT-4, SOX-2, and KLF-4. The resulting HLEC-derived iPS (HLE-iPS colonies were indistinguishable from human ES cells with respect to morphology, gene expression, pluripotent marker expression and their ability to generate all embryonic germ-cell layers. Next, we performed a 3-step induction procedure: HLE-iPS cells were differentiated into large numbers of lens progenitor-like cells with defined factors (Noggin, BMP and FGF2, and we determined that these cells expressed lens-specific markers (PAX6, SOX2, SIX3, CRYAB, CRYAA, BFSP1, and MIP. In addition, HLE-iPS-derived lens cells exhibited reduced expression of epithelial mesenchymal transition (EMT markers compared with human embryonic stem cells (hESCs and fibroblast-derived iPSCs. Our study describes a highly efficient procedure for generating lens progenitor cells from cataract patient HLEC-derived iPSCs. These patient-derived pluripotent cells provide a valuable model for studying the developmental and molecular biological mechanisms that underlie cell determination in lens development and cataract

  13. Statistical process control analysis for patient-specific IMRT and VMAT QA.

    Science.gov (United States)

    Sanghangthum, Taweap; Suriyapee, Sivalee; Srisatit, Somyot; Pawlicki, Todd

    2013-05-01

    This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7% ± 3.7% for IMRT and 96.7% ± 2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0.

  14. Use of smart home automation and implementation in care organisations

    NARCIS (Netherlands)

    Huisman, E.R.C.M.; Huisman, C.A.M.; Kort, H.S.M.

    2012-01-01

    In the Netherlands, the Dutch Ministry of Health, Welfare and Sport (MINVWS) encourages the use of smart home automation (SHA) in small-scale senior accommodations (SSSAs). The initiatives were evaluated in order to determine which of the smart home automation systems contribute to enhance quality o

  15. Modelo geoespacial automatizado para la regionalización operativa en planeación de redes de servicios de salud Automated geospatial model for health services strategic planning

    Directory of Open Access Journals (Sweden)

    Juan Eugenio Hernández-Ávila

    2010-10-01

    Full Text Available Objetivo. Desarrollar un modelo automatizado de regionalización operativa para la planeación de las redes de servicios de salud propuestas en el Modelo Integrador de Atención a la Salud (MIDAS. Material y métodos. Con información disponible para México en 2005 y 2007 se realizó un modelo geoespacial para estimar el área potencial de influencia alrededor de cada unidad de atención médica, con base en el menor tiempo de viaje. Los resultados se compararon con un Estudio de Regionalización Operativa (ERO para Oaxaca llevado a cabo en 2005. Resultados. Comparado con el modelo geoespacial, el ERO asignó 48% de las localidades a centros de salud más lejanos y 23% de los centros de salud a hospitales más lejanos. Conclusiones. El modelo calculado en este estudio generó una regionalización más eficiente que el ERO de Oaxaca, minimizando el tiempo de viaje para el acceso a los servicios de salud. Este modelo ha sido adoptado por la Dirección General de Planeación y Desarrollo en Salud para la instrumentación del Plan Maestro Sectorial de Recursos para la Atención de la Salud.Objective. To develop an automated model for the operational regionalization needed in the planning of the health service networks proposed by the new Mexican health care model (Modelo Integrador de Servicios de Salud MIDAS. Material and Methods. Using available data for México during 2005 and 2007, a geospatial model was developed to estimate potential catchment areas around health facilities based on access travel time. The results were compared with an operational regionalization (ERO study manually carried out in Oaxaca with 2005 data. Results. The ERO assigned 48% of villages to health care centers further away than those assigned by the geospatial model, and 23% of these health centers referred patients to more distant hospitals. Conclusions. The model calculated by this study generated a more efficient regionalization than the ERO model, minimizing travel

  16. Automating checks of plan check automation.

    Science.gov (United States)

    Halabi, Tarek; Lu, Hsiao-Ming

    2014-07-08

    While a few physicists have designed new plan check automation solutions for their clinics, fewer, if any, managed to adapt existing solutions. As complex and varied as the systems they check, these programs must gain the full confidence of those who would run them on countless patient plans. The present automation effort, planCheck, therefore focuses on versatility and ease of implementation and verification. To demonstrate this, we apply planCheck to proton gantry, stereotactic proton gantry, stereotactic proton fixed beam (STAR), and IMRT treatments.

  17. Automation in Warehouse Development

    NARCIS (Netherlands)

    Hamberg, R.; Verriet, J.

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and support

  18. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  19. More Benefits of Automation.

    Science.gov (United States)

    Getz, Malcolm

    1988-01-01

    Describes a study that measured the benefits of an automated catalog and automated circulation system from the library user's point of view in terms of the value of time saved. Topics discussed include patterns of use, access time, availability of information, search behaviors, and the effectiveness of the measures used. (seven references)…

  20. Advances in inspection automation

    Science.gov (United States)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  1. Automation in immunohematology.

    Science.gov (United States)

    Bajpai, Meenu; Kaur, Ravneet; Gupta, Ekta

    2012-07-01

    There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  2. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  3. Automation in Warehouse Development

    CERN Document Server

    Verriet, Jacques

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and supports the quality of picking processes. Secondly, the development of models to simulate and analyse warehouse designs and their components facilitates the challenging task of developing warehouses that take into account each customer’s individual requirements and logistic processes. Automation in Warehouse Development addresses both types of automation from the innovative perspective of applied science. In particular, it describes the outcomes of the Falcon project, a joint endeavour by a consortium of industrial and academic partners. The results include a model-based approach to automate warehouse control design, analysis models for warehouse design, concepts for robotic item handling and computer vision, and auton...

  4. Automation in Immunohematology

    Directory of Open Access Journals (Sweden)

    Meenu Bajpai

    2012-01-01

    Full Text Available There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  5. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy.

    Science.gov (United States)

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J; Zhong, Hualiang

    2013-11-04

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline-based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0-1.9 mm in the prostate, 1.9-2.4mm in the rectum, and 1.8-2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that

  6. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy

    Directory of Open Access Journals (Sweden)

    Dewayne Lee Defoor

    2014-03-01

    Full Text Available Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID coupled with the treatment planning system (TPS, to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC dynalog files on 10 IMRT patients are presented in this study.Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV patients and processed through an in house MatLab program to create an opening density matrix (ODM which was used as the input fluence for dose calculation with the TPS (Pinnacle3, Philips. The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW where a 3D gamma was calculated using 3 mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software.Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT is currently under way.-----------------------------Cite this article as: Defoor D, Mavroidis P, Quino L, Gutierrez A, Papanikolaou N, Stathakis S. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy

  7. SU-E-T-159: Evaluation of a Patient Specific QA Tool Based On TG119

    Energy Technology Data Exchange (ETDEWEB)

    Ashmeg, S; Zhang, Y; O' Daniel, J; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of a 3D patient specific QA tool by analysis of the results produced from associated software in homogenous phantom and heterogonous patient CT. Methods: IMRT and VMAT plans of five test suites introduced by TG119 were created in ECLIPSE on a solid water phantom. The ten plans -of increasing complexity- were delivered to Delta4 to give a 3D measurement. The Delta4's “Anatomy” software uses the measured dose to back-calculate the energy fluence of the delivered beams, which is used for dose calculation in a patient CT using a pencilbeam algorithm. The effect of the modulated beams' complexity on the accuracy of the “Anatomy” calculation was evaluated. Both measured and Anatomy doses were compared to ECLIPSE calculation using 3% - 3mm gamma criteria.We also tested the effect of heterogeneity by analyzing the results of “Anatomy” calculation on a Brain VMAT and a 3D conformal lung cases. Results: In homogenous phantom, the gamma passing rates were found to be as low as 74.75% for a complex plan with high modulation. The mean passing rates were 91.47% ± 6.35% for “Anatomy” calculation and 99.46% ± 0.62% for Delta4 measurements.As for the heterogeneous cases, the rates were 96.54%±3.67% and 83.87%±9.42% for Brain VMAT and 3D lung respectively. This increased error in the lung case could be due to the use of the pencil beam algorithm as opposed to the AAA used by ECLIPSE.Also, gamma analysis showed high discrepancy along the beam edge in the “Anatomy” calculated results. This suggests a poor beam modeling in the penumbra region. Conclusion: The results show various sources of errors in “Anatomy” calculations. These include beam modeling in the penumbra region, complexity of a modulated beam (shown in homogenous phantom and brain cases) and dose calculation algorithms (3D conformal lung case)

  8. Graph-cuts based reconstructing patient specific right ventricle: first human study.

    Science.gov (United States)

    Zhong, Liang; Wan, Min; Su, Yi; Teo, Soo Kng; Lim, Chi Wan; Zhao, Xiaodan; Zhang, Jun-Mei; Su, Bo Yang; Tan, Ju Le; Tan, Ru San

    2014-01-01

    Right ventricular (RV) function is increasingly recognized to play an important role in the clinical status and long-term outcome in patients with congenital heart disease as well as ischemic cardiomyopathy with left ventricular dysfunction. However, quantification of RV characteristics and function are still challenging due to its complex morphology and its thin wall with coarse trabeculations. To assess RV functions quantitatively, establishing the patient-specific model from medical images is a prerequisite task. This study aims to develop a novel method for RV model reconstruction. Magnetic resonance images were acquired and preprocessed. Contours of right ventricle, right atrium and pulmonary artery were manually delineated at all slices and all time frames. The contour coordinates as well as the medical image specifications such as image pixel resolution and slick thickness were exported. The contours were transformed to the correct positions. Reorientation and matching were executed in between neighboring contours; extrapolation and interpolation were conducted upon all contours. After preprocessing, the more dense point set was reconstructed through a variational tool. A Delaunay-based tetrahedral mesh was generated on the region of interest. The weighted minimal surface model was used to describe RV surface. The graphcuts technique, i.e., max-flow/min-cut algorithm, was applied to minimize the energy defined by the model. The reconstructed surface was extracted from the mesh according to the mincut. Smoothing and remeshing were performed. The CPU time to reconstruct the model for one frame was approximately 2 minutes. In 10 consecutive subjects referred for cardiac MRI (80% female), right ventricular volumes were measured using our method against the commercial available CMRtools package. The results demonstrated that there was a significant correlation in end-diastolic and end-systolic volumes between our method and commercial software (r= 0.89 for end

  9. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    radionuclide therapy to obtain normal organ and tumor dose vs. response correlations. Completion of the aims outlined above will make it possible to perform patient-specific dosimetry that incorporates considerations likely to provide robust dose-response relationships. Such an advance will improve targeted radionuclide therapy by making it possible to adopt treatment planning methodologies.

  10. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    Science.gov (United States)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended

  11. Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro

    Science.gov (United States)

    Matsa, Elena; Burridge, Paul W.; Yu, Kun-Hsing; Ahrens, John H.; Termglinchan, Vittavat; Wu, Haodi; Liu, Chun; Shukla, Praveen; Sayed, Nazish; Churko, Jared M.; Shao, Ningyi; Woo, Nicole A.; Chao, Alexander S.; Gold, Joseph D.; Karakikes, Ioannis; Snyder, Michael P.; Wu, Joseph C.

    2016-01-01

    SUMMARY Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs), and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations, and in three isogenic human heart tissue and hiPSC-CM pairs, showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine. PMID:27545504

  12. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution.

    Science.gov (United States)

    Marini, Giacomo; Studer, Harald; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2016-06-01

    Patient-specific modelling of the spine is a powerful tool to explore the prevention and the treatment of injuries and pathologies. Albeit several methods have been proposed for the discretization of the bony structures, the efficient representation of the intervertebral disc anisotropy remains a challenge, especially with complex geometries. Furthermore, the swelling of the disc's nucleus pulposus is normally added to the model after geometry definition, at the cost of changes of the material properties and an unrealistic description of the prestressed state. The aim of this study was to develop techniques, which preserve the patient-specific geometry of the disc and allow the representation of the system anisotropy and residual stresses, independent of the system discretization. Depending on the modelling features, the developed approaches resulted in a response of patient-specific models that was in good agreement with the physiological response observed in corresponding experiments. The proposed methods represent a first step towards the development of patient-specific models of the disc which respect both the geometry and the mechanical properties of the specific disc.

  13. Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Mehlsen, Jesper; Olufsen, Mette

    2014-01-01

    We consider the inverse and patient specific problem of short term (seconds to minutes) heart rate regulation specified by a system of nonlinear ODEs and corresponding data. We show how a recent method termed the structural correlation method (SCM) can be used for model reduction and for obtaining...

  14. Systematic review automation technologies

    Science.gov (United States)

    2014-01-01

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128

  15. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, Helene

    2003-10-01

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of {sup 131}I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other

  16. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  17. A patient-specific aperture system with an energy absorber for spot scanning proton beams: Verification for clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Keisuke, E-mail: k.yasui.20@west-med.jp [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508, Japan and Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan); Toshito, Toshiyuki; Omachi, Chihiro; Kibe, Yoshiaki; Hayashi, Kensuke; Shibata, Hiroki; Tanaka, Kenichiro; Nikawa, Eiki; Asai, Kumiko; Shimomura, Akira; Kinou, Hideto; Isoyama, Shigeru; Mizoe, Jun-etsu [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508 (Japan); Fujii, Yusuke; Takayanagi, Taisuke; Hirayama, Shusuke [Hitachi, Ltd., Hitachi Research Laboratory, 7-1-1, Omika-chou, Hitachi-shi, Ibaraki-ken 319-1292 (Japan); Nagamine, Yoshihiko [Hitachi, Ltd., Hitachi Works, 3-1-1, Saiwai-chou, Hitachi-shi, Ibaraki-ken 317-8511 (Japan); Shibamoto, Yuta [Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya-shi, Aichi-ken 467-8601 (Japan); Komori, Masataka [Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan)

    2015-12-15

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integral depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.

  18. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  19. I-94 Automation FAQs

    Data.gov (United States)

    Department of Homeland Security — In order to increase efficiency, reduce operating costs and streamline the admissions process, U.S. Customs and Border Protection has automated Form I-94 at air and...

  20. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  1. Hydrometeorological Automated Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Hydrologic Development of the National Weather Service operates HADS, the Hydrometeorological Automated Data System. This data set contains the last 48...

  2. Automating the Media Center.

    Science.gov (United States)

    Holloway, Mary A.

    1988-01-01

    Discusses the need to develop more efficient information retrieval skills by the use of new technology. Lists four stages used in automating the media center. Describes North Carolina's pilot programs. Proposes benefits and looks at the media center's future. (MVL)

  3. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  4. ACCOUNTING AUTOMATIONS RISKS

    OpenAIRE

    Муравський, В. В.; Хома, Н. Г.

    2015-01-01

    Accountant accepts active voice in organization of the automated account in the conditions of the informative systems introduction in enterprise activity. Effective accounting automation needs identification and warning of organizational risks. Authors researched, classified and generalized the risks of introduction of the informative accounting systems. The ways of liquidation of the organizational risks sources andminimization of their consequences are gives. The method of the effective con...

  5. Instant Sikuli test automation

    CERN Document Server

    Lau, Ben

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A concise guide written in an easy-to follow style using the Starter guide approach.This book is aimed at automation and testing professionals who want to use Sikuli to automate GUI. Some Python programming experience is assumed.

  6. Automated security management

    CERN Document Server

    Al-Shaer, Ehab; Xie, Geoffrey

    2013-01-01

    In this contributed volume, leading international researchers explore configuration modeling and checking, vulnerability and risk assessment, configuration analysis, and diagnostics and discovery. The authors equip readers to understand automated security management systems and techniques that increase overall network assurability and usability. These constantly changing networks defend against cyber attacks by integrating hundreds of security devices such as firewalls, IPSec gateways, IDS/IPS, authentication servers, authorization/RBAC servers, and crypto systems. Automated Security Managemen

  7. Automation of Diagrammatic Reasoning

    OpenAIRE

    Jamnik, Mateja; Bundy, Alan; Green, Ian

    1997-01-01

    Theorems in automated theorem proving are usually proved by logical formal proofs. However, there is a subset of problems which humans can prove in a different way by the use of geometric operations on diagrams, so called diagrammatic proofs. Insight is more clearly perceived in these than in the corresponding algebraic proofs: they capture an intuitive notion of truthfulness that humans find easy to see and understand. We are identifying and automating this diagrammatic reasoning on mathemat...

  8. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  9. Marketing automation supporting sales

    OpenAIRE

    Sandell, Niko

    2016-01-01

    The past couple of decades has been a time of major changes in marketing. Digitalization has become a permanent part of marketing and at the same time enabled efficient collection of data. Personalization and customization of content are playing a crucial role in marketing when new customers are acquired. This has also created a need for automation to facilitate the distribution of targeted content. As a result of successful marketing automation more information of the customers is gathered ...

  10. Development of an improved approach to radiation treatment therapy using high-definition patient-specific voxel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.; Ryman, J.C.; Worley, B.A.; Stallings, D.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Through an internally funded project at Oak Ridge National Laboratory, a high-resolution phantom was developed based on the National Library of Medicine`s Visible Human Data. Special software was written using the interactive data language (IDL) visualization language to automatically segment and classify some of the organs and the skeleton of the Visible Male. A high definition phantom consisting of nine hundred 512 x 512 slices was constructed of the entire torso. Computed tomography (CT) images of a patient`s tumor near the spine were scaled and morphed into the phantom model to create a patient-specific phantom. Calculations of dose to the tumor and surrounding tissue were then performed using the patient-specific phantom.

  11. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  12. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  13. Elements of EAF automation processes

    Science.gov (United States)

    Ioana, A.; Constantin, N.; Dragna, E. C.

    2017-01-01

    Our article presents elements of Electric Arc Furnace (EAF) automation. So, we present and analyze detailed two automation schemes: the scheme of electrical EAF automation system; the scheme of thermic EAF automation system. The application results of these scheme of automation consists in: the sensitive reduction of specific consummation of electrical energy of Electric Arc Furnace, increasing the productivity of Electric Arc Furnace, increase the quality of the developed steel, increasing the durability of the building elements of Electric Arc Furnace.

  14. IMRT patient-specific QA using the Delta4 dosimetry system and evaluation based on ICRU 83 recommendations

    Science.gov (United States)

    Nilsson, J.; Karlsson Hauer, A.; Bäck, A.

    2013-06-01

    Patient-specific IMRT QA is dependent on the dosimetry system and the evaluation procedure. The ICRU report 83 provides recommendations of tolerated deviations between measured and calculated absorbed dose distributions for QA of IMRT treatment plans. The result of doing IMRT patient-specific QA with the Delta4 dosimetry system and using the ICRU recommendations for evaluation is studied. To be able to investigate the QA procedure the original IMRT treatment plans were modified in the treatment planning system to create calculated dose distributions with dosimetric deviations from the original treatment plans. The modified dose distributions were compared to the dose distributions from the Delta4 measurements of the original treatment plans and the differences were evaluated with criteria and tolerance levels according to the recommendations from ICRU. The evaluation for all 28 modified dose distributions have gamma passing rates higher than the tolerance level recommended from ICRU and will therefore pass the patient-specific QA. More than half of the evaluations have a gamma passing rate of 100 %. Evaluation of the differences between the modified and the original calculated dose distributions revealed in several cases large unacceptable dose differences in the PTV volumes and the organs at risk, for example an increase in the near-maximum dose D2% to the spinal cord of 5.5 Gy. This study indicates that patient-specific QA with the Delta4 dosimetry system and the ICRU recommendations for evaluation can not be used to distinguish differences between planned and measured dose of dosimetrical relevance.

  15. A patient-specific EMG-driven neuromuscular model for the potential use of human-inspired gait rehabilitation robots.

    Science.gov (United States)

    Ma, Ye; Xie, Shengquan; Zhang, Yanxin

    2016-03-01

    A patient-specific electromyography (EMG)-driven neuromuscular model (PENm) is developed for the potential use of human-inspired gait rehabilitation robots. The PENm is modified based on the current EMG-driven models by decreasing the calculation time and ensuring good prediction accuracy. To ensure the calculation efficiency, the PENm is simplified into two EMG channels around one joint with minimal physiological parameters. In addition, a dynamic computation model is developed to achieve real-time calculation. To ensure the calculation accuracy, patient-specific muscle kinematics information, such as the musculotendon lengths and the muscle moment arms during the entire gait cycle, are employed based on the patient-specific musculoskeletal model. Moreover, an improved force-length-velocity relationship is implemented to generate accurate muscle forces. Gait analysis data including kinematics, ground reaction forces, and raw EMG signals from six adolescents at three different speeds were used to evaluate the PENm. The simulation results show that the PENm has the potential to predict accurate joint moment in real-time. The design of advanced human-robot interaction control strategies and human-inspired gait rehabilitation robots can benefit from the application of the human internal state provided by the PENm.

  16. Towards the Personalized Treatment of Glioblastoma: Integrating Patient-Specific Clinical Data in a Continuous Mechanical Model.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Colombo

    Full Text Available Glioblastoma multiforme (GBM is the most aggressive and malignant among brain tumors. In addition to uncontrolled proliferation and genetic instability, GBM is characterized by a diffuse infiltration, developing long protrusions that penetrate deeply along the fibers of the white matter. These features, combined with the underestimation of the invading GBM area by available imaging techniques, make a definitive treatment of GBM particularly difficult. A multidisciplinary approach combining mathematical, clinical and radiological data has the potential to foster our understanding of GBM evolution in every single patient throughout his/her oncological history, in order to target therapeutic weapons in a patient-specific manner. In this work, we propose a continuous mechanical model and we perform numerical simulations of GBM invasion combining the main mechano-biological characteristics of GBM with the micro-structural information extracted from radiological images, i.e. by elaborating patient-specific Diffusion Tensor Imaging (DTI data. The numerical simulations highlight the influence of the different biological parameters on tumor progression and they demonstrate the fundamental importance of including anisotropic and heterogeneous patient-specific DTI data in order to obtain a more accurate prediction of GBM evolution. The results of the proposed mathematical model have the potential to provide a relevant benefit for clinicians involved in the treatment of this particularly aggressive disease and, more importantly, they might drive progress towards improving tumor control and patient's prognosis.

  17. Hemodynamic Assessment of Compliance of Pre-Stressed Pulmonary Valve-Vasculature in Patient Specific Geometry Using an Inverse Algorithm

    Science.gov (United States)

    Hebbar, Ullhas; Paul, Anup; Banerjee, Rupak

    2016-11-01

    Image based modeling is finding increasing relevance in assisting diagnosis of Pulmonary Valve-Vasculature Dysfunction (PVD) in congenital heart disease patients. This research presents compliant artery - blood interaction in a patient specific Pulmonary Artery (PA) model. This is an improvement over our previous numerical studies which assumed rigid walled arteries. The impedance of the arteries and the energy transfer from the Right Ventricle (RV) to PA is governed by compliance, which in turn is influenced by the level of pre-stress in the arteries. In order to evaluate the pre-stress, an inverse algorithm was developed using an in-house script written in MATLAB and Python, and implemented using the Finite Element Method (FEM). This analysis used a patient specific material model developed by our group, in conjunction with measured pressure (invasive) and velocity (non-invasive) values. The analysis was performed on an FEM solver, and preliminary results indicated that the Main PA (MPA) exhibited higher compliance as well as increased hysteresis over the cardiac cycle when compared with the Left PA (LPA). The computed compliance values for the MPA and LPA were 14% and 34% lesser than the corresponding measured values. Further, the computed pressure drop and flow waveforms were in close agreement with the measured values. In conclusion, compliant artery - blood interaction models of patient specific geometries can play an important role in hemodynamics based diagnosis of PVD.

  18. Automated Assay of Telomere Length Measurement and Informatics for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort

    Science.gov (United States)

    Lapham, Kyle; Kvale, Mark N.; Lin, Jue; Connell, Sheryl; Croen, Lisa A.; Dispensa, Brad P.; Fang, Lynn; Hesselson, Stephanie; Hoffmann, Thomas J.; Iribarren, Carlos; Jorgenson, Eric; Kushi, Lawrence H.; Ludwig, Dana; Matsuguchi, Tetsuya; McGuire, William B.; Miles, Sunita; Quesenberry, Charles P.; Rowell, Sarah; Sadler, Marianne; Sakoda, Lori C.; Smethurst, David; Somkin, Carol P.; Van Den Eeden, Stephen K.; Walter, Lawrence; Whitmer, Rachel A.; Kwok, Pui-Yan; Risch, Neil; Schaefer, Catherine; Blackburn, Elizabeth H.

    2015-01-01

    The Kaiser Permanente Research Program on Genes, Environment, and Health (RPGEH) Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort includes DNA specimens extracted from saliva samples of 110,266 individuals. Because of its relationship to aging, telomere length measurement was considered an important biomarker to develop on these subjects. To assay relative telomere length (TL) on this large cohort over a short time period, we created a novel high throughput robotic system for TL analysis and informatics. Samples were run in triplicate, along with control samples, in a randomized design. As part of quality control, we determined the within-sample variability and employed thresholds for the elimination of outlying measurements. Of 106,902 samples assayed, 105,539 (98.7%) passed all quality control (QC) measures. As expected, TL in general showed a decline with age and a sex difference. While telomeres showed a negative correlation with age up to 75 years, in those older than 75 years, age positively correlated with longer telomeres, indicative of an association of longer telomeres with more years of survival in those older than 75. Furthermore, while females in general had longer telomeres than males, this difference was significant only for those older than age 50. An additional novel finding was that the variance of TL between individuals increased with age. This study establishes reliable assay and analysis methodologies for measurement of TL in large, population-based human studies. The GERA cohort represents the largest currently available such resource, linked to comprehensive electronic health and genotype data for analysis. PMID:26092717

  19. Primary Health Care Challenges in Rural/Remote Areas of Yakutia and Use of Automated Systems for the Medical Screening Examination of the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Sardana A. Evseeva

    2015-12-01

    Full Text Available The negative consequences of social and economic changes in recent decades have primarily affected the rural population and violated the main principles of medical care organization for this group. The reduction by one third in the number of district hospitals, uncompensated by adequate development of outpatient care, and a shortage of doctors in rural clinics led to reduced availability of primary care. Specialized medical assistance in regional and national hospitals has also become less accessible to the rural population due to the high cost of travel. The number of doctors and nurses in rural areas is lower by 3.4 and 1.6 times, respectively, than in cities. In this regard, the burden and responsibility for rural health workers is much higher. Study of the opinions of the medical staff of the Northern and Arctic regions is an important part of the decision-making system in health care, allowing us to carry out modernization programs in the industry and increase their efficiency through feedback mechanisms. This article presents the available data on the problems of organizing medical assistance for residents of the Northern and Arctic regions of Yakutia, because dealing with these problems is still the most socially significant task for the authorities and carries a great load of negative experience, stereotypes, and scientific-methodological errors. To assess the quality of medical care, we conducted an anonymous survey of parents and medical staff of the Northern and Arctic regions of Yakutia. A total of 1,415 parents and 322 health specialists were interviewed between 2011 and 2012. The results of the anonymous survey revealed that in the Northern and Arctic regions of Yakutia there is a deficit of qualified specialists of different profiles, an unsatisfactory infrastructure of medical offices and hospitals, and a low level of income for medical personnel and the whole population. All above listed are some of the reasons for developing

  20. The use of patient-specific measurement instruments in the process of goal-setting: a systematic review of available instruments and their feasibility

    NARCIS (Netherlands)

    Stevens, A.; Beurskens, A.; Koke, A.; Weijden, T.T. van der

    2013-01-01

    OBJECTIVE: The aim of this study was to identify the currently available patient-specific measurement instruments used in the process of goal-setting and to assess their feasibility. METHODS: After a systematic search in PubMed, EMBASE, CINAHL, PsychINFO and REHABDATA, patient-specific instruments w

  1. Materials Testing and Automation

    Science.gov (United States)

    Cooper, Wayne D.; Zweigoron, Ronald B.

    1980-07-01

    The advent of automation in materials testing has been in large part responsible for recent radical changes in the materials testing field: Tests virtually impossible to perform without a computer have become more straightforward to conduct. In addition, standardized tests may be performed with enhanced efficiency and repeatability. A typical automated system is described in terms of its primary subsystems — an analog station, a digital computer, and a processor interface. The processor interface links the analog functions with the digital computer; it includes data acquisition, command function generation, and test control functions. Features of automated testing are described with emphasis on calculated variable control, control of a variable that is computed by the processor and cannot be read directly from a transducer. Three calculated variable tests are described: a yield surface probe test, a thermomechanical fatigue test, and a constant-stress-intensity range crack-growth test. Future developments are discussed.

  2. Automation of Taxiing

    Directory of Open Access Journals (Sweden)

    Jaroslav Bursík

    2017-01-01

    Full Text Available The article focuses on the possibility of automation of taxiing, which is the part of a flight, which, under adverse weather conditions, greatly reduces the operational usability of an airport, and is the only part of a flight that has not been affected by automation, yet. Taxiing is currently handled manually by the pilot, who controls the airplane based on information from visual perception. The article primarily deals with possible ways of obtaining navigational information, and its automatic transfer to the controls. Analyzed wand assessed were currently available technologies such as computer vision, Light Detection and Ranging and Global Navigation Satellite System, which are useful for navigation and their general implementation into an airplane was designed. Obstacles to the implementation were identified, too. The result is a proposed combination of systems along with their installation into airplane’s systems so that it is possible to use the automated taxiing.

  3. Automating the CMS DAQ

    CERN Document Server

    Bauer, Gerry; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Darlea, Georgiana Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez Ceballos, Guillelmo; Gomez-Reino Garrido, Robert; Hartl, Christian; Hegeman, Jeroen Guido; Holzner, Andre Georg; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; Nunez Barranco Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Ozga, Wojciech Andrzej; Paus, Christoph Maria Ernst; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Spataru, Andrei Cristian; Stieger, Benjamin Bastian; Sumorok, Konstanty; Veverka, Jan; Wakefield, Christopher Colin; Zejdl, Petr

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90\\% and to even improve it to 95\\% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  4. Automating the CMS DAQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  5. Feasibility study of patient-specific quality assurance system for high-dose-rate brachytherapy in patients with cervical cancer

    Science.gov (United States)

    Lee, Boram; Ahn, Sung Hwan; Kim, Hyeyoung; Han, Youngyih; Huh, Seung Jae; Kim, Jin Sung; Kim, Dong Wook; Sim, Jina; Yoon, Myonggeun

    2016-04-01

    This study was conducted for the purpose of establishing a quality-assurance (QA) system for brachytherapy that can ensure patient-specific QA by enhancing dosimetric accuracy for the patient's therapy plan. To measure the point-absorbed dose and the 2D dose distribution for the patient's therapy plan, we fabricated a solid phantom that allowed for the insertion of an applicator for patient-specific QA and used an ion chamber and a film as measuring devices. The patient treatment plan was exported to the QA dose-calculation software, which calculated the time weight of dwell position stored in the plan DICOM (Digital Imaging and Communications in Medicine) file to obtain an overall beam quality correction factor, and that correction was applied to the dose calculations. Experiments were conducted after importing the patient's treatment planning source data for the fabricated phantom and inserting the applicator, ion chamber, and film into the phantom. On completion of dose delivery, the doses to the ion chamber and film were checked against the corresponding treatment plan to evaluate the dosimetric accuracy. For experimental purposes, five treatment plans were randomly selected. The beam quality correction factors for ovoid and tandem brachytherapy applicators were found to be 1.15 and 1.10 - 1.12, respectively. The beam quality correction factor in tandem fluctuated by approximately 2%, depending on the changes in the dwell position. The doses measured by using the ion chamber showed differences ranging from -2.4% to 0.6%, compared to the planned doses. As for the film, the passing rate was 90% or higher when assessed using a gamma value of the local dose difference of 3% and a distance to agreement of 3 mm. The results show that the self-fabricated phantom was suitable for QA in clinical settings. The proposed patient-specific QA for the treatment planning is expected to contribute to reduce dosimetric errors in brachytherapy and, thus, to enhancing treatment

  6. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer.

    Science.gov (United States)

    Tan, Eddie T W; Ling, Ji Min; Dinesh, Shree Kumar

    2016-05-01

    OBJECT Commercially available, preformed patient-specific cranioplasty implants are anatomically accurate but costly. Acrylic bone cement is a commonly used alternative. However, the manual shaping of the bone cement is difficult and may not lead to a satisfactory implant in some cases. The object of this study was to determine the feasibility of fabricating molds using a commercial low-cost 3D printer for the purpose of producing patient-specific acrylic cranioplasty implants. METHODS Using data from a high-resolution brain CT scan of a patient with a calvarial defect posthemicraniectomy, a skull phantom and a mold were generated with computer software and fabricated with the 3D printer using the fused deposition modeling method. The mold was used as a template to shape the acrylic implant, which was formed via a polymerization reaction. The resulting implant was fitted to the skull phantom and the cranial index of symmetry was determined. RESULTS The skull phantom and mold were successfully fabricated with the 3D printer. The application of acrylic bone cement to the mold was simple and straightforward. The resulting implant did not require further adjustment or drilling prior to being fitted to the skull phantom. The cranial index of symmetry was 96.2% (the cranial index of symmetry is 100% for a perfectly symmetrical skull). CONCLUSIONS This study showed that it is feasible to produce patient-specific acrylic cranioplasty implants with a low-cost 3D printer. Further studies are required to determine applicability in the clinical setting. This promising technique has the potential to bring personalized medicine to more patients around the world.

  7. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities.

    Directory of Open Access Journals (Sweden)

    Alyssa J Reiffel

    Full Text Available INTRODUCTION: Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and their respective molds that would precisely mimic the normal anatomy of the patient-specific external ear as well as recapitulate the complex biomechanical properties of native auricular elastic cartilage while avoiding the morbidity of traditional autologous reconstructions. METHODS: Three-dimensional structures of normal pediatric ears were digitized and converted to virtual solids for mold design. Image-based synthetic reconstructions of these ears were fabricated from collagen type I hydrogels. Half were seeded with bovine auricular chondrocytes. Cellular and acellular constructs were implanted subcutaneously in the dorsa of nude rats and harvested after 1 and 3 months. RESULTS: Gross inspection revealed that acellular implants had significantly decreased in size by 1 month. Cellular constructs retained their contour/projection from the animals' dorsa, even after 3 months. Post-harvest weight of cellular constructs was significantly greater than that of acellular constructs after 1 and 3 months. Safranin O-staining revealed that cellular constructs demonstrated evidence of a self-assembled perichondrial layer and copious neocartilage deposition. Verhoeff staining of 1 month cellular constructs revealed de novo elastic cartilage deposition, which was even more extensive and robust after 3 months. The equilibrium modulus and hydraulic permeability of cellular constructs were not significantly different from native bovine auricular cartilage after 3 months. CONCLUSIONS: We have developed high-fidelity, biocompatible, patient-specific tissue-engineered constructs for auricular reconstruction which largely mimic the native auricle both

  8. Generation of patient-specific pluripotent stem cells and directed differentiation of embryonic stem cells for regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Minyue Ma; Jiahao Sha; Zuomin Zhou; Qi Zhou; Qingzhang Li

    2008-01-01

    Embryonic stem(ES) cells are pluripotent cells that can give rise to derivatives of all three embryonic germ layers. Due to its characteristics, the patient-specific ES cells are of great potential for transplantation therapies. Several strategies can reprogramme somatic cells back to pluripotent stem cells: nuclear transfer, fusion with ES cells, treatment with cell extract and induction by specific factors. Considering the future clinical use, the differentiation from ES to neurons, cardiomyocytes and many other types of cell scurrently provide basic cognition and experience to regenerative medicine. This article will review two courses, the reprogramming of differentiated cells and the differentiation of ES cells to specific cell types.

  9. Correlation of phantom-based and log file patient-specific QA with complexity scores for VMAT.

    Science.gov (United States)

    Agnew, Christina E; Irvine, Denise M; McGarry, Conor K

    2014-11-08

    The motivation for this study was to reduce physics workload relating to patient- specific quality assurance (QA). VMAT plan delivery accuracy was determined from analysis of pre- and on-treatment trajectory log files and phantom-based ionization chamber array measurements. The correlation in this combination of measurements for patient-specific QA was investigated. The relationship between delivery errors and plan complexity was investigated as a potential method to further reduce patient-specific QA workload. Thirty VMAT plans from three treatment sites - prostate only, prostate and pelvic node (PPN), and head and neck (H&N) - were retrospectively analyzed in this work. The 2D fluence delivery reconstructed from pretreatment and on-treatment trajectory log files was compared with the planned fluence using gamma analysis. Pretreatment dose delivery verification was also car- ried out using gamma analysis of ionization chamber array measurements compared with calculated doses. Pearson correlations were used to explore any relationship between trajectory log file (pretreatment and on-treatment) and ionization chamber array gamma results (pretreatment). Plan complexity was assessed using the MU/ arc and the modulation complexity score (MCS), with Pearson correlations used to examine any relationships between complexity metrics and plan delivery accu- racy. Trajectory log files were also used to further explore the accuracy of MLC and gantry positions. Pretreatment 1%/1 mm gamma passing rates for trajectory log file analysis were 99.1% (98.7%-99.2%), 99.3% (99.1%-99.5%), and 98.4% (97.3%-98.8%) (median (IQR)) for prostate, PPN, and H&N, respectively, and were significantly correlated to on-treatment trajectory log file gamma results (R = 0.989, p log file gamma results (R = 0.623, p 0.57, p log file fluence delivery and ionization chamber array measurements were strongly correlated with on-treatment trajectory log file fluence delivery. The strong corre- lation

  10. Altering user' acceptance of automation through prior automation exposure.

    Science.gov (United States)

    Bekier, Marek; Molesworth, Brett R C

    2016-08-22

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  11. Nursing Informatics Education: From Automation to Connected Care.

    Science.gov (United States)

    Skiba, Diane J

    2017-01-01

    The use of health information technologies has evolved over the last 50 years. These technologies have moved from the automation of data and data processing to connected care tools that are part of a health care ecosystem that provides the best care at the point of care. To correspondence with the evolution of technologies and their disruptions within the health care delivery system, there is a need to re-examine the necessary competencies of health care professionals.

  12. Robotics, automation, and the new role of process control.

    Science.gov (United States)

    McPherson, R A

    1998-01-01

    The natural progression of automation in the clinical laboratory next will lead to robotic devices to perform many of the manual tasks still remaining. To date, most efforts of laboratory automation have been directed at the analytic phase. New targets for automation will be at the preanalytic and postanalytic phases where many of the bottlenecks in specimen flow now occur in highly repetitive manual tasks. Laboratory professionals will have a unique opportunity to incorporate new concepts of robotics in their facilities to improve error rates and to use massive laboratory databases to improve medical and public health services.

  13. Microcontroller for automation application

    Science.gov (United States)

    Cooper, H. W.

    1975-01-01

    The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.

  14. Automated Composite Column Wrapping

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    The Automated Composite Column Wrapping is performed by a patented machine known as Robo-Wrapper. Currently there are three versions of the machine available for bridge retrofit work depending on the size of the columns being wrapped. Composite column retrofit jacket systems can be structurally just as effective as conventional steel jacketing in improving the seismic response characteristics of substandard reinforced concrete columns.

  15. Automated Web Applications Testing

    Directory of Open Access Journals (Sweden)

    Alexandru Dan CĂPRIŢĂ

    2009-01-01

    Full Text Available Unit tests are a vital part of several software development practicesand processes such as Test-First Programming, Extreme Programming andTest-Driven Development. This article shortly presents the software quality andtesting concepts as well as an introduction to an automated unit testingframework for PHP web based applications.

  16. Automated Student Model Improvement

    Science.gov (United States)

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  17. Automated Accounting. Instructor Guide.

    Science.gov (United States)

    Moses, Duane R.

    This curriculum guide was developed to assist business instructors using Dac Easy Accounting College Edition Version 2.0 software in their accounting programs. The module consists of four units containing assignment sheets and job sheets designed to enable students to master competencies identified in the area of automated accounting. The first…

  18. ERGONOMICS AND PROCESS AUTOMATION

    OpenAIRE

    Carrión Muñoz, Rolando; Docente de la FII - UNMSM

    2014-01-01

    The article shows the role that ergonomics in automation of processes, and the importance for Industrial Engineering.  El artículo nos muestra el papel que tiene la ergonomía en la automatización de los procesos, y la importancia para la Ingeniería Industrial.

  19. Mechatronic Design Automation

    DEFF Research Database (Denmark)

    Fan, Zhun

    successfully design analogue filters, vibration absorbers, micro-electro-mechanical systems, and vehicle suspension systems, all in an automatic or semi-automatic way. It also investigates the very important issue of co-designing plant-structures and dynamic controllers in automated design of Mechatronic...

  20. Protokoller til Home Automation

    DEFF Research Database (Denmark)

    Kjær, Kristian Ellebæk

    2008-01-01

    computer, der kan skifte mellem foruddefinerede indstillinger. Nogle gange kan computeren fjernstyres over internettet, så man kan se hjemmets status fra en computer eller måske endda fra en mobiltelefon. Mens nævnte anvendelser er klassiske indenfor home automation, er yderligere funktionalitet dukket op...

  1. Myths in test automation

    Directory of Open Access Journals (Sweden)

    Jazmine Francis

    2015-01-01

    Full Text Available Myths in automation of software testing is an issue of discussion that echoes about the areas of service in validation of software industry. Probably, the first though that appears in knowledgeable reader would be Why this old topic again? What's New to discuss the matter? But, for the first time everyone agrees that undoubtedly automation testing today is not today what it used to be ten or fifteen years ago, because it has evolved in scope and magnitude. What began as a simple linear scripts for web applications today has a complex architecture and a hybrid framework to facilitate the implementation of testing applications developed with various platforms and technologies. Undoubtedly automation has advanced, but so did the myths associated with it. The change in perspective and knowledge of people on automation has altered the terrain. This article reflects the points of views and experience of the author in what has to do with the transformation of the original myths in new versions, and how they are derived; also provides his thoughts on the new generation of myths.

  2. High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi.

    Science.gov (United States)

    Tarjuelo-Gutierrez, J; Rodriguez-Vila, B; Pierce, D M; Fastl, T E; Verbrugghe, P; Fourneau, I; Maleux, G; Herijgers, P; Holzapfel, G A; Gomez, E J

    2014-02-01

    In order to perform finite element (FE) analyses of patient-specific abdominal aortic aneurysms, geometries derived from medical images must be meshed with suitable elements. We propose a semi-automatic method for generating conforming hexahedral meshes directly from contours segmented from medical images. Magnetic resonance images are generated using a protocol developed to give the abdominal aorta high contrast against the surrounding soft tissue. These data allow us to distinguish between the different structures of interest. We build novel quadrilateral meshes for each surface of the sectioned geometry and generate conforming hexahedral meshes by combining the quadrilateral meshes. The three-layered morphology of both the arterial wall and thrombus is incorporated using parameters determined from experiments. We demonstrate the quality of our patient-specific meshes using the element Scaled Jacobian. The method efficiently generates high-quality elements suitable for FE analysis, even in the bifurcation region of the aorta into the iliac arteries. For example, hexahedral meshes of up to 125,000 elements are generated in less than 130 s, with 94.8 % of elements well suited for FE analysis. We provide novel input for simulations by independently meshing both the arterial wall and intraluminal thrombus of the aneurysm, and their respective layered morphologies.

  3. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography.

    Science.gov (United States)

    Doolan, P J; Testa, M; Sharp, G; Bentefour, E H; Royle, G; Lu, H-M

    2015-03-07

    A simple robust optimizer has been developed that can produce patient-specific calibration curves to convert x-ray computed tomography (CT) numbers to relative stopping powers (HU-RSPs) for proton therapy treatment planning. The difference between a digitally reconstructed radiograph water-equivalent path length (DRRWEPL) map through the x-ray CT dataset and a proton radiograph (set as the ground truth) is minimized by optimizing the HU-RSP calibration curve. The function of the optimizer is validated with synthetic datasets that contain no noise and its robustness is shown against CT noise. Application of the procedure is then demonstrated on a plastic and a real tissue phantom, with proton radiographs produced using a single detector. The mean errors using generic/optimized calibration curves between the DRRWEPL map and the proton radiograph were 1.8/0.4% for a plastic phantom and -2.1/ - 0.2% for a real tissue phantom. It was then demonstrated that these optimized calibration curves offer a better prediction of the water equivalent path length at a therapeutic depth. We believe that these promising results are suggestive that a single proton radiograph could be used to generate a patient-specific calibration curve as part of the current proton treatment planning workflow.

  4. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; DeLuca, Adam P; Anfinson, Kristin R; Cranston, Cathryn M; Kaalberg, Emily E; Penticoff, Jessica A; Affatigato, Louisa M; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-07-29

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans.

  5. Influence of Geometry and Mechanical Properties on the Accuracy of Patient-Specific Simulation of Women Pelvic Floor.

    Science.gov (United States)

    Mayeur, Olivier; Witz, Jean-François; Lecomte, Pauline; Brieu, Mathias; Cosson, Michel; Miller, Karol

    2016-01-01

    The woman pelvic system involves multiple organs, muscles, ligaments, and fasciae where different pathologies may occur. Here we are most interested in abnormal mobility, often caused by complex and not fully understood mechanisms. Computer simulation and modeling using the finite element (FE) method are the tools helping to better understand the pathological mobility, but of course patient-specific models are required to make contribution to patient care. These models require a good representation of the pelvic system geometry, information on the material properties, boundary conditions and loading. In this contribution we focus on the relative influence of the inaccuracies in geometry description and of uncertainty of patient-specific material properties of soft connective tissues. We conducted a comparative study using several constitutive behavior laws and variations in geometry description resulting from the imprecision of clinical imaging and image analysis. We find that geometry seems to have the dominant effect on the pelvic organ mobility simulation results. Provided that proper finite deformation non-linear FE solution procedures are used, the influence of the functional form of the constitutive law might be for practical purposes negligible. These last findings confirm similar results from the fields of modeling neurosurgery and abdominal aortic aneurysms.

  6. Future of liver transplantation: non-human primates for patient-specific organs from induced pluripotent stem cells.

    Science.gov (United States)

    Sanal, Madhusudana Girija

    2011-08-28

    Strategies to fill the huge gap in supply versus demand of human organs include bioartificial organs, growing humanized organs in animals, cell therapy, and implantable bioengineered constructs. Reproducing the complex relations between different cell types, generation of adequate vasculature, and immunological complications are road blocks in generation of bioengineered organs, while immunological complications limit the use of humanized organs produced in animals. Recent developments in induced pluripotent stem cell (iPSC) biology offer a possibility of generating human, patient-specific organs in non-human primates (NHP) using patient-derived iPSC and NHP-derived iPSC lacking the critical developmental genes for the organ of interest complementing a NHP tetraploid embryo. The organ derived in this way will have the same human leukocyte antigen (HLA) profile as the patient. This approach can be curative in genetic disorders as this offers the possibility of gene manipulation and correction of the patient's genome at the iPSC stage before tetraploid complementation. The process of generation of patient-specific organs such as the liver in this way has the great advantage of making use of the natural signaling cascades in the natural milieu probably resulting in organs of great quality for transplantation. However, the inexorable scientific developments in this direction involve several social issues and hence we need to educate and prepare society in advance to accept the revolutionary consequences, good, bad and ugly.

  7. Future of liver transplantation: Non-human primates for patient-specific organs from induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Madhusudana Girija Sanal

    2011-01-01

    Strategies to fill the huge gap in supply versus demand of human organs include bioartificial organs, growing humanized organs in animals, cell therapy, and im-plantable bioengineered constructs. Reproducing the complex relations between different cell types, gen-eration of adequate vasculature, and immunological complications are road blocks in generation of bioengi-neered organs, while immunological complications limit the use of humanized organs produced in animals. Recent developments in induced pluripotent stem cell (iPSC) biology offer a possibility of generating human, patient-specific organs in non-human primates (NHP) using patient-derived iPSC and NHP-derived iPSC lack-ing the critical developmental genes for the organ of interest complementing a NHP tetraploid embryo. The organ derived in this way will have the same human leukocyte antigen (HLA) profile as the patient. This ap-proach can be curative in genetic disorders as this of-fers the possibility of gene manipulation and correction of the patient's genome at the iPSC stage before tet-raploid complementation. The process of generation of patient-specific organs such as the liver in this way has the great advantage of making use of the natural sig-naling cascades in the natural milieu probably resulting in organs of great quality for transplantation. However, the inexorable scientific developments in this direction involve several social issues and hence we need to educate and prepare society in advance to accept the revolutionary consequences, good, bad and ugly.

  8. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams

    Science.gov (United States)

    Li, Yongqiang; Hsi, Wen C.

    2017-04-01

    To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.

  9. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue.

  10. Percutaneous Transcatheter Mitral Valve Replacement: Patient-specific Three-dimensional Computer-based Heart Model and Prototyping.

    Science.gov (United States)

    Vaquerizo, Beatriz; Theriault-Lauzier, Pascal; Piazza, Nicolo

    2015-12-01

    Mitral regurgitation is the most prevalent valvular heart disease worldwide. Despite the widespread availability of curative surgical intervention, a considerable proportion of patients with severe mitral regurgitation are not referred for treatment, largely due to the presence of left ventricular dysfunction, advanced age, and comorbid illnesses. Transcatheter mitral valve replacement is a promising therapeutic alternative to traditional surgical valve replacement. The complex anatomical and pathophysiological nature of the mitral valvular complex, however, presents significant challenges to the successful design and implementation of novel transcatheter mitral replacement devices. Patient-specific 3-dimensional computer-based models enable accurate assessment of the mitral valve anatomy and preprocedural simulations for transcatheter therapies. Such information may help refine the design features of novel transcatheter mitral devices and enhance procedural planning. Herein, we describe a novel medical image-based processing tool that facilitates accurate, noninvasive assessment of the mitral valvular complex, by creating precise three-dimensional heart models. The 3-dimensional computer reconstructions are then converted to a physical model using 3-dimensional printing technology, thereby enabling patient-specific assessment of the interaction between device and patient. It may provide new opportunities for a better understanding of the mitral anatomy-pathophysiology-device interaction, which is of critical importance for the advancement of transcatheter mitral valve replacement.

  11. Patient-specific finite element analysis of chronic contact stress exposure after intraarticular fracture of the tibial plafond.

    Science.gov (United States)

    Li, Wendy; Anderson, Donald D; Goldsworthy, Jane K; Marsh, J Lawrence; Brown, Thomas D

    2008-08-01

    The role of altered contact mechanics in the pathogenesis of posttraumatic osteoarthritis (PTOA) following intraarticular fracture remains poorly understood. One proposed etiology is that residual incongruities lead to altered joint contact stresses that, over time, predispose to PTOA. Prevailing joint contact stresses following surgical fracture reduction were quantified in this study using patient-specific contact finite element (FE) analysis. FE models were created for 11 ankle pairs from tibial plafond fracture patients. Both (reduced) fractured ankles and their intact contralaterals were modeled. A sequence of 13 loading instances was used to simulate the stance phase of gait. Contact stresses were summed across loadings in the simulation, weighted by resident time in the gait cycle. This chronic exposure measure, a metric of degeneration propensity, was then compared between intact and fractured ankle pairs. Intact ankles had lower peak contact stress exposures that were more uniform and centrally located. The series-average peak contact stress elevation for fractured ankles was 38% (p = 0.0015; peak elevation was 82%). Fractured ankles had less area with low contact stress exposure than intact ankles and a greater area with high exposure. Chronic contact stress overexposures (stresses exceeding a damage threshold) ranged from near zero to a high of 18 times the matched intact value. The patient-specific FE models represent substantial progress toward elucidating the relationship between altered contact stresses and the outcome of patients treated for intraarticular fractures.

  12. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy.

    Science.gov (United States)

    Burleson, Sarah; Baker, Jamie; Hsia, An Ting; Xu, Zhigang

    2015-05-08

    The purpose of this paper is to demonstrate that an inexpensive 3D printer can be used to manufacture patient-specific bolus for external beam therapy, and to show we can accurately model this printed bolus in our treatment planning system for accurate treatment delivery. Percent depth-dose measurements and tissue maximum ratios were used to determine the characteristics of the printing materials, acrylonitrile butadiene styrene and polylactic acid, as bolus material with physical density of 1.04 and 1.2 g/cm3, and electron density of 3.38 × 10²³ electrons/cm3 and 3.80 × 10²³ electrons/ cm3, respectively. Dose plane comparisons using Gafchromic EBT2 film and the RANDO phantom were used to verify accurate treatment planning. We accurately modeled a printing material in Eclipse treatment planning system, assigning it a Hounsfield unit of 260. We were also able to verify accurate treatment planning using gamma analysis for dose plane comparisons. With gamma criteria of 5% dose difference and 2 mm DTA, we were able to have 86.5% points passing, and with gamma criteria of 5% dose difference and 3 mm DTA, we were able to have 95% points passing. We were able to create a patient-specific bolus using an inexpensive 3D printer and model it in our treatment planning system for accurate treatment delivery.

  13. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M [Rutgers University, New Brunswick, NJ (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  14. Automating spectral measurements

    Science.gov (United States)

    Goldstein, Fred T.

    2008-09-01

    This paper discusses the architecture of software utilized in spectroscopic measurements. As optical coatings become more sophisticated, there is mounting need to automate data acquisition (DAQ) from spectrophotometers. Such need is exacerbated when 100% inspection is required, ancillary devices are utilized, cost reduction is crucial, or security is vital. While instrument manufacturers normally provide point-and-click DAQ software, an application programming interface (API) may be missing. In such cases automation is impossible or expensive. An API is typically provided in libraries (*.dll, *.ocx) which may be embedded in user-developed applications. Users can thereby implement DAQ automation in several Windows languages. Another possibility, developed by FTG as an alternative to instrument manufacturers' software, is the ActiveX application (*.exe). ActiveX, a component of many Windows applications, provides means for programming and interoperability. This architecture permits a point-and-click program to act as automation client and server. Excel, for example, can control and be controlled by DAQ applications. Most importantly, ActiveX permits ancillary devices such as barcode readers and XY-stages to be easily and economically integrated into scanning procedures. Since an ActiveX application has its own user-interface, it can be independently tested. The ActiveX application then runs (visibly or invisibly) under DAQ software control. Automation capabilities are accessed via a built-in spectro-BASIC language with industry-standard (VBA-compatible) syntax. Supplementing ActiveX, spectro-BASIC also includes auxiliary serial port commands for interfacing programmable logic controllers (PLC). A typical application is automatic filter handling.

  15. Using artificial intelligence to automate remittance processing.

    Science.gov (United States)

    Adams, W T; Snow, G M; Helmick, P M

    1998-06-01

    The consolidated business office of the Allegheny Health Education Research Foundation (AHERF), a large integrated healthcare system based in Pittsburgh, Pennsylvania, sought to improve its cash-related business office activities by implementing an automated remittance processing system that uses artificial intelligence. The goal was to create a completely automated system whereby all monies it processed would be tracked, automatically posted, analyzed, monitored, controlled, and reconciled through a central database. Using a phased approach, the automated payment system has become the central repository for all of the remittances for seven of the hospitals in the AHERF system and has allowed for the complete integration of these hospitals' existing billing systems, document imaging system, and intranet, as well as the new automated payment posting, and electronic cash tracking and reconciling systems. For such new technology, which is designed to bring about major change, factors contributing to the project's success were adequate planning, clearly articulated objectives, marketing, end-user acceptance, and post-implementation plan revision.

  16. Gestión de coberturas de personal en atención primaria: Automatización del cálculo Management of needed health care workers in primary care: Automating the calculation

    Directory of Open Access Journals (Sweden)

    Amèlia Fabregat

    2011-10-01

    Full Text Available El Servicio de Atención Primaria de Santa Coloma de Gramenet ha diseñado un sistema que estandariza y automatiza la planificación de coberturas de personal sanitario. Está dividido en dos partes: una calculadora que en función de parámetros de actividad y presión asistencial orienta sobre el riesgo previsible derivado de nuestra planificación, y otra con indicadores centinela; el principal es el «nivel básico asistencial», definido como el porcentaje de usuarios atendidos a 2, 3 y 7 días naturales, y valora su repercusión en la asistencia a la población. Los resultados en el verano de 2010 muestran un aumento de la eficiencia al disminuir la plantilla presencial respecto al año 2009, conseguir una mejor distribución de ésta en el periodo acorde con la actividad realizada y mejorar la gestión presupuestaria. Puesto que los datos necesarios están disponibles y su cálculo es sencillo, puede ser exportable a todo nuestro ámbito.The Santa Coloma de Gramenet Primary Care Service has designed a new tool to standardize and automate the process of planning the number of needed health care workers. The tool is divided in two parts: a calculator, which gives guidance on the foreseeable risk depending on the activity and the health care workers' workload, and sentinel indicators; the main is the "welfare basic level", that is the percentage structure of visited patients and their delay at 2, 3 and 7 calendar days, assessing the impact on the care of the population. The results of its use in the summer of 2010 have demonstrated its efficiency by lowering the needed workers with respect to 2009, achieving a better distribution according to the workload and improving the economic management. Given that the necessary data are accessible through computerized databases and its simple use, we believe it to be exportable to other fields.

  17. WE-D-BRA-05: Pseudo In Vivo Patient Dosimetry Using a 3D-Printed Patient-Specific Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ger, R; Craft, DF [The University of Texas Graduate School of Biomedical Sciences (United States); Burgett, EA [Idaho State University, Pocatello, idaho (United States); Price, RR [RANDJ Consulting, Frederick, MD (United States); Kry, SF; Howell, RM [The University of Texas Graduate School of Biomedical Sciences (United States); The University of Texas MD Anderson Cancer Ctr., Houston, TX (United States)

    2015-06-15

    Purpose: To test the feasibility of using 3D-printed patient-specific phantoms for intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We created a patient-specific whole-head phantom using a 3D printer. The printer data file was created from high-resolution DICOM computed tomography (CT) images of 3-year old child treated at our institution for medulloblastoma. A custom-modified extruder system was used to create tissue-equivalent materials. For the printing process, the Hounsfield Units from the CT images were converted to proportional volumetric densities. A 5-field IMRT plan was created from the patient CT and delivered to the 3D- phantom. Dose was measured by an ion chamber placed through the eye. The ion chamber was placed at the posterior edge of the planning target volume in a high dose gradient region. CT scans of the patient and 3D-phantom were fused by using commercial treatment planning software (TPS). The patient’s plan was calculated on the phantom CT images. The ion chamber’s active volume was delineated in the TPS; dose per field and total dose were obtained. Measured and calculated doses were compared. Results: The 3D-phantom dimensions and tissue densities were in good agreement with the patient. However, because of a printing error, there was a large discrepancy in the density in the frontal cortex. The calculated and measured treatment plan doses were 1.74 Gy and 1.72 Gy, respectively. For individual fields, the absolute dose difference between measured and calculated values was on average 3.50%. Conclusion: This study demonstrated the feasibility of using 3D-printed patient-specific phantoms for IMRT QA. Such phantoms would be particularly advantageous for complex IMRT treatment plans featuring high dose gradients and/or for anatomical sites with high variation in tissue densities. Our preliminary findings are promising. We anticipate that, once the printing process is further refined, the agreement between

  18. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  19. Rapid automated nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.A.

    1979-05-31

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC.

  20. The automation of science.

    Science.gov (United States)

    King, Ross D; Rowland, Jem; Oliver, Stephen G; Young, Michael; Aubrey, Wayne; Byrne, Emma; Liakata, Maria; Markham, Magdalena; Pir, Pinar; Soldatova, Larisa N; Sparkes, Andrew; Whelan, Kenneth E; Clare, Amanda

    2009-04-03

    The basis of science is the hypothetico-deductive method and the recording of experiments in sufficient detail to enable reproducibility. We report the development of Robot Scientist "Adam," which advances the automation of both. Adam has autonomously generated functional genomics hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses by using laboratory automation. We have confirmed Adam's conclusions through manual experiments. To describe Adam's research, we have developed an ontology and logical language. The resulting formalization involves over 10,000 different research units in a nested treelike structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical description. This formalization describes how a machine contributed to scientific knowledge.

  1. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  2. Personalised computational cardiology: Patient-specific modelling in cardiac mechanics and biomaterial injection therapies for myocardial infarction

    Science.gov (United States)

    Sack, Kevin L.; Davies, Neil H.; Guccione, Julius M.

    2016-01-01

    Predictive computational modelling in biomedical research offers the potential to integrate diverse data, uncover biological mechanisms that are not easily accessible through experimental methods and expose gaps in knowledge requiring further research. Recent developments in computing and diagnostic technologies have initiated the advancement of computational models in terms of complexity and specificity. Consequently, computational modelling can increasingly be utilised as enabling and complementing modality in the clinic—with medical decisions and interventions being personalised. Myocardial infarction and heart failure are amongst the leading causes of death globally despite optimal modern treatment. The development of novel MI therapies is challenging and may be greatly facilitated through predictive modelling. Here, we review the advances in patient-specific modelling of cardiac mechanics, distinguishing specificity in cardiac geometry, myofibre architecture and mechanical tissue properties. Thereafter, the focus narrows to the mechanics of the infarcted heart and treatment of myocardial infarction with particular attention on intramyocardial biomaterial delivery. PMID:26833320

  3. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    Science.gov (United States)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  4. The Automated Medical Office

    OpenAIRE

    1990-01-01

    With shock and surprise many physicians learned in the 1980s that they must change the way they do business. Competition for patients, increasing government regulation, and the rapidly escalating risk of litigation forces physicians to seek modern remedies in office management. The author describes a medical clinic that strives to be paperless using electronic innovation to solve the problems of medical practice management. A computer software program to automate information management in a c...

  5. Automation of printing machine

    OpenAIRE

    Sušil, David

    2016-01-01

    Bachelor thesis is focused on the automation of the printing machine and comparing the two types of printing machines. The first chapter deals with the history of printing, typesettings, printing techniques and various kinds of bookbinding. The second chapter describes the difference between sheet-fed printing machines and offset printing machines, the difference between two representatives of rotary machines, technological process of the products on these machines, the description of the mac...

  6. Automated Cooperative Trajectories

    Science.gov (United States)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  7. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas.

    Directory of Open Access Journals (Sweden)

    Anne L Baldock

    Full Text Available Malignant gliomas are incurable, primary brain neoplasms noted for their potential to extensively invade brain parenchyma. Current methods of clinical imaging do not elucidate the full extent of brain invasion, making it difficult to predict which, if any, patients are likely to benefit from gross total resection. Our goal was to apply a mathematical modeling approach to estimate the overall tumor invasiveness on a patient-by-patient basis and determine whether gross total resection would improve survival in patients with relatively less invasive gliomas.In 243 patients presenting with contrast-enhancing gliomas, estimates of the relative invasiveness of each patient's tumor, in terms of the ratio of net proliferation rate of the glioma cells to their net dispersal rate, were derived by applying a patient-specific mathematical model to routine pretreatment MR imaging. The effect of varying degrees of extent of resection on overall survival was assessed for cohorts of patients grouped by tumor invasiveness.We demonstrate that patients with more diffuse tumors showed no survival benefit (P = 0.532 from gross total resection over subtotal/biopsy, while those with nodular (less diffuse tumors showed a significant benefit (P = 0.00142 with a striking median survival benefit of over eight months compared to sub-totally resected tumors in the same cohort (an 80% improvement in survival time for GTR only seen for nodular tumors.These results suggest that our patient-specific, model-based estimates of tumor invasiveness have clinical utility in surgical decision making. Quantification of relative invasiveness assessed from routinely obtained pre-operative imaging provides a practical predictor of the benefit of gross total resection.

  8. Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles In Vivo.

    Science.gov (United States)

    Cohen, Benjamin Peter; Hooper, Rachel C; Puetzer, Jennifer L; Nordberg, Rachel; Asanbe, Ope; Hernandez, Karina A; Spector, Jason A; Bonassar, Lawrence J

    2016-03-01

    Current techniques for autologous auricular reconstruction produce substandard ear morphologies with high levels of donor-site morbidity, whereas alloplastic implants demonstrate poor biocompatibility. Tissue engineering, in combination with noninvasive digital photogrammetry and computer-assisted design/computer-aided manufacturing technology, offers an alternative method of auricular reconstruction. Using this method, patient-specific ears composed of collagen scaffolds and auricular chondrocytes have generated auricular cartilage with great fidelity following 3 months of subcutaneous implantation, however, this short time frame may not portend long-term tissue stability. We hypothesized that constructs developed using this technique would undergo continued auricular cartilage maturation without degradation during long-term (6 month) implantation. Full-sized, juvenile human ear constructs were injection molded from high-density collagen hydrogels encapsulating juvenile bovine auricular chondrocytes and implanted subcutaneously on the backs of nude rats for 6 months. Upon explantation, constructs retained overall patient morphology and displayed no evidence of tissue necrosis. Limited contraction occurred in vivo, however, no significant change in size was observed beyond 1 month. Constructs at 6 months showed distinct auricular cartilage microstructure, featuring a self-assembled perichondrial layer, a proteoglycan-rich bulk, and rounded cellular lacunae. Verhoeff's staining also revealed a developing elastin network comparable to native tissue. Biochemical measurements for DNA, glycosaminoglycan, and hydroxyproline content and mechanical properties of aggregate modulus and hydraulic permeability showed engineered tissue to be similar to native cartilage at 6 months. Patient-specific auricular constructs demonstrated long-term stability and increased cartilage tissue development during extended implantation, and offer a potential tissue-engineered solution for

  9. Patient-specific finite-element simulation of the human cornea: a clinical validation study on cataract surgery.

    Science.gov (United States)

    Studer, Harald P; Riedwyl, Hansjörg; Amstutz, Christoph A; Hanson, James V M; Büchler, Philippe

    2013-02-22

    The planning of refractive surgical interventions is a challenging task. Numerical modeling has been proposed as a solution to support surgical intervention and predict the visual acuity, but validation on patient specific intervention is missing. The purpose of this study was to validate the numerical predictions of the post-operative corneal topography induced by the incisions required for cataract surgery. The corneal topography of 13 patients was assessed preoperatively and postoperatively (1-day and 30-day follow-up) with a Pentacam tomography device. The preoperatively acquired geometric corneal topography - anterior, posterior and pachymetry data - was used to build patient-specific finite element models. For each patient, the effects of the cataract incisions were simulated numerically and the resulting corneal surfaces were compared to the clinical postoperative measurements at one day and at 30-days follow up. Results showed that the model was able to reproduce experimental measurements with an error on the surgically induced sphere of 0.38D one day postoperatively and 0.19D 30 days postoperatively. The standard deviation of the surgically induced cylinder was 0.54D at the first postoperative day and 0.38D 30 days postoperatively. The prediction errors in surface elevation and curvature were below the topography measurement device accuracy of ±5μm and ±0.25D after the 30-day follow-up. The results showed that finite element simulations of corneal biomechanics are able to predict post cataract surgery within topography measurement device accuracy. We can conclude that the numerical simulation can become a valuable tool to plan corneal incisions in cataract surgery and other ophthalmosurgical procedures in order to optimize patients' refractive outcome and visual function.

  10. Wall-Less Flow Phantoms With Tortuous Vascular Geometries: Design Principles and a Patient-Specific Model Fabrication Example.

    Science.gov (United States)

    Ho, Chung Kit; Chee, Adrian J Y; Yiu, Billy Y S; Tsang, Anderson C O; Chow, Kwok Wing; Yu, Alfred C H

    2017-01-01

    Flow phantoms with anatomically realistic geometry and high acoustic compatibility are valuable investigative tools in vascular ultrasound studies. Here, we present a new framework to fabricate ultrasound-compatible flow phantoms to replicate human vasculature that is tortuous, nonplanar, and branching in nature. This framework is based upon the integration of rapid prototyping and investment casting principles. A pedagogical walkthrough of our engineering protocol is presented in this paper using a patient-specific cerebral aneurysm model as an exemplar demonstration. The procedure for constructing the flow circuit component of the phantoms is also presented, including the design of a programmable flow pump system, the fabrication of blood mimicking fluid, and flow rate calibration. Using polyvinyl alcohol cryogel as the tissue mimicking material, phantoms developed with the presented protocol exhibited physiologically relevant acoustic properties [attenuation coefficient: 0.229±0.032 dB/( [Formula: see text]) and acoustic speed: 1535±2.4 m/s], and their pulsatile flow dynamics closely resembled the flow profile input. As a first application of our developed phantoms, the flow pattern of the patient-specific aneurysm model was visualized by performing high-frame-rate color-encoded speckle imaging over multiple time-synchronized scan planes. Persistent recirculation was observed, and the vortex center was found to shift in position over a cardiac cycle, indicating the 3-D nature of flow recirculation inside an aneurysm. These findings suggest that phantoms produced from our reported protocol can serve well as acoustically compatible test beds for vascular ultrasound studies, including 3-D flow imaging.

  11. A human pluripotent stem cell model of catecholaminergic polymorphic ventricular tachycardia recapitulates patient-specific drug responses

    Directory of Open Access Journals (Sweden)

    Marcela K. Preininger

    2016-09-01

    Full Text Available Although β-blockers can be used to eliminate stress-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT, this treatment is unsuccessful in ∼25% of cases. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs generated from these patients have potential for use in investigating the phenomenon, but it remains unknown whether they can recapitulate patient-specific drug responses to β-blockers. This study assessed whether the inadequacy of β-blocker therapy in an individual can be observed in vitro using patient-derived CPVT iPSC-CMs. An individual with CPVT harboring a novel mutation in the type 2 cardiac ryanodine receptor (RyR2 was identified whose persistent ventricular arrhythmias during β-blockade with nadolol were abolished during flecainide treatment. iPSC-CMs generated from this patient and two control individuals expressed comparable levels of excitation-contraction genes, but assessment of the sarcoplasmic reticulum Ca2+ leak and load relationship revealed intracellular Ca2+ homeostasis was altered in the CPVT iPSC-CMs. β-adrenergic stimulation potentiated spontaneous Ca2+ waves and unduly frequent, large and prolonged Ca2+ sparks in CPVT compared with control iPSC-CMs, validating the disease phenotype. Pursuant to the patient's in vivo responses, nadolol treatment during β-adrenergic stimulation achieved negligible reduction of Ca2+ wave frequency and failed to rescue Ca2+ spark defects in CPVT iPSC-CMs. In contrast, flecainide reduced both frequency and amplitude of Ca2+ waves and restored the frequency, width and duration of Ca2+ sparks to baseline levels. By recapitulating the improved response of an individual with CPVT to flecainide compared with β-blocker therapy in vitro, these data provide new evidence that iPSC-CMs can capture basic components of patient-specific drug responses.

  12. NOTE: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Science.gov (United States)

    Venkat, Raghu B.; Sawant, Amit; Suh, Yelin; George, Rohini; Keall, Paul J.

    2008-06-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery.

  13. SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C; Mah, D [ProCure Proton Therapy Centers, Somerset, NJ (United States)

    2015-06-15

    Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18 measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA.

  14. Maturation-Based Model of Arrhythmogenic Right Ventricular Dysplasia Using Patient-Specific Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Wen, Jian-Yan; Wei, Chuan-Yu; Shah, Khooshbu; Wong, Johnson; Wang, Cheng; Chen, Huei-Sheng Vincent

    2015-01-01

    Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in-vitro modeling of human cardiac disorders for pathogenic and therapeutic investigations. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging because of the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited cardiomyopathy characterized by pathological fibrofatty infiltration and cardiomyocyte (CM) loss predominantly in the right ventricle (RV), leading to heart failure and lethal arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly inPKP2encoding plakophilin-2. Using Yamanaka's pluripotent factors, we generated iPSC lines from ARVD patients withPKP2mutations. We first developed a method to induce metabolic maturation of iPSC-CMs and showed that induction of adult-like metabolic energetics from an embryonic/glycolytic state is essential to model an adult-onset cardiac disease using patient-specific iPSCs. Furthermore, we showed that coactivation of normal peroxisome proliferator-activated receptor (PPAR)-α and abnormal PPARγ pathways in ARVD iPSC-CMs resulted in exaggerated CM lipogenesis, CM apoptosis, Na(+)channel downregulation and defective intracellular calcium handling, recapitulating the pathological signatures of ARVD. Using this model, we revealed novel pathogenic insights that metabolic derangement in an adult-like metabolic milieu underlies ARVD pathologies, enabling us to propose novel disease-modifying therapeutic strategies.

  15. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  16. SU-E-T-475: An Accurate Linear Model of Tomotherapy MLC-Detector System for Patient Specific Delivery QA

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Mo, X; Chen, M; Olivera, G; Parnell, D; Key, S; Lu, W [21st Century Oncology, Madison, WI (United States); Reeher, M [21st Century Oncology, Naples, FL (United States); Galmarini, D [21st Century Oncology, Fort Myers, FL (United States)

    2014-06-01

    Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms.

  17. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen' s University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  18. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J [Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847 (United States); George, Rohini [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States)], E-mail: Paul.Keall@stanford.edu

    2008-06-07

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  19. Automation in biological crystallization.

    Science.gov (United States)

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  20. Automation in biological crystallization

    Science.gov (United States)

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  1. The patient’s perspective of the feasibility of a patient-specific instrument in physiotherapy goal setting: a qualitative study

    OpenAIRE

    2016-01-01

    Background: Patient participation in goal setting is important to deliver client-centered care. In daily practice, however, patient involvement in goal setting is not optimal. Patient-specific instruments, such as the Patient Specific Complaints (PSC) instrument, can support the goal-setting process because patients can identify and rate their own problems. The aim of this study is to explore patients’ experiences with the feasibility of the PSC, in the physiotherapy goal setting. Method: We ...

  2. Contaminant analysis automation demonstration proposal

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, M.G.; Schur, A.; Heubach, J.G.

    1993-10-01

    The nation-wide and global need for environmental restoration and waste remediation (ER&WR) presents significant challenges to the analytical chemistry laboratory. The expansion of ER&WR programs forces an increase in the volume of samples processed and the demand for analysis data. To handle this expanding volume, productivity must be increased. However. The need for significantly increased productivity, faces contaminant analysis process which is costly in time, labor, equipment, and safety protection. Laboratory automation offers a cost effective approach to meeting current and future contaminant analytical laboratory needs. The proposed demonstration will present a proof-of-concept automated laboratory conducting varied sample preparations. This automated process also highlights a graphical user interface that provides supervisory, control and monitoring of the automated process. The demonstration provides affirming answers to the following questions about laboratory automation: Can preparation of contaminants be successfully automated?; Can a full-scale working proof-of-concept automated laboratory be developed that is capable of preparing contaminant and hazardous chemical samples?; Can the automated processes be seamlessly integrated and controlled?; Can the automated laboratory be customized through readily convertible design? and Can automated sample preparation concepts be extended to the other phases of the sample analysis process? To fully reap the benefits of automation, four human factors areas should be studied and the outputs used to increase the efficiency of laboratory automation. These areas include: (1) laboratory configuration, (2) procedures, (3) receptacles and fixtures, and (4) human-computer interface for the full automated system and complex laboratory information management systems.

  3. Automated systems to identify relevant documents in product risk management

    Directory of Open Access Journals (Sweden)

    Wee Xue

    2012-03-01

    Full Text Available Abstract Background Product risk management involves critical assessment of the risks and benefits of health products circulating in the market. One of the important sources of safety information is the primary literature, especially for newer products which regulatory authorities have relatively little experience with. Although the primary literature provides vast and diverse information, only a small proportion of which is useful for product risk assessment work. Hence, the aim of this study is to explore the possibility of using text mining to automate the identification of useful articles, which will reduce the time taken for literature search and hence improving work efficiency. In this study, term-frequency inverse document-frequency values were computed for predictors extracted from the titles and abstracts of articles related to three tumour necrosis factors-alpha blockers. A general automated system was developed using only general predictors and was tested for its generalizability using articles related to four other drug classes. Several specific automated systems were developed using both general and specific predictors and training sets of different sizes in order to determine the minimum number of articles required for developing such systems. Results The general automated system had an area under the curve value of 0.731 and was able to rank 34.6% and 46.2% of the total number of 'useful' articles among the first 10% and 20% of the articles presented to the evaluators when tested on the generalizability set. However, its use may be limited by the subjective definition of useful articles. For the specific automated system, it was found that only 20 articles were required to develop a specific automated system with a prediction performance (AUC 0.748 that was better than that of general automated system. Conclusions Specific automated systems can be developed rapidly and avoid problems caused by subjective definition of useful

  4. Greater Buyer Effectiveness through Automation

    Science.gov (United States)

    1989-01-01

    FOB = free on board FPAC = Federal Procurement Automation Council FPDS = Federal Procurement Data System 4GL = fourth generation language GAO = General...Procurement Automation Council ( FPAC ), entitled Compendium of Automated Procurement Systems in Federal Agencies. The FPAC inventory attempted to identify...In some cases we have updated descriptions of systems identified by the FPAC study, but many of the newer systems are identified here for the first

  5. 78 FR 66039 - Modification of National Customs Automation Program Test Concerning Automated Commercial...

    Science.gov (United States)

    2013-11-04

    ... SECURITY U.S. Customs and Border Protection Modification of National Customs Automation Program Test... National Customs Automation Program (NCAP) test concerning the Simplified Entry functionality in the...'s (CBP's) National Customs Automation Program (NCAP) test concerning Automated...

  6. 77 FR 48527 - National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE...

    Science.gov (United States)

    2012-08-14

    ... SECURITY U.S. Customs and Border Protection National Customs Automation Program (NCAP) Test Concerning...: General notice. SUMMARY: This notice announces modifications to the National Customs Automation Program...) National Customs Automation Program (NCAP) test concerning Automated Commercial Environment...

  7. Characterization of a novel 2D array dosimeter for patient-specific quality assurance with volumetric arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Stathakis, Sotirios; Myers, Pamela; Esquivel, Carlos; Mavroidis, Panayiotis; Papanikolaou, Nikos [Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2013-07-15

    Purpose: In this study, the authors are evaluating a new, commercially available 2D array that offers 3D dose reconstruction for patient specific intensity modulated radiation therapy quality assurance (IMRT QA).Methods: The OCTAVIUS 4D system and its accompanying software (VERISOFT) by PTW were evaluated for the accuracy of the dose reconstruction for patient specific pretreatment IMRT QA. OCTAVIUS 4D measures the dose plane at the linac isocenter as the phantom rotates synchronously with the gantry, maintaining perpendicularity with the beam, by means of an inclinometer and a motor. The measurements collected during a volumetric modulated arc therapy delivery (VMAT) are reconstructed into a 3D dose volume. The VERISOFT application is used to perform the analysis, by comparing the reconstructed dose against the 3D dose matrix from the treatment planning system (TPS) that is computed for the same geometry and beam arrangement as that of the measurement. In this study, the authors evaluated the 3D dose reconstruction algorithm of this new system using a series of tests. Using the Octavius 4D phantom as the patient, dose distributions for various field sizes, beam orientations, shapes, and combination of fields were calculated using the Pinnacle3, TPS, and the respective DICOMRT dose was exported to the VERISOFT analysis software. Measurements were obtained by delivering the test treatment plans and comparisons were made based on gamma index, dose profiles, and isodose distribution analysis. In addition, output factors were measured and the dose linearity of the array was assessed. Those measurements were compared against measurements in water using a single, calibrated ionization chamber as well as calculations from Pinnacle for the same delivery geometries.Results: The number of voxels that met the 3%/3 mm criteria for the volumetric 3D gamma index analysis ranged from 92.3% to 98.9% for all the patient plans that the authors evaluated. 2D gamma analysis in the

  8. World-wide distribution automation systems

    Energy Technology Data Exchange (ETDEWEB)

    Devaney, T.M.

    1994-12-31

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems.

  9. Automating CPM-GOMS

    Science.gov (United States)

    John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger

    2002-01-01

    CPM-GOMS is a modeling method that combines the task decomposition of a GOMS analysis with a model of human resource usage at the level of cognitive, perceptual, and motor operations. CPM-GOMS models have made accurate predictions about skilled user behavior in routine tasks, but developing such models is tedious and error-prone. We describe a process for automatically generating CPM-GOMS models from a hierarchical task decomposition expressed in a cognitive modeling tool called Apex. Resource scheduling in Apex automates the difficult task of interleaving the cognitive, perceptual, and motor resources underlying common task operators (e.g. mouse move-and-click). Apex's UI automatically generates PERT charts, which allow modelers to visualize a model's complex parallel behavior. Because interleaving and visualization is now automated, it is feasible to construct arbitrarily long sequences of behavior. To demonstrate the process, we present a model of automated teller interactions in Apex and discuss implications for user modeling. available to model human users, the Goals, Operators, Methods, and Selection (GOMS) method [6, 21] has been the most widely used, providing accurate, often zero-parameter, predictions of the routine performance of skilled users in a wide range of procedural tasks [6, 13, 15, 27, 28]. GOMS is meant to model routine behavior. The user is assumed to have methods that apply sequences of operators and to achieve a goal. Selection rules are applied when there is more than one method to achieve a goal. Many routine tasks lend themselves well to such decomposition. Decomposition produces a representation of the task as a set of nested goal states that include an initial state and a final state. The iterative decomposition into goals and nested subgoals can terminate in primitives of any desired granularity, the choice of level of detail dependent on the predictions required. Although GOMS has proven useful in HCI, tools to support the

  10. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    Energy Technology Data Exchange (ETDEWEB)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); Chai, X. [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Palo Alto, California 94305 (United States)

    2014-03-15

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  11. AUTOMATED API TESTING APPROACH

    Directory of Open Access Journals (Sweden)

    SUNIL L. BANGARE

    2012-02-01

    Full Text Available Software testing is an investigation conducted to provide stakeholders with information about the quality of the product or service under test. With the help of software testing we can verify or validate the software product. Normally testing will be done after development of software but we can perform the software testing at the time of development process also. This paper will give you a brief introduction about Automated API Testing Tool. This tool of testing will reduce lots of headache after the whole development of software. It saves time as well as money. Such type of testing is helpful in the Industries & Colleges also.

  12. The automated medical office.

    Science.gov (United States)

    Petreman, M

    1990-08-01

    With shock and surprise many physicians learned in the 1980s that they must change the way they do business. Competition for patients, increasing government regulation, and the rapidly escalating risk of litigation forces physicians to seek modern remedies in office management. The author describes a medical clinic that strives to be paperless using electronic innovation to solve the problems of medical practice management. A computer software program to automate information management in a clinic shows that practical thinking linked to advanced technology can greatly improve office efficiency.

  13. [Automated anesthesia record system].

    Science.gov (United States)

    Zhu, Tao; Liu, Jin

    2005-12-01

    Based on Client/Server architecture, a software of automated anesthesia record system running under Windows operation system and networks has been developed and programmed with Microsoft Visual C++ 6.0, Visual Basic 6.0 and SQL Server. The system can deal with patient's information throughout the anesthesia. It can collect and integrate the data from several kinds of medical equipment such as monitor, infusion pump and anesthesia machine automatically and real-time. After that, the system presents the anesthesia sheets automatically. The record system makes the anesthesia record more accurate and integral and can raise the anesthesiologist's working efficiency.

  14. Positive predictive value of a case definition for diabetes mellitus using automated administrative health data in children and youth exposed to antipsychotic drugs or control medications: a Tennessee Medicaid study

    Directory of Open Access Journals (Sweden)

    Bobo William V

    2012-08-01

    Full Text Available Abstract Background We developed and validated an automated database case definition for diabetes in children and youth to facilitate pharmacoepidemiologic investigations of medications and the risk of diabetes. Methods The present study was part of an in-progress retrospective cohort study of antipsychotics and diabetes in Tennessee Medicaid enrollees aged 6–24 years. Diabetes was identified from diabetes-related medical care encounters: hospitalizations, outpatient visits, and filled prescriptions. The definition required either a primary inpatient diagnosis or at least two other encounters of different types, most commonly an outpatient diagnosis with a prescription. Type 1 diabetes was defined by insulin prescriptions with at most one oral hypoglycemic prescription; other cases were considered type 2 diabetes. The definition was validated for cohort members in the 15 county region geographically proximate to the investigators. Medical records were reviewed and adjudicated for cases that met the automated database definition as well as for a sample of persons with other diabetes-related medical care encounters. Results The study included 64 cases that met the automated database definition. Records were adjudicated for 46 (71.9%, of which 41 (89.1% met clinical criteria for newly diagnosed diabetes. The positive predictive value for type 1 diabetes was 80.0%. For type 2 and unspecified diabetes combined, the positive predictive value was 83.9%. The estimated sensitivity of the definition, based on adjudication for a sample of 30 cases not meeting the automated database definition, was 64.8%. Conclusion These results suggest that the automated database case definition for diabetes may be useful for pharmacoepidemiologic studies of medications and diabetes.

  15. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines.

    Directory of Open Access Journals (Sweden)

    Chi Wan Lim

    Full Text Available We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial-temporal model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

  16. In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs.

    Science.gov (United States)

    Wu, Yong; Hu, Zhiqing; Li, Zhuo; Pang, Jialun; Feng, Mai; Hu, Xuyun; Wang, Xiaolin; Lin-Peng, Siyuan; Liu, Bo; Chen, Fangping; Wu, Lingqian; Liang, Desheng

    2016-01-08

    Nearly half of severe Hemophilia A (HA) cases are caused by F8 intron 22 inversion (Inv22). This 0.6-Mb inversion splits the 186-kb F8 into two parts with opposite transcription directions. The inverted 5' part (141 kb) preserves the first 22 exons that are driven by the intrinsic F8 promoter, leading to a truncated F8 transcript due to the lack of the last 627 bp coding sequence of exons 23-26. Here we describe an in situ genetic correction of Inv22 in patient-specific induced pluripotent stem cells (iPSCs). By using TALENs, the 627 bp sequence plus a polyA signal was precisely targeted at the junction of exon 22 and intron 22 via homologous recombination (HR) with high targeting efficiencies of 62.5% and 52.9%. The gene-corrected iPSCs retained a normal karyotype following removal of drug selection cassette using a Cre-LoxP system. Importantly, both F8 transcription and FVIII secretion were rescued in the candidate cell types for HA gene therapy including endothelial cells (ECs) and mesenchymal stem cells (MSCs) derived from the gene-corrected iPSCs. This is the first report of an efficient in situ genetic correction of the large inversion mutation using a strategy of targeted gene addition.

  17. A Patient Specific Biomechanical Analysis of Custom Root Analogue Implant Designs on Alveolar Bone Stress: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    David Anssari Moin

    2016-01-01

    Full Text Available Objectives. The aim of this study was to analyse by means of FEA the influence of 5 custom RAI designs on stress distribution of peri-implant bone and to evaluate the impact on microdisplacement for a specific patient case. Materials and Methods. A 3D surface model of a RAI for the upper right canine was constructed from the cone beam computed tomography data of one patient. Subsequently, five (targeted press-fit design modification FE models with five congruent bone models were designed: “Standard,” “Prism,” “Fins,” “Plug,” and “Bulbs,” respectively. Preprocessor software was applied to mesh the models. Two loads were applied: an oblique force (300 N and a vertical force (150 N. Analysis was performed to evaluate stress distributions and deformed contact separation at the peri-implant region. Results. The lowest von Mises stress levels were numerically observed for the Plug design. The lowest levels of contact separation were measured in the Fins model followed by the Bulbs design. Conclusions. Within the limitations of the applied methodology, adding targeted press-fit geometry to the RAI standard design will have a positive effect on stress distribution, lower concentration of bone stress, and will provide a better primary stability for this patient specific case.

  18. Pretreatment Patient Specific Quality Assurance and Gamma Index Variation Study in Gantry Dependent EPID Positions for IMRT Prostate Treatments

    Directory of Open Access Journals (Sweden)

    Siji Cyriac

    2014-01-01

    Full Text Available Pretreatment quality assurance (QA is a major concern in complex radiation therapy treatment plans like intensity modulated radiation therapy (IMRT. Present study considers the variations in gamma index for gantry dependent pretreatment verification and commonly practiced zero gantry angle verifications for ten prostate IMRT plans using two commercial medical linear accelerators (Varian 2300 CD, Varian Clinac iX. Two verification plans (the one with all fields at the actual treatment angles and one with all fields merged to 0 degree gantry angles for all the patients were generated to obtain dose fluence mapping using amorphous silicon electronic portal imaging device (EPID. The gamma index was found depend on gantry angles but the difference between zero and the nonzero treatment angles is in the confidence level for clinical acceptance. The acceptance criteria of gamma method were always satisfied in both cases for two machines and are stable enough to execute the patient specific pretreatment quality assurance at 0 degree gantry angle for prostate IMRTs, where limited number of gantry angles are used.

  19. Novel genes associated with colorectal cancer are revealed by high resolution cytogenetic analysis in a patient specific manner.

    Directory of Open Access Journals (Sweden)

    Hisham Eldai

    Full Text Available Genomic abnormalities leading to colorectal cancer (CRC include somatic events causing copy number aberrations (CNAs as well as copy neutral manifestations such as loss of heterozygosity (LOH and uniparental disomy (UPD. We studied the causal effect of these events by analyzing high resolution cytogenetic microarray data of 15 tumor-normal paired samples. We detected 144 genes affected by CNAs. A subset of 91 genes are known to be CRC related yet high GISTIC scores indicate 24 genes on chromosomes 7, 8, 18 and 20 to be strongly relevant. Combining GISTIC ranking with functional analyses and degree of loss/gain we identify three genes in regions of significant loss (ATP8B1, NARS, and ATP5A1 and eight in regions of gain (CTCFL, SPO11, ZNF217, PLEKHA8, HOXA3, GPNMB, IGF2BP3 and PCAT1 as novel in their association with CRC. Pathway and target prediction analysis of CNA affected genes and microRNAs, respectively indicates TGF-β signaling pathway to be involved in causing CRC. Finally, LOH and UPD collectively affected nine cancer related genes. Transcription factor binding sites on regions of >35% copy number loss/gain influenced 16 CRC genes. Our analysis shows patient specific CRC manifestations at the genomic level and that these different events affect individual CRC patients differently.

  20. Physiological outflow boundary conditions methodology for small arteries with multiple outlets: a patient-specific hepatic artery haemodynamics case study.

    Science.gov (United States)

    Aramburu, Jorge; Antón, Raúl; Bernal, Nebai; Rivas, Alejandro; Ramos, Juan Carlos; Sangro, Bruno; Bilbao, José Ignacio

    2015-04-01

    Physiological outflow boundary conditions are necessary to carry out computational fluid dynamics simulations that reliably represent the blood flow through arteries. When dealing with complex three-dimensional trees of small arteries, and therefore with multiple outlets, the robustness and speed of convergence are also important. This study derives physiological outflow boundary conditions for cases in which the physiological values at those outlets are not known (neither in vivo measurements nor literature-based values are available) and in which the tree exhibits symmetry to some extent. The inputs of the methodology are the three-dimensional domain and the flow rate waveform and the systolic and diastolic pressures at the inlet. The derived physiological outflow boundary conditions, which are a physiological pressure waveform for each outlet, are based on the results of a zero-dimensional model simulation. The methodology assumes symmetrical branching and is able to tackle the flow distribution problem when the domain outlets are at branches with a different number of upstream bifurcations. The methodology is applied to a group of patient-specific arteries in the liver. The methodology is considered to be valid because the pulsatile computational fluid dynamics simulation with the inflow flow rate waveform (input of the methodology) and the derived outflow boundary conditions lead to physiological results, that is, the resulting systolic and diastolic pressures at the inlet match the inputs of the methodology, and the flow split is also physiological.

  1. Real-time surgery simulation of intracranial aneurysm clipping with patient-specific geometries and haptic feedback

    Science.gov (United States)

    Fenz, Wolfgang; Dirnberger, Johannes

    2015-03-01

    Providing suitable training for aspiring neurosurgeons is becoming more and more problematic. The increasing popularity of the endovascular treatment of intracranial aneurysms leads to a lack of simple surgical situations for clipping operations, leaving mainly the complex cases, which present even experienced surgeons with a challenge. To alleviate this situation, we have developed a training simulator with haptic interaction allowing trainees to practice virtual clipping surgeries on real patient-specific vessel geometries. By using specialized finite element (FEM) algorithms (fast finite element method, matrix condensation) combined with GPU acceleration, we can achieve the necessary frame rate for smooth real-time interaction with the detailed models needed for a realistic simulation of the vessel wall deformation caused by the clamping with surgical clips. Vessel wall geometries for typical training scenarios were obtained from 3D-reconstructed medical image data, while for the instruments (clipping forceps, various types of clips, suction tubes) we use models provided by manufacturer Aesculap AG. Collisions between vessel and instruments have to be continuously detected and transformed into corresponding boundary conditions and feedback forces, calculated using a contact plane method. After a training, the achieved result can be assessed based on various criteria, including a simulation of the residual blood flow into the aneurysm. Rigid models of the surgical access and surrounding brain tissue, plus coupling a real forceps to the haptic input device further increase the realism of the simulation.

  2. Clinical Study of 3D Imaging and 3D Printing Technique for Patient-Specific Instrumentation in Total Knee Arthroplasty.

    Science.gov (United States)

    Qiu, Bing; Liu, Fei; Tang, Bensen; Deng, Biyong; Liu, Fang; Zhu, Weimin; Zhen, Dong; Xue, Mingyuan; Zhang, Mingjiao

    2017-01-25

    Patient-specific instrumentation (PSI) was designed to improve the accuracy of preoperative planning and postoperative prosthesis positioning in total knee arthroplasty (TKA). However, better understanding needs to be achieved due to the subtle nature of the PSI systems. In this study, 3D printing technique based on the image data of computed tomography (CT) has been utilized for optimal controlling of the surgical parameters. Two groups of TKA cases have been randomly selected as PSI group and control group with no significant difference of age and sex (p > 0.05). The PSI group is treated with 3D printed cutting guides whereas the control group is treated with conventional instrumentation (CI). By evaluating the proximal osteotomy amount, distal osteotomy amount, valgus angle, external rotation angle, and tibial posterior slope angle of patients, it can be found that the preoperative quantitative assessment and intraoperative changes can be controlled with PSI whereas CI is relied on experience. In terms of postoperative parameters, such as hip-knee-ankle (HKA), frontal femoral component (FFC), frontal tibial component (FTC), and lateral tibial component (LTC) angles, there is a significant improvement in achieving the desired implant position (p implantation compared against control method, which indicates potential for optimal HKA, FFC, and FTC angles.

  3. A comparative study of 1D and 3D hemodynamics in patient-specific hepatic portal vein networks

    Directory of Open Access Journals (Sweden)

    Jonášová A.

    2014-12-01

    Full Text Available The development of software for use in clinical practice is often associated with many requirements and restrictions set not only by the medical doctors, but also by the hospital’s budget. To meet the requirement of reliable software, which is able to provide results within a short time period and with minimal computational demand, a certain measure of modelling simplification is usually inevitable. In case of blood flow simulations carried out in large vascular networks such as the one created by the hepatic portal vein, simplifications are made by necessity. The most often employed simplification includes the approach in the form of dimensional reduction, when the 3D model of a large vascular network is substituted with its 1D counterpart. In this context, a question naturally arises, how this reduction can affect the simulation accuracy and its outcome. In this paper, we try to answer this question by performing a quantitative comparison of 3D and 1D flow models in two patient-specific hepatic portal vein networks. The numerical simulations are carried out under average flow conditions and with the application of the three-element Windkessel model, which is able to approximate the downstream flow resistance of real hepatic tissue. The obtained results show that, although the 1D model can never truly substitute the 3D model, its easy implementation, time-saving model preparation and almost no demands on computer technology dominate as advantages over obvious but moderate modelling errors arising from the performed dimensional reduction.

  4. Development of a Patient-Specific Finite Element Model for Predicting Implant Failure in Pelvic Ring Fracture Fixation

    Science.gov (United States)

    Höch, Andreas; Peldschus, Steffen

    2017-01-01

    Introduction. The main purpose of this study is to develop an efficient technique for generating FE models of pelvic ring fractures that is capable of predicting possible failure regions of osteosynthesis with acceptable accuracy. Methods. Patient-specific FE models of two patients with osteoporotic pelvic fractures were generated. A validated FE model of an uninjured pelvis from our previous study was used as a master model. Then, fracture morphologies and implant positions defined by a trauma surgeon in the preoperative CT were manually introduced as 3D splines to the master model. Four loading cases were used as boundary conditions. Regions of high stresses in the models were compared with actual locations of implant breakages and loosening identified from follow-up X-rays. Results. Model predictions and the actual clinical outcomes matched well. For Patient A, zones of increased tension and maximum stress coincided well with the actual locations of implant loosening. For Patient B, the model predicted accurately the loosening of the implant in the anterior region. Conclusion. Since a significant reduction in time and labour was achieved in our mesh generation technique, it can be considered as a viable option to be implemented as a part of the clinical routine to aid presurgical planning and postsurgical management of pelvic ring fracture patients. PMID:28255332

  5. Dimensional evaluation of patient-specific 3D printing using calcium phosphate cement for craniofacial bone reconstruction.

    Science.gov (United States)

    Bertol, Liciane Sabadin; Schabbach, Rodrigo; Dos Santos, Luís Alberto Loureiro

    2016-12-01

    The 3D printing process is highlighted nowadays as a possibility to generate individual parts with complex geometries. Moreover, the development of 3D printing hardware, software and parameters permits the manufacture of parts that can be not only used as prototypes, but are also made from materials that are suitable for implantation. In this way, this study investigates the process involved in the production of patient-specific craniofacial implants using calcium phosphate cement, and its dimensional accuracy. The implants were previously generated in a computer-aided design environment based on the patient's tomographic data. The fabrication of the implants was carried out in a commercial 3D powder printing system using alfa-tricalcium phosphate powder and an aqueous solution of Na2HPO4 as a binder. The fit of the 3D printed implants was measured by three-dimensional laser scanning and by checking the right adjustment to the patient's anatomical biomodel. The printed parts presented a good degree of fitting and accuracy.

  6. Computational Modelling of Multi-folded Balloon Delivery Systems for Coronary Artery Stenting: Insights into Patient-Specific Stent Malapposition.

    Science.gov (United States)

    Ragkousis, Georgios E; Curzen, Nick; Bressloff, Neil W

    2015-08-01

    Despite the clinical effectiveness of coronary artery stenting, percutaneous coronary intervention or "stenting" is not free of complications. Stent malapposition (SM) is a common feature of "stenting" particularly in challenging anatomy, such as that characterized by long, tortuous and bifurcated segments. SM is an important risk factor for stent thrombosis and recently it has been associated with longitudinal stent deformation. SM is the result of many factors including reference diameter, vessel tapering, the deployment pressure and the eccentric anatomy of the vessel. For the purpose of the present paper, virtual multi-folded balloon models have been developed for simulated deployment in both constant and varying diameter vessels under uniform pressure. The virtual balloons have been compared to available compliance charts to ensure realistic inflation response at nominal pressures. Thereafter, patient-specific simulations of stenting have been conducted aiming to reduce SM. Different scalar indicators, which allow a more global quantitative judgement of the mechanical performance of each delivery system, have been implemented. The results indicate that at constant pressure, the proposed balloon models can increase the minimum stent lumen area and thereby significantly decrease SM.

  7. Fluid mechanics of blood flow in human fetal left ventricles based on patient-specific 4D ultrasound scans.

    Science.gov (United States)

    Lai, Chang Quan; Lim, Guat Ling; Jamil, Muhammad; Mattar, Citra Nurfarah Zaini; Biswas, Arijit; Yap, Choon Hwai

    2016-10-01

    The mechanics of intracardiac blood flow and the epigenetic influence it exerts over the heart function have been the subjects of intense research lately. Fetal intracardiac flows are especially useful for gaining insights into the development of congenital heart diseases, but have not received due attention thus far, most likely because of technical difficulties in collecting sufficient intracardiac flow data in a safe manner. Here, we circumvent such obstacles by employing 4D STIC ultrasound scans to quantify the fetal heart motion in three normal 20-week fetuses, subsequently performing 3D computational fluid dynamics simulations on the left ventricles based on these patient-specific heart movements. Analysis of the simulation results shows that there are significant differences between fetal and adult ventricular blood flows which arise because of dissimilar heart morphology, E/A ratio, diastolic-systolic duration ratio, and heart rate. The formations of ventricular vortex rings were observed for both E- and A-wave in the flow simulations. These vortices had sufficient momentum to last until the end of diastole and were responsible for generating significant wall shear stresses on the myocardial endothelium, as well as helicity in systolic outflow. Based on findings from previous studies, we hypothesized that these vortex-induced flow properties play an important role in sustaining the efficiency of diastolic filling, systolic pumping, and cardiovascular flow in normal fetal hearts.

  8. Structural correlation method for model reduction and practical estimation of patient specific parameters illustrated on heart rate regulation.

    Science.gov (United States)

    Ottesen, Johnny T; Mehlsen, Jesper; Olufsen, Mette S

    2014-11-01

    We consider the inverse and patient specific problem of short term (seconds to minutes) heart rate regulation specified by a system of nonlinear ODEs and corresponding data. We show how a recent method termed the structural correlation method (SCM) can be used for model reduction and for obtaining a set of practically identifiable parameters. The structural correlation method includes two steps: sensitivity and correlation analysis. When combined with an optimization step, it is possible to estimate model parameters, enabling the model to fit dynamics observed in data. This method is illustrated in detail on a model predicting baroreflex regulation of heart rate and applied to analysis of data from a rat and healthy humans. Numerous mathematical models have been proposed for prediction of baroreflex regulation of heart rate, yet most of these have been designed to provide qualitative predictions of the phenomena though some recent models have been developed to fit observed data. In this study we show that the model put forward by Bugenhagen et al. can be simplified without loss of its ability to predict measured data and to be interpreted physiologically. Moreover, we show that with minimal changes in nominal parameter values the simplified model can be adapted to predict observations from both rats and humans. The use of these methods make the model suitable for estimation of parameters from individuals, allowing it to be adopted for diagnostic procedures.

  9. Automating quantum experiment control

    Science.gov (United States)

    Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.

    2017-03-01

    The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

  10. Automated Postediting of Documents

    CERN Document Server

    Knight, K; Knight, Kevin; Chander, Ishwar

    1994-01-01

    Large amounts of low- to medium-quality English texts are now being produced by machine translation (MT) systems, optical character readers (OCR), and non-native speakers of English. Most of this text must be postedited by hand before it sees the light of day. Improving text quality is tedious work, but its automation has not received much research attention. Anyone who has postedited a technical report or thesis written by a non-native speaker of English knows the potential of an automated postediting system. For the case of MT-generated text, we argue for the construction of postediting modules that are portable across MT systems, as an alternative to hardcoding improvements inside any one system. As an example, we have built a complete self-contained postediting module for the task of article selection (a, an, the) for English noun phrases. This is a notoriously difficult problem for Japanese-English MT. Our system contains over 200,000 rules derived automatically from online text resources. We report on l...

  11. Automated Test Case Generation

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I would like to present the concept of automated test case generation. I work on it as part of my PhD and I think it would be interesting also for other people. It is also the topic of a workshop paper that I am introducing in Paris. (abstract below) Please note that the talk itself would be more general and not about the specifics of my PhD, but about the broad field of Automated Test Case Generation. I would introduce the main approaches (combinatorial testing, symbolic execution, adaptive random testing) and their advantages and problems. (oracle problem, combinatorial explosion, ...) Abstract of the paper: Over the last decade code-based test case generation techniques such as combinatorial testing or dynamic symbolic execution have seen growing research popularity. Most algorithms and tool implementations are based on finding assignments for input parameter values in order to maximise the execution branch coverage. Only few of them consider dependencies from outside the Code Under Test’s scope such...

  12. Maneuver Automation Software

    Science.gov (United States)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; Illsley, Jeannette

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  13. Automated digital magnetofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J; Garcia, A A; Marquez, M [Harrington Department of Bioengineering Arizona State University, Tempe AZ 85287-9709 (United States)], E-mail: tony.garcia@asu.edu

    2008-08-15

    Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.

  14. Get smart! automate your house!

    NARCIS (Netherlands)

    Van Amstel, P.; Gorter, N.; De Rouw, J.

    2016-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Innovation and Sustainability This manual will help you in reducing both energy usage and costs by automating your home. It gives an introduction to a number of home automation systems that every homeowner can install.

  15. Opening up Library Automation Software

    Science.gov (United States)

    Breeding, Marshall

    2009-01-01

    Throughout the history of library automation, the author has seen a steady advancement toward more open systems. In the early days of library automation, when proprietary systems dominated, the need for standards was paramount since other means of inter-operability and data exchange weren't possible. Today's focus on Application Programming…

  16. Classification of Automated Search Traffic

    Science.gov (United States)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  17. Translation: Aids, Robots, and Automation.

    Science.gov (United States)

    Andreyewsky, Alexander

    1981-01-01

    Examines electronic aids to translation both as ways to automate it and as an approach to solve problems resulting from shortage of qualified translators. Describes the limitations of robotic MT (Machine Translation) systems, viewing MAT (Machine-Aided Translation) as the only practical solution and the best vehicle for further automation. (MES)

  18. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  19. Stereo-particle image velocimetry measurements of a patient-specific Fontan physiology utilizing novel pressure augmentation stents.

    Science.gov (United States)

    Chopski, Steven G; Rangus, Owen M; Fox, Carson S; Moskowitz, William B; Throckmorton, Amy L

    2015-03-01

    Single ventricle anomalies are a challenging set of congenital heart defects that require lifelong clinical management due to progressive decline of cardiovascular function. Few therapeutic devices are available for these patients, and conventional blood pumps are not designed for the unique anatomy of the single ventricle physiology. To address this unmet need, we are developing an axial flow blood pump with a protective cage or stent for Fontan patients. This study investigates the 3-D particle image velocimetry measurements of two cage designs being deployed in a patient-specific Fontan anatomy. We considered a control case without a pump, impeller placed in the inferior vena cava, and two cases where the impeller has two protective stents with unique geometric characteristics. The experiments were evaluated at a cardiac output of 3 L/min, a fixed vena caval flow split of 40%/60%, a fixed pulmonary arterial flow split of 50%/50%, and for operating speeds of 1000-4000 rpm. The introduction of the cardiovascular stents had a substantial impact on the flow conditions leaving the pump and entering the cavopulmonary circulation. The findings indicated that rotational speeds above 4000 rpm for this pump could result in irregular flows in this specific circulatory condition. Although retrograde flow into the superior vena cava was not measured, the risk of this occurrence increases with higher pump speeds. The against-with stent geometry outperformed the other configurations by generating higher pressures and more energetic flows. These results provide further support for the viability of mechanical cavopulmonary assistance as a therapeutic treatment strategy for Fontan patients.

  20. Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft.

    LENUS (Irish Health Repository)

    Molony, David S

    2009-01-01

    BACKGROUND: Abdominal aortic aneurysms (AAA) are local dilatations of the infrarenal aorta. If left untreated they may rupture and lead to death. One form of treatment is the minimally invasive insertion of a stent-graft into the aneurysm. Despite this effective treatment aneurysms may occasionally continue to expand and this may eventually result in post-operative rupture of the aneurysm. Fluid-structure interaction (FSI) is a particularly useful tool for investigating aneurysm biomechanics as both the wall stresses and fluid forces can be examined. METHODS: Pre-op, Post-op and Follow-up models were reconstructed from CT scans of a single patient and FSI simulations were performed on each model. The FSI approach involved coupling Abaqus and Fluent via a third-party software - MpCCI. Aneurysm wall stress and compliance were investigated as well as the drag force acting on the stent-graft. RESULTS: Aneurysm wall stress was reduced from 0.38 MPa before surgery to a value of 0.03 MPa after insertion of the stent-graft. Higher stresses were seen in the aneurysm neck and iliac legs post-operatively. The compliance of the aneurysm was also reduced post-operatively. The peak Post-op axial drag force was found to be 4.85 N. This increased to 6.37 N in the Follow-up model. CONCLUSION: In a patient-specific case peak aneurysm wall stress was reduced by 92%. Such a reduction in aneurysm wall stress may lead to shrinkage of the aneurysm over time. Hence, post-operative stress patterns may help in determining the likelihood of aneurysm shrinkage post EVAR. Post-operative remodelling of the aneurysm may lead to increased drag forces.

  1. Patient-specific reconstruction utilizing computer assisted 3D modelling for partial bone flap defect in hybrid cranioplasty

    Science.gov (United States)

    Hueh, Low Peh; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana; Idris, Zamzuri; Mohamad, Dasmawati

    2016-12-01

    Autologous cranioplasty using a patient's original bone flap remain the commonest practice nowadays. However, partial bone flap defect is commonly encountered. Replacing the bone flap with pre-moulded synthetic bone flap is costly and not affordable to many patients. Hence most of the small to medium size defect was topped up with alloplastic material on a free hand basis intra-operatively which often resulted in inaccurate implant approximation with unsatisfactory cosmetic result. This study aims to evaluate implant accuracy and cosmetic outcome of cranioplasty candidates who underwent partial bone flap reconstruction utilising computer assisted 3D modelling. 3D images of the skull were obtained from post-craniectomy axial 1-mm spiral computed tomography (CT) scans and a virtual 3D model was generated using the Materialise Mimics software. The Materialise 3-Matic was then utilised to design a patient-specific implant. Prefabrication of the implant was performed by the 3D Objet printer, and a negative gypsum mold was created with the prefabricated cranial implant. Intraoperatively, a hybrid polymethyl methacrylate (PMMA)-autologous cranial implant was produced using the gypsum mold, and fit into the cranial defect. This study is still ongoing at the moment. To date, two men has underwent partial bone flap reconstruction utilising this technique and both revealed satisfactory implant alignment with favourable cosmesis. Mean implant size was 12cm2, and the mean duration of intraoperative reconstruction for the partial bone flap defect was 40 minutes. No significant complication was reported. As a conclusion, this new technique and approach resulted in satisfactory implant alignment and favourable cosmetic outcome. However, more study samples are needed to increase the validity of the study results.

  2. Patient specific quality assurance of RapidArc pre treatment plans using semiflex 0.125 cc ionization chamber

    Science.gov (United States)

    Kumar, S. A. Syam; Vivekanandan, Nagarajan

    2017-01-01

    Patient specific pre-treatment quality assurance for RapidArc plans were analyzed for hundred patients for different sites. Verification plan was created for each treatment plan in Eclipse 8.6 treatment planning system with the semiflex ionization chamber and the octavius phantom. Absolute point dose were measured for head and neck, thorax and abdomen cases using semiflex (0.125 cc) ionization chamber. Positive absolute mean dose variation of 0.56% was observed with thorax cases with a standard deviation (SD) of ±1.13 between the plans with a range of -1.78% to 2.70%. Negative percentage dose errors were found with head and neck and abdomen cases, with a mean variation of -0.43% (SD±1.50), (range -3.25% to 2.85%) and -0.35% (SD±1.48), (range -3.10% to 2.65%) for head and neck and abdomen cases respectively. Evaluation has been done using PTW verisoft software by keeping the passing criteria as 3 mm DTA, 3% DD, for 95% of the evaluated dose points. The maximum percentage value failed in gamma analysis was found to be 4.95, 4.75, and 4.88 for head and neck, thorax, and abdomen cases respectively. In all the cases analyzed the percentage dose points failed the gamma criteria is less than 5%. On the basis of the studies performed it can be concluded that the semiflex ionization chamber having a volume of 0.125 cc can be used efficiently for measuring the pre-treatment quality assurance of RapidArc plans for all the sites.

  3. Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft

    Directory of Open Access Journals (Sweden)

    McGloughlin Tim M

    2009-10-01

    Full Text Available Abstract Background Abdominal aortic aneurysms (AAA are local dilatations of the infrarenal aorta. If left untreated they may rupture and lead to death. One form of treatment is the minimally invasive insertion of a stent-graft into the aneurysm. Despite this effective treatment aneurysms may occasionally continue to expand and this may eventually result in post-operative rupture of the aneurysm. Fluid-structure interaction (FSI is a particularly useful tool for investigating aneurysm biomechanics as both the wall stresses and fluid forces can be examined. Methods Pre-op, Post-op and Follow-up models were reconstructed from CT scans of a single patient and FSI simulations were performed on each model. The FSI approach involved coupling Abaqus and Fluent via a third-party software - MpCCI. Aneurysm wall stress and compliance were investigated as well as the drag force acting on the stent-graft. Results Aneurysm wall stress was reduced from 0.38 MPa before surgery to a value of 0.03 MPa after insertion of the stent-graft. Higher stresses were seen in the aneurysm neck and iliac legs post-operatively. The compliance of the aneurysm was also reduced post-operatively. The peak Post-op axial drag force was found to be 4.85 N. This increased to 6.37 N in the Follow-up model. Conclusion In a patient-specific case peak aneurysm wall stress was reduced by 92%. Such a reduction in aneurysm wall stress may lead to shrinkage of the aneurysm over time. Hence, post-operative stress patterns may help in determining the likelihood of aneurysm shrinkage post EVAR. Post-operative remodelling of the aneurysm may lead to increased drag forces.

  4. Mechanical cavopulmonary assistance of a patient-specific Fontan physiology: numerical simulations, lumped parameter modeling, and suction experiments.

    Science.gov (United States)

    Throckmorton, Amy L; Carr, James P; Tahir, Sharjeel A; Tate, Ryan; Downs, Emily A; Bhavsar, Sonya S; Wu, Yi; Grizzard, John D; Moskowitz, William B

    2011-11-01

    This study investigated the performance of a magnetically levitated, intravascular axial flow blood pump for mechanical circulatory support of the thousands of Fontan patients in desperate need of a therapeutic alternative. Four models of the extracardiac, total cavopulmonary connection (TCPC) Fontan configuration were evaluated to formulate numerical predictions: an idealized TCPC, a patient-specific TCPC per magnetic resonance imaging data, and each of these two models having a blood pump in the inferior vena cava (IVC). A lumped parameter model of the Fontan physiology was used to specify boundary conditions. Pressure-flow characteristics, energy gain calculations, scalar stress levels, and blood damage estimations were executed for each model. Suction limitation experiments using the Sylgard elastomer tubing were also conducted. The pump produced pressures of 1-16 mm Hg for 2000-6000 rpm and flow rates of 0.5-4.5 L/min. The pump inlet or IVC pressure was found to decrease at higher rotational speeds. Maximum scalar stress estimations were 3 Pa for the nonpump models and 290 Pa for the pump-supported cases. The blood residence times for the pump-supported cases were shorter (0.9 s) as compared with the nonsupported configurations (2.5 s). However, the blood damage indices were higher (1.5%) for the anatomic model with pump support. The pump successfully augmented pressure in the TCPC junction and increased the hydraulic energy of the TCPC as a function of flow rate and rotational speed. The suction experiments revealed minimal deformation (<3%) at 9000 rpm. The findings of this study support the continued design and development of this blood pump.

  5. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis

    Science.gov (United States)

    Phan, Kevin; Sgro, Alessandro; Maharaj, Monish M.; D’Urso, Paul

    2016-01-01

    The study aims to describe a three-dimensional printed (3DP) posterior fixation implant used for C1/C2 fusion in a 65-year-old female. Spinal fusion remains a common intervention for a range of spinal pathologies including degenerative disc and facet disease when conservative methods are unsuccessful. However, fusion devices are not always entirely efficacious in providing the desired fixation, and surgeons rely on ‘off the shelf’ implants which may not provide an anatomical fit to address the particular pathology. 3DP refers to a process where three-dimensional objects are created through successive layering of material, so called ‘additive manufacturing’. Although this technology enables accurate fabrication of patient-specific orthopaedic and spinal implants, literature on its utilization in this regard is rare. A 65-year-old female, with severe facet arthropathy at the C1/C2 level, osteophyte formation and impingement of the exiting C2 nerve root underwent a C1/C2 posterior fusion and rhizolysis of the C2 nerve roots. A custom posterior fixation implant was designed and on-laid over the C2 spinous process and lamina, with screw holes made to a depth and angulation that was pre-calculated based on the preoperative CT based 3D modelling. The patient had an uneventful recovery and reported a significant reduction in occipital neuralgia and sub-occipital pain and 2-month follow-up. We report the first case of a customized 3DP spinal prosthesis for posterior C1/C2 fusion. The implant added significant value reducing the overall time of the procedure, and safety with a reduced risk of neurovascular compromise. PMID:28097249

  6. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors.

    Science.gov (United States)

    Gros, Alena; Robbins, Paul F; Yao, Xin; Li, Yong F; Turcotte, Simon; Tran, Eric; Wunderlich, John R; Mixon, Arnold; Farid, Shawn; Dudley, Mark E; Hanada, Ken-Ichi; Almeida, Jorge R; Darko, Sam; Douek, Daniel C; Yang, James C; Rosenberg, Steven A

    2014-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.

  7. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.

  8. Automated Standard Hazard Tool

    Science.gov (United States)

    Stebler, Shane

    2014-01-01

    The current system used to generate standard hazard reports is considered cumbersome and iterative. This study defines a structure for this system's process in a clear, algorithmic way so that standard hazard reports and basic hazard analysis may be completed using a centralized, web-based computer application. To accomplish this task, a test server is used to host a prototype of the tool during development. The prototype is configured to easily integrate into NASA's current server systems with minimal alteration. Additionally, the tool is easily updated and provides NASA with a system that may grow to accommodate future requirements and possibly, different applications. Results of this project's success are outlined in positive, subjective reviews complete by payload providers and NASA Safety and Mission Assurance personnel. Ideally, this prototype will increase interest in the concept of standard hazard automation and lead to the full-scale production of a user-ready application.

  9. Robust automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  10. [From automation to robotics].

    Science.gov (United States)

    1985-01-01

    The introduction of automation into the laboratory of biology seems to be unavoidable. But at which cost, if it is necessary to purchase a new machine for every new application? Fortunately the same image processing techniques, belonging to a theoretic framework called Mathematical Morphology, may be used in visual inspection tasks, both in car industry and in the biology lab. Since the market for industrial robotics applications is much higher than the market of biomedical applications, the price of image processing devices drops, and becomes sometimes less than the price of a complete microscope equipment. The power of the image processing methods of Mathematical Morphology will be illustrated by various examples, as automatic silver grain counting in autoradiography, determination of HLA genotype, electrophoretic gels analysis, automatic screening of cervical smears... Thus several heterogeneous applications may share the same image processing device, provided there is a separate and devoted work station for each of them.

  11. Automated electronic filter design

    CERN Document Server

    Banerjee, Amal

    2017-01-01

    This book describes a novel, efficient and powerful scheme for designing and evaluating the performance characteristics of any electronic filter designed with predefined specifications. The author explains techniques that enable readers to eliminate complicated manual, and thus error-prone and time-consuming, steps of traditional design techniques. The presentation includes demonstration of efficient automation, using an ANSI C language program, which accepts any filter design specification (e.g. Chebyschev low-pass filter, cut-off frequency, pass-band ripple etc.) as input and generates as output a SPICE(Simulation Program with Integrated Circuit Emphasis) format netlist. Readers then can use this netlist to run simulations with any version of the popular SPICE simulator, increasing accuracy of the final results, without violating any of the key principles of the traditional design scheme.

  12. Automated Essay Scoring

    Directory of Open Access Journals (Sweden)

    Semire DIKLI

    2006-01-01

    Full Text Available Automated Essay Scoring Semire DIKLI Florida State University Tallahassee, FL, USA ABSTRACT The impacts of computers on writing have been widely studied for three decades. Even basic computers functions, i.e. word processing, have been of great assistance to writers in modifying their essays. The research on Automated Essay Scoring (AES has revealed that computers have the capacity to function as a more effective cognitive tool (Attali, 2004. AES is defined as the computer technology that evaluates and scores the written prose (Shermis & Barrera, 2002; Shermis & Burstein, 2003; Shermis, Raymat, & Barrera, 2003. Revision and feedback are essential aspects of the writing process. Students need to receive feedback in order to increase their writing quality. However, responding to student papers can be a burden for teachers. Particularly if they have large number of students and if they assign frequent writing assignments, providing individual feedback to student essays might be quite time consuming. AES systems can be very useful because they can provide the student with a score as well as feedback within seconds (Page, 2003. Four types of AES systems, which are widely used by testing companies, universities, and public schools: Project Essay Grader (PEG, Intelligent Essay Assessor (IEA, E-rater, and IntelliMetric. AES is a developing technology. Many AES systems are used to overcome time, cost, and generalizability issues in writing assessment. The accuracy and reliability of these systems have been proven to be high. The search for excellence in machine scoring of essays is continuing and numerous studies are being conducted to improve the effectiveness of the AES systems.

  13. Integrating Prognostics in Automated Contingency Management Strategies for Advanced Aircraft Controls Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Automated Contingency Management (ACM) is an emerging and game-changing area of engineering and scientific research that integrates prognostics and health management...

  14. Simulation-based Design and Validation of Automated Contingency Management for Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper introduces a novel Prognostics-enhanced Automated Contingency Management (or ACM+P) paradigm based on both current health state (diagnosis) and future...

  15. Verification of Accuracy of CyberKnife Tumor-tracking Radiation Therapy Using Patient-specific Lung Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jinhong [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul (Korea, Republic of); Song, Si Yeol, E-mail: coocoori@gmail.com [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Sang Min; Kwak, Jungwon; Yoon, KyoungJun [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Wonsik [Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung (Korea, Republic of); Jeong, Seong-Yun [Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Kyung; Cho, Byungchul [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-07-15

    Purpose: To investigate the accuracy of the CyberKnife Xsight Lung Tracking System (XLTS) compared with that of a fiducial-based target tracking system (FTTS) using patient-specific lung phantoms. Methods and Materials: Three-dimensional printing technology was used to make individualized lung phantoms that closely mimicked the lung anatomy of actual patients. Based on planning computed tomographic data from 6 lung cancer patients who underwent stereotactic ablative radiation therapy using the CyberKnife, the volume above a certain Hounsfield unit (HU) was assigned as the structure to be filled uniformly with polylactic acid material by a 3-dimensional printer (3D Edison, Lokit, Korea). We evaluated the discrepancies between the measured and modeled target positions, representing the total tracking error, using 3 log files that were generated during each treatment for both the FTTS and the XLTS. We also analyzed the γ index between the film dose measured under the FTTS and XLTS. Results: The overall mean values and standard deviations of total tracking errors for the FTTS were 0.36 ± 0.39 mm, 0.15 ± 0.64 mm, and 0.15 ± 0.62 mm for the craniocaudal (CC), left–right (LR), and anteroposterior (AP) components, respectively. Those for the XLTS were 0.38 ± 0.54 mm, 0.13 ± 0.18 mm, and 0.14 ± 0.37 mm for the CC, LR, and AP components, respectively. The average of γ passing rates was 100% for the criteria of 3%, 3 mm; 99.6% for the criteria of 2%, 2 mm; and 86.8% for the criteria of 1%, 1 mm. Conclusions: The XLTS has segmentation accuracy comparable with that of the FTTS and small total tracking errors.

  16. Repeated injections of {sup 131}I-rituximab show patient-specific stable biodistribution and tissue kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Antonescu, Cristian; Bischof Delaloye, Angelika; Schaffland, Andreas O.; Grannavel, Carine [University Hospital of Lausanne, Service of Nuclear Medicine, Lausanne (Switzerland); Kosinski, Marek [University Hospital of Lausanne, Service of Nuclear Medicine, Lausanne (Switzerland); University of Lausanne, Institute of Applied Radiophysics, Lausanne (Switzerland); Monnin, Pascal; Verdun, Francis R. [University of Lausanne, Institute of Applied Radiophysics, Lausanne (Switzerland); Ketterer, Nicolas [University Hospital of Lausanne, Multidisciplinary Oncology Center, Lausanne (Switzerland); Kovacsovics, Tibor [Oregon Health and Science University, Center for Hematological Malignancies, Portland, OR (United States); Buchegger, Franz [University Hospital of Lausanne, Service of Nuclear Medicine, Lausanne (Switzerland); University Hospital of Geneva, Service of Nuclear Medicine, Geneva (Switzerland)

    2005-08-01

    It is generally assumed that the biodistribution and pharmacokinetics of radiolabelled antibodies remain similar between dosimetric and therapeutic injections in radioimmunotherapy. However, circulation half-lives of unlabelled rituximab have been reported to increase progressively after the weekly injections of standard therapy doses. The aim of this study was to evaluate the evolution of the pharmacokinetics of repeated {sup 131}I-rituximab injections during treatment with unlabelled rituximab in patients with non-Hodgkin's lymphoma (NHL). Patients received standard weekly therapy with rituximab (375 mg/m{sup 2}) for 4 weeks and a fifth injection at 7 or 8 weeks. Each patient had three additional injections of 185 MBq {sup 131}I-rituximab in either treatment weeks 1, 3 and 7 (two patients) or weeks 2, 4 and 8 (two patients). The 12 radiolabelled antibody injections were followed by three whole-body (WB) scintigraphic studies during 1 week and blood sampling on the same occasions. Additional WB scans were performed after 2 and 4 weeks post {sup 131}I-rituximab injection prior to the second and third injections, respectively. A single exponential radioactivity decrease for WB, liver, spleen, kidneys and heart was observed. Biodistribution and half-lives were patient specific, and without significant change after the second or third injection compared with the first one. Blood T{sub 1/2}{beta}, calculated from the sequential blood samples and fitted to a bi-exponential curve, was similar to the T{sub 1/2} of heart and liver but shorter than that of WB and kidneys. Effective radiation dose calculated from attenuation-corrected WB scans and blood using Mirdose3.1 was 0.53+0.05 mSv/MBq (range 0.48-0.59 mSv/MBq). Radiation dose was highest for spleen and kidneys, followed by heart and liver. These results show that the biodistribution and tissue kinetics of {sup 131}I-rituximab, while specific to each patient, remained constant during unlabelled antibody therapy

  17. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad; Prakosa, Adityo; Vadakkumpadan, Fijoy [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Rajchl, Martin [Department of Computing, Imperial College London, London SW7 2AZ (United Kingdom); White, James [Stephenson Cardiovascular MR Centre, University of Calgary, Calgary, Alberta T2N 2T9 (Canada); Herzka, Daniel A.; McVeigh, Elliot [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lardo, Albert C. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Division of Cardiology, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21224 (United States); Trayanova, Natalia A. [Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering, Johns Hopkins Institute of Medicine, Baltimore, Maryland 21205 (United States)

    2015-08-15

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D

  18. SU-E-T-316: The Design of a Risk Index Method for 3D Patient Specific QA

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W; Wu, H [Seoul National University Hospital, Seoul (Korea, Republic of); Xing, L [Stanford University, Stanford, CA (United States); Suh, T [Catholic UniversityMedical College, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: To suggest a new guidance for the evaluation of 3D patient specific QA, a structure-specific risk-index (RI) method was designed and implemented. Methods: A new algorithm was designed to assign the score of Pass, Fail or Pass with Risk to all 3D voxels in each structure by improving a conventional Gamma Index (GI) algorithm, which implied the degree of the risk of under-dose to the treatment target or over-dose to the organ at risks (OAR). Structure-specific distance to agreement (DTOA), dose difference and minimum checkable dose were applied to the GI algorithm, and additional parameters such as dose gradient factor and dose limit of structures were used to the RI method. Maximum passing rate (PR) and minimum PR were designed and calculated for each structure with the RI method. 3D doses were acquired from a spine SBRT plan by simulating the shift of beam iso-center, and tested to show the feasibility of the suggested method. Results: When the iso-center was shifted by 1 mm, 2 mm, and 3 mm, the PR of conventional GI method between shifted and non-shifted 3D doses were 99.9%, 97.4%, and 89.7% for PTV, 99.8%, 84.8%, and 63.2% for spinal cord, and 100%, 99.5%, 91.7% for right lung. The minimum PRs from the RI method were 98.9%, 96.9%, and 89.5% for PTV, and 96.1%, 79.3%, 57.5% for spinal cord, and 92.5%, 92.0%, 84.4% for right lung, respectively. The maximum PRs from the RI method were equal or less than the PRs from the conventional GI evaluation. Conclusion: Designed 3D RI method showed more strict acceptance level than the conventional GI method, especially for OARs. The RI method is expected to give the degrees of risks in the delivered doses, as well as the degrees of agreements between calculated 3D doses and measured (or simulated) 3D doses.

  19. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  20. The changing pattern of antimicrobial resistance within 42,033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999-2009.

    LENUS (Irish Health Repository)

    Cullen, Ivor M

    2012-04-01

    To investigate the changing pattern of antimicrobial resistance in Escherichia coli urinary tract infection over an eleven year period, and to determine whether E. coli antibiotic resistance rates vary depending on whether the UTI represents a nosocomial, community acquired or urology patient specific infection.

  1. Building Automation Using Wired Communication.

    Directory of Open Access Journals (Sweden)

    Ms. Supriya Gund*,

    2014-04-01

    Full Text Available In this paper, we present the design and implementation of a building automation system where communication technology LAN has been used. This paper mainly focuses on the controlling of home appliances remotely and providing security when the user is away from the place. This system provides ideal solution to the problems faced by home owners in daily life. This system provides security against intrusion as well as automates various home appliances using LAN. To demonstrate the feasibility and effectiveness of the proposed system, the device such as fire sensor, gas sensor, panic switch, intruder switch along with the smartcard have been developed and evaluated with the building automation system. These techniques are successfully merged in a single building automation system. This system offers a complete, low cost powerful and user friendly way of real-time monitoring and remote control of a building.

  2. Evolution of Home Automation Technology

    Directory of Open Access Journals (Sweden)

    Mohd. Rihan

    2009-01-01

    Full Text Available In modern society home and office automation has becomeincreasingly important, providing ways to interconnectvarious home appliances. This interconnection results infaster transfer of information within home/offices leading tobetter home management and improved user experience.Home Automation, in essence, is a technology thatintegrates various electrical systems of a home to provideenhanced comfort and security. Users are grantedconvenient and complete control over all the electrical homeappliances and they are relieved from the tasks thatpreviously required manual control. This paper tracks thedevelopment of home automation technology over the lasttwo decades. Various home automation technologies havebeen explained briefly, giving a chronological account of theevolution of one of the most talked about technologies ofrecent times.

  3. Home automation with Intel Galileo

    CERN Document Server

    Dundar, Onur

    2015-01-01

    This book is for anyone who wants to learn Intel Galileo for home automation and cross-platform software development. No knowledge of programming with Intel Galileo is assumed, but knowledge of the C programming language is essential.

  4. Automating the Purple Crow Lidar

    Directory of Open Access Journals (Sweden)

    Hicks Shannon

    2016-01-01

    Full Text Available The Purple Crow LiDAR (PCL was built to measure short and long term coupling between the lower, middle, and upper atmosphere. The initial component of my MSc. project is to automate two key elements of the PCL: the rotating liquid mercury mirror and the Zaber alignment mirror. In addition to the automation of the Zaber alignment mirror, it is also necessary to describe the mirror’s movement and positioning errors. Its properties will then be added into the alignment software. Once the alignment software has been completed, we will compare the new alignment method with the previous manual procedure. This is the first among several projects that will culminate in a fully-automated lidar. Eventually, we will be able to work remotely, thereby increasing the amount of data we collect. This paper will describe the motivation for automation, the methods we propose, preliminary results for the Zaber alignment error analysis, and future work.

  5. Network based automation for SMEs

    DEFF Research Database (Denmark)

    Shahabeddini Parizi, Mohammad; Radziwon, Agnieszka

    2017-01-01

    The implementation of appropriate automation concepts which increase productivity in Small and Medium Sized Enterprises (SMEs) requires a lot of effort, due to their limited resources. Therefore, it is strongly recommended for small firms to open up for the external sources of knowledge, which...... automation solutions. The empirical data collection involved application of a combination of comparative case study method with action research elements. This article provides an outlook over the challenges in implementing technological improvements and the way how it could be resolved in collaboration...... with other members of the same regional ecosystem. The findings highlight two main automation related areas where manufacturing SMEs could leverage on external sources on knowledge – these are assistance in defining automation problem as well as appropriate solution and provider selection. Consequently...

  6. National Automated Conformity Inspection Process -

    Data.gov (United States)

    Department of Transportation — The National Automated Conformity Inspection Process (NACIP) Application is intended to expedite the workflow process as it pertains to the FAA Form 81 0-10 Request...

  7. Evolution of Home Automation Technology

    OpenAIRE

    Mohd. Rihan; M. Salim Beg

    2009-01-01

    In modern society home and office automation has becomeincreasingly important, providing ways to interconnectvarious home appliances. This interconnection results infaster transfer of information within home/offices leading tobetter home management and improved user experience.Home Automation, in essence, is a technology thatintegrates various electrical systems of a home to provideenhanced comfort and security. Users are grantedconvenient and complete control over all the electrical homeappl...

  8. Technology modernization assessment flexible automation

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D.W.; Boyd, D.R.; Hansen, N.H.; Hansen, M.A.; Yount, J.A.

    1990-12-01

    The objectives of this report are: to present technology assessment guidelines to be considered in conjunction with defense regulations before an automation project is developed to give examples showing how assessment guidelines may be applied to a current project to present several potential areas where automation might be applied successfully in the depot system. Depots perform primarily repair and remanufacturing operations, with limited small batch manufacturing runs. While certain activities (such as Management Information Systems and warehousing) are directly applicable to either environment, the majority of applications will require combining existing and emerging technologies in different ways, with the special needs of depot remanufacturing environment. Industry generally enjoys the ability to make revisions to its product lines seasonally, followed by batch runs of thousands or more. Depot batch runs are in the tens, at best the hundreds, of parts with a potential for large variation in product mix; reconfiguration may be required on a week-to-week basis. This need for a higher degree of flexibility suggests a higher level of operator interaction, and, in turn, control systems that go beyond the state of the art for less flexible automation and industry in general. This report investigates the benefits and barriers to automation and concludes that, while significant benefits do exist for automation, depots must be prepared to carefully investigate the technical feasibility of each opportunity and the life-cycle costs associated with implementation. Implementation is suggested in two ways: (1) develop an implementation plan for automation technologies based on results of small demonstration automation projects; (2) use phased implementation for both these and later stage automation projects to allow major technical and administrative risk issues to be addressed. 10 refs., 2 figs., 2 tabs. (JF)

  9. Aprendizaje automático

    OpenAIRE

    Moreno, Antonio

    1994-01-01

    En este libro se introducen los conceptos básicos en una de las ramas más estudiadas actualmente dentro de la inteligencia artificial: el aprendizaje automático. Se estudian temas como el aprendizaje inductivo, el razonamiento analógico, el aprendizaje basado en explicaciones, las redes neuronales, los algoritmos genéticos, el razonamiento basado en casos o las aproximaciones teóricas al aprendizaje automático.

  10. 2015 Chinese Intelligent Automation Conference

    CERN Document Server

    Li, Hongbo

    2015-01-01

    Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.

  11. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  12. Multifunction automated crawling system

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor); Joffe, Benjamin (Inventor); Backes, Paul Gregory (Inventor)

    1999-01-01

    The present invention is an automated crawling robot system including a platform, a first leg assembly, a second leg assembly, first and second rails attached to the platform, and an onboard electronic computer controller. The first leg assembly has an intermittent coupling device and the second leg assembly has an intermittent coupling device for intermittently coupling the respective first and second leg assemblies to a particular object. The first and second leg assemblies are slidably coupled to the rail assembly and are slidably driven by motors to thereby allow linear movement. In addition, the first leg assembly is rotary driven by a rotary motor to thereby provide rotary motion relative to the platform. To effectuate motion, the intermittent coupling devices of the first and second leg assemblies alternately couple the respective first and second leg assemblies to an object. This motion is done while simultaneously moving one of the leg assemblies linearly in the desired direction and preparing the next step. This arrangement allows the crawler of the present invention to traverse an object in a range of motion covering 360 degrees.

  13. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the

  14. Automated Gas Distribution System

    Science.gov (United States)

    Starke, Allen; Clark, Henry

    2012-10-01

    The cyclotron of Texas A&M University is one of the few and prized cyclotrons in the country. Behind the scenes of the cyclotron is a confusing, and dangerous setup of the ion sources that supplies the cyclotron with particles for acceleration. To use this machine there is a time consuming, and even wasteful step by step process of switching gases, purging, and other important features that must be done manually to keep the system functioning properly, while also trying to maintain the safety of the working environment. Developing a new gas distribution system to the ion source prevents many of the problems generated by the older manually setup process. This developed system can be controlled manually in an easier fashion than before, but like most of the technology and machines in the cyclotron now, is mainly operated based on software programming developed through graphical coding environment Labview. The automated gas distribution system provides multi-ports for a selection of different gases to decrease the amount of gas wasted through switching gases, and a port for the vacuum to decrease the amount of time spent purging the manifold. The Labview software makes the operation of the cyclotron and ion sources easier, and safer for anyone to use.

  15. Genetic circuit design automation.

    Science.gov (United States)

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.

  16. Automated sugar analysis

    Directory of Open Access Journals (Sweden)

    Tadeu Alcides MARQUES

    2016-03-01

    Full Text Available Abstract Sugarcane monosaccharides are reducing sugars, and classical analytical methodologies (Lane-Eynon, Benedict, complexometric-EDTA, Luff-Schoorl, Musson-Walker, Somogyi-Nelson are based on reducing copper ions in alkaline solutions. In Brazil, certain factories use Lane-Eynon, others use the equipment referred to as “REDUTEC”, and additional factories analyze reducing sugars based on a mathematic model. The objective of this paper is to understand the relationship between variations in millivolts, mass and tenors of reducing sugars during the analysis process. Another objective is to generate an automatic model for this process. The work herein uses the equipment referred to as “REDUTEC”, a digital balance, a peristaltic pump, a digital camcorder, math programs and graphics programs. We conclude that the millivolts, mass and tenors of reducing sugars exhibit a good mathematical correlation, and the mathematical model generated was benchmarked to low-concentration reducing sugars (<0.3%. Using the model created herein, reducing sugars analyses can be automated using the new equipment.

  17. SU-E-T-116: Analysis of Patient Specific VMAT QA Passing Rates with Delta4 for Matched Machines

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J; Hardin, M; Giaddui, T; Kremmel, E; Peng, C; Doyle, L; Yu, Y; Harrison, A [Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    specified beam conformance across machines does not ensure equivalent patient specific QA pass rates. Gamma differences are statistically significant in three of the four comparisons for two pairs of vendor matched machines.

  18. AUTOMATED ANALYSIS OF BREAKERS

    Directory of Open Access Journals (Sweden)

    E. M. Farhadzade

    2014-01-01

    Full Text Available Breakers relate to Electric Power Systems’ equipment, the reliability of which influence, to a great extend, on reliability of Power Plants. In particular, the breakers determine structural reliability of switchgear circuit of Power Stations and network substations. Failure in short-circuit switching off by breaker with further failure of reservation unit or system of long-distance protection lead quite often to system emergency.The problem of breakers’ reliability improvement and the reduction of maintenance expenses is becoming ever more urgent in conditions of systematic increasing of maintenance cost and repair expenses of oil circuit and air-break circuit breakers. The main direction of this problem solution is the improvement of diagnostic control methods and organization of on-condition maintenance. But this demands to use a great amount of statistic information about nameplate data of breakers and their operating conditions, about their failures, testing and repairing, advanced developments (software of computer technologies and specific automated information system (AIS.The new AIS with AISV logo was developed at the department: “Reliability of power equipment” of AzRDSI of Energy. The main features of AISV are:· to provide the security and data base accuracy;· to carry out systematic control of breakers conformity with operating conditions;· to make the estimation of individual  reliability’s value and characteristics of its changing for given combination of characteristics variety;· to provide personnel, who is responsible for technical maintenance of breakers, not only with information but also with methodological support, including recommendations for the given problem solving  and advanced methods for its realization.

  19. Evaluation of Constant Thickness Cartilage Models vs. Patient Specific Cartilage Models for an Optimized Computer-Assisted Planning of Periacetabular Osteotomy.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available Modern computerized planning tools for periacetabular osteotomy (PAO use either morphology-based or biomechanics-based methods. The latter relies on estimation of peak contact pressures and contact areas using either patient specific or constant thickness cartilage models. We performed a finite element analysis investigating the optimal reorientation of the acetabulum in PAO surgery based on simulated joint contact pressures and contact areas using patient specific cartilage model. Furthermore we investigated the influences of using patient specific cartilage model or constant thickness cartilage model on the biomechanical simulation results. Ten specimens with hip dysplasia were used in this study. Image data were available from CT arthrography studies. Bone models were reconstructed. Mesh models for the patient specific cartilage were defined and subsequently loaded under previously reported boundary and loading conditions. Peak contact pressures and contact areas were estimated in the original position. Afterwards we used a validated preoperative planning software to change the acetabular inclination by an increment of 5° and measured the lateral center edge angle (LCE at each reorientation position. The position with the largest contact area and the lowest peak contact pressure was defined as the optimal position. In order to investigate the influence of using patient specific cartilage model or constant thickness cartilage model on the biomechanical simulation results, the same procedure was repeated with the same bone models but with a cartilage mesh of constant thickness. Comparison of the peak contact pressures and the contact areas between these two different cartilage models showed that good correlation between these two cartilage models for peak contact pressures (r = 0.634 ∈ [0.6, 0.8], p 0.8, p < 0.001. For both cartilage models, the largest contact areas and the lowest peak pressures were found at the same position. Our study is

  20. Automation: Decision Aid or Decision Maker?

    Science.gov (United States)

    Skitka, Linda J.

    1998-01-01

    This study clarified that automation bias is something unique to automated decision making contexts, and is not the result of a general tendency toward complacency. By comparing performance on exactly the same events on the same tasks with and without an automated decision aid, we were able to determine that at least the omission error part of automation bias is due to the unique context created by having an automated decision aid, and is not a phenomena that would occur even if people were not in an automated context. However, this study also revealed that having an automated decision aid did lead to modestly improved performance across all non-error events. Participants in the non- automated condition responded with 83.68% accuracy, whereas participants in the automated condition responded with 88.67% accuracy, across all events. Automated decision aids clearly led to better overall performance when they were accurate. People performed almost exactly at the level of reliability as the automation (which across events was 88% reliable). However, also clear, is that the presence of less than 100% accurate automated decision aids creates a context in which new kinds of errors in decision making can occur. Participants in the non-automated condition responded with 97% accuracy on the six "error" events, whereas participants in the automated condition had only a 65% accuracy rate when confronted with those same six events. In short, the presence of an AMA can lead to vigilance decrements that can lead to errors in decision making.

  1. International Conference Automation : Challenges in Automation, Robotics and Measurement Techniques

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2016-01-01

    This book presents the set of papers accepted for presentation at the International Conference Automation, held in Warsaw, 2-4 March of 2016. It presents the research results presented by top experts in the fields of industrial automation, control, robotics and measurement techniques. Each chapter presents a thorough analysis of a specific technical problem which is usually followed by numerical analysis, simulation, and description of results of implementation of the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be valuable for both researchers working in the area of engineering sciences and for practitioners solving industrial problems. .

  2. An analytical approach to corneal mechanics for determining practical, clinically-meaningful patient-specific tissue mechanical properties in the rehabilitation of vision.

    Science.gov (United States)

    Asher, Roy; Gefen, Amit; Moisseiev, Elad; Varssano, David

    2015-02-01

    Patient-specific biomechanical properties of the human cornea are rarely used with finite elements analysis. In order for that to be possible, a proper formulation for biomechanical properties that is based on patient-specific measurable values must be used. In this study, we propose a formula that simulates hyperelastic stress-strain curves based on non-invasive clinical measurements that can be acquired in vivo. These consist of, but are not limited to, center corneal thickness and center corneal curvature as well as corneal resistance factor and applanation diameter that are measured during non-contact tonometry. The presented formulation was demonstrated and validated through several computer simulations. First, mean values that were reported in literature were inputted into the formula to simulate a curve that represents a healthy case. This case was compared to two independent in vitro studies. Then, a sensitivity analysis was carried to identify inputs that have the most dominant effect. Finally, a finite element analysis simulating elevations in intraocular pressure was conducted; the corneal model comprised of patient-specific corneal geometry that was measured in vivo in our clinic as well as the current formulation for patient-specific corneal biomechanics. "Strong" and "weak" corneal tissue cases were simulated and deformations as well as instantaneous curvature optical maps were derived. Results for the simulated healthy curve showed good agreement with the in vitro studies. The sensitivity analysis found the corneal resistance factor and applanation diameter to have the most dominant influence. The finite element analysis of strong and weak biomechanical properties resulted in corneal deformations and instantaneous curvature optical maps that are common for healthy and pathological conditions respectively. In conclusion, the presented modeling technique can be used to assess corneal biomechanics in vivo and therefor may enhance follow-up on the

  3. Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization

    Science.gov (United States)

    Ballarin, Francesco; Faggiano, Elena; Ippolito, Sonia; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi; Scrofani, Roberto

    2016-06-01

    In this work a reduced-order computational framework for the study of haemodynamics in three-dimensional patient-specific configurations of coronary artery bypass grafts dealing with a wide range of scenarios is proposed. We combine several efficient algorithms to face at the same time both the geometrical complexity involved in the description of the vascular network and the huge computational cost entailed by time dependent patient-specific flow simulations. Medical imaging procedures allow to reconstruct patient-specific configurations from clinical data. A centerlines-based parametrization is proposed to efficiently handle geometrical variations. POD-Galerkin reduced-order models are employed to cut down large computational costs. This computational framework allows to characterize blood flows for different physical and geometrical variations relevant in the clinical practice, such as stenosis factors and anastomosis variations, in a rapid and reliable way. Several numerical results are discussed, highlighting the computational performance of the proposed framework, as well as its capability to carry out sensitivity analysis studies, so far out of reach. In particular, a reduced-order simulation takes only a few minutes to run, resulting in computational savings of 99% of CPU time with respect to the full-order discretization. Moreover, the error between full-order and reduced-order solutions is also studied, and it is numerically found to be less than 1% for reduced-order solutions obtained with just O(100) online degrees of freedom.

  4. A Novel Patient-Specific Drill Guide Template for Pedicle Screw Insertion into the Subaxial Cervical Spine Utilizing Stereolithographic Modelling: An In Vitro Study

    Science.gov (United States)

    Delgado, Giorgio De Guzman; Grozman, Samuel Arsenio Munoz

    2017-01-01

    Study Design Cadaveric study. Purpose The purpose of this study was to assess the accuracy and feasibility of cervical pedicle screw (CPS) insertion into the subaxial cervical spine placed using a patient-specific drill guide template constructed from a stereolithographic model. Overview of Literature CPS fixation is an invaluable tool for posterior cervical fixation because of its biomechanical advantages. The major drawback is its narrow corridor that allows very little clearance for neural and vascular injuries. Methods Fifty subaxial pedicles of the cervical vertebrae from five cadavers were scanned into thin slices using computed tomography (CT). Digital imaging and communications in medicine images of the cadaver spine were digitally processed and printed to scale as a three-dimensional (3D) model. Drill guide templates were manually moulded over the 3D-printed models incorporating pins inserted in the pedicles. The drill guide templates were used for precise placement of the drill holes in the pedicles of cadaveric specimens for pedicle screw fixation. Results The instrumented cadaveric spines were subjected to CT to assess the accuracy of our pedicle placement by an external observer. Our patient-specific drill guide template had an accuracy of 94%. Conclusions The use of a patient-specific drill guide constructed using stereolithography improved the accuracy of CPS placement in a cadaveric model.

  5. Patient-Specific CT-Based Instrumentation versus Conventional Instrumentation in Total Knee Arthroplasty: A Prospective Randomized Controlled Study on Clinical Outcomes and In-Hospital Data

    Directory of Open Access Journals (Sweden)

    Andrzej Kotela

    2015-01-01

    Full Text Available Total knee arthroplasty (TKA is a frequently performed procedure in orthopaedic surgery. Recently, patient-specific instrumentation was introduced to facilitate correct positioning of implants. The aim of this study was to compare the early clinical results of TKA performed with patient-specific CT-based instrumentation and conventional technique. A prospective, randomized controlled trial on 112 patients was performed between January 2011 and December 2011. A group of 112 patients who met the inclusion and exclusion criteria were enrolled in this study and randomly assigned to an experimental or control group. The experimental group comprised 52 patients who received the Signature CT-based implant positioning system, and the control group consisted of 60 patients with conventional instrumentation. Clinical outcomes were evaluated with the KSS scale, WOMAC scale, and VAS scales to assess knee pain severity and patient satisfaction with the surgery. Specified in-hospital data were recorded. Patients were followed up for 12 months. At one year after surgery, there were no statistically significant differences between groups with respect to clinical outcomes and in-hospital data, including operative time, blood loss, hospital length of stay, intraoperative observations, and postoperative complications. Further high-quality investigations of various patient-specific systems and longer follow-up may be helpful in assessing their utility for TKA.

  6. Manual versus automated blood sampling

    DEFF Research Database (Denmark)

    Teilmann, A C; Kalliokoski, Otto; Sørensen, Dorte B

    2014-01-01

    Facial vein (cheek blood) and caudal vein (tail blood) phlebotomy are two commonly used techniques for obtaining blood samples from laboratory mice, while automated blood sampling through a permanent catheter is a relatively new technique in mice. The present study compared physiological parameters......, glucocorticoid dynamics as well as the behavior of mice sampled repeatedly for 24 h by cheek blood, tail blood or automated blood sampling from the carotid artery. Mice subjected to cheek blood sampling lost significantly more body weight, had elevated levels of plasma corticosterone, excreted more fecal...... corticosterone metabolites, and expressed more anxious behavior than did the mice of the other groups. Plasma corticosterone levels of mice subjected to tail blood sampling were also elevated, although less significantly. Mice subjected to automated blood sampling were less affected with regard to the parameters...

  7. Automated Approaches to RFI Flagging

    Science.gov (United States)

    Garimella, Karthik; Momjian, Emmanuel

    2017-01-01

    It is known that Radio Frequency Interference (RFI) is a major issue in centimeter wavelength radio astronomy. Radio astronomy software packages include tools to excise RFI; both manual and automated utilizing the visibilities (the uv data). Here we present results on an automated RFI flagging approach that utilizes a uv-grid, which is the intermediate product when converting uv data points to an image. It is a well known fact that any signal that appears widespread in a given domain (e.g., image domain) is compact in the Fourier domain (uv-grid domain), i.e., RFI sources that appear as large scale structures (e.g., stripes) in images can be located and flagged using the uv-grid data set. We developed several automated uv-grid based flagging algorithms to detect and excise RFI. These algorithms will be discussed, and results of applying them to measurement sets will be presented.

  8. Automated power management and control

    Science.gov (United States)

    Dolce, James L.

    1991-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. A joint effort between NASA's Office of Aeronautics and Exploration Technology and NASA's Office of Space Station Freedom, it strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. The initial station operation will use ground-based dispatches to perform the necessary command and control tasks. These tasks constitute planning and decision-making activities that strive to eliminate unplanned outages. We perceive an opportunity to help these dispatchers make fast and consistent on-line decisions by automating three key tasks: failure detection and diagnosis, resource scheduling, and security analysis. Expert systems will be used for the diagnostics and for the security analysis; conventional algorithms will be used for the resource scheduling.

  9. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation. Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  10. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation.   Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  11. Automated synthesis of sialylated oligosaccharides

    Directory of Open Access Journals (Sweden)

    Davide Esposito

    2012-09-01

    Full Text Available Sialic acid-containing glycans play a major role in cell-surface interactions with external partners such as cells and viruses. Straightforward access to sialosides is required in order to study their biological functions on a molecular level. Here, automated oligosaccharide synthesis was used to facilitate the preparation of this class of biomolecules. Our strategy relies on novel sialyl α-(2→3 and α-(2→6 galactosyl imidates, which, used in combination with the automated platform, provided rapid access to a small library of conjugation-ready sialosides of biological relevance.

  12. Automation, Labor Productivity and Employment

    DEFF Research Database (Denmark)

    Kromann, Lene; Rose Skaksen, Jan; Sørensen, Anders

    CEBR fremlægger nu den første rapport i AIM-projektet. Rapporten viser, at der er gode muligheder for yderligere automation i en stor del af de danske fremstillingsvirksomheder. For i dag er gennemsnitligt kun omkring 30 % af virksomhedernes produktionsprocesser automatiserede. Navnlig procesområ......CEBR fremlægger nu den første rapport i AIM-projektet. Rapporten viser, at der er gode muligheder for yderligere automation i en stor del af de danske fremstillingsvirksomheder. For i dag er gennemsnitligt kun omkring 30 % af virksomhedernes produktionsprocesser automatiserede. Navnlig...

  13. Design automation, languages, and simulations

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    As the complexity of electronic systems continues to increase, the micro-electronic industry depends upon automation and simulations to adapt quickly to market changes and new technologies. Compiled from chapters contributed to CRC's best-selling VLSI Handbook, this volume covers a broad range of topics relevant to design automation, languages, and simulations. These include a collaborative framework that coordinates distributed design activities through the Internet, an overview of the Verilog hardware description language and its use in a design environment, hardware/software co-design, syst

  14. Agile Data: Automating database refactorings

    Directory of Open Access Journals (Sweden)

    Bruno Xavier

    2014-09-01

    Full Text Available This paper discusses an automated approach to database change management throughout the companies’ development workflow. By using automated tools, companies can avoid common issues related to manual database deployments. This work was motivated by analyzing usual problems within organizations, mostly originated from manual interventions that may result in systems disruptions and production incidents. In addition to practices of continuous integration and continuous delivery, the current paper describes a case study in which a suggested pipeline is implemented in order to reduce the deployment times and decrease incidents due to ineffective data controlling.

  15. Design Automation in Synthetic Biology.

    Science.gov (United States)

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks.

  16. Network based automation for SMEs

    DEFF Research Database (Denmark)

    Shahabeddini Parizi, Mohammad; Radziwon, Agnieszka

    2017-01-01

    could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... automation solutions. The empirical data collection involved application of a combination of comparative case study method with action research elements. This article provides an outlook over the challenges in implementing technological improvements and the way how it could be resolved in collaboration......, this paper develops and discusses a set of guidelines for systematic productivity improvement within an innovative collaboration in regards to automation processes in SMEs....

  17. Automated Ply Inspection (API) for AFP Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Automated Ply Inspection (API) system autonomously inspects layups created by high speed automated fiber placement (AFP) machines. API comprises a high accuracy...

  18. A multifaceted comparison of ArcGIS and MapMarker for automated geocoding

    OpenAIRE

    Sanjaya Kumar; Ming Liu; Syni-An Hwang

    2012-01-01

    Geocoding is increasingly being used for public health surveillance and spatial epidemiology studies. Public health departments in the United States of America (USA) often use this approach to investigate disease outbreaks and clusters or assign health records to appropriate geographic units. We evaluated two commonly used geocoding software packages, ArcGIS and MapMarker, for automated geocoding of a large number of residential addresses from health administrative data in New York State, USA...

  19. Interdisciplinarity and Ubiquitous Internet Technologies in Support of Automation

    OpenAIRE

    Eduard Babulak Prof., Ph.D., P.Eng., Eur.Ing., C.Eng.,

    2006-01-01

    The Telecommunications and Internet Technologies have evolved dramatically during the last decade, laying solid foundation for the future generation of the Ubiquitous Internet access, omnipresent web technologies and ultimate automated information cyberspace. Recent technological advancements in the areas of global mobility, wireless technologies and miniaturization are driven by the economic and social prosperity. The current state of the art in Differentiated Networks, Health Informatics, A...

  20. Ask the experts: automation: part I.

    Science.gov (United States)

    Allinson, John L; Blick, Kenneth E; Cohen, Lucinda; Higton, David; Li, Ming

    2013-08-01

    Bioanalysis invited a selection of leading researchers to express their views on automation in the bioanalytical laboratory. The topics discussed include the challenges that the modern bioanalyst faces when integrating automation into existing drug-development processes, the impact of automation and how they envision the modern bioanalytical laboratory changing in the near future. Their enlightening responses provide a valuable insight into the impact of automation and the future of the constantly evolving bioanalytical laboratory.

  1. Automated Integrated Analog Filter Design Issues

    OpenAIRE

    2015-01-01

    An analysis of modern automated integrated analog circuits design methods and their use in integrated filter design is done. Current modern analog circuits automated tools are based on optimization algorithms and/or new circuit generation methods. Most automated integrated filter design methods are only suited to gmC and switched current filter topologies. Here, an algorithm for an active RC integrated filter design is proposed, that can be used in automated filter designs. The algorithm is t...

  2. 75 FR 64737 - Automated Commercial Environment (ACE): Announcement of a National Customs Automation Program...

    Science.gov (United States)

    2010-10-20

    ... National Customs Automation Program Test of Automated Manifest Capabilities for Ocean and Rail Carriers... Protection (CBP) will be conducting a National Customs Automation Program test concerning the transmission of...: Background The National Customs Automation Program (NCAP) was established in Subtitle B of Title...

  3. 76 FR 69755 - National Customs Automation Program Test Concerning Automated Commercial Environment (ACE...

    Science.gov (United States)

    2011-11-09

    ... SECURITY U.S. Customs and Border Protection National Customs Automation Program Test Concerning Automated... Protection's (CBP's) plan to conduct a National Customs Automation Program (NCAP) test concerning Automated..., at susan.maskell@dhs.gov . SUPPLEMENTARY INFORMATION: Background The National Customs...

  4. 76 FR 34246 - Automated Commercial Environment (ACE); Announcement of National Customs Automation Program Test...

    Science.gov (United States)

    2011-06-13

    ... National Customs Automation Program Test of Automated Procedures for In-Bond Shipments Transiting Through....S. Customs and Border Protection (CBP) plans to conduct a National Customs Automation Program (NCAP...@dhs.gov . SUPPLEMENTARY INFORMATION: Background The National Customs Automation Program (NCAP)...

  5. Automated Analysis of Infinite Scenarios

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2005-01-01

    The security of a network protocol crucially relies on the scenario in which the protocol is deployed. This paper describes syntactic constructs for modelling network scenarios and presents an automated analysis tool, which can guarantee that security properties hold in all of the (infinitely many...

  6. Automated Orientation of Aerial Images

    DEFF Research Database (Denmark)

    Høhle, Joachim

    2002-01-01

    Methods for automated orientation of aerial images are presented. They are based on the use of templates, which are derived from existing databases, and area-based matching. The characteristics of available database information and the accuracy requirements for map compilation and orthoimage...

  7. Automated minimax design of networks

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans; Voldby, J

    1975-01-01

    A new gradient algorithm for the solution of nonlinear minimax problems has been developed. The algorithm is well suited for automated minimax design of networks and it is very simple to use. It compares favorably with recent minimax and leastpth algorithms. General convergence problems related...

  8. Automating Workflow using Dialectical Argumentation

    NARCIS (Netherlands)

    Urovi, Visara; Bromuri, Stefano; McGinnis, Jarred; Stathis, Kostas; Omicini, Andrea

    2008-01-01

    This paper presents a multi-agent framework based on argumentative agent technology for the automation of the workflow selection and execution. In this framework, workflow selection is coordinated by agent interactions governed by the rules of a dialogue game whose purpose is to evaluate the workflo

  9. Teacherbot: Interventions in Automated Teaching

    Science.gov (United States)

    Bayne, Sian

    2015-01-01

    Promises of "teacher-light" tuition and of enhanced "efficiency" via the automation of teaching have been with us since the early days of digital education, sometimes embraced by academics and institutions, and sometimes resisted as a set of moves which are damaging to teacher professionalism and to the humanistic values of…

  10. Automated monitoring of milk meters

    NARCIS (Netherlands)

    Mol, de R.M.; Andre, G.

    2009-01-01

    Automated monitoring might be an alternative for periodic checking of electronic milk meters. A computer model based on Dynamic Linear Modelling (DLM) has been developed for this purpose. Two situations are distinguished: more milking stands in the milking parlour and only one milking stand in the m

  11. Automated Accounting. Payroll. Instructor Module.

    Science.gov (United States)

    Moses, Duane R.

    This teacher's guide was developed to assist business instructors using Dac Easy Accounting Payroll Version 3.0 edition software in their accounting programs. The module contains assignment sheets and job sheets designed to enable students to master competencies identified in the area of automated accounting--payroll. Basic accounting skills are…

  12. Automated Solar-Array Assembly

    Science.gov (United States)

    Soffa, A.; Bycer, M.

    1982-01-01

    Large arrays are rapidly assembled from individual solar cells by automated production line developed for NASA's Jet Propulsion Laboratory. Apparatus positions cells within array, attaches interconnection tabs, applies solder flux, and solders interconnections. Cells are placed in either straight or staggered configurations and may be connected either in series or in parallel. Are attached at rate of one every 5 seconds.

  13. Automation, Performance and International Competition

    DEFF Research Database (Denmark)

    Kromann, Lene; Sørensen, Anders

    This paper presents new evidence on trade‐induced automation in manufacturing firms using unique data combining a retrospective survey that we have assembled with register data for 2005‐2010. In particular, we establish a causal effect where firms that have specialized in product types for which ...

  14. Automation of Space Inventory Management

    Science.gov (United States)

    Fink, Patrick W.; Ngo, Phong; Wagner, Raymond; Barton, Richard; Gifford, Kevin

    2009-01-01

    This viewgraph presentation describes the utilization of automated space-based inventory management through handheld RFID readers and BioNet Middleware. The contents include: 1) Space-Based INventory Management; 2) Real-Time RFID Location and Tracking; 3) Surface Acoustic Wave (SAW) RFID; and 4) BioNet Middleware.

  15. Feasibility Analysis of Crane Automation

    Institute of Scientific and Technical Information of China (English)

    DONG Ming-xiao; MEI Xue-song; JIANG Ge-dong; ZHANG Gui-qing

    2006-01-01

    This paper summarizes the modeling methods, open-loop control and closed-loop control techniques of various forms of cranes, worldwide, and discusses their feasibilities and limitations in engineering. Then the dynamic behaviors of cranes are analyzed. Finally, we propose applied modeling methods and feasible control techniques and demonstrate the feasibilities of crane automation.

  16. Automated Clustering of Similar Amendments

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The Italian Senate is clogged by computer-generated amendments. This talk will describe a simple strategy to cluster them in an automated fashion, so that the appropriate Senate procedures can be used to get rid of them in one sweep.

  17. Adaptation : A Partially Automated Approach

    NARCIS (Netherlands)

    Manjing, Tham; Bukhsh, F.A.; Weigand, H.

    2014-01-01

    This paper showcases the possibility of creating an adaptive auditing system. Adaptation in an audit environment need human intervention at some point. Based on a case study this paper focuses on automation of adaptation process. It is divided into solution design and validation parts. The artifact

  18. Designing automated handheld navigation support

    NARCIS (Netherlands)

    Uluca, D.; Streefkerk, J.W.; Sciacchitano, B.; McCrickard, D.S.

    2008-01-01

    Map usage on handheld devices suffers from limited screen size and the minimal attention that users can dedicate to them in mobile situations. This work examines effects of automating navigation features like zooming and panning as well as other features such as rotation, path finding and artifact r

  19. Illinois: Library Automation and Connectivity Initiatives.

    Science.gov (United States)

    Lamont, Bridget L.; Bloomberg, Kathleen L.

    1996-01-01

    Discussion of library automation in Illinois focuses on ILLINET, the Illinois Library and Information Network. Topics include automated resource sharing; ILLINET's online catalog; regional library system automation; community networking and public library technology development; telecommunications initiatives; electronic access to state government…

  20. You're a What? Automation Technician

    Science.gov (United States)

    Mullins, John

    2010-01-01

    Many people think of automation as laborsaving technology, but it sure keeps Jim Duffell busy. Defined simply, automation is a technique for making a device run or a process occur with minimal direct human intervention. But the functions and technologies involved in automated manufacturing are complex. Nearly all functions, from orders coming in…

  1. Library Automation in the Netherlands and Pica.

    Science.gov (United States)

    Bossers, Anton; Van Muyen, Martin

    1984-01-01

    Describes the Pica Library Automation Network (originally the Project for Integrated Catalogue Automation), which is based on a centralized bibliographic database. Highlights include the Pica conception of library automation, online shared cataloging system, circulation control system, acquisition system, and online Dutch union catalog with…

  2. Does Automated Feedback Improve Writing Quality?

    Science.gov (United States)

    Wilson, Joshua; Olinghouse, Natalie G.; Andrada, Gilbert N.

    2014-01-01

    The current study examines data from students in grades 4-8 who participated in a statewide computer-based benchmark writing assessment that featured automated essay scoring and automated feedback. We examined whether the use of automated feedback was associated with gains in writing quality across revisions to an essay, and with transfer effects…

  3. Automating Shallow Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy

  4. Automated quantification of aligned collagen for human breast carcinoma prognosis

    Directory of Open Access Journals (Sweden)

    Jeremy S Bredfeldt

    2014-01-01

    Full Text Available Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries.

  5. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  6. SU-E-T-69: Cloud-Based Monte Carlo Patient-Specific Quality Assurance (QA) Method for Volumetric Modulated Arc Therapy (VMAT)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X; Xing, L; Luxton, G; Bush, K [Stanford University, Palo Alto, CA (United States); Azcona, J [Clinica Universidad de Navarra, Pamplona (Spain)

    2014-06-01

    Purpose: Patient-specific QA for VMAT is incapable of providing full 3D dosimetric information and is labor intensive in the case of severe heterogeneities or small-aperture beams. A cloud-based Monte Carlo dose reconstruction method described here can perform the evaluation in entire 3D space and rapidly reveal the source of discrepancies between measured and planned dose. Methods: This QA technique consists of two integral parts: measurement using a phantom containing array of dosimeters, and a cloud-based voxel Monte Carlo algorithm (cVMC). After a VMAT plan was approved by a physician, a dose verification plan was created and delivered to the phantom using our Varian Trilogy or TrueBeam system. Actual delivery parameters (i.e., dose fraction, gantry angle, and MLC at control points) were extracted from Dynalog or trajectory files. Based on the delivery parameters, the 3D dose distribution in the phantom containing detector were recomputed using Eclipse dose calculation algorithms (AAA and AXB) and cVMC. Comparison and Gamma analysis is then conducted to evaluate the agreement between measured, recomputed, and planned dose distributions. To test the robustness of this method, we examined several representative VMAT treatments. Results: (1) The accuracy of cVMC dose calculation was validated via comparative studies. For cases that succeeded the patient specific QAs using commercial dosimetry systems such as Delta- 4, MAPCheck, and PTW Seven29 array, agreement between cVMC-recomputed, Eclipse-planned and measured doses was obtained with >90% of the points satisfying the 3%-and-3mm gamma index criteria. (2) The cVMC method incorporating Dynalog files was effective to reveal the root causes of the dosimetric discrepancies between Eclipse-planned and measured doses and provide a basis for solutions. Conclusion: The proposed method offers a highly robust and streamlined patient specific QA tool and provides a feasible solution for the rapidly increasing use of VMAT

  7. Semantics-based Automated Web Testing

    Directory of Open Access Journals (Sweden)

    Hai-Feng Guo

    2015-08-01

    Full Text Available We present TAO, a software testing tool performing automated test and oracle generation based on a semantic approach. TAO entangles grammar-based test generation with automated semantics evaluation using a denotational semantics framework. We show how TAO can be incorporated with the Selenium automation tool for automated web testing, and how TAO can be further extended to support automated delta debugging, where a failing web test script can be systematically reduced based on grammar-directed strategies. A real-life parking website is adopted throughout the paper to demonstrate the effectivity of our semantics-based web testing approach.

  8. Automation for a base station stability testing

    OpenAIRE

    2016-01-01

    This Batchelor’s thesis was commissioned by Oy LM Ericsson Ab Oulu. The aim of it was to help to investigate and create a test automation solution for the stability testing of the LTE base station. The main objective was to create a test automation for a predefined test set. This test automation solution had to be created for specific environments and equipment. This work included creating the automation for the test cases and putting them to daily test automation jobs. The key factor...

  9. Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS insertion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Maoqing Fu

    Full Text Available BACKGROUND: With the properties of three-column fixation and anterior-approach-only procedure, anterior transpedicular screw (ATPS is ideal for severe multilevel traumatic cervical instabilities. However, the accurate insertion of ATPS remains challenging. Here we constructed a patient-specific biocompatible drill template and evaluated its accuracy in assisting ATPS insertion. METHODS: After ethical approval, 24 formalin-preserved cervical vertebrae (C2-C7 were CT scanned. 3D reconstruction models of cervical vertebra were obtained with 2-mm-diameter virtual pin tracts at the central pedicles. The 3D models were used for rapid prototyping (RP printing. A 2-mm-diameter Kirschner wire was then inserted into the pin tract of the RP model before polymethylmethacrylate was used to construct the patient-specific biocompatible drill template. After removal of the anterior soft tissue, a 2-mm-diameter Kirschner wire was inserted into the cervical pedicle with the assistance of drill template. Cadaveric cervical spines with pin tracts were subsequently scanned using the same CT scanner. A 3D reconstruction was performed of the scanned spines to get 3D models of the vertebrae containing the actual pin tracts. The deviations were calculated between 3D models with virtual and actual pin tracts at the middle point of the cervical pedicle. 3D models of 3.5 mm-diameter screws were used in simulated insertion to grade the screw positions. FINDINGS: The patient-specific biocompatible drill template was constructed to assist ATPS insertion successfully. There were no significant differences between medial/lateral deviations (P = 0.797 or between superior/inferior deviations (P = 0.741. The absolute deviation values were 0.82±0.75 mm and 1.10±0.96 mm in axial and sagittal planes, respectively. In the simulated insertion, the screws in non-critical position were 44/48 (91.7%. CONCLUSIONS: The patient-specific drill template is biocompatible, easy

  10. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    DEFF Research Database (Denmark)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto;

    2013-01-01

    Abstract Purpose. Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from...... and pelvis scan were simulated within 2% statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per...

  11. Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning

    Science.gov (United States)

    Geng, Changran; Moteabbed, Maryam; Xie, Yunhe; Schuemann, Jan; Yock, Torunn; Paganetti, Harald

    2016-01-01

    The purpose of this study was to compare the radiation-induced second cancer risks for in-field and out-of-field organs and tissues for pencil beam scanning (PBS) and passive scattering proton therapy (PPT) and assess the impact of adding patient-specific apertures to sharpen the penumbra in pencil beam scanning for pediatric brain tumor patients. Five proton therapy plans were created for each of three pediatric patients using PPT as well as PBS with two spot sizes (average sigma of ~17 mm and ~8 mm at isocenter) and choice of patient-specific apertures. The lifetime attributable second malignancy risks for both in-field and out-of-field tissues and organs were compared among five delivery techniques. The risk for in-field tissues was calculated using the organ equivalent dose, which is determined by the dose volume histogram. For out-of-field organs, the organ-specific dose equivalent from secondary neutrons was calculated using Monte Carlo and anthropomorphic pediatric phantoms. We find that either for small spot size PBS or for large spot size PBS, a patient-specific aperture reduces the in-field cancer risk to values lower than that for PPT. The reduction for large spot sizes (on average 43%) is larger than for small spot sizes (on average 21%). For out-of-field organs, the risk varies only marginally by employing a patient-specific aperture (on average from  -2% to 16% with increasing distance from the tumor), but is still one to two orders of magnitude lower than that for PPT. In conclusion, when pencil beam spot sizes are large, the addition of apertures to sharpen the penumbra decreases the in-field radiation-induced secondary cancer risk. There is a slight increase in out-of-field cancer risk as a result of neutron scatter from the aperture, but this risk is by far outweighed by the in-field risk benefit from using an aperture with a large PBS spot size. In general, the risk for developing a second malignancy in out-of-field organs for PBS remains

  12. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  13. An Overview of Moonlight Applications Test Automation

    Directory of Open Access Journals (Sweden)

    Appasami Govindasamy

    2010-09-01

    Full Text Available Now-a-days web applications are developed by new technologies like Moonlight, Silverlight, JAVAFX, FLEX, etc. Silverlight is Microsoft's cross platform runtime and development technology for running Web-based multimedia applications in windows platform. Moonlight is an open-source implementation of the Silverlight development platform for Linux and other Unix/X11-based operating systems. It is a new technology in .Net 4.0 to develop rich interactive and attractive platform independent web applications. User Interface Test Automation is very essential for Software industries to reduce test time, cost and man power. Moonlight is new .NET technology to develop rich interactive Internet applications with the collaboration of Novel Corporation. Testing these kinds of applications are not so easy to test, especially the User interface test automation is very difficult. Software test automation has the capability to decrease the overall cost of testing and improve software quality, but most testing organizations have not been able to achieve the full potential of test automation. Many groups that implement test automation programs run into a number of common pitfalls. These problems can lead to test automation plans being completely scrapped, with the tools purchased for test automation becoming expensive. Often teams continue their automation effort, burdened with huge costs in maintaining large suites of automated test scripts. This paper will first discuss some of the key benefits of software test automation, and then examine the most common techniques used to implement software test automation of Moonlight Applications Test Automation. It will then discuss test automation and their potential. Finally, it will do test automation.

  14. Automated illustration of patients instructions.

    Science.gov (United States)

    Bui, Duy; Nakamura, Carlos; Bray, Bruce E; Zeng-Treitler, Qing

    2012-01-01

    A picture can be a powerful communication tool. However, creating pictures to illustrate patient instructions can be a costly and time-consuming task. Building on our prior research in this area, we developed a computer application that automatically converts text to pictures using natural language processing and computer graphics techniques. After iterative testing, the automated illustration system was evaluated using 49 previously unseen cardiology discharge instructions. The completeness of the system-generated illustrations was assessed by three raters using a three-level scale. The average inter-rater agreement for text correctly represented in the pictograph was about 66 percent. Since illustration in this context is intended to enhance rather than replace text, these results support the feasibility of conducting automated illustration.

  15. Advances in Automation and Robotics

    CERN Document Server

    International conference on Automation and Robotics ICAR2011

    2012-01-01

    The international conference on Automation and Robotics-ICAR2011 is held during December 12-13, 2011 in Dubai, UAE. The proceedings of ICAR2011 have been published by Springer Lecture Notes in Electrical Engineering, which include 163 excellent papers selected from more than 400 submitted papers.   The conference is intended to bring together the researchers and engineers/technologists working in different aspects of intelligent control systems and optimization, robotics and automation, signal processing, sensors, systems modeling and control, industrial engineering, production and management.   This part of proceedings includes 81 papers contributed by many researchers in relevant topic areas covered at ICAR2011 from various countries such as France, Japan, USA, Korea and China etc.     Many papers introduced their advanced research work recently; some of them gave a new solution to problems in the field, with powerful evidence and detail demonstration. Others stated the application of their designed and...

  16. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch

    1997-01-01

    Measurements of corrosion rates and other parameters connected with corrosion processes are important, first as indicators of the corrosion resistance of metallic materials and second because such measurements are based on general and fundamental physical, chemical, and electrochemical relations....... Hence improvements and innovations in methods applied in corrosion research are likeliy to benefit basic disciplines as well. A method for corrosion measurements can only provide reliable data if the beckground of the method is fully understood. Failure of a method to give correct data indicates a need...... to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically. Automation...

  17. CCD characterization and measurements automation

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V., E-mail: kotov@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Frank, J.; Kotov, A.I. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kubanek, P. [Institute of Physics of the Academy of Sciences, Prague, CZ 18221 (Czech Republic); Image Processing Laboratory, Universidad de Valencia (Spain); O' Connor, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Prouza, M. [Institute of Physics of the Academy of Sciences, Prague, CZ 18221 (Czech Republic); Radeka, V.; Takacs, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2012-12-11

    Modern mosaic cameras have grown both in size and in number of sensors. The required volume of sensor testing and characterization has grown accordingly. For camera projects as large as the LSST, test automation becomes a necessity. A CCD testing and characterization laboratory was built and is in operation for the LSST project. Characterization of LSST study contract sensors has been performed. The characterization process and its automation are discussed, and results are presented. Our system automatically acquires images, populates a database with metadata information, and runs express analysis. This approach is illustrated on {sup 55}Fe data analysis. {sup 55}Fe data are used to measure gain, charge transfer efficiency and charge diffusion. Examples of express analysis results are presented and discussed.

  18. Fully automated (operational) modal analysis

    Science.gov (United States)

    Reynders, Edwin; Houbrechts, Jeroen; De Roeck, Guido

    2012-05-01

    Modal parameter estimation requires a lot of user interaction, especially when parametric system identification methods are used and the modes are selected in a stabilization diagram. In this paper, a fully automated, generally applicable three-stage clustering approach is developed for interpreting such a diagram. It does not require any user-specified parameter or threshold value, and it can be used in an experimental, operational, and combined vibration testing context and with any parametric system identification algorithm. The three stages of the algorithm correspond to the three stages in a manual analysis: setting stabilization thresholds for clearing out the diagram, detecting columns of stable modes, and selecting a representative mode from each column. An extensive validation study illustrates the accuracy and robustness of this automation strategy.

  19. DOLFIN: Automated Finite Element Computing

    CERN Document Server

    Logg, Anders; 10.1145/1731022.1731030

    2011-01-01

    We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.

  20. Patient-specific modeling of facial soft tissue based on radial basis functions transformations of a standard three-dimensional finite element model

    Institute of Scientific and Technical Information of China (English)

    LOU Hang-di; CHEN Si; CHEN Gui; XU Tian-min; RONG Qi-guo

    2012-01-01

    Background An important purpose of orthodontic treatment is to gain the harmonic soft tissue profile.This article describes a novel way to build patient-specific models of facial soft tissues by transforming a standard finite element(FE)model into one that has two stages:a first transformation and a second transformation,so as to evaluate the facial soft tissue changes after orthodontic treatment for individual patients.Methods The radial basis functions(RBFs)interpolation method was used to transform the standard FE model into a patient-specific one based on landmark points.A combined strategy for selecting landmark points was developed in this study:manually for the first transformation and automatically for the second transformation.Four typical patients were chosen to validate the effectiveness of this transformation method.Results The results showed good similarity between the transformed FE models and the computed tomography(CT)models.The absolute values of average deviations were in the range of 0.375-0.700 mm at the lip-mouth region after the first transformation,and they decreased to a range of 0.116-0.286 mm after the second transformation.Conclusions The modeling results show that the second transformation resulted in enhanced accuracy compared to the first transformation.Because of these results,a third transformation is usually not necessary.

  1. Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms

    Science.gov (United States)

    O'Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  2. Evaluation of a patient-specific cost function to predict the influence of foot path on the knee adduction torque during gait.

    Science.gov (United States)

    Fregly, Benjamin J; Reinbolt, Jeffery A; Chmielewski, Terese L

    2008-02-01

    A large external knee adduction torque during gait has been correlated with the progression of knee osteoarthritis (OA). Though foot path changes (e.g. toeing out) can reduce the adduction torque, no method currently exists to predict whether an optimal foot path exists for a specific patient. This study evaluates a patient-specific optimization cost function to predict how foot path changes influence both adduction torque peaks. Video motion and ground reaction data were collected from a patient with knee OA performing normal, toe out, and wide stance gait. Joint and inertial parameters in a dynamic, 27 degree-of-freedom, full-body gait model were calibrated to the patient's normal gait data. The model was then used in gait optimizations that predicted how the patient's adduction torque peaks would change due to changes in foot path. The cost function tracked the patient's normal gait data using weight factors calibrated to toe out gait and tested using wide stance gait. For both gait motions, the same cost function weights predicted the change in both adduction torque peaks to within 7% error. With further development, this approach may eventually permit the design of patient-specific rehabilitation procedures such as an optimal foot path for patients with knee OA.

  3. Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity.

    Science.gov (United States)

    Anderson, Donald D; Goldsworthy, Jane K; Shivanna, Kiran; Grosland, Nicole M; Pedersen, Douglas R; Thomas, Thaddeus P; Tochigi, Yuki; Marsh, J Lawrence; Brown, Thomas D

    2006-06-01

    A contact finite element (FE) formulation is introduced, amenable to patient-specific analysis of cumulative cartilage mechano-stimulus attributable to habitual functional activity. CT scans of individual human ankles are segmented to delineate bony margins. Each bone surface is projected outward to create a second surface, and the intervening volume is then meshed with continuum hexahedral elements. The tibia is positioned relative to the talus into a weight-bearing apposition. The articular members are first engaged under light preload, then plantar-/dorsi-flexion kinematics and resultant loadings are input for serial FE solutions at 13 instants of the stance phase of level walking gait. Cartilage stress histories are post-processed to recover distributions of cumulative stress-time mechano-stimulus, a metric of degeneration propensity. Consistency in computed contact stress exposures presented for seven intact ankles stood in contrast to the higher magnitude and more focal exposures in an incongruously reduced tibial plafond fracture. This analytical procedure provides patient-specific estimates of degeneration propensity due to various mechanical abnormalities, and it provides a platform from which the mechanical efficacy of alternative surgical interventions can be estimated.

  4. Automated Tools for Rapid Prototyping

    Institute of Scientific and Technical Information of China (English)

    潘锦平

    1991-01-01

    An automated environment is presented which aids the software engineers in developing data processing systems by using rapid prototyping techniques.The environment is being developed on VAX station.It can render good support to the specification of the requirements and the rapid creation of prototype.The goal,the methodology,the general structure of the environment and two sub-systems are discussed.

  5. Automated Analysis of Corpora Callosa

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Davies, Rhodri H.

    2003-01-01

    This report describes and evaluates the steps needed to perform modern model-based interpretation of the corpus callosum in MRI. The process is discussed from the initial landmark-free contours to full-fledged statistical models based on the Active Appearance Models framework. Topics treated incl...... include landmark placement, background modelling and multi-resolution analysis. Preliminary quantitative and qualitative validation in a cross-sectional study show that fully automated analysis and segmentation of the corpus callosum are feasible....

  6. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  7. Automated Discovery of Inductive Theorems

    OpenAIRE

    McCasland, Roy; Bundy, Alan; Serge, Autexier

    2007-01-01

    Inductive mathematical theorems have, as a rule, historically been quite difficult to prove – both for mathematics students and for auto- mated theorem provers. That said, there has been considerable progress over the past several years, within the automated reasoning community, towards proving some of these theorems. However, little work has been done thus far towards automatically discovering them. In this paper we present our methods of discovering (as well as proving) inductive theorems, ...

  8. Algorithms Could Automate Cancer Diagnosis

    Science.gov (United States)

    Baky, A. A.; Winkler, D. G.

    1982-01-01

    Five new algorithms are a complete statistical procedure for quantifying cell abnormalities from digitized images. Procedure could be basis for automated detection and diagnosis of cancer. Objective of procedure is to assign each cell an atypia status index (ASI), which quantifies level of abnormality. It is possible that ASI values will be accurate and economical enough to allow diagnoses to be made quickly and accurately by computer processing of laboratory specimens extracted from patients.

  9. Automated Test Requirement Document Generation

    Science.gov (United States)

    1987-11-01

    DIAGNOSTICS BASED ON THE PRINCIPLES OF ARTIFICIAL INTELIGENCE ", 1984 International Test Conference, 01Oct84, (A3, 3, Cs D3, E2, G2, H2, 13, J6, K) 425...j0O GLOSSARY OF ACRONYMS 0 ABBREVIATION DEFINITION AFSATCOM Air Force Satellite Communication Al Artificial Intelligence ASIC Application Specific...In-Test Equipment (BITE) and AI ( Artificial Intelligence) - Expert Systems - need to be fully applied before a completely automated process can be

  10. Adaptation: A Partially Automated Approach

    OpenAIRE

    Manjing, Tham; Bukhsh, F.A.; Weigand, H.

    2014-01-01

    This paper showcases the possibility of creating an adaptive auditing system. Adaptation in an audit environment need human intervention at some point. Based on a case study this paper focuses on automation of adaptation process. It is divided into solution design and validation parts. The artifact design is developed around import procedures of M-company. An overview of the artefact is discussed in detail to fully describes the adaptation mechanism with automatic adjustment for compliance re...

  11. Personnel Aspects of Library Automation

    Directory of Open Access Journals (Sweden)

    David C. Weber

    1971-03-01

    Full Text Available Personnel of an automation project is discussed in terms of talents needed in the design team, their qualifications and organization, the attitudes to be fostered, and the communication and documentation that is important for effective teamwork. Discussion is based on Stanford University's experience with Protect BALLOTS and includes comments on some specific problems which have personnel importance and may be faced in major design efforts.

  12. Home automation in the workplace.

    Science.gov (United States)

    McCormack, J E; Tello, S F

    1994-01-01

    Environmental control units and home automation devices contribute to the independence and potential of individuals with disabilities, both at work and at home. Devices currently exist that can assist people with physical, cognitive, and sensory disabilities to control lighting, appliances, temperature, security, and telephone communications. This article highlights several possible applications for these technologies and discusses emerging technologies that will increase the benefits these devices offer people with disabilities.

  13. Automated bioacoustic identification of species

    Directory of Open Access Journals (Sweden)

    David Chesmore

    2004-06-01

    Full Text Available Research into the automated identification of animals by bioacoustics is becoming more widespread mainly due to difficulties in carrying out manual surveys. This paper describes automated recognition of insects (Orthoptera using time domain signal coding and artificial neural networks. Results of field recordings made in the UK in 2002 are presented which show that it is possible to accurately recognize 4 British Orthoptera species in natural conditions under high levels of interference. Work is under way to increase the number of species recognized.Pesquisas sobre a identificação automatizada de animais através da bioacústica estão se ampliando, principalmente em vista das dificuldades para realizar levantamentos diretos. Este artigo descreve o reconhecimento automático de insetos Orthoptera utilizando a codificação de sinal no domínio temporal e redes neurais artificiais. Resultados de registros sonoros feitos no campo no Reino Unido em 2002 são apresentados, mostrando ser possível reconhecer corretamente 4 espécies britânicas de Orthoptera em condições naturais com altos níveis de interferências. Estão em andamento trabalhos para aumentar o número de espécies identificadas.

  14. Automated Research Impact Assessment: A New Bibliometrics Approach.

    Science.gov (United States)

    Drew, Christina H; Pettibone, Kristianna G; Finch, Fallis Owen; Giles, Douglas; Jordan, Paul

    2016-03-01

    As federal programs are held more accountable for their research investments, The National Institute of Environmental Health Sciences (NIEHS) has developed a new method to quantify the impact of our funded research on the scientific and broader communities. In this article we review traditional bibliometric analyses, address challenges associated with them, and describe a new bibliometric analysis method, the Automated Research Impact Assessment (ARIA). ARIA taps into a resource that has only rarely been used for bibliometric analyses: references cited in "important" research artifacts, such as policies, regulations, clinical guidelines, and expert panel reports. The approach includes new statistics that science managers can use to benchmark contributions to research by funding source. This new method provides the ability to conduct automated impact analyses of federal research that can be incorporated in program evaluations. We apply this method to several case studies to examine the impact of NIEHS funded research.

  15. Health Security Intelligence: Assessing the Nascent Public Health Capability

    Science.gov (United States)

    2012-03-01

    Information Sharing System MOU Memorandum of Understanding NBIC National Biosurveillance Integration Center NCMI National Center for...definition, have come to the fore in the literature, biosurveillance and health security. Biosurveillance , as a term, is too limited to provide the...purposes. The Government Accountability Office (GAO) in a 2006 report on public health infrastructure described biosurveillance as, “…automated

  16. Operator versus computer control of adaptive automation

    Science.gov (United States)

    Hilburn, Brian; Molloy, Robert; Wong, Dick; Parasuraman, Raja

    1993-01-01

    Adaptive automation refers to real-time allocation of functions between the human operator and automated subsystems. The article reports the results of a series of experiments whose aim is to examine the effects of adaptive automation on operator performance during multi-task flight simulation, and to provide an empirical basis for evaluations of different forms of adaptive logic. The combined results of these studies suggest several things. First, it appears that either excessively long, or excessively short, adaptation cycles can limit the effectiveness of adaptive automation in enhancing operator performance of both primary flight and monitoring tasks. Second, occasional brief reversions to manual control can counter some of the monitoring inefficiency typically associated with long cycle automation, and further, that benefits of such reversions can be sustained for some time after return to automated control. Third, no evidence was found that the benefits of such reversions depend on the adaptive logic by which long-cycle adaptive switches are triggered.

  17. How to assess sustainability in automated manufacturing

    DEFF Research Database (Denmark)

    Dijkman, Teunis Johannes; Rödger, Jan-Markus; Bey, Niki

    2015-01-01

    The aim of this paper is to describe how sustainability in automation can be assessed. The assessment method is illustrated using a case study of a robot. Three aspects of sustainability assessment in automation are identified. Firstly, we consider automation as part of a larger system...... that fulfills the market demand for a given functionality. Secondly, three aspects of sustainability have to be assessed: environment, economy, and society. Thirdly, automation is part of a system with many levels, with different actors on each level, resulting in meeting the market demand. In this system......, (sustainability) specifications move top-down, which helps avoiding sub-optimization and problem shifting. From these three aspects, sustainable automation is defined as automation that contributes to products that fulfill a market demand in a more sustainable way. The case study presents the carbon footprints...

  18. Laboratory automation and LIMS in forensics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hansen, Anders Johannes; Morling, Niels

    2013-01-01

    Implementation of laboratory automation and LIMS in a forensic laboratory enables the laboratory, to standardize sample processing. Automated liquid handlers can increase throughput and eliminate manual repetitive pipetting operations, known to result in occupational injuries to the technical staff....... Furthermore, implementation of automated liquid handlers reduces the risk of sample misplacement. A LIMS can efficiently control the sample flow through the laboratory and manage the results of the conducted tests for each sample. Integration of automated liquid handlers with a LIMS provides the laboratory...... with the tools required for setting up automated production lines of complex laboratory processes and monitoring the whole process and the results. Combined, this enables processing of a large number of samples. Selection of the best automated solution for an individual laboratory should be based on user...

  19. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance.

    Science.gov (United States)

    Morganti, S; Brambilla, N; Petronio, A S; Reali, A; Bedogni, F; Auricchio, F

    2016-08-16

    Prosthesis positioning in transcatheter aortic valve implantation procedures represents a crucial aspect for procedure success as demonstrated by many recent studies on this topic. Possible complications, device performance, and, consequently, also long-term durability are highly affected by the adopted prosthesis placement strategy. In the present work, we develop a computational finite element model able to predict device-specific and patient-specific replacement procedure outcomes, which may help medical operators to plan and choose the optimal implantation strategy. We focus in particular on the effects of prosthesis implantation depth and release angle. We start from a real clinical case undergoing Corevalve self-expanding device implantation. Our study confirms the crucial role of positioning in determining valve anchoring, replacement failure due to intra or para-valvular regurgitation, and post-operative device deformation.

  20. 21 CFR 864.5240 - Automated blood cell diluting apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood...

  1. Automated Integrated Analog Filter Design Issues

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2015-07-01

    Full Text Available An analysis of modern automated integrated analog circuits design methods and their use in integrated filter design is done. Current modern analog circuits automated tools are based on optimization algorithms and/or new circuit generation methods. Most automated integrated filter design methods are only suited to gmC and switched current filter topologies. Here, an algorithm for an active RC integrated filter design is proposed, that can be used in automated filter designs. The algorithm is tested by designing an integrated active RC filter in a 65 nm CMOS technology.

  2. Automated High Throughput Drug Target Crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, B

    2005-02-18

    The molecular structures of drug target proteins and receptors form the basis for 'rational' or structure guided drug design. The majority of target structures are experimentally determined by protein X-ray crystallography, which as evolved into a highly automated, high throughput drug discovery and screening tool. Process automation has accelerated tasks from parallel protein expression, fully automated crystallization, and rapid data collection to highly efficient structure determination methods. A thoroughly designed automation technology platform supported by a powerful informatics infrastructure forms the basis for optimal workflow implementation and the data mining and analysis tools to generate new leads from experimental protein drug target structures.

  3. Rapid Automated Mission Planning System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an automated UAS mission planning system that will rapidly identify emergency (contingency) landing sites, manage contingency routing, and...

  4. Extensible and Efficient Automation Through Reflective Tactics

    DEFF Research Database (Denmark)

    Malecha, Gregory; Bengtson, Jesper

    2016-01-01

    automation, where proofs are witnessed by verified decision procedures rather than verbose proof objects. Our techniques center around a verified domain specific language for proving, Rtac, written in Gallina, Coq’s logic. The design of tactics makes it easy to combine them into higher-level automation...... that can be proved sound in a mostly automated way. Furthermore, unlike traditional uses of reflection, Rtac tactics are independent of the underlying problem domain. This allows them to be re-tasked to automate new problems with very little effort. We demonstrate the usability of Rtac through several case...

  5. Patient-specific minimum-dose imaging protocols for statistical image reconstruction in C-arm cone-beam CT using correlated noise injection

    Science.gov (United States)

    Wang, A. S.; Stayman, J. W.; Otake, Y.; Khanna, A. J.; Gallia, G. L.; Siewerdsen, J. H.

    2014-03-01

    Purpose: A new method for accurately portraying the impact of low-dose imaging techniques in C-arm cone-beam CT (CBCT) is presented and validated, allowing identification of minimum-dose protocols suitable to a given imaging task on a patient-specific basis in scenarios that require repeat intraoperative scans. Method: To accurately simulate lower-dose techniques and account for object-dependent noise levels (x-ray quantum noise and detector electronics noise) and correlations (detector blur), noise of the proper magnitude and correlation was injected into the projections from an initial CBCT acquired at the beginning of a procedure. The resulting noisy projections were then reconstructed to yield low-dose preview (LDP) images that accurately depict the image quality at any level of reduced dose in both filtered backprojection and statistical image reconstruction. Validation studies were conducted on a mobile C-arm, with the noise injection method applied to images of an anthropomorphic head phantom and cadaveric torso across a range of lower-dose techniques. Results: Comparison of preview and real CBCT images across a full range of techniques demonstrated accurate noise magnitude (within ~5%) and correlation (matching noise-power spectrum, NPS). Other image quality characteristics (e.g., spatial resolution, contrast, and artifacts associated with beam hardening and scatter) were also realistically presented at all levels of dose and across reconstruction methods, including statistical reconstruction. Conclusion: Generating low-dose preview images for a broad range of protocols gives a useful method to select minimum-dose techniques that accounts for complex factors of imaging task, patient-specific anatomy, and observer preference. The ability to accurately simulate the influence of low-dose acquisition in statistical reconstruction provides an especially valuable means of identifying low-dose limits in a manner that does not rely on a model for the nonlinear

  6. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, K; Corwin, D [Northwestern University, Chicago, IL (United States); Rockne, R

    2014-06-15

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  7. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    Energy Technology Data Exchange (ETDEWEB)

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2015-06-15

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  8. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for (99m)Tc-hynic-Tyr(3)-octreotide Imaging.

    Science.gov (United States)

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of (99m)Tc-hydrazinonicotinamide (hynic)-Tyr(3)-octreotide as a SPECT radiotracer. (99m)Tc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of (99m)hynic-Tyr(3)-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results.

  9. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  10. TH-C-BRD-05: Reducing Proton Beam Range Uncertainty with Patient-Specific CT HU to RSP Calibrations Based On Single-Detector Proton Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Doolan, P [University College London, London (United Kingdom); Massachusetts General Hospital, Boston, MA (United States); Sharp, G; Testa, M; Lu, H-M [Massachusetts General Hospital, Boston, MA (United States); Bentefour, E [Ion Beam Applications (IBA), Louvain la Neuve (Belgium); Royle, G [University College London, London (United Kingdom)

    2014-06-15

    Purpose: Beam range uncertainty in proton treatment comes primarily from converting the patient's X-ray CT (xCT) dataset to relative stopping power (RSP). Current practices use a single curve for this conversion, produced by a stoichiometric calibration based on tissue composition data for average, healthy, adult humans, but not for the individual in question. Proton radiographs produce water-equivalent path length (WEPL) maps, dependent on the RSP of tissues within the specific patient. This work investigates the use of such WEPL maps to optimize patient-specific calibration curves for reducing beam range uncertainty. Methods: The optimization procedure works on the principle of minimizing the difference between the known WEPL map, obtained from a proton radiograph, and a digitally-reconstructed WEPL map (DRWM) through an RSP dataset, by altering the calibration curve that is used to convert the xCT into an RSP dataset. DRWMs were produced with Plastimatch, an in-house developed software, and an optimization procedure was implemented in Matlab. Tests were made on a range of systems including simulated datasets with computed WEPL maps and phantoms (anthropomorphic and real biological tissue) with WEPL maps measured by single detector proton radiography. Results: For the simulated datasets, the optimizer showed excellent results. It was able to either completely eradicate or significantly reduce the root-mean-square-error (RMSE) in the WEPL for the homogeneous phantoms (to zero for individual materials or from 1.5% to 0.2% for the simultaneous optimization of multiple materials). For the heterogeneous phantom the RMSE was reduced from 1.9% to 0.3%. Conclusion: An optimization procedure has been designed to produce patient-specific calibration curves. Test results on a range of systems with different complexities and sizes have been promising for accurate beam range control in patients. This project was funded equally by the Engineering and Physical Sciences

  11. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses.

    Science.gov (United States)

    Chiastra, Claudio; Wu, Wei; Dickerhoff, Benjamin; Aleiou, Ali; Dubini, Gabriele; Otake, Hiromasa; Migliavacca, Francesco; LaDisa, John F

    2016-07-26

    The optimal stenting technique for coronary artery bifurcations is still debated. With additional advances computational simulations can soon be used to compare stent designs or strategies based on verified structural and hemodynamics results in order to identify the optimal solution for each individual's anatomy. In this study, patient-specific simulations of stent deployment were performed for 2 cases to replicate the complete procedure conducted by interventional cardiologists. Subsequent computational fluid dynamics (CFD) analyses were conducted to quantify hemodynamic quantities linked to restenosis. Patient-specific pre-operative models of coronary bifurcations were reconstructed from CT angiography and optical coherence tomography (OCT). Plaque location and composition were estimated from OCT and assigned to models, and structural simulations were performed in Abaqus. Artery geometries after virtual stent expansion of Xience Prime or Nobori stents created in SolidWorks were compared to post-operative geometry from OCT and CT before being extracted and used for CFD simulations in SimVascular. Inflow boundary conditions based on body surface area, and downstream vascular resistances and capacitances were applied at branches to mimic physiology. Artery geometries obtained after virtual expansion were in good agreement with those reconstructed from patient images. Quantitative comparison of the distance between reconstructed and post-stent geometries revealed a maximum difference in area of 20.4%. Adverse indices of wall shear stress were more pronounced for thicker Nobori stents in both patients. These findings verify structural analyses of stent expansion, introduce a workflow to combine software packages for solid and fluid mechanics analysis, and underscore important stent design features from prior idealized studies. The proposed approach may ultimately be useful in determining an optimal choice of stent and position for each patient.

  12. SU-E-T-176: Clinical Experience of Brass Mesh Bolus: Patient-Specific Parameters as Predictors of Measured Dosimetric Effect

    Energy Technology Data Exchange (ETDEWEB)

    Yock, A; Manger, R; Einck, J; Yashar, C; Sanghvi, P; Hattangadi-Gluth, J; Cervino, L [University of California - San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: Increasingly, brass mesh bolus is used to insure dosimetric coverage of the skin for patients treated post-mastectomy for breast cancer. Contribution of photoelectrons from interactions between the bolus and the primary beam increases dose superficially without affecting dose at greater depths. We present our experience using brass mesh bolus – including patients for whom the bolus was dosimetrically inadequate – along with analysis of relevant patient-specific parameters. Methods: Optically-stimulated luminescent dosimeters (OSLDs) were used to determine the effect of the bolus for 15 patients. They were positioned beneath the bolus within the tangent fields at three positions: 1.5–3cm inside the medial and lateral field edges, and midway between the two. All OSLDs were midfield in the cranial-caudal direction. The measurements were compared with patient-specific parameters including separation, chest wall/breast tissue thickness, beam angle incidence, and planned surface dose. Results: The average OSLD measurement at the medial field edge, midfield, and lateral field edge position was 86.8%, 101.8%, and 92.8% of the prescription dose, respectively. A measurement for one patient was low enough (77.0%) to warrant a switch to an alternative type of bolus. Anatomic parameters were analyzed to investigate the low dose in this case, not observed in the planning system. The patient was observed to have a thin chest wall and very oblique beam angles. A second patient was also switched to an alternative type of bolus due to her being high risk and treated with an electron patch that extended onto the breast. Conclusion: Brass mesh bolus increases dose superficially while leaving dose at greater depths unaffected. However, our results suggest that this effect may be insufficient in patients with a thin chest wall or very oblique beam angles. More data and analysis is necessary to proactively identify patients for whom brass mesh bolus is effective.

  13. Automated cognome construction and semi-automated hypothesis generation.

    Science.gov (United States)

    Voytek, Jessica B; Voytek, Bradley

    2012-06-30

    Modern neuroscientific research stands on the shoulders of countless giants. PubMed alone contains more than 21 million peer-reviewed articles with 40-50,000 more published every month. Understanding the human brain, cognition, and disease will require integrating facts from dozens of scientific fields spread amongst millions of studies locked away in static documents, making any such integration daunting, at best. The future of scientific progress will be aided by bridging the gap between the millions of published research articles and modern databases such as the Allen brain atlas (ABA). To that end, we have analyzed the text of over 3.5 million scientific abstracts to find associations between neuroscientific concepts. From the literature alone, we show that we can blindly and algorithmically extract a "cognome": relationships between brain structure, function, and disease. We demonstrate the potential of data-mining and cross-platform data-integration with the ABA by introducing two methods for semi-automated hypothesis generation. By analyzing statistical "holes" and discrepancies in the literature we can find understudied or overlooked research paths. That is, we have added a layer of semi-automation to a part of the scientific process itself. This is an important step toward fundamentally incorporating data-mining algorithms into the scientific method in a manner that is generalizable to any scientific or medical field.

  14. Architecture for Integrated System Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Managing the health of vehicle, crew, and habitat systems is a primary function of flight controllers today. We propose to develop an architecture for automating...

  15. The Case for Software Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Software Health Management (SWHM) is a new field that is concerned with the development of tools and technologies to enable automated detection, diagnosis,...

  16. Home automation on the move:

    OpenAIRE

    Imperl, Bojan; Jeřabek, Boro; Šoštarič, Andrej

    2003-01-01

    In this article we would like to show how an arbitrary home and building electronic system based on the home automation standards such as Xl0 might be addressed and controlled by an appropriate mobile technology. Urge for mobility of users, which may be at the same time either the inhabitants of these homes or even administrators and supporters, is growing. The possibility to control and observe the status of home appliances while being on the move away from home using our mobile phones is be...

  17. Automated analysis of complex data

    Science.gov (United States)

    Saintamant, Robert; Cohen, Paul R.

    1994-01-01

    We have examined some of the issues involved in automating exploratory data analysis, in particular the tradeoff between control and opportunism. We have proposed an opportunistic planning solution for this tradeoff, and we have implemented a prototype, Igor, to test the approach. Our experience in developing Igor was surprisingly smooth. In contrast to earlier versions that relied on rule representation, it was straightforward to increment Igor's knowledge base without causing the search space to explode. The planning representation appears to be both general and powerful, with high level strategic knowledge provided by goals and plans, and the hooks for domain-specific knowledge are provided by monitors and focusing heuristics.

  18. Automated planar patch-clamp.

    Science.gov (United States)

    Milligan, Carol J; Möller, Clemens

    2013-01-01

    Ion channels are integral membrane proteins that regulate the flow of ions across the plasma membrane and the membranes of intracellular organelles of both excitable and non-excitable cells. Ion channels are vital to a wide variety of biological processes and are prominent components of the nervous system and cardiovascular system, as well as controlling many metabolic functions. Furthermore, ion channels are known to be involved in many disease states and as such have become popular therapeutic targets. For many years now manual patch-clamping has been regarded as one of the best approaches for assaying ion channel function, through direct measurement of ion flow across these membrane proteins. Over the last decade there have been many remarkable breakthroughs in the development of technologies enabling the study of ion channels. One of these breakthroughs is the development of automated planar patch-clamp technology. Automated platforms have demonstrated the ability to generate high-quality data with high throughput capabilities, at great efficiency and reliability. Additional features such as simultaneous intracellular and extracellular perfusion of the cell membrane, current clamp operation, fast compound application, an increasing rate of parallelization, and more recently temperature control have been introduced. Furthermore, in addition to the well-established studies of over-expressed ion channel proteins in cell lines, new generations of planar patch-clamp systems have enabled successful studies of native and primary mammalian cells. This technology is becoming increasingly popular and extensively used both within areas of drug discovery as well as academic research. Many platforms have been developed including NPC-16 Patchliner(®) and SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich), CytoPatch™ (Cytocentrics AG, Rostock), PatchXpress(®) 7000A, IonWorks(®) Quattro and IonWorks Barracuda™, (Molecular Devices, LLC); Dynaflow(®) HT (Cellectricon

  19. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed

    2013-01-01

    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  20. Robotium automated testing for Android

    CERN Document Server

    Zadgaonkar, Hrushikesh

    2013-01-01

    This is a step-by-step, example-oriented tutorial aimed at illustrating the various test scenarios and automation capabilities of Robotium.If you are an Android developer who is learning how to create test cases to test their application, and are looking to get a good grounding in different features in Robotium, this book is ideal for you. It's assumed that you have some experience in Android development, as well be familiar with the Android test framework, as Robotium is a wrapper to Android test framework.

  1. Smart Home Automation with Linux

    CERN Document Server

    Goodwin, Steven

    2010-01-01

    Linux users can now control their homes remotely! Are you a Linux user who has ever wanted to turn on the lights in your house, or open and close the curtains, while away on holiday? Want to be able to play the same music in every room, controlled from your laptop or mobile phone? Do you want to do these things without an expensive off-the-shelf kit? In Beginning Linux Home Automation, Steven Goodwin will show you how a house can be fully controlled by its occupants, all using open source software. From appliances to kettles to curtains, control your home remotely! What you'll learn* Control a

  2. 78 FR 44142 - Modification of Two National Customs Automation Program (NCAP) Tests Concerning Automated...

    Science.gov (United States)

    2013-07-23

    ... SECURITY U.S. Customs and Border Protection Modification of Two National Customs Automation Program (NCAP... National Customs Automation Program (NCAP) tests concerning document imaging, known as the Document Image... Automation Program (NCAP) test called the Document Image System (DIS) test. See 77 FR 20835. The DIS...

  3. 77 FR 20835 - National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE...

    Science.gov (United States)

    2012-04-06

    ... SECURITY U.S. Customs and Border Protection National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE) Document Image System (DIS) AGENCY: U.S. Customs and Border.... Customs and Border Protection's (CBP's) plan to conduct a National Customs Automation Program (NCAP)...

  4. Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer

    Science.gov (United States)

    Winkel, D.; Bol, G. H.; van Asselen, B.; Hes, J.; Scholten, V.; Kerkmeijer, L. G. W.; Raaymakers, B. W.

    2016-12-01

    To develop an automated radiotherapy treatment planning and optimization workflow to efficiently create patient specifically optimized clinical grade treatment plans for prostate cancer and to implement it in clinical practice. A two-phased planning and optimization workflow was developed to automatically generate 77Gy 5-field simultaneously integrated boost intensity modulated radiation therapy (SIB-IMRT) plans for prostate cancer treatment. A retrospective planning study (n  =  100) was performed in which automatically and manually generated treatment plans were compared. A clinical pilot (n  =  21) was performed to investigate the usability of our method. Operator time for the planning process was reduced to  cancer.

  5. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chen, Ken Chung [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China); Shen, Steve G. F.; Yan, Jin [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Lee, Philip K. M.; Chow, Ben [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China); Liu, Nancy X. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China); Xia, James J. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  6. Automated pipelines for spectroscopic analysis

    Science.gov (United States)

    Allende Prieto, C.

    2016-09-01

    The Gaia mission will have a profound impact on our understanding of the structure and dynamics of the Milky Way. Gaia is providing an exhaustive census of stellar parallaxes, proper motions, positions, colors and radial velocities, but also leaves some glaring holes in an otherwise complete data set. The radial velocities measured with the on-board high-resolution spectrograph will only reach some 10 % of the full sample of stars with astrometry and photometry from the mission, and detailed chemical information will be obtained for less than 1 %. Teams all over the world are organizing large-scale projects to provide complementary radial velocities and chemistry, since this can now be done very efficiently from the ground thanks to large and mid-size telescopes with a wide field-of-view and multi-object spectrographs. As a result, automated data processing is taking an ever increasing relevance, and the concept is applying to many more areas, from targeting to analysis. In this paper, I provide a quick overview of recent, ongoing, and upcoming spectroscopic surveys, and the strategies adopted in their automated analysis pipelines.

  7. Cassini Tour Atlas Automated Generation

    Science.gov (United States)

    Grazier, Kevin R.; Roumeliotis, Chris; Lange, Robert D.

    2011-01-01

    During the Cassini spacecraft s cruise phase and nominal mission, the Cassini Science Planning Team developed and maintained an online database of geometric and timing information called the Cassini Tour Atlas. The Tour Atlas consisted of several hundreds of megabytes of EVENTS mission planning software outputs, tables, plots, and images used by mission scientists for observation planning. Each time the nominal mission trajectory was altered or tweaked, a new Tour Atlas had to be regenerated manually. In the early phases of Cassini s Equinox Mission planning, an a priori estimate suggested that mission tour designers would develop approximately 30 candidate tours within a short period of time. So that Cassini scientists could properly analyze the science opportunities in each candidate tour quickly and thoroughly so that the optimal series of orbits for science return could be selected, a separate Tour Atlas was required for each trajectory. The task of manually generating the number of trajectory analyses in the allotted time would have been impossible, so the entire task was automated using code written in five different programming languages. This software automates the generation of the Cassini Tour Atlas database. It performs with one UNIX command what previously took a day or two of human labor.

  8. Automation of hydroelectric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Grasser, H.S. (Consolidated Papers, Inc., Wisconsin Rapids, WI (US))

    1990-03-01

    This paper describes how the author's company has been automating its hydroelectric generating plants. The early automations were achieved with a relay-type supervisory control system, relay logic, dc tachometer, and a pneumatic gate-position controller. While this system allowed the units to be started and stopped from a remote location, they were operated at an output that was preset by the pneumatic control at the generating site. The supervisory control system at the site provided such information as unit status, generator breaker status, and a binary coded decimal (BCD) value of the pond level. The generating units are started by energizing an on-site relay that sets the pneumatic gate controller to a preset value above the synchronous speed of the hydroelectric generator. The pneumatic controller then opens the water-wheel wicket gates to the preset startup position. As the hydroelectric generator starts to turn, the machine-mounted dc tachometer produces a voltage. At a dc voltage equivalent to synchronous speed, the generator main breaker closes, and a contact from the main breaker starts a field-delay timer. Within a few seconds, the field breaker closes. Once the cycle is complete, a relay changes the pneumatic setpoint to a preset operating point of about 8/10 wicket gate opening.

  9. Manual and automated reticulocyte counts.

    Science.gov (United States)

    Simionatto, Mackelly; de Paula, Josiane Padilha; Chaves, Michele Ana Flores; Bortoloso, Márcia; Cicchetti, Domenic; Leonart, Maria Suely Soares; do Nascimento, Aguinaldo José

    2010-12-01

    Manual reticulocyte counts were examined under light microscopy, using the property whereby supravital stain precipitates residual ribosomal RNA versus the automated flow methods, with the suggestion that in the latter there is greater precision and an ability to determine both mature and immature reticulocyte fractions. Three hundred and forty-one venous blood samples of patients were analyzed of whom 224 newborn and the rest adults; 51 males and 66 females, with ages between 0 and 89 years, as part of the laboratory routine for hematological examinations at the Clinical Laboratory of the Hospital Universitário do Oeste do Paraná. This work aimed to compare manual and automated methodologies for reticulocyte countings and evaluate random and systematic errors. The results obtained showed that the difference between the two methods was very small, with an estimated 0·4% systematic error and 3·9% random error. Thus, it has been confirmed that both methods, when well conducted, can reflect precisely the reticulocyte counts for adequate clinical use.

  10. Automated Car Park Management System

    Science.gov (United States)

    Fabros, J. P.; Tabañag, D.; Espra, A.; Gerasta, O. J.

    2015-06-01

    This study aims to develop a prototype for an Automated Car Park Management System that will increase the quality of service of parking lots through the integration of a smart system that assists motorist in finding vacant parking lot. The research was based on implementing an operating system and a monitoring system for parking system without the use of manpower. This will include Parking Guidance and Information System concept which will efficiently assist motorists and ensures the safety of the vehicles and the valuables inside the vehicle. For monitoring, Optical Character Recognition was employed to monitor and put into list all the cars entering the parking area. All parking events in this system are visible via MATLAB GUI which contain time-in, time-out, time consumed information and also the lot number where the car parks. To put into reality, this system has a payment method, and it comes via a coin slot operation to control the exit gate. The Automated Car Park Management System was successfully built by utilizing microcontrollers specifically one PIC18f4550 and two PIC16F84s and one PIC16F628A.

  11. An Automated Biological Dosimetry System

    Science.gov (United States)

    Lorch, T.; Bille, J.; Frieben, M.; Stephan, G.

    1986-04-01

    The scoring of structural chromosome aberrations in peripheral human blood lymphocytes can be used in biological dosimetry to estimate the radiation dose which an individual has received. Especially the dicentric chromosome is a rather specific indicator for an exposure to ionizing radiation. For statistical reasons, in the low dose range a great number of cells must be analysed, which is a very tedious task. The resulting high cost of a biological dose estimation limits the application of this method to cases of suspected irradiation for which physical dosimetry is not possible or not sufficient. Therefore an automated system has been designed to do the major part of the routine work. It uses a standard light microscope with motorized scanning stage, a Plumbicon TV-camera, a real-time hardware preprocessor, a binary and a grey level image buffer system. All computations are performed by a very powerful multi-microprocessor-system (POLYP) based on a MIMD-architecture. The task of the automated system can be split in finding the metaphases (see Figure 1) at low microscope magnification and scoring dicentrics at high magnification. The metaphase finding part has been completed and is now in routine use giving good results. The dicentric scoring part is still under development.

  12. Wireless energizing system for an automated implantable sensor

    Science.gov (United States)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P.

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  13. Do You Automate? Saving Time and Dollars

    Science.gov (United States)

    Carmichael, Christine H.

    2010-01-01

    An automated workforce management strategy can help schools save jobs, improve the job satisfaction of teachers and staff, and free up precious budget dollars for investments in critical learning resources. Automated workforce management systems can help schools control labor costs, minimize compliance risk, and improve employee satisfaction.…

  14. Approaches to automated protein crystal harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Deller, Marc C., E-mail: mdeller@scripps.edu; Rupp, Bernhard, E-mail: mdeller@scripps.edu

    2014-01-28

    Approaches to automated and robot-assisted harvesting of protein crystals are critically reviewed. While no true turn-key solutions for automation of protein crystal harvesting are currently available, systems incorporating advanced robotics and micro-electromechanical systems represent exciting developments with the potential to revolutionize the way in which protein crystals are harvested.

  15. Investing in the Future: Automation Marketplace 2009

    Science.gov (United States)

    Breeding, Marshall

    2009-01-01

    In a year where the general economy presented enormous challenges, libraries continued to make investments in automation, especially in products that help improve what and how they deliver to their end users. Access to electronic content remains a key driver. In response to anticipated needs for new approaches to library automation, many companies…

  16. Performance modeling of automated manufacturing systems

    Science.gov (United States)

    Viswanadham, N.; Narahari, Y.

    A unified and systematic treatment is presented of modeling methodologies and analysis techniques for performance evaluation of automated manufacturing systems. The book is the first treatment of the mathematical modeling of manufacturing systems. Automated manufacturing systems are surveyed and three principal analytical modeling paradigms are discussed: Markov chains, queues and queueing networks, and Petri nets.

  17. Partial Automated Alignment and Integration System

    Science.gov (United States)

    Kelley, Gary Wayne (Inventor)

    2014-01-01

    The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.

  18. How to Evaluate Integrated Library Automation Systems.

    Science.gov (United States)

    Powell, James R.; Slach, June E.

    1985-01-01

    This paper describes methodology used in compiling a list of candidate integrated library automation systems at a corporate technical library. Priorities for automation, identification of candidate systems, the filtering process, information for suppliers, software and hardware considerations, on-site evaluations, and final system selection are…

  19. Perspective on Automation: Three Talks to Educators.

    Science.gov (United States)

    Theobald, Robert; And Others

    These papers take the view that automation impinges upon our socio-psychological as well as economic existence and we must take drastic measures to survive. Robert Theobald, presenting evidence that automation brings job displacement, suggests that we face the choice of trying to insure enough jobs, or of taking advantage of the new free time to…

  20. Automation and Job Satisfaction among Reference Librarians.

    Science.gov (United States)

    Whitlatch, Jo Bell

    1991-01-01

    Discussion of job satisfaction and the level of job performance focuses on the effect of automation on job satisfaction among reference librarians. The influence of stress is discussed, a job strain model is explained, and examples of how to design a job to reduce the stress caused by automation are given. (12 references) (LRW)