WorldWideScience

Sample records for automated patient-specific health

  1. Assessing the accuracy of an inter-institutional automated patient-specific health problem list

    Directory of Open Access Journals (Sweden)

    Taylor Laurel

    2010-02-01

    Full Text Available Abstract Background Health problem lists are a key component of electronic health records and are instrumental in the development of decision-support systems that encourage best practices and optimal patient safety. Most health problem lists require initial clinical information to be entered manually and few integrate information across care providers and institutions. This study assesses the accuracy of a novel approach to create an inter-institutional automated health problem list in a computerized medical record (MOXXI that integrates three sources of information for an individual patient: diagnostic codes from medical services claims from all treating physicians, therapeutic indications from electronic prescriptions, and single-indication drugs. Methods Data for this study were obtained from 121 general practitioners and all medical services provided for 22,248 of their patients. At the opening of a patient's file, all health problems detected through medical service utilization or single-indication drug use were flagged to the physician in the MOXXI system. Each new arising health problem were presented as 'potential' and physicians were prompted to specify if the health problem was valid (Y or not (N or if they preferred to reassess its validity at a later time. Results A total of 263,527 health problems, representing 891 unique problems, were identified for the group of 22,248 patients. Medical services claims contributed to the majority of problems identified (77%, followed by therapeutic indications from electronic prescriptions (14%, and single-indication drugs (9%. Physicians actively chose to assess 41.7% (n = 106,950 of health problems. Overall, 73% of the problems assessed were considered valid; 42% originated from medical service diagnostic codes, 11% from single indication drugs, and 47% from prescription indications. Twelve percent of problems identified through other treating physicians were considered valid compared to 28

  2. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI

    International Nuclear Information System (INIS)

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning. (paper)

  3. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI*

    Science.gov (United States)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-12-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning.

  4. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    Science.gov (United States)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  5. SHARP: Spacecraft Health Automated Reasoning Prototype

    Science.gov (United States)

    Atkinson, David J.

    1991-01-01

    The planetary spacecraft mission OPS as applied to SHARP is studied. Knowledge systems involved in this study are detailed. SHARP development task and Voyager telecom link analysis were examined. It was concluded that artificial intelligence has a proven capability to deliver useful functions in a real time space flight operations environment. SHARP has precipitated major change in acceptance of automation at JPL. The potential payoff from automation using AI is substantial. SHARP, and other AI technology is being transferred into systems in development including mission operations automation, science data systems, and infrastructure applications.

  6. Automation is key to managing a population's health.

    Science.gov (United States)

    Matthews, Michael B; Hodach, Richard

    2012-04-01

    Online tools for automating population health management can help healthcare organizations meet their patients' needs both during and between encounters with the healthcare system. These tools can facilitate: The use of registries to track patients' health status and care gaps. Outbound messaging to notify patients when they need care. Care team management of more patients at different levels of risk. Automation of workflows related to case management and transitions of care. Online educational and mobile health interventions to engage patients in their care. Analytics programs to identify opportunities for improvement. PMID:22523891

  7. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  8. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  9. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  10. Automation of a Comprehensive County Health Unit Management System

    OpenAIRE

    Bigler, W. J.; Mittan, J. B.; Wisthuff, R. R.

    1981-01-01

    This paper describes the conceptualization, development, and implementation of a statewide management system for local health services operations in Florida. It discusses the rationale for a uniform statewide program; the structural organization of programs and services; information linkages between services, clients, providers and service facilities; information flow patterns from the source through automated data processes to production of output reports and analyses; and policies and proce...

  11. Patient-Specific Computational Modeling

    CERN Document Server

    Peña, Estefanía

    2012-01-01

    This book addresses patient-specific modeling. It integrates computational modeling, experimental procedures, imagine clinical segmentation and mesh generation with the finite element method (FEM) to solve problems in computational biomedicine and bioengineering. Specific areas of interest include cardiovascular problems, ocular and muscular systems and soft tissue modeling. Patient-specific modeling has been the subject of serious research over the last seven years and interest in the area is continually growing and this area is expected to further develop in the near future.

  12. Imaging based, patient specific dosimetry

    International Nuclear Information System (INIS)

    Full text: The prognosis of achieving longtime remission for disseminated cancer disease is in many cases poor. A systemic treatment is required and therefore external beam radiation therapy is less suited. Treatment with radiolabeled pharmaceuticals, so called radionuclide therapy is such a systemic treatment. In radionuclide therapy, the absorbed dose is delivered by administration of radionuclides that emit electrons or alpha particles. It is here assumed that the released kinetic energy is transferred by interactions to sensitive parts of the cells activating cell death, and thus an accurate dosimetry is important. However, absorbed dose planning for radionuclide therapy is a real challenge in that the source cannot be turned on or off (as in external beam therapy) but decays exponentially with characteristics depending on the biokinetics and the radionuclide half-life. On a small-scale, the radiopharmaceutical is also heterogeneously distributed which means that the energy deposition is generally nonuniform. The biokinetics may also change over time which means that activity measurements need to be made at several time points to estimate the total amount of released energy in an organ or tumour. Practical issues regarding the number of measurements and patient mobility may therefore limit the accuracy in this calculation. The dose-rate for radionuclide therapy is also much lower than in external beam therapy. Since the treatment is systemic, circulating activity may result in absorbed doses to normal organs and tissues. Often this poses a problem and puts a limit on the amount of activity to can be administered. This is one of the major reasons for the requirement of an accurate patient-specific dosimetry. One of the major problems is that the biokinetics varies between patients and the activity uptake and clearance should therefore be measured for each individual patient in order to estimate the total number of decays in a particular organ/tissue. The way

  13. Patient-Specific Models of Cardiac Biomechanics

    OpenAIRE

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy CP

    2012-01-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-di...

  14. Patient-Specific Modeling in Tomorrow's Medicine

    CERN Document Server

    2012-01-01

    This book reviews the frontier of research and clinical applications of Patient Specific Modeling, and provides a state-of-the-art update as well as perspectives on future directions in this exciting field. The book is useful for medical physicists, biomedical engineers and other engineers who are interested in the science and technology aspects of Patient Specific Modeling, as well as for radiologists and other medical specialists who wish to be updated about the state of implementation.

  15. Initial Flight Results for an Automated Satellite Beacon Health Monitoring Network

    OpenAIRE

    Young, Anthony; Kitts, Christopher; Neumann, Michael; Mas, Ignacio; Rasay, Mike

    2010-01-01

    Beacon monitoring is an automated satellite health monitoring architecture that combines telemetry analysis, periodic low data rate message broadcasts by a spacecraft, and automated ground reception and data handling in order to implement a cost-effective anomaly detection and notification capability for spacecraft missions. Over the past two decades, this architecture has been explored and prototyped for a range of spacecraft mission classes to include use on NASA deep space probes, military...

  16. Measurement properties of patient-specific instruments measuring physical function.

    OpenAIRE

    Barten, J.A.; Pisters, M.F.; Huisman, P.A.; Takken, T; Veenhof, C.

    2012-01-01

    Objective: To identify patient-specific self-assessment instruments, which measure physical function in patients with musculoskeletal disorders and to evaluate the descriptive properties and the psychometric qualities of these instruments. Study Design and Setting: After a systematic search, included instruments were evaluated psychometrically by the checklist “quality criteria for measurement properties of health status instruments.” Results: Twenty-three studies were included, referring to ...

  17. Morphing patient-specific musculoskeletal models

    DEFF Research Database (Denmark)

    Rasmussen, John; Galibarov, Pavel E.; Al-Munajjed, Amir;

    other conditions may require CT or MRI data. The method and its theoretical assumptions, advantages and limitations are presented, and several examples will illustrate morphing to patient-specific models. [1] Carbes S; Tørholm S; Rasmussen, J. A Detailed Twenty-six Segments Kinematic Foot model for...

  18. Computer automation of a health physics program record

    International Nuclear Information System (INIS)

    A multi-user computer data base management system (DBMS) has been developed to automate USDA's national radiological safety program. It maintains information on approved users of radioactive material and radiation emanating equipment, as a central file which is accessed whenever information on the user is required. Files of inventory, personnel dosemetry records, laboratory and equipment surveys, leak tests, bioassay reports, and all other information are linked to each approved user by an assigned code that identifies the user by state, agency, and facility. The DBMS is menu-driven with provisions for addition, modification and report generation of information maintained in the system. This DBMS was designed as a single entry system to reduce the redundency of data entry. Prompts guide the user at decision points and data validation routines check for proper data entry. The DBMS generates lists of current inventories, leak test forms, inspection reports, scans for overdue reports from users, and generates follow-up letters. The DBMS system operates on a Wang OIS computer and utilizes its compiled BASIC, List Processing, Word Processing, and indexed (ISAM) file features. This system is a very fast relational database supporting many users simultaneously while providing several methods of data protection. All data files are compatible with List Processing. Information in these files can be examined, sorted, modified, or outputted to word processing documents using software supplied by Wang. This has reduced the need for special one-time programs and provides alternative access to the data

  19. A Novel Implementation for Automated Health Monitoring System

    OpenAIRE

    Sarangamath, Praveen B; Gupta, Kiran A

    2016-01-01

    The main concept of the proposed work is derived from Wireless Body Area network (WBAN). The proposed work employs Raspberry Pi kit as a personal server which logs the health data and it can be accessed by any PDA within the LAN range. In this paper, two vital parameters namely Temperature sensor and Heart beat sensor have been considered.

  20. A parameter estimation framework for patient-specific hemodynamic computations

    Science.gov (United States)

    Itu, Lucian; Sharma, Puneet; Passerini, Tiziano; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2015-01-01

    We propose a fully automated parameter estimation framework for performing patient-specific hemodynamic computations in arterial models. To determine the personalized values of the windkessel models, which are used as part of the geometrical multiscale circulation model, a parameter estimation problem is formulated. Clinical measurements of pressure and/or flow-rate are imposed as constraints to formulate a nonlinear system of equations, whose fixed point solution is sought. A key feature of the proposed method is a warm-start to the optimization procedure, with better initial solution for the nonlinear system of equations, to reduce the number of iterations needed for the calibration of the geometrical multiscale models. To achieve these goals, the initial solution, computed with a lumped parameter model, is adapted before solving the parameter estimation problem for the geometrical multiscale circulation model: the resistance and the compliance of the circulation model are estimated and compensated. The proposed framework is evaluated on a patient-specific aortic model, a full body arterial model, and multiple idealized anatomical models representing different arterial segments. For each case it leads to the best performance in terms of number of iterations required for the computational model to be in close agreement with the clinical measurements.

  1. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study

    Science.gov (United States)

    Johansen, Ayna; Brendryen, Håvar

    2016-01-01

    Background eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. Objective We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist’s support of a working alliance, internalization of motivation, and managing lapses. Methods We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several “counseling sessions” about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. Results The program supports the user’s working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. Conclusions A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective. PMID:27354373

  2. On the prospect of patient-specific biomechanics without patient-specific properties of tissues

    OpenAIRE

    Miller, Karol; Lu, Jia

    2013-01-01

    This paper presents main theses of two keynote lectures delivered at Euromech Colloquium “Advanced experimental approaches and inverse problems in tissue biomechanics” held in Saint Etienne in June 2012. We are witnessing an advent of patient-specific biomechanics that will bring in the future personalized treatments to sufferers all over the world. It is the current task of biomechanists to devise methods for clinically-relevant patient-specific modeling. One of the obstacles standing before...

  3. Patient specific modelling in diagnosing depression

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2015-01-01

    Depression is a very common disease. Approximately 10% of people in the Western world experience severe depression during their lifetime and many more experience a mild form of depression. It is commonly believed that depression is caused by malfunctions in the biological system constituted by the...... hypothalamus-pituitary-adrenal (HPA) axis. We pose a novel model capable of showing both circardian as well as ultradian oscillations of hormone concentrations. We show that these patterns imitate those observed in the corresponding data. We demonstrate that patient-specific modelling shows its ability to make...

  4. An Automated Approach to Calculating the Daily Dose of Tacrolimus in Electronic Health Records

    OpenAIRE

    Xu, Hua; Doan, Son; Birdwell, Kelly A.; Cowan, James D; Vincz, Andrew J.; Haas, David W.; Basford, Melissa A; Denny, Joshua C.

    2010-01-01

    Clinical research often requires extracting detailed drug information, such as medication names and dosages, from Electronic Health Records (EHR). Since medication information is often recorded as both structured and unstructured formats in the EHR, extracting all the relevant drug mentions and determining the daily dose of a medication for a selected patient at a given date can be a challenging and time-consuming task. In this paper, we present an automated approach using natural language pr...

  5. Patient-specific simulation of tidal breathing

    Science.gov (United States)

    Walters, M.; Wells, A. K.; Jones, I. P.; Hamill, I. S.; Veeckmans, B.; Vos, W.; Lefevre, C.; Fetitia, C.

    2016-03-01

    Patient-specific simulation of air flows in lungs is now straightforward using segmented airways trees from CT scans as the basis for Computational Fluid Dynamics (CFD) simulations. These models generally use static geometries, which do not account for the motion of the lungs and its influence on important clinical indicators, such as airway resistance. This paper is concerned with the simulation of tidal breathing, including the dynamic motion of the lungs, and the required analysis workflow. Geometries are based on CT scans obtained at the extremes of the breathing cycle, Total Lung Capacity (TLC) and Functional Residual Capacity (FRC). It describes how topologically consistent geometries are obtained at TLC and FRC, using a `skeleton' of the network of airway branches. From this a 3D computational mesh which morphs between TLC and FRC is generated. CFD results for a number of patient-specific cases, healthy and asthmatic, are presented. Finally their potential use in evaluation of the progress of the disease is discussed, focusing on an important clinical indicator, the airway resistance.

  6. Health care professionals’ perspectives on automated multi-dose drug dispensing

    Directory of Open Access Journals (Sweden)

    Bardage C

    2014-12-01

    Full Text Available Background: During the 1980s, manual repackaging of multi-dose medications from pharmacies in Sweden was successively substituted with automated multi-dose drug dispensing (MDD. There are few studies evaluating the consequences of automated MDD with regard to patient safety, and those that investigate this issue are not very extensive. Objectives: To investigate Swedish health care professionals’ perceived experience of automated MDD and its effects on patient adherence and patient safety. Methods: Three questionnaire forms, one for physicians, nurses, and assistant nurses/nursing assistants, were developed based on reviews of the literature and pilot testing of the questions in the intended target groups. The target groups were health professionals prescribing or administrating MDD to patients. A sample (every sixth municipality was drawn from the sampling frame of Swedish municipalities, resulting in 40 municipalities, about 14% of all municipalities in Sweden. Email addresses of general practitioners were obtained from county councils, while the municipalities assisted in getting contact details for nurses, assistant nurses and nursing assistants. A total of 915 questionnaires were distributed electronically to physicians, 515 to nurses, and 4,118 to assistant nurses/nursing assistants. The data were collected in September and October 2012. Results: The response rate among physicians, nurses and assistant nurses/nursing assistants was 31%, 43% and 23%, respectively. The professionals reported that automated MDD reduces duplication of medication, contributes to correct dosages, helps patients take their medication at the right time, and reduces confusion among patients. Fifteen per cent of the physicians and about one-third of the nurses and assistant nurses/nursing assistants reported that generic substitution makes it more difficult for the patient to identify the various medicines available in the sachets. The physicians did, however

  7. Automated integration of continuous glucose monitor data in the electronic health record using consumer technology.

    Science.gov (United States)

    Kumar, Rajiv B; Goren, Nira D; Stark, David E; Wall, Dennis P; Longhurst, Christopher A

    2016-05-01

    The diabetes healthcare provider plays a key role in interpreting blood glucose trends, but few institutions have successfully integrated patient home glucose data in the electronic health record (EHR). Published implementations to date have required custom interfaces, which limit wide-scale replication. We piloted automated integration of continuous glucose monitor data in the EHR using widely available consumer technology for 10 pediatric patients with insulin-dependent diabetes. Establishment of a passive data communication bridge via a patient's/parent's smartphone enabled automated integration and analytics of patient device data within the EHR between scheduled clinic visits. It is feasible to utilize available consumer technology to assess and triage home diabetes device data within the EHR, and to engage patients/parents and improve healthcare provider workflow. PMID:27018263

  8. ROC analysis in patient specific quality assurance

    International Nuclear Information System (INIS)

    Purpose: This work investigates the use of receiver operating characteristic (ROC) methods in patient specific IMRT quality assurance (QA) in order to determine unbiased methods to set threshold criteria for γ-distance to agreement measurements. Methods: A group of 17 prostate plans was delivered as planned while a second group of 17 prostate plans was modified with the introduction of random multileaf collimator (MLC) position errors that are normally distributed with σ∼±0.5, ±1.0, ±2.0, and ±3.0 mm (a total of 68 modified plans were created). All plans were evaluated using five different γ-criteria. ROC methodology was applied by quantifying the fraction of modified plans reported as “fail” and unmodified plans reported as “pass.”Results: γ-based criteria were able to attain nearly 100% sensitivity/specificity in the detection of large random errors (σ > 3 mm). Sensitivity and specificity decrease rapidly for all γ-criteria as the size of error to be detected decreases below 2 mm. Predictive power is null with all criteria used in the detection of small MLC errors (σ 3 mm) as opposed to a tool to improve the quality of IMRT delivery.

  9. State-of-Health Software for the Automated Radioxenon Sampler/Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Heimbigner, Tom R.; Bowyer, Ted W.; Hayes, James C.; Hubbard, Charles W.; McIntyre, Justin I.; Panisko, Mark E.; Ripplinger, Mike D.; Suarez, Reynold

    2004-09-22

    The Automated Radioxenon Analyzer/Sampler (ARSA) is a complex gas-collection and analysis system that requires constant online monitoring of system operations and overall system health. The software-control system records and monitors and over 100 different system sensors (temperature, pressures, voltages, etc.) A real-time record of the system state allows the system to monitor for unsafe conditions and maintain the system in a safe state regardless of external or internal failures (vacuum pump, valve or power failures, and runaway temperatures are a few examples). Another function of real-time monitoring allows the user to troubleshoot the system when a problem arises, should a minor sensor or a major system failure occur. This paper will outline the general scheme used by the state-of-health program to monitor and assess the system, the graphical user interface program and the alert message system, and give specific examples of proper system performance and some system failures.

  10. On the prospect of patient-specific biomechanics without patient-specific properties of tissues.

    Science.gov (United States)

    Miller, Karol; Lu, Jia

    2013-11-01

    This paper presents main theses of two keynote lectures delivered at Euromech Colloquium "Advanced experimental approaches and inverse problems in tissue biomechanics" held in Saint Etienne in June 2012. We are witnessing an advent of patient-specific biomechanics that will bring in the future personalized treatments to sufferers all over the world. It is the current task of biomechanists to devise methods for clinically-relevant patient-specific modeling. One of the obstacles standing before the biomechanics community is the difficulty in obtaining patient-specific properties of tissues to be used in biomechanical models. We postulate that focusing on reformulating computational mechanics problems in such a way that the results are weakly sensitive to the variation in mechanical properties of simulated continua is more likely to bear fruit in near future. We consider two types of problems: (i) displacement-zero traction problems whose solutions in displacements are weakly sensitive to mechanical properties of the considered continuum; and (ii) problems that are approximately statically determinate and therefore their solutions in stresses are also weakly sensitive to mechanical properties of constituents. We demonstrate that the kinematically loaded biomechanical models of the first type are applicable in the field of image-guided surgery where the current, intraoperative configuration of a soft organ is of critical importance. We show that sac-like membranes, which are prototypes of many thin-walled biological organs, are approximately statically determinate and therefore useful solutions for wall stress can be obtained without the knowledge of the wall's properties. We demonstrate the clinical applicability and effectiveness of the proposed methods using examples from modeling neurosurgery and intracranial aneurysms. PMID:23491073

  11. Neural-network-based state of health diagnostics for an automated radioxenon sampler/analyzer

    Science.gov (United States)

    Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.

    2009-05-01

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA's complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.

  12. Neural Network Based State of Health Diagnostics for an Automated Radioxenon Sampler/Analyzer

    International Nuclear Information System (INIS)

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA's complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented

  13. Neural Network Based State of Health Diagnostics for an Automated Radioxenon Sampler/Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.

    2009-05-13

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA’s complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.

  14. Survival and health care costs until hospital discharge of patients treated with onsite, dispatched or without automated external defibrillator

    NARCIS (Netherlands)

    J. Berdowski; M.J. Kuiper; M.G.W. Dijkgraaf; J.G.P. Tijssen; R.W. Koster

    2010-01-01

    Background: This study aimed to determine whether automated external defibrillator (AED) use during resuscitation is associated with lower in-hospital health care costs. Methods: For this observational prospective study, we included all treated out-of-hospital cardiac arrests of suspected cardiac ca

  15. Effects of Vessel Tortuosity on Coronary Hemodynamics: An Idealized and Patient-Specific Computational Study.

    Science.gov (United States)

    Vorobtsova, Natalya; Chiastra, Claudio; Stremler, Mark A; Sane, David C; Migliavacca, Francesco; Vlachos, Pavlos

    2016-07-01

    Although coronary tortuosity can influence the hemodynamics of coronary arteries, the relationship between tortuosity and flow has not been thoroughly investigated partly due to the absence of a widely accepted definition of tortuosity and the lack of patient-specific studies that analyze complete coronary trees. Using a computational approach we investigated the effects of tortuosity on coronary flow parameters including pressure drop, wall shear stress, and helical flow strength as measured by helicity intensity. Our analysis considered idealized and patient-specific geometries. Overall results indicate that perfusion pressure decreases with increased tortuosity, but the patient-specific results show that more tortuous vessels have higher physiological wall shear stress values. Differences between the idealized and patient-specific results reveal that an accurate representation of coronary tortuosity must account for all relevant geometric aspects, including curvature imposed by the heart shape. The patient-specific results exhibit a strong correlation between tortuosity and helicity intensity, and the corresponding helical flow contributes directly to the observed increase in wall shear stress. Therefore, helicity intensity may prove helpful in developing a universal parameter to describe tortuosity and assess its impact on patient health. Our data suggest that increased tortuosity could have a deleterious impact via a reduction in coronary perfusion pressure, but the attendant increase in wall shear stress could afford protection against atherosclerosis. PMID:26498931

  16. Automation of Health Management, Troubleshooting and Recovery in Lunar Outpost Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall Phase-II goal is to develop the technologies and tools that can aid the automation of operation by providing intelligent decision support in situations...

  17. Measurement properties of patient-specific instruments measuring physical function.

    NARCIS (Netherlands)

    Barten, J.A.; Pisters, M.F.; Huisman, P.A.; Takken, T.; Veenhof, C.

    2012-01-01

    Objective: To identify patient-specific self-assessment instruments, which measure physical function in patients with musculoskeletal disorders and to evaluate the descriptive properties and the psychometric qualities of these instruments. Study Design and Setting: After a systematic search, include

  18. Automated system for surveillance, assessment and prediction as a basis for complex protection of environment and population health

    International Nuclear Information System (INIS)

    A formulated concept of a more perfect system for protecting the environment and population health in the regions of industrial and power complexes is the sum of interrelated elements: automated information system, control system, control object. A unified automatic information system is suggested a means of increasing the efficiency and expediency of decisions taken on the protection of labour conditions, life and health of the population against the effect of chemical and other harmful environmental factors. The main requirements, principles and ways of constructing the system that permits to perform a dynamic surveillance, analysis estimate and forecast in the source-environment-health of population system are outlined. Some results of constructing the surveillance system, unified data bank, program package and model family are presented

  19. Convolutional Neural Networks for patient-specific ECG classification.

    Science.gov (United States)

    Kiranyaz, Serkan; Ince, Turker; Hamila, Ridha; Gabbouj, Moncef

    2015-08-01

    We propose a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system using an adaptive implementation of 1D Convolutional Neural Networks (CNNs) that can fuse feature extraction and classification into a unified learner. In this way, a dedicated CNN will be trained for each patient by using relatively small common and patient-specific training data and thus it can also be used to classify long ECG records such as Holter registers in a fast and accurate manner. Alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. The experimental results demonstrate that the proposed system achieves a superior classification performance for the detection of ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB). PMID:26736826

  20. Patient specific tube current modulation for CT dose reduction

    Science.gov (United States)

    Jin, Yannan; Yin, Zhye; Yao, Yangyang; Wang, Hui; Wu, Mingye; Kalra, Mannudeep; De Man, Bruno

    2015-03-01

    Radiation exposure during CT imaging has drawn growing concern from academia, industry as well as the general public. Sinusoidal tube current modulation has been available in most commercial products and used routinely in clinical practice. To further exploit the potential of tube current modulation, Sperl et al. proposed a Computer-Assisted Scan Protocol and Reconstruction (CASPAR) scheme [6] that modulates the tube current based on the clinical applications and patient specific information. The purpose of this study is to accelerate the CASPAR scheme to make it more practical for clinical use and investigate its dose benefit for different clinical applications. The Monte Carlo simulation in the original CASPAR scheme was substituted by the dose reconstruction to accelerate the optimization process. To demonstrate the dose benefit, we used the CATSIM package generate the projection data and perform standard FDK reconstruction. The NCAT phantom at thorax position was used in the simulation. We chose three clinical cases (routine chest scan, coronary CT angiography with and without breast avoidance) and compared the dose level with different mA modulation schemes (patient specific, sinusoidal and constant mA) with matched image quality. The simulation study of three clinical cases demonstrated that the patient specific mA modulation could significantly reduce the radiation dose compared to sinusoidal modulation. The dose benefits depend on the clinical application and object shape. With matched image quality, for chest scan the patient specific mA profile reduced the dose by about 15% compared to the sinusoid mA modulation; for the organ avoidance scan the dose reduction to the breast was over 50% compared to the constant mA baseline.

  1. Myogenic differentiation of FSHD patient specific induced pluripotent stem cells

    OpenAIRE

    Bosnakovski, Darko

    2012-01-01

    Human induced pluripotent stem (IPS) cells overcome several disadvantages of human embryonic stem cells, including host specificity and ethical issues. Patient-specific IPS cells can be generated from every donor by using different cell types, making them a suitable tool for autologous cell therapy and tissue engineering. IPS cells generated from patients with genetic disorders capture the disease genotype in the cell, making them a good model for studying the pathology of the diseas...

  2. A patient-specific scatter artifacts correction method

    OpenAIRE

    Zhao, Wei; Brunner, Stephen; NIU, KAI; Schafer, Sebastian; Royalty, Kevin; Chen, Guang-Hong

    2015-01-01

    This paper provides a fast and patient-specific scatter artifact correction method for cone-beam computed tomography (CBCT) used in image-guided interventional procedures. Due to increased irradiated volume of interest in CBCT imaging, scatter radiation has increased dramatically compared to 2D imaging, leading to a degradation of image quality. In this study, we propose a scatter artifact correction strategy using an analytical convolution-based model whose free parameters are estimated usin...

  3. Feasibility of patient specific aortic blood flow CFD simulation.

    Science.gov (United States)

    Svensson, Johan; Gårdhagen, Roland; Heiberg, Einar; Ebbers, Tino; Loyd, Dan; Länne, Toste; Karlsson, Matts

    2006-01-01

    Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data. PMID:17354898

  4. Development of patient-specific biomechanical models for predicting large breast deformation

    Science.gov (United States)

    Han, Lianghao; Hipwell, John H.; Tanner, Christine; Taylor, Zeike; Mertzanidou, Thomy; Cardoso, Jorge; Ourselin, Sebastien; Hawkes, David J.

    2012-01-01

    Physically realistic simulations for large breast deformation are of great interest for many medical applications such as cancer diagnosis, image registration, surgical planning and image-guided surgery. To support fast, large deformation simulations of breasts in clinical settings, we proposed a patient-specific biomechanical modelling framework for breasts, based on an open-source graphics processing unit-based, explicit, dynamic, nonlinear finite element (FE) solver. A semi-automatic segmentation method for tissue classification, integrated with a fully automated FE mesh generation approach, was implemented for quick patient-specific FE model generation. To solve the difficulty in determining material parameters of soft tissues in vivo for FE simulations, a novel method for breast modelling, with a simultaneous material model parameter optimization for soft tissues in vivo, was also proposed. The optimized deformation prediction was obtained through iteratively updating material model parameters to maximize the image similarity between the FE-predicted MR image and the experimentally acquired MR image of a breast. The proposed method was validated and tested by simulating and analysing breast deformation experiments under plate compression. Its prediction accuracy was evaluated by calculating landmark displacement errors. The results showed that both the heterogeneity and the anisotropy of soft tissues were essential in predicting large breast deformations under plate compression. As a generalized method, the proposed process can be used for fast deformation analyses of soft tissues in medical image analyses and surgical simulations.

  5. Development of patient-specific biomechanical models for predicting large breast deformation

    International Nuclear Information System (INIS)

    Physically realistic simulations for large breast deformation are of great interest for many medical applications such as cancer diagnosis, image registration, surgical planning and image-guided surgery. To support fast, large deformation simulations of breasts in clinical settings, we proposed a patient-specific biomechanical modelling framework for breasts, based on an open-source graphics processing unit-based, explicit, dynamic, nonlinear finite element (FE) solver. A semi-automatic segmentation method for tissue classification, integrated with a fully automated FE mesh generation approach, was implemented for quick patient-specific FE model generation. To solve the difficulty in determining material parameters of soft tissues in vivo for FE simulations, a novel method for breast modelling, with a simultaneous material model parameter optimization for soft tissues in vivo, was also proposed. The optimized deformation prediction was obtained through iteratively updating material model parameters to maximize the image similarity between the FE-predicted MR image and the experimentally acquired MR image of a breast. The proposed method was validated and tested by simulating and analysing breast deformation experiments under plate compression. Its prediction accuracy was evaluated by calculating landmark displacement errors. The results showed that both the heterogeneity and the anisotropy of soft tissues were essential in predicting large breast deformations under plate compression. As a generalized method, the proposed process can be used for fast deformation analyses of soft tissues in medical image analyses and surgical simulations. (paper)

  6. Patient specific 3D printed phantom for IMRT quality assurance

    International Nuclear Information System (INIS)

    The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)

  7. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    Science.gov (United States)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  8. Automated Telephone Self-Management Support for Diabetes in a Low-Income Health Plan: A Health Care Utilization and Cost Analysis.

    Science.gov (United States)

    Quan, Judy; Lee, Alexandra K; Handley, Margaret A; Ratanawongsa, Neda; Sarkar, Urmimala; Tseng, Samuel; Schillinger, Dean

    2015-12-01

    The objective was to determine whether automated telephone self-management support (ATSM) for low-income, linguistically diverse health plan members with diabetes affects health care utilization or cost. A government-sponsored managed care plan for low-income patients implemented a demonstration project between 2009 and 2011 that involved a 6-month ATSM intervention for 362 English-, Spanish-, or Cantonese-speaking members with diabetes from 4 publicly funded clinics. Participants were randomized to immediate intervention or a wait-list. Medical and pharmacy claims used in this analysis were obtained from the managed care plan. Medical claims included hospitalizations, ambulance use, emergency department visits, and outpatient visits. In the 6-month period following enrollment, intervention participants generated half as many emergency department visits and hospitalizations (rate ratio 0.52, 95% CI 0.26, 1.04) compared to wait-listed participants, but these differences did not reach statistical significance (P=0.06). With adjustment for prior year cost, intervention participants also had a nonsignificant reduction of $26.78 in total health care costs compared to wait-listed individuals (P=0.93). The observed trends suggest that ATSM could yield potential health service benefits for health plans that provide coverage for chronic disease patients in safety net settings. ATSM should be further scaled up to determine whether it is associated with a greater reduction in health care utilization and costs. PMID:26102298

  9. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  10. Patient-specific modeling of human cardiovascular system elements

    Science.gov (United States)

    Kossovich, Leonid Yu.; Kirillova, Irina V.; Golyadkina, Anastasiya A.; Polienko, Asel V.; Chelnokova, Natalia O.; Ivanov, Dmitriy V.; Murylev, Vladimir V.

    2016-03-01

    Object of study: The research is aimed at development of personalized medical treatment. Algorithm was developed for patient-specific surgical interventions of the cardiovascular system pathologies. Methods: Geometrical models of the biological objects and initial and boundary conditions were realized by medical diagnostic data of the specific patient. Mechanical and histomorphological parameters were obtained with the help mechanical experiments on universal testing machine. Computer modeling of the studied processes was conducted with the help of the finite element method. Results: Results of the numerical simulation allowed evaluating the physiological processes in the studied object in normal state, in presence of different pathologies and after different types of surgical procedures.

  11. Patient-Specific Airway Wall Remodeling in Chronic Lung Disease.

    Science.gov (United States)

    Eskandari, Mona; Kuschner, Ware G; Kuhl, Ellen

    2015-10-01

    Chronic lung disease affects more than a quarter of the adult population; yet, the mechanics of the airways are poorly understood. The pathophysiology of chronic lung disease is commonly characterized by mucosal growth and smooth muscle contraction of the airways, which initiate an inward folding of the mucosal layer and progressive airflow obstruction. Since the degree of obstruction is closely correlated with the number of folds, mucosal folding has been extensively studied in idealized circular cross sections. However, airflow obstruction has never been studied in real airway geometries; the behavior of imperfect, non-cylindrical, continuously branching airways remains unknown. Here we model the effects of chronic lung disease using the nonlinear field theories of mechanics supplemented by the theory of finite growth. We perform finite element analysis of patient-specific Y-branch segments created from magnetic resonance images. We demonstrate that the mucosal folding pattern is insensitive to the specific airway geometry, but that it critically depends on the mucosal and submucosal stiffness, thickness, and loading mechanism. Our results suggests that patient-specific airway models with inherent geometric imperfections are more sensitive to obstruction than idealized circular models. Our models help to explain the pathophysiology of airway obstruction in chronic lung disease and hold promise to improve the diagnostics and treatment of asthma, bronchitis, chronic obstructive pulmonary disease, and respiratory failure. PMID:25821112

  12. Patient Specific Modeling of Head-Up Tilt

    DEFF Research Database (Denmark)

    Williams, Nakeya; Wright, Andrew; Mehlsen, Jesper;

    2014-01-01

    blood pressure. The model contains five compartments representing arteries and veins in the upper and lower body of the systemic circulation, as well as the left ventricle facilitating pumping of the heart. A physiologically based sub-model describes gravitational effects on pooling of blood during the......Short term cardiovascular responses to head-up tilt (HUT) experiments involve complex cardiovascular regulation in order to maintain blood pressure at homeostatic levels. This manuscript presents a patient specific compartmental model developed to predict dynamic changes in heart rate and arterial...... HUT, and baroreflex control mechanisms are included regulating cardiac contractility, peripheral vascular resistance, and vascular tone. Nominal parameters are computed from subject specific data as well as literature estimates. The model uses heart rate as an input and predicts arterial blood...

  13. A patient-specific scatter artifacts correction method

    CERN Document Server

    Zhao, Wei; Niu, Kai; Schafer, Sebastian; Royalty, Kevin; Chen, Guang-Hong

    2015-01-01

    This paper provides a fast and patient-specific scatter artifact correction method for cone-beam computed tomography (CBCT) used in image-guided interventional procedures. Due to increased irradiated volume of interest in CBCT imaging, scatter radiation has increased dramatically compared to 2D imaging, leading to a degradation of image quality. In this study, we propose a scatter artifact correction strategy using an analytical convolution-based model whose free parameters are estimated using a rough estimation of scatter profiles from the acquired cone-beam projections. It was evaluated using Monte Carlo simulations with both monochromatic and polychromatic X-ray sources. The results demonstrated that the proposed method significantly reduced the scatter-induced shading artifacts and recovered CT numbers.

  14. Identification of patient specific parameters for a minimal cardiac model.

    Science.gov (United States)

    Hann, C E; Chase, J G; Shaw, G M; Smith, B W

    2004-01-01

    A minimal cardiac model has been developed which accurately captures the essential dynamics of the cardiovascular system (CVS). This paper develops an integral based parameter identification method for fast and accurate identification of patient specific parameters for this minimal model. The integral method is implemented using a single chamber model to prove the concept, and turns a previously nonlinear and nonconvex optimization problem into a linear and convex problem. The method can be readily extended to the full minimal cardiac model and enables rapid identification of model parameters to match a particular patient condition in clinical real time (3-5 minutes). This information can then be used to assist medical staff in understanding, diagnosis and treatment selection. PMID:17271801

  15. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms.

    Science.gov (United States)

    Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver

    2015-11-01

    The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future. PMID:26472308

  16. Patient-specific dose estimation for pediatric chest CT

    International Nuclear Information System (INIS)

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for

  17. Patient-specific dose estimation for pediatric chest CT

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P. [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Physics, Duke University, Durham, North Carolina 27710 (United States); and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Department of Radiology, Duke Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Global Applied Science Laboratory, GE Healthcare, Waukesha, Wisconsin 53188 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiology, Division of Pediatric Radiology, Duke University Medical Center, Durham North Carolina 27710 (United States)

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ

  18. Improved patient specific seizure detection during pre-surgical evaluation.

    LENUS (Irish Health Repository)

    Chua, Eric C-P

    2011-04-01

    There is considerable interest in improved off-line automated seizure detection methods that will decrease the workload of EEG monitoring units. Subject-specific approaches have been demonstrated to perform better than subject-independent ones. However, for pre-surgical diagnostics, the traditional method of obtaining a priori data to train subject-specific classifiers is not practical. We present an alternative method that works by adapting the threshold of a subject-independent to a specific subject based on feedback from the user.

  19. Using Personal Health Records for Automated Clinical Trials Recruitment: the ePaIRing Model

    OpenAIRE

    Wilcox, Adam; Natarajan, Karthik; Weng, Chunhua

    2009-01-01

    We describe the development of a model describing the use of patient information to improve patient recruitment in clinical trials. This model, named ePaIRing (electronic Participant Identification and Recruitment Model) describes variations in how information flows between stakeholders, and how personal health records can specifically facilitate patient recruitment.

  20. Automated Methods to Extract Patient New Information from Clinical Notes in Electronic Health Record Systems

    Science.gov (United States)

    Zhang, Rui

    2013-01-01

    The widespread adoption of Electronic Health Record (EHR) has resulted in rapid text proliferation within clinical care. Clinicians' use of copying and pasting functions in EHR systems further compounds this by creating a large amount of redundant clinical information in clinical documents. A mixture of redundant information (especially outdated…

  1. Using an EPID for patient-specific VMAT quality assurance

    International Nuclear Information System (INIS)

    Purpose: A patient-specific quality assurance (QA) method was developed to verify gantry-specific individual multileaf collimator (MLC) apertures (control points) in volumetric modulated arc therapy (VMAT) plans using an electronic portal imaging device (EPID). Methods: VMAT treatment plans were generated in an Eclipse treatment planning system (TPS). DICOM images from a Varian EPID (aS1000) acquired in continuous acquisition mode were used for pretreatment QA. Each cine image file contains the grayscale image of the MLC aperture related to its specific control point and the corresponding gantry angle information. The TPS MLC file of this RapidArc plan contains the leaf positions for all 177 control points (gantry angles). In-house software was developed that interpolates the measured images based on the gantry angle and overlays them with the MLC pattern for all control points. The 38% isointensity line was used to define the edge of the MLC leaves on the portal images. The software generates graphs and tables that provide analysis for the number of mismatched leaf positions for a chosen distance to agreement at each control point and the frequency in which each particular leaf mismatches for the entire arc. Results: Seven patients plans were analyzed using this method. The leaves with the highest mismatched rate were found to be treatment plan dependent. Conclusions: This in-house software can be used to automatically verify the MLC leaf positions for all control points of VMAT plans using cine images acquired by an EPID.

  2. Towards Patient-Specific Modeling of Coronary Hemodynamics in Healthy and Diseased State

    Directory of Open Access Journals (Sweden)

    Arjen van der Horst

    2013-01-01

    Full Text Available A model describing the primary relations between the cardiac muscle and coronary circulation might be useful for interpreting coronary hemodynamics in case multiple types of coronary circulatory disease are present. The main contribution of the present study is the coupling of a microstructure-based heart contraction model with a 1D wave propagation model. The 1D representation of the vessels enables patient-specific modeling of the arteries and/or can serve as boundary conditions for detailed 3D models, while the heart model enables the simulation of cardiac disease, with physiology-based parameter changes. Here, the different components of the model are explained and the ability of the model to describe coronary hemodynamics in health and disease is evaluated. Two disease types are modeled: coronary epicardial stenoses and left ventricular hypertrophy with an aortic valve stenosis. In all simulations (healthy and diseased, the dynamics of pressure and flow qualitatively agreed with observations described in literature. We conclude that the model adequately can predict coronary hemodynamics in both normal and diseased state based on patient-specific clinical data.

  3. Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index.

    Science.gov (United States)

    Acharya, U Rajendra; Mookiah, Muthu Rama Krishnan; Koh, Joel E W; Tan, Jen Hong; Bhandary, Sulatha V; Rao, A Krishna; Fujita, Hamido; Hagiwara, Yuki; Chua, Chua Kuang; Laude, Augustinus

    2016-08-01

    Posterior Segment Eye Diseases (PSED) namely Diabetic Retinopathy (DR), glaucoma and Age-related Macular Degeneration (AMD) are the prime causes of vision loss globally. Vision loss can be prevented, if these diseases are detected at an early stage. Structural abnormalities such as changes in cup-to-disc ratio, Hard Exudates (HE), drusen, Microaneurysms (MA), Cotton Wool Spots (CWS), Haemorrhages (HA), Geographic Atrophy (GA) and Choroidal Neovascularization (CNV) in PSED can be identified by manual examination of fundus images by clinicians. However, manual screening is labour-intensive, tiresome and time consuming. Hence, there is a need to automate the eye screening. In this work Bi-dimensional Empirical Mode Decomposition (BEMD) technique is used to decompose fundus images into 2D Intrinsic Mode Functions (IMFs) to capture variations in the pixels due to morphological changes. Further, various entropy namely Renyi, Fuzzy, Shannon, Vajda, Kapur and Yager and energy features are extracted from IMFs. These extracted features are ranked using Chernoff Bound and Bhattacharyya Distance (CBBD), Kullback-Leibler Divergence (KLD), Fuzzy-minimum Redundancy Maximum Relevance (FmRMR), Wilcoxon, Receiver Operating Characteristics Curve (ROC) and t-test methods. Further, these ranked features are fed to Support Vector Machine (SVM) classifier to classify normal and abnormal (DR, AMD and glaucoma) classes. The performance of the proposed eye screening system is evaluated using 800 (Normal=400 and Abnormal=400) digital fundus images and 10-fold cross validation method. Our proposed system automatically identifies normal and abnormal classes with an average accuracy of 88.63%, sensitivity of 86.25% and specificity of 91% using 17 optimal features ranked using CBBD and SVM-Radial Basis Function (RBF) classifier. Moreover, a novel Retinal Risk Index (RRI) is developed using two significant features to distinguish two classes using single number. Such a system helps to reduce eye

  4. Support of Integrated Health Management (IHM) through Automated Analyses of Flowfield-Derived Spectrographic Data

    Science.gov (United States)

    Patrick, Marshall C.; Cooper, Anita E.; Powers, W. T.

    2003-01-01

    Flow-field analysis techniques under continuing development at NASA's Marshall Space Flight Center are the foundation for a new type of health monitoring instrumentation for propulsion systems and a vast range of other applications. Physics, spectroscopy, mechanics, optics, and cutting-edge computer sciences merge to make recent developments in such instrumentation possible. Issues encountered in adaptation of such a system to future space vehicles, or retrofit in existing hardware, are central to the work. This paper is an overview of the collaborative efforts results, current efforts, and future plans.

  5. Respiratory gated radiotherapy-pretreatment patient specific quality assurance

    Directory of Open Access Journals (Sweden)

    Rajesh Thiyagarajan

    2016-01-01

    Full Text Available Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany in conjunction with "Real-time position management" (Varian, USA to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA phantom (Computerized Imaging Reference Systems type is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%. Gamma value evaluated from EBT film shows passing rates 92–99% (96.63 ± 3.84% for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level.

  6. Patient-specific data fusion defines prognostic cancer subtypes.

    Directory of Open Access Journals (Sweden)

    Yinyin Yuan

    2011-10-01

    Full Text Available Different data types can offer complementary perspectives on the same biological phenomenon. In cancer studies, for example, data on copy number alterations indicate losses and amplifications of genomic regions in tumours, while transcriptomic data point to the impact of genomic and environmental events on the internal wiring of the cell. Fusing different data provides a more comprehensive model of the cancer cell than that offered by any single type. However, biological signals in different patients exhibit diverse degrees of concordance due to cancer heterogeneity and inherent noise in the measurements. This is a particularly important issue in cancer subtype discovery, where personalised strategies to guide therapy are of vital importance. We present a nonparametric Bayesian model for discovering prognostic cancer subtypes by integrating gene expression and copy number variation data. Our model is constructed from a hierarchy of Dirichlet Processes and addresses three key challenges in data fusion: (i To separate concordant from discordant signals, (ii to select informative features, (iii to estimate the number of disease subtypes. Concordance of signals is assessed individually for each patient, giving us an additional level of insight into the underlying disease structure. We exemplify the power of our model in prostate cancer and breast cancer and show that it outperforms competing methods. In the prostate cancer data, we identify an entirely new subtype with extremely poor survival outcome and show how other analyses fail to detect it. In the breast cancer data, we find subtypes with superior prognostic value by using the concordant results. These discoveries were crucially dependent on our model's ability to distinguish concordant and discordant signals within each patient sample, and would otherwise have been missed. We therefore demonstrate the importance of taking a patient-specific approach, using highly-flexible nonparametric

  7. Respiratory gated radiotherapy-pretreatment patient specific quality assurance.

    Science.gov (United States)

    Thiyagarajan, Rajesh; Sinha, Sujit Nath; Ravichandran, Ramamoorthy; Samuvel, Kothandaraman; Yadav, Girigesh; Sigamani, Ashok Kumar; Subramani, Vikraman; Raj, N Arunai Nambi

    2016-01-01

    Organ motions during inter-fraction and intra-fraction radiotherapy introduce errors in dose delivery, irradiating excess of normal tissue, and missing target volume. Lung and heart involuntary motions cause above inaccuracies and gated dose delivery try to overcome above effects. Present work attempts a novel method to verify dynamic dose delivery using a four-dimensional (4D) phantom. Three patients with mobile target are coached to maintain regular and reproducible breathing pattern. Appropriate intensity projection image set generated from 4D-computed tomography (4D-CT) is used for target delineation. Intensity modulated radiotherapy plans were generated on selected phase using CT simulator (Siemens AG, Germany) in conjunction with "Real-time position management" (Varian, USA) to acquire 4D-CT images. Verification plans were generated for both ion chamber and Gafchromic (EBT) film image sets. Gated verification plans were delivered on the phantom moving with patient respiratory pattern. We developed a MATLAB-based software to generate maximum intensity projection, minimum intensity projections, and average intensity projections, also a program to convert patient breathing pattern to phantom compatible format. Dynamic thorax quality assurance (QA) phantom (Computerized Imaging Reference Systems type) is used to perform the patient specific QA, which holds an ion chamber and film to measure delivered radiation intensity. Exposed EBT films are analyzed and compared with treatment planning system calculated dose. The ion chamber measured dose shows good agreement with planned dose within ± 0.5% (0.203 ± 0.57%). Gamma value evaluated from EBT film shows passing rates 92-99% (96.63 ± 3.84%) for 3% dose and 3 mm distance criteria. Respiratory gated treatment delivery accuracy is found to be within clinically acceptable level. PMID:27051173

  8. Development of automated health physics monitoring system for a medical cyclotron complex

    International Nuclear Information System (INIS)

    Full text: A Health Physics surveillance system (Watchdog) for the real-time detection, processing and storage of various radiological protection related data of the Cyclotron facility of the Radiopharmaceutical Division of ANSTO developed during 1991 has been operational since March 1992 (Mukherjee, B. et al. Proc. 13th Int. Conf. on Cyclotrons and their Applications, Vancouver, Canada, July 1992). In this paper a upgraded version of the Health Physics Monitoring system installed to monitor the radiation fields in the vicinity of the new PET and SPECT target caves as well as the stack effluent discharge is presented. Standard gamma and neutron area monitors (GD1...GD7 and ND1) were modified with novel electronic 'Piggy back' circuits to respond to the new ICRP 1990 radiation weighting factor (ICRP Publication No. 61, 1991). The monitor outputs were connected to a datalogger via RF shielded twisted pair cables in 'Current-loop' mode. Two NaI-scintillation detectors (SM1 and SM2) connected to single channel analysers were used in the stack monitors to detect the release of positron emitting gases and Iodine-123. The operation of the suction pump (SP) was controlled by a solenoid valve connected to the datalogger in order to compensate the 'residence-time' error of the stack detectors. The datalogger was interfaced to a 100 MHz Pentium-CPU based Personal computer with a 2GB Hard disk for long term data storage. The neutron and gamma dose equivalent rates were sampled in every minute and displayed in the user friendly mimics. In total 6 mimics were simultaneously operational in 'Multi-tasking' mode. The datalogger output signals were linearised using 'multi-degree' polynomials. The data was collected in a block of 24 hours and stored in the Excel V5 spreadsheet for statistical analysis and graphical display. The long term Health Physics data collected in the spreadsheets was used to analyse the global performance of the entire cyclotron facility which includes the

  9. Automation of the radiation measuring facilities for samples in health physics - MA 9

    International Nuclear Information System (INIS)

    Routine radation measurements of samples are performed by the HMI health physics department by means of test stations for individual samples and multiple samples (using a changing equipment). The basic device of these test stations is a SCALER/TIMER system (BF 22/25, BERTHOLD Corp.). This measuring facility has been extended by a CAMAC intrumentation which incorporates an autonomous CAMAC processor (CAPRO-1, INCAA B.V.) for monitoring an automatic control of the system. The programming language is BASIC. A DECwriter (LA 34) is used for user interaction and for printing the measurement results. This report describes the features of this system and present some examples of, the dialogue with the system and the printout of data. (orig.)

  10. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  11. Patterns of patient specific dosimetry in total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871 (Japan); McMullen, Kevin P.; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2013-04-15

    Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10

  12. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    J. Xiang; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  13. Application of Artificial Neural Network Modeling to the Analysis of the Automated Radioxenon Sampler-Analyzer State Of Health Sensors OF HEALTH SENSORS

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, James C.; Doctor, Pam G.; Heimbigner, Tom R.; Hubbard, Charles W.; Kangas, Lars J.; Keller, Paul E.; McIntyre, Justin I.; Schrom, Brian T.; Suarez, Reynold

    2006-09-19

    The Automated Radioxenon Analyzer/Sampler (ARSA) is a radioxenon gas collection and analysis system operating autonomously under computer control. The ARSA systems are deployed as part of an international network of sensors, with individual stations feeding radioxenon concentration data to a central data center. Because the ARSA instrument is complex and is often deployed in remote areas, it requires constant self-monitoring to verify that it is operating according to specifications. System performance monitoring is accomplished by over 200 internal sensors, with some values reported to the data center. Several sensors are designated as safety sensors that can automatically shut down the ARSA when unsafe conditions arise. In this case, the data center is advised of the shutdown and the cause, so that repairs may be initiated. The other sensors, called state of health (SOH) sensors, also provide valuable information on the functioning of the ARSA and are particularly useful for detecting impending malfunctions before they occur to avoid unscheduled shutdowns. Any of the sensor readings can be displayed by an ARSA Data Viewer, but interpretation of the data is difficult without specialized technical knowledge not routinely available at the data center. Therefore it would be advantageous to have sensor data automatically evaluated for the precursors of malfunctions and the results transmitted to the data center. Artificial Neural Networks (ANN) are a class of data analysis methods that have shown wide application to monitoring systems with large numbers of information inputs, such as the ARSA. In this work supervised and unsupervised ANN methods were applied to ARSA SOH data recording during normal operation of the instrument, and the ability of ANN methods to predict system state is presented.

  14. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  15. Poster — Thur Eve — 51: An analysis of the effectiveness of automated pre-, post- and intra-treatment auditing of electronic health records

    International Nuclear Information System (INIS)

    We describe development of automated, web-based, electronic health record (EHR) auditing software for use within our paperless radiation oncology clinic. By facilitating access to multiple databases within the clinic, each patient's EHR is audited prior to treatment, regularly during treatment, and post treatment. Anomalies such as missing documentation, non-compliant workflow and treatment parameters that differ significantly from the norm may be monitored, flagged and brought to the attention of clinicians. By determining historical trends using existing patient data and by comparing new patient data with the historical, we expect our software to provide a measurable improvement in the quality of radiotherapy at our centre

  16. Poster — Thur Eve — 51: An analysis of the effectiveness of automated pre-, post- and intra-treatment auditing of electronic health records

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A.; Seuntjens, J.; Parker, W.; Kildea, J. [Dept. of Medical Physics, McGill University Health Centre, Montreal, QC (Canada); Freeman, C. [Dept. of Radiation Oncology, McGill University Health Centre, Montreal, QC (Canada)

    2014-08-15

    We describe development of automated, web-based, electronic health record (EHR) auditing software for use within our paperless radiation oncology clinic. By facilitating access to multiple databases within the clinic, each patient's EHR is audited prior to treatment, regularly during treatment, and post treatment. Anomalies such as missing documentation, non-compliant workflow and treatment parameters that differ significantly from the norm may be monitored, flagged and brought to the attention of clinicians. By determining historical trends using existing patient data and by comparing new patient data with the historical, we expect our software to provide a measurable improvement in the quality of radiotherapy at our centre.

  17. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing

    OpenAIRE

    Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H; Levy, Elad I; Meng, Hui; Rudin, Stephen

    2014-01-01

    Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital s...

  18. Patient-Specific Surgical Planning, Where Do We Stand? The Example of the Fontan Procedure.

    Science.gov (United States)

    de Zélicourt, Diane A; Kurtcuoglu, Vartan

    2016-01-01

    The Fontan surgery for single ventricle heart defects is a typical example of a clinical intervention in which patient-specific computational modeling can improve patient outcome: with the functional heterogeneity of the presenting patients, which precludes generic solutions, and the clear influence of the surgically-created Fontan connection on hemodynamics, it is acknowledged that individualized computational optimization of the post-operative hemodynamics can be of clinical value. A large body of literature has thus emerged seeking to provide clinically relevant answers and innovative solutions, with an increasing emphasis on patient-specific approaches. In this review we discuss the benefits and challenges of patient-specific simulations for the Fontan surgery, reviewing state of the art solutions and avenues for future development. We first discuss the clinical impact of patient-specific simulations, notably how they have contributed to our understanding of the link between Fontan hemodynamics and patient outcome. This is followed by a survey of methodologies for capturing patient-specific hemodynamics, with an emphasis on the challenges of defining patient-specific boundary conditions and their extension for prediction of post-operative outcome. We conclude with insights into potential future directions, noting that one of the most pressing issues might be the validation of the predictive capabilities of the developed framework. PMID:26183962

  19. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  20. Automated Contingency Management for Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Increasing demand for improved reliability and survivability of mission-critical systems is driving the development of health monitoring and Automated Contingency...

  1. An automated, broad-based, near real-time public health surveillance system using presentations to hospital Emergency Departments in New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Chiu Clayton

    2005-12-01

    Full Text Available Abstract Background In a climate of concern over bioterrorism threats and emergent diseases, public health authorities are trialling more timely surveillance systems. The 2003 Rugby World Cup (RWC provided an opportunity to test the viability of a near real-time syndromic surveillance system in metropolitan Sydney, Australia. We describe the development and early results of this largely automated system that used data routinely collected in Emergency Departments (EDs. Methods Twelve of 49 EDs in the Sydney metropolitan area automatically transmitted surveillance data from their existing information systems to a central database in near real-time. Information captured for each ED visit included patient demographic details, presenting problem and nursing assessment entered as free-text at triage time, physician-assigned provisional diagnosis codes, and status at departure from the ED. Both diagnoses from the EDs and triage text were used to assign syndrome categories. The text information was automatically classified into one or more of 26 syndrome categories using automated "naïve Bayes" text categorisation techniques. Automated processes were used to analyse both diagnosis and free text-based syndrome data and to produce web-based statistical summaries for daily review. An adjusted cumulative sum (cusum was used to assess the statistical significance of trends. Results During the RWC the system did not identify any major public health threats associated with the tournament, mass gatherings or the influx of visitors. This was consistent with evidence from other sources, although two known outbreaks were already in progress before the tournament. Limited baseline in early monitoring prevented the system from automatically identifying these ongoing outbreaks. Data capture was invisible to clinical staff in EDs and did not add to their workload. Conclusion We have demonstrated the feasibility and potential utility of syndromic surveillance using

  2. Patient-Specific, Time-Varying Predictors of Post-ICU Informal Caregiver Burden

    Science.gov (United States)

    Schulz, Richard; Chelluri, Lakshmipathi; Pinsky, Michael R.

    2010-01-01

    Background: The outcomes of informal caregivers of survivors of critical illness likely depend on patient characteristics, which may change over time. To date, few studies have examined patient-specific predictors of post-ICU informal caregiver burden, and none has tested whether predictors vary after hospital discharge. Methods: We designed a prospective, longitudinal observational study, enrolling 48 patient-caregiver dyads from four ICUs in a university hospital. Informal caregiver depression symptoms were measured with the Center for Epidemiologic Studies Depression scale. Lifestyle disruption was measured with the Activity Restriction Scale. Linear regression models were built to test for patient- and caregiver-specific predictors of depression symptoms and lifestyle disruption 2, 6, and 12 months after ICU admission. Results: Patients had a mean (SD) age of 52.5 (19.7) years, 67% were men, median (interquartile range) Acute Physiology and Chronic Health Evaluation score was 52 (38.5, 65). The caregivers had a mean (SD) age of 52.8 (12.8) years, 91.2% were women, and 48% were spouses. Predictors of caregiver depression symptoms were patient gender (men) at 2 and 12 months and tracheostomy at 12 months. Predictors of lifestyle disruption were patient education (more common among high school graduates) and patient gender (men) at 2 months, and tracheostomy, functional dependency, and patient gender (men) at 12 months. Conclusions: The determinants of post-ICU informal caregiver burden likely depend on characteristics of the patient as well as the caregiver and may vary over time. Further research is necessary to better understand the longitudinal determinants of burden in order to develop more effective caregiver interventions. PMID:19762552

  3. Process automation

    International Nuclear Information System (INIS)

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  4. Patient-specific Deformation Modelling via Elastography: Application to Image-guided Prostate Interventions.

    Science.gov (United States)

    Wang, Yi; Ni, Dong; Qin, Jing; Xu, Ming; Xie, Xiaoyan; Heng, Pheng-Ann

    2016-01-01

    Image-guided prostate interventions often require the registration of preoperative magnetic resonance (MR) images to real-time transrectal ultrasound (TRUS) images to provide high-quality guidance. One of the main challenges for registering MR images to TRUS images is how to estimate the TRUS-probe-induced prostate deformation that occurs during TRUS imaging. The combined statistical and biomechanical modeling approach shows promise for the adequate estimation of prostate deformation. However, the right setting of the biomechanical parameters is very crucial for realistic deformation modeling. We propose a patient-specific deformation model equipped with personalized biomechanical parameters obtained from shear wave elastography to reliably predict the prostate deformation during image-guided interventions. Using data acquired from a prostate phantom and twelve patients with suspected prostate cancer, we compared the prostate deformation model with and without patient-specific biomechanical parameters in terms of deformation estimation accuracy. The results show that the patient-specific deformation model possesses favorable model ability, and outperforms the model without patient-specific biomechanical parameters. The employment of the patient-specific biomechanical parameters obtained from elastography for deformation modeling shows promise for providing more precise deformation estimation in applications that use computer-assisted image-guided intervention systems. PMID:27272239

  5. Orbital and Maxillofacial Computer Aided Surgery: Patient-Specific Finite Element Models To Predict Surgical Outcomes

    CERN Document Server

    Luboz, V; Swider, P; Payan, Y; Luboz, Vincent; Chabanas, Matthieu; Swider, Pascal; Payan, Yohan

    2005-01-01

    This paper addresses an important issue raised for the clinical relevance of Computer-Assisted Surgical applications, namely the methodology used to automatically build patient-specific Finite Element (FE) models of anatomical structures. From this perspective, a method is proposed, based on a technique called the Mesh-Matching method, followed by a process that corrects mesh irregularities. The Mesh-Matching algorithm generates patient-specific volume meshes from an existing generic model. The mesh regularization process is based on the Jacobian matrix transform related to the FE reference element and the current element. This method for generating patient-specific FE models is first applied to Computer-Assisted maxillofacial surgery, and more precisely to the FE elastic modelling of patient facial soft tissues. For each patient, the planned bone osteotomies (mandible, maxilla, chin) are used as boundary conditions to deform the FE face model, in order to predict the aesthetic outcome of the surgery. Seven F...

  6. Patient-Specific Instrumentation in Total Knee Arthroplasty: What Is the Evidence?

    Science.gov (United States)

    Szczech, Bartlomiej; McDermott, James D; Issa, Kimona; Rifai, Aiman; Festa, Anthony; Matarese, William A; McInerney, Vincent K

    2016-05-01

    With a steady increase in the demand for primary and revision total knee arthroplasty (TKA), any potential reduction in the number of failures can be a topic of significant clinical importance. Patient-specific instrumentation (PSI) is introduced to potentially achieve more reproducible alignment with reduced outliers by creating more accurate and patient-specific femoral and tibial cuts based on neutral mechanical axis. However, there is no widely accepted consensus on the efficacy and indication of using PSI in TKA. The purpose of this review was to assess the current literature on patient-specific TKA and its effect on perioperative outcomes, including templating and preoperative planning, mechanical alignment, clinical outcomes, perioperative blood loss, and economic evaluations. Based on the current literature, more prospective studies are necessary to evaluate the routine use of PSI in TKA. PMID:26378906

  7. From Patient-Specific Mathematical Neuro-Oncology to Precision Medicine

    Directory of Open Access Journals (Sweden)

    Anne eBaldock

    2013-04-01

    Full Text Available Gliomas are notoriously aggressive, malignant brain tumors that have variable response to treatment. These patients often have poor prognosis, informed primarily by histopathology. Mathematical neuro-oncology (MNO is a young and burgeoning field that leverages mathematical models to predict and quantify response to therapies. These mathematical models can form the basis of modern precision medicine approaches to tailor therapy in a patient-specific manner. Patient specific models (PSMs can be used to overcome imaging limitations, improve prognostic predictions, stratify patients and assess treatment response in silico. The information gleaned from such models can aid in the construction and efficacy of clinical trials and treatment protocols, accelerating the pace of clinical research in the war on cancer. This review focuses on the growing translation of PSM to clinical neuro-oncology. It will also provide a forward-looking view on a new era of patient-specific mathematical neuro-oncology.

  8. Patient-specific QA and delivery verification of scanned ion beam at NIRS-HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Takuji; Inaniwa, Taku; Hara, Yousuke; Mizushima, Kota; Shirai, Toshiyuki; Noda, Koji [Medical Physics Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-12-15

    Purpose: To evaluate a patient-specific QA program and system for constancy checking of a scanning delivery system developed at the National Institute of Radiological Sciences.Methods: For the patient-specific QA, all the planned beams are recalculated on a water phantom with treatment planning software (TPS). The recalculated dose distributions are compared with the measured distributions using a 2D ionization chamber array at several depths, and evaluated using gamma index analysis with criteria of 3% and 3 mm and a pass rate of 90%. For the constancy check, the authors developed the multiwire proportional chamber (MWPC), which can record the delivered 2D fluence images in a slice-by-slice manner. During irradiation for dosimetric QA with the 2D ionization chamber array and an accordion-type water phantom, the 2D fluence images are recorded using the MWPC in the delivery system. These recorded images are then compared to those taken in the treatment session to check the constancy check. This analysis also employs gamma index analysis using the same criteria as in the patient-specific QA. These patient-specific QA and constancy check evaluations were performed using the data of 122 patients.Results: In the patient-specific QA, the measured dose distributions agreed well with those calculated by the TPS, and the QA criteria were satisfied in all measurements. The additional check of the fluence comparison ensured the constancy of the delivered field during each treatment irradiation.Conclusions: The authors established a patient-specific QA program and additional check of delivery constancy in every treatment session. Fluence comparison is a strong tool for constancy checking of the delivery system.

  9. Computational biomechanics for medicine fundamental science and patient-specific applications

    CERN Document Server

    Miller, Karol; Wittek, Adam; Nielsen, Poul

    2014-01-01

    One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This latest installment comprises nine of the latest developments in both fundamental science and patient-specific applications, from researchers in Australia, New Zealand, USA, UK, France, Ireland, and China. Some of the interesting topics discussed are: cellular mechanics; tumor growth and modeling; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations.

  10. 21 CFR 864.3875 - Automated tissue processor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated tissue processor. 864.3875 Section 864.3875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Automated tissue processor. (a) Identification. An automated tissue processor is an automated system used...

  11. Patient-specific modeling of dyssynchronous heart failure: a case study.

    Science.gov (United States)

    Aguado-Sierra, Jazmin; Krishnamurthy, Adarsh; Villongco, Christopher; Chuang, Joyce; Howard, Elliot; Gonzales, Matthew J; Omens, Jeff; Krummen, David E; Narayan, Sanjiv; Kerckhoffs, Roy C P; McCulloch, Andrew D

    2011-10-01

    The development and clinical use of patient-specific models of the heart is now a feasible goal. Models have the potential to aid in diagnosis and support decision-making in clinical cardiology. Several groups are now working on developing multi-scale models of the heart for understanding therapeutic mechanisms and better predicting clinical outcomes of interventions such as cardiac resynchronization therapy. Here we describe the methodology for generating a patient-specific model of the failing heart with a myocardial infarct and left ventricular bundle branch block. We discuss some of the remaining challenges in developing reliable patient-specific models of cardiac electromechanical activity, and identify some of the main areas for focusing future research efforts. Key challenges include: efficiently generating accurate patient-specific geometric meshes and mapping regional myofiber architecture to them; modeling electrical activation patterns based on cellular alterations in human heart failure, and estimating regional tissue conductivities based on clinically available electrocardiographic recordings; estimating unloaded ventricular reference geometry and material properties for biomechanical simulations; and parameterizing systemic models of circulatory dynamics from available hemodynamic measurements. PMID:21763714

  12. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    International Nuclear Information System (INIS)

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control. (paper)

  13. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    Science.gov (United States)

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B.; Gu, Xuejun

    2015-11-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  14. Three dimensional patient-specific collagen architecture modulates cartilage responses in the knee joint during gait.

    Science.gov (United States)

    Räsänen, Lasse P; Mononen, Mika E; Lammentausta, Eveliina; Nieminen, Miika T; Jurvelin, Jukka S; Korhonen, Rami K

    2016-08-01

    Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to -413 and -26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue. PMID:26714834

  15. Validation of a patient-specific one-dimensional model of the systemic arterial tree.

    Science.gov (United States)

    Reymond, Philippe; Bohraus, Yvette; Perren, Fabienne; Lazeyras, Francois; Stergiopulos, Nikos

    2011-09-01

    The aim of this study is to develop and validate a patient-specific distributed model of the systemic arterial tree. This model is built using geometric and hemodynamic data measured on a specific person and validated with noninvasive measurements of flow and pressure on the same person, providing thus a patient-specific model and validation. The systemic arterial tree geometry was obtained from MR angiographic measurements. A nonlinear viscoelastic constitutive law for the arterial wall is considered. Arterial wall distensibility is based on literature data and adapted to match the wave propagation velocity of the main arteries of the specific subject, which were estimated by pressure waves traveling time. The intimal shear stress is modeled using the Witzig-Womersley theory. Blood pressure is measured using applanation tonometry and flow rate using transcranial ultrasound and phase-contrast-MRI. The model predicts pressure and flow waveforms in good qualitative and quantitative agreement with the in vivo measurements, in terms of wave shape and specific wave features. Comparison with a generic one-dimensional model shows that the patient-specific model better predicts pressure and flow at specific arterial sites. These results obtained let us conclude that a patient-specific one-dimensional model of the arterial tree is able to predict well pressure and flow waveforms in the main systemic circulation, whereas this is not always the case for a generic one-dimensional model. PMID:21622820

  16. Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy

    Directory of Open Access Journals (Sweden)

    Anastasia Yendiki

    2011-10-01

    Full Text Available We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls.

  17. Rapid prototyping for patient-specific surgical orthopaedics guides: A systematic literature review.

    Science.gov (United States)

    Popescu, Diana; Laptoiu, Dan

    2016-06-01

    There has been a lot of hype surrounding the advantages to be gained from rapid prototyping processes in a number of fields, including medicine. Our literature review aims objectively to assess how effective patient-specific surgical guides manufactured using rapid prototyping are in a number of orthopaedic surgical applications. To this end, we carried out a systematic review to identify and analyse clinical and experimental literature studies in which rapid prototyping patient-specific surgical guides are used, focusing especially on those that entail quantifiable outcomes and, at the same time, providing details on the guides' design and type of manufacturing process. Here, it should be mentioned that in this field there are not yet medium- or long-term data, and no information on revisions. In the reviewed studies, the reported positive opinions on the use of rapid prototyping patient-specific surgical guides relate to the following main advantages: reduction in operating times, low costs and improvements in the accuracy of surgical interventions thanks to guides' personalisation. However, disadvantages and sources of errors which can cause patient-specific surgical guide failures are as well discussed by authors. Stereolithography is the main rapid prototyping process employed in these applications although fused deposition modelling or selective laser sintering processes can also satisfy the requirements of these applications in terms of material properties, manufacturing accuracy and construction time. Another of our findings was that individualised drill guides for spinal surgery are currently the favourite candidates for manufacture using rapid prototyping. Other emerging applications relate to complex orthopaedic surgery of the extremities: the forearm and foot. Several procedures such as osteotomies for radius malunions or tarsal coalition could become standard, thanks to the significant assistance provided by rapid prototyping patient-specific surgical

  18. Automation of dissolution tests

    OpenAIRE

    Rolf Rolli

    2003-01-01

    Dissolution testing of drug formulations was introduced in the 1960s and accepted by health regulatory authorities in the 1970s. Since then, the importance of dissolution has grown rapidly as have the number of tests and demands in quality-control laboratories. Recent research works lead to the development of in-vitro dissolution tests as replacements for human and animal bioequivalence studies. For many years, a lot of time and effort has been invested in automation of dissolution tests. The...

  19. Computational assessment of effective dose and patient specific doses for kilovoltage stereotactic radiosurgery of wet age-related macular degeneration

    Science.gov (United States)

    Hanlon, Justin Mitchell

    Age-related macular degeneration (AMD) is a leading cause of vision loss and a major health problem for people over the age of 50 in industrialized nations. The current standard of care, ranibizumab, is used to help slow and in some cases stabilize the process of AMD, but requires frequent invasive injections into the eye. Interest continues for stereotactic radiosurgery (SRS), an option that provides a non-invasive treatment for the wet form of AMD, through the development of the IRay(TM) (Oraya Therapeutics, Inc., Newark, CA). The goal of this modality is to destroy choroidal neovascularization beneath the pigment epithelium via delivery of three 100 kVp photon beams entering through the sclera and overlapping on the macula delivering up to 24 Gy of therapeutic dose over a span of approximately 5 minutes. The divergent x-ray beams targeting the fovea are robotically positioned and the eye is gently immobilized by a suction-enabled contact lens. Device development requires assessment of patient effective dose, reference patient mean absorbed doses to radiosensitive tissues, and patient specific doses to the lens and optic nerve. A series of head phantoms, including both reference and patient specific, was derived from CT data and employed in conjunction with the MCNPX 2.5.0 radiation transport code to simulate treatment and evaluate absorbed doses to potential tissues-at-risk. The reference phantoms were used to evaluate effective dose and mean absorbed doses to several radiosensitive tissues. The optic nerve was modeled with changeable positions based on individual patient variability seen in a review of head CT scans gathered. Patient specific phantoms were used to determine the effect of varying anatomy and gaze. The results showed that absorbed doses to the non-targeted tissues were below the threshold levels for serious complications; specifically the development of radiogenic cataracts and radiation induced optic neuropathy (RON). The effective dose

  20. [Evolution of total knee arthroplasty : From robotics and navigation to patient-specific instruments].

    Science.gov (United States)

    Haaker, R

    2016-04-01

    In this article the evolution beginning with the robotics of total knee arthroplasty to CT-based and kinematic navigation and patient-specific instruments is described. Thereby it is pointed out that in the early 1990s, CT imaging solely for the planning of a knee endoprosthesis was considered as obsolete radiation exposure and this led to the widespread development of kinematical systems.Also a patient specific planning tool based on CAD built acryl harz blocs existed at the time. There is an ongoing process of implanting total knee arthroplasties in a more exact position. Nowadays the new evolution of soft tissue balancing by using a kinematic alignment has put these efforts into perspective. PMID:27025867

  1. Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms.

    Science.gov (United States)

    Trabelsi, Olfa; Duprey, Ambroise; Favre, Jean-Pierre; Avril, Stéphane

    2016-01-01

    The aim of this study is to identify the patient-specific material properties of ascending thoracic aortic aneurysms (ATAA) using preoperative dynamic gated computed tomography (CT) scans. The identification is based on the simultaneous minimization of two cost functions, which define the difference between model predictions and gated CT measurements of the aneurysm volume at respectively systole and cardiac mid-cycle. The method is applied on five patients who underwent surgical repair of their ATAA at the University Hospital Center of St. Etienne. For these patients, the aneurysms were collected and tested mechanically using an in vitro bench. For the sake of validation, the mechanical properties found using the in vivo approach and the in vitro bench were compared. We eventually performed finite-element stress analyses based on each set of material properties. Rupture risk indexes were estimated and compared, showing promising results of the patient-specific identification method based on gated CT. PMID:26178871

  2. Concise Review: Guidance in Developing Commercializable Autologous/Patient-Specific Cell Therapy Manufacturing

    OpenAIRE

    Eaker, Shannon; Armant, Myriam; Brandwein, Harvey; Burger, Scott; Campbell, Andrew; Carpenito, Carmine; Clarke, Dominic; Fong, Timothy; Karnieli, Ohad; Niss, Knut; van"t Hof, Wouter; Wagey, Ravenska

    2013-01-01

    In this technical review, members of the International Society for Cell Therapy (ISCT) provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Guidance is provided to help small academic or biotech researchers determine what questions can be addressed at the bench level in order to make their cell therapy products more feasible for commercial-scale production.

  3. Image-Based Estimation of Ventricular Fiber Orientations for Patient-Specific Simulations

    OpenAIRE

    Vadakkumpadan, Fijoy; Arevalo, Hermenegild; Ceritoglu, Can; Miller, Michael; Trayanova, Natalia

    2011-01-01

    Patient-specific simulation of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. In this research, we develop a methodology to predict ventricular fiber orientations of a patient heart, given the geometry of the heart and an atlas. We test the methodology by comparing the estimated fiber orientations with measured ones, and by quantifying the effect of the estimation erro...

  4. NOTE: MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    Science.gov (United States)

    Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.

    2007-07-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform

  5. The utility of patient specific induced pluripotent stem cells for the modelling of Autistic Spectrum Disorders

    OpenAIRE

    Cocks, Graham; Curran, Sarah; Gami, Priya; Uwanogho, Dafe; Jeffries, Aaron R.; Kathuria, Annie; Lucchesi, Walter; Wood, Victoria; Dixon, Rosemary; Ogilvie, Caroline; Steckler, Thomas; Price, Jack

    2013-01-01

    Until now, models of psychiatric diseases have typically been animal models. Whether they were to be used to further understand the pathophysiology of the disorder, or as drug discovery tools, animal models have been the choice of preference in mimicking psychiatric disorders in an experimental setting. While there have been cellular models, they have generally been lacking in validity. This situation is changing with the advent of patient-specific induced pluripotent stem cells (iPSCs). In t...

  6. MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    International Nuclear Information System (INIS)

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOMRT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large

  7. Review of patient-specific simulations of transcatheter aortic valve implantation

    OpenAIRE

    Vy, P; Auffret, Vincent; Badel, Pierre; Rochette, Michel; Le Breton, Hervé; Haigron, Pascal; Avril, Stéphane

    2016-01-01

    International audience Transcatheter Aortic Valve Implantation (TAVI) accounts for one of the most promising new cardiovascular procedures. This minimally invasive technique is still at its early stage and is constantly developing thanks to imaging techniques, computer science, biomechanics and technologies of prosthesis and delivery tools. As a result, patient-specific simulation can find an exciting playground in TAVI. It canexpress its potential by providing the clinicians with powerful...

  8. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Science.gov (United States)

    Canals, Isaac; Soriano, Jordi; Orlandi, Javier G.; Torrent, Roger; Richaud-Patin, Yvonne; Jiménez-Delgado, Senda; Merlin, Simone; Follenzi, Antonia; Consiglio, Antonella; Vilageliu, Lluïsa; Grinberg, Daniel; Raya, Angel

    2015-01-01

    Summary Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration. PMID:26411903

  9. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Isaac Canals

    2015-10-01

    Full Text Available Induced pluripotent stem cell (iPSC technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration.

  10. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. PMID:25446264

  11. A Patient-Specific Airway Branching Model for Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Nor Salwa Damanhuri

    2014-01-01

    Full Text Available Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM was improved to include patient-specific parameters and better model observed behaviour (ABMps. Methods. The airway pressure drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA in patients diagnosed with acute respiratory distress syndrome (ARDS. A scaling factor (α was used to equate the area under the pressure curve (AUC from the ABMps to the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median α value of 0.58 (IQR: 0.54–0.63; range: 0.45–0.66 for these ARDS patients. Significantly lower α values were found for individuals with chronic obstructive pulmonary disease (P<0.001. Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of patient-specific α values indicates that the overall ABM can be readily improved to better match observed data and capture patient condition.

  12. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P. [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Department of Physics, and Department of Biomedical Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 and Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Duke Radiation Dosimetry Laboratory, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller

  13. Automation Security

    OpenAIRE

    Mirzoev, Dr. Timur

    2014-01-01

    Web-based Automated Process Control systems are a new type of applications that use the Internet to control industrial processes with the access to the real-time data. Supervisory control and data acquisition (SCADA) networks contain computers and applications that perform key functions in providing essential services and commodities (e.g., electricity, natural gas, gasoline, water, waste treatment, transportation) to all Americans. As such, they are part of the nation s critical infrastructu...

  14. The patient's perspective of the feasibility of a patient-specific instrument in physiotherapy goal setting : a qualitative study

    NARCIS (Netherlands)

    Stevens, Anita; Moser, Albine; Köke, Albère; Weijden, Trudy van der; Beurskens, Anna

    2016-01-01

    Background: Patient participation in goal setting is important to deliver client-centered care. In daily practice, however, patient involvement in goal setting is not optimal. Patient-specific instruments, such as the Patient Specific Complaints (PSC) instrument, can support the goal-setting process

  15. Automated analysis of long-term bridge behavior and health using a cyber-enabled wireless monitoring system

    Science.gov (United States)

    O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen

    2014-04-01

    A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP

  16. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors

    International Nuclear Information System (INIS)

    Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets (±1 mm in two banks, ±0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  17. Patient-specific coronary artery blood flow simulation using myocardial volume partitioning

    Science.gov (United States)

    Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.

  18. Patient-specific FE model of the leg under elastic compression

    OpenAIRE

    Dubuis, Laura; Rohan, Pierre-Yves; Avril, Stéphane; Badel, Pierre; Debayle, Johan

    2012-01-01

    Elastic compression (EC) is a medical treatment which relies on the use of socks to improve the venous return and, thereby, control or treat various vein-related diseases such as ulcers. The beneficial effects of EC have been known for centuries, but their mechanism of action is not totally understood. In order to validate and improve current treatments, it is necessary to determine how the pressure is transmitted from the sock to the vein walls. To address this issue, a patient-specific 3D F...

  19. Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2012-01-01

    Full Text Available Islet cell transplantation offers a potential cure for type 1 diabetes, but it is challenged by insufficient donor tissue and side effects of current immunosuppressive drugs. Therefore, alternative sources of insulin-producing cells and isletfriendly immunosuppression are required to increase the efficiency and safety of this procedure. Beta cells can be transdifferentiated from precursors or another heterologous (non-beta-cell source. Recent advances in beta cell regeneration from somatic cells such as fibroblasts could circumvent the usage of immunosuppressive drugs. Therefore, generation of patient-specific beta cells provides the potential of an evolutionary treatment for patients with diabetes.

  20. Calculating patient specific doses in X-ray diagnostics and from radiopharmaceuticals

    International Nuclear Information System (INIS)

    The risk associated with exposure to ionising radiation is dependent on the characteristics of the exposed individual. The size and structure of the individual influences the absorbed dose distribution in the organs. Traditional methods used to calculate the patient organ doses are based on standardised calculation phantoms, which neglect the variance of the patient size or even sex. When estimating the radiation dose of an individual patient, patient specific calculation methods must be used. Methods for patient specific dosimetry in the fields of X-ray diagnostics and diagnostic and therapeutic use of radiopharmaceuticals were proposed in this thesis. A computer program, ODS-60, for calculating organ doses from diagnostic X-ray exposures was presented. The calculation is done in a patient specific phantom with depth dose and profile algorithms fitted to Monte Carlo simulation data from a previous study. Improvements to the version reported earlier were introduced, e.g. bone attenuation was implemented. The applicability of the program to determine patient doses from complex X-ray examinations (barium enema examination) was studied. The conversion equations derived for female and male patients as a function of patient weight gave the smallest deviation from the actual patient doses when compared to previous studies. Another computer program, Intdose, was presented for calculation of the dose distribution from radiopharmaceuticals. The calculation is based on convolution of an isotope specific point dose kernel with activity distribution, obtained from single photon emission computed tomography (SPECT) images. Anatomical information is taken from magnetic resonance (MR) or computed tomography (CT) images. According to a phantom study, Intdose agreed within 3 % with measurements. For volunteers administered diagnostic radiopharmaceuticals, the results given by Intdose were found to agree with traditional methods in cases of medium sized patients. For patients

  1. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders

    Directory of Open Access Journals (Sweden)

    Kristen J. Brennand

    2015-12-01

    Full Text Available As a group, we met to discuss the current challenges for creating meaningful patient-specific in vitro models to study brain disorders. Although the convergence of findings between laboratories and patient cohorts provided us confidence and optimism that hiPSC-based platforms will inform future drug discovery efforts, a number of critical technical challenges remain. This opinion piece outlines our collective views on the current state of hiPSC-based disease modeling and discusses what we see to be the critical objectives that must be addressed collectively as a field.

  2. An immersed-boundary framework for patient-specific optimization of inhaled drug delivery

    Science.gov (United States)

    Nicolaou, Laura; Zaki, Tamer

    2014-11-01

    Predictive numerical simulations have the potential to significantly enhance therapies for lung disease by providing a valuable clinical aid and a platform to optimize drug delivery. A difficult challenge, however, is the influence of inter-subject variations of the airway geometries and their impact on the airflow and aerosol deposition. A personalized approach to the treatment of respiratory diseases is therefore required. An in silico framework for patient-specific predictions of the flow and aerosol deposition in the respiratory airways is presented. The approach efficiently accommodates geometric variation and airway motion in order to optimize pulmonary drug delivery. A non-rigid registration method is adopted to construct dynamic airway models conforming to the patient's breathing. Accurate predictions of the flow in realistic airway geometries are computed using direct numerical simulations (DNS) with boundary conditions enforced using a robust, implicit immersed boundary (IB) method for curvilinear meshes. A Lagrangian particle-tracking scheme is adopted to model the transport and deposition of the aerosol particles in the airways. Examples of flow and aerosol deposition in realistic extrathoracic airways and of a patient-specific dynamic lung model are presented.

  3. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    Science.gov (United States)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  4. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  5. Home automation as an example of construction innovation

    NARCIS (Netherlands)

    Vlies, R.D. van der; Bronswijk, J.E.M.H. van

    2009-01-01

    Home automation can contribute to the health of (older) adults. Home automation covers a broad field of ‘intelligent’ electronic or mechanical devices in the home (domestic) environment. Realizing home automation is technically possible, though still not common. In this paper main influential factor

  6. Automated Safety Incident Surveillance and Tracking System (ASISTS)

    Data.gov (United States)

    Department of Veterans Affairs — The Automated Safety Incident Surveillance and Tracking System (ASISTS) is a repository of Veterans Health Administration (VHA) employee accident data. Many types...

  7. Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models

    Directory of Open Access Journals (Sweden)

    Qiu Z

    2013-07-01

    Full Text Available Zhifang Qiu,1,2 Steven L Farnsworth,2 Anuja Mishra,1,2 Peter J Hornsby1,21Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA; 2Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX, USAAbstract: The development of the technology for derivation of induced pluripotent stem (iPS cells from human patients and animal models has opened up new pathways to the better understanding of many human diseases, and has created new opportunities for therapeutic approaches. Here, we consider one important neurological disease, Parkinson's, the development of relevant neural cell lines for studying this disease, and the animal models that are available for testing the survival and function of the cells, following transplantation into the central nervous system. Rapid progress has been made recently in the application of protocols for neuroectoderm differentiation and neural patterning of pluripotent stem cells. These developments have resulted in the ability to produce large numbers of dopaminergic neurons with midbrain characteristics for further study. These cells have been shown to be functional in both rodent and nonhuman primate (NHP models of Parkinson's disease. Patient-specific iPS cells and derived dopaminergic neurons have been developed, in particular from patients with genetic causes of Parkinson's disease. For complete modeling of the disease, it is proposed that the introduction of genetic changes into NHP iPS cells, followed by studying the phenotype of the genetic change in cells transplanted into the NHP as host animal, will yield new insights into disease processes not possible with rodent models alone.Keywords: Parkinson's disease, pluripotent cell differentiation, neural cell lines, dopaminergic neurons, cell transplantation, animal models

  8. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases

    CERN Document Server

    Bucki, Marek; Payan, Yohan; 10.1016/j.media.2010.02.003

    2010-01-01

    Finite Element mesh generation remains an important issue for patient specific biomechanical modeling. While some techniques make automatic mesh generation possible, in most cases, manual mesh generation is preferred for better control over the sub-domain representation, element type, layout and refinement that it provides. Yet, this option is time consuming and not suited for intraoperative situations where model generation and computation time is critical. To overcome this problem we propose a fast and automatic mesh generation technique based on the elastic registration of a generic mesh to the specific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing capabilities, even in situations where only partial organ geometry is available. The technique was successfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads partially...

  9. Ionization chamber array for patient specific VMAT, Tomotherapy and IMRT QA

    International Nuclear Information System (INIS)

    The evaluation between measured and calculated dose is essential in the patient specific quality assurance procedures for intensity modulated radiation therapy. The high complexity of volumetric arc radiotherapy, Tomotherpay and intensity modulated radiation therapy deliveries attributed to the dynamic and synchronization requirements of such techniques require new methods and potentially new tools for the quality assurance of such techniques. Studies evaluating the dosimetric performance of EDR2 film and a 2D ionization chamber array quality assurance device have been performed in our institution. Our results showed that differences between the detector systems are small. The respective gamma index histograms showed that when 3% dose difference and 3mm distance to agreement are used, more than 90% of the evaluated points were within the tolerance criteria

  10. Wall Shear Stress Prediction Using Computational Simulation on Patient Specific Artery with Aneurysm

    Directory of Open Access Journals (Sweden)

    Yunus Muhamad

    2014-07-01

    Full Text Available An aneurysm is formed when a blood vessel becomes dilated or distorted. It will cause the vessel to expand to a size greater than its original diameter. In this study, Wall Shear Stress (WSS of cerebral artery with aneurysm was predicted using Computational Fluid Dynamics (CFD. WSS in the artery is one of the indicators for brain artery disease progression. Based on the results, the maximum value of blood velocity and WSS on patient specific artery with aneurysm are 3.23 m/s and 60.1 Pa, respectively. The location of high WSS is before and after the aneurysm bulge. The WSS is above the normal physiological value where the artery wall is exposed to high stress. Hence, the vessel at this location is anticipated to become weaker and could be further dilated.

  11. Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy

    Directory of Open Access Journals (Sweden)

    X. Ronald. Zhu

    2015-04-01

    Full Text Available An intensity-modulated proton therapy (IMPT patient-specific quality assurance (PSQA program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR system in the QA mode and the accelerator control system (ACS in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS. The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.

  12. Development of a patient-specific dosimetry estimation system in nuclear medicine examination

    International Nuclear Information System (INIS)

    The purpose of this study is to develop a patient-specific dosimetry estimation system in nuclear medicine examination using a SimSET-based Monte Carlo code. We added a dose deposition routine to store the deposited energy of the photons during their flights in SimSET and developed a user-friendly interface for reading PET and CT images. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The S values for 99mTc, 18F and 131I obtained by the system were compared to those from the MCNP4C code and OLINDA. The ratios of S values computed by this system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which are comparable to that obtained from MCNP4C code (0.94 to 1.20). The average ratios of S value were 0.99±0.04, 1.03±0.05, and 1.00±0.07 for isotopes 131I, 18F, and 99mTc, respectively. The simulation time of SimSET was two times faster than MCNP4C's for various isotopes. A 3D dose calculation was also performed on a patient data set with PET/CT examination using this system. Results from the patient data showed that the estimated S values using this system differed slightly from those of OLINDA for ORNL phantom. In conclusion, this system can generate patient-specific dose distribution and display the isodose curves on top of the anatomic structure through a friendly graphic user interface. It may also provide a useful tool to establish an appropriate dose-reduction strategy to patients in nuclear medicine environments. (authors)

  13. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-04-01

    Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate. PMID:26849955

  14. Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy

    International Nuclear Information System (INIS)

    An intensity-modulated proton therapy (IMPT) patient-specific quality assurance (PSQA) program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D) measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR) system in the QA mode and the accelerator control system (ACS) in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS). The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer) is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic

  15. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing

    Science.gov (United States)

    Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui; Rudin, Stephen

    2014-03-01

    Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.

  16. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  17. Patient-Specific Biomechanical Modeling for Guidance During Minimally-Invasive Hepatic Surgery.

    Science.gov (United States)

    Plantefève, Rosalie; Peterlik, Igor; Haouchine, Nazim; Cotin, Stéphane

    2016-01-01

    During the minimally-invasive liver surgery, only the partial surface view of the liver is usually provided to the surgeon via the laparoscopic camera. Therefore, it is necessary to estimate the actual position of the internal structures such as tumors and vessels from the pre-operative images. Nevertheless, such task can be highly challenging since during the intervention, the abdominal organs undergo important deformations due to the pneumoperitoneum, respiratory and cardiac motion and the interaction with the surgical tools. Therefore, a reliable automatic system for intra-operative guidance requires fast and reliable registration of the pre- and intra-operative data. In this paper we present a complete pipeline for the registration of pre-operative patient-specific image data to the sparse and incomplete intra-operative data. While the intra-operative data is represented by a point cloud extracted from the stereo-endoscopic images, the pre-operative data is used to reconstruct a biomechanical model which is necessary for accurate estimation of the position of the internal structures, considering the actual deformations. This model takes into account the patient-specific liver anatomy composed of parenchyma, vascularization and capsule, and is enriched with anatomical boundary conditions transferred from an atlas. The registration process employs the iterative closest point technique together with a penalty-based method. We perform a quantitative assessment based on the evaluation of the target registration error on synthetic data as well as a qualitative assessment on real patient data. We demonstrate that the proposed registration method provides good results in terms of both accuracy and robustness w.r.t. the quality of the intra-operative data. PMID:26297341

  18. Towards Effective and Efficient Patient-Specific Quality Assurance for Spot Scanning Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. Ronald., E-mail: xrzhu@mdanderson.org; Li, Yupeng; Mackin, Dennis; Li, Heng; Poenisch, Falk [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (United States); Lee, Andrew K.; Mahajan, Anita; Frank, Steven J. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (United States); Gillin, Michael T.; Sahoo, Narayan; Zhang, Xiaodong [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (United States)

    2015-04-13

    An intensity-modulated proton therapy (IMPT) patient-specific quality assurance (PSQA) program based on measurement alone can be very time consuming due to the highly modulated dose distributions of IMPT fields. Incorporating independent dose calculation and treatment log file analysis could reduce the time required for measurements. In this article, we summarize our effort to develop an efficient and effective PSQA program that consists of three components: measurements, independent dose calculation, and analysis of patient-specific treatment delivery log files. Measurements included two-dimensional (2D) measurements using an ionization chamber array detector for each field delivered at the planned gantry angles with the electronic medical record (EMR) system in the QA mode and the accelerator control system (ACS) in the treatment mode, and additional measurements at depths for each field with the ACS in physics mode and without the EMR system. Dose distributions for each field in a water phantom were calculated independently using a recently developed in-house pencil beam algorithm and compared with those obtained using the treatment planning system (TPS). The treatment log file for each field was analyzed in terms of deviations in delivered spot positions from their planned positions using various statistical methods. Using this improved PSQA program, we were able to verify the integrity of the data transfer from the TPS to the EMR to the ACS, the dose calculation of the TPS, and the treatment delivery, including the dose delivered and spot positions. On the basis of this experience, we estimate that the in-room measurement time required for each complex IMPT case (e.g., a patient receiving bilateral IMPT for head and neck cancer) is less than 1 h using the improved PSQA program. Our experience demonstrates that it is possible to develop an efficient and effective PSQA program for IMPT with the equipment and resources available in the clinic.

  19. Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.

    Science.gov (United States)

    Kim, Dae-Seung; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Hwang, Soon-Jung; Kim, Seong-Ha; Yi, Won-Jin

    2013-03-01

    Accurate simulation and evaluation of mandibular movement is fundamental for the analysis of functional changes and effects of the mandible and maxilla before and after surgical treatments. We applied principal axes of inertia to the three-dimensional (3D) trajectories generated by patient-specific simulations of TMJ movements for the functional evaluations of mandible movement. Three-dimensional movements of the mandible and the maxilla were tracked based on a patient-specific splint and an optical tracking system. The dental occlusion recorded on the sprint provided synchronization for initial movement in the tracking and the simulation phases. The translation and rotation recorded during movement tracking was applied sequentially to the mandibular model in relation to a fixed maxilla model. The sequential 3D positions of selected landmarks on the mandible were calculated based on the reference coordinate system. The landmarks selected for analysis were bilateral condyles and pogonion points. The moment of inertia tensor was calculated with respect to the 3D trajectory points. Using the unit vectors along the principal axes derived from the tensor matrix, α, β and γ rotations around z-, y- and x-axes were determined to represent the principal directions as principal rotations respectively. The γ direction showed the higher standard deviation, variation of directions, than other directions at all the landmarks. The mandible movement has larger kinematic redundancy in the γ direction than α and β during mouth opening and closing. Principal directions of inertia would be applied to analyzing the changes in angular motion of trajectories introduced by mandibular shape changes from surgical treatments and also to the analysis of the influence of skeletal deformities on mandibular movement asymmetry. PMID:23321156

  20. Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images

    OpenAIRE

    Mihalef, Viorel; Ionasec, Razvan Ioan; Sharma, Puneet; Georgescu, Bogdan; Voigt, Ingmar; Suehling, Michael; Comaniciu, Dorin

    2011-01-01

    There is a growing need for patient-specific and holistic modelling of the heart to support comprehensive disease assessment and intervention planning as well as prediction of therapeutic outcomes. We propose a patient-specific model of the whole human heart, which integrates morphology, dynamics and haemodynamic parameters at the organ level. The modelled cardiac structures are robustly estimated from four-dimensional cardiac computed tomography (CT), including all four chambers and valves a...

  1. Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy

    OpenAIRE

    Malan, D.F.; Botha, C.P.; Valstar, E.R.

    2012-01-01

    Purpose Automated patient-specific image-based segmentation of tissues surrounding aseptically loose hip prostheses is desired. For this we present an automated segmentation pipeline that labels periprosthetic tissues in computed tomography (CT). The intended application of this pipeline is in pre-operative planning. Methods Individual voxels were classified based on a set of automatically extracted image features. Minimum-cost graph cuts were computed on the classification results. The graph...

  2. 社区卫生服务监督管理信息系统的构建%Construction of Automated Community Health Service Supervision and Management System

    Institute of Scientific and Technical Information of China (English)

    胡红濮; 雷行云; 陈荃; 谢莉琴

    2011-01-01

    为探索一套切实可行的社区卫生服务监督行政管理模式,我们以北京市海淀区社区卫生监督管理为研究对象,在全面需求分析的基础上,完成社区卫生服务监督管理需求分析与设计,并完成社区卫生服务系统的设置、注册、年度校验、变更功能软件的开发,为实现社区卫生服务监督管理法制化、规范化、自动化、信息化打下良好的工作基础.%With the purpose to explore a viable administrative supervision mode of community health service, here we take the example of Haidian District in Beijing and, on the basis of comprehensive demand analysis, complete demand analysis and design of automated community health service supervision and management system as well as the development of software concerning setting, registration, annual audition, and alteration. Our accomplishment has laid a good foundation for achieving the legislation, standardization, automation, and informatization of community health service supervising administration.

  3. Manufacturing and automation

    OpenAIRE

    Ernesto Córdoba Nieto

    2010-01-01

    The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and e...

  4. Patient-specific CT dose determination from CT images using Monte Carlo simulations

    Science.gov (United States)

    Liang, Qing

    Radiation dose from computed tomography (CT) has become a public concern with the increasing application of CT as a diagnostic modality, which has generated a demand for patient-specific CT dose determinations. This thesis work aims to provide a clinically applicable Monte-Carlo-based CT dose calculation tool based on patient CT images. The source spectrum was simulated based on half-value layer measurements. Analytical calculations along with the measured flux distribution were used to estimate the bowtie-filter geometry. Relative source output at different points in a cylindrical phantom was measured and compared with Monte Carlo simulations to verify the determined spectrum and bowtie-filter geometry. Sensitivity tests were designed with four spectra with the same kVp and different half-value layers, and showed that the relative output at different locations in a phantom is sensitive to different beam qualities. An mAs-to-dose conversion factor was determined with in-air measurements using an Exradin A1SL ionization chamber. Longitudinal dose profiles were measured with thermoluminescent dosimeters (TLDs) and compared with the Monte-Carlo-simulated dose profiles to verify the mAs-to-dose conversion factor. Using only the CT images to perform Monte Carlo simulations would cause dose underestimation due to the lack of a scatter region. This scenario was demonstrated with a cylindrical phantom study. Four different image extrapolation methods from the existing CT images and the Scout images were proposed. The results show that performing image extrapolation beyond the scan region improves the dose calculation accuracy under both step-shoot scan mode and helical scan mode. Two clinical studies were designed and comparisons were performed between the current CT dose metrics and the Monte-Carlo-based organ dose determination techniques proposed in this work. The results showed that the current CT dosimetry failed to show dose differences between patients with the same

  5. Patient-specific Monte Carlo dose calculations for 103Pd breast brachytherapy

    Science.gov (United States)

    Miksys, N.; Cygler, J. E.; Caudrelier, J. M.; Thomson, R. M.

    2016-04-01

    This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for 103Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV {{D}90} of up to 11% and skin {{D}1~\\text{c{{\\text{m}}3}}} of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ({{D}90} on average 10% and up to 27%) and underestimates dose to the skin ({{D}1~\\text{c{{\\text{m}}3}}} on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images studied

  6. Assessment of radiobiological metrics applied to patient-specific QA process of VMAT prostate treatments.

    Science.gov (United States)

    Clemente-Gutiérrez, Francisco; Pérez-Vara, Consuelo; Clavo-Herranz, María H; López-Carrizosa, Concepción; Pérez-Regadera, José; Ibáñez-Villoslada, Carmen

    2016-01-01

    VMAT is a powerful technique to deliver hypofractionated prostate treatments. The lack of correlations between usual 2D pretreatment QA results and the clini-cal impact of possible mistakes has allowed the development of 3D verification systems. Dose determination on patient anatomy has provided clinical predictive capability to patient-specific QA process. Dose-volume metrics, as evaluation crite-ria, should be replaced or complemented by radiobiological indices. These metrics can be incorporated into individualized QA extracting the information for response parameters (gEUD, TCP, NTCP) from DVHs. The aim of this study is to assess the role of two 3D verification systems dealing with radiobiological metrics applied to a prostate VMAT QA program. Radiobiological calculations were performed for AAPM TG-166 test cases. Maximum differences were 9.3% for gEUD, -1.3% for TCP, and 5.3% for NTCP calculations. Gamma tests and DVH-based comparisons were carried out for both systems in order to assess their performance in 3D dose determination for prostate treatments (high-, intermediate-, and low-risk, as well as prostate bed patients). Mean gamma passing rates for all structures were bet-ter than 92.0% and 99.1% for both 2%/2 mm and 3%/3 mm criteria. Maximum discrepancies were (2.4% ± 0.8%) and (6.2% ± 1.3%) for targets and normal tis-sues, respectively. Values for gEUD, TCP, and NTCP were extracted from TPS and compared to the results obtained with the two systems. Three models were used for TCP calculations (Poisson, sigmoidal, and Niemierko) and two models for NTCP determinations (LKB and Niemierko). The maximum mean difference for gEUD calculations was (4.7% ± 1.3%); for TCP, the maximum discrepancy was (-2.4% ± 1.1%); and NTCP comparisons led to a maximum deviation of (1.5% ± 0.5%). The potential usefulness of biological metrics in patient-specific QA has been explored. Both systems have been successfully assessed as potential tools for evaluating the clinical

  7. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    Science.gov (United States)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose

  8. The Patient Specific QA of IMRT and VMAT Through the AAPM Task Group Report 119

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the patient specific quality assurance (QA) results of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) through the AAPM Task Group Report 119. Using the treatment planning system, both IMRT and VMAT treatment plans were established. The absolute dose and relative dose for the target and OAR were measured by using an ion chamber and the bi-planar diode array, respectively. The plan evaluation was used by the Dose volume histogram (DVH) and the dose verification was implemented by compare the measured value with the calculated value. For the evaluation of plan, in case of prostate, both IMRT and VMAT were closed the goal of target and OARs. In case of H and N and Multi-target, IMRT was not reached the goal of target, but VMAT was reached the goal of target and OARs. In case of C-shape(easy), both were reached the goal of target and OARs. In case of C-shape(hard), both were reached the goal of target but not reached the goal of OARs. For the evaluation of absolute dose, in case of IMRT, the mean of relative error (%) between measured and calculated value was 1.24±2.06 and 1.4±2.9% for target and OAR, respectively. The confidence limits were 3.65% and 4.39% for target and OAR, respectively. In case of VMAT the mean of relative error was 2.06±0.64% and 2.21±0.74% for target and OAR, respectively. The confidence limits were 4.09% and 3.04% for target and OAR, respectively. For the evaluation of relative dose, in case of IMRT, the average percentage of passing gamma criteria (3mm/3%) were 98.3±1.5% and the confidence limits were 3.78%. In case of VMAT, the average percentage were 98.2±1.1% and the confidence limits were 3.95%. We performed IMRT and VMAT patient specific QA using TG-119 based procedure, all analyzed results were satisfied with acceptance criteria based on TG-119. So, the IMRT and VMAT of our institution was confirmed the accuracy.

  9. Surgical Guides (Patient-Specific Instruments for Pediatric Tibial Bone Sarcoma Resection and Allograft Reconstruction

    Directory of Open Access Journals (Sweden)

    Laura Bellanova

    2013-01-01

    Full Text Available To achieve local control of malignant pediatric bone tumors and to provide satisfactory oncological results, adequate resection margins are mandatory. The local recurrence rate is directly related to inappropriate excision margins. The present study describes a method for decreasing the resection margin width and ensuring that the margins are adequate. This method was developed in the tibia, which is a common site for the most frequent primary bone sarcomas in children. Magnetic resonance imaging (MRI and computerized tomography (CT were used for preoperative planning to define the cutting planes for the tumors: each tumor was segmented on MRI, and the volume of the tumor was coregistered with CT. After preoperative planning, a surgical guide (patient-specific instrument that was fitted to a unique position on the tibia was manufactured by rapid prototyping. A second instrument was manufactured to adjust the bone allograft to fit the resection gap accurately. Pathologic evaluation of the resected specimens showed tumor-free resection margins in all four cases. The technologies described in this paper may improve the surgical accuracy and patient safety in surgical oncology. In addition, these techniques may decrease operating time and allow for reconstruction with a well-matched allograft to obtain stable osteosynthesis.

  10. Generation of Human Lens Epithelial-Like Cells From Patient-Specific Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Li, Dan; Qiu, Xiaodi; Yang, Jin; Liu, Tianjin; Luo, Yi; Lu, Yi

    2016-12-01

    Cataractogenesis begins from the dynamic lens epithelial cells (LECs) and adjacent fiber cells. LECs derived from cell lines cannot maintain the crystalline expression as the primary LECs. The current study aimed to efficiently generate large numbers of human LECs from patient-specific induced pluripotent stem cells (iPSCs). Anterior lens capsules were collected from cataract surgery and were used to culture primary hLECs. iPSCs were induced from these primary hLECs by lentiviral transduction of Oct4, Sox2, Klf4, and c-Myc. Then, the generated iPSCs were re-differentiated into hLECs by the 3-step addition of defined factor combinations (Noggin, BMP4/7, bFGF, and EGF) modified from an established method. During the re-differentiation process, colonies of interest were isolated using a glass picking tool and cloning cylinders based on the colony morphology. After two steps of isolation, populations of LEC-like cells (LLCs) were generated and identified by the expression of lens marker genes by qPCR, western blot and immunofluorescence staining. The study introduced a modified protocol to isolate LLCs from iPSCs by defined factors in a short time frame. This technique could be useful for mechanistic studies of lens-related diseases. J. Cell. Physiol. 231: 2555-2562, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991066

  11. The Effect of Femoral Cutting Guide Design Improvements for Patient-Specific Instruments

    Directory of Open Access Journals (Sweden)

    Oh-Ryong Kwon

    2015-01-01

    Full Text Available Although the application of patient-specific instruments (PSI for total knee arthroplasty (TKA increases the cost of the surgical procedure, PSI may reduce operative time and improve implant alignment, which could reduce the number of revision surgeries. We report our experience with TKA using PSI techniques in 120 patients from March to December 2014. PSI for TKA were created from data provided by computed tomography (CT scans or magnetic resonance imaging (MRI; which imaging technology is more reliable for the PSI technique remains unclear. In the first 20 patients, the accuracy of bone resection and PSI stability were compared between CT and MRI scans with presurgical results as a reference; MRI produced better results. In the second and third groups, each with 50 patients, the results of bone resection and stability were compared in MRI scans with respect to the quality of scanning due to motion artifacts and experienced know-how in PSI design, respectively. The optimized femoral cutting guide design for PSI showed the closest outcomes in bone resection and PSI stability with presurgical data. It is expected that this design could be a reasonable guideline in PSI.

  12. PATIENT-SPECIFIC BLOOD DYNAMIC SIMULATIONS IN ASSESSING ENDOVASCULAR OCCLUSION OF INTRACRANIAL ANEURYSMS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; WANG Sheng-zhang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2009-01-01

    According to recent studies, there are various potential predictors for surgical outcome for cerebral aneurysms. An accurate surgical outcome assessment would help make better-informed decisions and avoid the risk of rebleeding. It is well known that hemodynamic factors play an important role in the pathogenesis and treatment of intracranial aneurysms. In this article, a computational fluid dynamic analysis is applied to one patient-specific model of the cerebral aneurysm located at the tip of basilar artery, by which the differences of hemodynamic parameters before and after endovascular treatment may be evaluated. Based on the model, we show that the flow behavior near the neck of the aneurysm sees great differences after endovascular treatment as compared with that before treatment, which also affects the wall shear stress and the displacement distribution. In addition, our whole simulation process is based on a series of CFD commercial software packages, which are easily available for doctors to implement such a method in their daily practice. These results would be used to assess the outcome of endovascular treatment for the aneurysm occlusion.

  13. Induced radioactivity in a patient-specific collimator used in proton therapy

    CERN Document Server

    Silari, M; Mauro, Egidio; Silari, Marco

    2010-01-01

    This paper discusses the activation of a patient-specific collimator, calculating dose rates, total activities and activities per unit mass of the mixture of radionuclides generated by proton irradiation in the energy range 100-250 MeV. Monte Carlo simulations were first performed for a generic case, using an approximate geometry and on the basis of assumptions on beam intensity and irradiation profile. A collimator used for a prostate cancer treatment was obtained from the MD Anderson Cancer Center (MDACC), Houston, USA, from which a number of samples were cut and analyzed by gamma spectrometry. The results of the gamma spectrometry are compared with the results of Monte Carlo simulations performed using geometrical and irradiation data specific to the unit. The assumptions made for the simulations and their impact on the results are discussed. Dose rate measurements performed in a low-background area at CERN and routine radiation protection measurements at the MDACC are also reported. It is shown that it sh...

  14. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Science.gov (United States)

    Huo, Yunlong; Luo, Tong; Guccione, Julius M; Teague, Shawn D; Tan, Wenchang; Navia, José A; Kassab, Ghassan S

    2013-01-01

    It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG) are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60%) may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12) patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS) and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI). The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2)) and decreased OSI (<0.02) to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2)). These findings have significant implications for graft adaptation and long-term patency. PMID:24058488

  15. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.

    Directory of Open Access Journals (Sweden)

    Yunlong Huo

    Full Text Available It is well known that flow patterns at the anastomosis of coronary artery bypass graft (CABG are complex and may affect the long-term patency. Various attempts at optimal designs of anastomosis have not improved long-term patency. Here, we hypothesize that mild anastomotic stenosis (area stenosis of about 40-60% may be adaptive to enhance the hemodynamic conditions, which may contribute to slower progression of atherosclerosis. We further hypothesize that proximal/distal sites to the stenosis have converse changes that may be a risk factor for the diffuse expansion of atherosclerosis from the site of stenosis. Twelve (12 patient-specific models with various stenotic degrees were extracted from computed tomography images using a validated segmentation software package. A 3-D finite element model was used to compute flow patterns including wall shear stress (WSS and its spatial and temporal gradients (WSS gradient, WSSG, and oscillatory shear index, OSI. The flow simulations showed that mild anastomotic stenosis significantly increased WSS (>15 dynes · cm(-2 and decreased OSI (<0.02 to result in a more uniform distribution of hemodynamic parameters inside anastomosis albeit proximal/distal sites to the stenosis have a decrease of WSS (<4 dynes · cm(-2. These findings have significant implications for graft adaptation and long-term patency.

  16. Patient-specific acetabular shape modelling: comparison among sphere, ellipsoid and conchoid parameterisations.

    Science.gov (United States)

    Cerveri, Pietro; Manzotti, Alfonso; Baroni, Guido

    2014-04-01

    The shape of the human acetabular cup was commonly represented as a hemisphere, but different geometries and patient-specific shapes have been recently proposed in the literature. Our aim was to test the limits of the sphericity assumption by comparing three different parameterisations, namely the sphere, the ellipsoid and the rotational conchoid. Models of hip surfaces, reconstructed from CT scans taken from Caucasian race cadavers and patients, were automatically processed to extract the acetabular surface. Two separate analyses were carried out on the overall acetabular shape, including both the acetabular fossa and the lunate surface (case A) and acetabular cup represented by the lunate surface only (case B). Nonlinear gradient-based and evolutionary computation approaches were implemented for the fitting process. Minor differences from the three idealised geometries were detected (median values of the fitting errors different from both the ellipsoid (p difference was detected between the ellipsoid and the conchoid for case A. Significance of the difference between ellipsoid and sphere (p difference was detected between the ellipsoid and the conchoid. In conclusion, we synthesise that the morphology of the overall acetabular cup can be parameterised both with an ellipsoid shape and with a conchoid shape as well with superior quality than the simple sphere. Differently, if one considers just the lunate surface, better fitting results are expected when using the ellipsoid. PMID:22789071

  17. Gene correction in patient-specific iPSCs for therapy development and disease modeling.

    Science.gov (United States)

    Jang, Yoon-Young; Ye, Zhaohui

    2016-09-01

    The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field. PMID:27256364

  18. Patient specific fluid-structure ventricular modelling for integrated cardiac care.

    Science.gov (United States)

    de Vecchi, A; Nordsletten, D A; Razavi, R; Greil, G; Smith, N P

    2013-11-01

    Cardiac diseases represent one of the primary causes of mortality and result in a substantial decrease in quality of life. Optimal surgical planning and long-term treatment are crucial for a successful and cost-effective patient care. Recently developed state-of-the-art imaging techniques supply a wealth of detailed data to support diagnosis. This provides the foundations for a novel approach to clinical planning based on personalisation, which can lead to more tailored treatment plans when compared to strategies based on standard population metrics. The goal of this study is to develop and apply a methodology for creating personalised ventricular models of blood and tissue mechanics to assess patient-specific metrics. Fluid-structure interaction simulations are performed to analyse the diastolic function in hypoplastic left heart patients, who underwent the first stage of a three-step surgical palliation and whose condition must be accurately evaluated to plan further intervention. The kinetic energy changes generated by the blood propagation in early diastole are found to reflect the intraventricular pressure gradient, giving indications on the filling efficiency. This suggests good agreement between the 3D model and the Euler equation, which provides a simplified relationship between pressure and kinetic energy and could, therefore, be applied in the clinical context. PMID:23340962

  19. Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    CERN Document Server

    Jia, Xun; Gu, Xuejun; Jiang, Steve B

    2011-01-01

    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water ...

  20. Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa.

    Science.gov (United States)

    Tolar, Jakub; McGrath, John A; Xia, Lily; Riddle, Megan J; Lees, Chris J; Eide, Cindy; Keene, Douglas R; Liu, Lu; Osborn, Mark J; Lund, Troy C; Blazar, Bruce R; Wagner, John E

    2014-05-01

    Spontaneous reversion of disease-causing mutations has been observed in some genetic disorders. In our clinical observations of severe generalized recessive dystrophic epidermolysis bullosa (RDEB), a currently incurable blistering genodermatosis caused by loss-of-function mutations in COL7A1 that results in a deficit of type VII collagen (C7), we have observed patches of healthy-appearing skin on some individuals. When biopsied, this skin revealed somatic mosaicism resulting in the self-correction of C7 deficiency. We believe this source of cells could represent an opportunity for translational 'natural' gene therapy. We show that revertant RDEB keratinocytes expressing functional C7 can be reprogrammed into induced pluripotent stem cells (iPSCs) and that self-corrected RDEB iPSCs can be induced to differentiate into either epidermal or hematopoietic cell populations. Our results give proof-of-principle that an inexhaustible supply of functional patient-specific revertant cells can be obtained--potentially relevant to local wound therapy and systemic hematopoietic cell transplantation. This technology may also avoid some of the major limitations of other cell therapy strategies, e.g., immune rejection and insertional mutagenesis, which are associated with viral- and nonviral-mediated gene therapy. We believe this approach should be the starting point for autologous cellular therapies using 'natural' gene therapy in RDEB and other diseases. PMID:24317394

  1. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  2. Patient specific identification of the cardiac driver function in a cardiovascular system model.

    Science.gov (United States)

    Hann, C E; Revie, J; Stevenson, D; Heldmann, S; Desaive, T; Froissart, C B; Lambermont, B; Ghuysen, A; Kolh, P; Shaw, G M; Chase, J G

    2011-02-01

    The cardiac muscle activation or driver function, is a major determinant of cardiovascular dynamics, and is often approximated by the ratio of the left ventricle pressure to the left ventricle volume. In an intensive care unit, the left ventricle pressure is usually never measured, and the left ventricle volume is only measured occasionally by echocardiography, so is not available real-time. This paper develops a method for identifying the driver function based on correlates with geometrical features in the aortic pressure waveform. The method is included in an overall cardiovascular modelling approach, and is clinically validated on a porcine model of pulmonary embolism. For validation a comparison is done between the optimized parameters for a baseline model, which uses the direct measurements of the left ventricle pressure and volume, and the optimized parameters from the approximated driver function. The parameters do not significantly change between the two approaches thus showing that the patient specific approach to identifying the driver function is valid, and has potential clinically. PMID:20621383

  3. Patient-specific system for prognosis of surgical treatment outcomes of human cardiovascular system

    Science.gov (United States)

    Golyadkina, Anastasiya A.; Kalinin, Aleksey A.; Kirillova, Irina V.; Kossovich, Elena L.; Kossovich, Leonid Y.; Menishova, Liyana R.; Polienko, Asel V.

    2015-03-01

    Object of study: Improvement of life quality of patients with high stroke risk ia the main goal for development of system for patient-specific modeling of cardiovascular system. This work is dedicated at increase of safety outcomes for surgical treatment of brain blood supply alterations. The objects of study are common carotid artery, internal and external carotid arteries and bulb. Methods: We estimated mechanical properties of carotid arteries tissues and patching materials utilized at angioplasty. We studied angioarchitecture features of arteries. We developed and clinically adapted computer biomechanical models, which are characterized by geometrical, physical and mechanical similarity with carotid artery in norm and with pathology (atherosclerosis, pathological tortuosity, and their combination). Results: Collaboration of practicing cardiovascular surgeons and specialists in the area of Mathematics and Mechanics allowed to successfully conduct finite-element modeling of surgical treatment taking into account various features of operation techniques and patching materials for a specific patient. Numerical experiment allowed to reveal factors leading to brain blood supply decrease and atherosclerosis development. Modeling of carotid artery reconstruction surgery for a specific patient on the basis of the constructed biomechanical model demonstrated the possibility of its application in clinical practice at approximation of numerical experiment to the real conditions.

  4. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    International Nuclear Information System (INIS)

    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating-that is, to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT'IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.

  5. Commissioning and validation of COMPASS system for VMAT patient specific quality assurance

    Science.gov (United States)

    Pimthong, J.; Kakanaporn, C.; Tuntipumiamorn, L.; Laojunun, P.; Iampongpaiboon, P.

    2016-03-01

    Pre-treatment patient specific quality assurance (QA) of advanced treatment techniques such as volumetric modulated arc therapy (VMAT) is one of important QA in radiotherapy. The fast and reliable dosimetric device is required. The objective of this study is to commission and validate the performance of COMPASS system for dose verification of VMAT technique. The COMPASS system is composed of an array of ionization detectors (MatriXX) mounted to the gantry using a custom holder and software for the analysis and visualization of QA results. We validated the COMPASS software for basic and advanced clinical application. For the basic clinical study, the simple open field in various field sizes were validated in homogeneous phantom. And the advanced clinical application, the fifteen prostate and fifteen nasopharyngeal cancers VMAT plans were chosen to study. The treatment plans were measured by the MatriXX. The doses and dose-volume histograms (DVHs) reconstructed from the fluence measurements were compared to the TPS calculated plans. And also, the doses and DVHs computed using collapsed cone convolution (CCC) Algorithm were compared with Eclipse TPS calculated plans using Analytical Anisotropic Algorithm (AAA) that according to dose specified in ICRU 83 for PTV.

  6. Institutional Patient-specific IMRT QA Does Not Predict Unacceptable Plan Delivery

    International Nuclear Information System (INIS)

    Purpose: To determine whether in-house patient-specific intensity modulated radiation therapy quality assurance (IMRT QA) results predict Imaging and Radiation Oncology Core (IROC)-Houston phantom results. Methods and Materials: IROC Houston's IMRT head and neck phantoms have been irradiated by numerous institutions as part of clinical trial credentialing. We retrospectively compared these phantom results with those of in-house IMRT QA (following the institution's clinical process) for 855 irradiations performed between 2003 and 2013. The sensitivity and specificity of IMRT QA to detect unacceptable or acceptable plans were determined relative to the IROC Houston phantom results. Additional analyses evaluated specific IMRT QA dosimeters and analysis methods. Results: IMRT QA universally showed poor sensitivity relative to the head and neck phantom, that is, poor ability to predict a failing IROC Houston phantom result. Depending on how the IMRT QA results were interpreted, overall sensitivity ranged from 2% to 18%. For different IMRT QA methods, sensitivity ranged from 3% to 54%. Although the observed sensitivity was particularly poor at clinical thresholds (eg 3% dose difference or 90% of pixels passing gamma), receiver operator characteristic analysis indicated that no threshold showed good sensitivity and specificity for the devices evaluated. Conclusions: IMRT QA is not a reasonable replacement for a credentialing phantom. Moreover, the particularly poor agreement between IMRT QA and the IROC Houston phantoms highlights surprising inconsistency in the QA process

  7. Reconstruction with a patient-specific titanium implant after a wide anterior chest wall resection

    Science.gov (United States)

    Turna, Akif; Kavakli, Kuthan; Sapmaz, Ersin; Arslan, Hakan; Caylak, Hasan; Gokce, Hasan Suat; Demirkaya, Ahmet

    2014-01-01

    The reconstruction of full-thickness chest wall defects is a challenging problem for thoracic surgeons, particularly after a wide resection of the chest wall that includes the sternum. The location and the size of the defect play a major role when selecting the method of reconstruction, while acceptable cosmetic and functional results remain the primary goal. Improvements in preoperative imaging techniques and reconstruction materials have an important role when planning and performing a wide chest wall resection with a low morbidity rate. In this report, we describe the reconstruction of a wide anterior chest wall defect with a patient-specific custom-made titanium implant. An infected mammary tumour recurrence in a 62-year old female, located at the anterior chest wall including the sternum, was resected, followed by a large custom-made titanium implant. Latissimus dorsi flap and split-thickness graft were also used for covering the implant successfully. A titanium custom-made chest wall implant could be a viable alternative for patients who had large chest wall tumours. PMID:24227881

  8. In Vitro Validation of a Multiscale Patient-Specific Norwood Palliation Model.

    Science.gov (United States)

    Hang, Tianqi; Giardini, Alessandro; Biglino, Giovanni; Conover, Timothy; Figliola, Richard S

    2016-01-01

    In Norwood physiology, shunt size and the occurrence of coarctation can affect hemodynamics significantly. The aim of the study was to validate an in vitro model of the Norwood circulation against clinical measurements for patients presenting differing aortic morphologies. The mock circulatory system used coupled a lumped parameter network of the neonatal Norwood circulation with modified Blalock-Taussig (mBT) shunt with a three-dimensional aorta model. Five postoperative aortic arch anatomies of differing morphologies were reconstructed from imaging data, and the system was tuned to patient-specific clinical values. Experimentally measured flow rates and pressures were compared with clinical measurements. Time-based experimental and clinical pressure and flow signals within the aorta and pulmonary circulation branches agreed closely (0.72 systemic and pulmonary branches showed no significant differences (95% confidence interval). We validated an experimental multiscale model of the Norwood circulation with mBT shunt by showing it capable of reproducing clinical pressure and flow rates at various positions of the circulation with very good fidelity across a range of patient physiologies and morphologies. The multiscale aspect of the model provides a means to study variables in isolation with their effects both locally and at the system level. The model serves as a tool to further the understanding of the complex physiology of single-ventricle circulation. PMID:26771396

  9. Microwave beamforming for non-invasive patient-specific hyperthermia treatment of pediatric brain cancer

    Energy Technology Data Exchange (ETDEWEB)

    Burfeindt, Matthew J; Zastrow, Earl; Hagness, Susan C; Van Veen, Barry D [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI (United States); Medow, Joshua E, E-mail: bmatthew@wisc.edu, E-mail: earl.zastrow@ieee.org, E-mail: hagness@engr.wisc.edu, E-mail: vanveen@engr.wisc.edu, E-mail: medow@neurosurg.wisc.edu [Department of Neurological Surgery, University of Wisconsin-Madison, WI (United States)

    2011-05-07

    We present a numerical study of an array-based microwave beamforming approach for non-invasive hyperthermia treatment of pediatric brain tumors. The transmit beamformer is designed to achieve localized heating-that is, to achieve constructive interference and selective absorption of the transmitted electromagnetic waves at the desired focus location in the brain while achieving destructive interference elsewhere. The design process takes into account patient-specific and target-specific propagation characteristics at 1 GHz. We evaluate the effectiveness of the beamforming approach using finite-difference time-domain simulations of two MRI-derived child head models from the Virtual Family (IT'IS Foundation). Microwave power deposition and the resulting steady-state thermal distribution are calculated for each of several randomly chosen focus locations. We also explore the robustness of the design to mismatch between the assumed and actual dielectric properties of the patient. Lastly, we demonstrate the ability of the beamformer to suppress hot spots caused by pockets of cerebrospinal fluid (CSF) in the brain. Our results show that microwave beamforming has the potential to create localized heating zones in the head models for focus locations that are not surrounded by large amounts of CSF. These promising results suggest that the technique warrants further investigation and development.

  10. Patient-Specific Induced Pluripotent Stem Cells for SOD1-Associated Amyotrophic Lateral Sclerosis Pathogenesis Studies.

    Science.gov (United States)

    Chestkov, I V; Vasilieva, E A; Illarioshkin, S N; Lagarkova, M A; Kiselev, S L

    2014-01-01

    The genetic reprogramming technology allows one to generate pluripotent stem cells for individual patients. These cells, called induced pluripotent stem cells (iPSCs), can be an unlimited source of specialized cell types for the body. Thus, autologous somatic cell replacement therapy becomes possible, as well as the generation of in vitro cell models for studying the mechanisms of disease pathogenesis and drug discovery. Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder that leads to a loss of upper and lower motor neurons. About 10% of cases are genetically inherited, and the most common familial form of ALS is associated with mutations in the SOD1 gene. We used the reprogramming technology to generate induced pluripotent stem cells with patients with familial ALS. Patient-specific iPS cells were obtained by both integration and transgene-free delivery methods of reprogramming transcription factors. These iPS cells have the properties of pluripotent cells and are capable of direct differentiation into motor neurons. PMID:24772327

  11. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  12. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system

    Science.gov (United States)

    Byrne, N; Velasco Forte, M; Tandon, A; Valverde, I

    2016-01-01

    Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods. PMID:27170842

  13. Feasibility of replacing patient specific cutouts with a computer-controlled electron multileaf collimator

    International Nuclear Information System (INIS)

    A motorized electron multileaf collimator (eMLC) was developed as an add-on device to the Varian linac for delivery of advanced electron beam therapy. It has previously been shown that electron beams collimated by an eMLC have very similar penumbra to those collimated by applicators and cutouts. Thus, manufacturing patient specific cutouts would no longer be necessary, resulting in the reduction of time taken in the cutout fabrication process. Moreover, cutout construction involves handling of toxic materials and exposure to toxic fumes that are usually generated during the process, while the eMLC will be a pollution-free device. However, undulation of the isodose lines is expected due to the finite size of the eMLC. Hence, the provided planned target volume (PTV) shape will not exactly follow the beam's-eye-view of the PTV, but instead will make a stepped approximation to the PTV shape. This may be a problem when the field edge is close to a critical structure. Therefore, in this study the capability of the eMLC to achieve the same clinical outcome as an applicator/cutout combination was investigated based on real patient computed tomographies (CTs). An in-house Monte Carlo based treatment planning system was used for dose calculation using ten patient CTs. For each patient, two plans were generated; one with electron beams collimated using the applicator/cutout combination; and the other plan with beams collimated by the eMLC. Treatment plan quality was compared for each patient based on dose distribution and dose–volume histogram. In order to determine the optimal position of the leaves, the impact of the different leaf positioning strategies was investigated. All plans with both eMLC and cutouts were generated such that 100% of the target volume receives at least 90% of the prescribed dose. Then the percentage difference in dose between both delivery techniques was calculated for all the cases. The difference in the dose received by 10% of the volume of the

  14. A retrospective analysis for patient-specific quality assurance of volumetric-modulated arc therapy plans

    International Nuclear Information System (INIS)

    Volumetric-modulated arc therapy (VMAT) is now widely used clinically, as it is capable of delivering a highly conformal dose distribution in a short time interval. We retrospectively analyzed patient-specific quality assurance (QA) of VMAT and examined the relationships between the planning parameters and the QA results. A total of 118 clinical VMAT cases underwent pretreatment QA. All plans had 3-dimensional diode array measurements, and 69 also had ion chamber measurements. Dose distribution and isocenter point dose were evaluated by comparing the measurements and the treatment planning system (TPS) calculations. In addition, the relationship between QA results and several planning parameters, such as dose level, control points (CPs), monitor units (MUs), average field width, and average leaf travel, were also analyzed. For delivered dose distribution, a gamma analysis passing rate greater than 90% was obtained for all plans and greater than 95% for 100 of 118 plans with the 3%/3-mm criteria. The difference (mean ± standard deviation) between the point doses measured by the ion chamber and those calculated by TPS was 0.9% ± 2.0% for all plans. For all cancer sites, nasopharyngeal carcinoma and gastric cancer have the lowest and highest average passing rates, respectively. From multivariate linear regression analysis, the dose level (p = 0.001) and the average leaf travel (p < 0.001) showed negative correlations with the passing rate, and the average field width (p = 0.003) showed a positive correlation with the passing rate, all indicating a correlation between the passing rate and the plan complexity. No statistically significant correlation was found between MU or CP and the passing rate. Analysis of the results of dosimetric pretreatment measurements as a function of VMAT plan parameters can provide important information to guide the plan parameter setting and optimization in TPS

  15. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts.

    Science.gov (United States)

    Perrin, David; Badel, Pierre; Orgeas, Laurent; Geindreau, Christian; du Roscoat, Sabine Rolland; Albertini, Jean-Noël; Avril, Stéphane

    2016-10-01

    The rate of post-operative complications is the main drawback of endovascular repair, a technique used to treat abdominal aortic aneurysms. Complex anatomies, featuring short aortic necks and high vessel tortuosity for instance, have been proved likely prone to these complications. In this context, practitioners could benefit, at the preoperative planning stage, from a tool able to predict the post-operative position of the stent-graft, to validate their stent-graft sizing and anticipate potential complications. In consequence, the aim of this work is to prove the ability of a numerical simulation methodology to reproduce accurately the shapes of stent-grafts, with a challenging design, deployed inside tortuous aortic aneurysms. Stent-graft module samples were scanned by X-ray microtomography and subjected to mechanical tests to generate finite-element models. Two EVAR clinical cases were numerically reproduced by simulating stent-graft models deployment inside the tortuous arterial model generated from patient pre-operative scan. In the same manner, an in vitro stent-graft deployment in a rigid polymer phantom, generated by extracting the arterial geometry from the preoperative scan of a patient, was simulated to assess the influence of biomechanical environment unknowns in the in vivo case. Results were validated by comparing stent positions on simulations and post-operative scans. In all cases, simulation predicted stents deployed locations and shapes with an accuracy of a few millimetres. The good results obtained in the in vitro case validated the ability of the methodology to simulate stent-graft deployment in very tortuous arteries and led to think proper modelling of biomechanical environment could reduce the few local discrepancies found in the in vivo case. In conclusion, this study proved that our methodology can achieve accurate simulation of stent-graft deployed shape even in tortuous patient specific aortic aneurysms and may be potentially helpful to

  16. Statistical process control analysis for patient-specific IMRT and VMAT QA

    International Nuclear Information System (INIS)

    This work applied statistical process control to establish the control limits of the % gamma pass of patient-specific intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) quality assurance (QA), and to evaluate the efficiency of the QA process by using the process capability index (Cpml). A total of 278 IMRT QA plans in nasopharyngeal carcinoma were measured with MapCHECK, while 159 VMAT QA plans were undertaken with ArcCHECK. Six megavolts with nine fields were used for the IMRT plan and 2.5 arcs were used to generate the VMAT plans. The gamma (3%/3 mm) criteria were used to evaluate the QA plans. The % gamma passes were plotted on a control chart. The first 50 data points were employed to calculate the control limits. The Cpml was calculated to evaluate the capability of the IMRT/VMAT QA process. The results showed higher systematic errors in IMRT QA than VMAT QA due to the more complicated setup used in IMRT QA. The variation of random errors was also larger in IMRT QA than VMAT QA because the VMAT plan has more continuity of dose distribution. The average % gamma pass was 93.7%±3.7% for IMRT and 96.7%±2.2% for VMAT. The Cpml value of IMRT QA was 1.60 and VMAT QA was 1.99, which implied that the VMAT QA process was more accurate than the IMRT QA process. Our lower control limit for % gamma pass of IMRT is 85.0%, while the limit for VMAT is 90%. Both the IMRT and VMAT QA processes are good quality because Cpml values are higher than 1.0. (author)

  17. On the use of biomathematical models in patient-specific IMRT dose QA

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Heming [UT Southwestern Medical Center, Dallas, Texas 75390 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Tome, Wolfgang A. [Department of Radiation Oncology, Division of Medical Physics, Montefiore Medical Center and Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, New York 10461 (United States)

    2013-07-15

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids, spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.

  18. Automatized Patient-Specific Methodology for Numerical Determination of Biomechanical Corneal Response.

    Science.gov (United States)

    Ariza-Gracia, M Á; Zurita, J; Piñero, D P; Calvo, B; Rodríguez-Matas, J F

    2016-05-01

    This work presents a novel methodology for building a three-dimensional patient-specific eyeball model suitable for performing a fully automatic finite element (FE) analysis of the corneal biomechanics. The reconstruction algorithm fits and smooths the patient's corneal surfaces obtained in clinic with corneal topographers and creates an FE mesh for the simulation. The patient's corneal elevation and pachymetry data is kept where available, to account for all corneal geometric features (central corneal thickness-CCT and curvature). Subsequently, an iterative free-stress algorithm including a fiber's pull-back is applied to incorporate the pre-stress field to the model. A convergence analysis of the mesh and a sensitivity analysis of the parameters involved in the numerical response is also addressed to determine the most influential features of the FE model. As a final step, the methodology is applied on the simulation of a general non-commercial non-contact tonometry diagnostic test over a large set of 130 patients-53 healthy, 63 keratoconic (KTC) and 14 post-LASIK surgery eyes. Results show the influence of the CCT, intraocular pressure (IOP) and fibers (87%) on the numerical corneal displacement [Formula: see text] the good agreement of the [Formula: see text] with clinical results, and the importance of considering the corneal pre-stress in the FE analysis. The potential and flexibility of the methodology can help improve understanding of the eye biomechanics, to help to plan surgeries, or to interpret the results of new diagnosis tools (i.e., non-contact tonometers). PMID:26307330

  19. Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases

    Science.gov (United States)

    Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku

    2015-03-01

    Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.

  20. Nanomedicine-Based Neuroprotective Strategies in Patient Specific-iPSC and Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Shih-Fan Jang

    2014-03-01

    -based neuroprotective manipulations in patient specific-iPSCs and personalized medicine.

  1. PATIENT-SPECIFIC DATA FUSION FOR CANCER STRATIFICATION AND PERSONALISED TREATMENT.

    Science.gov (United States)

    Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša

    2016-01-01

    According to Cancer Research UK, cancer is a leading cause of death accounting for more than one in four of all deaths in 2011. The recent advances in experimental technologies in cancer research have resulted in the accumulation of large amounts of patient-specific datasets, which provide complementary information on the same cancer type. We introduce a versatile data fusion (integration) framework that can effectively integrate somatic mutation data, molecular interactions and drug chemical data to address three key challenges in cancer research: stratification of patients into groups having different clinical outcomes, prediction of driver genes whose mutations trigger the onset and development of cancers, and repurposing of drugs treating particular cancer patient groups. Our new framework is based on graph-regularised non-negative matrix tri-factorization, a machine learning technique for co-clustering heterogeneous datasets. We apply our framework on ovarian cancer data to simultaneously cluster patients, genes and drugs by utilising all datasets.We demonstrate superior performance of our method over the state-of-the-art method, Network-based Stratification, in identifying three patient subgroups that have significant differences in survival outcomes and that are in good agreement with other clinical data. Also, we identify potential new driver genes that we obtain by analysing the gene clusters enriched in known drivers of ovarian cancer progression. We validated the top scoring genes identified as new drivers through database search and biomedical literature curation. Finally, we identify potential candidate drugs for repurposing that could be used in treatment of the identified patient subgroups by targeting their mutated gene products. We validated a large percentage of our drug-target predictions by using other databases and through literature curation. PMID:26776197

  2. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    Science.gov (United States)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  3. An automated swimming respirometer

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; JOHANSEN, K; BUSHNELL, PG

    1984-01-01

    An automated respirometer is described that can be used for computerized respirometry of trout and sharks.......An automated respirometer is described that can be used for computerized respirometry of trout and sharks....

  4. Configuration Management Automation (CMA)

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  5. Workflow automation architecture standard

    Energy Technology Data Exchange (ETDEWEB)

    Moshofsky, R.P.; Rohen, W.T. [Boeing Computer Services Co., Richland, WA (United States)

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  6. An Evaluation of the Rates of Repeat Notifiable Disease Reporting and Patient Crossover Using a Health Information Exchange-based Automated Electronic Laboratory Reporting System

    OpenAIRE

    Gichoya, Judy; Gamache, Roland E.; Vreeman, Daniel J.; Dixon, Brian E.; Finnell, John T.; Grannis, Shaun

    2012-01-01

    Patients move across healthcare organizations and utilize services with great frequency and variety. This fact impacts both health information technology policy and patient care. To understand the challenges faced when developing strategies for effective health information exchange, it is important to understand patterns of patient movement and utilization for many healthcare contexts, including managing public-health notifiable conditions. We studied over 10 years of public-health notifiable...

  7. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution.

    Science.gov (United States)

    Marini, Giacomo; Studer, Harald; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2016-06-01

    Patient-specific modelling of the spine is a powerful tool to explore the prevention and the treatment of injuries and pathologies. Albeit several methods have been proposed for the discretization of the bony structures, the efficient representation of the intervertebral disc anisotropy remains a challenge, especially with complex geometries. Furthermore, the swelling of the disc's nucleus pulposus is normally added to the model after geometry definition, at the cost of changes of the material properties and an unrealistic description of the prestressed state. The aim of this study was to develop techniques, which preserve the patient-specific geometry of the disc and allow the representation of the system anisotropy and residual stresses, independent of the system discretization. Depending on the modelling features, the developed approaches resulted in a response of patient-specific models that was in good agreement with the physiological response observed in corresponding experiments. The proposed methods represent a first step towards the development of patient-specific models of the disc which respect both the geometry and the mechanical properties of the specific disc. PMID:26243011

  8. 3D printing of patient-specific anatomy: A tool to improve patient consent and enhance imaging interpretation by trainees.

    Science.gov (United States)

    Liew, Yaoren; Beveridge, Erin; Demetriades, Andreas K; Hughes, Mark A

    2015-01-01

    We report the use of three-dimensional or 3D printed, patient-specific anatomy as a tool to improve informed patient consent and patient understanding in a case of posterior lumbar fixation. Next, we discuss its utility as an educational tool to enhance imaging interpretation by neurosurgery trainees. PMID:25822093

  9. Adaptive radiotherapy based on fiducial marker using off-line strategy to construct patient specific PTV in prostate IMRT

    International Nuclear Information System (INIS)

    The aim is to develop an off-line strategy for constructing a patient specific target PTV margin in Adaptive Radiotherapy (ART) process using image feedback based on gold seed movements to improve the efficacy and dose escalation for IMRT of prostate cancer

  10. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    Science.gov (United States)

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important. PMID:26374518

  11. Segmenting CT prostate images using population and patient-specific statistics for radiotherapy

    International Nuclear Information System (INIS)

    Purpose: In the segmentation of sequential treatment-time CT prostate images acquired in image-guided radiotherapy, accurately capturing the intrapatient variation of the patient under therapy is more important than capturing interpatient variation. However, using the traditional deformable-model-based segmentation methods, it is difficult to capture intrapatient variation when the number of samples from the same patient is limited. This article presents a new deformable model, designed specifically for segmenting sequential CT images of the prostate, which leverages both population and patient-specific statistics to accurately capture the intrapatient variation of the patient under therapy. Methods: The novelty of the proposed method is twofold: First, a weighted combination of gradient and probability distribution function (PDF) features is used to build the appearance model to guide model deformation. The strengths of each feature type are emphasized by dynamically adjusting the weight between the profile-based gradient features and the local-region-based PDF features during the optimization process. An additional novel aspect of the gradient-based features is that, to alleviate the effect of feature inconsistency in the regions of gas and bone adjacent to the prostate, the optimal profile length at each landmark is calculated by statistically investigating the intensity profile in the training set. The resulting gradient-PDF combined feature produces more accurate and robust segmentations than general gradient features. Second, an online learning mechanism is used to build shape and appearance statistics for accurately capturing intrapatient variation. Results: The performance of the proposed method was evaluated on 306 images of the 24 patients. Compared to traditional gradient features, the proposed gradient-PDF combination features brought 5.2% increment in the success ratio of segmentation (from 94.1% to 99.3%). To evaluate the effectiveness of online

  12. Patient-Specific Dosimetry and Radiobiological Modeling of Targeted Radionuclide Therapy Grant - final report

    Energy Technology Data Exchange (ETDEWEB)

    George Sgouros, Ph.D.

    2007-03-20

    radionuclide therapy to obtain normal organ and tumor dose vs. response correlations. Completion of the aims outlined above will make it possible to perform patient-specific dosimetry that incorporates considerations likely to provide robust dose-response relationships. Such an advance will improve targeted radionuclide therapy by making it possible to adopt treatment planning methodologies.

  13. SU-E-T-159: Evaluation of a Patient Specific QA Tool Based On TG119

    International Nuclear Information System (INIS)

    Purpose: To evaluate the accuracy of a 3D patient specific QA tool by analysis of the results produced from associated software in homogenous phantom and heterogonous patient CT. Methods: IMRT and VMAT plans of five test suites introduced by TG119 were created in ECLIPSE on a solid water phantom. The ten plans -of increasing complexity- were delivered to Delta4 to give a 3D measurement. The Delta4's “Anatomy” software uses the measured dose to back-calculate the energy fluence of the delivered beams, which is used for dose calculation in a patient CT using a pencilbeam algorithm. The effect of the modulated beams' complexity on the accuracy of the “Anatomy” calculation was evaluated. Both measured and Anatomy doses were compared to ECLIPSE calculation using 3% - 3mm gamma criteria.We also tested the effect of heterogeneity by analyzing the results of “Anatomy” calculation on a Brain VMAT and a 3D conformal lung cases. Results: In homogenous phantom, the gamma passing rates were found to be as low as 74.75% for a complex plan with high modulation. The mean passing rates were 91.47% ± 6.35% for “Anatomy” calculation and 99.46% ± 0.62% for Delta4 measurements.As for the heterogeneous cases, the rates were 96.54%±3.67% and 83.87%±9.42% for Brain VMAT and 3D lung respectively. This increased error in the lung case could be due to the use of the pencil beam algorithm as opposed to the AAA used by ECLIPSE.Also, gamma analysis showed high discrepancy along the beam edge in the “Anatomy” calculated results. This suggests a poor beam modeling in the penumbra region. Conclusion: The results show various sources of errors in “Anatomy” calculations. These include beam modeling in the penumbra region, complexity of a modulated beam (shown in homogenous phantom and brain cases) and dose calculation algorithms (3D conformal lung case)

  14. Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models.

    Science.gov (United States)

    Haggarty, Stephen J; Silva, M Catarina; Cross, Alan; Brandon, Nicholas J; Perlis, Roy H

    2016-06-01

    Compelling clinical, social, and economic reasons exist to innovate in the process of drug discovery for neuropsychiatric disorders. The use of patient-specific, induced pluripotent stem cells (iPSCs) now affords the ability to generate neuronal cell-based models that recapitulate key aspects of human disease. In the context of neuropsychiatric disorders, where access to physiologically active and relevant cell types of the central nervous system for research is extremely limiting, iPSC-derived in vitro culture of human neurons and glial cells is transformative. Potential applications relevant to early stage drug discovery, include support of quantitative biochemistry, functional genomics, proteomics, and perhaps most notably, high-throughput and high-content chemical screening. While many phenotypes in human iPSC-derived culture systems may prove adaptable to screening formats, addressing the question of which in vitro phenotypes are ultimately relevant to disease pathophysiology and therefore more likely to yield effective pharmacological agents that are disease-modifying treatments requires careful consideration. Here, we review recent examples of studies of neuropsychiatric disorders using human stem cell models where cellular phenotypes linked to disease and functional assays have been reported. We also highlight technical advances using genome-editing technologies in iPSCs to support drug discovery efforts, including the interpretation of the functional significance of rare genetic variants of unknown significance and for the purpose of creating cell type- and pathway-selective functional reporter assays. Additionally, we evaluate the potential of in vitro stem cell models to investigate early events of disease pathogenesis, in an effort to understand the underlying molecular mechanism, including the basis of selective cell-type vulnerability, and the potential to create new cell-based diagnostics to aid in the classification of patients and subsequent

  15. SU-E-T-159: Evaluation of a Patient Specific QA Tool Based On TG119

    Energy Technology Data Exchange (ETDEWEB)

    Ashmeg, S; Zhang, Y; O' Daniel, J; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of a 3D patient specific QA tool by analysis of the results produced from associated software in homogenous phantom and heterogonous patient CT. Methods: IMRT and VMAT plans of five test suites introduced by TG119 were created in ECLIPSE on a solid water phantom. The ten plans -of increasing complexity- were delivered to Delta4 to give a 3D measurement. The Delta4's “Anatomy” software uses the measured dose to back-calculate the energy fluence of the delivered beams, which is used for dose calculation in a patient CT using a pencilbeam algorithm. The effect of the modulated beams' complexity on the accuracy of the “Anatomy” calculation was evaluated. Both measured and Anatomy doses were compared to ECLIPSE calculation using 3% - 3mm gamma criteria.We also tested the effect of heterogeneity by analyzing the results of “Anatomy” calculation on a Brain VMAT and a 3D conformal lung cases. Results: In homogenous phantom, the gamma passing rates were found to be as low as 74.75% for a complex plan with high modulation. The mean passing rates were 91.47% ± 6.35% for “Anatomy” calculation and 99.46% ± 0.62% for Delta4 measurements.As for the heterogeneous cases, the rates were 96.54%±3.67% and 83.87%±9.42% for Brain VMAT and 3D lung respectively. This increased error in the lung case could be due to the use of the pencil beam algorithm as opposed to the AAA used by ECLIPSE.Also, gamma analysis showed high discrepancy along the beam edge in the “Anatomy” calculated results. This suggests a poor beam modeling in the penumbra region. Conclusion: The results show various sources of errors in “Anatomy” calculations. These include beam modeling in the penumbra region, complexity of a modulated beam (shown in homogenous phantom and brain cases) and dose calculation algorithms (3D conformal lung case)

  16. Patient specific optimization-based treatment planning for catheter-based ultrasound hyperthermia and thermal ablation

    Science.gov (United States)

    Prakash, Punit; Chen, Xin; Wootton, Jeffery; Pouliot, Jean; Hsu, I.-Chow; Diederich, Chris J.

    2009-02-01

    A 3D optimization-based thermal treatment planning platform has been developed for the application of catheter-based ultrasound hyperthermia in conjunction with high dose rate (HDR) brachytherapy for treating advanced pelvic tumors. Optimal selection of applied power levels to each independently controlled transducer segment can be used to conform and maximize therapeutic heating and thermal dose coverage to the target region, providing significant advantages over current hyperthermia technology and improving treatment response. Critical anatomic structures, clinical target outlines, and implant/applicator geometries were acquired from sequential multi-slice 2D images obtained from HDR treatment planning and used to reconstruct patient specific 3D biothermal models. A constrained optimization algorithm was devised and integrated within a finite element thermal solver to determine a priori the optimal applied power levels and the resulting 3D temperature distributions such that therapeutic heating is maximized within the target, while placing constraints on maximum tissue temperature and thermal exposure of surrounding non-targeted tissue. This optimizationbased treatment planning and modeling system was applied on representative cases of clinical implants for HDR treatment of cervix and prostate to evaluate the utility of this planning approach. The planning provided significant improvement in achievable temperature distributions for all cases, with substantial increase in T90 and thermal dose (CEM43T90) coverage to the hyperthermia target volume while decreasing maximum treatment temperature and reducing thermal dose exposure to surrounding non-targeted tissues and thermally sensitive rectum and bladder. This optimization based treatment planning platform with catheter-based ultrasound applicators is a useful tool that has potential to significantly improve the delivery of hyperthermia in conjunction with HDR brachytherapy. The planning platform has been extended

  17. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy

    Directory of Open Access Journals (Sweden)

    Dewayne Lee Defoor

    2014-03-01

    Full Text Available Purpose: This research, investigates the viability of using the Electronic portal imaging device (EPID coupled with the treatment planning system (TPS, to calculate the doses delivered and verify agreement with the treatment plan. The results of QA analysis using the EPID, Delta4 and fluence calculations using the multi-leaf collimator (MLC dynalog files on 10 IMRT patients are presented in this study.Methods: EPID Fluence Images in integrated mode and Dynalog files for each field were acquired for 10 IMRT (6MV patients and processed through an in house MatLab program to create an opening density matrix (ODM which was used as the input fluence for dose calculation with the TPS (Pinnacle3, Philips. The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high definition MLC. The resulting dose distributions were then exported to VeriSoft (PTW where a 3D gamma was calculated using 3 mm-3% criteria. The Scandidos Delta4 phantom was also used to measure a 2D dose distribution for all 10 patients and a 2D gamma was calculated for each patient using the Delta4 software.Results: The average 3D gamma for all 10 patients using the EPID images was 98.2% ± 2.6%. The average 3D gamma using the dynalog files was 94.6% ± 4.9%. The average 2D gamma from the Delta4 was 98.1% ± 2.5%. The minimum 3D gamma for the EPID and dynalog reconstructed dose distributions was found on the same patient which had a very large PTV, requiring the jaws to open to the maximum field size. Conclusion: Use of the EPID, combined with a TPS is a viable method for QA of IMRT plans. A larger ODM size can be implemented to accommodate larger field sizes. An adaptation of this process to Volumetric Arc Therapy (VMAT is currently under way.-----------------------------Cite this article as: Defoor D, Mavroidis P, Quino L, Gutierrez A, Papanikolaou N, Stathakis S. On the evaluation of patient specific IMRT QA using EPID, dynalog files and patient anatomy

  18. An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries.

    Science.gov (United States)

    Fahy, Paul; Delassus, Patrick; McCarthy, Peter; Sultan, Sheriff; Hynes, Niamh; Morris, Liam

    2014-01-01

    The Circle of Willis (CoW) is a complex pentagonal network comprised of fourteen cerebral vessels located at the base of the brain. The collateral flow feature within the circle of Willis allows the ability to maintain cerebral perfusion of the brain. Unfortunately, this collateral flow feature can create undesirable flow impact locations due to anatomical variations within the CoW. The interaction between hemodynamic forces and the arterial wall are believed to be involved in the formation of cerebral aneurysms, especially at irregular geometries such as tortuous segments, bends, and bifurcations. The highest propensity of aneurysm formation is known to form at the anterior communicating artery (AcoA) and at the junctions of the internal carotid and posterior communicating arteries (PcoAs). Controversy still remains as to the existence of blood flow paths through the communicating arteries for a normal CoW. This paper experimentally describes the hemodynamic conditions through three thin walled patient specific models of a complete CoW based on medical images. These models were manufactured by a horizontal dip spin coating method and positioned within a custom made cerebral testing system that simulated symmetrical physiological afferent flow conditions through the internal carotid and vertebral arteries. The dip spin coating procedure produced excellent dimensional accuracy. There was an average of less than 4% variation in diameters and wall thicknesses throughout all manufactured CoW models. Our cerebral test facility demonstrated excellent cycle to cycle repeatability, with variations of less than 2% and 1% for the time and cycle averaged flow rates, respectively. The peak systolic flow rates had less than a 4% variation. Our flow visualizations showed four independent flow sources originating from all four inlet arteries impacting at and crossing the AcoA with bidirectional cross flows. The flow paths entering the left and right vertebral arteries dissipated

  19. A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery

    International Nuclear Information System (INIS)

    Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle3™ format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 ± 0.59 mm and 0.05 ± 0.31°, indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5° were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 ± 0.21%, 0.99 ± 0.59%, and 1.18 ± 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There is a strong correlation between total integral

  20. A coverage probability based method to estimate patient-specific small bowel planning volumes for use in radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: The aim of this work was to develop a statistical method for generation of patient-specific planning organ-at-risk volumes (PRVs) for the small bowel (SB), by efficient use of a few repeat CT scans. Materials and methods: The PRVs are generated from a coverage probability (CP) matrix of the small bowel wall (SBW) by thresholding. To estimate the CPs, we extend a previously published 'relative frequency of coverage' approach by adding a 'soft margin' around each SBW instance. This prevents the CP matrix from containing any holes, thus making it more robust. As the number of CTs approach infinity, the 'soft margin' approaches zero and the CP matrix converges to the 'relative frequency of coverage'. The PRVs were evaluated by using the bootstrap method in three patients with different degrees of SB motion: The PRVs from randomly sampled subsets of CTs were compared to the PRVs generated from all 10-11 CT scans, by analysis of sensitivity and specificity. Furthermore, the PRVs generated for CP = 0.005 (i.e. generous patient-specific PRVs) and for CP = 0.03 (i.e. tight patient-specific PRVs) were compared to an intestinal cavity (IC) approach and a population based PRV approach of 10 and 30 mm isotropic planning margins around SB. Results: The sensitivity and specificity of the PRVs depend on the number of CT scans and the CP threshold. With three CT scans and a threshold of 0.03, an average sensitivity of 94-96% and specificity of 86-97% was obtained. All investigated SB planning volumes had an average overlap >89% of both SB and SBW. The tight patient-specific PRVs and the 10 mm margins had the lowest relative volumes, followed by the generous patient-specific PRVs, the 30 mm margins and the ICs. Conclusions: Based on a few CTs, our method generates patient-specific SB PRVs which are both sensitive and specific. Compared to conventional approaches, the patient-specific PRVs are either similar or better in predicting for SB voxels, and at the

  1. Bridging the gap in internet treatments for mental health: A fully automated online cognitive behaviour therapy for social anxiety for those who stutter

    OpenAIRE

    Fjóla Dögg Helgadóttir

    2010-01-01

    Introduction: CBTpsych.com is a fully functional intervention that aims at bridging the gap between Eliza (Weizenbaum, 1966) and modern internet treatments for anxiety disorders (Helgadottir, Menzies, Onslow, Packman & O‟Brien, 2009a). A Phase I trial demonstrated that two participants no longer met the diagnosis of social phobia on the DSM-IV and ICD-10 after being treated by CBTpsych.com. The quality of the interaction appeared to be similar to face-to-face therapy. The automated techniques...

  2. Shoe-String Automation

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, M.L.

    2001-07-30

    Faced with a downsizing organization, serious budget reductions and retirement of key metrology personnel, maintaining capabilities to provide necessary services to our customers was becoming increasingly difficult. It appeared that the only solution was to automate some of our more personnel-intensive processes; however, it was crucial that the most personnel-intensive candidate process be automated, at the lowest price possible and with the lowest risk of failure. This discussion relates factors in the selection of the Standard Leak Calibration System for automation, the methods of automation used to provide the lowest-cost solution and the benefits realized as a result of the automation.

  3. Patient specific IMRT quality assurance with film, ionization chamber and detector arrays: Our institutional experience

    International Nuclear Information System (INIS)

    Purpose: This study was conducted to review patient specific IMRT QA delivered at our institution using Varian LINACs and TomoTherapy Hi-Art system and categorized according to the anatomical site, type of treatment machine, and treatment planning systems (TPS). Material and methods: Three thousand and three hundred seven patient data were evaluated for a time ranging from 2006 to 2011; these data were gauged using several methods used in the QA process. Ion chambers and film were used in 1738 patient plan QA in the earlier years followed by ion chamber arrays in 1569 patient plan QA in the latter years. Patients were grouped according to several parameters including TPS, site of treatment, and type of treatment machine in comparing the measured versus computed dose differences. From 2006 through early 2009, 736 TomoTherapy plans, 651 Pinnacle3 plans, and 351 Corvus plans were evaluated using ion chambers and films. The pass criterion at the institution at the time of these measurements was 3% dose difference and 3 mm distance to agreement. For the years ranging from 2009 to 2011, 1569 patient IMRT QAs were performed and evaluated on the institution's pass criteria of 90% γ value on Varian linacs with Millennium 80, 120 and High-Definition 120 multileaf collimators. Results: Average point dose difference between measured and calculated plans for Pinnacle3, Hi-ART TomoTherapy, and Corvus TPS were 0.1205%, −0.0042%, and −0.0178%. Among the QA plans measured using a 2D array, average gamma values for brain, head and neck, thorax, abdomen, and pelvis were 97.2%, 95.7%, 96.2%, 97.0%, and 96.2%, respectively. Average gamma values based on 80, 120, HD 120 and TomoTherapy MLC configurations were 96.5%, 96.2%, 96.3%, and 97%, respectively. A 2-tailed paired Student's T-test did not reveal the presence of statistically significant differences based on either TPS, anatomical sites, number of beams or arcs, number of control points, or the MLC configuration (p

  4. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    International Nuclear Information System (INIS)

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of 131I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other organs

  5. Open-Source Radiation Exposure Extraction Engine (RE3) with Patient-Specific Outlier Detection.

    Science.gov (United States)

    Weisenthal, Samuel J; Folio, Les; Kovacs, William; Seff, Ari; Derderian, Vana; Summers, Ronald M; Yao, Jianhua

    2016-08-01

    We present an open-source, picture archiving and communication system (PACS)-integrated radiation exposure extraction engine (RE3) that provides study-, series-, and slice-specific data for automated monitoring of computed tomography (CT) radiation exposure. RE3 was built using open-source components and seamlessly integrates with the PACS. RE3 calculations of dose length product (DLP) from the Digital imaging and communications in medicine (DICOM) headers showed high agreement (R (2) = 0.99) with the vendor dose pages. For study-specific outlier detection, RE3 constructs robust, automatically updating multivariable regression models to predict DLP in the context of patient gender and age, scan length, water-equivalent diameter (D w), and scanned body volume (SBV). As proof of concept, the model was trained on 811 CT chest, abdomen + pelvis (CAP) exams and 29 outliers were detected. The continuous variables used in the outlier detection model were scan length (R (2)  = 0.45), D w (R (2) = 0.70), SBV (R (2) = 0.80), and age (R (2) = 0.01). The categorical variables were gender (male average 1182.7 ± 26.3 and female 1047.1 ± 26.9 mGy cm) and pediatric status (pediatric average 710.7 ± 73.6 mGy cm and adult 1134.5 ± 19.3 mGy cm). PMID:26644157

  6. A patient-specific aperture system with an energy absorber for spot scanning proton beams: Verification for clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Keisuke, E-mail: k.yasui.20@west-med.jp [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508, Japan and Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan); Toshito, Toshiyuki; Omachi, Chihiro; Kibe, Yoshiaki; Hayashi, Kensuke; Shibata, Hiroki; Tanaka, Kenichiro; Nikawa, Eiki; Asai, Kumiko; Shimomura, Akira; Kinou, Hideto; Isoyama, Shigeru; Mizoe, Jun-etsu [Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1, Hirate-cho, Kita-ku, Nagoya-shi, Aichi-ken 462-8508 (Japan); Fujii, Yusuke; Takayanagi, Taisuke; Hirayama, Shusuke [Hitachi, Ltd., Hitachi Research Laboratory, 7-1-1, Omika-chou, Hitachi-shi, Ibaraki-ken 319-1292 (Japan); Nagamine, Yoshihiko [Hitachi, Ltd., Hitachi Works, 3-1-1, Saiwai-chou, Hitachi-shi, Ibaraki-ken 317-8511 (Japan); Shibamoto, Yuta [Graduate School of Medical Sciences, Nagoya City University, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya-shi, Aichi-ken 467-8601 (Japan); Komori, Masataka [Department of Radiological Sciences, Nagoya University Graduate School of Medicine, 1-1-20, Daikouminami, Higashi-ku, Nagoya-shi, Aichi-ken 461-8673 (Japan)

    2015-12-15

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm{sup 2}. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm{sup 2}. The authors measured in-air lateral profiles at the isocenter plane and integral depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans.

  7. A patient-specific aperture system with an energy absorber for spot scanning proton beams: Verification for clinical application

    International Nuclear Information System (INIS)

    Purpose: In the authors’ proton therapy system, the patient-specific aperture can be attached to the nozzle of spot scanning beams to shape an irradiation field and reduce lateral fall-off. The authors herein verified this system for clinical application. Methods: The authors prepared four types of patient-specific aperture systems equipped with an energy absorber to irradiate shallow regions less than 4 g/cm2. The aperture was made of 3-cm-thick brass and the maximum water equivalent penetration to be used with this system was estimated to be 15 g/cm2. The authors measured in-air lateral profiles at the isocenter plane and integral depth doses with the energy absorber. All input data were obtained by the Monte Carlo calculation, and its parameters were tuned to reproduce measurements. The fluence of single spots in water was modeled as a triple Gaussian function and the dose distribution was calculated using a fluence dose model. The authors compared in-air and in-water lateral profiles and depth doses between calculations and measurements for various apertures of square, half, and U-shaped fields. The absolute doses and dose distributions with the aperture were then validated by patient-specific quality assurance. Measured data were obtained by various chambers and a 2D ion chamber detector array. Results: The patient-specific aperture reduced the penumbra from 30% to 70%, for example, from 34.0 to 23.6 mm and 18.8 to 5.6 mm. The calculated field width for square-shaped apertures agreed with measurements within 1 mm. Regarding patient-specific aperture plans, calculated and measured doses agreed within −0.06% ± 0.63% (mean ± SD) and 97.1% points passed the 2%-dose/2 mm-distance criteria of the γ-index on average. Conclusions: The patient-specific aperture system improved dose distributions, particularly in shallow-region plans

  8. Development of a biomechanical model of the wrist joint for patient-specific model guided surgical therapy planning: Part 1.

    Science.gov (United States)

    Eschweiler, Jörg; Stromps, Jan-Philipp; Fischer, Maximilian; Schick, Fabian; Rath, Björn; Pallua, Norbert; Radermacher, Klaus

    2016-04-01

    An enhanced musculoskeletal biomechanical model of the wrist joint is presented in this article. The developed computational model features the two forearm bones radius and ulna, the eight wrist bones, the five metacarpal bones, and a soft tissue apparatus. Validation of the model was based on information taken from the literature as well as own experimental passive in vitro motion analysis of eight cadaver specimens. The computational model is based on the multi-body simulation software AnyBody. A comprehensive ligamentous apparatus was implemented allowing the investigation of ligament function. The model can easily patient specific personalized on the basis of image information. The model enables simulation of individual wrist motion and predicts trends correctly in the case of changing kinematics. Therefore, patient-specific multi-body simulation models are potentially valuable tools for surgeons in pre- and intraoperative planning of implant placement and orientation. PMID:26994117

  9. Modelo geoespacial automatizado para la regionalización operativa en planeación de redes de servicios de salud Automated geospatial model for health services strategic planning

    Directory of Open Access Journals (Sweden)

    Juan Eugenio Hernández-Ávila

    2010-10-01

    Full Text Available Objetivo. Desarrollar un modelo automatizado de regionalización operativa para la planeación de las redes de servicios de salud propuestas en el Modelo Integrador de Atención a la Salud (MIDAS. Material y métodos. Con información disponible para México en 2005 y 2007 se realizó un modelo geoespacial para estimar el área potencial de influencia alrededor de cada unidad de atención médica, con base en el menor tiempo de viaje. Los resultados se compararon con un Estudio de Regionalización Operativa (ERO para Oaxaca llevado a cabo en 2005. Resultados. Comparado con el modelo geoespacial, el ERO asignó 48% de las localidades a centros de salud más lejanos y 23% de los centros de salud a hospitales más lejanos. Conclusiones. El modelo calculado en este estudio generó una regionalización más eficiente que el ERO de Oaxaca, minimizando el tiempo de viaje para el acceso a los servicios de salud. Este modelo ha sido adoptado por la Dirección General de Planeación y Desarrollo en Salud para la instrumentación del Plan Maestro Sectorial de Recursos para la Atención de la Salud.Objective. To develop an automated model for the operational regionalization needed in the planning of the health service networks proposed by the new Mexican health care model (Modelo Integrador de Servicios de Salud MIDAS. Material and Methods. Using available data for México during 2005 and 2007, a geospatial model was developed to estimate potential catchment areas around health facilities based on access travel time. The results were compared with an operational regionalization (ERO study manually carried out in Oaxaca with 2005 data. Results. The ERO assigned 48% of villages to health care centers further away than those assigned by the geospatial model, and 23% of these health centers referred patients to more distant hospitals. Conclusions. The model calculated by this study generated a more efficient regionalization than the ERO model, minimizing travel

  10. Data assimilation and modelling of patient-specific single-ventricle physiology with and without valve regurgitation

    OpenAIRE

    Pant, Sanjay; Corsini, Chiara; Baker, Catriona; Hsia, Tain-Yen; Pennati, Giancarlo; Vignon-Clementel, Irene

    2015-01-01

    A closed-loop lumped parameter model of blood circulation is considered for single-ventricle shunt physiology. Its parameters are estimated by an inverse problem based on patient-specific haemodynamics measurements. As opposed to a black-box approach, maximizing the number of parameters that are related to physically measurable quantities motivates the present model. Heart chambers are described by a single-fibre mechanics model, and valve function is modelled with smooth opening and closure....

  11. SU-E-CAMPUS-T-04: Statistical Process Control for Patient-Specific QA in Proton Beams

    International Nuclear Information System (INIS)

    Purpose: To evaluate and improve the reliability of proton QA process, to provide an optimal customized level using the statistical process control (SPC) methodology. The aim is then to suggest the suitable guidelines for patient-specific QA process. Methods: We investigated the constancy of the dose output and range to see whether it was within the tolerance level of daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to suggest the suitable guidelines for patient-specific QA in proton beam by using process capability indices. In this study, patient QA plans were classified into 6 treatment sites: head and neck (41 cases), spinal cord (29 cases), lung (28 cases), liver (30 cases), pancreas (26 cases), and prostate (24 cases). Results: The deviations for the dose output and range of daily QA process were ±0.84% and ±019%, respectively. Our results show that the patient-specific range measurements are capable at a specification limit of ±2% in all treatment sites except spinal cord cases. In spinal cord cases, comparison of process capability indices (Cp, Cpm, Cpk ≥1, but Cpmk ≤1) indicated that the process is capable, but not centered, the process mean deviates from its target value. The UCL (upper control limit), CL (center line) and LCL (lower control limit) for spinal cord cases were 1.37%, −0.27% and −1.89%, respectively. On the other hands, the range differences in prostate cases were good agreement between calculated and measured values. The UCL, CL and LCL for prostate cases were 0.57%, −0.11% and −0.78%, respectively. Conclusion: SPC methodology has potential as a useful tool to customize an optimal tolerance levels and to suggest the suitable guidelines for patient-specific QA in clinical proton beam

  12. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    OpenAIRE

    Om Prakash Gurjar; Surendra Prasad Mishra

    2015-01-01

    Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT) plans already planned on treatment planning system (TPS) for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA). All the gantry angles were set to zero...

  13. SU-E-CAMPUS-T-04: Statistical Process Control for Patient-Specific QA in Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    LAH, J [Myongji Hospital, Goyangsi, Gyeonggi-do (Korea, Republic of); SHIN, D [National Cancer Center, Goyangsi, Gyeonggi-do (Korea, Republic of); Kim, G [UCSD Medical Center, La Jolla, CA (United States)

    2014-06-15

    Purpose: To evaluate and improve the reliability of proton QA process, to provide an optimal customized level using the statistical process control (SPC) methodology. The aim is then to suggest the suitable guidelines for patient-specific QA process. Methods: We investigated the constancy of the dose output and range to see whether it was within the tolerance level of daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to suggest the suitable guidelines for patient-specific QA in proton beam by using process capability indices. In this study, patient QA plans were classified into 6 treatment sites: head and neck (41 cases), spinal cord (29 cases), lung (28 cases), liver (30 cases), pancreas (26 cases), and prostate (24 cases). Results: The deviations for the dose output and range of daily QA process were ±0.84% and ±019%, respectively. Our results show that the patient-specific range measurements are capable at a specification limit of ±2% in all treatment sites except spinal cord cases. In spinal cord cases, comparison of process capability indices (Cp, Cpm, Cpk ≥1, but Cpmk ≤1) indicated that the process is capable, but not centered, the process mean deviates from its target value. The UCL (upper control limit), CL (center line) and LCL (lower control limit) for spinal cord cases were 1.37%, −0.27% and −1.89%, respectively. On the other hands, the range differences in prostate cases were good agreement between calculated and measured values. The UCL, CL and LCL for prostate cases were 0.57%, −0.11% and −0.78%, respectively. Conclusion: SPC methodology has potential as a useful tool to customize an optimal tolerance levels and to suggest the suitable guidelines for patient-specific QA in clinical proton beam.

  14. Application of A Microstructural Constitutive Model of the Pulmonary Artery to Patient-Specific Studies: Validation and Effect of Orthotropy

    OpenAIRE

    Zhang, Yanhang; Dunn, Martin L.; Hunter, Kendall S.; Lanning, Craig; Ivy, D. Dunbar; Claussen, Lori; Chen, S. James; Shandas, Robin

    2007-01-01

    We applied a statistical mechanics based microstructural model of pulmonary artery mechanics, developed from our previous studies of rats with pulmonary arterial hypertension (PAH), to patient-specific clinical studies of children with PAH. Our previous animal studies provoked the hypothesis that increased cross-linking density of the molecular chains may be one biological remodeling mechanism by which the PA stiffens in PAH. This study appears to further confirm this hypothesis since varying...

  15. Abnormal Calcium Handling Properties Underlie Familial Hypertrophic Cardiomyopathy Pathology in Patient-Specific Induced Pluripotent Stem Cells

    OpenAIRE

    Lan, Feng; Lee, Andrew S.; Liang, Ping; Sanchez-Freire, Veronica; Nguyen, Patricia K; Wang, Li; Han, Leng; Yen, Michelle; Wang, Yongming; Sun, Ning; Abilez, Oscar J.; Hu, Shijun; Ebert, Antje D.; Navarrete, Enrique G.; Simmons, Chelsey S.

    2013-01-01

    Familial hypertrophic cardiomyopathy (HCM) is a prevalent hereditary cardiac disorder linked to arrhythmia and sudden cardiac death. While the causes of HCM have been identified as genetic mutations in the cardiac sarcomere, the pathways by which sarcomeric mutations engender myocyte hypertrophy and electrophysiological abnormalities are not understood. To elucidate the mechanisms underlying HCM development, we generated patient-specific induced pluripotent stem cell cardiomyocytes (iPSC-CMs)...

  16. Patient-specific prediction of coronary plaque growth from CTA angiography: A multiscale model for plaque formation and progression

    OpenAIRE

    Parodi O.; Exarchos T.P.; Marraccini P.; Vozzi F.; Milosevic Z.; Nikolic D.; Sakellarios A.; Siogkas P.K.; Fotiadis D.I.; Filipovic N.

    2012-01-01

    Computational fluid dynamics methods based on in vivo 3-D vessel reconstructions have recently been identified the influence of wall shear stress on endothelial cells as well as on vas- cular smooth muscle cells, resulting in different events such as flow mediated vasodilatation, atherosclerosis, and vascular remodeling. Development of image-based modeling technologies for simulating patient-specific local blood flows is introducing a novel approach to risk prediction for coronary plaque grow...

  17. Imaging, Virtual Planning, Design, and Production of Patient-Specific Implants and Clinical Validation in Craniomaxillofacial Surgery

    OpenAIRE

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-01-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps...

  18. Design and Implementation of an On-Chip Patient-Specific Closed-Loop Seizure Onset and Termination Detection System.

    Science.gov (United States)

    Zhang, Chen; Bin Altaf, Muhammad Awais; Yoo, Jerald

    2016-07-01

    This paper presents the design of an area- and energy-efficient closed-loop machine learning-based patient-specific seizure onset and termination detection algorithm, and its on-chip hardware implementation. Application- and scenario-based tradeoffs are compared and reviewed for seizure detection and suppression algorithm and system which comprises electroencephalography (EEG) data acquisition, feature extraction, classification, and stimulation. Support vector machine achieves a good tradeoff among power, area, patient specificity, latency, and classification accuracy for long-term monitoring of patients with limited training seizure patterns. Design challenges of EEG data acquisition on a multichannel wearable environment for a patch-type sensor are also discussed in detail. Dual-detector architecture incorporates two area-efficient linear support vector machine classifiers along with a weight-and-average algorithm to target high sensitivity and good specificity at once. On-chip implementation issues for a patient-specific transcranial electrical stimulation are also discussed. The system design is verified using CHB-MIT EEG database [1] with a comprehensive measurement criteria which achieves high sensitivity and specificity of 95.1% and 96.2%, respectively, with a small latency of 1 s. It also achieves seizure onset and termination detection delay of 2.98 and 3.82 s, respectively, with seizure length estimation error of 4.07 s. PMID:27093712

  19. Towards the Personalized Treatment of Glioblastoma: Integrating Patient-Specific Clinical Data in a Continuous Mechanical Model

    Science.gov (United States)

    Faggiano, Elena; Boffano, Carlo; Acerbi, Francesco; Ciarletta, Pasquale

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and malignant among brain tumors. In addition to uncontrolled proliferation and genetic instability, GBM is characterized by a diffuse infiltration, developing long protrusions that penetrate deeply along the fibers of the white matter. These features, combined with the underestimation of the invading GBM area by available imaging techniques, make a definitive treatment of GBM particularly difficult. A multidisciplinary approach combining mathematical, clinical and radiological data has the potential to foster our understanding of GBM evolution in every single patient throughout his/her oncological history, in order to target therapeutic weapons in a patient-specific manner. In this work, we propose a continuous mechanical model and we perform numerical simulations of GBM invasion combining the main mechano-biological characteristics of GBM with the micro-structural information extracted from radiological images, i.e. by elaborating patient-specific Diffusion Tensor Imaging (DTI) data. The numerical simulations highlight the influence of the different biological parameters on tumor progression and they demonstrate the fundamental importance of including anisotropic and heterogeneous patient-specific DTI data in order to obtain a more accurate prediction of GBM evolution. The results of the proposed mathematical model have the potential to provide a relevant benefit for clinicians involved in the treatment of this particularly aggressive disease and, more importantly, they might drive progress towards improving tumor control and patient’s prognosis. PMID:26186462

  20. Automated stopcock actuator

    OpenAIRE

    Vandehey, N. T.; O'Neil, J.P.

    2015-01-01

    Introduction We have developed a low-cost stopcock valve actuator for radiochemistry automation built using a stepper motor and an Arduino, an open-source single-board microcontroller. The con-troller hardware can be programmed to run by serial communication or via two 5–24 V digital lines for simple integration into any automation control system. This valve actuator allows for automated use of a single, disposable stopcock, providing a number of advantages over stopcock manifold systems ...

  1. The Adaptive Automation Design

    OpenAIRE

    Calefato, Caterina; Montanari, Roberto; TESAURI, Francesco

    2008-01-01

    After considering the positive effects of adaptive automation implementation, this chapter focuses on two partly overlapping phenomena: on the one hand, the role of trust in automation is considered, particularly as to the effects of overtrust and mistrust in automation's reliability; on the other hand, long-term lack of exercise on specific operation may lead users to skill deterioration. As a future work, it will be interesting and challenging to explore the conjunction of adaptive automati...

  2. Service functional test automation

    OpenAIRE

    Hillah, Lom Messan; Maesano, Ariele-Paolo; Rosa, Fabio; Maesano, Libero; Lettere, Marco; Fontanelli, Riccardo

    2015-01-01

    This paper presents the automation of the functional test of services (black-box testing) and services architectures (grey-box testing) that has been developed by the MIDAS project and is accessible on the MIDAS SaaS. In particular, the paper illustrates the solutions of tough functional test automation problems such as: (i) the configuration of the automated test execution system against large and complex services architectures, (ii) the constraint-based test input generation, (iii) the spec...

  3. Automated Weather Observing System

    Data.gov (United States)

    Department of Transportation — The Automated Weather Observing System (AWOS) is a suite of sensors, which measure, collect, and disseminate weather data to help meteorologists, pilots, and flight...

  4. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. PMID:26065792

  5. Automated cloning methods.; TOPICAL

    International Nuclear Information System (INIS)

    Argonne has developed a series of automated protocols to generate bacterial expression clones by using a robotic system designed to be used in procedures associated with molecular biology. The system provides plate storage, temperature control from 4 to 37 C at various locations, and Biomek and Multimek pipetting stations. The automated system consists of a robot that transports sources from the active station on the automation system. Protocols for the automated generation of bacterial expression clones can be grouped into three categories (Figure 1). Fragment generation protocols are initiated on day one of the expression cloning procedure and encompass those protocols involved in generating purified coding region (PCR)

  6. 21 CFR 870.5310 - Automated external defibrillator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated external defibrillator. 870.5310 Section 870.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... external defibrillator. (a) Identification. An automated external defibrillator (AED) is a...

  7. The use of patient-specific measurement instruments in the process of goal-setting: a systematic review of available instruments and their feasibility

    NARCIS (Netherlands)

    Stevens, A.; Beurskens, A.; Koke, A.; Weijden, T.T. van der

    2013-01-01

    OBJECTIVE: The aim of this study was to identify the currently available patient-specific measurement instruments used in the process of goal-setting and to assess their feasibility. METHODS: After a systematic search in PubMed, EMBASE, CINAHL, PsychINFO and REHABDATA, patient-specific instruments w

  8. Library Automation Style Guide.

    Science.gov (United States)

    Gaylord Bros., Liverpool, NY.

    This library automation style guide lists specific terms and names often used in the library automation industry. The terms and/or acronyms are listed alphabetically and each is followed by a brief definition. The guide refers to the "Chicago Manual of Style" for general rules, and a notes section is included for the convenience of individual…

  9. Automation in Warehouse Development

    NARCIS (Netherlands)

    Hamberg, R.; Verriet, J.

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and support

  10. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  11. Automation in Immunohematology

    Directory of Open Access Journals (Sweden)

    Meenu Bajpai

    2012-01-01

    Full Text Available There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  12. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  13. Automation in Warehouse Development

    CERN Document Server

    Verriet, Jacques

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and supports the quality of picking processes. Secondly, the development of models to simulate and analyse warehouse designs and their components facilitates the challenging task of developing warehouses that take into account each customer’s individual requirements and logistic processes. Automation in Warehouse Development addresses both types of automation from the innovative perspective of applied science. In particular, it describes the outcomes of the Falcon project, a joint endeavour by a consortium of industrial and academic partners. The results include a model-based approach to automate warehouse control design, analysis models for warehouse design, concepts for robotic item handling and computer vision, and auton...

  14. Advances in inspection automation

    Science.gov (United States)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  15. Patient-specific radiation dose and cancer risk estimation in pediatric chest CT: a study in 30 patients

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2010-04-01

    Radiation-dose awareness and optimization in CT can greatly benefit from a dosereporting system that provides radiation dose and cancer risk estimates specific to each patient and each CT examination. Recently, we reported a method for estimating patientspecific dose from pediatric chest CT. The purpose of this study is to extend that effort to patient-specific risk estimation and to a population of pediatric CT patients. Our study included thirty pediatric CT patients (16 males and 14 females; 0-16 years old), for whom full-body computer models were recently created based on the patients' clinical CT data. Using a validated Monte Carlo program, organ dose received by the thirty patients from a chest scan protocol (LightSpeed VCT, 120 kVp, 1.375 pitch, 40-mm collimation, pediatric body scan field-of-view) was simulated and used to estimate patient-specific effective dose. Risks of cancer incidence were calculated for radiosensitive organs using gender-, age-, and tissue-specific risk coefficients and were used to derive patientspecific effective risk. The thirty patients had normalized effective dose of 3.7-10.4 mSv/100 mAs and normalized effective risk of 0.5-5.8 cases/1000 exposed persons/100 mAs. Normalized lung dose and risk of lung cancer correlated strongly with average chest diameter (correlation coefficient: r = -0.98 to -0.99). Normalized effective risk also correlated strongly with average chest diameter (r = -0.97 to -0.98). These strong correlations can be used to estimate patient-specific dose and risk prior to or after an imaging study to potentially guide healthcare providers in justifying CT examinations and to guide individualized protocol design and optimization.

  16. Mathematical modeling of patient-specific ventricular assist device implantation to reduce particulate embolization rate to cerebral vessels.

    Science.gov (United States)

    Ricardo Argueta-Morales, I; Tran, Reginald; Ceballos, Andres; Clark, William; Osorio, Ruben; Divo, Eduardo A; Kassab, Alain J; DeCampli, William M

    2014-07-01

    Stroke is the most devastating complication after ventricular assist device (VAD) implantation, with an incidence of 14%-47% despite improvements in device design and anticoagulation. This complication continues to limit the widespread implementation of VAD therapy. Patient-specific computational fluid dynamics (CFD) analysis may elucidate ways to reduce this risk. A patient-specific three-dimensional model of the aortic arch was generated from computed tomography. A 12 mm VAD outflow-graft (VAD-OG) "anastomosed" to the aorta was rendered. CFD was applied to study blood flow patterns. Particle tracks, originating from the VAD, were computed with a Lagrangian phase model and percentage of particles entering the cerebral vessels was calculated. Twelve implantation configurations of the VAD-OG and three particle sizes (2, 4, and 5 mm) were considered. Percentage of particles entering the cerebral vessels ranged from 6% for the descending aorta VAD-OG anastomosis, to 14% for the ascending aorta at 90 deg VAD-OG anastomosis. Values were significantly different among all configurations (X(2) = 3925, p < 0.0001). Shallower and more cephalad anastomoses prevented formation of zones of recirculation in the ascending aorta. In this computational model and within the range of anatomic parameters considered, the percentage of particles entering the cerebral vessels from a VAD-OG is reduced by nearly 60% by optimizing outflow-graft configuration. Ascending aorta recirculation zones, which may be thrombogenic, can also be eliminated. CFD methods coupled with patient-specific anatomy may aid in identifying the optimal location and angle for VAD-OG anastomosis to minimize stroke risk. PMID:24441718

  17. Endocavity Ultrasound Hyperthermia for Locally Advanced Cervical Cancer: Patient-specific Modeling, Experimental Verification, and Combination with HDR Brachytherapy

    International Nuclear Information System (INIS)

    The feasibility of targeted hyperthermia delivery by an intrauterine ultrasound applicator to patient-specific treatment volumes in conjunction with HDR brachytherapy was investigated using theory and experiment. 30 HDR brachytherapy treatment plans were inspected to define hyperthermia treatment volumes (HTVs) based on tumor and radiation target volumes. Several typical cases were imported into a patient-specific treatment planning platform that optimized acoustic output power from an endocavity multisectored tubular array to conform temperature and thermal dose to HTVs. Perfusion was within a clinical range of 0.5-3 kg m-3 s-1. Applicators were constructed with 1-3 elements at 6.5-8 MHz with 90 deg. -360 deg. sectoring and 25-35 mm heating length housed in a water-cooled PET catheter. Acoustic output was compared to heating in ex vivo tissue assessed with implanted thermometry. Radiation attenuation through the device was measured in an ionization chamber. The HTV extends 2-4 cm in diameter and 2-4 cm in length. The bladder and rectum can be within 10-12 mm. HTV targets can be covered with temperature clouds >41 deg. and thermal dose t43>5 min with 45 deg. C maximum temperature and rectal temperature <41.5 deg. C. Sectored applicators preferentially direct energy laterally into the parametrium to limit heating of rectum and bladder. Interstitial brachytherapy catheters within the HTV could be used for thermal feedback during HT treatment. Temperature distributions in phantom show preferential heating within sectors and align well with acoustic output. Heating control along the device length and in angle is evident. A 4-6% reduction in radiation transmission through the transducers was observed, which could likely be compensated for in planning. Patient-specific modeling and experimental heating demonstrated 3-D conformal heating capabilities of endocavity ultrasound applicators.

  18. Feasibility study of patient-specific quality assurance system for high-dose-rate brachytherapy in patients with cervical cancer

    Science.gov (United States)

    Lee, Boram; Ahn, Sung Hwan; Kim, Hyeyoung; Han, Youngyih; Huh, Seung Jae; Kim, Jin Sung; Kim, Dong Wook; Sim, Jina; Yoon, Myonggeun

    2016-04-01

    This study was conducted for the purpose of establishing a quality-assurance (QA) system for brachytherapy that can ensure patient-specific QA by enhancing dosimetric accuracy for the patient's therapy plan. To measure the point-absorbed dose and the 2D dose distribution for the patient's therapy plan, we fabricated a solid phantom that allowed for the insertion of an applicator for patient-specific QA and used an ion chamber and a film as measuring devices. The patient treatment plan was exported to the QA dose-calculation software, which calculated the time weight of dwell position stored in the plan DICOM (Digital Imaging and Communications in Medicine) file to obtain an overall beam quality correction factor, and that correction was applied to the dose calculations. Experiments were conducted after importing the patient's treatment planning source data for the fabricated phantom and inserting the applicator, ion chamber, and film into the phantom. On completion of dose delivery, the doses to the ion chamber and film were checked against the corresponding treatment plan to evaluate the dosimetric accuracy. For experimental purposes, five treatment plans were randomly selected. The beam quality correction factors for ovoid and tandem brachytherapy applicators were found to be 1.15 and 1.10 - 1.12, respectively. The beam quality correction factor in tandem fluctuated by approximately 2%, depending on the changes in the dwell position. The doses measured by using the ion chamber showed differences ranging from -2.4% to 0.6%, compared to the planned doses. As for the film, the passing rate was 90% or higher when assessed using a gamma value of the local dose difference of 3% and a distance to agreement of 3 mm. The results show that the self-fabricated phantom was suitable for QA in clinical settings. The proposed patient-specific QA for the treatment planning is expected to contribute to reduce dosimetric errors in brachytherapy and, thus, to enhancing treatment

  19. The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer.

    Science.gov (United States)

    Tan, Eddie T W; Ling, Ji Min; Dinesh, Shree Kumar

    2016-05-01

    OBJECT Commercially available, preformed patient-specific cranioplasty implants are anatomically accurate but costly. Acrylic bone cement is a commonly used alternative. However, the manual shaping of the bone cement is difficult and may not lead to a satisfactory implant in some cases. The object of this study was to determine the feasibility of fabricating molds using a commercial low-cost 3D printer for the purpose of producing patient-specific acrylic cranioplasty implants. METHODS Using data from a high-resolution brain CT scan of a patient with a calvarial defect posthemicraniectomy, a skull phantom and a mold were generated with computer software and fabricated with the 3D printer using the fused deposition modeling method. The mold was used as a template to shape the acrylic implant, which was formed via a polymerization reaction. The resulting implant was fitted to the skull phantom and the cranial index of symmetry was determined. RESULTS The skull phantom and mold were successfully fabricated with the 3D printer. The application of acrylic bone cement to the mold was simple and straightforward. The resulting implant did not require further adjustment or drilling prior to being fitted to the skull phantom. The cranial index of symmetry was 96.2% (the cranial index of symmetry is 100% for a perfectly symmetrical skull). CONCLUSIONS This study showed that it is feasible to produce patient-specific acrylic cranioplasty implants with a low-cost 3D printer. Further studies are required to determine applicability in the clinical setting. This promising technique has the potential to bring personalized medicine to more patients around the world. PMID:26566203

  20. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery.

    Science.gov (United States)

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-09-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes(®), Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and

  1. Integrating Prognostics in Automated Contingency Management Strategies for Advanced Aircraft Controls Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Automated Contingency Management (ACM) is an emerging and game-changing area of engineering and scientific research that integrates prognostics and health...

  2. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, W; Swann, B; Siderits, R; McKenna, M; Khan, A; Yue, N; Zhang, M [Rutgers University, New Brunswick, NJ (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.

  3. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    International Nuclear Information System (INIS)

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carried out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice

  4. Use of 3D printers to create a patient-specific 3D bolus for external beam therapy.

    Science.gov (United States)

    Burleson, Sarah; Baker, Jamie; Hsia, An Ting; Xu, Zhigang

    2015-01-01

    The purpose of this paper is to demonstrate that an inexpensive 3D printer can be used to manufacture patient-specific bolus for external beam therapy, and to show we can accurately model this printed bolus in our treatment planning system for accurate treatment delivery. Percent depth-dose measurements and tissue maximum ratios were used to determine the characteristics of the printing materials, acrylonitrile butadiene styrene and polylactic acid, as bolus material with physical density of 1.04 and 1.2 g/cm3, and electron density of 3.38 × 10²³ electrons/cm3 and 3.80 × 10²³ electrons/ cm3, respectively. Dose plane comparisons using Gafchromic EBT2 film and the RANDO phantom were used to verify accurate treatment planning. We accurately modeled a printing material in Eclipse treatment planning system, assigning it a Hounsfield unit of 260. We were also able to verify accurate treatment planning using gamma analysis for dose plane comparisons. With gamma criteria of 5% dose difference and 2 mm DTA, we were able to have 86.5% points passing, and with gamma criteria of 5% dose difference and 3 mm DTA, we were able to have 95% points passing. We were able to create a patient-specific bolus using an inexpensive 3D printer and model it in our treatment planning system for accurate treatment delivery. PMID:26103485

  5. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography

    International Nuclear Information System (INIS)

    A simple robust optimizer has been developed that can produce patient-specific calibration curves to convert x-ray computed tomography (CT) numbers to relative stopping powers (HU-RSPs) for proton therapy treatment planning. The difference between a digitally reconstructed radiograph water-equivalent path length (DRRWEPL) map through the x-ray CT dataset and a proton radiograph (set as the ground truth) is minimized by optimizing the HU-RSP calibration curve. The function of the optimizer is validated with synthetic datasets that contain no noise and its robustness is shown against CT noise. Application of the procedure is then demonstrated on a plastic and a real tissue phantom, with proton radiographs produced using a single detector. The mean errors using generic/optimized calibration curves between the DRRWEPL map and the proton radiograph were 1.8/0.4% for a plastic phantom and −2.1/ − 0.2% for a real tissue phantom. It was then demonstrated that these optimized calibration curves offer a better prediction of the water equivalent path length at a therapeutic depth. We believe that these promising results are suggestive that a single proton radiograph could be used to generate a patient-specific calibration curve as part of the current proton treatment planning workflow. (paper)

  6. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; DeLuca, Adam P; Anfinson, Kristin R; Cranston, Cathryn M; Kaalberg, Emily E; Penticoff, Jessica A; Affatigato, Louisa M; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  7. Future of liver transplantation: Non-human primates for patient-specific organs from induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2011-01-01

    Full Text Available Strategies to fill the huge gap in supply versus demand of human organs include bioartificial organs, growing humanized organs in animals, cell therapy, and implantable bioengineered constructs. Reproducing the complex relations between different cell types, generation of adequate vasculature, and immunological complications are road blocks in generation of bioengineered organs, while immunological complications limit the use of humanized organs produced in animals. Recent developments in induced pluripotent stem cell (iPSC biology offer a possibility of generating human, patient-specific organs in non-human primates (NHP using patient-derived iPSC and NHP-derived iPSC lacking the critical developmental genes for the organ of interest complementing a NHP tetraploid embryo. The organ derived in this way will have the same human leukocyte antigen (HLA profile as the patient. This approach can be curative in genetic disorders as this offers the possibility of gene manipulation and correction of the patient’s genome at the iPSC stage before tetraploid complementation. The process of generation of patient-specific organs such as the liver in this way has the great advantage of making use of the natural signaling cascades in the natural milieu probably resulting in organs of great quality for transplantation. However, the inexorable scientific developments in this direction involve several social issues and hence we need to educate and prepare society in advance to accept the revolutionary consequences, good, bad and ugly.

  8. A biomechanical model of the wrist joint for patient-specific model guided surgical therapy: Part 2.

    Science.gov (United States)

    Eschweiler, Jörg; Stromps, Jan-Philipp; Fischer, Maximilian; Schick, Fabian; Rath, Björn; Pallua, Norbert; Radermacher, Klaus

    2016-04-01

    An enhanced musculoskeletal biomechanical model of the wrist joint is presented in this article. The computational model is based on the multi-body simulation software AnyBody. Multi body dynamic musculoskeletal models capable of predicting muscle forces and joint contact pressures simultaneously would be valuable for studying clinical issues related to wrist joint degeneration and restoration. In this study, the simulation model of the wrist joint was used for investigating deeper the biomechanical function of the wrist joint. In representative physiological scenarios, the joint behavior and muscle forces were computed. Furthermore, the load transmission of the proximal wrist joint was investigated. The model was able to calculate the parameters of interest that are not easily obtainable experimentally, such as muscle forces and proximal wrist joint forces. In the case of muscle force investigation, the computational model was able to accurately predict the computational outcome for flexion and extension motion. In the case of force distribution of the proximal wrist joint, the model was able to predict accurately the computational outcome for an axial load of 140 N. The presented model and approach of using a multi-body simulation model are anticipated to have value as a predictive clinical tool including effect of injuries or anatomical variations and initial outcome of surgical procedures for patient-specific planning and custom implant design. Therefore, patient-specific multi-body simulation models are potentially valuable tools for surgeons in pre- and intraoperative planning of implant placement and orientation. PMID:26994118

  9. Multiple Sclerosis Patient-Specific Primary Neurons Differentiated from Urinary Renal Epithelial Cells via Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Megan G Massa

    Full Text Available As multiple sclerosis research progresses, it is pertinent to continue to develop suitable paradigms to allow for ever more sophisticated investigations. Animal models of multiple sclerosis, despite their continuing contributions to the field, may not be the most prudent for every experiment. Indeed, such may be either insufficient to reflect the functional impact of human genetic variations or unsuitable for drug screenings. Thus, we have established a cell- and patient-specific paradigm to provide an in vitro model within which to perform future genetic investigations. Renal proximal tubule epithelial cells were isolated from multiple sclerosis patients' urine and transfected with pluripotency-inducing episomal factors. Subsequent induced pluripotent stem cells were formed into embryoid bodies selective for ectodermal lineage, resulting in neural tube-like rosettes and eventually neural progenitor cells. Differentiation of these precursors into primary neurons was achieved through a regimen of neurotrophic and other factors. These patient-specific primary neurons displayed typical morphology and functionality, also staining positive for mature neuronal markers. The development of such a non-invasive procedure devoid of permanent genetic manipulation during the course of differentiation, in the context of multiple sclerosis, provides an avenue for studies with a greater cell- and human-specific focus, specifically in the context of genetic contributions to neurodegeneration and drug discovery.

  10. Multiple Sclerosis Patient-Specific Primary Neurons Differentiated from Urinary Renal Epithelial Cells via Induced Pluripotent Stem Cells

    Science.gov (United States)

    Massa, Megan G.; Gisevius, Barbara; Hirschberg, Sarah; Hinz, Lisa; Schmidt, Matthias; Gold, Ralf; Prochnow, Nora; Haghikia, Aiden

    2016-01-01

    As multiple sclerosis research progresses, it is pertinent to continue to develop suitable paradigms to allow for ever more sophisticated investigations. Animal models of multiple sclerosis, despite their continuing contributions to the field, may not be the most prudent for every experiment. Indeed, such may be either insufficient to reflect the functional impact of human genetic variations or unsuitable for drug screenings. Thus, we have established a cell- and patient-specific paradigm to provide an in vitro model within which to perform future genetic investigations. Renal proximal tubule epithelial cells were isolated from multiple sclerosis patients’ urine and transfected with pluripotency-inducing episomal factors. Subsequent induced pluripotent stem cells were formed into embryoid bodies selective for ectodermal lineage, resulting in neural tube-like rosettes and eventually neural progenitor cells. Differentiation of these precursors into primary neurons was achieved through a regimen of neurotrophic and other factors. These patient-specific primary neurons displayed typical morphology and functionality, also staining positive for mature neuronal markers. The development of such a non-invasive procedure devoid of permanent genetic manipulation during the course of differentiation, in the context of multiple sclerosis, provides an avenue for studies with a greater cell- and human-specific focus, specifically in the context of genetic contributions to neurodegeneration and drug discovery. PMID:27158987

  11. Future of liver transplantation: Non-human primates for patient-specific organs from induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Madhusudana Girija Sanal

    2011-01-01

    Strategies to fill the huge gap in supply versus demand of human organs include bioartificial organs, growing humanized organs in animals, cell therapy, and im-plantable bioengineered constructs. Reproducing the complex relations between different cell types, gen-eration of adequate vasculature, and immunological complications are road blocks in generation of bioengi-neered organs, while immunological complications limit the use of humanized organs produced in animals. Recent developments in induced pluripotent stem cell (iPSC) biology offer a possibility of generating human, patient-specific organs in non-human primates (NHP) using patient-derived iPSC and NHP-derived iPSC lack-ing the critical developmental genes for the organ of interest complementing a NHP tetraploid embryo. The organ derived in this way will have the same human leukocyte antigen (HLA) profile as the patient. This ap-proach can be curative in genetic disorders as this of-fers the possibility of gene manipulation and correction of the patient's genome at the iPSC stage before tet-raploid complementation. The process of generation of patient-specific organs such as the liver in this way has the great advantage of making use of the natural sig-naling cascades in the natural milieu probably resulting in organs of great quality for transplantation. However, the inexorable scientific developments in this direction involve several social issues and hence we need to educate and prepare society in advance to accept the revolutionary consequences, good, bad and ugly.

  12. Improvement of Test Automation

    OpenAIRE

    Räsänen, Timo

    2013-01-01

    The purpose for this study was to find out how to ensure that the automated testing of MME in the Network Verification will continue smooth and reliable while using the in-house developed test automation framework. The goal of this thesis was to reveal the reasons of the currently challenging situation and to find the key elements to be improved in the MME testing carried by the test automation. Also a reason for the study was to get solutions as to how to change the current procedures and wa...

  13. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  14. Primary Health Care Challenges in Rural/Remote Areas of Yakutia and Use of Automated Systems for the Medical Screening Examination of the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Sardana A. Evseeva

    2015-12-01

    Full Text Available The negative consequences of social and economic changes in recent decades have primarily affected the rural population and violated the main principles of medical care organization for this group. The reduction by one third in the number of district hospitals, uncompensated by adequate development of outpatient care, and a shortage of doctors in rural clinics led to reduced availability of primary care. Specialized medical assistance in regional and national hospitals has also become less accessible to the rural population due to the high cost of travel. The number of doctors and nurses in rural areas is lower by 3.4 and 1.6 times, respectively, than in cities. In this regard, the burden and responsibility for rural health workers is much higher. Study of the opinions of the medical staff of the Northern and Arctic regions is an important part of the decision-making system in health care, allowing us to carry out modernization programs in the industry and increase their efficiency through feedback mechanisms. This article presents the available data on the problems of organizing medical assistance for residents of the Northern and Arctic regions of Yakutia, because dealing with these problems is still the most socially significant task for the authorities and carries a great load of negative experience, stereotypes, and scientific-methodological errors. To assess the quality of medical care, we conducted an anonymous survey of parents and medical staff of the Northern and Arctic regions of Yakutia. A total of 1,415 parents and 322 health specialists were interviewed between 2011 and 2012. The results of the anonymous survey revealed that in the Northern and Arctic regions of Yakutia there is a deficit of qualified specialists of different profiles, an unsatisfactory infrastructure of medical offices and hospitals, and a low level of income for medical personnel and the whole population. All above listed are some of the reasons for developing

  15. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  16. I-94 Automation FAQs

    Data.gov (United States)

    Department of Homeland Security — In order to increase efficiency, reduce operating costs and streamline the admissions process, U.S. Customs and Border Protection has automated Form I-94 at air and...

  17. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  18. Hydrometeorological Automated Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Hydrologic Development of the National Weather Service operates HADS, the Hydrometeorological Automated Data System. This data set contains the last...

  19. An automated Certification Authority

    CERN Document Server

    Shamardin, L V

    2002-01-01

    This note describe an approach to building an automated Certification Authority. It is compatible with basic requirements of RFC2527. It also supports Registration Authorities and Globus Toolkit grid-cert-renew automatic certificate renewal.

  20. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  1. Automated security management

    CERN Document Server

    Al-Shaer, Ehab; Xie, Geoffrey

    2013-01-01

    In this contributed volume, leading international researchers explore configuration modeling and checking, vulnerability and risk assessment, configuration analysis, and diagnostics and discovery. The authors equip readers to understand automated security management systems and techniques that increase overall network assurability and usability. These constantly changing networks defend against cyber attacks by integrating hundreds of security devices such as firewalls, IPSec gateways, IDS/IPS, authentication servers, authorization/RBAC servers, and crypto systems. Automated Security Managemen

  2. Automating Supplier Selection Procedures

    OpenAIRE

    Davidrajuh, Reggie

    2001-01-01

    This dissertation describes a methodology, tools, and implementation techniques of automating supplier selection procedures of a small and medium-sized agile virtual enterprise. Firstly, a modeling approach is devised that can be used to model the supplier selection procedures of an enterprise. This modeling approach divides the supplier selection procedures broadly into three stages, the pre-selection, selection, and post-selection stages. Secondly, a methodology is presented for automating ...

  3. Taiwan Automated Telescope Network

    OpenAIRE

    Shuhrat Ehgamberdiev; Alexander Serebryanskiy; Antonio Jimenez; Li-Han Wang; Ming-Tsung Sun; Javier Fernandez Fernandez; Dean-Yi Chou

    2010-01-01

    A global network of small automated telescopes, the Taiwan Automated Telescope (TAT) network, dedicated to photometric measurements of stellar pulsations, is under construction. Two telescopes have been installed in Teide Observatory, Tenerife, Spain and Maidanak Observatory, Uzbekistan. The third telescope will be installed at Mauna Loa Observatory, Hawaii, USA. Each system uses a 9-cm Maksutov-type telescope. The effective focal length is 225 cm, corresponding to an f-ratio of 25. The field...

  4. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  5. Automated functional software testing

    OpenAIRE

    Jelnikar, Kristina

    2009-01-01

    The following work describes an approach to software test automation of functional testing. In the introductory part we are introducing what testing problems development companies are facing. The second chapter describes some testing methods, what role does testing have in software development, some approaches to software development and the meaning of testing environment. Chapter 3 is all about test automation. After a brief historical presentation, we are demonstrating through s...

  6. Instant Sikuli test automation

    CERN Document Server

    Lau, Ben

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A concise guide written in an easy-to follow style using the Starter guide approach.This book is aimed at automation and testing professionals who want to use Sikuli to automate GUI. Some Python programming experience is assumed.

  7. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  8. Pulmonary Hemodynamics Simulations Before Stage 2 Single Ventricle Surgery: Patient-Specific Parameter Identification and Clinical Data Assessment.

    Science.gov (United States)

    Arbia, Gregory; Corsini, Chiara; Baker, Catriona; Pennati, Giancarlo; Hsia, Tain-Yen; Vignon-Clementel, Irene E

    2015-09-01

    Single ventricle heart defects involve pathologies in which the heart has only one functional pumping chamber. In these conditions, treatment consists of three staged procedures. At stage 1 pulmonary flow is provided through an artificial shunt from the systemic circulation. Representative hemodynamics models able to explore different virtual surgical options can be built based on pre-operative imaging and patient data. In this context, the specification of boundary conditions is necessary to compute pressure and flow in the entire domain. However, these boundary conditions are rarely the measured variables. Moreover, to take into account the rest of the circulation outside of the three-dimensional modeled domain, a number of reduced order models exist. A simplified method is presented to iteratively, but automatically, tune reduced model parameters from hemodynamic data clinically measured before stage 2 surgery. Patient-specific local hemodynamics around the distal systemic-to-pulmonary shunt anastomosis and the connected pulmonary arteries are also analyzed. Multi-scale models of pre-stage 2 single ventricle patients are developed, including a 3D model of shunt-pulmonary connection and a number of pulmonary arteries. For each pulmonary outlet a total downstream resistance is identified, consistent with measured flow split and pressures. Target pressures such as minimum, maximum or average over one or both lungs are considered, depending on the clinical measurement. When possible, both steady and pulsatile identifications are performed. The methodology is demonstrated with six patient-specific models: the clinical target data are well-matched, except for one case where clinical data were subsequently found inconsistent. Inhomogeneous pressure, swirling blood flow patterns and very high wall shear stress 3D maps highlight similarities and differences among patients. Steady and pulsatile tuning results are similar. This work demonstrates (1) how to use routine

  9. Fast, simple, and informative patient-specific dose verification method for intensity modulated total marrow irradiation with helical tomotherapy

    International Nuclear Information System (INIS)

    Patient-specific dose verification for treatment planning in helical tomotherapy is routinely performed using a homogeneous virtual water cylindrical phantom of 30 cm diameter and 18 cm length (Cheese phantom). Because of this small length, treatment with total marrow irradiation (TMI) requires multiple deliveries of the dose verification procedures to cover a wide range of the target volumes, which significantly prolongs the dose verification process. We propose a fast, simple, and informative patient-specific dose verification method which reduce dose verification time for TMI with helical tomotherapy. We constructed a two-step solid water slab phantom (length 110 cm, height 8 cm, and two-step width of 30 cm and 15 cm), termed the Whole Body Phantom (WB phantom). Three ionization chambers and three EDR-2 films can be inserted to cover extended field TMI treatment delivery. Three TMI treatment plans were conducted with a TomoTherapy HiArt Planning Station and verified using the WB phantom with ion chambers and films. Three regions simulating the head and neck, thorax, and pelvis were covered in a single treatment delivery. The results were compared to those with the cheese phantom supplied by Accuray, Inc. following three treatment deliveries to cover the body from head to pelvis. Use of the WB phantom provided point doses or dose distributions from head and neck to femur in a single treatment delivery of TMI. Patient-specific dose verification with the WB phantom was 62% faster than with the cheese phantom. The average pass rate in gamma analysis with the criteria of a 3-mm distance-to-agreement and 3% dose differences was 94% ± 2% for the three TMI treatment plans. The differences in pass rates between the WB and cheese phantoms at the upper thorax to abdomen regions were within 2%. The calculated dose agreed with the measured dose within 3% for all points in all five cases in both the WB and cheese phantoms. Our dose verification method with the WB phantom

  10. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    KAUST Repository

    Hossain, Shaolie S.

    2011-08-20

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A threedimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate. © Springer-Verlag 2011.

  11. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    International Nuclear Information System (INIS)

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  12. NOTE: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Science.gov (United States)

    Venkat, Raghu B.; Sawant, Amit; Suh, Yelin; George, Rohini; Keall, Paul J.

    2008-06-01

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery.

  13. Patient-specific scaling of reference S-values for cross-organ radionuclide S-values: what is appropriate?

    International Nuclear Information System (INIS)

    The Medical Internal Radiation Dose Committee (MIRD) formalism assumes reference mass values for the organs (source and target) and the total body. MIRD publication 11 provides guidance on how patient-specific scaling of reference radionuclide S-values are to be performed for the electron component of the emission spectrum. However, guidance on patient-specific scaling of the photon contributions to the S-value is given only for those cases where the source and target organs are either far apart or are the same. The photon component of the S-value is derived from photon-Specific Absorbed Fractions (SAFs). These are obtained by Monte Carlo calculation of photon transport. The objective of this work is to verify the MIRD 11 guidance and to examine the relationship between photon SAFs and source/target organ mass when the conditions listed above do not apply. Furthermore, the scaling for photon cross-dose to distributed organs is at present not defined due to lack of data for models other than the reference model. The validity of mass scaling for cross irradiation from near and distant photons sources, especially for Red Bone Marrow (RBM) as a target tissue is also investigated. This is achieved by comparing Monte Carlo-derived SAFs for different source organs to RBM across the GSF voxel phantom series. The results show that, for photon energies greater than 100 keV, the SAF of most source organs to RBM need not be corrected for target mass (error < 5%). In contrast to the results obtained for well-defined source organs, the SAF for RBM irradiating RBM gives a deviation of up to 16% across the different GSF voxel phantoms. (authors)

  14. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen' s University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen' s University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  15. Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas.

    Directory of Open Access Journals (Sweden)

    Anne L Baldock

    Full Text Available Malignant gliomas are incurable, primary brain neoplasms noted for their potential to extensively invade brain parenchyma. Current methods of clinical imaging do not elucidate the full extent of brain invasion, making it difficult to predict which, if any, patients are likely to benefit from gross total resection. Our goal was to apply a mathematical modeling approach to estimate the overall tumor invasiveness on a patient-by-patient basis and determine whether gross total resection would improve survival in patients with relatively less invasive gliomas.In 243 patients presenting with contrast-enhancing gliomas, estimates of the relative invasiveness of each patient's tumor, in terms of the ratio of net proliferation rate of the glioma cells to their net dispersal rate, were derived by applying a patient-specific mathematical model to routine pretreatment MR imaging. The effect of varying degrees of extent of resection on overall survival was assessed for cohorts of patients grouped by tumor invasiveness.We demonstrate that patients with more diffuse tumors showed no survival benefit (P = 0.532 from gross total resection over subtotal/biopsy, while those with nodular (less diffuse tumors showed a significant benefit (P = 0.00142 with a striking median survival benefit of over eight months compared to sub-totally resected tumors in the same cohort (an 80% improvement in survival time for GTR only seen for nodular tumors.These results suggest that our patient-specific, model-based estimates of tumor invasiveness have clinical utility in surgical decision making. Quantification of relative invasiveness assessed from routinely obtained pre-operative imaging provides a practical predictor of the benefit of gross total resection.

  16. A comparative study on patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Purpose: To compare the results of patient specific absolute dosimetry using slab phantom, acrylic body phantom and goat head phantom. Methods: Fifteen intensity modulated radiotherapy (IMRT plans already planned on treatment planning system (TPS for head-and-neck cancer patients were exported on all three kinds of phantoms viz. slab phantom, acrylic body phantom and goat head phantom, and dose was calculated using anisotropic analytic algorithm (AAA. All the gantry angles were set to zero in case of slab phantom while set to as it is in actual plan in case of other two phantoms. All the plans were delivered by linear accelerator (LA and dose for each plan was measured by 0.13 cc ion chamber. The percentage (% variations between planned and measured doses were calculated and analyzed. Results: The mean % variations between planned and measured doses of all IMRT quality assurance (QA plans were as 0.65 (Standard deviation (SD: 0.38 with confidence limit (CL 1.39, 1.16 (SD: 0.61 with CL 2.36 and 2.40 (SD: 0.86 with CL 4.09 for slab phantom, acrylic head phantom and goat head phantom respectively. Conclusion: Higher dose variations found in case of real tissue phantom compare to results in case of slab and acrylic body phantoms. The algorithm AAA does not calculate doses in heterogeneous medium as accurate as it calculates in homogeneous medium. Therefore the patient specific absolute dosimetry should be done using heterogeneous phantom mimicking density wise as well as design wise to the actual human body.  

  17. SU-E-T-475: An Accurate Linear Model of Tomotherapy MLC-Detector System for Patient Specific Delivery QA

    International Nuclear Information System (INIS)

    Purpose: An accurate leaf fluence model can be used in applications such as patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is known that the total fluence is not a linear combination of individual leaf fluence due to leakage-transmission, tongue-and-groove, and source occlusion effect. Here we propose a method to model the nonlinear effects as linear terms thus making the MLC-detector system a linear system. Methods: A leaf pattern basis (LPB) consisting of no-leaf-open, single-leaf-open, double-leaf-open and triple-leaf-open patterns are chosen to represent linear and major nonlinear effects of leaf fluence as a linear system. An arbitrary leaf pattern can be expressed as (or decomposed to) a linear combination of the LPB either pulse by pulse or weighted by dwelling time. The exit detector responses to the LPB are obtained by processing returned detector signals resulting from the predefined leaf patterns for each jaw setting. Through forward transformation, detector signal can be predicted given a delivery plan. An equivalent leaf open time (LOT) sinogram containing output variation information can also be inversely calculated from the measured detector signals. Twelve patient plans were delivered in air. The equivalent LOT sinograms were compared with their planned sinograms. Results: The whole calibration process was done in 20 minutes. For two randomly generated leaf patterns, 98.5% of the active channels showed differences within 0.5% of the local maximum between the predicted and measured signals. Averaged over the twelve plans, 90% of LOT errors were within +/−10 ms. The LOT systematic error increases and shows an oscillating pattern when LOT is shorter than 50 ms. Conclusion: The LPB method models the MLC-detector response accurately, which improves patient specific delivery QA and in-vivo dosimetry for TomoTherapy systems. It is sensitive enough to detect systematic LOT errors as small as 10 ms

  18. Long-Term Morphological and Microarchitectural Stability of Tissue-Engineered, Patient-Specific Auricles In Vivo.

    Science.gov (United States)

    Cohen, Benjamin Peter; Hooper, Rachel C; Puetzer, Jennifer L; Nordberg, Rachel; Asanbe, Ope; Hernandez, Karina A; Spector, Jason A; Bonassar, Lawrence J

    2016-03-01

    Current techniques for autologous auricular reconstruction produce substandard ear morphologies with high levels of donor-site morbidity, whereas alloplastic implants demonstrate poor biocompatibility. Tissue engineering, in combination with noninvasive digital photogrammetry and computer-assisted design/computer-aided manufacturing technology, offers an alternative method of auricular reconstruction. Using this method, patient-specific ears composed of collagen scaffolds and auricular chondrocytes have generated auricular cartilage with great fidelity following 3 months of subcutaneous implantation, however, this short time frame may not portend long-term tissue stability. We hypothesized that constructs developed using this technique would undergo continued auricular cartilage maturation without degradation during long-term (6 month) implantation. Full-sized, juvenile human ear constructs were injection molded from high-density collagen hydrogels encapsulating juvenile bovine auricular chondrocytes and implanted subcutaneously on the backs of nude rats for 6 months. Upon explantation, constructs retained overall patient morphology and displayed no evidence of tissue necrosis. Limited contraction occurred in vivo, however, no significant change in size was observed beyond 1 month. Constructs at 6 months showed distinct auricular cartilage microstructure, featuring a self-assembled perichondrial layer, a proteoglycan-rich bulk, and rounded cellular lacunae. Verhoeff's staining also revealed a developing elastin network comparable to native tissue. Biochemical measurements for DNA, glycosaminoglycan, and hydroxyproline content and mechanical properties of aggregate modulus and hydraulic permeability showed engineered tissue to be similar to native cartilage at 6 months. Patient-specific auricular constructs demonstrated long-term stability and increased cartilage tissue development during extended implantation, and offer a potential tissue-engineered solution for

  19. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    International Nuclear Information System (INIS)

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required

  20. Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform

    Energy Technology Data Exchange (ETDEWEB)

    Venkat, Raghu B; Sawant, Amit; Suh, Yelin; Keall, Paul J [Department of Radiation Oncology, Stanford University, Stanford, CA 94305-5847 (United States); George, Rohini [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA (United States)], E-mail: Paul.Keall@stanford.edu

    2008-06-07

    The aim of this research was to investigate the effectiveness of a novel audio-visual biofeedback respiratory training tool to reduce respiratory irregularity. The audiovisual biofeedback system acquires sample respiratory waveforms of a particular patient and computes a patient-specific waveform to guide the patient's subsequent breathing. Two visual feedback models with different displays and cognitive loads were investigated: a bar model and a wave model. The audio instructions were ascending/descending musical tones played at inhale and exhale respectively to assist in maintaining the breathing period. Free-breathing, bar model and wave model training was performed on ten volunteers for 5 min for three repeat sessions. A total of 90 respiratory waveforms were acquired. It was found that the bar model was superior to free breathing with overall rms displacement variations of 0.10 and 0.16 cm, respectively, and rms period variations of 0.77 and 0.33 s, respectively. The wave model was superior to the bar model and free breathing for all volunteers, with an overall rms displacement of 0.08 cm and rms periods of 0.2 s. The reduction in the displacement and period variations for the bar model compared with free breathing was statistically significant (p = 0.005 and 0.002, respectively); the wave model was significantly better than the bar model (p = 0.006 and 0.005, respectively). Audiovisual biofeedback with a patient-specific guiding waveform significantly reduces variations in breathing. The wave model approach reduces cycle-to-cycle variations in displacement by greater than 50% and variations in period by over 70% compared with free breathing. The planned application of this device is anatomic and functional imaging procedures and radiation therapy delivery. (note)

  1. SU-E-T-345: Validation of a Patient-Specific Monte Carlo Targeted Radionuclide Therapy Dosimetry Platform

    Energy Technology Data Exchange (ETDEWEB)

    Besemer, A; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2014-06-01

    Purpose: There is a compelling need for personalized dosimetry in targeted radionuclide therapy given that conventional dose calculation methods fail to accurately predict dose response relationships. To address this need, we have developed a Geant4-based Monte Carlo patient-specific 3D dosimetry platform for TRT. This platform calculates patient-specific dose distributions based on serial CT/PET or CT/SPECT images acquired after injection of the TRT agent. In this work, S-values and specific absorbed fractions (SAFs) were calculated using this platform and benchmarked against reference values. Methods: S-values for 1, 10, 100, and 1000g spherical tumors with uniform activity distributions of I-124, I-125, I-131, F-18, and Ra-223 were calculated and compared to OLINDA/EXM reference values. SAFs for monoenergetic photons of 0.01, 0.1, and 1 MeV and S factors for monoenergetic electrons of 0.935 MeV were calculated for the liver, kidneys, lungs, pancreas, spleen, and adrenals in the Zubal Phantom and compared with previously published values. Sufficient particles were simulated to keep the voxel statistical uncertainty below 5%. Results: The calculated spherical S-values agreed within a few percent of reference data from OLINDA/EXM for each radionuclide and sphere size. The comparison of photon SAFs and electron S-values with previously published values showed good agreement with the previously published values. The S-values and SAFs of the source organs agreed within 1%. Conclusion: Our platform has been benchmarked against reference values for a variety of radionuclides and over a wide range of energies and tumor sizes. Therefore, this platform could be used to provide accurate patientspecific dosimetry for use in radiopharmaceutical clinical trials.

  2. Automated Camera Calibration

    Science.gov (United States)

    Chen, Siqi; Cheng, Yang; Willson, Reg

    2006-01-01

    Automated Camera Calibration (ACAL) is a computer program that automates the generation of calibration data for camera models used in machine vision systems. Machine vision camera models describe the mapping between points in three-dimensional (3D) space in front of the camera and the corresponding points in two-dimensional (2D) space in the camera s image. Calibrating a camera model requires a set of calibration data containing known 3D-to-2D point correspondences for the given camera system. Generating calibration data typically involves taking images of a calibration target where the 3D locations of the target s fiducial marks are known, and then measuring the 2D locations of the fiducial marks in the images. ACAL automates the analysis of calibration target images and greatly speeds the overall calibration process.

  3. Automated telescope scheduling

    Science.gov (United States)

    Johnston, Mark D.

    1988-08-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  4. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    International Nuclear Information System (INIS)

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  5. Characterization of a novel 2D array dosimeter for patient-specific quality assurance with volumetric arc therapy

    International Nuclear Information System (INIS)

    Purpose: In this study, the authors are evaluating a new, commercially available 2D array that offers 3D dose reconstruction for patient specific intensity modulated radiation therapy quality assurance (IMRT QA).Methods: The OCTAVIUS 4D system and its accompanying software (VERISOFT) by PTW were evaluated for the accuracy of the dose reconstruction for patient specific pretreatment IMRT QA. OCTAVIUS 4D measures the dose plane at the linac isocenter as the phantom rotates synchronously with the gantry, maintaining perpendicularity with the beam, by means of an inclinometer and a motor. The measurements collected during a volumetric modulated arc therapy delivery (VMAT) are reconstructed into a 3D dose volume. The VERISOFT application is used to perform the analysis, by comparing the reconstructed dose against the 3D dose matrix from the treatment planning system (TPS) that is computed for the same geometry and beam arrangement as that of the measurement. In this study, the authors evaluated the 3D dose reconstruction algorithm of this new system using a series of tests. Using the Octavius 4D phantom as the patient, dose distributions for various field sizes, beam orientations, shapes, and combination of fields were calculated using the Pinnacle3, TPS, and the respective DICOMRT dose was exported to the VERISOFT analysis software. Measurements were obtained by delivering the test treatment plans and comparisons were made based on gamma index, dose profiles, and isodose distribution analysis. In addition, output factors were measured and the dose linearity of the array was assessed. Those measurements were compared against measurements in water using a single, calibrated ionization chamber as well as calculations from Pinnacle for the same delivery geometries.Results: The number of voxels that met the 3%/3 mm criteria for the volumetric 3D gamma index analysis ranged from 92.3% to 98.9% for all the patient plans that the authors evaluated. 2D gamma analysis in the

  6. Myths in test automation

    OpenAIRE

    Jazmine Francis

    2015-01-01

    Myths in automation of software testing is an issue of discussion that echoes about the areas of service in validation of software industry. Probably, the first though that appears in knowledgeable reader would be Why this old topic again? What's New to discuss the matter? But, for the first time everyone agrees that undoubtedly automation testing today is not today what it used to be ten or fifteen years ago, because it has evolved in scope and magnitude. What began as a simple linear script...

  7. Automated phantom assay system

    International Nuclear Information System (INIS)

    This paper describes an automated phantom assay system developed for assaying phantoms spiked with minute quantities of radionuclides. The system includes a computer-controlled linear-translation table that positions the phantom at exact distances from a spectrometer. A multichannel analyzer (MCA) interfaces with a computer to collect gamma spectral data. Signals transmitted between the controller and MCA synchronize data collection and phantom positioning. Measured data are then stored on disk for subsequent analysis. The automated system allows continuous unattended operation and ensures reproducible results

  8. Automated Phone Assessments and Hospital Readmissions.

    Science.gov (United States)

    Olsen, Russell; Courtemanche, Ted; Hodach, Richard

    2016-04-01

    This analysis examined the efficacy of an automated postdischarge phone assessment for reducing hospital readmissions. All patients discharged between April 1, 2013, and January 31, 2014, from a single Level 1 trauma hospital of a large regional health system center utilizing an automated postdischarge phone assessment service were contacted via automated call between 24 and 72 hours post discharge. Patients answered 5 questions assessing perceived well-being, understanding of discharge instructions and medication regimen, satisfaction, and scheduled follow-up appointments. Responses could automatically prompt health personnel to speak directly with the patient. Data analysis examined rates of hospital readmission-any admission occurring within 30 days of a previous admission-for 3 broad categories of respondents: Answering Machine, Live Answer, and Unsuccessful. There were 6867 discharges included in the analysis. Of the Live Answer patients, 3035 answered all assessment questions; 153 (5.0%) of these had a subsequent readmission. Of the 738 Unsuccessful patients, 62 (8.4%) had a subsequent readmission. Unsuccessful patients were almost 2 times more likely to have a readmission than those who answered all 5 assessment questions. Of the latter group, readmission rates were highest for those who perceived a worsening of their condition (7.4%), and lowest for those reporting no follow-up appointment scheduled (3.8%). (Population Health Management 2016;19:120-124). PMID:26057571

  9. The Effectiveness of Percutaneous Vertebroplasty Is Determined by the Patient-Specific Bone Condition and the Treatment Strategy

    Science.gov (United States)

    Hazrati Marangalou, Javad; van den Bergh, Joop P.; van Rietbergen, Bert; Ferguson, Stephen J.

    2016-01-01

    Purpose Vertebral fragility fractures are often treated by injecting bone cement into the collapsed vertebral bodies (vertebroplasty). The mechanisms by which vertebroplasty induces pain relief are not completely understood yet and recent debates cast doubt over the outcome of the procedure. The controversy is intensified by inconsistent results of randomized clinical trials and biomechanical studies that have investigated the effectiveness or the change in biomechanical response due to the reinforcement. The purpose of this study was to evaluate the effectiveness of vertebroplasty, by varying the relevant treatment parameters and (a) computationally predicting the improvement of the fracture risk depending on the chosen treatment strategy, and (b) identifying the determinants of a successful treatment. Methods A Finite Element model with a patient-specific failure criterion and direct simulation of PMMA infiltration in four lumbar vertebrae was used to assess the condition of the bone under compressive load before and after the virtual treatment, simulating in a total of 12000 virtual treatments. Results The results showed that vertebroplasty is capable of reducing the fracture risk by magnitudes, but can also have a detrimental effect. Effectiveness was strongly influenced by interactions between local bone quality, cement volume and injection location. However, only a moderate number of the investigated treatment strategies were able to achieve the necessary improvement for preventing a fracture. Conclusions We conclude that the effectiveness of vertebroplasty is sensitive to the patient’s condition and the treatment strategy. PMID:27100630

  10. Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heng; Park, Peter; Liu, Wei; Matney, Jason; Balter, Peter; Zhang, Xiaodong; Li, Xiaoqiang; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Li, Yupeng [Applied Research, Varian Medical Systems, Palo Alto, California 94304 (United States)

    2013-12-15

    Purpose: The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique.Methods: Ten patients with stage II/III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration.Results: For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU/min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle.Conclusions: Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients.

  11. Sound speed based patient-specific biomechanical modeling for registration of USCT volumes with X-ray mammograms

    Science.gov (United States)

    Hopp, T.; Stromboni, A.; Duric, N.; Zapf, M.; Gemmeke, H.; Ruiter, N. V.

    2013-03-01

    Ultrasound Computer Tomography is an upcoming imaging modality for early breast cancer detection. For evaluation of the method, comparison with the standard method X-ray mammography is of strongest interest. To overcome the significant differences in dimensionality and compression state of the breast, in earlier work a registration method based on biomechanical modeling of the breast was proposed. However only homogeneous models could be applied, i.e. inner structures of the breast were neglected. In this work we extend the biomechanical modeling of the breast by estimating patient-specific tissue parameters automatically from the speed of sound volume. Two heterogeneous models are proposed modeling a quadratic and an exponential relationship between speed of sound and tissue stiffness. The models were evaluated using phantom images and clinical data. The size of all lesions is better preserved using heterogeneous models, especially using an exponential relationship. The presented approach yields promising results and gives a physical justification to our registration method. It can be considered as a first step towards a realistic modeling of the breast.

  12. Pretreatment Patient Specific Quality Assurance and Gamma Index Variation Study in Gantry Dependent EPID Positions for IMRT Prostate Treatments

    International Nuclear Information System (INIS)

    Pretreatment quality assurance (QA) is a major concern in complex radiation therapy treatment plans like intensity modulated radiation therapy (IMRT). Present study considers the variations in gamma index for gantry dependent pretreatment verification and commonly practiced zero gantry angle verifications for ten prostate IMRT plans using two commercial medical linear accelerators (Varian 2300 CD, Varian Clinac iX). Two verification plans (the one with all fields at the actual treatment angles and one with all fields merged to 0 degree gantry angles) for all the patients were generated to obtain dose fluence mapping using amorphous silicon electronic portal imaging device (EPID). The gamma index was found depend on gantry angles but the difference between zero and the nonzero treatment angles is in the confidence level for clinical acceptance. The acceptance criteria of gamma method were always satisfied in both cases for two machines and are stable enough to execute the patient specific pretreatment quality assurance at 0 degree gantry angle for prostate IMRTs, where limited number of gantry angles are used.

  13. The Numerical Study of the Hemodynamic Characteristics in the Patient-Specific Intracranial Aneurysms before and after Surgery

    Science.gov (United States)

    Byun, Jun Soo; Choi, Sun-Young

    2016-01-01

    The patient-specific pre- and postsurgery cerebral arterial geometries in the study were reconstructed from computed tomography angiography (CTA). Three-dimensional computational fluid dynamics models were used to investigate the hemodynamic phenomena in the cerebral arteries before and after surgery of the aneurysm under realistic conditions. CFD simulations for laminar flow of incompressible Newtonian fluid were conducted by using commercial software, ANSYS v15, with the rigid vascular wall assumption. The study found that the flow patterns with the complex vortical structures inside the aneurysm were similar. We also found that the inflow jet streams were coming strongly in aneurysm sac in the presurgery models, while the flow patterns in postsurgery models were quite different from those in presurgery models. The average wall shear stress after surgery for model 1 was approximately three times greater than that before surgery, while it was about twenty times greater for model 2. The area of low WSS in the daughter saccular aneurysm region in model 2 is associated with aneurysm rupture. Thus the distribution of WSS in aneurysm region provides useful prediction for the risk of aneurysm rupture. PMID:27274764

  14. Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer

    International Nuclear Information System (INIS)

    Purpose: The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique.Methods: Ten patients with stage II/III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration.Results: For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU/min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle.Conclusions: Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients

  15. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines.

    Directory of Open Access Journals (Sweden)

    Chi Wan Lim

    Full Text Available We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial-temporal model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

  16. A Patient Specific Biomechanical Analysis of Custom Root Analogue Implant Designs on Alveolar Bone Stress: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    David Anssari Moin

    2016-01-01

    Full Text Available Objectives. The aim of this study was to analyse by means of FEA the influence of 5 custom RAI designs on stress distribution of peri-implant bone and to evaluate the impact on microdisplacement for a specific patient case. Materials and Methods. A 3D surface model of a RAI for the upper right canine was constructed from the cone beam computed tomography data of one patient. Subsequently, five (targeted press-fit design modification FE models with five congruent bone models were designed: “Standard,” “Prism,” “Fins,” “Plug,” and “Bulbs,” respectively. Preprocessor software was applied to mesh the models. Two loads were applied: an oblique force (300 N and a vertical force (150 N. Analysis was performed to evaluate stress distributions and deformed contact separation at the peri-implant region. Results. The lowest von Mises stress levels were numerically observed for the Plug design. The lowest levels of contact separation were measured in the Fins model followed by the Bulbs design. Conclusions. Within the limitations of the applied methodology, adding targeted press-fit geometry to the RAI standard design will have a positive effect on stress distribution, lower concentration of bone stress, and will provide a better primary stability for this patient specific case.

  17. A Patient Specific Biomechanical Analysis of Custom Root Analogue Implant Designs on Alveolar Bone Stress: A Finite Element Study

    Science.gov (United States)

    2016-01-01

    Objectives. The aim of this study was to analyse by means of FEA the influence of 5 custom RAI designs on stress distribution of peri-implant bone and to evaluate the impact on microdisplacement for a specific patient case. Materials and Methods. A 3D surface model of a RAI for the upper right canine was constructed from the cone beam computed tomography data of one patient. Subsequently, five (targeted) press-fit design modification FE models with five congruent bone models were designed: “Standard,” “Prism,” “Fins,” “Plug,” and “Bulbs,” respectively. Preprocessor software was applied to mesh the models. Two loads were applied: an oblique force (300 N) and a vertical force (150 N). Analysis was performed to evaluate stress distributions and deformed contact separation at the peri-implant region. Results. The lowest von Mises stress levels were numerically observed for the Plug design. The lowest levels of contact separation were measured in the Fins model followed by the Bulbs design. Conclusions. Within the limitations of the applied methodology, adding targeted press-fit geometry to the RAI standard design will have a positive effect on stress distribution, lower concentration of bone stress, and will provide a better primary stability for this patient specific case.

  18. Patient-specific analysis of post-operative aortic hemodynamics: a focus on thoracic endovascular repair (TEVAR)

    Science.gov (United States)

    Auricchio, F.; Conti, M.; Lefieux, A.; Morganti, S.; Reali, A.; Sardanelli, F.; Secchi, F.; Trimarchi, S.; Veneziani, A.

    2014-10-01

    The purpose of this study is to quantitatively evaluate the impact of endovascular repair on aortic hemodynamics. The study addresses the assessment of post-operative hemodynamic conditions of a real clinical case through patient-specific analysis, combining accurate medical image analysis and advanced computational fluid-dynamics (CFD). Although the main clinical concern was firstly directed to the endoluminal protrusion of the prosthesis, the CFD simulations have demonstrated that there are two other important areas where the local hemodynamics is impaired and a disturbed blood flow is present: the first one is the ostium of the subclavian artery, which is partially closed by the graft; the second one is the stenosis of the distal thoracic aorta. Besides the clinical relevance of these specific findings, this study highlights how CFD analyses allow to observe important flow effects resulting from the specific features of patient vessel geometries. Consequently, our results demonstrate the potential impact of computational biomechanics not only on the basic knowledge of physiopathology, but also on the clinical practice, thanks to a quantitative extraction of knowledge made possible by merging medical data and mathematical models.

  19. A comparative study of 1D and 3D hemodynamics in patient-specific hepatic portal vein networks

    Directory of Open Access Journals (Sweden)

    Jonášová A.

    2014-12-01

    Full Text Available The development of software for use in clinical practice is often associated with many requirements and restrictions set not only by the medical doctors, but also by the hospital’s budget. To meet the requirement of reliable software, which is able to provide results within a short time period and with minimal computational demand, a certain measure of modelling simplification is usually inevitable. In case of blood flow simulations carried out in large vascular networks such as the one created by the hepatic portal vein, simplifications are made by necessity. The most often employed simplification includes the approach in the form of dimensional reduction, when the 3D model of a large vascular network is substituted with its 1D counterpart. In this context, a question naturally arises, how this reduction can affect the simulation accuracy and its outcome. In this paper, we try to answer this question by performing a quantitative comparison of 3D and 1D flow models in two patient-specific hepatic portal vein networks. The numerical simulations are carried out under average flow conditions and with the application of the three-element Windkessel model, which is able to approximate the downstream flow resistance of real hepatic tissue. The obtained results show that, although the 1D model can never truly substitute the 3D model, its easy implementation, time-saving model preparation and almost no demands on computer technology dominate as advantages over obvious but moderate modelling errors arising from the performed dimensional reduction.

  20. Automated conflict resolution issues

    Science.gov (United States)

    Wike, Jeffrey S.

    1991-01-01

    A discussion is presented of how conflicts for Space Network resources should be resolved in the ATDRSS era. The following topics are presented: a description of how resource conflicts are currently resolved; a description of issues associated with automated conflict resolution; present conflict resolution strategies; and topics for further discussion.

  1. Protokoller til Home Automation

    DEFF Research Database (Denmark)

    Kjær, Kristian Ellebæk

    2008-01-01

    computer, der kan skifte mellem foruddefinerede indstillinger. Nogle gange kan computeren fjernstyres over internettet, så man kan se hjemmets status fra en computer eller måske endda fra en mobiltelefon. Mens nævnte anvendelser er klassiske indenfor home automation, er yderligere funktionalitet dukket op...

  2. Myths in test automation

    Directory of Open Access Journals (Sweden)

    Jazmine Francis

    2015-01-01

    Full Text Available Myths in automation of software testing is an issue of discussion that echoes about the areas of service in validation of software industry. Probably, the first though that appears in knowledgeable reader would be Why this old topic again? What's New to discuss the matter? But, for the first time everyone agrees that undoubtedly automation testing today is not today what it used to be ten or fifteen years ago, because it has evolved in scope and magnitude. What began as a simple linear scripts for web applications today has a complex architecture and a hybrid framework to facilitate the implementation of testing applications developed with various platforms and technologies. Undoubtedly automation has advanced, but so did the myths associated with it. The change in perspective and knowledge of people on automation has altered the terrain. This article reflects the points of views and experience of the author in what has to do with the transformation of the original myths in new versions, and how they are derived; also provides his thoughts on the new generation of myths.

  3. Automated data model evaluation

    International Nuclear Information System (INIS)

    Modeling process is essential phase within information systems development and implementation. This paper presents methods and techniques for analysis and evaluation of data model correctness. Recent methodologies and development results regarding automation of the process of model correctness analysis and relations with ontology tools has been presented. Key words: Database modeling, Data model correctness, Evaluation

  4. Automated solvent concentrator

    Science.gov (United States)

    Griffith, J. S.; Stuart, J. L.

    1976-01-01

    Designed for automated drug identification system (AUDRI), device increases concentration by 100. Sample is first filtered, removing particulate contaminants and reducing water content of sample. Sample is extracted from filtered residue by specific solvent. Concentrator provides input material to analysis subsystem.

  5. ELECTROPNEUMATIC AUTOMATION EDUCATIONAL LABORATORY

    OpenAIRE

    Dolgorukov, S. O.; National Aviation University; Roman, B. V.; National Aviation University

    2013-01-01

    The article reflects current situation in education regarding mechatronics learning difficulties. Com-plex of laboratory test benches on electropneumatic automation are considered as a tool in advancing through technical science. Course of laboratory works developed to meet the requirement of efficient and reliable way of practical skills acquisition is regarded the simplest way for students to learn the ba-sics of mechatronics.

  6. Automating spectral measurements

    Science.gov (United States)

    Goldstein, Fred T.

    2008-09-01

    This paper discusses the architecture of software utilized in spectroscopic measurements. As optical coatings become more sophisticated, there is mounting need to automate data acquisition (DAQ) from spectrophotometers. Such need is exacerbated when 100% inspection is required, ancillary devices are utilized, cost reduction is crucial, or security is vital. While instrument manufacturers normally provide point-and-click DAQ software, an application programming interface (API) may be missing. In such cases automation is impossible or expensive. An API is typically provided in libraries (*.dll, *.ocx) which may be embedded in user-developed applications. Users can thereby implement DAQ automation in several Windows languages. Another possibility, developed by FTG as an alternative to instrument manufacturers' software, is the ActiveX application (*.exe). ActiveX, a component of many Windows applications, provides means for programming and interoperability. This architecture permits a point-and-click program to act as automation client and server. Excel, for example, can control and be controlled by DAQ applications. Most importantly, ActiveX permits ancillary devices such as barcode readers and XY-stages to be easily and economically integrated into scanning procedures. Since an ActiveX application has its own user-interface, it can be independently tested. The ActiveX application then runs (visibly or invisibly) under DAQ software control. Automation capabilities are accessed via a built-in spectro-BASIC language with industry-standard (VBA-compatible) syntax. Supplementing ActiveX, spectro-BASIC also includes auxiliary serial port commands for interfacing programmable logic controllers (PLC). A typical application is automatic filter handling.

  7. Toward optimizing patient-specific IMRT QA techniques in the accurate detection of dosimetrically acceptable and unacceptable patient plans

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Elizabeth M. [Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas, 77030 (United States); Balter, Peter A. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Stingo, Francesco C. [Department of Biostatistics, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Jones, Jimmy [Porter Adventist Hospital, Denver, Colorado 80210 (United States); Followill, David S.; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Imaging and Radiation Oncology Core at Houston and Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-12-15

    Purpose: The authors investigated the performance of several patient-specific intensity-modulated radiation therapy (IMRT) quality assurance (QA) dosimeters in terms of their ability to correctly identify dosimetrically acceptable and unacceptable IMRT patient plans, as determined by an in-house-designed multiple ion chamber phantom used as the gold standard. A further goal was to examine optimal threshold criteria that were consistent and based on the same criteria among the various dosimeters. Methods: The authors used receiver operating characteristic (ROC) curves to determine the sensitivity and specificity of (1) a 2D diode array undergoing anterior irradiation with field-by-field evaluation, (2) a 2D diode array undergoing anterior irradiation with composite evaluation, (3) a 2D diode array using planned irradiation angles with composite evaluation, (4) a helical diode array, (5) radiographic film, and (6) an ion chamber. This was done with a variety of evaluation criteria for a set of 15 dosimetrically unacceptable and 9 acceptable clinical IMRT patient plans, where acceptability was defined on the basis of multiple ion chamber measurements using independent ion chambers and a phantom. The area under the curve (AUC) on the ROC curves was used to compare dosimeter performance across all thresholds. Optimal threshold values were obtained from the ROC curves while incorporating considerations for cost and prevalence of unacceptable plans. Results: Using common clinical acceptance thresholds, most devices performed very poorly in terms of identifying unacceptable plans. Grouping the detector performance based on AUC showed two significantly different groups. The ion chamber, radiographic film, helical diode array, and anterior-delivered composite 2D diode array were in the better-performing group, whereas the anterior-delivered field-by-field and planned gantry angle delivery using the 2D diode array performed less well. Additionally, based on the AUCs, there

  8. Accuracy of CT-based patient-specific guides for total knee arthroplasty in patients with post-traumatic osteoarthritis.

    Science.gov (United States)

    Schotanus, M G M; van Haaren, E H; Hendrickx, R P M; Jansen, E J P; Kort, N P

    2015-12-01

    Published clinical trials who studied the accuracy of patient-specific guides (PSG) for total knee arthroplasty exclude patients with articular deformity of the knee joint. We prospectively analysed a series of 30 patients with post-traumatic osteoarthritis of the knee joint with use of PSG. At 1 year post-operative, the achieved biomechanical (HKA) axis and varus/valgus of the femur and tibia components were measured on anterior-posterior (AP) long-standing weight-bearing radiographs. Flexion/extension of the femoral and AP slope of the tibia component was measured on standard lateral radiographs. Percentages >3° deviation of the pre-operative planned HKA axis and individual implant components were considered as outliers. Approved and used implant size, median blood loss (ml) and operation time (min) were obtained from the operation records. Pre- and 1-year post-operative patient-reported outcome measures (PROMs) were performed. Eighty-three per cent of the patients had a HKA axis restored <3° of the pre-operative planned alignment. Varus/valgus outliers were 0.0 and 6.7 % for the femoral and tibial components, respectively. Percentages of outliers of flexion/extension were 36.7 % for the femoral component and 10.0 % for the AP slope of the tibial component. Median blood loss was 300 ml (50-700), while operation time was 67 min (44-144). In 20 % of all cases, the approved implant size was changed into one size smaller. One-year post-operative PROMs improved significantly. We conclude that the accuracy of CT-based PSG is not impaired in patients with post-traumatic osteoarthritis and this modality can restore biomechanical limb alignment. PMID:26265403

  9. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    International Nuclear Information System (INIS)

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomy was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R2 > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real

  10. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    Science.gov (United States)

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery. PMID:23852404

  11. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E; Higgins, P; Dusenbery, K [University of Minnesota, Minneapolis, MN (United States)

    2014-06-15

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.

  12. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling.

    Science.gov (United States)

    Raut, Samarth S; Liu, Peng; Finol, Ender A

    2015-07-16

    In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent and independent of the image grid resolution with high dimensional accuracy and mesh quality, devoid of errors typically found in off-the-shelf image-based model generation workflows. The absence of deformable template models or Cartesian grid-based methods enables the present approach to be sufficiently robust to handle aneurysmatic geometries with highly irregular shapes, arterial branches nearly parallel to the image plane, and variable wall thickness. The assessment of the methodology was based on i) estimation of the surface reconstruction accuracy, ii) validation of the output mesh using an aneurysm phantom, and iii) benchmarking the volume mesh quality against other frameworks. For the phantom image dataset (pixel size 0.105 mm; slice spacing 0.7 mm; and mean wall thickness 1.401±0.120 mm), the average wall thickness in the mesh was 1.459±0.123 mm. The absolute error in average wall thickness was 0.060±0.036 mm, or about 8.6% of the largest image grid spacing (0.7 mm) and 4.36% of the actual mean wall thickness. Mesh quality metrics and the ability to reproduce regional variations of wall thickness were found superior to similar alternative frameworks. PMID:25976018

  13. Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography

    International Nuclear Information System (INIS)

    To determine the optimal approach to delineating patient-specific internal gross target volumes (IGTV) from four-dimensional (4-D) computed tomography (CT) image data sets used in the planning of radiation treatment for lung cancers. We analyzed 4D-CT image data sets of 27 consecutive patients with non-small-cell lung cancer (stage I: 17, stage III: 10). The IGTV, defined to be the envelope of respiratory motion of the gross tumor volume in each 4D-CT data set was delineated manually using four techniques: (1) combining the gross tumor volume (GTV) contours from ten respiratory phases (IGTVAllPhases); (2) combining the GTV contours from two extreme respiratory phases (0% and 50%) (IGTV2Phases); (3) defining the GTV contour using the maximum intensity projection (MIP) (IGTVMIP); and (4) defining the GTV contour using the MIP with modification based on visual verification of contours in individual respiratory phase (IGTVMIP-Modified). Using the IGTVAllPhases as the optimum IGTV, we compared volumes, matching indices, and extent of target missing using the IGTVs based on the other three approaches. The IGTVMIP and IGTV2Phases were significantly smaller than the IGTVAllPhases (p < 0.006 for stage I and p < 0.002 for stage III). However, the values of the IGTVMIP-Modified were close to those determined from IGTVAllPhases (p = 0.08). IGTVMIP-Modified also matched the best with IGTVAllPhases. IGTVMIP and IGTV2Phases underestimate IGTVs. IGTVMIP-Modified is recommended to improve IGTV delineation in lung cancer

  14. Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft.

    LENUS (Irish Health Repository)

    Molony, David S

    2009-01-01

    BACKGROUND: Abdominal aortic aneurysms (AAA) are local dilatations of the infrarenal aorta. If left untreated they may rupture and lead to death. One form of treatment is the minimally invasive insertion of a stent-graft into the aneurysm. Despite this effective treatment aneurysms may occasionally continue to expand and this may eventually result in post-operative rupture of the aneurysm. Fluid-structure interaction (FSI) is a particularly useful tool for investigating aneurysm biomechanics as both the wall stresses and fluid forces can be examined. METHODS: Pre-op, Post-op and Follow-up models were reconstructed from CT scans of a single patient and FSI simulations were performed on each model. The FSI approach involved coupling Abaqus and Fluent via a third-party software - MpCCI. Aneurysm wall stress and compliance were investigated as well as the drag force acting on the stent-graft. RESULTS: Aneurysm wall stress was reduced from 0.38 MPa before surgery to a value of 0.03 MPa after insertion of the stent-graft. Higher stresses were seen in the aneurysm neck and iliac legs post-operatively. The compliance of the aneurysm was also reduced post-operatively. The peak Post-op axial drag force was found to be 4.85 N. This increased to 6.37 N in the Follow-up model. CONCLUSION: In a patient-specific case peak aneurysm wall stress was reduced by 92%. Such a reduction in aneurysm wall stress may lead to shrinkage of the aneurysm over time. Hence, post-operative stress patterns may help in determining the likelihood of aneurysm shrinkage post EVAR. Post-operative remodelling of the aneurysm may lead to increased drag forces.

  15. Evaluation of MotionSim XY/4D for patient specific QA of respiratory gated treatment for lung cancer

    International Nuclear Information System (INIS)

    Full text: A commercial system-MotionSim XY/4D(TM) capable of simulating two-dimensional tumour motion and measuring planar dose with diode-matrix was evaluated at the Alfred Hospital, for establishing patient-specific QA programme of respiratory gated treatment of lung cancer. This study presents the investigation of accuracies, limitations and the practical aspects of that system. Planar doses generated on iPlan-TM by mapping clinical beams to a scanned-in water phantom were measured by MotionSim XY/4D-TM with 5 cm water equivalent build-up at normal incidence. The gated delivery using ExacTrac-TM through tracking infrared markers simulating external respiration surrogate was measured simultaneously with Gaf-ChromicR RTQA2 film and MapCHECK2TM. Dose maps of both non-gated and gated beams with 30% duty cycle were compared with both film and diodes measurements. Differences in dose distribution were analysed with built-in tools in MapCHECK2 TM and the effect of residual motion within the beamenabled window was then assessed. Preliminary results indicate that difference between Gafchromic film and MapCHECK2 measurements of same beam was ignorable. Gated dose delivery to a target at 9 mm maximum motion was in good agreement with planned dose. Complement to measurements suggested in AAPM Report No.9 I I, this QA device can detect any random error and assess the magnitude of residual target motion through analysing differences between planned and delivered doses as gamma function. Although some user-friendliness aspects could be improved, it meets its specification and can be used for routine clinical QA purposes provided calibrations were performed and procedures were followed.

  16. Computerized tomography based “patient specific blocks” improve postoperative mechanical alignment in primary total knee arthroplasty

    Science.gov (United States)

    Vaishya, Raju; Vijay, Vipul; Birla, Vikas P; Agarwal, Amit K

    2016-01-01

    AIM: To compare the postoperative mechanical alignment achieved after total knee arthroplasty (TKA) using computer tomography (CT) based patient specific blocks (PSB) to conventional instruments (CI). METHODS: Total 80 knees were included in the study, with 40 knees in both the groups operated using PSB and CI. All the knees were performed by a single surgeon using the same cruciate sacrificing implants. In our study we used CT based PSB to compare with CI. Postoperative mechanical femoro-tibial angle (MFT angle) was measured on long leg x-rays using picture archiving and communication system (PACS). We compared mechanical alignment achieved using PSB and CI in TKA using statistical analysis. RESULTS: The PSB group (group 1) included 17 females and seven males while in CI group (group 2) there were 15 females and eight males. The mean age of patients in group 1 was 60.5 years and in group 2 it was 60.2 years. The mean postoperative MFT angle measured on long-leg radiographs in group 1 was 178.23° (SD = 2.67°, range: 171.9° to 182.5°) while in group 2, the mean MFT angle was 175.73° (SD = 3.62°, range: 166.0° to 179.8°). There was significant improvement in postoperative mechanical alignment (P value = 0.001), in PSB group compared to CI. Number of outliers were also found to be less in group operated with PSB (7 Knee) compared to those operated with CI (17 Knee). CONCLUSION: PSB improve mechanical alignment after total knee arthroplasty, compared to CI. This may lead to lower rates of revision in the PSB based TKA as compared to the conventional instrumentation.

  17. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    International Nuclear Information System (INIS)

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use

  18. Fluid-structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft

    Directory of Open Access Journals (Sweden)

    McGloughlin Tim M

    2009-10-01

    Full Text Available Abstract Background Abdominal aortic aneurysms (AAA are local dilatations of the infrarenal aorta. If left untreated they may rupture and lead to death. One form of treatment is the minimally invasive insertion of a stent-graft into the aneurysm. Despite this effective treatment aneurysms may occasionally continue to expand and this may eventually result in post-operative rupture of the aneurysm. Fluid-structure interaction (FSI is a particularly useful tool for investigating aneurysm biomechanics as both the wall stresses and fluid forces can be examined. Methods Pre-op, Post-op and Follow-up models were reconstructed from CT scans of a single patient and FSI simulations were performed on each model. The FSI approach involved coupling Abaqus and Fluent via a third-party software - MpCCI. Aneurysm wall stress and compliance were investigated as well as the drag force acting on the stent-graft. Results Aneurysm wall stress was reduced from 0.38 MPa before surgery to a value of 0.03 MPa after insertion of the stent-graft. Higher stresses were seen in the aneurysm neck and iliac legs post-operatively. The compliance of the aneurysm was also reduced post-operatively. The peak Post-op axial drag force was found to be 4.85 N. This increased to 6.37 N in the Follow-up model. Conclusion In a patient-specific case peak aneurysm wall stress was reduced by 92%. Such a reduction in aneurysm wall stress may lead to shrinkage of the aneurysm over time. Hence, post-operative stress patterns may help in determining the likelihood of aneurysm shrinkage post EVAR. Post-operative remodelling of the aneurysm may lead to increased drag forces.

  19. Automated Preferences Elicitation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Guy, Tatiana Valentine

    Prague : Institute of Information Theory and Automation, 2011, s. 20-25. ISBN 978-80-903834-6-3. [The 2nd International Workshop od Decision Making with Multiple Imperfect Decision Makers. Held in Conjunction with the 25th Annual Conference on Neural Information Processing Systems (NIPS 2011). Sierra Nevada (ES), 16.12.2011-16.12.2011] R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : elicitation * decision making * Bayesian decision making * fully probabilistic design Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2011/AS/karny-automated preferences elicitation.pdf

  20. Automated drawing generation system

    International Nuclear Information System (INIS)

    Since automated CAD drawing generation systems still require human intervention, improvements were focussed on an interactive processing section (data input and correcting operation) which necessitates a vast amount of work. As a result, human intervention was eliminated, the original objective of a computerized system. This is the first step taken towards complete automation. The effects of development and commercialization of the system are as described below. (1) The interactive processing time required for generating drawings was improved. It was determined that introduction of the CAD system has reduced the time required for generating drawings. (2) The difference in skills between workers preparing drawings has been eliminated and the quality of drawings has been made uniform. (3) The extent of knowledge and experience demanded of workers has been reduced. (author)

  1. Terminal automation system maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Coffelt, D.; Hewitt, J. [Engineered Systems Inc., Tempe, AZ (United States)

    1997-01-01

    Nothing has improved petroleum product loading in recent years more than terminal automation systems. The presence of terminal automation systems (TAS) at loading racks has increased operational efficiency and safety and enhanced their accounting and management capabilities. However, like all finite systems, they occasionally malfunction or fail. Proper servicing and maintenance can minimize this. And in the unlikely event a TAS breakdown does occur, prompt and effective troubleshooting can reduce its impact on terminal productivity. To accommodate around-the-clock loading at racks, increasingly unattended by terminal personnel, TAS maintenance, servicing and troubleshooting has become increasingly demanding. It has also become increasingly important. After 15 years of trial and error at petroleum and petrochemical storage and transfer terminals, a number of successful troubleshooting programs have been developed. These include 24-hour {open_quotes}help hotlines,{close_quotes} internal (terminal company) and external (supplier) support staff, and {open_quotes}layered{close_quotes} support. These programs are described.

  2. ATLAS Distributed Computing Automation

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Borrego, C; Campana, S; Di Girolamo, A; Elmsheuser, J; Hejbal, J; Kouba, T; Legger, F; Magradze, E; Medrano Llamas, R; Negri, G; Rinaldi, L; Sciacca, G; Serfon, C; Van Der Ster, D C

    2012-01-01

    The ATLAS Experiment benefits from computing resources distributed worldwide at more than 100 WLCG sites. The ATLAS Grid sites provide over 100k CPU job slots, over 100 PB of storage space on disk or tape. Monitoring of status of such a complex infrastructure is essential. The ATLAS Grid infrastructure is monitored 24/7 by two teams of shifters distributed world-wide, by the ATLAS Distributed Computing experts, and by site administrators. In this paper we summarize automation efforts performed within the ATLAS Distributed Computing team in order to reduce manpower costs and improve the reliability of the system. Different aspects of the automation process are described: from the ATLAS Grid site topology provided by the ATLAS Grid Information System, via automatic site testing by the HammerCloud, to automatic exclusion from production or analysis activities.

  3. Rapid automated nuclear chemistry

    International Nuclear Information System (INIS)

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC

  4. Rapid automated nuclear chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R.A.

    1979-05-31

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC.

  5. Automated Microbial Metabolism Laboratory

    Science.gov (United States)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  6. Components for automated microscopy

    Science.gov (United States)

    Determann, H.; Hartmann, H.; Schade, K. H.; Stankewitz, H. W.

    1980-12-01

    A number of devices, aiming at automated analysis of microscopic objects as regards their morphometrical parameters or their photometrical values, were developed. These comprise: (1) a device for automatic focusing tuned on maximum contrast; (2) a feedback system for automatic optimization of microscope illumination; and (3) microscope lenses with adjustable pupil distances for usage in the two previous devices. An extensive test program on histological and zytological applications proves the wide application possibilities of the autofocusing device.

  7. Automated uranium assays

    International Nuclear Information System (INIS)

    Precise, timely inventories of enriched uranium stocks are vital to help prevent the loss, theft, or diversion of this material for illicit use. A wet-chemistry analyzer has been developed at LLL to assist in these inventories by performing automated analyses of uranium samples from different stages in the nuclear fuel cycle. These assays offer improved accuracy, reduced costs, significant savings in manpower, and lower radiation exposure for personnel compared with present techniques

  8. Construction Automation and Robotics

    OpenAIRE

    Bock, Thomas

    2008-01-01

    Due to the high complexity of the construction process and the stagnating technological development a long-term preparation is necessary to adapt it to advanced construction methods. Architects, engineers and all other participants of the construction process have to be integrated in this adaptation process. The short- and long-term development of automation will take place step-by-step and will be oriented to the respective application and requirements. In the initial phase existing building...

  9. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. To reduce radiation exposure to operators, technological advances in remote handling and automation were employed. An industrial robot and a specially designed end effector, access port, and sealing machine were used to remotely bag waste containers out of a glove box. The system is operated from a control panel outside the work area via television cameras

  10. LINAC control automation system

    International Nuclear Information System (INIS)

    A 7 MeV Electron Beam Linear Accelerator (LINAC) being used for pulse radiolysis experiments at RC and CDD, B.A.R.C. has been automated with a PLC based control panel designed and developed by Computer Division, B.A.R.C.. The control panel after power on switches ON various units in a pre-defined sequence and intervals on a single turn of START key from OFF to ON position. The control panel also generates various ramp signals in a pre-defined sequence and rate and steady values and feeds to the LINAC bringing it to the ready for experiment condition. Similarly on a single turn of STOP key from OFF to ON position, the panel ramps down the various signals in pre-defined manners and makes OFF the various units in predefined sequence and timing providing safety to the machine. The steady values for various signals are on line settable as and when required so. This automation system relieves the operator from fatigue of time consuming manual ramping up or down of various signals and running around in four rooms for switching ON or OFF the various units enhancing efficiency and safety. This also facilitates the user scientist to do start up and shutdown operation in the absence of skilled operators and thus adds flexibility for working up to extended timing. This unit has been working satisfactorily since August 2002. For extraordinary condition automation to manual or vice versa change over has been provided. (author)

  11. Computer-Assisted Mandibular Reconstruction using a Patient-Specific Reconstruction Plate Fabricated with Computer-Aided Design and Manufacturing Techniques

    OpenAIRE

    Wilde, Frank; Cornelius, Carl-Peter; Schramm, Alexander

    2014-01-01

    We investigated the workflow of computer-assisted mandibular reconstruction that was performed with a patient-specific mandibular reconstruction plate fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) techniques and a fibula flap. We assessed the feasibility of this technique from virtual planning to the completion of surgery.

  12. The changing pattern of antimicrobial resistance within 42,033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999-2009.

    LENUS (Irish Health Repository)

    Cullen, Ivor M

    2012-04-01

    To investigate the changing pattern of antimicrobial resistance in Escherichia coli urinary tract infection over an eleven year period, and to determine whether E. coli antibiotic resistance rates vary depending on whether the UTI represents a nosocomial, community acquired or urology patient specific infection.

  13. Cost-Effectiveness of Automated Digital Microscopy for Diagnosis of Active Tuberculosis.

    OpenAIRE

    Jha, S. (Stefania); Ismail, N; Clark, D. (David); Lewis, JJ; Omar, S; A. Dreyer; Chihota, V.; Churchyard, G.; Dowdy, DW

    2016-01-01

    Automated digital microscopy has the potential to improve the diagnosis of tuberculosis (TB), particularly in settings where molecular testing is too expensive to perform routinely. The cost-effectiveness of TB diagnostic algorithms using automated digital microscopy remains uncertain. Using data from a demonstration study of an automated digital microscopy system (TBDx, Applied Visual Systems, Inc.), we performed an economic evaluation of TB diagnosis in South Africa from the health sy...

  14. Low-dose preview for patient-specific, task-specific technique selection in cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Adam S.; Stayman, J. Webster; Otake, Yoshito; Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Vogt, Sebastian; Kleinszig, Gerhard [Siemens Healthcare XP Division, Erlangen 91052 (Germany); Khanna, A. Jay [Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Gallia, Gary L. [Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-07-15

    resulted in strong underestimation of the true noise, which would lead to overly optimistic predictions of dose reduction. Conclusions : Correlated noise injection is essential to accurate simulation of CBCT image quality at reduced dose. With the proposed LDP method, the user can prospectively select patient-specific, minimum-dose protocols (viz., acquisition technique and reconstruction method) suitable to a particular imaging task and to the user's own observer preferences for CBCT scans following the first acquisition. The method could provide dose reduction in common clinical scenarios involving multiple CBCT scans, such as image-guided surgery and radiotherapy.

  15. Verification of Accuracy of CyberKnife Tumor-tracking Radiation Therapy Using Patient-specific Lung Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jinhong [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Department of Radiation Oncology, Kyung Hee University Medical Center, Kyung Hee University School of Medicine, Seoul (Korea, Republic of); Song, Si Yeol, E-mail: coocoori@gmail.com [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Sang Min; Kwak, Jungwon; Yoon, KyoungJun [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Wonsik [Department of Radiation Oncology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung (Korea, Republic of); Jeong, Seong-Yun [Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Kyung; Cho, Byungchul [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-07-15

    Purpose: To investigate the accuracy of the CyberKnife Xsight Lung Tracking System (XLTS) compared with that of a fiducial-based target tracking system (FTTS) using patient-specific lung phantoms. Methods and Materials: Three-dimensional printing technology was used to make individualized lung phantoms that closely mimicked the lung anatomy of actual patients. Based on planning computed tomographic data from 6 lung cancer patients who underwent stereotactic ablative radiation therapy using the CyberKnife, the volume above a certain Hounsfield unit (HU) was assigned as the structure to be filled uniformly with polylactic acid material by a 3-dimensional printer (3D Edison, Lokit, Korea). We evaluated the discrepancies between the measured and modeled target positions, representing the total tracking error, using 3 log files that were generated during each treatment for both the FTTS and the XLTS. We also analyzed the γ index between the film dose measured under the FTTS and XLTS. Results: The overall mean values and standard deviations of total tracking errors for the FTTS were 0.36 ± 0.39 mm, 0.15 ± 0.64 mm, and 0.15 ± 0.62 mm for the craniocaudal (CC), left–right (LR), and anteroposterior (AP) components, respectively. Those for the XLTS were 0.38 ± 0.54 mm, 0.13 ± 0.18 mm, and 0.14 ± 0.37 mm for the CC, LR, and AP components, respectively. The average of γ passing rates was 100% for the criteria of 3%, 3 mm; 99.6% for the criteria of 2%, 2 mm; and 86.8% for the criteria of 1%, 1 mm. Conclusions: The XLTS has segmentation accuracy comparable with that of the FTTS and small total tracking errors.

  16. SU-E-T-472: A Multi-Dimensional Measurements Comparison to Analyze a 3D Patient Specific QA Tool

    International Nuclear Information System (INIS)

    Purpose: To quantitatively evaluate a 3D patient specific QA tool using 2D film and 3D Presage dosimetry. Methods: A brain IMRT case was delivered to Delta4, EBT2 film and Presage plastic dosimeter. The film was inserted in the solid water slabs at 7.5cm depth for measurement. The Presage dosimeter was inserted into a head phantom for 3D dose measurement. Delta4's Anatomy software was used to calculate the corresponding dose to the film in solid water slabs and to Presage in the head phantom. The results from Anatomy were compared to both calculated results from Eclipse and measured dose from film and Presage to evaluate its accuracy. Using RIT software, we compared the “Anatomy” dose to the EBT2 film measurement and the film measurement to ECLIPSE calculation. For 3D analysis, DICOM file of “Anatomy” was extracted and imported to CERR software, which was used to compare the Presage dose to both “Anatomy” calculation and ECLIPSE calculation. Gamma criteria of 3% - 3mm and 5% - 5mm was used for comparison. Results: Gamma passing rates of film vs “Anatomy”, “Anatomy” vs ECLIPSE and film vs ECLIPSE were 82.8%, 70.9% and 87.6% respectively when 3% - 3mm criteria is used. When the criteria is changed to 5% - 5mm, the passing rates became 87.8%, 76.3% and 90.8% respectively. For 3D analysis, Anatomy vs ECLIPSE showed gamma passing rate of 86.4% and 93.3% for 3% - 3mm and 5% - 5mm respectively. The rate is 77.0% for Presage vs ECLIPSE analysis. The Anatomy vs ECLIPSE were absolute dose comparison. However, film and Presage analysis were relative comparison Conclusion: The results show higher passing rate in 3D than 2D in “Anatomy” software. This could be due to the higher degrees of freedom in 3D than in 2D for gamma analysis

  17. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.; Cameron, Bruce M.; Robb, Richard A. [Biomedical Imaging Resource, Mayo Clinic College of Medicine, Rochester, Minnesota 55905 (United States); Kwartowitz, David M. [Department of Bioengineering, Clemson University, Clemson, South Carolina 29634 (United States); Gunawan, Mia [Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington D.C. 20057 (United States); Johnson, Susan B.; Packer, Douglas L. [Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota 55905 (United States); Dalegrave, Charles [Clinical Cardiac Electrophysiology, Cardiology Division Hospital Sao Paulo, Federal University of Sao Paulo, 04024-002 Brazil (Brazil); Kolasa, Mark W. [David Grant Medical Center, Fairfield, California 94535 (United States)

    2014-02-15

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  18. Quantitative modeling of the accuracy in registering preoperative patient-specific anatomic models into left atrial cardiac ablation procedures

    International Nuclear Information System (INIS)

    Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved

  19. SU-E-T-472: A Multi-Dimensional Measurements Comparison to Analyze a 3D Patient Specific QA Tool

    Energy Technology Data Exchange (ETDEWEB)

    Ashmeg, S; Jackson, J; Zhang, Y; Oldham, M; Yin, F; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2014-06-01

    Purpose: To quantitatively evaluate a 3D patient specific QA tool using 2D film and 3D Presage dosimetry. Methods: A brain IMRT case was delivered to Delta4, EBT2 film and Presage plastic dosimeter. The film was inserted in the solid water slabs at 7.5cm depth for measurement. The Presage dosimeter was inserted into a head phantom for 3D dose measurement. Delta4's Anatomy software was used to calculate the corresponding dose to the film in solid water slabs and to Presage in the head phantom. The results from Anatomy were compared to both calculated results from Eclipse and measured dose from film and Presage to evaluate its accuracy. Using RIT software, we compared the “Anatomy” dose to the EBT2 film measurement and the film measurement to ECLIPSE calculation. For 3D analysis, DICOM file of “Anatomy” was extracted and imported to CERR software, which was used to compare the Presage dose to both “Anatomy” calculation and ECLIPSE calculation. Gamma criteria of 3% - 3mm and 5% - 5mm was used for comparison. Results: Gamma passing rates of film vs “Anatomy”, “Anatomy” vs ECLIPSE and film vs ECLIPSE were 82.8%, 70.9% and 87.6% respectively when 3% - 3mm criteria is used. When the criteria is changed to 5% - 5mm, the passing rates became 87.8%, 76.3% and 90.8% respectively. For 3D analysis, Anatomy vs ECLIPSE showed gamma passing rate of 86.4% and 93.3% for 3% - 3mm and 5% - 5mm respectively. The rate is 77.0% for Presage vs ECLIPSE analysis. The Anatomy vs ECLIPSE were absolute dose comparison. However, film and Presage analysis were relative comparison Conclusion: The results show higher passing rate in 3D than 2D in “Anatomy” software. This could be due to the higher degrees of freedom in 3D than in 2D for gamma analysis.

  20. Verification of Accuracy of CyberKnife Tumor-tracking Radiation Therapy Using Patient-specific Lung Phantoms

    International Nuclear Information System (INIS)

    Purpose: To investigate the accuracy of the CyberKnife Xsight Lung Tracking System (XLTS) compared with that of a fiducial-based target tracking system (FTTS) using patient-specific lung phantoms. Methods and Materials: Three-dimensional printing technology was used to make individualized lung phantoms that closely mimicked the lung anatomy of actual patients. Based on planning computed tomographic data from 6 lung cancer patients who underwent stereotactic ablative radiation therapy using the CyberKnife, the volume above a certain Hounsfield unit (HU) was assigned as the structure to be filled uniformly with polylactic acid material by a 3-dimensional printer (3D Edison, Lokit, Korea). We evaluated the discrepancies between the measured and modeled target positions, representing the total tracking error, using 3 log files that were generated during each treatment for both the FTTS and the XLTS. We also analyzed the γ index between the film dose measured under the FTTS and XLTS. Results: The overall mean values and standard deviations of total tracking errors for the FTTS were 0.36 ± 0.39 mm, 0.15 ± 0.64 mm, and 0.15 ± 0.62 mm for the craniocaudal (CC), left–right (LR), and anteroposterior (AP) components, respectively. Those for the XLTS were 0.38 ± 0.54 mm, 0.13 ± 0.18 mm, and 0.14 ± 0.37 mm for the CC, LR, and AP components, respectively. The average of γ passing rates was 100% for the criteria of 3%, 3 mm; 99.6% for the criteria of 2%, 2 mm; and 86.8% for the criteria of 1%, 1 mm. Conclusions: The XLTS has segmentation accuracy comparable with that of the FTTS and small total tracking errors

  1. Automated hexahedral meshing of anatomic structures using deformable registration.

    Science.gov (United States)

    Grosland, Nicole M; Bafna, Ritesh; Magnotta, Vincent A

    2009-02-01

    This work introduces a novel method of automating the process of patient-specific finite element (FE) model development using a mapped mesh technique. The objective is to map a predefined mesh (template) of high quality directly onto a new bony surface (target) definition, thereby yielding a similar mesh with minimal user interaction. To bring the template mesh into correspondence with the target surface, a deformable registration technique based on the FE method has been adopted. The procedure has been made hierarchical allowing several levels of mesh refinement to be used, thus reducing the time required to achieve a solution. Our initial efforts have focused on the phalanx bones of the human hand. Mesh quality metrics, such as element volume and distortion were evaluated. Furthermore, the distance between the target surface and the final mapped mesh were measured. The results have satisfactorily proven the applicability of the proposed method. PMID:18688764

  2. M2m Automation: Matlab-To-Map Reduce Automation

    Directory of Open Access Journals (Sweden)

    Archana C S

    2014-06-01

    Full Text Available Abstract- MapReduce is a very popular parallel programming model for cloud computing platforms, and has become an effective method for processing massive data by using a cluster of computers. Program language -to-MapReduce Automator is a possible solution to help traditional programmers easily deploy an application to cloud systems through translating sequential codes to MapReduce codes.M2M Automation mainly focuses on automating numerical computations by using hadoop at the back end. M2M automates Hadoop, for faster execution of Matlab commands using MapReduce code.

  3. Positive predictive value of a case definition for diabetes mellitus using automated administrative health data in children and youth exposed to antipsychotic drugs or control medications: a Tennessee Medicaid study

    Directory of Open Access Journals (Sweden)

    Bobo William V

    2012-08-01

    Full Text Available Abstract Background We developed and validated an automated database case definition for diabetes in children and youth to facilitate pharmacoepidemiologic investigations of medications and the risk of diabetes. Methods The present study was part of an in-progress retrospective cohort study of antipsychotics and diabetes in Tennessee Medicaid enrollees aged 6–24 years. Diabetes was identified from diabetes-related medical care encounters: hospitalizations, outpatient visits, and filled prescriptions. The definition required either a primary inpatient diagnosis or at least two other encounters of different types, most commonly an outpatient diagnosis with a prescription. Type 1 diabetes was defined by insulin prescriptions with at most one oral hypoglycemic prescription; other cases were considered type 2 diabetes. The definition was validated for cohort members in the 15 county region geographically proximate to the investigators. Medical records were reviewed and adjudicated for cases that met the automated database definition as well as for a sample of persons with other diabetes-related medical care encounters. Results The study included 64 cases that met the automated database definition. Records were adjudicated for 46 (71.9%, of which 41 (89.1% met clinical criteria for newly diagnosed diabetes. The positive predictive value for type 1 diabetes was 80.0%. For type 2 and unspecified diabetes combined, the positive predictive value was 83.9%. The estimated sensitivity of the definition, based on adjudication for a sample of 30 cases not meeting the automated database definition, was 64.8%. Conclusion These results suggest that the automated database case definition for diabetes may be useful for pharmacoepidemiologic studies of medications and diabetes.

  4. Automated Assessment, Face to Face

    OpenAIRE

    Rizik M. H. Al-Sayyed; Amjad Hudaib; Muhannad AL-Shboul; Yousef Majdalawi; Mohammed Bataineh

    2010-01-01

    This research paper evaluates the usability of automated exams and compares them with the paper-and-pencil traditional ones. It presents the results of a detailed study conducted at The University of Jordan (UoJ) that comprised students from 15 faculties. A set of 613 students were asked about their opinions concerning automated exams; and their opinions were deeply analyzed. The results indicate that most students reported that they are satisfied with using automated exams but they have sugg...

  5. Automation System Products and Research

    OpenAIRE

    Rintala, Mikko; Sormunen, Jussi; Kuisma, Petri; Rahkala, Matti

    2014-01-01

    Automation systems are used in most buildings nowadays. In the past they were mainly used in industry to control and monitor critical systems. During the past few decades the automation systems have become more common and are used today from big industrial solutions to homes of private customers. With the growing need for ecologic and cost-efficient management systems, home and building automation systems are becoming a standard way of controlling lighting, ventilation, heating etc. Auto...

  6. Software Testing and Documenting Automation

    OpenAIRE

    Tsybin, Anton; Lyadova, Lyudmila

    2008-01-01

    This article describes some approaches to problem of testing and documenting automation in information systems with graphical user interface. Combination of data mining methods and theory of finite state machines is used for testing automation. Automated creation of software documentation is based on using metadata in documented system. Metadata is built on graph model. Described approaches improve performance and quality of testing and documenting processes.

  7. Embedded system for building automation

    OpenAIRE

    Rolih, Andrej

    2014-01-01

    Home automation is a fast developing field of computer science and electronics. Companies are offering many different products for home automation. Ranging anywhere from complete systems for building management and control, to simple smart lights that can be connected to the internet. These products offer the user greater living comfort and lower their expenses by reducing the energy usage. This thesis shows the development of a simple home automation system that focuses mainly on the enhance...

  8. World-wide distribution automation systems

    Energy Technology Data Exchange (ETDEWEB)

    Devaney, T.M.

    1994-12-31

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems.

  9. AUTOMATED API TESTING APPROACH

    Directory of Open Access Journals (Sweden)

    SUNIL L. BANGARE

    2012-02-01

    Full Text Available Software testing is an investigation conducted to provide stakeholders with information about the quality of the product or service under test. With the help of software testing we can verify or validate the software product. Normally testing will be done after development of software but we can perform the software testing at the time of development process also. This paper will give you a brief introduction about Automated API Testing Tool. This tool of testing will reduce lots of headache after the whole development of software. It saves time as well as money. Such type of testing is helpful in the Industries & Colleges also.

  10. Automated radioimmunoassay of nicotine

    International Nuclear Information System (INIS)

    The authors have developed an automated nonequilibrium procedure for the radioimmunoassay of nicotine. The use of a unique iodinated nicotine derivative in this procedure gave a sensitivity of 10 μg/l for nicotine with a between-run precision of 7.4% and within-run precision of 6.0%. Nicotine levels of 60 to 67 μg/l were found in subjects 15 min after smoking one standard cigarette. The technique herein reported is a very rapid, and sensitive radioimmunoassay for nicotine and facilitates the determination of nicotine in smoking subjects during the actual process of smoking. (Auth.)

  11. Automated Motivic Analysis

    DEFF Research Database (Denmark)

    Lartillot, Olivier

    2016-01-01

    Motivic analysis provides very detailed understanding of musical composi- tions, but is also particularly difficult to formalize and systematize. A computational automation of the discovery of motivic patterns cannot be reduced to a mere extraction of all possible sequences of descriptions....... The systematic approach inexorably leads to a proliferation of redundant structures that needs to be addressed properly. Global filtering techniques cause a drastic elimination of interesting structures that damages the quality of the analysis. On the other hand, a selection of closed patterns allows...

  12. Mechatronic Design Automation

    DEFF Research Database (Denmark)

    Fan, Zhun

    This book proposes a novel design method that combines both genetic programming (GP) to automatically explore the open-ended design space and bond graphs (BG) to unify design representations of multi-domain Mechatronic systems. Results show that the method, formally called GPBG method, can...... successfully design analogue filters, vibration absorbers, micro-electro-mechanical systems, and vehicle suspension systems, all in an automatic or semi-automatic way. It also investigates the very important issue of co-designing plant-structures and dynamic controllers in automated design of Mechatronic...

  13. Investigation of realistic PET simulations incorporating tumor patient's specificity using anthropomorphic models: Creation of an oncology database

    International Nuclear Information System (INIS)

    Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient images include noise from the acquisition process, imaging system's performance restrictions and have limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present study was to create a simulated oncology database based on clinical data with realistic intratumor uptake heterogeneity properties.Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor database investigating the heterogeneity activity distribution of the simulated tumors. The anthropomorphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of each patient, and the activity distribution was extracted from the respective PET data. The patient-specific models were simulated with the Monte Carlo Geant4 application for tomography emission (GATE) in three different levels for each case: (a) using homogeneous activity within the tumor, (b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image following PVC. The three different types of simulated data in each case were reconstructed with two iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous uptake. Heterogeneity in all generated images was quantified using textural feature derived parameters in 3D according to the ground truth of the simulation, and compared to clinical measurements. Finally, profiles were plotted in central slices of the tumors, across lines with

  14. Maneuver Automation Software

    Science.gov (United States)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; Illsley, Jeannette

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  15. Automated Test Case Generation

    CERN Document Server

    CERN. Geneva

    2015-01-01

    I would like to present the concept of automated test case generation. I work on it as part of my PhD and I think it would be interesting also for other people. It is also the topic of a workshop paper that I am introducing in Paris. (abstract below) Please note that the talk itself would be more general and not about the specifics of my PhD, but about the broad field of Automated Test Case Generation. I would introduce the main approaches (combinatorial testing, symbolic execution, adaptive random testing) and their advantages and problems. (oracle problem, combinatorial explosion, ...) Abstract of the paper: Over the last decade code-based test case generation techniques such as combinatorial testing or dynamic symbolic execution have seen growing research popularity. Most algorithms and tool implementations are based on finding assignments for input parameter values in order to maximise the execution branch coverage. Only few of them consider dependencies from outside the Code Under Test’s scope such...

  16. Automation from pictures

    International Nuclear Information System (INIS)

    The state transition diagram (STD) model has been helpful in the design of real time software, especially with the emergence of graphical computer aided software engineering (CASE) tools. Nevertheless, the translation of the STD to real time code has in the past been primarily a manual task. At Los Alamos we have automated this process. The designer constructs the STD using a CASE tool (Cadre Teamwork) using a special notation for events and actions. A translator converts the STD into an intermediate state notation language (SNL), and this SNL is compiled directly into C code (a state program). Execution of the state program is driven by external events, allowing multiple state programs to effectively share the resources of the host processor. Since the design and the code are tightly integrated through the CASE tool, the design and code never diverge, and we avoid design obsolescence. Furthermore, the CASE tool automates the production of formal technical documents from the graphic description encapsulated by the CASE tool. (author)

  17. Automated digital magnetofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J; Garcia, A A; Marquez, M [Harrington Department of Bioengineering Arizona State University, Tempe AZ 85287-9709 (United States)], E-mail: tony.garcia@asu.edu

    2008-08-15

    Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.

  18. Automated Postediting of Documents

    CERN Document Server

    Knight, K; Knight, Kevin; Chander, Ishwar

    1994-01-01

    Large amounts of low- to medium-quality English texts are now being produced by machine translation (MT) systems, optical character readers (OCR), and non-native speakers of English. Most of this text must be postedited by hand before it sees the light of day. Improving text quality is tedious work, but its automation has not received much research attention. Anyone who has postedited a technical report or thesis written by a non-native speaker of English knows the potential of an automated postediting system. For the case of MT-generated text, we argue for the construction of postediting modules that are portable across MT systems, as an alternative to hardcoding improvements inside any one system. As an example, we have built a complete self-contained postediting module for the task of article selection (a, an, the) for English noun phrases. This is a notoriously difficult problem for Japanese-English MT. Our system contains over 200,000 rules derived automatically from online text resources. We report on l...

  19. Testing automation of projects in telecommunication domain

    OpenAIRE

    Alexey, Veselov; Vsevolod, Kotlyarov

    2010-01-01

    This paper presents an integrated approach to testing automation of telecommunication projects along with proposals to automation of conformance testing. The underlying idea is to benefit from combining formal verification and testing automation techniques in order to improve product quality.

  20. Automated Methods of Corrosion Measurements

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    . Mechanical control, recording, and data processing must therefore be automated to a high level of precision and reliability. These general techniques and the apparatus involved have been described extensively. The automated methods of such high-resolution microscopy coordinated with computerized...

  1. Opening up Library Automation Software

    Science.gov (United States)

    Breeding, Marshall

    2009-01-01

    Throughout the history of library automation, the author has seen a steady advancement toward more open systems. In the early days of library automation, when proprietary systems dominated, the need for standards was paramount since other means of inter-operability and data exchange weren't possible. Today's focus on Application Programming…

  2. Automation, Performance and International Competition

    DEFF Research Database (Denmark)

    Kromann, Lene; Sørensen, Anders

    productivity growth than other firms. Moreover, automation improves the efficiency of all stages of the production process by reducing setup time, run time, and inspection time and increasing uptime and quantity produced per worker. The efficiency improvement varies by type of automation....

  3. Automated separation for heterogeneous immunoassays

    OpenAIRE

    Truchaud, A.; Barclay, J; Yvert, J. P.; Capolaghi, B.

    1991-01-01

    Beside general requirements for modern automated systems, immunoassay automation involves specific requirements as a separation step for heterogeneous immunoassays. Systems are designed according to the solid phase selected: dedicated or open robots for coated tubes and wells, systems nearly similar to chemistry analysers in the case of magnetic particles, and a completely original design for those using porous and film materials.

  4. Automated Test-Form Generation

    Science.gov (United States)

    van der Linden, Wim J.; Diao, Qi

    2011-01-01

    In automated test assembly (ATA), the methodology of mixed-integer programming is used to select test items from an item bank to meet the specifications for a desired test form and optimize its measurement accuracy. The same methodology can be used to automate the formatting of the set of selected items into the actual test form. Three different…

  5. Automated Methods Of Corrosion Measurements

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; Andersen, Jens Enevold Thaulov; Reeve, John Ch;

    1997-01-01

    The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell.......The chapter describes the following automated measurements: Corrosion Measurements by Titration, Imaging Corrosion by Scanning Probe Microscopy, Critical Pitting Temperature and Application of the Electrochemical Hydrogen Permeation Cell....

  6. Preoperative Planning of Virtual Osteotomies Followed by Fabrication of Patient Specific Reconstruction Plate for Secondary Correction and Fixation of Displaced Bilateral Mandibular Body Fracture.

    Science.gov (United States)

    Thor, Andreas

    2016-06-01

    This paper describes the course of treatment of a severely diplaced bilateral mandibular body fracture, where the first osteosynthesis failed. The subject developed an open bite due to a posterior rotation of the distal part of the mandible and anterior rotation of the proximal parts of the mandible. This situation was evaluated with CBCT and the facial skeleton was segmented using computer software. Correct occlusion was virtually established by bilateral virtual osteotomies in the fracture areas of the mandible. After segmentation, the mandible was virtually rotated back into position and the open bite was closed. A patient specific mandibular reconstruction plate was outlined and fabricated from the new virtual situation and the plate was thereafter installed utilizing the preoperative plan. Osteotomy- and drill-guides was used and thus simplified the surgery resulting in uneventful healing. Virtual planning and patient specific implants and guides were valuable in this case of secondary reconstructive trauma surgery. PMID:27162581

  7. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval

    OpenAIRE

    Meng, Bowen; Lee, Ho; Xing, Lei; Fahimian, Benjamin P.

    2012-01-01

    Purpose: X-ray scatter results in a significant degradation of image quality in computed tomography (CT), representing a major limitation in cone-beam CT (CBCT) and large field-of-view diagnostic scanners. In this work, a novel scatter estimation and correction technique is proposed that utilizes peripheral detection of scatter during the patient scan to simultaneously acquire image and patient-specific scatter information in a single scan, and in conjunction with a proposed compressed sensin...

  8. 21 CFR 866.2170 - Automated colony counter.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated colony counter. 866.2170 Section 866.2170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... purposes to determine the number of bacterial colonies present on a bacteriological culture...

  9. 21 CFR 866.2850 - Automated zone reader.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated zone reader. 866.2850 Section 866.2850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... surface of certain culture media used in disc-agar diffusion antimicrobial susceptibility tests....

  10. Computer-Assisted Mandibular Reconstruction using a Patient-Specific Reconstruction Plate Fabricated with Computer-Aided Design and Manufacturing Techniques.

    Science.gov (United States)

    Wilde, Frank; Cornelius, Carl-Peter; Schramm, Alexander

    2014-06-01

    We investigated the workflow of computer-assisted mandibular reconstruction that was performed with a patient-specific mandibular reconstruction plate fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) techniques and a fibula flap. We assessed the feasibility of this technique from virtual planning to the completion of surgery. Computed tomography (CT) scans of a cadaveric skull and fibula were obtained for the virtual simulation of mandibular resection and reconstruction using ProPlan CMF software (Materialise(®)/DePuy Synthes(®)). The virtual model of the reconstructed mandible provided the basis for the computer-aided design of a patient-specific reconstruction plate that was milled from titanium using a five-axis milling machine and CAM techniques. CAD/CAM techniques were used for producing resection guides for mandibular resection and cutting guides for harvesting a fibula flap. Mandibular reconstruction was simulated in a cadaveric wet laboratory. No problems were encountered during the procedure. The plate was fixed accurately to the residual bone without difficulty. The fibula segments were attached to the plate rapidly and reliably. The fusion of preoperative and postoperative CT datasets demonstrated high reconstruction precision. Computer-assisted mandibular reconstruction with CAD/CAM-fabricated patient-specific reconstruction plates appears to be a promising approach for mandibular reconstruction. Clinical trials are required to determine whether these promising results can be translated into successful practice and what further developments are needed. PMID:25045420

  11. Patient-Specific CT-Based Instrumentation versus Conventional Instrumentation in Total Knee Arthroplasty: A Prospective Randomized Controlled Study on Clinical Outcomes and In-Hospital Data

    Directory of Open Access Journals (Sweden)

    Andrzej Kotela

    2015-01-01

    Full Text Available Total knee arthroplasty (TKA is a frequently performed procedure in orthopaedic surgery. Recently, patient-specific instrumentation was introduced to facilitate correct positioning of implants. The aim of this study was to compare the early clinical results of TKA performed with patient-specific CT-based instrumentation and conventional technique. A prospective, randomized controlled trial on 112 patients was performed between January 2011 and December 2011. A group of 112 patients who met the inclusion and exclusion criteria were enrolled in this study and randomly assigned to an experimental or control group. The experimental group comprised 52 patients who received the Signature CT-based implant positioning system, and the control group consisted of 60 patients with conventional instrumentation. Clinical outcomes were evaluated with the KSS scale, WOMAC scale, and VAS scales to assess knee pain severity and patient satisfaction with the surgery. Specified in-hospital data were recorded. Patients were followed up for 12 months. At one year after surgery, there were no statistically significant differences between groups with respect to clinical outcomes and in-hospital data, including operative time, blood loss, hospital length of stay, intraoperative observations, and postoperative complications. Further high-quality investigations of various patient-specific systems and longer follow-up may be helpful in assessing their utility for TKA.

  12. Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization

    Science.gov (United States)

    Ballarin, Francesco; Faggiano, Elena; Ippolito, Sonia; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi; Scrofani, Roberto

    2016-06-01

    In this work a reduced-order computational framework for the study of haemodynamics in three-dimensional patient-specific configurations of coronary artery bypass grafts dealing with a wide range of scenarios is proposed. We combine several efficient algorithms to face at the same time both the geometrical complexity involved in the description of the vascular network and the huge computational cost entailed by time dependent patient-specific flow simulations. Medical imaging procedures allow to reconstruct patient-specific configurations from clinical data. A centerlines-based parametrization is proposed to efficiently handle geometrical variations. POD-Galerkin reduced-order models are employed to cut down large computational costs. This computational framework allows to characterize blood flows for different physical and geometrical variations relevant in the clinical practice, such as stenosis factors and anastomosis variations, in a rapid and reliable way. Several numerical results are discussed, highlighting the computational performance of the proposed framework, as well as its capability to carry out sensitivity analysis studies, so far out of reach. In particular, a reduced-order simulation takes only a few minutes to run, resulting in computational savings of 99% of CPU time with respect to the full-order discretization. Moreover, the error between full-order and reduced-order solutions is also studied, and it is numerically found to be less than 1% for reduced-order solutions obtained with just O(100) online degrees of freedom.

  13. Simulation-based Design and Validation of Automated Contingency Management for Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper introduces a novel Prognostics-enhanced Automated Contingency Management (or ACM+P) paradigm based on both current health state (diagnosis) and future...

  14. Automated Standard Hazard Tool

    Science.gov (United States)

    Stebler, Shane

    2014-01-01

    The current system used to generate standard hazard reports is considered cumbersome and iterative. This study defines a structure for this system's process in a clear, algorithmic way so that standard hazard reports and basic hazard analysis may be completed using a centralized, web-based computer application. To accomplish this task, a test server is used to host a prototype of the tool during development. The prototype is configured to easily integrate into NASA's current server systems with minimal alteration. Additionally, the tool is easily updated and provides NASA with a system that may grow to accommodate future requirements and possibly, different applications. Results of this project's success are outlined in positive, subjective reviews complete by payload providers and NASA Safety and Mission Assurance personnel. Ideally, this prototype will increase interest in the concept of standard hazard automation and lead to the full-scale production of a user-ready application.

  15. Expedition automated flow fluorometer

    Science.gov (United States)

    Krikun, V. A.; Salyuk, P. A.

    2015-11-01

    This paper describes an apparatus and operation of automated flow-through dual-channel fluorometer for studying the fluorescence of dissolved organic matter, and the fluorescence of phytoplankton cells with open and closed reaction centers in sea areas with oligotrophic and eutrophic water type. The step-by step excitation by two semiconductor lasers or two light-emitting diodes is realized in the current device. The excitation wavelengths are 405nm and 532nm in the default configuration. Excitation radiation of each light source can be changed with different durations, intensities and repetition rate. Registration of the fluorescence signal carried out by two photo-multipliers with different optical filters of 580-600 nm and 680-700 nm band pass diapasons. The configuration of excitation sources and spectral diapasons of registered radiation can be changed due to decided tasks.

  16. Robust automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  17. Berkeley automated supernova search

    International Nuclear Information System (INIS)

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982

  18. Automated synthetic scene generation

    Science.gov (United States)

    Givens, Ryan N.

    Physics-based simulations generate synthetic imagery to help organizations anticipate system performance of proposed remote sensing systems. However, manually constructing synthetic scenes which are sophisticated enough to capture the complexity of real-world sites can take days to months depending on the size of the site and desired fidelity of the scene. This research, sponsored by the Air Force Research Laboratory's Sensors Directorate, successfully developed an automated approach to fuse high-resolution RGB imagery, lidar data, and hyperspectral imagery and then extract the necessary scene components. The method greatly reduces the time and money required to generate realistic synthetic scenes and developed new approaches to improve material identification using information from all three of the input datasets.

  19. Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  20. [From automation to robotics].

    Science.gov (United States)

    1985-01-01

    The introduction of automation into the laboratory of biology seems to be unavoidable. But at which cost, if it is necessary to purchase a new machine for every new application? Fortunately the same image processing techniques, belonging to a theoretic framework called Mathematical Morphology, may be used in visual inspection tasks, both in car industry and in the biology lab. Since the market for industrial robotics applications is much higher than the market of biomedical applications, the price of image processing devices drops, and becomes sometimes less than the price of a complete microscope equipment. The power of the image processing methods of Mathematical Morphology will be illustrated by various examples, as automatic silver grain counting in autoradiography, determination of HLA genotype, electrophoretic gels analysis, automatic screening of cervical smears... Thus several heterogeneous applications may share the same image processing device, provided there is a separate and devoted work station for each of them. PMID:4091303

  1. Automating the multiprocessing environment

    Science.gov (United States)

    Arpasi, Dale J.

    1989-01-01

    An approach to automate the programming and operation of tree-structured networks of multiprocessor systems is discussed. A conceptual, knowledge-based operating environment is presented, and requirements for two major technology elements are identified as follows: (1) An intelligent information translator is proposed for implementating information transfer between dissimilar hardware and software, thereby enabling independent and modular development of future systems and promoting a language-independence of codes and information; (2) A resident system activity manager, which recognizes the systems capabilities and monitors the status of all systems within the environment, is proposed for integrating dissimilar systems into effective parallel processing resources to optimally meet user needs. Finally, key computational capabilities which must be provided before the environment can be realized are identified.

  2. Automating the radiographic NDT process

    International Nuclear Information System (INIS)

    Automation, the removal of the human element in inspection, has not been generally applied to film radiographic NDT. The justication for automating is not only productivity but also reliability of results. Film remains in the automated system of the future because of its extremely high image content, approximately 8 x 109 bits per 14 x 17. The equivalent to 2200 computer floppy discs. Parts handling systems and robotics applied for manufacturing and some NDT modalities, should now be applied to film radiographic NDT systems. Automatic film handling can be achieved with the daylight NDT film handling system. Automatic film processing is becoming the standard in industry and can be coupled to the daylight system. Robots offer the opportunity to automate fully the exposure step. Finally, computer aided interpretation appears on the horizon. A unit which laser scans a 14 x 17 (inch) film in 6 - 8 seconds can digitize film information for further manipulation and possible automatic interrogations (computer aided interpretation). The system called FDRS (for Film Digital Radiography System) is moving toward 50 micron (*approx* 16 lines/mm) resolution. This is believed to meet the need of the majority of image content needs. We expect the automated system to appear first in parts (modules) as certain operations are automated. The future will see it all come together in an automated film radiographic NDT system (author)

  3. Automating the radiographic ndt process

    International Nuclear Information System (INIS)

    Automation, the removal of the human element in inspection, has not been generally applied to film radiographic NDT. The justification for automating is not only productivity but also reliability of results. Film remains in the automated system of the future because of its extremely high image content, approximately 8 x 109 bits per 14 x 17. This is equivalent to 2200 computer floppy discs. Parts handling systems and robotics applied for manufacturing and some NDT modalities, should now be applied to film radiographic NDT systems. Automatic film handling can be achieved with the daylight NDT film handling system. Automatic film processing is becoming the standard in industry and can be coupled to the daylight system. Robots offer the opportunity to automate fully the exposure step. Finally, computer aided interpretation appears on the horizon. A unit which laser scans a 14 x 17 inch film in 6 - 8 seconds can digitize film information for further manipulation and possible automatic interrogations (computer aided interpretation). The system called FDRS (for Film Digital Radiography System) is moving toward 50 micron (16 lines/mm) resolution. This is believed to meet the need of the majority of image content needs. We expect the automated system to appear first in separate parts (modules) as certain operations are automated. The future will see it all come together in an automated film radiographic NDT system

  4. Automated Fluid Interface System (AFIS)

    Science.gov (United States)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  5. National Automated Conformity Inspection Process

    Data.gov (United States)

    Department of Transportation — The National Automated Conformity Inspection Process (NACIP) Application is intended to expedite the workflow process as it pertains to the FAA Form 81 0-10 Request...

  6. Automation of antimicrobial activity screening.

    Science.gov (United States)

    Forry, Samuel P; Madonna, Megan C; López-Pérez, Daneli; Lin, Nancy J; Pasco, Madeleine D

    2016-03-01

    Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with tooth decay. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50 % inhibitory concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect of the counter ion on antimicrobial activity. PMID:26970766

  7. Automating the Purple Crow Lidar

    Science.gov (United States)

    Hicks, Shannon; Sica, R. J.; Argall, P. S.

    2016-06-01

    The Purple Crow LiDAR (PCL) was built to measure short and long term coupling between the lower, middle, and upper atmosphere. The initial component of my MSc. project is to automate two key elements of the PCL: the rotating liquid mercury mirror and the Zaber alignment mirror. In addition to the automation of the Zaber alignment mirror, it is also necessary to describe the mirror's movement and positioning errors. Its properties will then be added into the alignment software. Once the alignment software has been completed, we will compare the new alignment method with the previous manual procedure. This is the first among several projects that will culminate in a fully-automated lidar. Eventually, we will be able to work remotely, thereby increasing the amount of data we collect. This paper will describe the motivation for automation, the methods we propose, preliminary results for the Zaber alignment error analysis, and future work.

  8. Fully automated parallel oligonucleotide synthesizer

    Czech Academy of Sciences Publication Activity Database

    Lebl, M.; Burger, Ch.; Ellman, B.; Heiner, D.; Ibrahim, G.; Jones, A.; Nibbe, M.; Thompson, J.; Mudra, Petr; Pokorný, Vít; Poncar, Pavel; Ženíšek, Karel

    2001-01-01

    Roč. 66, č. 8 (2001), s. 1299-1314. ISSN 0010-0765 Institutional research plan: CEZ:AV0Z4055905 Keywords : automated oligonucleotide synthesizer Subject RIV: CC - Organic Chemistry Impact factor: 0.778, year: 2001

  9. Home automation with Intel Galileo

    CERN Document Server

    Dundar, Onur

    2015-01-01

    This book is for anyone who wants to learn Intel Galileo for home automation and cross-platform software development. No knowledge of programming with Intel Galileo is assumed, but knowledge of the C programming language is essential.

  10. Towards automated traceability maintenance.

    Science.gov (United States)

    Mäder, Patrick; Gotel, Orlena

    2012-10-01

    Traceability relations support stakeholders in understanding the dependencies between artifacts created during the development of a software system and thus enable many development-related tasks. To ensure that the anticipated benefits of these tasks can be realized, it is necessary to have an up-to-date set of traceability relations between the established artifacts. This goal requires the creation of traceability relations during the initial development process. Furthermore, the goal also requires the maintenance of traceability relations over time as the software system evolves in order to prevent their decay. In this paper, an approach is discussed that supports the (semi-) automated update of traceability relations between requirements, analysis and design models of software systems expressed in the UML. This is made possible by analyzing change events that have been captured while working within a third-party UML modeling tool. Within the captured flow of events, development activities comprised of several events are recognized. These are matched with predefined rules that direct the update of impacted traceability relations. The overall approach is supported by a prototype tool and empirical results on the effectiveness of tool-supported traceability maintenance are provided. PMID:23471308

  11. Automated document analysis system

    Science.gov (United States)

    Black, Jeffrey D.; Dietzel, Robert; Hartnett, David

    2002-08-01

    A software application has been developed to aid law enforcement and government intelligence gathering organizations in the translation and analysis of foreign language documents with potential intelligence content. The Automated Document Analysis System (ADAS) provides the capability to search (data or text mine) documents in English and the most commonly encountered foreign languages, including Arabic. Hardcopy documents are scanned by a high-speed scanner and are optical character recognized (OCR). Documents obtained in an electronic format bypass the OCR and are copied directly to a working directory. For translation and analysis, the script and the language of the documents are first determined. If the document is not in English, the document is machine translated to English. The documents are searched for keywords and key features in either the native language or translated English. The user can quickly review the document to determine if it has any intelligence content and whether detailed, verbatim human translation is required. The documents and document content are cataloged for potential future analysis. The system allows non-linguists to evaluate foreign language documents and allows for the quick analysis of a large quantity of documents. All document processing can be performed manually or automatically on a single document or a batch of documents.

  12. Automated Supernova Discovery (Abstract)

    Science.gov (United States)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  13. Automated Stellar Spectral Classification

    Science.gov (United States)

    Bailer-Jones, Coryn; Irwin, Mike; von Hippel, Ted

    1996-05-01

    Stellar classification has long been a useful tool for probing important astrophysical phenomena. Beyond simply categorizing stars it yields fundamental stellar parameters, acts as a probe of galactic abundance distributions and gives a first foothold on the cosmological distance ladder. The MK system in particular has survived on account of its robustness to changes in the calibrations of the physical parameters. Nonetheless, if stellar classification is to continue as a useful tool in stellar surveys, then it must adapt to keep pace with the large amounts of data which will be acquired as magnitude limits are pushed ever deeper. We are working on a project to automate the multi-parameter classification of visual stellar spectra, using artificial neural networks and other techniques. Our techniques have been developed with 10,000 spectra (B Analysis as a front-end compression of the data. Our continuing work also looks at the application of synthetic spectra to the direct classification of spectra in terms of the physical parameters of Teff, log g, and [Fe/H].

  14. Genetic circuit design automation.

    Science.gov (United States)

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A

    2016-04-01

    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. PMID:27034378

  15. An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer

    International Nuclear Information System (INIS)

    Purpose: To improve the efficacy of dose delivery and dose escalation for external beam radiotherapy of prostate cancer, an off-line strategy for constructing a patient-specific planning target volume is developed in the adaptive radiotherapy process using image feedback of target location and patient setup position. Materials and Methods: We hypothesize that a patient-specific confidence-limited planning target volume (cl-PTV), constructed using an initial sequence of daily measurements of internal target motion and patient setup error, exists and ensures that the clinical target volume (CTV) in the prostate cancer patient receives the prescribed dose within a predefined dose tolerance. A patient-specific bounding volume to correct for target location and compensate for target random motion was first constructed using the convex hull of the first k days of CT measurements. The bounding volume and the initial days of CT measurements were minimized based on a predefined dosimetric criterion. The hypothesis was tested using multiple daily CT images by mimicking the actual treatment of both conventional 4-field-box and intensity-modulated radiotherapy (IMRT) on each of 30 patients with prostate cancer. For each patient, a patient-specific setup margin was also applied to the bounding volume to form the final cl-PTV. This margin was determined using the random setup error predicted from the initial days of portal imaging measurements and the residuals after correcting for the systematic setup error. Results: The bounding volume constructed using daily CT measurements in the first week of treatment are adequate for the conventional beam delivery to achieve maximum dose reduction in the CTV of 2% or less of the prescription dose, for at least 80% of patients (p = 0.08), and 4.5% or less for 95% of patients (p 0.1). However, for IMRT delivery, 2 weeks of daily CT measurements are required to achieve a similar level of the dosimetric criterion, otherwise the maximum dose

  16. Virtual Machine in Automation Projects

    OpenAIRE

    Xing, Xiaoyuan

    2010-01-01

    Virtual machine, as an engineering tool, has recently been introduced into automation projects in Tetra Pak Processing System AB. The goal of this paper is to examine how to better utilize virtual machine for the automation projects. This paper designs different project scenarios using virtual machine. It analyzes installability, performance and stability of virtual machine from the test results. Technical solutions concerning virtual machine are discussed such as the conversion with physical...

  17. 2015 Chinese Intelligent Automation Conference

    CERN Document Server

    Li, Hongbo

    2015-01-01

    Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.

  18. Aprendizaje automático

    OpenAIRE

    Moreno, Antonio

    2006-01-01

    En este libro se introducen los conceptos básicos en una de las ramas más estudiadas actualmente dentro de la inteligencia artificial: el aprendizaje automático. Se estudian temas como el aprendizaje inductivo, el razonamiento analógico, el aprendizaje basado en explicaciones, las redes neuronales, los algoritmos genéticos, el razonamiento basado en casos o las aproximaciones teóricas al aprendizaje automático.

  19. Automation of cell line development

    OpenAIRE

    Lindgren, Kristina; Salmén, Andréa; Lundgren, Mats; Bylund, Lovisa; Ebler, Åsa; Fäldt, Eric; Sörvik, Lina; Fenge, Christel; Skoging-Nyberg, Ulrica

    2009-01-01

    An automated platform for development of high producing cell lines for biopharmaceutical production has been established in order to increase throughput and reduce development costs. The concept is based on the Cello robotic system (The Automation Partnership) and covers screening for colonies and expansion of static cultures. In this study, the glutamine synthetase expression system (Lonza Biologics) for production of therapeutic monoclonal antibodies in Chinese hamster ovary cells was used ...

  20. Managing laboratory automation in a changing pharmaceutical industry.

    Science.gov (United States)

    Rutherford, M L

    1995-01-01

    The health care reform movement in the USA and increased requirements by regulatory agencies continue to have a major impact on the pharmaceutical industry and the laboratory. Laboratory management is expected to improve effciency by providing more analytical results at a lower cost, increasing customer service, reducing cycle time, while ensuring accurate results and more effective use of their staff. To achieve these expectations, many laboratories are using robotics and automated work stations. Establishing automated systems presents many challenges for laboratory management, including project and hardware selection, budget justification, implementation, validation, training, and support. To address these management challenges, the rationale for project selection and implementation, the obstacles encountered, project outcome, and learning points for several automated systems recently implemented in the Quality Control Laboratories at Eli Lilly are presented. PMID:18925014

  1. SU-E-T-69: Cloud-Based Monte Carlo Patient-Specific Quality Assurance (QA) Method for Volumetric Modulated Arc Therapy (VMAT)

    International Nuclear Information System (INIS)

    Purpose: Patient-specific QA for VMAT is incapable of providing full 3D dosimetric information and is labor intensive in the case of severe heterogeneities or small-aperture beams. A cloud-based Monte Carlo dose reconstruction method described here can perform the evaluation in entire 3D space and rapidly reveal the source of discrepancies between measured and planned dose. Methods: This QA technique consists of two integral parts: measurement using a phantom containing array of dosimeters, and a cloud-based voxel Monte Carlo algorithm (cVMC). After a VMAT plan was approved by a physician, a dose verification plan was created and delivered to the phantom using our Varian Trilogy or TrueBeam system. Actual delivery parameters (i.e., dose fraction, gantry angle, and MLC at control points) were extracted from Dynalog or trajectory files. Based on the delivery parameters, the 3D dose distribution in the phantom containing detector were recomputed using Eclipse dose calculation algorithms (AAA and AXB) and cVMC. Comparison and Gamma analysis is then conducted to evaluate the agreement between measured, recomputed, and planned dose distributions. To test the robustness of this method, we examined several representative VMAT treatments. Results: (1) The accuracy of cVMC dose calculation was validated via comparative studies. For cases that succeeded the patient specific QAs using commercial dosimetry systems such as Delta- 4, MAPCheck, and PTW Seven29 array, agreement between cVMC-recomputed, Eclipse-planned and measured doses was obtained with >90% of the points satisfying the 3%-and-3mm gamma index criteria. (2) The cVMC method incorporating Dynalog files was effective to reveal the root causes of the dosimetric discrepancies between Eclipse-planned and measured doses and provide a basis for solutions. Conclusion: The proposed method offers a highly robust and streamlined patient specific QA tool and provides a feasible solution for the rapidly increasing use of VMAT

  2. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  3. SU-D-304-06: Measurement of LET in Patient-Specific Proton Therapy Treatment Fields Using Optically Stimulated Luminescence Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Granville, DA [Carleton Laboratory for Radiotherapy Physics, Carleton University, Ottawa, ON (Canada); Sahoo, N; Sawakuchi, GO [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To investigate the use of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of dose-averaged linear energy transfer (LET) in patient-specific proton therapy treatment fields. Methods: We used Al{sub 2}O{sub 3}:C OSLDs made from the same material as commercially available nanoDot OSLDs from Landauer, Inc. We calibrated two parameters of the OSL signal as functions of LET in therapeutic proton beams: the ratio of the ultraviolet and blue emission intensities (UV/blue ratio) and the OSL curve shape. These calibration curves were created by irradiating OSLDs in passively scattered beams of known LET (0.96 to 3.91 keV/µm). The LET values were determined using a validated Monte Carlo model of the beamline. We then irradiated new OSLDs with the prescription dose (16 to 74 cGy absorbed dose to water) at the center of the spread-out Bragg peak (SOBP) of four patient-specific treatment fields. From readouts of these OSLDs, we determined both the UV/blue ratio and OSL curve shape parameters. Combining these parameters with the calibration curves, we were able to measure LET using the OSLDs. The measurements were compared to the theoretical LET values obtained from Monte Carlo simulations of the patient-specific treatments fields. Results: Using the UV/blue ratio parameter, we were able to measure LET within 3.8%, 6.2%, 5.6% and 8.6% of the Monte Carlo value for each of the patient fields. Similarly, using the OSL curve shape parameter, LET measurements agreed within 0.5%, 11.0%, 2.5% and 7.6% for each of the four fields. Conclusion: We have demonstrated a method to verify LET in patient-specific proton therapy treatment fields using OSLDs. The possibility of enhancing biological effectiveness of proton therapy treatment plans by including LET in the optimization has been previously shown. The LET verification method we have demonstrated will be useful in the quality assurance of such LET optimized treatment plans. DA Granville received

  4. Construction and accuracy assessment of patient-specific biocompatible drill template for cervical anterior transpedicular screw (ATPS insertion: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Maoqing Fu

    Full Text Available BACKGROUND: With the properties of three-column fixation and anterior-approach-only procedure, anterior transpedicular screw (ATPS is ideal for severe multilevel traumatic cervical instabilities. However, the accurate insertion of ATPS remains challenging. Here we constructed a patient-specific biocompatible drill template and evaluated its accuracy in assisting ATPS insertion. METHODS: After ethical approval, 24 formalin-preserved cervical vertebrae (C2-C7 were CT scanned. 3D reconstruction models of cervical vertebra were obtained with 2-mm-diameter virtual pin tracts at the central pedicles. The 3D models were used for rapid prototyping (RP printing. A 2-mm-diameter Kirschner wire was then inserted into the pin tract of the RP model before polymethylmethacrylate was used to construct the patient-specific biocompatible drill template. After removal of the anterior soft tissue, a 2-mm-diameter Kirschner wire was inserted into the cervical pedicle with the assistance of drill template. Cadaveric cervical spines with pin tracts were subsequently scanned using the same CT scanner. A 3D reconstruction was performed of the scanned spines to get 3D models of the vertebrae containing the actual pin tracts. The deviations were calculated between 3D models with virtual and actual pin tracts at the middle point of the cervical pedicle. 3D models of 3.5 mm-diameter screws were used in simulated insertion to grade the screw positions. FINDINGS: The patient-specific biocompatible drill template was constructed to assist ATPS insertion successfully. There were no significant differences between medial/lateral deviations (P = 0.797 or between superior/inferior deviations (P = 0.741. The absolute deviation values were 0.82±0.75 mm and 1.10±0.96 mm in axial and sagittal planes, respectively. In the simulated insertion, the screws in non-critical position were 44/48 (91.7%. CONCLUSIONS: The patient-specific drill template is biocompatible, easy

  5. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    International Nuclear Information System (INIS)

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy

  6. Assessing the radiation-induced second cancer risk in proton therapy for pediatric brain tumors: the impact of employing a patient-specific aperture in pencil beam scanning

    Science.gov (United States)

    Geng, Changran; Moteabbed, Maryam; Xie, Yunhe; Schuemann, Jan; Yock, Torunn; Paganetti, Harald

    2016-01-01

    The purpose of this study was to compare the radiation-induced second cancer risks for in-field and out-of-field organs and tissues for pencil beam scanning (PBS) and passive scattering proton therapy (PPT) and assess the impact of adding patient-specific apertures to sharpen the penumbra in pencil beam scanning for pediatric brain tumor patients. Five proton therapy plans were created for each of three pediatric patients using PPT as well as PBS with two spot sizes (average sigma of ~17 mm and ~8 mm at isocenter) and choice of patient-specific apertures. The lifetime attributable second malignancy risks for both in-field and out-of-field tissues and organs were compared among five delivery techniques. The risk for in-field tissues was calculated using the organ equivalent dose, which is determined by the dose volume histogram. For out-of-field organs, the organ-specific dose equivalent from secondary neutrons was calculated using Monte Carlo and anthropomorphic pediatric phantoms. We find that either for small spot size PBS or for large spot size PBS, a patient-specific aperture reduces the in-field cancer risk to values lower than that for PPT. The reduction for large spot sizes (on average 43%) is larger than for small spot sizes (on average 21%). For out-of-field organs, the risk varies only marginally by employing a patient-specific aperture (on average from  -2% to 16% with increasing distance from the tumor), but is still one to two orders of magnitude lower than that for PPT. In conclusion, when pencil beam spot sizes are large, the addition of apertures to sharpen the penumbra decreases the in-field radiation-induced secondary cancer risk. There is a slight increase in out-of-field cancer risk as a result of neutron scatter from the aperture, but this risk is by far outweighed by the in-field risk benefit from using an aperture with a large PBS spot size. In general, the risk for developing a second malignancy in out-of-field organs for PBS remains

  7. SU-E-J-72: Dosimetric Study of Cone-Beam CT-Based Radiation Treatment Planning Using a Patient-Specific Stepwise CT-Density Table

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S; Le, Q; Mutaf, Y; Yi, B; D’Souza, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To assess dose calculation accuracy of cone-beam CT (CBCT) based treatment plans using a patient-specific stepwise CT-density conversion table in comparison to conventional CT-based treatment plans. Methods: Unlike CT-based treatment planning which use fixed CT-density table, this study used patient-specific CT-density table to minimize the errors in reconstructed mass densities due to the effects of CBCT Hounsfield unit (HU) uncertainties. The patient-specific CT-density table was a stepwise function which maps HUs to only 6 classes of materials with different mass densities: air (0.00121g/cm3), lung (0.26g/cm3), adipose (0.95g/cm3), tissue (1.05 g/cm3), cartilage/bone (1.6g/cm3), and other (3g/cm3). HU thresholds to define different materials were adjusted for each CBCT via best match with the known tissue types in these images. Dose distributions were compared between CT-based plans and CBCT-based plans (IMRT/VMAT) for four types of treatment sites: head and neck (HN), lung, pancreas, and pelvis. For dosimetric comparison, PTV mean dose in both plans were compared. A gamma analysis was also performed to directly compare dosimetry in the two plans. Results: Compared to CT-based plans, the differences for PTV mean dose were 0.1% for pelvis, 1.1% for pancreas, 1.8% for lung, and −2.5% for HN in CBCT-based plans. The gamma passing rate was 99.8% for pelvis, 99.6% for pancreas, and 99.3% for lung with 3%/3mm criteria, and 80.5% for head and neck with 5%/3mm criteria. Different dosimetry accuracy level was observed: 1% for pelvis, 3% for lung and pancreas, and 5% for head and neck. Conclusion: By converting CBCT data to 6 classes of materials for dose calculation, 3% of dose calculation accuracy can be achieved for anatomical sites studied here, except HN which had a 5% accuracy. CBCT-based treatment planning using a patient-specific stepwise CT-density table can facilitate the evaluation of dosimetry changes resulting from variation in patient anatomy.

  8. SU-D-304-06: Measurement of LET in Patient-Specific Proton Therapy Treatment Fields Using Optically Stimulated Luminescence Detectors

    International Nuclear Information System (INIS)

    Purpose: To investigate the use of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of dose-averaged linear energy transfer (LET) in patient-specific proton therapy treatment fields. Methods: We used Al2O3:C OSLDs made from the same material as commercially available nanoDot OSLDs from Landauer, Inc. We calibrated two parameters of the OSL signal as functions of LET in therapeutic proton beams: the ratio of the ultraviolet and blue emission intensities (UV/blue ratio) and the OSL curve shape. These calibration curves were created by irradiating OSLDs in passively scattered beams of known LET (0.96 to 3.91 keV/µm). The LET values were determined using a validated Monte Carlo model of the beamline. We then irradiated new OSLDs with the prescription dose (16 to 74 cGy absorbed dose to water) at the center of the spread-out Bragg peak (SOBP) of four patient-specific treatment fields. From readouts of these OSLDs, we determined both the UV/blue ratio and OSL curve shape parameters. Combining these parameters with the calibration curves, we were able to measure LET using the OSLDs. The measurements were compared to the theoretical LET values obtained from Monte Carlo simulations of the patient-specific treatments fields. Results: Using the UV/blue ratio parameter, we were able to measure LET within 3.8%, 6.2%, 5.6% and 8.6% of the Monte Carlo value for each of the patient fields. Similarly, using the OSL curve shape parameter, LET measurements agreed within 0.5%, 11.0%, 2.5% and 7.6% for each of the four fields. Conclusion: We have demonstrated a method to verify LET in patient-specific proton therapy treatment fields using OSLDs. The possibility of enhancing biological effectiveness of proton therapy treatment plans by including LET in the optimization has been previously shown. The LET verification method we have demonstrated will be useful in the quality assurance of such LET optimized treatment plans. DA Granville received financial support

  9. Optimising automation of a manual enzyme-linked immunosorbent assay

    Directory of Open Access Journals (Sweden)

    Corena de Beer

    2011-12-01

    Full Text Available Objective: Enzyme-linked immunosorbent assays (ELISAs are widely used to quantify immunoglobulin levels induced by infection or vaccination. Compared to conventional manual assays, automated ELISA systems offer more accurate and reproducible results, faster turnaround times and cost effectiveness due to the use of multianalyte reagents.Design: The VaccZyme™ Human Anti-Haemophilus influenzae type B (Hib kit (MK016 from The Binding Site Company was optimised to be used on an automated BioRad PhD™ system in the Immunology Laboratory (National Health Laboratory Service in Tygerberg, South Africa.Methods: An automated ELISA system that uses individual well incubation was compared to a manual method that uses whole-plate incubation.Results: Results were calculated from calibration curves constructed with each assay. Marked differences in calibration curves were observed for the two methods. The automated method produced lower-than-recommended optical density values and resulted in invalid calibration curves and diagnostic results. A comparison of the individual steps of the two methods showed a difference of 10 minutes per incubation cycle. All incubation steps of the automated method were subsequently increased from 30 minutes to 40 minutes. Several comparative assays were performed according to the amended protocol and all calibration curves obtained were valid. Calibrators and controls were also included as samples in different positions and orders on the plate and all results were valid.Conclusion: Proper validation is vital before converting manual ELISA assays to automated or semi-automated methods. 

  10. Automated ship image acquisition

    Science.gov (United States)

    Hammond, T. R.

    2008-04-01

    The experimental Automated Ship Image Acquisition System (ASIA) collects high-resolution ship photographs at a shore-based laboratory, with minimal human intervention. The system uses Automatic Identification System (AIS) data to direct a high-resolution SLR digital camera to ship targets and to identify the ships in the resulting photographs. The photo database is then searchable using the rich data fields from AIS, which include the name, type, call sign and various vessel identification numbers. The high-resolution images from ASIA are intended to provide information that can corroborate AIS reports (e.g., extract identification from the name on the hull) or provide information that has been omitted from the AIS reports (e.g., missing or incorrect hull dimensions, cargo, etc). Once assembled into a searchable image database, the images can be used for a wide variety of marine safety and security applications. This paper documents the author's experience with the practicality of composing photographs based on AIS reports alone, describing a number of ways in which this can go wrong, from errors in the AIS reports, to fixed and mobile obstructions and multiple ships in the shot. The frequency with which various errors occurred in automatically-composed photographs collected in Halifax harbour in winter time were determined by manual examination of the images. 45% of the images examined were considered of a quality sufficient to read identification markings, numbers and text off the entire ship. One of the main technical challenges for ASIA lies in automatically differentiating good and bad photographs, so that few bad ones would be shown to human users. Initial attempts at automatic photo rating showed 75% agreement with manual assessments.

  11. AUTOMATED ANALYSIS OF BREAKERS

    Directory of Open Access Journals (Sweden)

    E. M. Farhadzade

    2014-01-01

    Full Text Available Breakers relate to Electric Power Systems’ equipment, the reliability of which influence, to a great extend, on reliability of Power Plants. In particular, the breakers determine structural reliability of switchgear circuit of Power Stations and network substations. Failure in short-circuit switching off by breaker with further failure of reservation unit or system of long-distance protection lead quite often to system emergency.The problem of breakers’ reliability improvement and the reduction of maintenance expenses is becoming ever more urgent in conditions of systematic increasing of maintenance cost and repair expenses of oil circuit and air-break circuit breakers. The main direction of this problem solution is the improvement of diagnostic control methods and organization of on-condition maintenance. But this demands to use a great amount of statistic information about nameplate data of breakers and their operating conditions, about their failures, testing and repairing, advanced developments (software of computer technologies and specific automated information system (AIS.The new AIS with AISV logo was developed at the department: “Reliability of power equipment” of AzRDSI of Energy. The main features of AISV are:· to provide the security and data base accuracy;· to carry out systematic control of breakers conformity with operating conditions;· to make the estimation of individual  reliability’s value and characteristics of its changing for given combination of characteristics variety;· to provide personnel, who is responsible for technical maintenance of breakers, not only with information but also with methodological support, including recommendations for the given problem solving  and advanced methods for its realization.

  12. Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study.

    Science.gov (United States)

    Victor, J; Premanathan, A

    2013-11-01

    We have investigated the benefits of patient specific instrument guides, applied to osteotomies around the knee. Single, dual and triple planar osteotomies were performed on tibias or femurs in 14 subjects. In all patients, a detailed pre-operative plan was prepared based upon full leg standing radiographic and CT scan information. The planned level of the osteotomy and open wedge resection was relayed to the surgery by virtue of a patient specific guide developed from the images. The mean deviation between the planned wedge angle and the executed wedge angle was 0° (-1 to 1, sd 0.71) in the coronal plane and 0.3° (-0.9 to 3, sd 1.14) in the sagittal plane. The mean deviation between the planned hip, knee, ankle angle (HKA) on full leg standing radiograph and the post-operative HKA was 0.3° (-1 to 2, sd 0.75). It is concluded that this is a feasible and valuable concept from the standpoint of pre-operative software based planning, surgical application and geometrical accuracy of outcome. PMID:24187376

  13. Advanced 3D mesh manipulation in stereolithographic files and post-print processing for the manufacturing of patient-specific vascular flow phantoms

    Science.gov (United States)

    O'Hara, Ryan P.; Chand, Arpita; Vidiyala, Sowmya; Arechavala, Stacie M.; Mitsouras, Dimitrios; Rudin, Stephen; Ionita, Ciprian N.

    2016-03-01

    Complex vascular anatomies can cause the failure of image-guided endovascular procedures. 3D printed patient-specific vascular phantoms provide clinicians and medical device companies the ability to preemptively plan surgical treatments, test the likelihood of device success, and determine potential operative setbacks. This research aims to present advanced mesh manipulation techniques of stereolithographic (STL) files segmented from medical imaging and post-print surface optimization to match physiological vascular flow resistance. For phantom design, we developed three mesh manipulation techniques. The first method allows outlet 3D mesh manipulations to merge superfluous vessels into a single junction, decreasing the number of flow outlets and making it feasible to include smaller vessels. Next we introduced Boolean operations to eliminate the need to manually merge mesh layers and eliminate errors of mesh self-intersections that previously occurred. Finally we optimize support addition to preserve the patient anatomical geometry. For post-print surface optimization, we investigated various solutions and methods to remove support material and smooth the inner vessel surface. Solutions of chloroform, alcohol and sodium hydroxide were used to process various phantoms and hydraulic resistance was measured and compared with values reported in literature. The newly mesh manipulation methods decrease the phantom design time by 30 - 80% and allow for rapid development of accurate vascular models. We have created 3D printed vascular models with vessel diameters less than 0.5 mm. The methods presented in this work could lead to shorter design time for patient specific phantoms and better physiological simulations.

  14. Patient-Specific Simulations of Reactivity in Models of the Pulmonary Vasculature: A 3-D Numerical Study with Fluid-Structure Interaction

    Science.gov (United States)

    Hunter, Kendall; Zhang, Yanhang; Lanning, Craig

    2005-11-01

    Insight into the progression of pulmonary hypertension may be obtained from thorough study of vascular flow during reactivity testing, an invasive diagnostic procedure which can dramatically alter vascular hemodynamics. Diagnostic imaging methods, however, are limited in their ability to provide extensive data. Here we present detailed flow and wall deformation results from simulations of pulmonary arteries undergoing this procedure. Patient-specific 3-D geometric reconstructions of the first four branches of the pulmonary vasculature were obtained clinically and meshed for use with computational software. Transient simulations in normal and reactive states were obtained from four such models were completed with patient-specific velocity inlet conditions and flow impedance exit conditions. A microstructurally based orthotropic hyperelastic model that simulates pulmonary artery mechanics under normotensive and hypoxic hypertensive conditions treated wall constitutive changes due to pressure reactivity and arterial remodeling. Pressure gradients, velocity fields, arterial deformation, and complete topography of shear stress were obtained. These models provide richer detail of hemodynamics than can be obtained from current imaging techniques, and should allow maximum characterization of vascular function in the clinical situation.

  15. Programmable automation systems in PSA

    International Nuclear Information System (INIS)

    The Finnish safety authority (STUK) requires plant specific PSAs, and quantitative safety goals are set on different levels. The reliability analysis is more problematic when critical safety functions are realized by applying programmable automation systems. Conventional modeling techniques do not necessarily apply to the analysis of these systems, and the quantification seems to be impossible. However, it is important to analyze contribution of programmable automation systems to the plant safety and PSA is the only method with system analytical view over the safety. This report discusses the applicability of PSA methodology (fault tree analyses, failure modes and effects analyses) in the analysis of programmable automation systems. The problem of how to decompose programmable automation systems for reliability modeling purposes is discussed. In addition to the qualitative analysis and structural reliability modeling issues, the possibility to evaluate failure probabilities of programmable automation systems is considered. One solution to the quantification issue is the use of expert judgements, and the principles to apply expert judgements is discussed in the paper. A framework to apply expert judgements is outlined. Further, the impacts of subjective estimates on the interpretation of PSA results are discussed. (orig.) (13 refs.)

  16. Automation: the competitive edge for HMOs and other alternative delivery systems.

    Science.gov (United States)

    Prussin, J A

    1987-12-01

    Until recently, many, if not most, Health Maintenance Organizations (HMO) were not automated. Moreover, HMOs that were automated tended to be automated only on a limited basis. Recently, however, the highly competitive marketplace within which HMOs and other Alternative Delivery Systems (ADS) exist has required that they operate at a maximum effectiveness and efficiency. Given the complex nature of ADSs, the volume of transactions in ADSs, the large number of members served by ADSs, and the numerous providers who are paid at different rates and on different bases by ADSs, it is impossible for an ADS to operate effectively or efficiently, let alone show optimal performance, without a sophisticated, comprehensive automated system. Reliable automated systems designed specifically to address ADS functions such as enrollment and premium billing, finance and accounting, medical information and patient management, and marketing have recently become available at a reasonable cost. PMID:3451941

  17. International Conference Automation : Challenges in Automation, Robotics and Measurement Techniques

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2016-01-01

    This book presents the set of papers accepted for presentation at the International Conference Automation, held in Warsaw, 2-4 March of 2016. It presents the research results presented by top experts in the fields of industrial automation, control, robotics and measurement techniques. Each chapter presents a thorough analysis of a specific technical problem which is usually followed by numerical analysis, simulation, and description of results of implementation of the solution of a real world problem. The presented theoretical results, practical solutions and guidelines will be valuable for both researchers working in the area of engineering sciences and for practitioners solving industrial problems. .

  18. Computer automation and artificial intelligence

    International Nuclear Information System (INIS)

    Rapid advances in computing, resulting from micro chip revolution has increased its application manifold particularly for computer automation. Yet the level of automation available, has limited its application to more complex and dynamic systems which require an intelligent computer control. In this paper a review of Artificial intelligence techniques used to augment automation is presented. The current sequential processing approach usually adopted in artificial intelligence has succeeded in emulating the symbolic processing part of intelligence, but the processing power required to get more elusive aspects of intelligence leads towards parallel processing. An overview of parallel processing with emphasis on transputer is also provided. A Fuzzy knowledge based controller for amination drug delivery in muscle relaxant anesthesia on transputer is described. 4 figs. (author)

  19. Manual versus automated blood sampling

    DEFF Research Database (Denmark)

    Teilmann, A C; Kalliokoski, Otto; Sørensen, Dorte B;

    2014-01-01

    corticosterone metabolites, and expressed more anxious behavior than did the mice of the other groups. Plasma corticosterone levels of mice subjected to tail blood sampling were also elevated, although less significantly. Mice subjected to automated blood sampling were less affected with regard to the parameters......Facial vein (cheek blood) and caudal vein (tail blood) phlebotomy are two commonly used techniques for obtaining blood samples from laboratory mice, while automated blood sampling through a permanent catheter is a relatively new technique in mice. The present study compared physiological parameters......, glucocorticoid dynamics as well as the behavior of mice sampled repeatedly for 24 h by cheek blood, tail blood or automated blood sampling from the carotid artery. Mice subjected to cheek blood sampling lost significantly more body weight, had elevated levels of plasma corticosterone, excreted more fecal...

  20. Unmet needs in automated cytogenetics

    International Nuclear Information System (INIS)

    Though some, at least, of the goals of automation systems for analysis of clinical cytogenetic material seem either at hand, like automatic metaphase finding, or at least likely to be met in the near future, like operator-assisted semi-automatic analysis of banded metaphase spreads, important areas of cytogenetic analsis, most importantly the determination of chromosomal aberration frequencies in populations of cells or in samples of cells from people exposed to environmental mutagens, await practical methods of automation. Important as are the clinical diagnostic applications, it is apparent that increasing concern over the clastogenic effects of the multitude of potentially clastogenic chemical and physical agents to which human populations are being increasingly exposed, and the resulting emergence of extensive cytogenetic testing protocols, makes the development of automation not only economically feasible but almost mandatory. The nature of the problems involved, and acutal of possible approaches to their solution, are discussed

  1. Network based automation for SMEs

    DEFF Research Database (Denmark)

    Shahabeddini Parizi, Mohammad; Radziwon, Agnieszka

    2016-01-01

    The implementation of appropriate automation concepts which increase productivity in Small and Medium Sized Enterprises (SMEs) requires a lot of effort, due to their limited resources. Therefore, it is strongly recommended for small firms to open up for the external sources of knowledge, which...... could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... other members of the same regional ecosystem. The findings highlight two main automation related areas where manufacturing SMEs could leverage on external sources on knowledge – these are assistance in defining automation problem as well as appropriate solution and provider selection. Consequently, this...

  2. Design automation for integrated circuits

    Science.gov (United States)

    Newell, S. B.; de Geus, A. J.; Rohrer, R. A.

    1983-04-01

    Consideration is given to the development status of the use of computers in automated integrated circuit design methods, which promise the minimization of both design time and design error incidence. Integrated circuit design encompasses two major tasks: error specification, in which the goal is a logic diagram that accurately represents the desired electronic function, and physical specification, in which the goal is an exact description of the physical locations of all circuit elements and their interconnections on the chip. Design automation not only saves money by reducing design and fabrication time, but also helps the community of systems and logic designers to work more innovatively. Attention is given to established design automation methodologies, programmable logic arrays, and design shortcuts.

  3. TU-C-BRE-06: Effect of Implementing In-House Treatment Couch Model On Patient Specific QA for Pinnacle SmartArc Treatment Plans

    International Nuclear Information System (INIS)

    Purpose: Failure to model the treatment couch during VMAT QA planar dose calculation may Result in discrepancies between measured and calculated dose. These discrepancies are due to beam attenuation by the treatment couch that is not included in dose calculation. This work evaluates effects of accounting for this attenuation on patient specific VMAT QA results using an in-house created Varian Exact couch model in Pinnacl Methods: Patient specific VMAT QA results for 13 Pinnacle SmartArc plans generated for treatment on a Varian iX accelerator were studied. These plans included 3 treatment sites (7 H'N, 5 brain, 1 prostate). A Pinnacle model for Varian Exact couch was created in-house to replace the CT simulator couch. Composite arc planar doses were calculated with no couch present (NC) and with the Exact couch model (CM) in place for each plan. QA measurements were taken using IBA Matrixx Evolution ion chamber array set up in IBA MultiCube and were compared to each planar dose. Gamma passing criteria of both 3%/3mm and 2%/2mm tolerances were used. Results: Over all treatment sites, increases in gamma passing rates from NC to CM ranged from -0.4% to +27.3% at 3%/3mm and +0.1% to +30.5% at 2%/2mm. Mean increases in passing rates were +3.7% and +5.3% for 3%/3mm and 2%/2mm tolerances, respectively. Site-specific mean increases (NC to CM) in gamma passing rates were +4.4%, +3.4%, +0.4% (3%/3mm tolerance) and +6.9%, +3.7%, and +2.9% at (2%/2mm tolerance) for H'N, brain, and prostate, respectively. Conclusion: Results support use of a couch model when generating planar dose for patient specific VMAT QA analysis. The improvements were most noticeable at 2%/2mm tolerance and for the H'N and brain sites. Eliminating treatment couch beam attenuation as a source of discrepancy in QA measurements may improve the ability to recognize otherwise masked delivered dose errors

  4. TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquired under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior

  5. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT

    International Nuclear Information System (INIS)

    To investigate the sensitivity of various gamma criteria used in the gamma-index method for patient-specific volumetric modulated arc therapy (VMAT) quality assurance (QA) for stereotactic body radiation therapy (SBRT) using a flattening filter free (FFF) photon beam. Three types of intentional misalignments were introduced to original high-definition multi-leaf collimator (HD-MLC) plans. The first type, referred to Class Out, involved the opening of each bank of leaves. The second type, Class In, involved the closing of each bank of leaves. The third type, Class Shift, involved the shifting of each bank of leaves towards the ground. Patient-specific QAs for the original and the modified plans were performed with MapCHECK2 and EBT2 films. The sensitivity of the gamma-index method using criteria of 1%/1 mm, 1.5%/1.5 mm, 1%/2 mm, 2%/1 mm and 2%/2 mm was investigated with absolute passing rates according to the magnitudes of MLCs misalignments. In addition, the changes in dose-volumetric indicators due to the magnitudes of MLC misalignments were investigated. The correlations between passing rates and the changes in dose-volumetric indicators were also investigated using Spearman’s rank correlation coefficient (γ). The criterion of 2%/1 mm was able to detect Class Out and Class In MLC misalignments of 0.5 mm and Class Shift misalignments of 1 mm. The widely adopted clinical criterion of 2%/2 mm was not able to detect 0.5 mm MLC errors of the Class Out or Class In types, and also unable to detect 3 mm Class Shift errors. No correlations were observed between dose-volumetric changes and gamma passing rates (γ < 0.8). Gamma criterion of 2%/1 mm was found to be suitable as a tolerance level with passing rates of 90% and 80% for patient-specific VMAT QA for SBRT when using MapCHECK2 and EBT2 film, respectively

  6. Automated synthesis of sialylated oligosaccharides

    Directory of Open Access Journals (Sweden)

    Davide Esposito

    2012-09-01

    Full Text Available Sialic acid-containing glycans play a major role in cell-surface interactions with external partners such as cells and viruses. Straightforward access to sialosides is required in order to study their biological functions on a molecular level. Here, automated oligosaccharide synthesis was used to facilitate the preparation of this class of biomolecules. Our strategy relies on novel sialyl α-(2→3 and α-(2→6 galactosyl imidates, which, used in combination with the automated platform, provided rapid access to a small library of conjugation-ready sialosides of biological relevance.

  7. Agile Data: Automating database refactorings

    Directory of Open Access Journals (Sweden)

    Bruno Xavier

    2014-09-01

    Full Text Available This paper discusses an automated approach to database change management throughout the companies’ development workflow. By using automated tools, companies can avoid common issues related to manual database deployments. This work was motivated by analyzing usual problems within organizations, mostly originated from manual interventions that may result in systems disruptions and production incidents. In addition to practices of continuous integration and continuous delivery, the current paper describes a case study in which a suggested pipeline is implemented in order to reduce the deployment times and decrease incidents due to ineffective data controlling.

  8. Automation system for experiment control

    International Nuclear Information System (INIS)

    An automated multi-level system designed for acquisition, accumulation, sorting and processing of information obtained in the course of an experiment is discussed. Intelligent terminals are established at each nuclear installation, which are interconnected with measuring equipment of the corresponding installation. The intelligent terminals operating in the interactive real-time mode permit to use through data links computing facilities and storage of the processing centre. On the top level of the automated system the third generation M4030 computer with 256 Kbyte internal memory is employed. The intelligent terminals are created on the basis of the Ryad-1010 and M-400 computers

  9. Status of automated tensile machine

    International Nuclear Information System (INIS)

    The objective of this work is to develop the Monbusho Automated Tensile machine (MATRON) and install and operate it at the Pacific Northwest Laboratory (PNL). The machine is designed to provide rapid, automated testing of irradiated miniature tensile specimen in a vacuum at elevated temperatures. The MATRON was successfully developed and shipped to PNL for installation in a hot facility. The original installation plan was modified to simplify the current and subsequent installations, and the installation was completed. Detailed procedures governing the operation of the system were written. Testing on irradiated miniature tensile specimen should begin in the near future

  10. Design automation, languages, and simulations

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    As the complexity of electronic systems continues to increase, the micro-electronic industry depends upon automation and simulations to adapt quickly to market changes and new technologies. Compiled from chapters contributed to CRC's best-selling VLSI Handbook, this volume covers a broad range of topics relevant to design automation, languages, and simulations. These include a collaborative framework that coordinates distributed design activities through the Internet, an overview of the Verilog hardware description language and its use in a design environment, hardware/software co-design, syst

  11. Automated Podcasting System for Universities

    Directory of Open Access Journals (Sweden)

    Ypatios Grigoriadis

    2013-03-01

    Full Text Available This paper presents the results achieved at Graz University of Technology (TU Graz in the field of automating the process of recording and publishing university lectures in a very new way. It outlines cornerstones of the development and integration of an automated recording system such as the lecture hall setup, the recording hardware and software architecture as well as the development of a text-based search for the final product by method of indexing video podcasts. Furthermore, the paper takes a look at didactical aspects, evaluations done in this context and future outlook.

  12. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation.   Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  13. 2013 Chinese Intelligent Automation Conference

    CERN Document Server

    Deng, Zhidong

    2013-01-01

    Proceedings of the 2013 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’13, held in Yangzhou, China. The topics include e.g. adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, and reconfigurable control. Engineers and researchers from academia, industry, and government can gain an inside view of new solutions combining ideas from multiple disciplines in the field of intelligent automation. Zengqi Sun and Zhidong Deng are professors at the Department of Computer Science, Tsinghua University, China.

  14. Toward designing for trust in database automation

    International Nuclear Information System (INIS)

    Appropriate reliance on system automation is imperative for safe and productive work, especially in safety-critical systems. It is unsafe to rely on automation beyond its designed use; conversely, it can be both unproductive and unsafe to manually perform tasks that are better relegated to automated tools. Operator trust in automated tools mediates reliance, and trust appears to affect how operators use technology. As automated agents become more complex, the question of trust in automation is increasingly important. In order to achieve proper use of automation, we must engender an appropriate degree of trust that is sensitive to changes in operating functions and context. In this paper, we present research concerning trust in automation in the domain of automated tools for relational databases. Lee and See have provided models of trust in automation. One model developed by Lee and See identifies three key categories of information about the automation that lie along a continuum of attributional abstraction. Purpose-, process-and performance-related information serve, both individually and through inferences between them, to describe automation in such a way as to engender r properly-calibrated trust. Thus, one can look at information from different levels of attributional abstraction as a general requirements analysis for information key to appropriate trust in automation. The model of information necessary to engender appropriate trust in automation [1] is a general one. Although it describes categories of information, it does not provide insight on how to determine the specific information elements required for a given automated tool. We have applied the Abstraction Hierarchy (AH) to this problem in the domain of relational databases. The AH serves as a formal description of the automation at several levels of abstraction, ranging from a very abstract purpose-oriented description to a more concrete description of the resources involved in the automated process

  15. Automation of Workplace Lifting Hazard Assessment for Musculoskeletal Injury Prevention

    OpenAIRE

    Spector, June T.; Lieblich, Max; Bao, Stephen; McQuade, Kevin; Hughes, Margaret

    2014-01-01

    Objectives Existing methods for practically evaluating musculoskeletal exposures such as posture and repetition in workplace settings have limitations. We aimed to automate the estimation of parameters in the revised United States National Institute for Occupational Safety and Health (NIOSH) lifting equation, a standard manual observational tool used to evaluate back injury risk related to lifting in workplace settings, using depth camera (Microsoft Kinect) and skeleton algorithm technology. ...

  16. Managing laboratory automation in a changing pharmaceutical industry

    OpenAIRE

    Rutherford, Michael L.

    1995-01-01

    The health care reform movement in the USA and increased requirements by regulatory agencies continue to have a major impact on the pharmaceutical industry and the laboratory. Laboratory management is expected to improve effciency by providing more analytical results at a lower cost, increasing customer service, reducing cycle time, while ensuring accurate results and more effective use of their staff. To achieve these expectations, many laboratories are using robotics and automated work stat...

  17. Design and development of automated TLD contamination monitor

    International Nuclear Information System (INIS)

    Thermo Luminescent Dosimeter (TLD) is issued to occupational worker to register the external exposure received during his course of work. Before sending back the TLDs for processing it is the responsibility of the parent institution to check and certify that the TLDs are free of radioactive contamination. To ease the duty of health physicist a PC based automated TLD contamination monitor was designed and developed and the details of the same are presented in this paper

  18. Portable Automated Oxygen Administration System for hypoxaemic patients

    OpenAIRE

    Alzoubi, Khawla; Alguraan, Ziyad; Omar M. Ramahi

    2016-01-01

    Oxygen is a lifesaving medication that should be offered with an administration to a patient who suffers from oxygen deficiency to avoid toxic effects of excessive oxygen supplement as well as to minimize the exposure to hypoxaemia. This work aims to automate the process of administering oxygen delivery in order to extend the continuous oxygen administration process beyond the IC units, reduce the cost of oxygen administration in terms of well-trained health care providers and equipment, prol...

  19. Improving Access to Archival Collections with Automated Entity Extraction

    OpenAIRE

    Kyle Banerjee; Max Johnson

    2015-01-01

    The complexity and diversity of archival resources make constructing rich metadata records time consuming and expensive, which in turn limits access to these valuable materials. However, significant automation of the metadata creation process would dramatically reduce the cost of providing access points, improve access to individual resources, and establish connections between resources that would otherwise remain unknown. Using a case study at Oregon Health & Science University as a len...

  20. Interdisciplinarity and Ubiquitous Internet Technologies in Support of Automation

    OpenAIRE

    Eduard Babulak Prof., Ph.D., P.Eng., Eur.Ing., C.Eng.,

    2006-01-01

    The Telecommunications and Internet Technologies have evolved dramatically during the last decade, laying solid foundation for the future generation of the Ubiquitous Internet access, omnipresent web technologies and ultimate automated information cyberspace. Recent technological advancements in the areas of global mobility, wireless technologies and miniaturization are driven by the economic and social prosperity. The current state of the art in Differentiated Networks, Health Informatics, A...

  1. Automated diagnostic system of pathological states of the circulatory system

    OpenAIRE

    Книшов, Генадій Васильович; Настенко, Євген Арнольдович; Носовець, Олена Костянтинівна; Береговий, Олександр Анатолієвич; Шаповалова, Валентина Вікторівна; Плахтій, Артур Миколайович

    2014-01-01

    The results of developing an automated system of diagnosing pathological conditions of a human blood circulatory system have been presented. The system is based on the results of researching functional bonds between arterial blood pressure measurements and cardiac rate frequency in health and disease. Nomographic charts and percentage diagrams, reflecting the type of relation depending on a blood circulatory condition, have been used. The system development has been carried out by means of th...

  2. Pitfalls in patient specific dosimetry

    International Nuclear Information System (INIS)

    Introduction: I-131 is used to treat patients with Differentiated Thyroid Cancer after thyroidectomy to eliminate the malignant tissue. The dose was calculated by the MIRD dosimetry. The aim of this paper was to analyze the pitfalls that occurred while calculating the lesion tumoricidal dose with the objective to minimize the damage to normal organs (lung and bone marrow). Radionuclide therapeutic activity was calculated after image quantitative analysis and treatment planning taking into account the radiobiology of the patient. Material and methods: 30 patients with Differentiated Thyroid Cancer were studied determining whole body I-131 retention after 3 mCi administration of this radiotracer with a planar gamma camera during 5 days or until the retained activity was less than 1 %. Images of the target and risk tissues were acquired to procure I-131 uptake and biological half life. Blood concentration of the same isotope (% Dose/liter) was also measured at different times after the isotope ingestion. Additional organ and metastatic tissue kinetic analysis was carried out. Accurate determination of the retained activity in the lesions is not easy to obtain on account of different factors that introduce important errors which have to be corrected: a) tissue Attenuation, b) Scattering, c) Collimator Septal penetration and d) Partial Volume Effect. The quantification of the activity in the lesions was performed by determining the uptake in a region of interest (ROI) corresponding to the tissue to be evaluated and comparing its activity with a known standard. From the isotope ''Residence Time'' in the whole body, the blood kinetic data and the application of the MIRD software, the maximum treatment dose that could be administered to the patient without producing injury to normal tissues, was established. Influence of other factors were also evaluated: a) Instrument dead time contribution on whole body uptake determination, b) Amount of I-131 administered activity to avoid stunning effects, c) Correct organ activity determination after instrument sensitivity stability, attenuation, scattering, collimator penetrating effect of the radiation and partial volume effect correction, d) correct blood sample anticoagulation to keep the blood homogeneity, e) Time choice for correct kinetic curve parameter determination, f) Image processing filters affecting organ volume size and ROI border limits determination, g) Choice of the standard sample for comparison with 100% of the administered activity. Experimental measurement errors were assessed to estimate the maximum possible error that could be accepted. Results: Corrected and uncorrected whole body uptake images, blood sample curves and experimental error estimation are shown. The results indicate which errors have to be considered at the most. Those are also the main teaching factors to be taken into account when the technique is set up in a Nuclear Medicine laboratory. Regretfully some of them are not easy to correct because they need special elements: 3 window spectrometer to correct for scattered radiation and septa penetration; phantom to determine the k factors corresponding to the scatter and septal penetration contribution in the photopeak, phantom with inserts to determine the Contrast Recovery curve to correct for Partial Volume Effect. In addition it is necessary to process the images data with the Mathlab software. Quantification Error Estimation: It was carried out with a ''Data Spectrum Torso Phantom'' including small known volume lesions (3 ml). Images were acquired with the same technology as for patients (3 window method attenuation correction, Partial Volume Effect correction). Determined errors were 3%. Conclusion: As a consequence of this study a training programme was written in an attempt to make useful and appropriate dosimetric studies. In the future, hybrid instruments (SPECT/CT and PET/CT) will be widely available increasing image spatial resolution, attenuation / scatter correction and processing techniques that will turn this methodology simpler

  3. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, K; Corwin, D [Northwestern University, Chicago, IL (United States); Rockne, R

    2014-06-15

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  4. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    International Nuclear Information System (INIS)

    Purpose: Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods: An EGSnrc-based user code (egscbct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results: Scatter distributions for the brain, thorax and pelvis scan were simulated within 2 % statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per patient, using a full simulation of the clinical CBCT geometry. Conclusions: This study shows that use of MC-based scatter corrections in CBCT imaging has a great potential to improve CBCT image quality. By use of powerful VRTs to predict scatter distributions and a ray tracing algorithm to calculate the primary signal, it is possible to obtain the necessary data for patient specific MC scatter correction within two hours per patient

  5. SU-C-204-02: Improved Patient-Specific Optimization of the Stopping Power Calibration for Proton Therapy Planning Using a Single Proton Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, I [Lyon 1 University and CNRS/IN2P3, UMR 5822, Villeurbanne (France); Ludwig Maximilian University, Garching, DE (Germany); Heidelberg University Hospital, Heidelberg, DE (Germany); Parodi, K [Ludwig Maximilian University, Garching, DE (Germany); Heidelberg University Hospital, Heidelberg, DE (Germany); Krah, N [Heidelberg Collaboratory for Image Processing, Heidelberg, DE (Germany)

    2015-06-15

    Purpose: We present an improved method to calculate patient-specific calibration curves to convert X-ray computed tomography (CT) Hounsfield Unit (HU) to relative stopping powers (RSP) for proton therapy treatment planning. Methods: By optimizing the HU-RSP calibration curve, the difference between a proton radiographic image and a digitally reconstructed X-ray radiography (DRR) is minimized. The feasibility of this approach has previously been demonstrated. This scenario assumes that all discrepancies between proton radiography and DRR originate from uncertainties in the HU-RSP curve. In reality, external factors cause imperfections in the proton radiography, such as misalignment compared to the DRR and unfaithful representation of geometric structures (“blurring”). We analyze these effects based on synthetic datasets of anthropomorphic phantoms and suggest an extended optimization scheme which explicitly accounts for these effects. Performance of the method is been tested for various simulated irradiation parameters. The ultimate purpose of the optimization is to minimize uncertainties in the HU-RSP calibration curve. We therefore suggest and perform a thorough statistical treatment to quantify the accuracy of the optimized HU-RSP curve. Results: We demonstrate that without extending the optimization scheme, spatial blurring (equivalent to FWHM=3mm convolution) in the proton radiographies can cause up to 10% deviation between the optimized and the ground truth HU-RSP calibration curve. Instead, results obtained with our extended method reach 1% or better correspondence. We have further calculated gamma index maps for different acceptance levels. With DTA=0.5mm and RD=0.5%, a passing ratio of 100% is obtained with the extended method, while an optimization neglecting effects of spatial blurring only reach ∼90%. Conclusion: Our contribution underlines the potential of a single proton radiography to generate a patient-specific calibration curve and to improve

  6. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    Energy Technology Data Exchange (ETDEWEB)

    Fallahpoor, M; Abbasi, M [Tehran University of Medical Sciences, Vali-Asr Hospital, Tehran, Tehran (Iran, Islamic Republic of); Sen, A [University of Houston, Houston, TX (United States); Parach, A [Shahid Sadoughi University of Medical Sciences, Yazd, Yazd (Iran, Islamic Republic of); Kalantari, F [UT Southwestern Medical Center, Dallas, TX (United States)

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  7. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    International Nuclear Information System (INIS)

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  8. WE-E-17A-07: Patient-Specific Mathematical Neuro-Oncology: Biologically-Informed Radiation Therapy and Imaging Physics

    International Nuclear Information System (INIS)

    Purpose: To demonstrate a method of generating patient-specific, biologically-guided radiation therapy (RT) plans and to quantify and predict response to RT in glioblastoma. We investigate the biological correlates and imaging physics driving T2-MRI based response to radiation therapy using an MRI simulator. Methods: We have integrated a patient-specific biomathematical model of glioblastoma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated RT optimization to construct individualized, biologically-guided plans. Patient-individualized simulations of the standard-of-care and optimized plans are compared in terms of several biological metrics quantified on MRI. An extension of the PI model is used to investigate the role of angiogenesis and its correlates in glioma response to therapy with the Proliferation-Invasion-Hypoxia- Necrosis-Angiogenesis model (PIHNA). The PIHNA model is used with a brain tissue phantom to predict tumor-induced vasogenic edema, tumor and tissue density that is used in a multi-compartmental MRI signal equation for generation of simulated T2- weighted MRIs. Results: Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized RT plans would have a significant impact on delaying tumor progression, with Days Gained increases from 21% to 105%. For the T2- MRI simulations, initial validation tests compared average simulated T2 values for white matter, tumor, and peripheral edema to values cited in the literature. Simulated results closely match the characteristic T2 value for each tissue. Conclusion: Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for RT generated biologically-guided doses that decreased normal tissue dose and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma. Simulated T2-MRI

  9. SU-C-204-02: Improved Patient-Specific Optimization of the Stopping Power Calibration for Proton Therapy Planning Using a Single Proton Radiography

    International Nuclear Information System (INIS)

    Purpose: We present an improved method to calculate patient-specific calibration curves to convert X-ray computed tomography (CT) Hounsfield Unit (HU) to relative stopping powers (RSP) for proton therapy treatment planning. Methods: By optimizing the HU-RSP calibration curve, the difference between a proton radiographic image and a digitally reconstructed X-ray radiography (DRR) is minimized. The feasibility of this approach has previously been demonstrated. This scenario assumes that all discrepancies between proton radiography and DRR originate from uncertainties in the HU-RSP curve. In reality, external factors cause imperfections in the proton radiography, such as misalignment compared to the DRR and unfaithful representation of geometric structures (“blurring”). We analyze these effects based on synthetic datasets of anthropomorphic phantoms and suggest an extended optimization scheme which explicitly accounts for these effects. Performance of the method is been tested for various simulated irradiation parameters. The ultimate purpose of the optimization is to minimize uncertainties in the HU-RSP calibration curve. We therefore suggest and perform a thorough statistical treatment to quantify the accuracy of the optimized HU-RSP curve. Results: We demonstrate that without extending the optimization scheme, spatial blurring (equivalent to FWHM=3mm convolution) in the proton radiographies can cause up to 10% deviation between the optimized and the ground truth HU-RSP calibration curve. Instead, results obtained with our extended method reach 1% or better correspondence. We have further calculated gamma index maps for different acceptance levels. With DTA=0.5mm and RD=0.5%, a passing ratio of 100% is obtained with the extended method, while an optimization neglecting effects of spatial blurring only reach ∼90%. Conclusion: Our contribution underlines the potential of a single proton radiography to generate a patient-specific calibration curve and to improve

  10. SU-D-213-04: Accounting for Volume Averaging and Material Composition Effects in An Ionization Chamber Array for Patient Specific QA

    Energy Technology Data Exchange (ETDEWEB)

    Fugal, M; McDonald, D; Jacqmin, D; Koch, N; Ellis, A; Peng, J; Ashenafi, M; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2015-06-15

    Purpose: This study explores novel methods to address two significant challenges affecting measurement of patient-specific quality assurance (QA) with IBA’s Matrixx Evolution™ ionization chamber array. First, dose calculation algorithms often struggle to accurately determine dose to the chamber array due to CT artifact and algorithm limitations. Second, finite chamber size and volume averaging effects cause additional deviation from the calculated dose. Methods: QA measurements were taken with the Matrixx positioned on the treatment table in a solid-water Multi-Cube™ phantom. To reduce the effect of CT artifact, the Matrixx CT image set was masked with appropriate materials and densities. Individual ionization chambers were masked as air, while the high-z electronic backplane and remaining solid-water material were masked as aluminum and water, respectively. Dose calculation was done using Varian’s Acuros XB™ (V11) algorithm, which is capable of predicting dose more accurately in non-biologic materials due to its consideration of each material’s atomic properties. Finally, the exported TPS dose was processed using an in-house algorithm (MATLAB) to assign the volume averaged TPS dose to each element of a corresponding 2-D matrix. This matrix was used for comparison with the measured dose. Square fields at regularly-spaced gantry angles, as well as selected patient plans were analyzed. Results: Analyzed plans showed improved agreement, with the average gamma passing rate increasing from 94 to 98%. Correction factors necessary for chamber angular dependence were reduced by 67% compared to factors measured previously, indicating that previously measured factors corrected for dose calculation errors in addition to true chamber angular dependence. Conclusion: By comparing volume averaged dose, calculated with a capable dose engine, on a phantom masked with correct materials and densities, QA results obtained with the Matrixx Evolution™ can be significantly

  11. TH-C-BRD-05: Reducing Proton Beam Range Uncertainty with Patient-Specific CT HU to RSP Calibrations Based On Single-Detector Proton Radiography

    International Nuclear Information System (INIS)

    Purpose: Beam range uncertainty in proton treatment comes primarily from converting the patient's X-ray CT (xCT) dataset to relative stopping power (RSP). Current practices use a single curve for this conversion, produced by a stoichiometric calibration based on tissue composition data for average, healthy, adult humans, but not for the individual in question. Proton radiographs produce water-equivalent path length (WEPL) maps, dependent on the RSP of tissues within the specific patient. This work investigates the use of such WEPL maps to optimize patient-specific calibration curves for reducing beam range uncertainty. Methods: The optimization procedure works on the principle of minimizing the difference between the known WEPL map, obtained from a proton radiograph, and a digitally-reconstructed WEPL map (DRWM) through an RSP dataset, by altering the calibration curve that is used to convert the xCT into an RSP dataset. DRWMs were produced with Plastimatch, an in-house developed software, and an optimization procedure was implemented in Matlab. Tests were made on a range of systems including simulated datasets with computed WEPL maps and phantoms (anthropomorphic and real biological tissue) with WEPL maps measured by single detector proton radiography. Results: For the simulated datasets, the optimizer showed excellent results. It was able to either completely eradicate or significantly reduce the root-mean-square-error (RMSE) in the WEPL for the homogeneous phantoms (to zero for individual materials or from 1.5% to 0.2% for the simultaneous optimization of multiple materials). For the heterogeneous phantom the RMSE was reduced from 1.9% to 0.3%. Conclusion: An optimization procedure has been designed to produce patient-specific calibration curves. Test results on a range of systems with different complexities and sizes have been promising for accurate beam range control in patients. This project was funded equally by the Engineering and Physical Sciences

  12. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    International Nuclear Information System (INIS)

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  13. Automated Ply Inspection (API) for AFP Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Automated Ply Inspection (API) system autonomously inspects layups created by high speed automated fiber placement (AFP) machines. API comprises a high accuracy...

  14. Laboratory automation and LIMS in forensics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hansen, Anders Johannes; Morling, Niels

    2013-01-01

    Implementation of laboratory automation and LIMS in a forensic laboratory enables the laboratory, to standardize sample processing. Automated liquid handlers can increase throughput and eliminate manual repetitive pipetting operations, known to result in occupational injuries to the technical staff...

  15. The decision exploration lab: supporting the business analyst in understanding automated decisions

    OpenAIRE

    Broeksema, Bertjan

    2014-01-01

    A Decision Management System (DMS) provides means to model and automate enterprise decisions and they are applied in a wide range of industries, among which health care, commerce, insurance, finance and transportation. These systems make millions of decisions each day without direct human supervision, impacting the life of millions of people and impacting economies at a large scale. The multiplicative effect of decision automation provides the opportunity to fine-tune the decision system. By ...

  16. Comparison of Automated Treponemal and Nontreponemal Test Algorithms as First-Line Syphilis Screening Assays

    OpenAIRE

    Huh, Hee Jin; Chung, Jae-Woo; Park, Seong Yeon; Chae, Seok Lae

    2015-01-01

    Background Automated Mediace Treponema pallidum latex agglutination (TPLA) and Mediace rapid plasma reagin (RPR) assays are used by many laboratories for syphilis diagnosis. This study compared the results of the traditional syphilis screening algorithm and a reverse algorithm using automated Mediace RPR or Mediace TPLA as first-line screening assays in subjects undergoing a health checkup. Methods Samples from 24,681 persons were included in this study. We routinely performed Mediace RPR and...

  17. Using Natural Language Processing to Improve Accuracy of Automated Notifiable Disease Reporting

    OpenAIRE

    Friedlin, Jeff; Grannis, Shaun; Overhage, J Marc

    2008-01-01

    We examined whether using a natural language processing (NLP) system results in improved accuracy and completeness of automated electronic laboratory reporting (ELR) of notifiable conditions. We used data from a community-wide health information exchange that has automated ELR functionality. We focused on methicillin-resistant Staphylococcus Aureus (MRSA), a reportable infection found in unstructured, free-text culture result reports. We used the Regenstrief EXtraction tool (REX) for this wor...

  18. Towards Automated System Synthesis Using SCIDUCTION

    OpenAIRE

    Jha, Susmit Kumar

    2011-01-01

    Automated synthesis of systems that are correct by construction has been a long-standing goal of computer science. Synthesis is a creative task and requires human intuition and skill. Its complete automation is currently beyond the capacity of programs that do automated reasoning. However, there is a pressing need for tools and techniques that can automate non-intuitive and error-prone synthesis tasks. This thesis proposes a novel synthesis approach to solve such tasks in the synthesis of pro...

  19. GUI test automation for Qt application

    OpenAIRE

    Wang, Lei

    2015-01-01

    GUI test automation is a popular and interesting subject in the testing industry. Many companies plan to start test automation projects in order to implement efficient, less expensive software testing. However, there are challenges for the testing team who lack experience performing GUI tests automation. Many GUI test automation projects have ended in failure due to mistakes made during the early stages of the project. The major work of this thesis is to find a solution to the challenges of e...

  20. Automated Integrated Analog Filter Design Issues

    OpenAIRE

    Karolis Kiela; Romualdas Navickas

    2015-01-01

    An analysis of modern automated integrated analog circuits design methods and their use in integrated filter design is done. Current modern analog circuits automated tools are based on optimization algorithms and/or new circuit generation methods. Most automated integrated filter design methods are only suited to gmC and switched current filter topologies. Here, an algorithm for an active RC integrated filter design is proposed, that can be used in automated filter designs. The algorithm is t...

  1. Automated quantification of aligned collagen for human breast carcinoma prognosis

    Directory of Open Access Journals (Sweden)

    Jeremy S Bredfeldt

    2014-01-01

    Full Text Available Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries.

  2. Automated activation-analysis system

    International Nuclear Information System (INIS)

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey are described

  3. Automated Analysis of Infinite Scenarios

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    The security of a network protocol crucially relies on the scenario in which the protocol is deployed. This paper describes syntactic constructs for modelling network scenarios and presents an automated analysis tool, which can guarantee that security properties hold in all of the (infinitely many...

  4. Automated visual inspection of textile

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    A method for automated inspection of two types of textile is presented. The goal of the inspection is to determine defects in the textile. A prototype is constructed for simulating the textile production line. At the prototype the images of the textile are acquired by a high speed line scan camera...

  5. Automation of Space Inventory Management

    Science.gov (United States)

    Fink, Patrick W.; Ngo, Phong; Wagner, Raymond; Barton, Richard; Gifford, Kevin

    2009-01-01

    This viewgraph presentation describes the utilization of automated space-based inventory management through handheld RFID readers and BioNet Middleware. The contents include: 1) Space-Based INventory Management; 2) Real-Time RFID Location and Tracking; 3) Surface Acoustic Wave (SAW) RFID; and 4) BioNet Middleware.

  6. Distribution system analysis and automation

    CERN Document Server

    Gers, Juan

    2013-01-01

    A comprehensive guide to techniques that allow engineers to simulate, analyse and optimise power distribution systems which combined with automation, underpin the emerging concept of the "smart grid". This book is supported by theoretical concepts with real-world applications and MATLAB exercises.

  7. Automating the conflict resolution process

    Science.gov (United States)

    Wike, Jeffrey S.

    1991-01-01

    The purpose is to initiate a discussion of how the conflict resolution process at the Network Control Center can be made more efficient. Described here are how resource conflicts are currently resolved as well as the impacts of automating conflict resolution in the ATDRSS era. A variety of conflict resolution strategies are presented.

  8. Automated Clustering of Similar Amendments

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The Italian Senate is clogged by computer-generated amendments. This talk will describe a simple strategy to cluster them in an automated fashion, so that the appropriate Senate procedures can be used to get rid of them in one sweep.

  9. Feasibility Analysis of Crane Automation

    Institute of Scientific and Technical Information of China (English)

    DONG Ming-xiao; MEI Xue-song; JIANG Ge-dong; ZHANG Gui-qing

    2006-01-01

    This paper summarizes the modeling methods, open-loop control and closed-loop control techniques of various forms of cranes, worldwide, and discusses their feasibilities and limitations in engineering. Then the dynamic behaviors of cranes are analyzed. Finally, we propose applied modeling methods and feasible control techniques and demonstrate the feasibilities of crane automation.

  10. Automation; The New Industrial Revolution.

    Science.gov (United States)

    Arnstein, George E.

    Automation is a word that describes the workings of computers and the innovations of automatic transfer machines in the factory. As the hallmark of the new industrial revolution, computers displace workers and create a need for new skills and retraining programs. With improved communication between industry and the educational community to…

  11. Automation of Feynman diagram evaluations

    International Nuclear Information System (INIS)

    A C-program DIANA (DIagram ANAlyser) for the automation of Feynman diagram evaluations is presented. It consists of two parts: the analyzer of diagrams and the interpreter of a special text manipulating language. This language can be used to create a source code for analytical or numerical evaluations and to keep the control of the process in general

  12. Automated methods of corrosion measurement

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Reeve, John Ch;

    1997-01-01

    to revise assumptions regarding the basis of the method, which sometimes leads to the discovery of as-yet unnoticed phenomena. The present selection of automated methods for corrosion measurements is not motivated simply by the fact that a certain measurement can be performed automatically...

  13. Teacherbot: Interventions in Automated Teaching

    Science.gov (United States)

    Bayne, Sian

    2015-01-01

    Promises of "teacher-light" tuition and of enhanced "efficiency" via the automation of teaching have been with us since the early days of digital education, sometimes embraced by academics and institutions, and sometimes resisted as a set of moves which are damaging to teacher professionalism and to the humanistic values of…

  14. Automation, Labor Productivity and Employment

    DEFF Research Database (Denmark)

    Kromann, Lene; Rose Skaksen, Jan; Sørensen, Anders

    CEBR fremlægger nu den første rapport i AIM-projektet. Rapporten viser, at der er gode muligheder for yderligere automation i en stor del af de danske fremstillingsvirksomheder. For i dag er gennemsnitligt kun omkring 30 % af virksomhedernes produktionsprocesser automatiserede. Navnlig procesområ...

  15. CCD characterization and measurements automation

    Czech Academy of Sciences Publication Activity Database

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubánek, Petr; O´Connor, P.; Prouza, Michael; Radeka, V.; Takacs, P.

    2012-01-01

    Roč. 695, Dec (2012), 188-192. ISSN 0168-9002 R&D Projects: GA MŠk ME09052 Institutional research plan: CEZ:AV0Z10100502 Keywords : CCD * characterization * test automation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.142, year: 2012

  16. Adaptation : A Partially Automated Approach

    NARCIS (Netherlands)

    Manjing, Tham; Bukhsh, F.A.; Weigand, H.

    2014-01-01

    This paper showcases the possibility of creating an adaptive auditing system. Adaptation in an audit environment need human intervention at some point. Based on a case study this paper focuses on automation of adaptation process. It is divided into solution design and validation parts. The artifact

  17. Automating the radiographic NDT process

    International Nuclear Information System (INIS)

    Automation, the removal of the human element in inspection has not been generally applied to film radiographic NDT. The justification for automation is not only productivity but also reliability of results. Film remains in the automated system of the future because of its extremely high image content, approximately 3x10 (to the power of nine) bits per 14x17. This is equivalent to 2200 computer floppy disks parts handling systems and robotics applied for manufacturing and some NDT modalities, should now be applied to film radiographic NDT systems. Automatic film handling can be achieved with the daylight NDT film handling system. Automatic film processing is becoming the standard in industry and can be coupled to the daylight system. Robots offer the opportunity to automate fully the exposure step. Finally, a computer aided interpretation appears on the horizon. A unit which laser scans a 14x27 (inch) film in 6-8 seconds can digitize film in information for further manipulation and possible automatic interrogations (computer aided interpretation). The system called FDRS (for film digital radiography system) is moving toward 50 micron (16 lines/mm) resolution. This is believed to meet the need of the majority of image content needs. (Author). 4 refs.; 21 figs

  18. Automating Shallow Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steeples, Don W.

    2004-12-09

    This seven-year, shallow-seismic reflection research project had the aim of improving geophysical imaging of possible contaminant flow paths. Thousands of chemically contaminated sites exist in the United States, including at least 3,700 at Department of Energy (DOE) facilities. Imaging technologies such as shallow seismic reflection (SSR) and ground-penetrating radar (GPR) sometimes are capable of identifying geologic conditions that might indicate preferential contaminant-flow paths. Historically, SSR has been used very little at depths shallower than 30 m, and even more rarely at depths of 10 m or less. Conversely, GPR is rarely useful at depths greater than 10 m, especially in areas where clay or other electrically conductive materials are present near the surface. Efforts to image the cone of depression around a pumping well using seismic methods were only partially successful (for complete references of all research results, see the full Final Technical Report, DOE/ER/14826-F), but peripheral results included development of SSR methods for depths shallower than one meter, a depth range that had not been achieved before. Imaging at such shallow depths, however, requires geophone intervals of the order of 10 cm or less, which makes such surveys very expensive in terms of human time and effort. We also showed that SSR and GPR could be used in a complementary fashion to image the same volume of earth at very shallow depths. The primary research focus of the second three-year period of funding was to develop and demonstrate an automated method of conducting two-dimensional (2D) shallow-seismic surveys with the goal of saving time, effort, and money. Tests involving the second generation of the hydraulic geophone-planting device dubbed the ''Autojuggie'' showed that large numbers of geophones can be placed quickly and automatically and can acquire high-quality data, although not under rough topographic conditions. In some easy

  19. You're a What? Automation Technician

    Science.gov (United States)

    Mullins, John

    2010-01-01

    Many people think of automation as laborsaving technology, but it sure keeps Jim Duffell busy. Defined simply, automation is a technique for making a device run or a process occur with minimal direct human intervention. But the functions and technologies involved in automated manufacturing are complex. Nearly all functions, from orders coming in…

  20. Library Automation : Change for Productivity in Service

    OpenAIRE

    M.A. Gopinath

    1995-01-01

    Library operations, in the context of the automation necessitate for an integrated approach and change in the perception of library's work. It examines the functional aspects, social aspects and system dynamics of library automation. Some strategies for library automation are suggested.

  1. Automated bony region identification using artificial neural networks: reliability and validation measurements

    International Nuclear Information System (INIS)

    The objective was to develop tools for automating the identification of bony structures, to assess the reliability of this technique against manual raters, and to validate the resulting regions of interest against physical surface scans obtained from the same specimen. Artificial intelligence-based algorithms have been used for image segmentation, specifically artificial neural networks (ANNs). For this study, an ANN was created and trained to identify the phalanges of the human hand. The relative overlap between the ANN and a manual tracer was 0.87, 0.82, and 0.76, for the proximal, middle, and distal index phalanx bones respectively. Compared with the physical surface scans, the ANN-generated surface representations differed on average by 0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle, and distal phalanges respectively. Furthermore, the ANN proved to segment the structures in less than one-tenth of the time required by a manual rater. The ANN has proven to be a reliable and valid means of segmenting the phalanx bones from CT images. Employing automated methods such as the ANN for segmentation, eliminates the likelihood of rater drift and inter-rater variability. Automated methods also decrease the amount of time and manual effort required to extract the data of interest, thereby making the feasibility of patient-specific modeling a reality. (orig.)

  2. Automation for a base station stability testing

    OpenAIRE

    Punnek, Elvis

    2016-01-01

    This Batchelor’s thesis was commissioned by Oy LM Ericsson Ab Oulu. The aim of it was to help to investigate and create a test automation solution for the stability testing of the LTE base station. The main objective was to create a test automation for a predefined test set. This test automation solution had to be created for specific environments and equipment. This work included creating the automation for the test cases and putting them to daily test automation jobs. The key factor...

  3. Automated output-only dynamic identification of civil engineering structures

    Science.gov (United States)

    Rainieri, C.; Fabbrocino, G.

    2010-04-01

    Modal-based damage detection algorithms are well-known techniques for structural health assessment, but they are not commonly used due to the lack of automated modal identification and tracking procedures. Development of such procedures is not a trivial task since traditional modal identification requires extensive interaction from an expert user. Nevertheless, computational efforts have to be carefully considered. If fast on-line data processing is crucial for quickly varying in time systems (such as a rocket burning fuel), a number of vibration-based condition monitoring applications are performed at very different time scales, resulting in satisfactory time steps for on-line data analysis. Moreover, promising results in the field of automated modal identification have been recently achieved. In the present paper, a literature review on this topic is presented and recent developments concerning fully automated output-only modal identification procedures are described. Some case studies are also reported in order to validate the approach. They are characterized by different levels of complexity, in terms of mode coupling, dynamic interaction effects and level of vibration. Advantages and drawbacks of the proposed approach will be pointed out with reference to available experimental results. The final objective is the implementation of a fully automated system for vibration-based structural health monitoring of civil engineering structures and identification of adequate requirements about sensor number and layout, record duration and hardware characteristics able to ensure a reliable low-cost health assessment of constructions. Results of application of the proposed methodology to modal parameter estimation in operational conditions and during ground motions induced by the recent L'Aquila earthquake will be finally presented and discussed.

  4. Automated measurement of cell motility and proliferation

    Directory of Open Access Journals (Sweden)

    Goff Julie

    2005-04-01

    Full Text Available Abstract Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non

  5. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.

    Science.gov (United States)

    Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua

    2015-12-01

    We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic

  6. Improving spot-scanning proton therapy patient specific quality assurance with HPlusQA, a second-check dose calculation engine

    Energy Technology Data Exchange (ETDEWEB)

    Mackin, Dennis; Li, Yupeng; Taylor, Michael B.; Kerr, Matthew; Holmes, Charles; Sahoo, Narayan; Poenisch, Falk; Li, Heng; Lii, Jim; Amos, Richard; Wu, Richard; Suzuki, Kazumichi; Gillin, Michael T.; Zhu, X. Ronald; Zhang, Xiaodong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2013-12-15

    Purpose: The purpose of this study was to validate the use of HPlusQA, spot-scanning proton therapy (SSPT) dose calculation software developed at The University of Texas MD Anderson Cancer Center, as second-check dose calculation software for patient-specific quality assurance (PSQA). The authors also showed how HPlusQA can be used within the current PSQA framework.Methods: The authors compared the dose calculations of HPlusQA and the Eclipse treatment planning system with 106 planar dose measurements made as part of PSQA. To determine the relative performance and the degree of correlation between HPlusQA and Eclipse, the authors compared calculated with measured point doses. Then, to determine how well HPlusQA can predict when the comparisons between Eclipse calculations and the measured dose will exceed tolerance levels, the authors compared gamma index scores for HPlusQA versus Eclipse with those of measured doses versus Eclipse. The authors introduce the αβγ transformation as a way to more easily compare gamma scores.Results: The authors compared measured and calculated dose planes using the relative depth, z/R × 100%, where z is the depth of the measurement and R is the proton beam range. For relative depths than less than 80%, both Eclipse and HPlusQA calculations were within 2 cGy of dose measurements on average. When the relative depth was greater than 80%, the agreement between the calculations and measurements fell to 4 cGy. For relative depths less than 10%, the Eclipse and HPlusQA dose discrepancies showed a negative correlation, −0.21. Otherwise, the correlation between the dose discrepancies was positive and as large as 0.6. For the dose planes in this study, HPlusQA correctly predicted when Eclipse had and had not calculated the dose to within tolerance 92% and 79% of the time, respectively. In 4 of 106 cases, HPlusQA failed to predict when the comparison between measurement and Eclipse's calculation had exceeded the tolerance levels of 3

  7. TH-C-12A-01: Develop a Patient-Specific QA Program for Radiation Therapy with On-Board MRI

    International Nuclear Information System (INIS)

    Purpose: This work describes development of the first patient-specific quality assurance (QA) program for magnetic resonance imaging guided radiation therapy (MR-IGRT). Methods: The program consisted of following components: 1) multipoint ionization chamber (IC) measurement using a 15 cm3 cubic phantom, 2) 2D stacked radiographic film dosimetry using a 30×30×20 cm3 phantom with multiple inserted ICs, 3) 3D ArcCHECK measurement with a centrally inserted IC, 4) machine delivery file verification, 5) 3D Monte-Carlo dose re-calculation with machine delivery file and phantom CT, 6) 2-head mode delivery validation in case of a malfunctioning head, and 7) independent beam-on time calculation for non-IMRT fields. Both ADCL calibrated ICs and ArcCHECK were MRI compatible. Experimental data were analyzed for the first 10 patients treated at our institution. Results: The customized phantoms allowed measuring multiple points with ICs in one delivery. Absolute IC measurements were all within 3% in all phantom geometry/shape/material combinations. Despite known uncertainty associated with film dosimetry, passing rates greater than 90% were achieved in both absolute and composite modes using TG-129 criteria. Due to the simultaneous irradiation by three radiation sources, ArcCHECK was used as a 3D relative dosimeter with angular and energy dependences uncorrected. 95–100% passing rates were obtained and the centrally inserted IC measurement assured that the overall dose normalization was within 3%. Machine delivery file verification and MC recalculated dose to the phantom results showed 98–100% passing rates, providing opportunity of moving from gamma passing rates to patient DVHbased QA metrics. Same results were obtained for the 2-head delivery mode. Manual beam-on time calculation for non-IMRT fields showed better than 5% agreement. Conclusion: We have successfully developed the first MRIGRT patient specific QA program by adopting experimental and computational dosimetry

  8. Automatic identification of organ/tissue regions in CT image data for the implementation of patient specific phantoms for treatment planning in cancer therapy

    Science.gov (United States)

    Sparks, Richard Blaine

    In vivo targeted radiotherapy has the potential to be an effective treatment for many types of cancer. Agents which show preferred uptake by cancerous tissue are labeled with radio-nuclides and administered to the patient. The preferred uptake by the cancerous tissue allows for the delivery of therapeutically effective radiation absorbed doses to tumors, while sparing normal tissue. Accurate absorbed dose estimation for targeted radiotherapy would be of great clinical value in a patient's treatment planning. One of the problems with calculating absorbed dose involves the use of geometric mathematical models of the human body for the simulation of the radiation transport. Since many patients differ markedly from these models, errors in the absorbed dose estimation procedure result from using these models. Patient specific models developed using individual patient's anatomical structure would greatly enhance the accuracy of dosimetry calculations. Patient specific anatomy data is available from CT or MRI images, but the very time consuming process of manual organ and tissue identification limits its practicality for routine clinical use. This study uses a statistical classifier to automatically identify organs and tissues from CT image data. In this study, image ``slices'' from thirty- five different subjects at approximately the same anatomical position are used to ``train'' the statistical classifier. Multi-dimensional probability distributions of image characteristics, such as location and intensity, are generated from the training images. Statistical classification rules are then used to identify organs and tissues in five previously unseen images. A variety of pre-processing and post-processing techniques are then employed to enhance the classification procedure. This study demonstrated the promise of statistical classifiers for solving segmentation problems involving human anatomy where there is an underlying pattern of structure. Despite the poor quality of

  9. SU-E-T-77: Comparison of 2D and 3D Gamma Analysis in Patient-Specific QA for Prostate VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, F; Perez, C [Hospital Central de la Defensa Gomez Ulla, Madrid, Madrid (Spain)

    2014-06-01

    Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this system by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.

  10. An Overview of Moonlight Applications Test Automation

    Directory of Open Access Journals (Sweden)

    Appasami Govindasamy

    2010-09-01

    Full Text Available Now-a-days web applications are developed by new technologies like Moonlight, Silverlight, JAVAFX, FLEX, etc. Silverlight is Microsoft's cross platform runtime and development technology for running Web-based multimedia applications in windows platform. Moonlight is an open-source implementation of the Silverlight development platform for Linux and other Unix/X11-based operating systems. It is a new technology in .Net 4.0 to develop rich interactive and attractive platform independent web applications. User Interface Test Automation is very essential for Software industries to reduce test time, cost and man power. Moonlight is new .NET technology to develop rich interactive Internet applications with the collaboration of Novel Corporation. Testing these kinds of applications are not so easy to test, especially the User interface test automation is very difficult. Software test automation has the capability to decrease the overall cost of testing and improve software quality, but most testing organizations have not been able to achieve the full potential of test automation. Many groups that implement test automation programs run into a number of common pitfalls. These problems can lead to test automation plans being completely scrapped, with the tools purchased for test automation becoming expensive. Often teams continue their automation effort, burdened with huge costs in maintaining large suites of automated test scripts. This paper will first discuss some of the key benefits of software test automation, and then examine the most common techniques used to implement software test automation of Moonlight Applications Test Automation. It will then discuss test automation and their potential. Finally, it will do test automation.

  11. Peripheral DSA with automated stepping

    International Nuclear Information System (INIS)

    Peripheral digital angiography can now be applied with automated stepping to evaluate the complete lower extremity, with one single injection of contrast medium. In general, good-quality images have been obtained. In some cases, a stationary run had to be carried out with a digital subtraction angiographic (DSA) technique. The authors report a further improvement of this method: it allows angiographic evaluation of the complete lower extremity with DSA technique after a single contrast medium injection of 60 mL. Altogether, 25 examinations were evaluated and compared with results of the nonsubtracted technique. With the DSA-technique, additional series could be reduced to only those where significant differences in flow between the extremities necessitated different timing, as known from conventional angiography as well. In conclusion, the use of DSA technique with automated stepping may totally replace conventional angiography of the peripheral arteries

  12. Automated nanomanipulation for nanodevice construction

    International Nuclear Information System (INIS)

    Nanowire field-effect transistors (nano-FETs) are nanodevices capable of highly sensitive, label-free sensing of molecules. However, significant variations in sensitivity across devices can result from poor control over device parameters, such as nanowire diameter and the number of electrode-bridging nanowires. This paper presents a fabrication approach that uses wafer-scale nanowire contact printing for throughput and uses automated nanomanipulation for precision control of nanowire number and diameter. The process requires only one photolithography mask. Using nanowire contact printing and post-processing (i.e. nanomanipulation inside a scanning electron microscope), we are able to produce devices all with a single-nanowire and similar diameters at a speed of ∼1 min/device with a success rate of 95% (n = 500). This technology represents a seamless integration of wafer-scale microfabrication and automated nanorobotic manipulation for producing nano-FET sensors with consistent response across devices. (paper)

  13. CCD characterization and measurements automation

    International Nuclear Information System (INIS)

    Modern mosaic cameras have grown both in size and in number of sensors. The required volume of sensor testing and characterization has grown accordingly. For camera projects as large as the LSST, test automation becomes a necessity. A CCD testing and characterization laboratory was built and is in operation for the LSST project. Characterization of LSST study contract sensors has been performed. The characterization process and its automation are discussed, and results are presented. Our system automatically acquires images, populates a database with metadata information, and runs express analysis. This approach is illustrated on 55Fe data analysis. 55Fe data are used to measure gain, charge transfer efficiency and charge diffusion. Examples of express analysis results are presented and discussed.

  14. Automating occupational protection records systems

    International Nuclear Information System (INIS)

    Occupational protection records have traditionally been generated by field and laboratory personnel, assembled into files in the safety office, and eventually stored in a warehouse or other facility. Until recently, these records have been primarily paper copies, often handwritten. Sometimes, the paper is microfilmed for storage. However, electronic records are beginning to replace these traditional methods. The purpose of this paper is to provide guidance for making the transition to automated record keeping and retrieval using modern computer equipment. This paper describes the types of records most readily converted to electronic record keeping and a methodology for implementing an automated record system. The process of conversion is based on a requirements analysis to assess program needs and a high level of user involvement during the development. The importance of indexing the hard copy records for easy retrieval is also discussed. The concept of linkage between related records and its importance relative to reporting, research, and litigation will be addressed. 2 figs

  15. GUI test automation with SWTBot

    OpenAIRE

    Mazurkiewicz, Milosz

    2010-01-01

    In this thesis the author presents theoretical background of GUI test automation as well as technologies, tools and methodologies required to fully understand the test program written in SWTBot. Practical part of the thesis was to implement a program testing File Menu options of Pegasus RCP application developed in Nokia Siemens Networks. Concluding this dissertation, in the author’s opinion test programs written using SWTBot are relatively easy to read and intuitive for people familiar w...

  16. Automated Periodontal Diseases Classification System

    OpenAIRE

    Aliaa A. A. Youssif; Abeer Saad Gawish,; Mohammed Elsaid Moussa

    2012-01-01

    This paper presents an efficient and innovative system for automated classification of periodontal diseases, The strength of our technique lies in the fact that it incorporates knowledge from the patients' clinical data, along with the features automatically extracted from the Haematoxylin and Eosin (H&E) stained microscopic images. Our system uses image processing techniques based on color deconvolution, morphological operations, and watershed transforms for epithelium & connective tissue se...

  17. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  18. System of automated map design

    International Nuclear Information System (INIS)

    Preprint 'System of automated map design' contains information about the program shell for construction of territory map, performing level line drawing of arbitrary two-dimension field (in particular, the radionuclide concentration field). The work schedule and data structures are supplied, as well as data on system performance. The preprint can become useful for experts in radioecology and for all persons involved in territory pollution mapping or multi-purpose geochemical mapping. (author)

  19. Magnetic Resonance Connectome Automated Pipeline

    OpenAIRE

    Gray, William R.; Bogovic, John A.; Vogelstein, Joshua T; Landman, Bennett A.; Prince, Jerry L.; Vogelstein, R. Jacob

    2011-01-01

    This manuscript presents a novel, tightly integrated pipeline for estimating a connectome, which is a comprehensive description of the neural circuits in the brain. The pipeline utilizes magnetic resonance imaging (MRI) data to produce a high-level estimate of the structural connectivity in the human brain. The Magnetic Resonance Connectome Automated Pipeline (MRCAP) is efficient and its modular construction allows researchers to modify algorithms to meet their specific requirements. The pipe...

  20. Automation of painted slate inspection

    OpenAIRE

    Carew, Tim

    2002-01-01

    This thesis is concerned with the problem of how to detect visual defects on painted slates using an automated visual inspection system. The vision system that has been developed consists of two major components. The first component addresses issues such as the mechanical implementation and interfacing the inspection system with the optical and sensing equipment whereas the second component involves the development of an image processing algorithm able to identify the visual defects present o...