WorldWideScience

Sample records for automated image analysis

  1. Automated image analysis of uterine cervical images

    Science.gov (United States)

    Li, Wenjing; Gu, Jia; Ferris, Daron; Poirson, Allen

    2007-03-01

    Cervical Cancer is the second most common cancer among women worldwide and the leading cause of cancer mortality of women in developing countries. If detected early and treated adequately, cervical cancer can be virtually prevented. Cervical precursor lesions and invasive cancer exhibit certain morphologic features that can be identified during a visual inspection exam. Digital imaging technologies allow us to assist the physician with a Computer-Aided Diagnosis (CAD) system. In colposcopy, epithelium that turns white after application of acetic acid is called acetowhite epithelium. Acetowhite epithelium is one of the major diagnostic features observed in detecting cancer and pre-cancerous regions. Automatic extraction of acetowhite regions from cervical images has been a challenging task due to specular reflection, various illumination conditions, and most importantly, large intra-patient variation. This paper presents a multi-step acetowhite region detection system to analyze the acetowhite lesions in cervical images automatically. First, the system calibrates the color of the cervical images to be independent of screening devices. Second, the anatomy of the uterine cervix is analyzed in terms of cervix region, external os region, columnar region, and squamous region. Third, the squamous region is further analyzed and subregions based on three levels of acetowhite are identified. The extracted acetowhite regions are accompanied by color scores to indicate the different levels of acetowhite. The system has been evaluated by 40 human subjects' data and demonstrates high correlation with experts' annotations.

  2. Automated Image Analysis Corrosion Working Group Update: February 1, 2018

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    These are slides for the automated image analysis corrosion working group update. The overall goals were: automate the detection and quantification of features in images (faster, more accurate), how to do this (obtain data, analyze data), focus on Laser Scanning Confocal Microscope (LCM) data (laser intensity, laser height/depth, optical RGB, optical plus laser RGB).

  3. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, Marlene; Rosenvinge, Flemming Schønning; Spillum, Erik

    2015-01-01

    in systems relying on colorimetry or turbidometry (such as Vitek-2, Phoenix, MicroScan WalkAway). The objective was to examine an automated image analysis algorithm for quantification of filamentous bacteria using the 3D digital microscopy imaging system, oCelloScope. Results Three E. coli strains displaying...

  4. Automated image analysis in the study of collagenous colitis

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Kristensson, Martin; Engel, Ulla

    2016-01-01

    PURPOSE: The aim of this study was to develop an automated image analysis software to measure the thickness of the subepithelial collagenous band in colon biopsies with collagenous colitis (CC) and incomplete CC (CCi). The software measures the thickness of the collagenous band on microscopic...... slides stained with Van Gieson (VG). PATIENTS AND METHODS: A training set consisting of ten biopsies diagnosed as CC, CCi, and normal colon mucosa was used to develop the automated image analysis (VG app) to match the assessment by a pathologist. The study set consisted of biopsies from 75 patients...

  5. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  6. Cardiac imaging: working towards fully-automated machine analysis & interpretation.

    Science.gov (United States)

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-03-01

    Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.

  7. IMAGE CONSTRUCTION TO AUTOMATION OF PROJECTIVE TECHNIQUES FOR PSYCHOPHYSIOLOGICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Natalia Pavlova

    2018-04-01

    Full Text Available The search for a solution of automation of the process of assessment of a psychological analysis of the person drawings created by it from an available set of some templates are presented at this article. It will allow to reveal more effectively infringements of persons mentality. In particular, such decision can be used for work with children who possess the developed figurative thinking, but are not yet capable of an accurate statement of the thoughts and experiences. For automation of testing by using a projective method, we construct interactive environment for visualization of compositions of the several images and then analyse

  8. Quantifying biodiversity using digital cameras and automated image analysis.

    Science.gov (United States)

    Roadknight, C. M.; Rose, R. J.; Barber, M. L.; Price, M. C.; Marshall, I. W.

    2009-04-01

    Monitoring the effects on biodiversity of extensive grazing in complex semi-natural habitats is labour intensive. There are also concerns about the standardization of semi-quantitative data collection. We have chosen to focus initially on automating the most time consuming aspect - the image analysis. The advent of cheaper and more sophisticated digital camera technology has lead to a sudden increase in the number of habitat monitoring images and information that is being collected. We report on the use of automated trail cameras (designed for the game hunting market) to continuously capture images of grazer activity in a variety of habitats at Moor House National Nature Reserve, which is situated in the North of England at an average altitude of over 600m. Rainfall is high, and in most areas the soil consists of deep peat (1m to 3m), populated by a mix of heather, mosses and sedges. The cameras have been continuously in operation over a 6 month period, daylight images are in full colour and night images (IR flash) are black and white. We have developed artificial intelligence based methods to assist in the analysis of the large number of images collected, generating alert states for new or unusual image conditions. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the manpower overheads and increase focus on important subsets in the collected data. By converting digital image data into statistical composite data it can be handled in a similar way to other biodiversity statistics thus improving the scalability of monitoring experiments. Unsupervised feature detection methods and supervised neural methods were tested and offered solutions to simplifying the process. Accurate (85 to 95%) categorization of faunal content can be obtained, requiring human intervention for only those images containing rare animals or unusual (undecidable) conditions, and

  9. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  10. Crowdsourcing and Automated Retinal Image Analysis for Diabetic Retinopathy.

    Science.gov (United States)

    Mudie, Lucy I; Wang, Xueyang; Friedman, David S; Brady, Christopher J

    2017-09-23

    As the number of people with diabetic retinopathy (DR) in the USA is expected to increase threefold by 2050, the need to reduce health care costs associated with screening for this treatable disease is ever present. Crowdsourcing and automated retinal image analysis (ARIA) are two areas where new technology has been applied to reduce costs in screening for DR. This paper reviews the current literature surrounding these new technologies. Crowdsourcing has high sensitivity for normal vs abnormal images; however, when multiple categories for severity of DR are added, specificity is reduced. ARIAs have higher sensitivity and specificity, and some commercial ARIA programs are already in use. Deep learning enhanced ARIAs appear to offer even more improvement in ARIA grading accuracy. The utilization of crowdsourcing and ARIAs may be a key to reducing the time and cost burden of processing images from DR screening.

  11. Semi-automated analysis of three-dimensional track images

    International Nuclear Information System (INIS)

    Meesen, G.; Poffijn, A.

    2001-01-01

    In the past, three-dimensional (3-d) track images in solid state detectors were difficult to obtain. With the introduction of the confocal scanning laser microscope it is now possible to record 3-d track images in a non-destructive way. These 3-d track images can latter be used to measure typical track parameters. Preparing the detectors and recording the 3-d images however is only the first step. The second step in this process is enhancing the image quality by means of deconvolution techniques to obtain the maximum possible resolution. The third step is extracting the typical track parameters. This can be done on-screen by an experienced operator. For large sets of data however, this manual technique is not desirable. This paper will present some techniques to analyse 3-d track data in an automated way by means of image analysis routines. Advanced thresholding techniques guarantee stable results in different recording situations. By using pre-knowledge about the track shape, reliable object identification is obtained. In case of ambiguity, manual intervention is possible

  12. Granulometric profiling of aeolian dust deposits by automated image analysis

    Science.gov (United States)

    Varga, György; Újvári, Gábor; Kovács, János; Jakab, Gergely; Kiss, Klaudia; Szalai, Zoltán

    2016-04-01

    Determination of granulometric parameters is of growing interest in the Earth sciences. Particle size data of sedimentary deposits provide insights into the physicochemical environment of transport, accumulation and post-depositional alterations of sedimentary particles, and are important proxies applied in paleoclimatic reconstructions. It is especially true for aeolian dust deposits with a fairly narrow grain size range as a consequence of the extremely selective nature of wind sediment transport. Therefore, various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed only from precise grain size data. As terrestrial wind-blown deposits are among the most important archives of past environmental changes, proper explanation of the proxy data is a mandatory issue. Automated imaging provides a unique technique to gather direct information on granulometric characteristics of sedimentary particles. Granulometric data obtained from automatic image analysis of Malvern Morphologi G3-ID is a rarely applied new technique for particle size and shape analyses in sedimentary geology. Size and shape data of several hundred thousand (or even million) individual particles were automatically recorded in this study from 15 loess and paleosoil samples from the captured high-resolution images. Several size (e.g. circle-equivalent diameter, major axis, length, width, area) and shape parameters (e.g. elongation, circularity, convexity) were calculated by the instrument software. At the same time, the mean light intensity after transmission through each particle is automatically collected by the system as a proxy of optical properties of the material. Intensity values are dependent on chemical composition and/or thickness of the particles. The results of the automated imaging were compared to particle size data determined by three different laser diffraction instruments

  13. Automated Image Analysis of Offshore Infrastructure Marine Biofouling

    Directory of Open Access Journals (Sweden)

    Kate Gormley

    2018-01-01

    Full Text Available In the UK, some of the oldest oil and gas installations have been in the water for over 40 years and have considerable colonisation by marine organisms, which may lead to both industry challenges and/or potential biodiversity benefits (e.g., artificial reefs. The project objective was to test the use of an automated image analysis software (CoralNet on images of marine biofouling from offshore platforms on the UK continental shelf, with the aim of (i training the software to identify the main marine biofouling organisms on UK platforms; (ii testing the software performance on 3 platforms under 3 different analysis criteria (methods A–C; (iii calculating the percentage cover of marine biofouling organisms and (iv providing recommendations to industry. Following software training with 857 images, and testing of three platforms, results showed that diversity of the three platforms ranged from low (in the central North Sea to moderate (in the northern North Sea. The two central North Sea platforms were dominated by the plumose anemone Metridium dianthus; and the northern North Sea platform showed less obvious species domination. Three different analysis criteria were created, where the method of selection of points, number of points assessed and confidence level thresholds (CT varied: (method A random selection of 20 points with CT 80%, (method B stratified random of 50 points with CT of 90% and (method C a grid approach of 100 points with CT of 90%. Performed across the three platforms, the results showed that there were no significant differences across the majority of species and comparison pairs. No significant difference (across all species was noted between confirmed annotations methods (A, B and C. It was considered that the software performed well for the classification of the main fouling species in the North Sea. Overall, the study showed that the use of automated image analysis software may enable a more efficient and consistent

  14. Automated analysis of angle closure from anterior chamber angle images.

    Science.gov (United States)

    Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin

    2014-10-21

    To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images

    Directory of Open Access Journals (Sweden)

    Jianfang Cao

    2015-01-01

    Full Text Available With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance.

  16. Application of automated image analysis to coal petrography

    Science.gov (United States)

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    The coal petrologist seeks to determine the petrographic characteristics of organic and inorganic coal constituents and their lateral and vertical variations within a single coal bed or different coal beds of a particular coal field. Definitive descriptions of coal characteristics and coal facies provide the basis for interpretation of depositional environments, diagenetic changes, and burial history and determination of the degree of coalification or metamorphism. Numerous coal core or columnar samples must be studied in detail in order to adequately describe and define coal microlithotypes, lithotypes, and lithologic facies and their variations. The large amount of petrographic information required can be obtained rapidly and quantitatively by use of an automated image-analysis system (AIAS). An AIAS can be used to generate quantitative megascopic and microscopic modal analyses for the lithologic units of an entire columnar section of a coal bed. In our scheme for megascopic analysis, distinctive bands 2 mm or more thick are first demarcated by visual inspection. These bands consist of either nearly pure microlithotypes or lithotypes such as vitrite/vitrain or fusite/fusain, or assemblages of microlithotypes. Megascopic analysis with the aid of the AIAS is next performed to determine volume percentages of vitrite, inertite, minerals, and microlithotype mixtures in bands 0.5 to 2 mm thick. The microlithotype mixtures are analyzed microscopically by use of the AIAS to determine their modal composition in terms of maceral and optically observable mineral components. Megascopic and microscopic data are combined to describe the coal unit quantitatively in terms of (V) for vitrite, (E) for liptite, (I) for inertite or fusite, (M) for mineral components other than iron sulfide, (S) for iron sulfide, and (VEIM) for the composition of the mixed phases (Xi) i = 1,2, etc. in terms of the maceral groups vitrinite V, exinite E, inertinite I, and optically observable mineral

  17. Automated X-ray image analysis for cargo security: Critical review and future promise.

    Science.gov (United States)

    Rogers, Thomas W; Jaccard, Nicolas; Morton, Edward J; Griffin, Lewis D

    2017-01-01

    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo.

  18. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    Science.gov (United States)

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  19. Automated thermal mapping techniques using chromatic image analysis

    Science.gov (United States)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  20. Automated image analysis of atomic force microscopy images of rotavirus particles

    International Nuclear Information System (INIS)

    Venkataraman, S.; Allison, D.P.; Qi, H.; Morrell-Falvey, J.L.; Kallewaard, N.L.; Crowe, J.E.; Doktycz, M.J.

    2006-01-01

    A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM

  1. Automated image analysis of atomic force microscopy images of rotavirus particles

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, S. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Allison, D.P. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996 (United States); Molecular Imaging Inc. Tempe, AZ, 85282 (United States); Qi, H. [Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Morrell-Falvey, J.L. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kallewaard, N.L. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Crowe, J.E. [Vanderbilt University Medical Center, Nashville, TN 37232-2905 (United States); Doktycz, M.J. [Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)]. E-mail: doktyczmj@ornl.gov

    2006-06-15

    A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM.

  2. Automated striatal uptake analysis of 18F-FDOPA PET images applied to Parkinson's disease patients

    International Nuclear Information System (INIS)

    Chang Icheng; Lue Kunhan; Hsieh Hungjen; Liu Shuhsin; Kao, Chinhao K.

    2011-01-01

    6-[ 18 F]Fluoro-L-DOPA (FDOPA) is a radiopharmaceutical valuable for assessing the presynaptic dopaminergic function when used with positron emission tomography (PET). More specifically, the striatal-to-occipital ratio (SOR) of FDOPA uptake images has been extensively used as a quantitative parameter in these PET studies. Our aim was to develop an easy, automated method capable of performing objective analysis of SOR in FDOPA PET images of Parkinson's disease (PD) patients. Brain images from FDOPA PET studies of 21 patients with PD and 6 healthy subjects were included in our automated striatal analyses. Images of each individual were spatially normalized into an FDOPA template. Subsequently, the image slice with the highest level of basal ganglia activity was chosen among the series of normalized images. Also, the immediate preceding and following slices of the chosen image were then selected. Finally, the summation of these three images was used to quantify and calculate the SOR values. The results obtained by automated analysis were compared with manual analysis by a trained and experienced image processing technologist. The SOR values obtained from the automated analysis had a good agreement and high correlation with manual analysis. The differences in caudate, putamen, and striatum were -0.023, -0.029, and -0.025, respectively; correlation coefficients 0.961, 0.957, and 0.972, respectively. We have successfully developed a method for automated striatal uptake analysis of FDOPA PET images. There was no significant difference between the SOR values obtained from this method and using manual analysis. Yet it is an unbiased time-saving and cost-effective program and easy to implement on a personal computer. (author)

  3. Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis.

    Science.gov (United States)

    Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J

    2012-01-01

    Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Fluorescence In Situ Hybridization (FISH Signal Analysis Using Automated Generated Projection Images

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2012-01-01

    Full Text Available Fluorescence in situ hybridization (FISH tests provide promising molecular imaging biomarkers to more accurately and reliably detect and diagnose cancers and genetic disorders. Since current manual FISH signal analysis is low-efficient and inconsistent, which limits its clinical utility, developing automated FISH image scanning systems and computer-aided detection (CAD schemes has been attracting research interests. To acquire high-resolution FISH images in a multi-spectral scanning mode, a huge amount of image data with the stack of the multiple three-dimensional (3-D image slices is generated from a single specimen. Automated preprocessing these scanned images to eliminate the non-useful and redundant data is important to make the automated FISH tests acceptable in clinical applications. In this study, a dual-detector fluorescence image scanning system was applied to scan four specimen slides with FISH-probed chromosome X. A CAD scheme was developed to detect analyzable interphase cells and map the multiple imaging slices recorded FISH-probed signals into the 2-D projection images. CAD scheme was then applied to each projection image to detect analyzable interphase cells using an adaptive multiple-threshold algorithm, identify FISH-probed signals using a top-hat transform, and compute the ratios between the normal and abnormal cells. To assess CAD performance, the FISH-probed signals were also independently visually detected by an observer. The Kappa coefficients for agreement between CAD and observer ranged from 0.69 to 1.0 in detecting/counting FISH signal spots in four testing samples. The study demonstrated the feasibility of automated FISH signal analysis that applying a CAD scheme to the automated generated 2-D projection images.

  5. Digital image analysis applied to industrial nondestructive evaluation and automated parts assembly

    International Nuclear Information System (INIS)

    Janney, D.H.; Kruger, R.P.

    1979-01-01

    Many ideas of image enhancement and analysis are relevant to the needs of the nondestructive testing engineer. These ideas not only aid the engineer in the performance of his current responsibilities, they also open to him new areas of industrial development and automation which are logical extensions of classical testing problems. The paper begins with a tutorial on the fundamentals of computerized image enhancement as applied to nondestructive testing, then progresses through pattern recognition and automated inspection to automated, or robotic, assembly procedures. It is believed that such procedures are cost-effective in many instances, and are but the logical extension of those techniques now commonly used, but often limited to analysis of data from quality-assurance images. Many references are given in order to help the reader who wishes to pursue a given idea further

  6. Automated analysis of craniofacial morphology using magnetic resonance images.

    Directory of Open Access Journals (Sweden)

    M Mallar Chakravarty

    Full Text Available Quantitative analysis of craniofacial morphology is of interest to scholars working in a wide variety of disciplines, such as anthropology, developmental biology, and medicine. T1-weighted (anatomical magnetic resonance images (MRI provide excellent contrast between soft tissues. Given its three-dimensional nature, MRI represents an ideal imaging modality for the analysis of craniofacial structure in living individuals. Here we describe how T1-weighted MR images, acquired to examine brain anatomy, can also be used to analyze facial features. Using a sample of typically developing adolescents from the Saguenay Youth Study (N = 597; 292 male, 305 female, ages: 12 to 18 years, we quantified inter-individual variations in craniofacial structure in two ways. First, we adapted existing nonlinear registration-based morphological techniques to generate iteratively a group-wise population average of craniofacial features. The nonlinear transformations were used to map the craniofacial structure of each individual to the population average. Using voxel-wise measures of expansion and contraction, we then examined the effects of sex and age on inter-individual variations in facial features. Second, we employed a landmark-based approach to quantify variations in face surfaces. This approach involves: (a placing 56 landmarks (forehead, nose, lips, jaw-line, cheekbones, and eyes on a surface representation of the MRI-based group average; (b warping the landmarks to the individual faces using the inverse nonlinear transformation estimated for each person; and (3 using a principal components analysis (PCA of the warped landmarks to identify facial features (i.e. clusters of landmarks that vary in our sample in a correlated fashion. As with the voxel-wise analysis of the deformation fields, we examined the effects of sex and age on the PCA-derived spatial relationships between facial features. Both methods demonstrated significant sexual dimorphism in

  7. Automated image analysis of lateral lumber X-rays by a form model

    International Nuclear Information System (INIS)

    Mahnken, A.H.; Kohnen, M.; Steinberg, S.; Wein, B.B.; Guenther, R.W.

    2001-01-01

    Development of a software for fully automated image analysis of lateral lumbar spine X-rays. Material and method: Using the concept of active shape models, we developed a software that produces a form model of the lumbar spine from lateral lumbar spine radiographs and runs an automated image segmentation. This model is able to detect lumbar vertebrae automatically after the filtering of digitized X-ray images. The model was trained with 20 lateral lumbar spine radiographs with no pathological findings before we evaluated the software with 30 further X-ray images which were sorted by image quality ranging from one (best) to three (worst). There were 10 images for each quality. Results: Image recognition strongly depended on image quality. In group one 52 and in group two 51 out of 60 vertebral bodies including the sacrum were recognized, but in group three only 18 vertebral bodies were properly identified. Conclusion: Fully automated and reliable recognition of vertebral bodies from lateral spine radiographs using the concept of active shape models is possible. The precision of this technique is limited by the superposition of different structures. Further improvements are necessary. Therefore standardized image quality and enlargement of the training data set are required. (orig.) [de

  8. An automated image analysis system to measure and count organisms in laboratory microcosms.

    Directory of Open Access Journals (Sweden)

    François Mallard

    Full Text Available 1. Because of recent technological improvements in the way computer and digital camera perform, the potential use of imaging for contributing to the study of communities, populations or individuals in laboratory microcosms has risen enormously. However its limited use is due to difficulties in the automation of image analysis. 2. We present an accurate and flexible method of image analysis for detecting, counting and measuring moving particles on a fixed but heterogeneous substrate. This method has been specifically designed to follow individuals, or entire populations, in experimental laboratory microcosms. It can be used in other applications. 3. The method consists in comparing multiple pictures of the same experimental microcosm in order to generate an image of the fixed background. This background is then used to extract, measure and count the moving organisms, leaving out the fixed background and the motionless or dead individuals. 4. We provide different examples (springtails, ants, nematodes, daphnia to show that this non intrusive method is efficient at detecting organisms under a wide variety of conditions even on faintly contrasted and heterogeneous substrates. 5. The repeatability and reliability of this method has been assessed using experimental populations of the Collembola Folsomia candida. 6. We present an ImageJ plugin to automate the analysis of digital pictures of laboratory microcosms. The plugin automates the successive steps of the analysis and recursively analyses multiple sets of images, rapidly producing measurements from a large number of replicated microcosms.

  9. Semi-automated digital image analysis of patellofemoral joint space width from lateral knee radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Grochowski, S.J. [Mayo Clinic, Department of Orthopedic Surgery, Rochester (United States); Amrami, K.K. [Mayo Clinic, Department of Radiology, Rochester (United States); Kaufman, K. [Mayo Clinic, Department of Orthopedic Surgery, Rochester (United States); Mayo Clinic/Foundation, Biomechanics Laboratory, Department of Orthopedic Surgery, Charlton North L-110L, Rochester (United States)

    2005-10-01

    To design a semi-automated program to measure minimum patellofemoral joint space width (JSW) using standing lateral view radiographs. Lateral patellofemoral knee radiographs were obtained from 35 asymptomatic subjects. The radiographs were analyzed to report both the repeatability of the image analysis program and the reproducibility of JSW measurements within a 2 week period. The results were also compared with manual measurements done by an experienced musculoskeletal radiologist. The image analysis program was shown to have an excellent coefficient of repeatability of 0.18 and 0.23 mm for intra- and inter-observer measurements respectively. The manual method measured a greater minimum JSW than the automated method. Reproducibility between days was comparable to other published results, but was less satisfactory for both manual and semi-automated measurements. The image analysis program had an inter-day coefficient of repeatability of 1.24 mm, which was lower than 1.66 mm for the manual method. A repeatable semi-automated method for measurement of the patellofemoral JSW from radiographs has been developed. The method is more accurate than manual measurements. However, the between-day reproducibility is higher than the intra-day reproducibility. Further investigation of the protocol for obtaining sequential lateral knee radiographs is needed in order to reduce the between-day variability. (orig.)

  10. Automated Analysis of Microscopic Images of Isolated Pancreatic Islets

    Czech Academy of Sciences Publication Activity Database

    Habart, D.; Švihlík, J.; Schier, Jan; Cahová, M.; Girman, P.; Zacharovová, K.; Berková, Z.; Kříž, J.; Fabryová, E.; Kosinová, L.; Papáčková, Z.; Kybic, J.; Saudek, F.

    2016-01-01

    Roč. 25, č. 12 (2016), s. 2145-2156 ISSN 0963-6897 Grant - others:GA ČR(CZ) GA14-10440S Institutional support: RVO:67985556 Keywords : enumeration of islets * image processing * image segmentation * islet transplantation * machine-learning * quality control Subject RIV: IN - Informatics, Computer Science Impact factor: 3.006, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/schier-0465945.pdf

  11. Automated quantification and sizing of unbranched filamentous cyanobacteria by model based object oriented image analysis

    OpenAIRE

    Zeder, M; Van den Wyngaert, S; Köster, O; Felder, K M; Pernthaler, J

    2010-01-01

    Quantification and sizing of filamentous cyanobacteria in environmental samples or cultures are time-consuming and are often performed by using manual or semiautomated microscopic analysis. Automation of conventional image analysis is difficult because filaments may exhibit great variations in length and patchy autofluorescence. Moreover, individual filaments frequently cross each other in microscopic preparations, as deduced by modeling. This paper describes a novel approach based on object-...

  12. OpenComet: An automated tool for comet assay image analysis

    Directory of Open Access Journals (Sweden)

    Benjamin M. Gyori

    2014-01-01

    Full Text Available Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.

  13. Automation of chromosomes analysis. Automatic system for image processing

    International Nuclear Information System (INIS)

    Le Go, R.; Cosnac, B. de; Spiwack, A.

    1975-01-01

    The A.S.T.I. is an automatic system relating to the fast conversational processing of all kinds of images (cells, chromosomes) converted to a numerical data set (120000 points, 16 grey levels stored in a MOS memory) through a fast D.O. analyzer. The system performs automatically the isolation of any individual image, the area and weighted area of which are computed. These results are directly displayed on the command panel and can be transferred to a mini-computer for further computations. A bright spot allows parts of an image to be picked out and the results to be displayed. This study is particularly directed towards automatic karyo-typing [fr

  14. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images

    International Nuclear Information System (INIS)

    Laak, Jeroen A.W.M. van der; Dijkman, Henry B.P.M.; Pahlplatz, Martin M.M.

    2006-01-01

    The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000x to 200,000x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy

  15. Cost minimisation analysis: kilovoltage imaging with automated repositioning versus electronic portal imaging in image-guided radiotherapy for prostate cancer.

    Science.gov (United States)

    Gill, S; Younie, S; Rolfo, A; Thomas, J; Siva, S; Fox, C; Kron, T; Phillips, D; Tai, K H; Foroudi, F

    2012-10-01

    To compare the treatment time and cost of prostate cancer fiducial marker image-guided radiotherapy (IGRT) using orthogonal kilovoltage imaging (KVI) and automated couch shifts and orthogonal electronic portal imaging (EPI) and manual couch shifts. IGRT treatment delivery times were recorded automatically on either unit. Costing was calculated from real costs derived from the implementation of a new radiotherapy centre. To derive cost per minute for EPI and KVI units the total annual setting up and running costs were divided by the total annual working time. The cost per IGRT fraction was calculated by multiplying the cost per minute by the duration of treatment. A sensitivity analysis was conducted to test the robustness of our analysis. Treatment times without couch shift were compared. Time data were analysed for 8648 fractions, 6057 from KVI treatment and 2591 from EPI treatment from a total of 294 patients. The median time for KVI treatment was 6.0 min (interquartile range 5.1-7.4 min) and for EPI treatment it was 10.0 min (interquartile range 8.3-11.8 min) (P value time for EPI was 8.8 min and for KVI was 5.1 min. Treatment time is less on KVI units compared with EPI units. This is probably due to automation of couch shift and faster evaluation of imaging on KVI units. Annual running costs greatly outweigh initial setting up costs and therefore the cost per fraction was less with KVI, despite higher initial costs. The selection of appropriate IGRT equipment can make IGRT practical within radiotherapy departments. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of an Automated Analysis Tool for Prostate Cancer Prediction Using Multiparametric Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Matthias C Roethke

    Full Text Available To evaluate the diagnostic performance of an automated analysis tool for the assessment of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI of the prostate.A fully automated analysis tool was used for a retrospective analysis of mpMRI sets (T2-weighted, T1-weighted dynamic contrast-enhanced, and diffusion-weighted sequences. The software provided a malignancy prediction value for each image pixel, defined as Malignancy Attention Index (MAI that can be depicted as a colour map overlay on the original images. The malignancy maps were compared to histopathology derived from a combination of MRI-targeted and systematic transperineal MRI/TRUS-fusion biopsies.In total, mpMRI data of 45 patients were evaluated. With a sensitivity of 85.7% (with 95% CI of 65.4-95.0, a specificity of 87.5% (with 95% CI of 69.0-95.7 and a diagnostic accuracy of 86.7% (with 95% CI of 73.8-93.8 for detection of prostate cancer, the automated analysis results corresponded well with the reported diagnostic accuracies by human readers based on the PI-RADS system in the current literature.The study revealed comparable diagnostic accuracies for the detection of prostate cancer of a user-independent MAI-based automated analysis tool and PI-RADS-scoring-based human reader analysis of mpMRI. Thus, the analysis tool could serve as a detection support system for less experienced readers. The results of the study also suggest the potential of MAI-based analysis for advanced lesion assessments, such as cancer extent and staging prediction.

  17. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis.

    Science.gov (United States)

    Slusarewicz, Paul; Pagano, Stefanie; Mills, Christopher; Popa, Gabriel; Chow, K Martin; Mendenhall, Michael; Rodgers, David W; Nielsen, Martin K

    2016-07-01

    Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (P<0.0001). This demonstrates the feasibility of a simple, automated on-site test to detect and/or enumerate parasite eggs in mammalian faeces without the need for a laboratory microscope, and highlights the potential of smartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  18. The impact of air pollution on the level of micronuclei measured by automated image analysis

    Czech Academy of Sciences Publication Activity Database

    Rössnerová, Andrea; Špátová, Milada; Rossner, P.; Solanský, I.; Šrám, Radim

    2009-01-01

    Roč. 669, 1-2 (2009), s. 42-47 ISSN 0027-5107 R&D Projects: GA AV ČR 1QS500390506; GA MŠk 2B06088; GA MŠk 2B08005 Institutional research plan: CEZ:AV0Z50390512 Keywords : micronuclei * binucleated cells * automated image analysis Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.556, year: 2009

  19. Extraction of the number of peroxisomes in yeast cells by automated image analysis.

    Science.gov (United States)

    Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli

    2006-01-01

    An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.

  20. Scoring of radiation-induced micronuclei in cytokinesis-blocked human lymphocytes by automated image analysis

    International Nuclear Information System (INIS)

    Verhaegen, F.; Seuntjens, J.; Thierens, H.

    1994-01-01

    The micronucleus assay in human lymphocytes is, at present, frequently used to assess chromosomal damage caused by ionizing radiation or mutagens. Manual scoring of micronuclei (MN) by trained personnel is very time-consuming, tiring work, and the results depend on subjective interpretation of scoring criteria. More objective scoring can be accomplished only if the test can be automated. Furthermore, an automated system allows scoring of large numbers of cells, thereby increasing the statistical significance of the results. This is of special importance for screening programs for low doses of chromosome-damaging agents. In this paper, the first results of our effort to automate the micronucleus assay with an image-analysis system are represented. The method we used is described in detail, and the results are compared to those of other groups. Our system is able to detect 88% of the binucleated lymphocytes on the slides. The procedure consists of a fully automated localization of binucleated cells and counting of the MN within these cells, followed by a simple and fast manual operation in which the false positives are removed. Preliminary measurements for blood samples irradiated with a dose of 1 Gy X-rays indicate that the automated system can find 89% ± 12% of the micronuclei within the binucleated cells compared to a manual screening. 18 refs., 8 figs., 1 tab

  1. Automated detection of regions of interest for tissue microarray experiments: an image texture analysis

    International Nuclear Information System (INIS)

    Karaçali, Bilge; Tözeren, Aydin

    2007-01-01

    Recent research with tissue microarrays led to a rapid progress toward quantifying the expressions of large sets of biomarkers in normal and diseased tissue. However, standard procedures for sampling tissue for molecular profiling have not yet been established. This study presents a high throughput analysis of texture heterogeneity on breast tissue images for the purpose of identifying regions of interest in the tissue for molecular profiling via tissue microarray technology. Image texture of breast histology slides was described in terms of three parameters: the percentage of area occupied in an image block by chromatin (B), percentage occupied by stroma-like regions (P), and a statistical heterogeneity index H commonly used in image analysis. Texture parameters were defined and computed for each of the thousands of image blocks in our dataset using both the gray scale and color segmentation. The image blocks were then classified into three categories using the texture feature parameters in a novel statistical learning algorithm. These categories are as follows: image blocks specific to normal breast tissue, blocks specific to cancerous tissue, and those image blocks that are non-specific to normal and disease states. Gray scale and color segmentation techniques led to identification of same regions in histology slides as cancer-specific. Moreover the image blocks identified as cancer-specific belonged to those cell crowded regions in whole section image slides that were marked by two pathologists as regions of interest for further histological studies. These results indicate the high efficiency of our automated method for identifying pathologic regions of interest on histology slides. Automation of critical region identification will help minimize the inter-rater variability among different raters (pathologists) as hundreds of tumors that are used to develop an array have typically been evaluated (graded) by different pathologists. The region of interest

  2. A method for the automated detection phishing websites through both site characteristics and image analysis

    Science.gov (United States)

    White, Joshua S.; Matthews, Jeanna N.; Stacy, John L.

    2012-06-01

    Phishing website analysis is largely still a time-consuming manual process of discovering potential phishing sites, verifying if suspicious sites truly are malicious spoofs and if so, distributing their URLs to the appropriate blacklisting services. Attackers increasingly use sophisticated systems for bringing phishing sites up and down rapidly at new locations, making automated response essential. In this paper, we present a method for rapid, automated detection and analysis of phishing websites. Our method relies on near real-time gathering and analysis of URLs posted on social media sites. We fetch the pages pointed to by each URL and characterize each page with a set of easily computed values such as number of images and links. We also capture a screen-shot of the rendered page image, compute a hash of the image and use the Hamming distance between these image hashes as a form of visual comparison. We provide initial results demonstrate the feasibility of our techniques by comparing legitimate sites to known fraudulent versions from Phishtank.com, by actively introducing a series of minor changes to a phishing toolkit captured in a local honeypot and by performing some initial analysis on a set of over 2.8 million URLs posted to Twitter over a 4 days in August 2011. We discuss the issues encountered during our testing such as resolvability and legitimacy of URL's posted on Twitter, the data sets used, the characteristics of the phishing sites we discovered, and our plans for future work.

  3. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  4. CEST ANALYSIS: AUTOMATED CHANGE DETECTION FROM VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    M. Ehlers

    2012-08-01

    Full Text Available A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST of the change algorithms is applied to calculate the probability of change for a particular location. CEST

  5. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya

    DEFF Research Database (Denmark)

    Juul Bøgelund Hansen, Morten; Abramoff, M. D.; Folk, J. C.

    2015-01-01

    Objective Digital retinal imaging is an established method of screening for diabetic retinopathy (DR). It has been established that currently about 1% of the world's blind or visually impaired is due to DR. However, the increasing prevalence of diabetes mellitus and DR is creating an increased...... workload on those with expertise in grading retinal images. Safe and reliable automated analysis of retinal images may support screening services worldwide. This study aimed to compare the Iowa Detection Program (IDP) ability to detect diabetic eye diseases (DED) to human grading carried out at Moorfields...... predictive value of IDP versus the human grader as reference standard. Results Altogether 3,460 participants were included. 113 had DED, giving a prevalence of 3.3%(95% CI, 2.7-3.9%). Sensitivity of the IDP to detect DED as by the human grading was 91.0%(95% CI, 88.0-93.4%). The IDP ability to detect DED...

  6. Quantification of sterol-specific response in human macrophages using automated imaged-based analysis.

    Science.gov (United States)

    Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E

    2017-12-13

    The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.

  7. Bacterial growth on surfaces: Automated image analysis for quantification of growth rate-related parameters

    DEFF Research Database (Denmark)

    Møller, S.; Sternberg, Claus; Poulsen, L. K.

    1995-01-01

    species-specific hybridizations with fluorescence-labelled ribosomal probes to estimate the single-cell concentration of RNA. By automated analysis of digitized images of stained cells, we determined four independent growth rate-related parameters: cellular RNA and DNA contents, cell volume......, and the frequency of dividing cells in a cell population. These parameters were used to compare physiological states of liquid-suspended and surfacegrowing Pseudomonas putida KT2442 in chemostat cultures. The major finding is that the correlation between substrate availability and cellular growth rate found...

  8. Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples.

    Science.gov (United States)

    Zhou, Zhi; Pons, Marie Noëlle; Raskin, Lutgarde; Zilles, Julie L

    2007-05-01

    When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An automated image analysis program that detects cells from 4',6'-diamidino-2-phenylindole (DAPI) micrographs and extracts the maximum and mean fluorescence intensities for each cell from corresponding FISH images was developed with the software Visilog. Intensity thresholds were not consistent even for duplicate analyses, so alternative ways of classifying signals were investigated. In the resulting method, the intensity data were divided into clusters using fuzzy c-means clustering, and the resulting clusters were classified as target (positive) or nontarget (negative). A manual quality control confirmed this classification. With this method, 50.4, 72.1, and 64.9% of the cells in two swine manure samples and one soil sample, respectively, were positive as determined with a 16S rRNA-targeted bacterial probe (S-D-Bact-0338-a-A-18). Manual counting resulted in corresponding values of 52.3, 70.6, and 61.5%, respectively. In two swine manure samples and one soil sample 21.6, 12.3, and 2.5% of the cells were positive with an archaeal probe (S-D-Arch-0915-a-A-20), respectively. Manual counting resulted in corresponding values of 22.4, 14.0, and 2.9%, respectively. This automated method should facilitate quantitative analysis of FISH images for a variety of complex environmental samples.

  9. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis.

    Science.gov (United States)

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2016-02-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.

  10. Automated discrimination of lower and higher grade gliomas based on histopathological image analysis

    Directory of Open Access Journals (Sweden)

    Hojjat Seyed Mousavi

    2015-01-01

    Full Text Available Introduction: Histopathological images have rich structural information, are multi-channel in nature and contain meaningful pathological information at various scales. Sophisticated image analysis tools that can automatically extract discriminative information from the histopathology image slides for diagnosis remain an area of significant research activity. In this work, we focus on automated brain cancer grading, specifically glioma grading. Grading of a glioma is a highly important problem in pathology and is largely done manually by medical experts based on an examination of pathology slides (images. To complement the efforts of clinicians engaged in brain cancer diagnosis, we develop novel image processing algorithms and systems to automatically grade glioma tumor into two categories: Low-grade glioma (LGG and high-grade glioma (HGG which represent a more advanced stage of the disease. Results: We propose novel image processing algorithms based on spatial domain analysis for glioma tumor grading that will complement the clinical interpretation of the tissue. The image processing techniques are developed in close collaboration with medical experts to mimic the visual cues that a clinician looks for in judging of the grade of the disease. Specifically, two algorithmic techniques are developed: (1 A cell segmentation and cell-count profile creation for identification of Pseudopalisading Necrosis, and (2 a customized operation of spatial and morphological filters to accurately identify microvascular proliferation (MVP. In both techniques, a hierarchical decision is made via a decision tree mechanism. If either Pseudopalisading Necrosis or MVP is found present in any part of the histopathology slide, the whole slide is identified as HGG, which is consistent with World Health Organization guidelines. Experimental results on the Cancer Genome Atlas database are presented in the form of: (1 Successful detection rates of pseudopalisading necrosis

  11. Automated analysis of heterogeneous carbon nanostructures by high-resolution electron microscopy and on-line image processing

    International Nuclear Information System (INIS)

    Toth, P.; Farrer, J.K.; Palotas, A.B.; Lighty, J.S.; Eddings, E.G.

    2013-01-01

    High-resolution electron microscopy is an efficient tool for characterizing heterogeneous nanostructures; however, currently the analysis is a laborious and time-consuming manual process. In order to be able to accurately and robustly quantify heterostructures, one must obtain a statistically high number of micrographs showing images of the appropriate sub-structures. The second step of analysis is usually the application of digital image processing techniques in order to extract meaningful structural descriptors from the acquired images. In this paper it will be shown that by applying on-line image processing and basic machine vision algorithms, it is possible to fully automate the image acquisition step; therefore, the number of acquired images in a given time can be increased drastically without the need for additional human labor. The proposed automation technique works by computing fields of structural descriptors in situ and thus outputs sets of the desired structural descriptors in real-time. The merits of the method are demonstrated by using combustion-generated black carbon samples. - Highlights: ► The HRTEM analysis of heterogeneous nanostructures is a tedious manual process. ► Automatic HRTEM image acquisition and analysis can improve data quantity and quality. ► We propose a method based on on-line image analysis for the automation of HRTEM image acquisition. ► The proposed method is demonstrated using HRTEM images of soot particles

  12. Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy.

    Science.gov (United States)

    Irwin, David J; Byrne, Matthew D; McMillan, Corey T; Cooper, Felicia; Arnold, Steven E; Lee, Edward B; Van Deerlin, Vivianna M; Xie, Sharon X; Lee, Virginia M-Y; Grossman, Murray; Trojanowski, John Q

    2016-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. © The Author(s) 2015.

  13. Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy

    Science.gov (United States)

    Irwin, David J.; Byrne, Matthew D.; McMillan, Corey T.; Cooper, Felicia; Arnold, Steven E.; Lee, Edward B.; Van Deerlin, Vivianna M.; Xie, Sharon X.; Lee, Virginia M.-Y.; Grossman, Murray; Trojanowski, John Q.

    2015-01-01

    Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. PMID:26538548

  14. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya.

    Science.gov (United States)

    Hansen, Morten B; Abràmoff, Michael D; Folk, James C; Mathenge, Wanjiku; Bastawrous, Andrew; Peto, Tunde

    2015-01-01

    Digital retinal imaging is an established method of screening for diabetic retinopathy (DR). It has been established that currently about 1% of the world's blind or visually impaired is due to DR. However, the increasing prevalence of diabetes mellitus and DR is creating an increased workload on those with expertise in grading retinal images. Safe and reliable automated analysis of retinal images may support screening services worldwide. This study aimed to compare the Iowa Detection Program (IDP) ability to detect diabetic eye diseases (DED) to human grading carried out at Moorfields Reading Centre on the population of Nakuru Study from Kenya. Retinal images were taken from participants of the Nakuru Eye Disease Study in Kenya in 2007/08 (n = 4,381 participants [NW6 Topcon Digital Retinal Camera]). First, human grading was performed for the presence or absence of DR, and for those with DR this was sub-divided in to referable or non-referable DR. The automated IDP software was deployed to identify those with DR and also to categorize the severity of DR. The primary outcomes were sensitivity, specificity, and positive and negative predictive value of IDP versus the human grader as reference standard. Altogether 3,460 participants were included. 113 had DED, giving a prevalence of 3.3% (95% CI, 2.7-3.9%). Sensitivity of the IDP to detect DED as by the human grading was 91.0% (95% CI, 88.0-93.4%). The IDP ability to detect DED gave an AUC of 0.878 (95% CI 0.850-0.905). It showed a negative predictive value of 98%. The IDP missed no vision threatening retinopathy in any patients and none of the false negative cases met criteria for treatment. In this epidemiological sample, the IDP's grading was comparable to that of human graders'. It therefore might be feasible to consider inclusion into usual epidemiological grading.

  15. Automated Analysis of 123I-beta-CIT SPECT Images with Statistical Probabilistic Anatomical Mapping

    International Nuclear Information System (INIS)

    Eo, Jae Seon; Lee, Hoyoung; Lee, Jae Sung; Kim, Yu Kyung; Jeon, Bumseok; Lee, Dong Soo

    2014-01-01

    Population-based statistical probabilistic anatomical maps have been used to generate probabilistic volumes of interest for analyzing perfusion and metabolic brain imaging. We investigated the feasibility of automated analysis for dopamine transporter images using this technique and evaluated striatal binding potentials in Parkinson's disease and Wilson's disease. We analyzed 2β-Carbomethoxy-3β-(4- 123 I-iodophenyl)tropane ( 123 I-beta-CIT) SPECT images acquired from 26 people with Parkinson's disease (M:F=11:15,mean age=49±12 years), 9 people with Wilson's disease (M: F=6:3, mean age=26±11 years) and 17 normal controls (M:F=5:12, mean age=39±16 years). A SPECT template was created using striatal statistical probabilistic map images. All images were spatially normalized onto the template, and probability-weighted regional counts in striatal structures were estimated. The binding potential was calculated using the ratio of specific and nonspecific binding activities at equilibrium. Voxel-based comparisons between groups were also performed using statistical parametric mapping. Qualitative assessment showed that spatial normalizations of the SPECT images were successful for all images. The striatal binding potentials of participants with Parkinson's disease and Wilson's disease were significantly lower than those of normal controls. Statistical parametric mapping analysis found statistically significant differences only in striatal regions in both disease groups compared to controls. We successfully evaluated the regional 123 I-beta-CIT distribution using the SPECT template and probabilistic map data automatically. This procedure allows an objective and quantitative comparison of the binding potential, which in this case showed a significantly decreased binding potential in the striata of patients with Parkinson's disease or Wilson's disease

  16. Automated classification and quantitative analysis of arterial and venous vessels in fundus images

    Science.gov (United States)

    Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng

    2018-02-01

    It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).

  17. How automated image analysis techniques help scientists in species identification and classification?

    Science.gov (United States)

    Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder

    2017-09-04

    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.

  18. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Science.gov (United States)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Duque, Duarte; Granja, Sara; Correia-Pinto, Jorge; Vilaça, João L.

    2014-01-01

    Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers. PMID:25250057

  19. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Directory of Open Access Journals (Sweden)

    Pedro L. Rodrigues

    2014-01-01

    Full Text Available Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.

  20. Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automated anatomical interpretation and differential analysis.

    Science.gov (United States)

    Verbeeck, Nico; Spraggins, Jeffrey M; Murphy, Monika J M; Wang, Hui-Dong; Deutch, Ariel Y; Caprioli, Richard M; Van de Plas, Raf

    2017-07-01

    Imaging mass spectrometry (IMS) is a molecular imaging technology that can measure thousands of biomolecules concurrently without prior tagging, making it particularly suitable for exploratory research. However, the data size and dimensionality often makes thorough extraction of relevant information impractical. To help guide and accelerate IMS data analysis, we recently developed a framework that integrates IMS measurements with anatomical atlases, opening up opportunities for anatomy-driven exploration of IMS data. One example is the automated anatomical interpretation of ion images, where empirically measured ion distributions are automatically decomposed into their underlying anatomical structures. While offering significant potential, IMS-atlas integration has thus far been restricted to the Allen Mouse Brain Atlas (AMBA) and mouse brain samples. Here, we expand the applicability of this framework by extending towards new animal species and a new set of anatomical atlases retrieved from the Scalable Brain Atlas (SBA). Furthermore, as many SBA atlases are based on magnetic resonance imaging (MRI) data, a new registration pipeline was developed that enables direct non-rigid IMS-to-MRI registration. These developments are demonstrated on protein-focused FTICR IMS measurements from coronal brain sections of a Parkinson's disease (PD) rat model. The measurements are integrated with an MRI-based rat brain atlas from the SBA. The new rat-focused IMS-atlas integration is used to perform automated anatomical interpretation and to find differential ions between healthy and diseased tissue. IMS-atlas integration can serve as an important accelerator in IMS data exploration, and with these new developments it can now be applied to a wider variety of animal species and modalities. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2017. Published by Elsevier B.V.

  1. Automated local bright feature image analysis of nuclear protein distribution identifies changes in tissue phenotype

    International Nuclear Information System (INIS)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-01-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues

  2. Automated local bright feature image analysis of nuclear proteindistribution identifies changes in tissue phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, David; Sudar, Damir; Bator, Carol; Bissell, Mina

    2006-02-01

    The organization of nuclear proteins is linked to cell and tissue phenotypes. When cells arrest proliferation, undergo apoptosis, or differentiate, the distribution of nuclear proteins changes. Conversely, forced alteration of the distribution of nuclear proteins modifies cell phenotype. Immunostaining and fluorescence microscopy have been critical for such findings. However, there is an increasing need for quantitative analysis of nuclear protein distribution to decipher epigenetic relationships between nuclear structure and cell phenotype, and to unravel the mechanisms linking nuclear structure and function. We have developed imaging methods to quantify the distribution of fluorescently-stained nuclear protein NuMA in different mammary phenotypes obtained using three-dimensional cell culture. Automated image segmentation of DAPI-stained nuclei was generated to isolate thousands of nuclei from three-dimensional confocal images. Prominent features of fluorescently-stained NuMA were detected using a novel local bright feature analysis technique, and their normalized spatial density calculated as a function of the distance from the nuclear perimeter to its center. The results revealed marked changes in the distribution of the density of NuMA bright features as non-neoplastic cells underwent phenotypically normal acinar morphogenesis. In contrast, we did not detect any reorganization of NuMA during the formation of tumor nodules by malignant cells. Importantly, the analysis also discriminated proliferating non-neoplastic cells from proliferating malignant cells, suggesting that these imaging methods are capable of identifying alterations linked not only to the proliferation status but also to the malignant character of cells. We believe that this quantitative analysis will have additional applications for classifying normal and pathological tissues.

  3. A methodology for automated CPA extraction using liver biopsy image analysis and machine learning techniques.

    Science.gov (United States)

    Tsipouras, Markos G; Giannakeas, Nikolaos; Tzallas, Alexandros T; Tsianou, Zoe E; Manousou, Pinelopi; Hall, Andrew; Tsoulos, Ioannis; Tsianos, Epameinondas

    2017-03-01

    Collagen proportional area (CPA) extraction in liver biopsy images provides the degree of fibrosis expansion in liver tissue, which is the most characteristic histological alteration in hepatitis C virus (HCV). Assessment of the fibrotic tissue is currently based on semiquantitative staging scores such as Ishak and Metavir. Since its introduction as a fibrotic tissue assessment technique, CPA calculation based on image analysis techniques has proven to be more accurate than semiquantitative scores. However, CPA has yet to reach everyday clinical practice, since the lack of standardized and robust methods for computerized image analysis for CPA assessment have proven to be a major limitation. The current work introduces a three-stage fully automated methodology for CPA extraction based on machine learning techniques. Specifically, clustering algorithms have been employed for background-tissue separation, as well as for fibrosis detection in liver tissue regions, in the first and the third stage of the methodology, respectively. Due to the existence of several types of tissue regions in the image (such as blood clots, muscle tissue, structural collagen, etc.), classification algorithms have been employed to identify liver tissue regions and exclude all other non-liver tissue regions from CPA computation. For the evaluation of the methodology, 79 liver biopsy images have been employed, obtaining 1.31% mean absolute CPA error, with 0.923 concordance correlation coefficient. The proposed methodology is designed to (i) avoid manual threshold-based and region selection processes, widely used in similar approaches presented in the literature, and (ii) minimize CPA calculation time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis

    OpenAIRE

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2015-01-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and ...

  5. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    Science.gov (United States)

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  6. Automated segmentation of muscle and adipose tissue on CT images for human body composition analysis

    Science.gov (United States)

    Chung, Howard; Cobzas, Dana; Birdsell, Laura; Lieffers, Jessica; Baracos, Vickie

    2009-02-01

    The ability to compute body composition in cancer patients lends itself to determining the specific clinical outcomes associated with fat and lean tissue stores. For example, a wasting syndrome of advanced disease associates with shortened survival. Moreover, certain tissue compartments represent sites for drug distribution and are likely determinants of chemotherapy efficacy and toxicity. CT images are abundant, but these cannot be fully exploited unless there exist practical and fast approaches for tissue quantification. Here we propose a fully automated method for segmenting muscle, visceral and subcutaneous adipose tissues, taking the approach of shape modeling for the analysis of skeletal muscle. Muscle shape is represented using PCA encoded Free Form Deformations with respect to a mean shape. The shape model is learned from manually segmented images and used in conjunction with a tissue appearance prior. VAT and SAT are segmented based on the final deformed muscle shape. In comparing the automatic and manual methods, coefficients of variation (COV) (1 - 2%), were similar to or smaller than inter- and intra-observer COVs reported for manual segmentation.

  7. Automated analysis for early signs of cerebral infarctions on brain X-ray CT images

    International Nuclear Information System (INIS)

    Oshima, Kazuki; Hara, Takeshi; Zhou, X.; Muramatsu, Chisako; Fujita, Hiroshi; Sakashita, Keiji

    2010-01-01

    t-PA (tissue plasminogen activator) thrombolysis is an effective clinical treatment for the acute cerebral infarction by breakdown to blood clots. However there is a risk of hemorrhage with its use. The guideline of the treatment is denying cerebral hemorrhage and widespread Early CT sign (ECS) on CT images. In this study, we analyzed the CT value of normal brain and ECS with normal brain model by comparing patient brain CT scan with a statistical normal model. Our method has constructed normal brain models consisted of 60 normal brain X-ray CT images. We calculated Z-score based on statistical model for 16 cases of cerebral infarction with ECS, 3 cases of cerebral infarction without ECS, and 25 cases of normal brain. The results of statistical analysis showed that there was a statistically significant difference between control and abnormal groups. This result implied that the automated detection scheme for ECS by using Z-score would be a possible application for brain computer-aided diagnosis (CAD). (author)

  8. Comparison of manual and semi-automated delineation of regions of interest for radioligand PET imaging analysis

    International Nuclear Information System (INIS)

    Chow, Tiffany W; Verhoeff, Nicolaas PLG; Takeshita, Shinichiro; Honjo, Kie; Pataky, Christina E; St Jacques, Peggy L; Kusano, Maggie L; Caldwell, Curtis B; Ramirez, Joel; Black, Sandra

    2007-01-01

    As imaging centers produce higher resolution research scans, the number of man-hours required to process regional data has become a major concern. Comparison of automated vs. manual methodology has not been reported for functional imaging. We explored validation of using automation to delineate regions of interest on positron emission tomography (PET) scans. The purpose of this study was to ascertain improvements in image processing time and reproducibility of a semi-automated brain region extraction (SABRE) method over manual delineation of regions of interest (ROIs). We compared 2 sets of partial volume corrected serotonin 1a receptor binding potentials (BPs) resulting from manual vs. semi-automated methods. BPs were obtained from subjects meeting consensus criteria for frontotemporal degeneration and from age- and gender-matched healthy controls. Two trained raters provided each set of data to conduct comparisons of inter-rater mean image processing time, rank order of BPs for 9 PET scans, intra- and inter-rater intraclass correlation coefficients (ICC), repeatability coefficients (RC), percentages of the average parameter value (RM%), and effect sizes of either method. SABRE saved approximately 3 hours of processing time per PET subject over manual delineation (p < .001). Quality of the SABRE BP results was preserved relative to the rank order of subjects by manual methods. Intra- and inter-rater ICC were high (>0.8) for both methods. RC and RM% were lower for the manual method across all ROIs, indicating less intra-rater variance across PET subjects' BPs. SABRE demonstrated significant time savings and no significant difference in reproducibility over manual methods, justifying the use of SABRE in serotonin 1a receptor radioligand PET imaging analysis. This implies that semi-automated ROI delineation is a valid methodology for future PET imaging analysis

  9. An automated classification system for the differentiation of obstructive lung diseases based on the textural analysis of HRCT images

    International Nuclear Information System (INIS)

    Park, Seong Hoon; Seo, Joon Beom; Kim, Nam Kug; Lee, Young Kyung; Kim, Song Soo; Chae, Eun Jin; Lee, June Goo

    2007-01-01

    To develop an automated classification system for the differentiation of obstructive lung diseases based on the textural analysis of HRCT images, and to evaluate the accuracy and usefulness of the system. For textural analysis, histogram features, gradient features, run length encoding, and a co-occurrence matrix were employed. A Bayesian classifier was used for automated classification. The images (image number n = 256) were selected from the HRCT images obtained from 17 healthy subjects (n = 67), 26 patients with bronchiolitis obliterans (n = 70), 28 patients with mild centrilobular emphysema (n = 65), and 21 patients with panlobular emphysema or severe centrilobular emphysema (n = 63). An five-fold cross-validation method was used to assess the performance of the system. Class-specific sensitivities were analyzed and the overall accuracy of the system was assessed with kappa statistics. The sensitivity of the system for each class was as follows: normal lung 84.9%, bronchiolitis obliterans 83.8%, mild centrilobular emphysema 77.0%, and panlobular emphysema or severe centrilobular emphysema 95.8%. The overall performance for differentiating each disease and the normal lung was satisfactory with a kappa value of 0.779. An automated classification system for the differentiation between obstructive lung diseases based on the textural analysis of HRCT images was developed. The proposed system discriminates well between the various obstructive lung diseases and the normal lung

  10. Automated analysis of retinal images for detection of referable diabetic retinopathy.

    Science.gov (United States)

    Abràmoff, Michael D; Folk, James C; Han, Dennis P; Walker, Jonathan D; Williams, David F; Russell, Stephen R; Massin, Pascale; Cochener, Beatrice; Gain, Philippe; Tang, Li; Lamard, Mathieu; Moga, Daniela C; Quellec, Gwénolé; Niemeijer, Meindert

    2013-03-01

    The diagnostic accuracy of computer detection programs has been reported to be comparable to that of specialists and expert readers, but no computer detection programs have been validated in an independent cohort using an internationally recognized diabetic retinopathy (DR) standard. To determine the sensitivity and specificity of the Iowa Detection Program (IDP) to detect referable diabetic retinopathy (RDR). In primary care DR clinics in France, from January 1, 2005, through December 31, 2010, patients were photographed consecutively, and retinal color images were graded for retinopathy severity according to the International Clinical Diabetic Retinopathy scale and macular edema by 3 masked independent retinal specialists and regraded with adjudication until consensus. The IDP analyzed the same images at a predetermined and fixed set point. We defined RDR as more than mild nonproliferative retinopathy and/or macular edema. A total of 874 people with diabetes at risk for DR. Sensitivity and specificity of the IDP to detect RDR, area under the receiver operating characteristic curve, sensitivity and specificity of the retinal specialists' readings, and mean interobserver difference (κ). The RDR prevalence was 21.7% (95% CI, 19.0%-24.5%). The IDP sensitivity was 96.8% (95% CI, 94.4%-99.3%) and specificity was 59.4% (95% CI, 55.7%-63.0%), corresponding to 6 of 874 false-negative results (none met treatment criteria). The area under the receiver operating characteristic curve was 0.937 (95% CI, 0.916-0.959). Before adjudication and consensus, the sensitivity/specificity of the retinal specialists were 0.80/0.98, 0.71/1.00, and 0.91/0.95, and the mean intergrader κ was 0.822. The IDP has high sensitivity and specificity to detect RDR. Computer analysis of retinal photographs for DR and automated detection of RDR can be implemented safely into the DR screening pipeline, potentially improving access to screening and health care productivity and reducing visual loss

  11. Automated analysis of images acquired with electronic portal imaging device during delivery of quality assurance plans for inversely optimized arc therapy

    DEFF Research Database (Denmark)

    Fredh, Anna; Korreman, Stine; Rosenschöld, Per Munck af

    2010-01-01

    This work presents an automated method for comprehensively analyzing EPID images acquired for quality assurance of RapidArc treatment delivery. In-house-developed software has been used for the analysis and long-term results from measurements on three linacs are presented....

  12. Quantification of Eosinophilic Granule Protein Deposition in Biopsies of Inflammatory Skin Diseases by Automated Image Analysis of Highly Sensitive Immunostaining

    Directory of Open Access Journals (Sweden)

    Peter Kiehl

    1999-01-01

    Full Text Available Eosinophilic granulocytes are major effector cells in inflammation. Extracellular deposition of toxic eosinophilic granule proteins (EGPs, but not the presence of intact eosinophils, is crucial for their functional effect in situ. As even recent morphometric approaches to quantify the involvement of eosinophils in inflammation have been only based on cell counting, we developed a new method for the cell‐independent quantification of EGPs by image analysis of immunostaining. Highly sensitive, automated immunohistochemistry was done on paraffin sections of inflammatory skin diseases with 4 different primary antibodies against EGPs. Image analysis of immunostaining was performed by colour translation, linear combination and automated thresholding. Using strictly standardized protocols, the assay was proven to be specific and accurate concerning segmentation in 8916 fields of 520 sections, well reproducible in repeated measurements and reliable over 16 weeks observation time. The method may be valuable for the cell‐independent segmentation of immunostaining in other applications as well.

  13. Towards an automated analysis of video-microscopy images of fungal morphogenesis

    Directory of Open Access Journals (Sweden)

    Diéguez-Uribeondo, Javier

    2005-06-01

    Full Text Available Fungal morphogenesis is an exciting field of cell biology and several mathematical models have been developed to describe it. These models require experimental evidences to be corroborated and, therefore, there is a continuous search for new microscopy and image analysis techniques. In this work, we have used a Canny-edge-detector based technique to automate the generation of hyphal profiles and calculation of morphogenetic parameters such as diameter, elongation rates and hyphoid fitness. The results show that the data obtained with this technique are similar to published data generated with manualbased tracing techniques and that have been carried out on the same species or genus. Thus, we show that application of edge detector-based technique to hyphal growth represents an efficient and accurate method to study hyphal morphogenesis. This represents the first step towards an automated analysis of videomicroscopy images of fungal morphogenesis.La morfogénesis de los hongos es un área de estudio de gran relevancia en la biología celular y en la que se han desarrollado varios modelos matemáticos. Los modelos matemáticos de procesos biológicos precisan de pruebas experimentales que apoyen y corroboren las predicciones teóricas y, por este motivo, existe una búsqueda continua de nuevas técnicas de microscopía y análisis de imágenes para su aplicación en el estudio del crecimiento celular. En este trabajo hemos utilizado una técnica basada en un detector de contornos llamado “Canny-edge-detectorâ€� con el objetivo de automatizar la generación de perfiles de hifas y el cálculo de parámetros morfogenéticos, tales como: el diámetro, la velocidad de elongación y el ajuste con el perfil hifoide, es decir, el perfil teórico de las hifas de los hongos. Los resultados obtenidos son similares a los datos publicados a partir de técnicas manuales de trazado de contornos, generados en la misma especie y género. De esta manera

  14. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.

    Science.gov (United States)

    Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian

    2009-01-01

    The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous

  15. Image analysis for the automated estimation of clonal growth and its application to the growth of smooth muscle cells.

    Science.gov (United States)

    Gavino, V C; Milo, G E; Cornwell, D G

    1982-03-01

    Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.

  16. Automated medical image segmentation techniques

    Directory of Open Access Journals (Sweden)

    Sharma Neeraj

    2010-01-01

    Full Text Available Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT and Magnetic resonance (MR imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images.

  17. Automated Image Analysis in Undetermined Sections of Human Permanent Third Molars

    DEFF Research Database (Denmark)

    Bjørndal, Lars; Darvann, Tron Andre; Bro-Nielsen, Morten

    1997-01-01

    . Sixty-three photomicrographs (x100), equally distributed among the three sectioning profiles, were scanned in a high-resolution scanner to produce images for the analysis. After initial user interaction for the description of training classes on one image, an automatic segmentation of the images...... sectioning profiles should be analysed. The use of advanced image processing on undemineralized tooth sections provides a rational foundation for further work on the reactions of the odontoblasts to external injuries including dental caries....

  18. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Collette, R. [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Colorado School of Mines, Nuclear Science and Engineering Program, 1500 Illinois St, Golden, CO 80401 (United States); Buesch, C. [Oregon State University, 1500 SW Jefferson St., Corvallis, OR 97331 (United States); Keiser, D.D.; Williams, W.; Miller, B.D.; Schulthess, J. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2016-07-15

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program. - Highlights: • Automated image processing is used to extract fission gas bubble data from irradiated U−Mo fuel samples. • Verification and validation tests are performed to ensure the algorithm's accuracy. • Fission bubble parameters are predictably difficult to compare across samples of varying compositions. • The 2-D results suggest the need for more homogenized fuel sampling in future studies. • The results also demonstrate the value of 3-D reconstruction techniques.

  19. Automated microscopic characterization of metallic ores with image analysis: a key to improve ore processing. I: test of the methodology

    International Nuclear Information System (INIS)

    Berrezueta, E.; Castroviejo, R.

    2007-01-01

    Ore microscopy has traditionally been an important support to control ore processing, but the volume of present day processes is beyond the reach of human operators. Automation is therefore compulsory, but its development through digital image analysis, DIA, is limited by various problems, such as the similarity in reflectance values of some important ores, their anisotropism, and the performance of instruments and methods. The results presented show that automated identification and quantification by DIA are possible through multiband (RGB) determinations with a research 3CCD video camera on reflected light microscope. These results were obtained by systematic measurement of selected ores accounting for most of the industrial applications. Polarized light is avoided, so the effects of anisotropism can be neglected. Quality control at various stages and statistical analysis are important, as is the application of complementary criteria (e.g. metallogenetic). The sequential methodology is described and shown through practical examples. (Author)

  20. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    Science.gov (United States)

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without

  1. Automated kidney morphology measurements from ultrasound images using texture and edge analysis

    Science.gov (United States)

    Ravishankar, Hariharan; Annangi, Pavan; Washburn, Michael; Lanning, Justin

    2016-04-01

    In a typical ultrasound scan, a sonographer measures Kidney morphology to assess renal abnormalities. Kidney morphology can also help to discriminate between chronic and acute kidney failure. The caliper placements and volume measurements are often time consuming and an automated solution will help to improve accuracy, repeatability and throughput. In this work, we developed an automated Kidney morphology measurement solution from long axis Ultrasound scans. Automated kidney segmentation is challenging due to wide variability in kidney shape, size, weak contrast of the kidney boundaries and presence of strong edges like diaphragm, fat layers. To address the challenges and be able to accurately localize and detect kidney regions, we present a two-step algorithm that makes use of edge and texture information in combination with anatomical cues. First, we use an edge analysis technique to localize kidney region by matching the edge map with predefined templates. To accurately estimate the kidney morphology, we use textural information in a machine learning algorithm framework using Haar features and Gradient boosting classifier. We have tested the algorithm on 45 unseen cases and the performance against ground truth is measured by computing Dice overlap, % error in major and minor axis of kidney. The algorithm shows successful performance on 80% cases.

  2. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Science.gov (United States)

    Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Kyrala, G. A.; Springer, P.; Bradley, D. K.; Town, R. P. J.

    2016-11-01

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ˜4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  3. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. F., E-mail: khan9@llnl.gov; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Springer, P.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  4. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images

    International Nuclear Information System (INIS)

    Chang, Ruey-Feng; Hou, Yu-Ling; Lo, Chung-Ming; Huang, Chiun-Sheng; Chen, Jeon-Hor; Kim, Won Hwa; Chang, Jung Min; Bae, Min Sun; Moon, Woo Kyung

    2015-01-01

    Purpose: Breast tissue composition is considered to be associated with breast cancer risk. This study aimed to develop a computer-aided classification (CAC) system to automatically classify echotexture patterns as heterogeneous or homogeneous using automated breast ultrasound (ABUS) images. Methods: A CAC system was proposed that can recognize breast echotexture patterns in ABUS images. For each case, the echotexture pattern was assessed by two expert radiologists and classified as heterogeneous or homogeneous. After neutrosophic image transformation and fuzzy c-mean clusterings, the lower and upper boundaries of the fibroglandular tissues were defined. Then, the number of hypoechoic regions and histogram features were extracted from the fibroglandular tissues, and the support vector machine model with the leave-one-out cross-validation method was utilized as the classifier. The authors’ database included a total of 208 ABUS images of the breasts of 104 females. Results: The accuracies of the proposed system for the classification of heterogeneous and homogeneous echotexture patterns were 93.48% (43/46) and 92.59% (150/162), respectively, with an overall Az (area under the receiver operating characteristic curve) of 0.9786. The agreement between the radiologists and the proposed system was almost perfect, with a kappa value of 0.814. Conclusions: The use of ABUS and the proposed method can provide quantitative information on the echotexture patterns of the breast and can be used to evaluate whether breast echotexture patterns are associated with breast cancer risk in the future

  5. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ruey-Feng [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan and Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Hou, Yu-Ling [Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan (China); Lo, Chung-Ming [Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chiun-Sheng [Department of Surgery, National Taiwan University Hospital, Taipei 10617, Taiwan (China); Chen, Jeon-Hor [Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung 82445, Taiwan and Tu and Yuen Center for Functional Onco-Imaging and Department of Radiological Science, University of California, Irvine, California 92697 (United States); Kim, Won Hwa; Chang, Jung Min; Bae, Min Sun; Moon, Woo Kyung, E-mail: moonwk@snu.ac.kr [Department of Radiology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-08-15

    Purpose: Breast tissue composition is considered to be associated with breast cancer risk. This study aimed to develop a computer-aided classification (CAC) system to automatically classify echotexture patterns as heterogeneous or homogeneous using automated breast ultrasound (ABUS) images. Methods: A CAC system was proposed that can recognize breast echotexture patterns in ABUS images. For each case, the echotexture pattern was assessed by two expert radiologists and classified as heterogeneous or homogeneous. After neutrosophic image transformation and fuzzy c-mean clusterings, the lower and upper boundaries of the fibroglandular tissues were defined. Then, the number of hypoechoic regions and histogram features were extracted from the fibroglandular tissues, and the support vector machine model with the leave-one-out cross-validation method was utilized as the classifier. The authors’ database included a total of 208 ABUS images of the breasts of 104 females. Results: The accuracies of the proposed system for the classification of heterogeneous and homogeneous echotexture patterns were 93.48% (43/46) and 92.59% (150/162), respectively, with an overall Az (area under the receiver operating characteristic curve) of 0.9786. The agreement between the radiologists and the proposed system was almost perfect, with a kappa value of 0.814. Conclusions: The use of ABUS and the proposed method can provide quantitative information on the echotexture patterns of the breast and can be used to evaluate whether breast echotexture patterns are associated with breast cancer risk in the future.

  6. Fast-FISH Detection and Semi-Automated Image Analysis of Numerical Chromosome Aberrations in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Arif Esa

    1998-01-01

    Full Text Available A new fluorescence in situ hybridization (FISH technique called Fast-FISH in combination with semi-automated image analysis was applied to detect numerical aberrations of chromosomes 8 and 12 in interphase nuclei of peripheral blood lymphocytes and bone marrow cells from patients with acute myelogenous leukemia (AML and chronic lymphocytic leukemia (CLL. Commercially available α-satellite DNA probes specific for the centromere regions of chromosome 8 and chromosome 12, respectively, were used. After application of the Fast-FISH protocol, the microscopic images of the fluorescence-labelled cell nuclei were recorded by the true color CCD camera Kappa CF 15 MC and evaluated quantitatively by computer analysis on a PC. These results were compared to results obtained from the same type of specimens using the same analysis system but with a standard FISH protocol. In addition, automated spot counting after both FISH techniques was compared to visual spot counting after standard FISH. A total number of about 3,000 cell nuclei was evaluated. For quantitative brightness parameters, a good correlation between standard FISH labelling and Fast-FISH was found. Automated spot counting after Fast-FISH coincided within a few percent to automated and visual spot counting after standard FISH. The examples shown indicate the reliability and reproducibility of Fast-FISH and its potential for automatized interphase cell diagnostics of numerical chromosome aberrations. Since the Fast-FISH technique requires a hybridization time as low as 1/20 of established standard FISH techniques, omitting most of the time consuming working steps in the protocol, it may contribute considerably to clinical diagnostics. This may especially be interesting in cases where an accurate result is required within a few hours.

  7. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    Science.gov (United States)

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  8. CometQ: An automated tool for the detection and quantification of DNA damage using comet assay image analysis.

    Science.gov (United States)

    Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip

    2016-09-01

    DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The

  9. Immunohistochemical Ki-67/KL1 double stains increase accuracy of Ki-67 indices in breast cancer and simplify automated image analysis

    DEFF Research Database (Denmark)

    Nielsen, Patricia S; Bentzer, Nina K; Jensen, Vibeke

    2014-01-01

    observers and automated image analysis. RESULTS: Indices were predominantly higher for single stains than double stains (P≤0.002), yet the difference between observers was statistically significant (PPearson correlation coefficient for manual and automated indices ranged from 0.......69 to 0.85 (Pcorrelating automated indices with tumor characteristics, for example, tumor size (P... stains, Ki-67 should be quantified on double stains to reach a higher accuracy. Automated indices correlated well with manual estimates and tumor characteristics, and they are thus possibly valuable tools in future exploration of Ki-67 in breast cancer....

  10. Automation of activation analysis

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Ivanets, V.N.; Filippov, V.V.

    1985-01-01

    The basic data on the methods and equipment of activation analysis are presented. Recommendations on the selection of activation analysis techniques, and especially the technique envisaging the use of short-lived isotopes, are given. The equipment possibilities to increase dataway carrying capacity, using modern computers for the automation of the analysis and data processing procedure, are shown

  11. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python

    Directory of Open Access Journals (Sweden)

    Nicolas eRey-Villamizar

    2014-04-01

    Full Text Available In this article, we describe use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis task, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral brain tissue images surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels, 6,000$times$10,000$times$500 voxels with 16 bits/voxel, implying image sizes exceeding 250GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analytics for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment consisting. Our Python script enables efficient data storage and movement between compute and storage servers, logging all processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  12. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2016-09-01

    Full Text Available Aquatic vegetation has important ecological and regulatory functions and should be monitored in order to detect ecosystem changes. Field data collection is often costly and time-consuming; remote sensing with unmanned aircraft systems (UASs provides aerial images with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the identification of non-submerged aquatic vegetation at the species level. However, manual mapping is labour-intensive, and while automated classification methods are available, they have rarely been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands. We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic vegetation at three levels of detail at five test sites (100 m × 100 m differing in vegetation complexity. We used object-based image analysis and tested two classification methods (threshold classification and Random Forest using eCognition®. The automated classification results were compared to results from manual mapping. Using threshold classification, overall accuracy at the five test sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94% for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation, automated classification was more time-efficient than manual mapping. This study demonstrated that automated classification of non-submerged aquatic vegetation from true-colour UAS images was feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the preferred mapping method (manual versus automated the desired level of

  13. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey

    Science.gov (United States)

    Xue, Yong; Chen, Shihui; Liu, Yong

    2017-01-01

    Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182

  14. Time efficiency and diagnostic accuracy of new automated myocardial perfusion analysis software in 320-row CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rief, Matthias; Stenzei, Fabian; Kranz, Anisha; Schlattmann, Peter; Dewey, Marc [Dept. of Radiology, Charite - Universiteitsmedizin Berlin, Berlin (Greece)

    2013-01-15

    We aimed to evaluate the time efficiency and diagnostic accuracy of automated myocardial computed tomography perfusion (CTP) image analysis software. 320-row CTP was performed in 30 patients, and analyses were conducted independently by three different blinded readers by the use of two recent software releases (version 4.6 and novel version 4.71GR001, Toshiba, Tokyo, Japan). Analysis times were compared, and automated epi- and endocardial contour detection was subjectively rated in five categories (excellent, good, fair, poor and very poor). As semi-quantitative perfusion parameters, myocardial attenuation and transmural perfusion ratio (TPR) were calculated for each myocardial segment and agreement was tested by using the intraclass correlation coefficient (ICC). Conventional coronary angiography served as reference standard. The analysis time was significantly reduced with the novel automated software version as compared with the former release (Reader 1: 43:08 ± 11:39 min vs. 09:47 ± 04:51 min, Reader 2: 42:07 ± 06:44 min vs. 09:42 ± 02:50 min and Reader 3: 21:38 ± 3:44 min vs. 07:34 ± 02:12 min; p < 0.001 for all). Epi- and endocardial contour detection for the novel software was rated to be significantly better (p < 0.001) than with the former software. ICCs demonstrated strong agreement (≥ 0.75) for myocardial attenuation in 93% and for TPR in 82%. Diagnostic accuracy for the two software versions was not significantly different (p 0.169) as compared with conventional coronary angiography. The novel automated CTP analysis software offers enhanced time efficiency with an improvement by a factor of about four, while maintaining diagnostic accuracy.

  15. Scaling up Ecological Measurements of Coral Reefs Using Semi-Automated Field Image Collection and Analysis

    Directory of Open Access Journals (Sweden)

    Manuel González-Rivero

    2016-01-01

    Full Text Available Ecological measurements in marine settings are often constrained in space and time, with spatial heterogeneity obscuring broader generalisations. While advances in remote sensing, integrative modelling and meta-analysis enable generalisations from field observations, there is an underlying need for high-resolution, standardised and geo-referenced field data. Here, we evaluate a new approach aimed at optimising data collection and analysis to assess broad-scale patterns of coral reef community composition using automatically annotated underwater imagery, captured along 2 km transects. We validate this approach by investigating its ability to detect spatial (e.g., across regions and temporal (e.g., over years change, and by comparing automated annotation errors to those of multiple human annotators. Our results indicate that change of coral reef benthos can be captured at high resolution both spatially and temporally, with an average error below 5%, among key benthic groups. Cover estimation errors using automated annotation varied between 2% and 12%, slightly larger than human errors (which varied between 1% and 7%, but small enough to detect significant changes among dominant groups. Overall, this approach allows a rapid collection of in-situ observations at larger spatial scales (km than previously possible, and provides a pathway to link, calibrate, and validate broader analyses across even larger spatial scales (10–10,000 km2.

  16. Development and application of an automated analysis method for individual cerebral perfusion single photon emission tomography images

    International Nuclear Information System (INIS)

    Cluckie, Alice Jane

    2001-01-01

    Neurological images may be analysed by performing voxel by voxel comparisons with a group of control subject images. An automated, 3D, voxel-based method has been developed for the analysis of individual single photon emission tomography (SPET) scans. Clusters of voxels are identified that represent regions of abnormal radiopharmaceutical uptake. Morphological operators are applied to reduce noise in the clusters, then quantitative estimates of the size and degree of the radiopharmaceutical uptake abnormalities are derived. Statistical inference has been performed using a Monte Carlo method that has not previously been applied to SPET scans, or for the analysis of individual images. This has been validated for group comparisons of SPET scans and for the analysis of an individual image using comparison with a group. Accurate statistical inference was obtained independent of experimental factors such as degrees of freedom, image smoothing and voxel significance level threshold. The analysis method has been evaluated for application to cerebral perfusion SPET imaging in ischaemic stroke. It has been shown that useful quantitative estimates, high sensitivity and high specificity may be obtained. Sensitivity and the accuracy of signal quantification were found to be dependent on the operator defined analysis parameters. Recommendations for the values of these parameters have been made. The analysis method developed has been compared with an established method and shown to result in higher specificity for the data and analysis parameter sets tested. In addition, application to a group of ischaemic stroke patient SPET scans has demonstrated its clinical utility. The influence of imaging conditions has been assessed using phantom data acquired with different gamma camera SPET acquisition parameters. A lower limit of five million counts and standardisation of all acquisition parameters has been recommended for the analysis of individual SPET scans. (author)

  17. AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA.

    Science.gov (United States)

    Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard

    2011-01-01

    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method

  18. A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ

    Directory of Open Access Journals (Sweden)

    Schulze Katja

    2011-11-01

    Full Text Available Abstract Background Currently established methods to identify viable and non-viable cells of cyanobacteria are either time-consuming (eg. plating or preparation-intensive (eg. fluorescent staining. In this paper we present a new and fast viability assay for unicellular cyanobacteria, which uses red chlorophyll fluorescence and an unspecific green autofluorescence for the differentiation of viable and non-viable cells without the need of sample preparation. Results The viability assay for unicellular cyanobacteria using red and green autofluorescence was established and validated for the model organism Synechocystis sp. PCC 6803. Both autofluorescence signals could be observed simultaneously allowing a direct classification of viable and non-viable cells. The results were confirmed by plating/colony count, absorption spectra and chlorophyll measurements. The use of an automated fluorescence microscope and a novel ImageJ based image analysis plugin allow a semi-automated analysis. Conclusions The new method simplifies the process of viability analysis and allows a quick and accurate analysis. Furthermore results indicate that a combination of the new assay with absorption spectra or chlorophyll concentration measurements allows the estimation of the vitality of cells.

  19. Automated MicroSPECT/MicroCT Image Analysis of the Mouse Thyroid Gland.

    Science.gov (United States)

    Cheng, Peng; Hollingsworth, Brynn; Scarberry, Daniel; Shen, Daniel H; Powell, Kimerly; Smart, Sean C; Beech, John; Sheng, Xiaochao; Kirschner, Lawrence S; Menq, Chia-Hsiang; Jhiang, Sissy M

    2017-11-01

    The ability of thyroid follicular cells to take up iodine enables the use of radioactive iodine (RAI) for imaging and targeted killing of RAI-avid thyroid cancer following thyroidectomy. To facilitate identifying novel strategies to improve 131 I therapeutic efficacy for patients with RAI refractory disease, it is desired to optimize image acquisition and analysis for preclinical mouse models of thyroid cancer. A customized mouse cradle was designed and used for microSPECT/CT image acquisition at 1 hour (t1) and 24 hours (t24) post injection of 123 I, which mainly reflect RAI influx/efflux equilibrium and RAI retention in the thyroid, respectively. FVB/N mice with normal thyroid glands and TgBRAF V600E mice with thyroid tumors were imaged. In-house CTViewer software was developed to streamline image analysis with new capabilities, along with display of 3D voxel-based 123 I gamma photon intensity in MATLAB. The customized mouse cradle facilitates consistent tissue configuration among image acquisitions such that rigid body registration can be applied to align serial images of the same mouse via the in-house CTViewer software. CTViewer is designed specifically to streamline SPECT/CT image analysis with functions tailored to quantify thyroid radioiodine uptake. Automatic segmentation of thyroid volumes of interest (VOI) from adjacent salivary glands in t1 images is enabled by superimposing the thyroid VOI from the t24 image onto the corresponding aligned t1 image. The extent of heterogeneity in 123 I accumulation within thyroid VOIs can be visualized by 3D display of voxel-based 123 I gamma photon intensity. MicroSPECT/CT image acquisition and analysis for thyroidal RAI uptake is greatly improved by the cradle and the CTViewer software, respectively. Furthermore, the approach of superimposing thyroid VOIs from t24 images to select thyroid VOIs on corresponding aligned t1 images can be applied to studies in which the target tissue has differential radiotracer retention

  20. Quantification of the heterogeneity of prognostic cellular biomarkers in ewing sarcoma using automated image and random survival forest analysis.

    Directory of Open Access Journals (Sweden)

    Claudia Bühnemann

    Full Text Available Driven by genomic somatic variation, tumour tissues are typically heterogeneous, yet unbiased quantitative methods are rarely used to analyse heterogeneity at the protein level. Motivated by this problem, we developed automated image segmentation of images of multiple biomarkers in Ewing sarcoma to generate distributions of biomarkers between and within tumour cells. We further integrate high dimensional data with patient clinical outcomes utilising random survival forest (RSF machine learning. Using material from cohorts of genetically diagnosed Ewing sarcoma with EWSR1 chromosomal translocations, confocal images of tissue microarrays were segmented with level sets and watershed algorithms. Each cell nucleus and cytoplasm were identified in relation to DAPI and CD99, respectively, and protein biomarkers (e.g. Ki67, pS6, Foxo3a, EGR1, MAPK localised relative to nuclear and cytoplasmic regions of each cell in order to generate image feature distributions. The image distribution features were analysed with RSF in relation to known overall patient survival from three separate cohorts (185 informative cases. Variation in pre-analytical processing resulted in elimination of a high number of non-informative images that had poor DAPI localisation or biomarker preservation (67 cases, 36%. The distribution of image features for biomarkers in the remaining high quality material (118 cases, 104 features per case were analysed by RSF with feature selection, and performance assessed using internal cross-validation, rather than a separate validation cohort. A prognostic classifier for Ewing sarcoma with low cross-validation error rates (0.36 was comprised of multiple features, including the Ki67 proliferative marker and a sub-population of cells with low cytoplasmic/nuclear ratio of CD99. Through elimination of bias, the evaluation of high-dimensionality biomarker distribution within cell populations of a tumour using random forest analysis in quality

  1. Quantification of the heterogeneity of prognostic cellular biomarkers in ewing sarcoma using automated image and random survival forest analysis.

    Science.gov (United States)

    Bühnemann, Claudia; Li, Simon; Yu, Haiyue; Branford White, Harriet; Schäfer, Karl L; Llombart-Bosch, Antonio; Machado, Isidro; Picci, Piero; Hogendoorn, Pancras C W; Athanasou, Nicholas A; Noble, J Alison; Hassan, A Bassim

    2014-01-01

    Driven by genomic somatic variation, tumour tissues are typically heterogeneous, yet unbiased quantitative methods are rarely used to analyse heterogeneity at the protein level. Motivated by this problem, we developed automated image segmentation of images of multiple biomarkers in Ewing sarcoma to generate distributions of biomarkers between and within tumour cells. We further integrate high dimensional data with patient clinical outcomes utilising random survival forest (RSF) machine learning. Using material from cohorts of genetically diagnosed Ewing sarcoma with EWSR1 chromosomal translocations, confocal images of tissue microarrays were segmented with level sets and watershed algorithms. Each cell nucleus and cytoplasm were identified in relation to DAPI and CD99, respectively, and protein biomarkers (e.g. Ki67, pS6, Foxo3a, EGR1, MAPK) localised relative to nuclear and cytoplasmic regions of each cell in order to generate image feature distributions. The image distribution features were analysed with RSF in relation to known overall patient survival from three separate cohorts (185 informative cases). Variation in pre-analytical processing resulted in elimination of a high number of non-informative images that had poor DAPI localisation or biomarker preservation (67 cases, 36%). The distribution of image features for biomarkers in the remaining high quality material (118 cases, 104 features per case) were analysed by RSF with feature selection, and performance assessed using internal cross-validation, rather than a separate validation cohort. A prognostic classifier for Ewing sarcoma with low cross-validation error rates (0.36) was comprised of multiple features, including the Ki67 proliferative marker and a sub-population of cells with low cytoplasmic/nuclear ratio of CD99. Through elimination of bias, the evaluation of high-dimensionality biomarker distribution within cell populations of a tumour using random forest analysis in quality controlled tumour

  2. AUTOMATION OF IMAGE DATA PROCESSING

    Directory of Open Access Journals (Sweden)

    Preuss Ryszard

    2014-12-01

    Full Text Available This article discusses the current capabilities of automate processing of the image data on the example of using PhotoScan software by Agisoft . At present, image data obtained by various registration systems (metric and non - metric cameras placed on airplanes , satellites , or more often on UAVs is used to create photogrammetric products. Multiple registrations of object or land area (large groups of photos are captured are usually performed in order to eliminate obscured area as well as to raise the final accuracy of the photogrammetric product. Because of such a situation t he geometry of the resulting image blocks is far from the typical configuration of images . For fast images georeferencing automatic image matching algorithms are currently applied . They can create a model of a block in the local coordinate system or using initial exterior orientation and measured control points can provide image georeference in an external reference frame. In the case of non - metric image application, it is also possible to carry out self - calibration process at this stage . Image matching algorithm is also used in generation of dense point clouds reconstructing spatial shape of the object ( area. In subsequent processing steps it is possible to obtain typical photogrammetric products such as orthomosaic , DSM or DTM and a photorealistic solid model of an object . All aforementioned processing steps are implemented in a single program in contrary to standard commercial software dividing all steps into dedicated modules . I mage processing leading to final geo referenced products can be fully automated including sequential implementation of the processing steps at predetermined control parameters . The paper presents the practical results of the application fully automatic generation of othomosaic for both images obtained by a metric Vexell camera and a block of images acquired by a non - metric UAV system.

  3. Automated analysis of phantom images for the evaluation of long-term reproducibility in digital mammography

    International Nuclear Information System (INIS)

    Gennaro, G; Ferro, F; Contento, G; Fornasin, F; Di Maggio, C

    2007-01-01

    The performance of an automatic software package was evaluated with phantom images acquired by a full-field digital mammography unit. After the validation, the software was used, together with a Leeds TORMAS test object, to model the image acquisition process. Process modelling results were used to evaluate the sensitivity of the method in detecting changes of exposure parameters from routine image quality measurements in digital mammography, which is the ultimate purpose of long-term reproducibility tests. Image quality indices measured by the software included the mean pixel value and standard deviation of circular details and surrounding background, contrast-to-noise ratio and relative contrast; detail counts were also collected. The validation procedure demonstrated that the software localizes the phantom details correctly and the difference between automatic and manual measurements was within few grey levels. Quantitative analysis showed sufficient sensitivity to relate fluctuations in exposure parameters (kV p or mAs) to variations in image quality indices. In comparison, detail counts were found less sensitive in detecting image quality changes, even when limitations due to observer subjectivity were overcome by automatic analysis. In conclusion, long-term reproducibility tests provided by the Leeds TORMAS phantom with quantitative analysis of multiple IQ indices have been demonstrated to be effective in predicting causes of deviation from standard operating conditions and can be used to monitor stability in full-field digital mammography

  4. Automated image analysis of cyclin D1 protein expression in invasive lobular breast carcinoma provides independent prognostic information.

    Science.gov (United States)

    Tobin, Nicholas P; Lundgren, Katja L; Conway, Catherine; Anagnostaki, Lola; Costello, Sean; Landberg, Göran

    2012-11-01

    The emergence of automated image analysis algorithms has aided the enumeration, quantification, and immunohistochemical analyses of tumor cells in both whole section and tissue microarray samples. To date, the focus of such algorithms in the breast cancer setting has been on traditional markers in the common invasive ductal carcinoma subtype. Here, we aimed to optimize and validate an automated analysis of the cell cycle regulator cyclin D1 in a large collection of invasive lobular carcinoma and relate its expression to clinicopathologic data. The image analysis algorithm was trained to optimally match manual scoring of cyclin D1 protein expression in a subset of invasive lobular carcinoma tissue microarray cores. The algorithm was capable of distinguishing cyclin D1-positive cells and illustrated high correlation with traditional manual scoring (κ=0.63). It was then applied to our entire cohort of 483 patients, with subsequent statistical comparisons to clinical data. We found no correlation between cyclin D1 expression and tumor size, grade, and lymph node status. However, overexpression of the protein was associated with reduced recurrence-free survival (P=.029), as was positive nodal status (Pinvasive lobular carcinoma. Finally, high cyclin D1 expression was associated with increased hazard ratio in multivariate analysis (hazard ratio, 1.75; 95% confidence interval, 1.05-2.89). In conclusion, we describe an image analysis algorithm capable of reliably analyzing cyclin D1 staining in invasive lobular carcinoma and have linked overexpression of the protein to increased recurrence risk. Our findings support the use of cyclin D1 as a clinically informative biomarker for invasive lobular breast cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Investigation into diagnostic agreement using automated computer-assisted histopathology pattern recognition image analysis

    Directory of Open Access Journals (Sweden)

    Joshua D Webster

    2012-01-01

    Full Text Available The extent to which histopathology pattern recognition image analysis (PRIA agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression. Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden 0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1. Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

  6. Investigation into diagnostic agreement using automated computer-assisted histopathology pattern recognition image analysis.

    Science.gov (United States)

    Webster, Joshua D; Michalowski, Aleksandra M; Dwyer, Jennifer E; Corps, Kara N; Wei, Bih-Rong; Juopperi, Tarja; Hoover, Shelley B; Simpson, R Mark

    2012-01-01

    The extent to which histopathology pattern recognition image analysis (PRIA) agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression). Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden 0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1). Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.

  7. OpenComet: An automated tool for comet assay image analysis

    OpenAIRE

    Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique

    2014-01-01

    Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires ...

  8. Automated image quality assessment for chest CT scans.

    Science.gov (United States)

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  9. Validation of tumor protein marker quantification by two independent automated immunofluorescence image analysis platforms

    Science.gov (United States)

    Peck, Amy R; Girondo, Melanie A; Liu, Chengbao; Kovatich, Albert J; Hooke, Jeffrey A; Shriver, Craig D; Hu, Hai; Mitchell, Edith P; Freydin, Boris; Hyslop, Terry; Chervoneva, Inna; Rui, Hallgeir

    2016-01-01

    Protein marker levels in formalin-fixed, paraffin-embedded tissue sections traditionally have been assayed by chromogenic immunohistochemistry and evaluated visually by pathologists. Pathologist scoring of chromogen staining intensity is subjective and generates low-resolution ordinal or nominal data rather than continuous data. Emerging digital pathology platforms now allow quantification of chromogen or fluorescence signals by computer-assisted image analysis, providing continuous immunohistochemistry values. Fluorescence immunohistochemistry offers greater dynamic signal range than chromogen immunohistochemistry, and combined with image analysis holds the promise of enhanced sensitivity and analytic resolution, and consequently more robust quantification. However, commercial fluorescence scanners and image analysis software differ in features and capabilities, and claims of objective quantitative immunohistochemistry are difficult to validate as pathologist scoring is subjective and there is no accepted gold standard. Here we provide the first side-by-side validation of two technologically distinct commercial fluorescence immunohistochemistry analysis platforms. We document highly consistent results by (1) concordance analysis of fluorescence immunohistochemistry values and (2) agreement in outcome predictions both for objective, data-driven cutpoint dichotomization with Kaplan–Meier analyses or employment of continuous marker values to compute receiver-operating curves. The two platforms examined rely on distinct fluorescence immunohistochemistry imaging hardware, microscopy vs line scanning, and functionally distinct image analysis software. Fluorescence immunohistochemistry values for nuclear-localized and tyrosine-phosphorylated Stat5a/b computed by each platform on a cohort of 323 breast cancer cases revealed high concordance after linear calibration, a finding confirmed on an independent 382 case cohort, with concordance correlation coefficients >0

  10. Automated facial acne assessment from smartphone images

    Science.gov (United States)

    Amini, Mohammad; Vasefi, Fartash; Valdebran, Manuel; Huang, Kevin; Zhang, Haomiao; Kemp, William; MacKinnon, Nicholas

    2018-02-01

    A smartphone mobile medical application is presented, that provides analysis of the health of skin on the face using a smartphone image and cloud-based image processing techniques. The mobile application employs the use of the camera to capture a front face image of a subject, after which the captured image is spatially calibrated based on fiducial points such as position of the iris of the eye. A facial recognition algorithm is used to identify features of the human face image, to normalize the image, and to define facial regions of interest (ROI) for acne assessment. We identify acne lesions and classify them into two categories: those that are papules and those that are pustules. Automated facial acne assessment was validated by performing tests on images of 60 digital human models and 10 real human face images. The application was able to identify 92% of acne lesions within five facial ROIs. The classification accuracy for separating papules from pustules was 98%. Combined with in-app documentation of treatment, lifestyle factors, and automated facial acne assessment, the app can be used in both cosmetic and clinical dermatology. It allows users to quantitatively self-measure acne severity and treatment efficacy on an ongoing basis to help them manage their chronic facial acne.

  11. Automated Image Analysis of HER2 Fluorescence In Situ Hybridization to Refine Definitions of Genetic Heterogeneity in Breast Cancer Tissue.

    Science.gov (United States)

    Radziuviene, Gedmante; Rasmusson, Allan; Augulis, Renaldas; Lesciute-Krilaviciene, Daiva; Laurinaviciene, Aida; Clim, Eduard; Laurinavicius, Arvydas

    2017-01-01

    Human epidermal growth factor receptor 2 gene- (HER2-) targeted therapy for breast cancer relies primarily on HER2 overexpression established by immunohistochemistry (IHC) with borderline cases being further tested for amplification by fluorescence in situ hybridization (FISH). Manual interpretation of HER2 FISH is based on a limited number of cells and rather complex definitions of equivocal, polysomic, and genetically heterogeneous (GH) cases. Image analysis (IA) can extract high-capacity data and potentially improve HER2 testing in borderline cases. We investigated statistically derived indicators of HER2 heterogeneity in HER2 FISH data obtained by automated IA of 50 IHC borderline (2+) cases of invasive ductal breast carcinoma. Overall, IA significantly underestimated the conventional HER2, CEP17 counts, and HER2/CEP17 ratio; however, it collected more amplified cells in some cases below the lower limit of GH definition by manual procedure. Indicators for amplification, polysomy, and bimodality were extracted by factor analysis and allowed clustering of the tumors into amplified, nonamplified, and equivocal/polysomy categories. The bimodality indicator provided independent cell diversity characteristics for all clusters. Tumors classified as bimodal only partially coincided with the conventional GH heterogeneity category. We conclude that automated high-capacity nonselective tumor cell assay can generate evidence-based HER2 intratumor heterogeneity indicators to refine GH definitions.

  12. A method for the automated processing and analysis of images of ULVWF-platelet strings.

    Science.gov (United States)

    Reeve, Scott R; Abbitt, Katherine B; Cruise, Thomas D; Hose, D Rodney; Lawford, Patricia V

    2013-01-01

    We present a method for identifying and analysing unusually large von Willebrand factor (ULVWF)-platelet strings in noisy low-quality images. The method requires relatively inexpensive, non-specialist equipment and allows multiple users to be employed in the capture of images. Images are subsequently enhanced and analysed, using custom-written software to perform the processing tasks. The formation and properties of ULVWF-platelet strings released in in vitro flow-based assays have recently become a popular research area. Endothelial cells are incorporated into a flow chamber, chemically stimulated to induce ULVWF release and perfused with isolated platelets which are able to bind to the ULVWF to form strings. The numbers and lengths of the strings released are related to characteristics of the flow. ULVWF-platelet strings are routinely identified by eye from video recordings captured during experiments and analysed manually using basic NIH image software to determine the number of strings and their lengths. This is a laborious, time-consuming task and a single experiment, often consisting of data from four to six dishes of endothelial cells, can take 2 or more days to analyse. The method described here allows analysis of the strings to provide data such as the number and length of strings, number of platelets per string and the distance between each platelet to be found. The software reduces analysis time, and more importantly removes user subjectivity, producing highly reproducible results with an error of less than 2% when compared with detailed manual analysis.

  13. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    Science.gov (United States)

    Wenskat, M.

    2017-05-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97 % and the positive predictive value (PPV) 99 % within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ = -0.93 with a significance of 6 σ between an obtained surface variable and the maximal accelerating field was found.

  14. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wenskat, Marc

    2017-04-15

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97% and the PPV 99% within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ=-0.93 with a significance of 6σ between an obtained surface variable and the maximal accelerating field was found.

  15. Automated optical inspection and image analysis of superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2017-04-01

    The inner surface of superconducting cavities plays a crucial role to achieve highest accelerating fields and low losses. For an investigation of this inner surface of more than 100 cavities within the cavity fabrication for the European XFEL and the ILC HiGrade Research Project, an optical inspection robot OBACHT was constructed. To analyze up to 2325 images per cavity, an image processing and analysis code was developed and new variables to describe the cavity surface were obtained. The accuracy of this code is up to 97% and the PPV 99% within the resolution of 15.63 μm. The optical obtained surface roughness is in agreement with standard profilometric methods. The image analysis algorithm identified and quantified vendor specific fabrication properties as the electron beam welding speed and the different surface roughness due to the different chemical treatments. In addition, a correlation of ρ=-0.93 with a significance of 6σ between an obtained surface variable and the maximal accelerating field was found.

  16. Automating the Analysis of Spatial Grids A Practical Guide to Data Mining Geospatial Images for Human & Environmental Applications

    CERN Document Server

    Lakshmanan, Valliappa

    2012-01-01

    The ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and detect patterns in geospatial data is increasingly important. This book provides students with a foundation in topics of digital image processing and data mining as applied to geospatial datasets. The aim is for readers to be able to devise and implement automated techniques to extract information from spatial grids such as radar, satellite or high-resolution survey imagery.

  17. Automated Functional Analysis of Astrocytes from Chronic Time-Lapse Calcium Imaging Data.

    Science.gov (United States)

    Wang, Yinxue; Shi, Guilai; Miller, David J; Wang, Yizhi; Wang, Congchao; Broussard, Gerard; Wang, Yue; Tian, Lin; Yu, Guoqiang

    2017-01-01

    Recent discoveries that astrocytes exert proactive regulatory effects on neural information processing and that they are deeply involved in normal brain development and disease pathology have stimulated broad interest in understanding astrocyte functional roles in brain circuit. Measuring astrocyte functional status is now technically feasible, due to recent advances in modern microscopy and ultrasensitive cell-type specific genetically encoded Ca 2+ indicators for chronic imaging. However, there is a big gap between the capability of generating large dataset via calcium imaging and the availability of sophisticated analytical tools for decoding the astrocyte function. Current practice is essentially manual, which not only limits analysis throughput but also risks introducing bias and missing important information latent in complex, dynamic big data. Here, we report a suite of computational tools, called Functional AStrocyte Phenotyping (FASP), for automatically quantifying the functional status of astrocytes. Considering the complex nature of Ca 2+ signaling in astrocytes and low signal to noise ratio, FASP is designed with data-driven and probabilistic principles, to flexibly account for various patterns and to perform robustly with noisy data. In particular, FASP explicitly models signal propagation, which rules out the applicability of tools designed for other types of data. We demonstrate the effectiveness of FASP using extensive synthetic and real data sets. The findings by FASP were verified by manual inspection. FASP also detected signals that were missed by purely manual analysis but could be confirmed by more careful manual examination under the guidance of automatic analysis. All algorithms and the analysis pipeline are packaged into a plugin for Fiji (ImageJ), with the source code freely available online at https://github.com/VTcbil/FASP.

  18. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey De Fauw

    2017-06-01

    Full Text Available There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases. Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet” age-related macular degeneration (wet AMD and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves. Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges. This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients. Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

  19. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jeffrey De Fauw

    2016-07-01

    Full Text Available There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases.   Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular (“wet” age-related macular degeneration (wet AMD and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the ‘back’ of the eye and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves. Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges.   This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients.   Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, Google DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

  20. Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery

    Science.gov (United States)

    Picard de Muller, Gaël; Ait-Belkacem, Rima; Bonnel, David; Longuespée, Rémi; Stauber, Jonathan

    2017-12-01

    Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. [Figure not available: see fulltext.

  1. Integration of XNAT/PACS, DICOM, and research software for automated multi-modal image analysis

    Science.gov (United States)

    Gao, Yurui; Burns, Scott S.; Lauzon, Carolyn B.; Fong, Andrew E.; James, Terry A.; Lubar, Joel F.; Thatcher, Robert W.; Twillie, David A.; Wirt, Michael D.; Zola, Marc A.; Logan, Bret W.; Anderson, Adam W.; Landman, Bennett A.

    2013-03-01

    Traumatic brain injury (TBI) is an increasingly important public health concern. While there are several promising avenues of intervention, clinical assessments are relatively coarse and comparative quantitative analysis is an emerging field. Imaging data provide potentially useful information for evaluating TBI across functional, structural, and microstructural phenotypes. Integration and management of disparate data types are major obstacles. In a multi-institution collaboration, we are collecting electroencephalogy (EEG), structural MRI, diffusion tensor MRI (DTI), and single photon emission computed tomography (SPECT) from a large cohort of US Army service members exposed to mild or moderate TBI who are undergoing experimental treatment. We have constructed a robust informatics backbone for this project centered on the DICOM standard and eXtensible Neuroimaging Archive Toolkit (XNAT) server. Herein, we discuss (1) optimization of data transmission, validation and storage, (2) quality assurance and workflow management, and (3) integration of high performance computing with research software.

  2. Semi-automated relative quantification of cell culture contamination with mycoplasma by Photoshop-based image analysis on immunofluorescence preparations.

    Science.gov (United States)

    Kumar, Ashok; Yerneni, Lakshmana K

    2009-01-01

    Mycoplasma contamination in cell culture is a serious setback for the cell-culturist. The experiments undertaken using contaminated cell cultures are known to yield unreliable or false results due to various morphological, biochemical and genetic effects. Earlier surveys revealed incidences of mycoplasma contamination in cell cultures to range from 15 to 80%. Out of a vast array of methods for detecting mycoplasma in cell culture, the cytological methods directly demonstrate the contaminating organism present in association with the cultured cells. In this investigation, we report the adoption of a cytological immunofluorescence assay (IFA), in an attempt to obtain a semi-automated relative quantification of contamination by employing the user-friendly Photoshop-based image analysis. The study performed on 77 cell cultures randomly collected from various laboratories revealed mycoplasma contamination in 18 cell cultures simultaneously by IFA and Hoechst DNA fluorochrome staining methods. It was observed that the Photoshop-based image analysis on IFA stained slides was very valuable as a sensitive tool in providing quantitative assessment on the extent of contamination both per se and in comparison to cellularity of cell cultures. The technique could be useful in estimating the efficacy of anti-mycoplasma agents during decontaminating measures.

  3. An automated form of video image analysis applied to classification of movement disorders.

    Science.gov (United States)

    Chang, R; Guan, L; Burne, J A

    Video image analysis is able to provide quantitative data on postural and movement abnormalities and thus has an important application in neurological diagnosis and management. The conventional techniques require patients to be videotaped while wearing markers in a highly structured laboratory environment. This restricts the utility of video in routine clinical practise. We have begun development of intelligent software which aims to provide a more flexible system able to quantify human posture and movement directly from whole-body images without markers and in an unstructured environment. The steps involved are to extract complete human profiles from video frames, to fit skeletal frameworks to the profiles and derive joint angles and swing distances. By this means a given posture is reduced to a set of basic parameters that can provide input to a neural network classifier. To test the system's performance we videotaped patients with dopa-responsive Parkinsonism and age-matched normals during several gait cycles, to yield 61 patient and 49 normal postures. These postures were reduced to their basic parameters and fed to the neural network classifier in various combinations. The optimal parameter sets (consisting of both swing distances and joint angles) yielded successful classification of normals and patients with an accuracy above 90%. This result demonstrated the feasibility of the approach. The technique has the potential to guide clinicians on the relative sensitivity of specific postural/gait features in diagnosis. Future studies will aim to improve the robustness of the system in providing accurate parameter estimates from subjects wearing a range of clothing, and to further improve discrimination by incorporating more stages of the gait cycle into the analysis.

  4. Screening of subfertile men for testicular carcinoma in situ by an automated image analysis-based cytological test of the ejaculate

    DEFF Research Database (Denmark)

    Almstrup, K; Lippert, Marianne; Mogensen, Hanne O

    2011-01-01

    a slightly lower sensitivity (0.51), possibly because of obstruction. We conclude that this novel non-invasive test combining automated immunocytochemistry and advanced image analysis allows identification of TC at the CIS stage with a high specificity, but a negative test does not completely exclude CIS...... and detected in ejaculates with specific CIS markers. We have built a high throughput framework involving automated immunocytochemical staining, scanning microscopy and in silico image analysis allowing automated detection and grading of CIS-like stained objects in semen samples. In this study, 1175 ejaculates...... from 765 subfertile men were tested using this framework. In 5/765 (0.65%) cases, CIS-like cells were identified in the ejaculate. Three of these had bilateral testicular biopsies performed and CIS was histologically confirmed in two. In total, 63 bilateral testicular biopsy were performed...

  5. Automated Image Analysis for Quantitative Fluorescence In Situ Hybridization with Environmental Samples▿ †

    OpenAIRE

    Zhou, Zhi; Pons, Marie Noëlle; Raskin, Lutgarde; Zilles, Julie L.

    2007-01-01

    When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An au...

  6. Automated analysis of gastric emptying

    International Nuclear Information System (INIS)

    Abutaleb, A.; Frey, D.; Spicer, K.; Spivey, M.; Buckles, D.

    1986-01-01

    The authors devised a novel method to automate the analysis of nuclear gastric emptying studies. Many previous methods have been used to measure gastric emptying but, are cumbersome and require continuing interference by the operator to use. Two specific problems that occur are related to patient movement between images and changes in the location of the radioactive material within the stomach. Their method can be used with either dual or single phase studies. For dual phase studies the authors use In-111 labeled water and Tc-99MSC (Sulfur Colloid) labeled scrambled eggs. For single phase studies either the liquid or solid phase material is used

  7. Automated Quality Assurance Applied to Mammographic Imaging

    Directory of Open Access Journals (Sweden)

    Anne Davis

    2002-07-01

    Full Text Available Quality control in mammography is based upon subjective interpretation of the image quality of a test phantom. In order to suppress subjectivity due to the human observer, automated computer analysis of the Leeds TOR(MAM test phantom is investigated. Texture analysis via grey-level co-occurrence matrices is used to detect structures in the test object. Scoring of the substructures in the phantom is based on grey-level differences between regions and information from grey-level co-occurrence matrices. The results from scoring groups of particles within the phantom are presented.

  8. Automated Glacier Mapping using Object Based Image Analysis. Case Studies from Nepal, the European Alps and Norway

    Science.gov (United States)

    Vatle, S. S.

    2015-12-01

    Frequent and up-to-date glacier outlines are needed for many applications of glaciology, not only glacier area change analysis, but also for masks in volume or velocity analysis, for the estimation of water resources and as model input data. Remote sensing offers a good option for creating glacier outlines over large areas, but manual correction is frequently necessary, especially in areas containing supraglacial debris. We show three different workflows for mapping clean ice and debris-covered ice within Object Based Image Analysis (OBIA). By working at the object level as opposed to the pixel level, OBIA facilitates using contextual, spatial and hierarchical information when assigning classes, and additionally permits the handling of multiple data sources. Our first example shows mapping debris-covered ice in the Manaslu Himalaya, Nepal. SAR Coherence data is used in combination with optical and topographic data to classify debris-covered ice, obtaining an accuracy of 91%. Our second example shows using a high-resolution LiDAR derived DEM over the Hohe Tauern National Park in Austria. Breaks in surface morphology are used in creating image objects; debris-covered ice is then classified using a combination of spectral, thermal and topographic properties. Lastly, we show a completely automated workflow for mapping glacier ice in Norway. The NDSI and NIR/SWIR band ratio are used to map clean ice over the entire country but the thresholds are calculated automatically based on a histogram of each image subset. This means that in theory any Landsat scene can be inputted and the clean ice can be automatically extracted. Debris-covered ice can be included semi-automatically using contextual and morphological information.

  9. Automation of aggregate characterization using laser profiling and digital image analysis

    Science.gov (United States)

    Kim, Hyoungkwan

    2002-08-01

    Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image

  10. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  11. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  12. Automated hotspot analysis with aerial image CD metrology for advanced logic devices

    Science.gov (United States)

    Buttgereit, Ute; Trautzsch, Thomas; Kim, Min-ho; Seo, Jung-Uk; Yoon, Young-Keun; Han, Hak-Seung; Chung, Dong Hoon; Jeon, Chan-Uk; Meyers, Gary

    2014-09-01

    Continuously shrinking designs by further extension of 193nm technology lead to a much higher probability of hotspots especially for the manufacturing of advanced logic devices. The CD of these potential hotspots needs to be precisely controlled and measured on the mask. On top of that, the feature complexity increases due to high OPC load in the logic mask design which is an additional challenge for CD metrology. Therefore the hotspot measurements have been performed on WLCD from ZEISS, which provides the benefit of reduced complexity by measuring the CD in the aerial image and qualifying the printing relevant CD. This is especially of advantage for complex 2D feature measurements. Additionally, the data preparation for CD measurement becomes more critical due to the larger amount of CD measurements and the increasing feature diversity. For the data preparation this means to identify these hotspots and mark them automatically with the correct marker required to make the feature specific CD measurement successful. Currently available methods can address generic pattern but cannot deal with the pattern diversity of the hotspots. The paper will explore a method how to overcome those limitations and to enhance the time-to-result in the marking process dramatically. For the marking process the Synopsys WLCD Output Module was utilized, which is an interface between the CATS mask data prep software and the WLCD metrology tool. It translates the CATS marking directly into an executable WLCD measurement job including CD analysis. The paper will describe the utilized method and flow for the hotspot measurement. Additionally, the achieved results on hotspot measurements utilizing this method will be presented.

  13. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments.

    Science.gov (United States)

    Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W

    2016-11-01

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.

  14. Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists' workload.

    Science.gov (United States)

    Soto-Pedre, Enrique; Navea, Amparo; Millan, Saray; Hernaez-Ortega, Maria C; Morales, Jesús; Desco, Maria C; Pérez, Pablo

    2015-02-01

    To assess the safety and workload reduction of an automated 'disease/no disease' grading system for diabetic retinopathy (DR) within a systematic screening programme. Single 45° macular field image per eye was obtained from consecutive patients attending a regional primary care based DR screening programme in Valencia (Spain). The sensitivity and specificity of automated system operating as 'one or more than one microaneurysm detection for disease presence' grader were determined relative to a manual grading as gold standard. Data on age, gender and diabetes mellitus were also recorded. A total of 5278 patients with diabetes were screened. The median age and duration of diabetes was 69 years and 6.9 years, respectively. Estimated prevalence of DR was 15.6%. The software classified 43.9% of the patients as having no DR and 26.1% as having ungradable images. Detection of DR was achieved with 94.5% sensitivity (95% CI 92.6- 96.5) and 68.8% specificity (95%CI 67.2-70.4). The overall accuracy of the automated system was 72.5% (95%CI 71.1-73.9). The present retinal image processing algorithm that can act as prefilter to flag out images with pathological lesions can be implemented in practice. Our results suggest that it could be considered when implementing DR screening programmes. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Automated Motivic Analysis

    DEFF Research Database (Denmark)

    Lartillot, Olivier

    2016-01-01

    Motivic analysis provides very detailed understanding of musical composi- tions, but is also particularly difficult to formalize and systematize. A computational automation of the discovery of motivic patterns cannot be reduced to a mere extraction of all possible sequences of descriptions...... for lossless compression. The structural complexity resulting from successive repetitions of patterns can be controlled through a simple modelling of cycles. Generally, motivic patterns cannot always be defined solely as sequences of descriptions in a fixed set of dimensions: throughout the descriptions...... of the successive notes and intervals, various sets of musical parameters may be invoked. In this chapter, a method is presented that allows for these heterogeneous patterns to be discovered. Motivic repetition with local ornamentation is detected by reconstructing, on top of “surface-level” monodic voices, longer...

  16. Contaminant analysis automation, an overview

    International Nuclear Information System (INIS)

    Hollen, R.; Ramos, O. Jr.

    1996-01-01

    To meet the environmental restoration and waste minimization goals of government and industry, several government laboratories, universities, and private companies have formed the Contaminant Analysis Automation (CAA) team. The goal of this consortium is to design and fabricate robotics systems that standardize and automate the hardware and software of the most common environmental chemical methods. In essence, the CAA team takes conventional, regulatory- approved (EPA Methods) chemical analysis processes and automates them. The automation consists of standard laboratory modules (SLMs) that perform the work in a much more efficient, accurate, and cost- effective manner

  17. The automated analysis of clustering behaviour of piglets from thermal images in response to immune challenge by vaccination.

    Science.gov (United States)

    Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L

    2018-01-01

    An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.

  18. Automated training site selection for large-area remote-sensing image analysis

    Science.gov (United States)

    McCaffrey, Thomas M.; Franklin, Steven E.

    1993-11-01

    A computer program is presented to select training sites automatically from remotely sensed digital imagery. The basic ideas are to guide the image analyst through the process of selecting typical and representative areas for large-area image classifications by minimizing bias, and to provide an initial list of potential classes for which training sites are required to develop a classification scheme or to verify classification accuracy. Reducing subjectivity in training site selection is achieved by using a purely statistical selection of homogeneous sites which then can be compared to field knowledge, aerial photography, or other remote-sensing imagery and ancillary data to arrive at a final selection of sites to be used to train the classification decision rules. The selection of the homogeneous sites uses simple tests based on the coefficient of variance, the F-statistic, and the Student's i-statistic. Comparisons of site means are conducted with a linear growing list of previously located homogeneous pixels. The program supports a common pixel-interleaved digital image format and has been tested on aerial and satellite optical imagery. The program is coded efficiently in the C programming language and was developed under AIX-Unix on an IBM RISC 6000 24-bit color workstation.

  19. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks ...

  20. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  1. Automated Temperature and Emission Measure Analysis of Coronal Loops and Active Regions Observed with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA)

    Science.gov (United States)

    Aschwanden, Markus J.; Boerner, Paul; Schrijver, Carolus J.; Malanushenko, Anna

    2013-03-01

    We developed numerical codes designed for automated analysis of SDO/AIA image datasets in the six coronal filters, including: i) coalignment test between different wavelengths with measurements of the altitude of the EUV-absorbing chromosphere, ii) self-calibration by empirical correction of instrumental response functions, iii) automated generation of differential emission measure [DEM] distributions with peak-temperature maps [ T p( x, y)] and emission measure maps [ EM p( x, y)] of the full Sun or active region areas, iv) composite DEM distributions [d EM( T)/d T] of active regions or subareas, v) automated detection of coronal loops, and vi) automated background subtraction and thermal analysis of coronal loops, which yields statistics of loop temperatures [ T e], temperature widths [ σ T], emission measures [ EM], electron densities [ n e], and loop widths [ w]. The combination of these numerical codes allows for automated and objective processing of numerous coronal loops. As an example, we present the results of an application to the active region NOAA 11158, observed on 15 February 2011, shortly before it produced the largest (X2.2) flare during the current solar cycle. We detect 570 loop segments at temperatures in the entire range of log( T e)=5.7 - 7.0 K and corroborate previous TRACE and AIA results on their near-isothermality and the validity of the Rosner-Tucker-Vaiana (RTV) law at soft X-ray temperatures ( T≳2 MK) and its failure at lower EUV temperatures.

  2. ARTIP: Automated Radio Telescope Image Processing Pipeline

    Science.gov (United States)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  3. Simplified Automated Image Analysis for Detection and Phenotyping of Mycobacterium tuberculosis on Porous Supports by Monitoring Growing Microcolonies

    Science.gov (United States)

    den Hertog, Alice L.; Visser, Dennis W.; Ingham, Colin J.; Fey, Frank H. A. G.; Klatser, Paul R.; Anthony, Richard M.

    2010-01-01

    Background Even with the advent of nucleic acid (NA) amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS), as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. Methods Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO) supports. Repeated imaging during colony growth greatly simplifies “computer vision” and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. Significance Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation. PMID:20544033

  4. Simplified automated image analysis for detection and phenotyping of Mycobacterium tuberculosis on porous supports by monitoring growing microcolonies.

    Directory of Open Access Journals (Sweden)

    Alice L den Hertog

    Full Text Available BACKGROUND: Even with the advent of nucleic acid (NA amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS, as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. METHODS: Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO supports. Repeated imaging during colony growth greatly simplifies "computer vision" and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. SIGNIFICANCE: Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation.

  5. A method to quantify movement activity of groups of animals using automated image analysis

    Science.gov (United States)

    Xu, Jianyu; Yu, Haizhen; Liu, Ying

    2009-07-01

    Most physiological and environmental changes are capable of inducing variations in animal behavior. The behavioral parameters have the possibility to be measured continuously in-situ by a non-invasive and non-contact approach, and have the potential to be used in the actual productions to predict stress conditions. Most vertebrates tend to live in groups, herds, flocks, shoals, bands, packs of conspecific individuals. Under culture conditions, the livestock or fish are in groups and interact on each other, so the aggregate behavior of the group should be studied rather than that of individuals. This paper presents a method to calculate the movement speed of a group of animal in a enclosure or a tank denoted by body length speed that correspond to group activity using computer vision technique. Frame sequences captured at special time interval were subtracted in pairs after image segmentation and identification. By labeling components caused by object movement in difference frame, the projected area caused by the movement of every object in the capture interval was calculated; this projected area was divided by the projected area of every object in the later frame to get body length moving distance of each object, and further could obtain the relative body length speed. The average speed of all object can well respond to the activity of the group. The group activity of a tilapia (Oreochromis niloticus) school to high (2.65 mg/L) levels of unionized ammonia (UIA) concentration were quantified based on these methods. High UIA level condition elicited a marked increase in school activity at the first hour (P<0.05) exhibiting an avoidance reaction (trying to flee from high UIA condition), and then decreased gradually.

  6. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    Science.gov (United States)

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  7. Radiographic examination takes on an automated image

    International Nuclear Information System (INIS)

    Aman, J.

    1988-01-01

    Automation can be effectively applied to nondestructive testing (NDT). Until recently, film radiography used in NDT was largely a manual process, involving the shooting of a series of x-rays, manually positioned and manually processed. In other words, much radiographic work is being done the way it was over 50 years ago. Significant advances in automation have changed the face of manufacturing, and industry has shared in the benefits brought by such progress. The handling of parts, which was once responsible for a large measure of labor costs, is now assigned to robotic equipment. In nondestructive testing processes, some progress has been achieved in automation - for example, in real-time imaging systems. However, only recently have truly automated NDT begun to emerge. There are two major reasons to introduce automation into NDT - reliability and productivity. Any process or technique that can improve the reliability of parts testing could easily justify the capital investments required

  8. Utility of cytopathological specimens and an automated image analysis for the evaluation of HER2 status and intratumor heterogeneity in breast carcinoma.

    Science.gov (United States)

    Arihiro, Koji; Oda, Miyo; Ogawa, Katsunari; Kaneko, Yoshie; Shimizu, Tomomi; Tanaka, Yuna; Marubashi, Yukari; Ishida, Katsunari; Takai, Chikako; Taoka, Chie; Kimura, Shuji; Shiroma, Noriyuki

    2016-12-01

    Although updated HER2 testing guidelines have been improved by a collaboration between the American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP) in 2013, HER2 evaluation is still problematic because of issues involving CEP17 polysomy, heterogeneity, and HER2 score 2+ cases. The aim of this retrospective study was to evaluate the relationship between HER2 gene heterogeneity, or so called CEP17 polysomy, using breast carcinoma cells sampled by scraping and the IHC score graded by automated image analysis using whole slide image. We randomly selected 23 breast carcinoma cases with a HER2 score 0, 24 cases with a HER2 score 1+, 24 cases with HER2 score 2+, and 23 cases with HER2 score 3+ from the records of patients with breast cancer at Hiroshima University Hospital. We compared the results of fluorescent in situ hybridization (FISH) using formalin-fixed, paraffin-embedded (FFPE) tissues and cytological samples and compared the HER2 score calculated using an automated image analysis using wholly scanned slide images and visual counting. We successfully performed the FISH assay in 78 of 94 cases (83%) using FFPE tissues and in all 94 (100%) cases using cytological samples. Frequency of both HER2 amplification and CEP17 polysomy was higher when cytological samples were used than when FFPE tissue was used. Frequency of HER2 heterogeneity using cytological samples was higher that than using FFPE tissue, except for the IHC score 3+ cases. When assessment of HER2 status based on FISH using FFPE tissue cannot be accomplished, FISH using cytological samples should be considered. When intensity of HER2 is heterogeneous in the tumor tissue, particularly in cases regarded as score 2+, they should be evaluated by automated image analysis using the whole slide image. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Automated sample analysis and remediation

    International Nuclear Information System (INIS)

    Hollen, R.; Settle, F.

    1995-01-01

    The Contaminant Analysis Automation Project is developing an automated chemical analysis system to address the current needs of the US Department of Energy (DOE). These needs focus on the remediation of large amounts of radioactive and chemically hazardous wastes stored, buried and still being processed at numerous DOE sites. This paper outlines the advantages of the system under development, and details the hardware and software design. A prototype system for characterizing polychlorinated biphenyls in soils is also described

  10. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  11. Screening of subfertile men for testicular carcinoma in situ by an automated image analysis-based cytological test of the ejaculate

    DEFF Research Database (Denmark)

    Almstrup, K; Lippert, Marianne; Mogensen, Hanne O

    2011-01-01

    in conjunction with analysis of the ejaculates because of infertility work-up. Histological analysis of the biopsies for the presence of CIS yielded a test sensitivity of 0.67 and a specificity of 0.98. In addition, ejaculates from 45 patients with clinical signs of an overt TC were investigated and yielded...... a slightly lower sensitivity (0.51), possibly because of obstruction. We conclude that this novel non-invasive test combining automated immunocytochemistry and advanced image analysis allows identification of TC at the CIS stage with a high specificity, but a negative test does not completely exclude CIS...

  12. Morphological spot counting from stacked images for automated analysis of gene copy numbers by fluorescence in situ hybridization.

    Science.gov (United States)

    Grigoryan, Artyom M; Dougherty, Edward R; Kononen, Juha; Bubendorf, Lukas; Hostetter, Galen; Kallioniemi, Olli

    2002-01-01

    Fluorescence in situ hybridization (FISH) is a molecular diagnostic technique in which a fluorescent labeled probe hybridizes to a target nucleotide sequence of deoxyribose nucleic acid. Upon excitation, each chromosome containing the target sequence produces a fluorescent signal (spot). Because fluorescent spot counting is tedious and often subjective, automated digital algorithms to count spots are desirable. New technology provides a stack of images on multiple focal planes throughout a tissue sample. Multiple-focal-plane imaging helps overcome the biases and imprecision inherent in single-focal-plane methods. This paper proposes an algorithm for global spot counting in stacked three-dimensional slice FISH images without the necessity of nuclei segmentation. It is designed to work in complex backgrounds, when there are agglomerated nuclei, and in the presence of illumination gradients. It is based on the morphological top-hat transform, which locates intensity spikes on irregular backgrounds. After finding signals in the slice images, the algorithm groups these together to form three-dimensional spots. Filters are employed to separate legitimate spots from fluorescent noise. The algorithm is set in a comprehensive toolbox that provides visualization and analytic facilities. It includes simulation software that allows examination of algorithm performance for various image and algorithm parameter settings, including signal size, signal density, and the number of slices.

  13. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    Science.gov (United States)

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  14. Automated Analysis of Accountability

    DEFF Research Database (Denmark)

    Bruni, Alessandro; Giustolisi, Rosario; Schürmann, Carsten

    2017-01-01

    that the system can detect the misbehaving parties who caused that failure. Accountability is an intuitively stronger property than verifiability as the latter only rests on the possibility of detecting the failure of a goal. A plethora of accountability and verifiability definitions have been proposed...... in the literature. Those definitions are either very specific to the protocols in question, hence not applicable in other scenarios, or too general and widely applicable but requiring complicated and hard to follow manual proofs. In this paper, we advance formal definitions of verifiability and accountability...... that are amenable to automated verification. Our definitions are general enough to be applied to different classes of protocols and different automated security verification tools. Furthermore, we point out formally the relation between verifiability and accountability. We validate our definitions...

  15. Toward standardized quantitative image quality (IQ) assessment in computed tomography (CT): A comprehensive framework for automated and comparative IQ analysis based on ICRU Report 87.

    Science.gov (United States)

    Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2016-01-01

    Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Strong Prognostic Value of Tumor-infiltrating Neutrophils and Lymphocytes Assessed by Automated Digital Image Analysis in Early Stage Cervical Cancer

    DEFF Research Database (Denmark)

    Carus, Andreas; Donskov, Frede; Switten Nielsen, Patricia

    2014-01-01

    INTRODUCTION Manual observer-assisted stereological (OAS) assessments of tumor-infiltrating neutrophils and lymphocytes are prognostic, accurate, but cumbersome. We assessed the applicability of automated digital image analysis (DIA). METHODS Visiomorph software was used to obtain DIA densities...... with the prognostically strongest manual OAS assessments in the peritumoral compartment. In multivariate analysis, CD66b and CD8 densities, assessed by DIA, and regional lymph node metastases were independent predictors of RFS, while CD163 density and FIGO stage were not. The CD66b/CD8 tumorassociated neutrophil...

  17. A Novel Morphometry-Based Protocol of Automated Video-Image Analysis for Species Recognition and Activity Rhythms Monitoring in Deep-Sea Fauna

    Directory of Open Access Journals (Sweden)

    Paolo Menesatti

    2009-10-01

    Full Text Available The understanding of ecosystem dynamics in deep-sea areas is to date limited by technical constraints on sampling repetition. We have elaborated a morphometry-based protocol for automated video-image analysis where animal movement tracking (by frame subtraction is accompanied by species identification from animals’ outlines by Fourier Descriptors and Standard K-Nearest Neighbours methods. One-week footage from a permanent video-station located at 1,100 m depth in Sagami Bay (Central Japan was analysed. Out of 150,000 frames (1 per 4 s, a subset of 10.000 was analyzed by a trained operator to increase the efficiency of the automated procedure. Error estimation of the automated and trained operator procedure was computed as a measure of protocol performance. Three displacing species were identified as the most recurrent: Zoarcid fishes (eelpouts, red crabs (Paralomis multispina, and snails (Buccinum soyomaruae. Species identification with KNN thresholding produced better results in automated motion detection. Results were discussed assuming that the technological bottleneck is to date deeply conditioning the exploration of the deep-sea.

  18. Automated analysis of autoradiographic imagery

    International Nuclear Information System (INIS)

    Bisignani, W.T.; Greenhouse, S.C.

    1975-01-01

    A research programme is described which has as its objective the automated characterization of neurological tissue regions from autoradiographs by utilizing hybrid-resolution image processing techniques. An experimental system is discussed which includes raw imagery, scanning an digitizing equipments, feature-extraction algorithms, and regional characterization techniques. The parameters extracted by these algorithms are presented as well as the regional characteristics which are obtained by operating on the parameters with statistical sampling techniques. An approach is presented for validating the techniques and initial experimental results are obtained from an anlysis of an autoradiograph of a region of the hypothalamus. An extension of these automated techniques to other biomedical research areas is discussed as well as the implications of applying automated techniques to biomedical research problems. (author)

  19. A new automated method for analysis of gated-SPECT images based on a three-dimensional heart shaped model

    DEFF Research Database (Denmark)

    Lomsky, Milan; Richter, Jens; Johansson, Lena

    2005-01-01

    A new automated method for quantification of left ventricular function from gated-single photon emission computed tomography (SPECT) images has been developed. The method for quantification of cardiac function (CAFU) is based on a heart shaped model and the active shape algorithm. The model....... The maximal differences between the CAFU estimations and the true left ventricular volumes of the digital phantoms were 11 ml for the end-diastolic volume (EDV), 3 ml for the end-systolic volume (ESV) and 3% for the ejection fraction (EF). The largest differences were seen in the smallest heart....... In the patient group the EDV calculated using QGS and CAFU showed good agreement for large hearts and higher CAFU values compared with QGS for the smaller hearts. In the larger hearts, ESV was much larger for QGS than for CAFU both in the phantom and patient studies. In the smallest hearts there was good...

  20. Automating proliferation rate estimation from Ki-67 histology images

    Science.gov (United States)

    Al-Lahham, Heba Z.; Alomari, Raja S.; Hiary, Hazem; Chaudhary, Vipin

    2012-03-01

    Breast cancer is the second cause of women death and the most diagnosed female cancer in the US. Proliferation rate estimation (PRE) is one of the prognostic indicators that guide the treatment protocols and it is clinically performed from Ki-67 histopathology images. Automating PRE substantially increases the efficiency of the pathologists. Moreover, presenting a deterministic and reproducible proliferation rate value is crucial to reduce inter-observer variability. To that end, we propose a fully automated CAD system for PRE from the Ki-67 histopathology images. This CAD system is based on a model of three steps: image pre-processing, image clustering, and nuclei segmentation and counting that are finally followed by PRE. The first step is based on customized color modification and color-space transformation. Then, image pixels are clustered by K-Means depending on the features extracted from the images derived from the first step. Finally, nuclei are segmented and counted using global thresholding, mathematical morphology and connected component analysis. Our experimental results on fifty Ki-67-stained histopathology images show a significant agreement between our CAD's automated PRE and the gold standard's one, where the latter is an average between two observers' estimates. The Paired T-Test, for the automated and manual estimates, shows ρ = 0.86, 0.45, 0.8 for the brown nuclei count, blue nuclei count, and proliferation rate, respectively. Thus, our proposed CAD system is as reliable as the pathologist estimating the proliferation rate. Yet, its estimate is reproducible.

  1. An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images

    Science.gov (United States)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-02-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and

  2. Retinal Imaging and Image Analysis

    Science.gov (United States)

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  3. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  4. Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images.

    Science.gov (United States)

    Wang, Kang; Jayadev, Chaitra; Nittala, Muneeswar G; Velaga, Swetha B; Ramachandra, Chaithanya A; Bhaskaranand, Malavika; Bhat, Sandeep; Solanki, Kaushal; Sadda, SriniVas R

    2018-03-01

    We examined the sensitivity and specificity of an automated algorithm for detecting referral-warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5-level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral-warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1-93.9/80.4-89.4) with a 50.0%/53.6% specificity (95% CI 31.7-72.8/36.5-71.4) for detecting referral-warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819-0.922/0.804-0.894). Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral-warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Low-dose DNA damage and replication stress responses quantified by optimized automated single-cell image analysis

    DEFF Research Database (Denmark)

    Mistrik, Martin; Oplustilova, Lenka; Lukas, Jiri

    2009-01-01

    sensitive, quantitative, rapid and simple fluorescence image analysis in thousands of adherent cells per day. Sensitive DNA breakage estimation through analysis of phosphorylated histone H2AX (gamma-H2AX), and homologous recombination (HR) assessed by a new RPA/Rad51 dual-marker approach illustrate...

  6. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Hensley, W.K.; Denton, M.M.; Garcia, S.R.

    1981-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey are described

  7. Automated Analysis of Infinite Scenarios

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2005-01-01

    The security of a network protocol crucially relies on the scenario in which the protocol is deployed. This paper describes syntactic constructs for modelling network scenarios and presents an automated analysis tool, which can guarantee that security properties hold in all of the (infinitely many...

  8. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.; Denton, M.M.

    1982-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day

  9. Automated image based prominent nucleoli detection.

    Science.gov (United States)

    Yap, Choon K; Kalaw, Emarene M; Singh, Malay; Chong, Kian T; Giron, Danilo M; Huang, Chao-Hui; Cheng, Li; Law, Yan N; Lee, Hwee Kuan

    2015-01-01

    Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings.

  10. Automated image based prominent nucleoli detection

    Directory of Open Access Journals (Sweden)

    Choon K Yap

    2015-01-01

    Full Text Available Introduction: Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Materials and Methods: Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. Results: The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Conclusions: Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings.

  11. Measurement of TLR-induced macrophage spreading by automated image analysis: differential role of Myd88 and MAPK in early and late responses

    Directory of Open Access Journals (Sweden)

    Jens eWenzel

    2011-10-01

    Full Text Available Sensing of infectious danger by Toll-like receptors (TLR on macrophages causes not only a reprogramming of the transcriptome but also changes in the cytoskeleton important for cell spreading and motility. Since manual determination of cell contact areas from fluorescence microscopy pictures is very time consuming and prone to bias, we have developed and tested algorithms for automated measurement of macrophage spreading. The two-step method combines identification of cells by nuclear staining with DAPI and cell surface staining of the integrin CD11b. Automated image analysis correlated very well with manual annotation in resting macrophages and early after stimulation, whereas at later time points the automated cell segmentation algorithm and manual annotation showed slightly larger variation. The method was applied to investigate the impact of genetic or pharmacological inhibition of known TLR signaling components. Deificiency in the adapter protein Myd88 strongly reduced spreading activity at the late time points, but had no impact early after LPS stimulation. A similar effect was observed upon pharmacological inhibition of MEK1, the kinase activating the MAPK ERK1/2, indicating that ERK1/2 mediates Myd88-dependent macrophages spreading. In contrast, macrophages lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8 – 24 h after stimulation. The dichotomy of p38 and ERK1/2 MAPK effects on early and late macrophage spreading raises the question which of the respective substrate proteins mediate(s cytoskeletal remodeling and spreading. The automated measurement of cell spreading described here increases the objectivity and greatly reduces the time required for such investigations and is therefore expected to facilitate larger through-put analysis of macrophage spreading, e.g. in siRNA knockdown screens.

  12. AUTOMATED ANALYSIS OF BREAKERS

    Directory of Open Access Journals (Sweden)

    E. M. Farhadzade

    2014-01-01

    Full Text Available Breakers relate to Electric Power Systems’ equipment, the reliability of which influence, to a great extend, on reliability of Power Plants. In particular, the breakers determine structural reliability of switchgear circuit of Power Stations and network substations. Failure in short-circuit switching off by breaker with further failure of reservation unit or system of long-distance protection lead quite often to system emergency.The problem of breakers’ reliability improvement and the reduction of maintenance expenses is becoming ever more urgent in conditions of systematic increasing of maintenance cost and repair expenses of oil circuit and air-break circuit breakers. The main direction of this problem solution is the improvement of diagnostic control methods and organization of on-condition maintenance. But this demands to use a great amount of statistic information about nameplate data of breakers and their operating conditions, about their failures, testing and repairing, advanced developments (software of computer technologies and specific automated information system (AIS.The new AIS with AISV logo was developed at the department: “Reliability of power equipment” of AzRDSI of Energy. The main features of AISV are:· to provide the security and data base accuracy;· to carry out systematic control of breakers conformity with operating conditions;· to make the estimation of individual  reliability’s value and characteristics of its changing for given combination of characteristics variety;· to provide personnel, who is responsible for technical maintenance of breakers, not only with information but also with methodological support, including recommendations for the given problem solving  and advanced methods for its realization.

  13. Automated Analysis of Corpora Callosa

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Davies, Rhodri H.

    2003-01-01

    This report describes and evaluates the steps needed to perform modern model-based interpretation of the corpus callosum in MRI. The process is discussed from the initial landmark-free contours to full-fledged statistical models based on the Active Appearance Models framework. Topics treated incl...... include landmark placement, background modelling and multi-resolution analysis. Preliminary quantitative and qualitative validation in a cross-sectional study show that fully automated analysis and segmentation of the corpus callosum are feasible....

  14. Automated Software Vulnerability Analysis

    Science.gov (United States)

    Sezer, Emre C.; Kil, Chongkyung; Ning, Peng

    Despite decades of research, software continues to have vulnerabilities. Successful exploitations of these vulnerabilities by attackers cost millions of dollars to businesses and individuals. Unfortunately, most effective defensive measures, such as patching and intrusion prevention systems, require an intimate knowledge of the vulnerabilities. Many systems for detecting attacks have been proposed. However, the analysis of the exploited vulnerabilities is left to security experts and programmers. Both the human effortinvolved and the slow analysis process are unfavorable for timely defensive measure to be deployed. The problem is exacerbated by zero-day attacks.

  15. An Automated, Image Processing System for Concrete Evaluation

    International Nuclear Information System (INIS)

    Baumgart, C.W.; Cave, S.P.; Linder, K.E.

    1998-01-01

    Allied Signal Federal Manufacturing ampersand Technologies (FM ampersand T) was asked to perform a proof-of-concept study for the Missouri Highway and Transportation Department (MHTD), Research Division, in June 1997. The goal of this proof-of-concept study was to ascertain if automated scanning and imaging techniques might be applied effectively to the problem of concrete evaluation. In the current evaluation process, a concrete sample core is manually scanned under a microscope. Voids (or air spaces) within the concrete are then detected visually by a human operator by incrementing the sample under the cross-hairs of a microscope and by counting the number of ''pixels'' which fall within a void. Automation of the scanning and image analysis processes is desired to improve the speed of the scanning process, to improve evaluation consistency, and to reduce operator fatigue. An initial, proof-of-concept image analysis approach was successfully developed and demonstrated using acquired black and white imagery of concrete samples. In this paper, the automated scanning and image capture system currently under development will be described and the image processing approach developed for the proof-of-concept study will be demonstrated. A development update and plans for future enhancements are also presented

  16. Automated measurement of heterogeneity in CT images of healthy and diseased rat lungs using variogram analysis of an octree decomposition

    International Nuclear Information System (INIS)

    Jacob, Richard E; Carson, James P

    2014-01-01

    Assessing heterogeneity in lung images can be an important diagnosis tool. We present a novel and objective method for assessing lung damage in a rat model of emphysema. We combined a three-dimensional (3D) computer graphics method–octree decomposition–with a geostatistics-based approach for assessing spatial relationships–the variogram–to evaluate disease in 3D computed tomography (CT) image volumes. Male, Sprague-Dawley rats were dosed intratracheally with saline (control), or with elastase dissolved in saline to either the whole lung (for mild, global disease) or a single lobe (for severe, local disease). Gated 3D micro-CT images were acquired on the lungs of all rats at end expiration. Images were masked, and octree decomposition was performed on the images to reduce the lungs to homogeneous blocks of 2 × 2 × 2, 4 × 4 × 4, and 8 × 8 × 8 voxels. To focus on lung parenchyma, small blocks were ignored because they primarily defined boundaries and vascular features, and the spatial variance between all pairs of the 8 × 8 × 8 blocks was calculated as the square of the difference of signal intensity. Variograms–graphs of distance vs. variance–were constructed, and results of a least-squares-fit were compared. The robustness of the approach was tested on images prepared with various filtering protocols. Statistical assessment of the similarity of the three control rats was made with a Kruskal-Wallis rank sum test. A Mann-Whitney-Wilcoxon rank sum test was used to measure statistical distinction between individuals. For comparison with the variogram results, the coefficient of variation and the emphysema index were also calculated for all rats. Variogram analysis showed that the control rats were statistically indistinct (p = 0.12), but there were significant differences between control, mild global disease, and severe local disease groups (p < 0.0001). A heterogeneity index was calculated to describe the difference of an individual variogram from

  17. Automated planning of breast radiotherapy using cone beam CT imaging

    International Nuclear Information System (INIS)

    Amit, Guy; Purdie, Thomas G.

    2015-01-01

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation

  18. Automated image segmentation using information theory

    International Nuclear Information System (INIS)

    Hibbard, L.S.

    2001-01-01

    Full text: Our development of automated contouring of CT images for RT planning is based on maximum a posteriori (MAP) analyses of region textures, edges, and prior shapes, and assumes stationary Gaussian distributions for voxel textures and contour shapes. Since models may not accurately represent image data, it would be advantageous to compute inferences without relying on models. The relative entropy (RE) from information theory can generate inferences based solely on the similarity of probability distributions. The entropy of a distribution of a random variable X is defined as -Σ x p(x)log 2 p(x) for all the values x which X may assume. The RE (Kullback-Liebler divergence) of two distributions p(X), q(X), over X is Σ x p(x)log 2 {p(x)/q(x)}. The RE is a kind of 'distance' between p,q, equaling zero when p=q and increasing as p,q are more different. Minimum-error MAP and likelihood ratio decision rules have RE equivalents: minimum error decisions obtain with functions of the differences between REs of compared distributions. One applied result is the contour ideally separating two regions is that which maximizes the relative entropy of the two regions' intensities. A program was developed that automatically contours the outlines of patients in stereotactic headframes, a situation most often requiring manual drawing. The relative entropy of intensities inside the contour (patient) versus outside (background) was maximized by conjugate gradient descent over the space of parameters of a deformable contour. shows the computed segmentation of a patient from headframe backgrounds. This program is particularly useful for preparing images for multimodal image fusion. Relative entropy and allied measures of distribution similarity provide automated contouring criteria that do not depend on statistical models of image data. This approach should have wide utility in medical image segmentation applications. Copyright (2001) Australasian College of Physical Scientists and

  19. Automated landmark-guided deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-07

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  20. Automated landmark-guided deformable image registration

    International Nuclear Information System (INIS)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency. (paper)

  1. Computer-assisted stereology and automated image analysis for quantification of tumor infiltrating lymphocytes in colon cancer.

    Science.gov (United States)

    Eriksen, Ann C; Andersen, Johnnie B; Kristensson, Martin; dePont Christensen, René; Hansen, Torben F; Kjær-Frifeldt, Sanne; Sørensen, Flemming B

    2017-08-29

    Precise prognostic and predictive variables allowing improved post-operative treatment stratification are missing in patients treated for stage II colon cancer (CC). Investigation of tumor infiltrating lymphocytes (TILs) may be rewarding, but the lack of a standardized analytic technique is a major concern. Manual stereological counting is considered the gold standard, but digital pathology with image analysis is preferred due to time efficiency. The purpose of this study was to compare manual stereological estimates of TILs with automatic counts obtained by image analysis, and at the same time investigate the heterogeneity of TILs. From 43 patients treated for stage II CC in 2002 three paraffin embedded, tumor containing tissue blocks were selected one of them representing the deepest invasive tumor front. Serial sections from each of the 129 blocks were immunohistochemically stained for CD3 and CD8, and the slides were scanned. Stereological estimates of the numerical density and area fraction of TILs were obtained using the computer-assisted newCAST stereology system. For the image analysis approach an app-based algorithm was developed using Visiopharm Integrator System software. For both methods the tumor areas of interest (invasive front and central area) were manually delineated by the observer. Based on all sections, the Spearman's correlation coefficients for density estimates varied from 0.9457 to 0.9638 (p heterogeneity, intra-class correlation coefficients (ICC) for CD3+ TILs varied from 0.615 to 0.746 in the central area, and from 0.686 to 0.746 in the invasive area. ICC for CD8+ TILs varied from 0.724 to 0.775 in the central area, and from 0.746 to 0.765 in the invasive area. Exact objective and time efficient estimates of numerical densities and area fractions of CD3+ and CD8+ TILs in stage II colon cancer can be obtained by image analysis and are highly correlated to the corresponding estimates obtained by the gold standard based on stereology

  2. Application of automated image analysis reduces the workload of manual screening of sentinel Lymph node biopsies in breast cancer

    DEFF Research Database (Denmark)

    Holten-Rossing, Henrik; Talman, Maj-Lis Møller; Jylling, Anne Marie Bak

    2017-01-01

    axilla. In patients with no clinical signs of metastatic disease in the axilla, a SLN biopsy (SLNB) is performed. Assessment of metastases in the SLNB is done in a conventional microscope by manually observing a metastasis and measuring its size and/or counting the number of tumor cells. This is done...... essentially to categorize the type of metastases as macrometastases, micrometastases or isolated tumor cells, which is used to determine which treatment the breast cancer patient will benefit mostly from. The aim of this study was to evaluate whether digital image analysis can be applied as a screening tool...

  3. Technical note on the validation of a semi-automated image analysis software application for estrogen and progesterone receptor detection in breast cancer

    Science.gov (United States)

    2011-01-01

    Background The immunohistochemical detection of estrogen (ER) and progesterone (PR) receptors in breast cancer is routinely used for prognostic and predictive testing. Whole slide digitalization supported by dedicated software tools allows quantization of the image objects (e.g. cell membrane, nuclei) and an unbiased analysis of immunostaining results. Validation studies of image analysis applications for the detection of ER and PR in breast cancer specimens provided strong concordance between the pathologist's manual assessment of slides and scoring performed using different software applications. Methods The effectiveness of two connected semi-automated image analysis software (NuclearQuant v. 1.13 application for Pannoramic™ Viewer v. 1.14) for determination of ER and PR status in formalin-fixed paraffin embedded breast cancer specimens immunostained with the automated Leica Bond Max system was studied. First the detection algorithm was calibrated to the scores provided an independent assessors (pathologist), using selected areas from 38 small digital slides (created from 16 cases) containing a mean number of 195 cells. Each cell was manually marked and scored according to the Allred-system combining frequency and intensity scores. The performance of the calibrated algorithm was tested on 16 cases (14 invasive ductal carcinoma, 2 invasive lobular carcinoma) against the pathologist's manual scoring of digital slides. Results The detection was calibrated to 87 percent object detection agreement and almost perfect Total Score agreement (Cohen's kappa 0.859, quadratic weighted kappa 0.986) from slight or moderate agreement at the start of the study, using the un-calibrated algorithm. The performance of the application was tested against the pathologist's manual scoring of digital slides on 53 regions of interest of 16 ER and PR slides covering all positivity ranges, and the quadratic weighted kappa provided almost perfect agreement (κ = 0.981) among the two

  4. Automated processing of zebrafish imaging data: a survey.

    Science.gov (United States)

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  5. Automated Processing of Zebrafish Imaging Data: A Survey

    Science.gov (United States)

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  6. Adaptive Algorithms for Automated Processing of Document Images

    Science.gov (United States)

    2011-01-01

    ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University

  7. Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Rigsby, Cynthia K.; Hilpipre, Nicholas; Boylan, Emma E.; Popescu, Andrada R.; Deng, Jie [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); McNeal, Gary R. [Siemens Medical Solutions USA Inc., Customer Solutions Group, Cardiovascular MR R and D, Chicago, IL (United States); Zhang, Gang [Ann and Robert H. Lurie Children' s Hospital of Chicago Research Center, Biostatistics Research Core, Chicago, IL (United States); Choi, Grace [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-03-15

    Phase contrast magnetic resonance imaging (MRI) is a powerful tool for evaluating vessel blood flow. Inherent errors in acquisition, such as phase offset, eddy currents and gradient field effects, can cause significant inaccuracies in flow parameters. These errors can be rectified with the use of background correction software. To evaluate the performance of an automated phase contrast MRI background phase correction method in children and young adults undergoing cardiac MR imaging. We conducted a retrospective review of patients undergoing routine clinical cardiac MRI including phase contrast MRI for flow quantification in the aorta (Ao) and main pulmonary artery (MPA). When phase contrast MRI of the right and left pulmonary arteries was also performed, these data were included. We excluded patients with known shunts and metallic implants causing visible MRI artifact and those with more than mild to moderate aortic or pulmonary stenosis. Phase contrast MRI of the Ao, mid MPA, proximal right pulmonary artery (RPA) and left pulmonary artery (LPA) using 2-D gradient echo Fast Low Angle SHot (FLASH) imaging was acquired during normal respiration with retrospective cardiac gating. Standard phase image reconstruction and the automatic spatially dependent background-phase-corrected reconstruction were performed on each phase contrast MRI dataset. Non-background-corrected and background-phase-corrected net flow, forward flow, regurgitant volume, regurgitant fraction, and vessel cardiac output were recorded for each vessel. We compared standard non-background-corrected and background-phase-corrected mean flow values for the Ao and MPA. The ratio of pulmonary to systemic blood flow (Qp:Qs) was calculated for the standard non-background and background-phase-corrected data and these values were compared to each other and for proximity to 1. In a subset of patients who also underwent phase contrast MRI of the MPA, RPA, and LPA a comparison was made between standard non

  8. An automated tool for cortical feature analysis: Application to differences on 7 Tesla T2* -weighted images between young and older healthy subjects.

    Science.gov (United States)

    Doan, Nhat Trung; van Rooden, Sanneke; Versluis, Maarten J; Buijs, Mathijs; Webb, Andrew G; van der Grond, Jeroen; van Buchem, Mark A; Reiber, Johan H C; Milles, Julien

    2015-07-01

    High field T 2 * -weighted MR images of the cerebral cortex are increasingly used to study tissue susceptibility changes related to aging or pathologies. This paper presents a novel automated method for the computation of quantitative cortical measures and group-wise comparison using 7 Tesla T 2 * -weighted magnitude and phase images. The cerebral cortex was segmented using a combination of T 2 * -weighted magnitude and phase information and subsequently was parcellated based on an anatomical atlas. Local gray matter (GM)/white matter (WM) contrast and cortical profiles, which depict the magnitude or phase variation across the cortex, were computed from the magnitude and phase images in each parcellated region and further used for group-wise comparison. Differences in local GM/WM contrast were assessed using linear regression analysis. Regional cortical profiles were compared both globally and locally using permutation testing. The method was applied to compare a group of 10 young volunteers with a group of 15 older subjects. Using local GM/WM contrast, significant differences were revealed in at least 13 of 17 studied regions. Highly significant differences between cortical profiles were shown in all regions. The proposed method can be a useful tool for studying cortical changes in normal aging and potentially in neurodegenerative diseases. Magn Reson Med 74:240-248, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  9. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  10. Monochromatic blue light entrains diel activity cycles in the Norway lobster, Nephrops norvegicus (L. as measured by automated video-image analysis

    Directory of Open Access Journals (Sweden)

    Jacopo Aguzzi

    2009-12-01

    Full Text Available There is growing interest in developing automated, non-invasive techniques for long-lasting, laboratory-based monitoring of behaviour in organisms from deep-water continental margins which are of ecological and commercial importance. We monitored the burrow emergence rhythms in the Norway lobster, Nephrops norvegicus, which included: a characterising the regulation of behavioural activity outside the burrow under monochromatic blue light-darkness (LD cycles of 0.1 lx, recreating slope photic conditions (i.e. 200-300 m depth and constant darkness (DD, which is necessary for the study of the circadian system; b testing the performance of a newly designed digital video-image analysis system for tracking locomotor activity. We used infrared USB web cameras and customised software (in Matlab 7.1 to acquire and process digital frames of eight animals at a rate of one frame per minute under consecutive photoperiod stages for nine days each: LD, DD, and LD (subdivided into two stages, LD1 and LD2, for analysis purposes. The automated analysis allowed the production of time series of locomotor activity based on movements of the animals’ centroids. Data were studied with periodogram, waveform, and Fourier analyses. For the first time, we report robust diurnal burrow emergence rhythms during the LD period, which became weak in DD. Our results fit with field data accounting for midday peaks in catches at the depth of slopes. The comparison of the present locomotor pattern with those recorded at different light intensities clarifies the regulation of the clock of N. norvegicus at different depths.

  11. Tools for automating the imaging of zebrafish larvae.

    Science.gov (United States)

    Pulak, Rock

    2016-03-01

    The VAST BioImager system is a set of tools developed for zebrafish researchers who require the collection of images from a large number of 2-7 dpf zebrafish larvae. The VAST BioImager automates larval handling, positioning and orientation tasks. Color images at about 10 μm resolution are collected from the on-board camera of the system. If images of greater resolution and detail are required, this system is mounted on an upright microscope, such as a confocal or fluorescence microscope, to utilize their capabilities. The system loads a larvae, positions it in view of the camera, determines orientation using pattern recognition analysis, and then more precisely positions to user-defined orientation for optimal imaging of any desired tissue or organ system. Multiple images of the same larva can be collected. The specific part of each larva and the desired orientation and position is identified by the researcher and an experiment defining the settings and a series of steps can be saved and repeated for imaging of subsequent larvae. The system captures images, then ejects and loads another larva from either a bulk reservoir, a well of a 96 well plate using the LP Sampler, or individually targeted larvae from a Petri dish or other container using the VAST Pipettor. Alternative manual protocols for handling larvae for image collection are tedious and time consuming. The VAST BioImager automates these steps to allow for greater throughput of assays and screens requiring high-content image collection of zebrafish larvae such as might be used in drug discovery and toxicology studies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  12. Automated microscopic characterization of metallic ores with image analysis: a key to improve ore processing. II: metallogenetic discriminating criteria

    International Nuclear Information System (INIS)

    Castroviejo, R.; Berrezueta, E.

    2009-01-01

    ore microscopy may furnish very important information for geo metallurgists, but todays needs for automation are difficult to meet with the optical microscope unless and adequate methodology is developed. Some limitations of the routine procedure, related to risks of mis identification caused by the spectral similarity of some ores, ask for complementary criteria. Defining ore deposit typologies and the corresponding assemblages guides the choice of species and limits the number. Comparison of the reflectance values of the ores in each mineral association defined shows that their automated identification is possible in most of the common occurrence. The number of species to be actually considered being greatly limited, performance is increased. The system is not intended to substitute for a mineralogist, but to enhance enormously his performance, while offering the industry an economic procedure to procedure a wealth of information which would not be possible with traditional methods, as the point counter. (Author) 33 refs.

  13. Artificial intelligence and medical imaging. Expert systems and image analysis

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zoellner, G.; Horviller, S.; Jacqmain, T.

    1987-01-01

    This paper gives an overview on the existing systems for automated image analysis and interpretation in medical imaging, especially in radiology. The example of ORFEVRE, the system for the analysis of CAT-scan images of the cervical triplet (c3-c5) by image analysis and subsequent expert-system is given and discussed in detail. Possible extensions are described [fr

  14. Image analysis

    International Nuclear Information System (INIS)

    Berman, M.; Bischof, L.M.; Breen, E.J.; Peden, G.M.

    1994-01-01

    This paper provides an overview of modern image analysis techniques pertinent to materials science. The usual approach in image analysis contains two basic steps: first, the image is segmented into its constituent components (e.g. individual grains), and second, measurement and quantitative analysis are performed. Usually, the segmentation part of the process is the harder of the two. Consequently, much of the paper concentrates on this aspect, reviewing both fundamental segmentation tools (commonly found in commercial image analysis packages) and more advanced segmentation tools. There is also a review of the most widely used quantitative analysis methods for measuring the size, shape and spatial arrangements of objects. Many of the segmentation and analysis methods are demonstrated using complex real-world examples. Finally, there is a discussion of hardware and software issues. 42 refs., 17 figs

  15. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Havlůj, F.; Hejzlar, J.; Vočka, R.

    2013-01-01

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  16. Automated analysis of whole skeletal muscle for muscular atrophy detection of ALS in whole-body CT images: preliminary study

    Science.gov (United States)

    Kamiya, Naoki; Ieda, Kosuke; Zhou, Xiangrong; Yamada, Megumi; Kato, Hiroki; Muramatsu, Chisako; Hara, Takeshi; Miyoshi, Toshiharu; Inuzuka, Takashi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    Amyotrophic lateral sclerosis (ALS) causes functional disorders such as difficulty in breathing and swallowing through the atrophy of voluntary muscles. ALS in its early stages is difficult to diagnose because of the difficulty in differentiating it from other muscular diseases. In addition, image inspection methods for aggressive diagnosis for ALS have not yet been established. The purpose of this study is to develop an automatic analysis system of the whole skeletal muscle to support the early differential diagnosis of ALS using whole-body CT images. In this study, the muscular atrophy parts including ALS patients are automatically identified by recognizing and segmenting whole skeletal muscle in the preliminary steps. First, the skeleton is identified by its gray value information. Second, the initial area of the body cavity is recognized by the deformation of the thoracic cavity based on the anatomical segmented skeleton. Third, the abdominal cavity boundary is recognized using ABM for precisely recognizing the body cavity. The body cavity is precisely recognized by non-rigid registration method based on the reference points of the abdominal cavity boundary. Fourth, the whole skeletal muscle is recognized by excluding the skeleton, the body cavity, and the subcutaneous fat. Additionally, the areas of muscular atrophy including ALS patients are automatically identified by comparison of the muscle mass. The experiments were carried out for ten cases with abnormality in the skeletal muscle. Global recognition and segmentation of the whole skeletal muscle were well realized in eight cases. Moreover, the areas of muscular atrophy including ALS patients were well identified in the lower limbs. As a result, this study indicated the basic technology to detect the muscle atrophy including ALS. In the future, it will be necessary to consider methods to differentiate other kinds of muscular atrophy as well as the clinical application of this detection method for early ALS

  17. Analysis of new bone, cartilage, and fibrosis tissue in healing murine allografts using whole slide imaging and a new automated histomorphometric algorithm

    OpenAIRE

    Zhang, Longze; Chang, Martin; Beck, Christopher A; Schwarz, Edward M; Boyce, Brendan F

    2016-01-01

    Histomorphometric analysis of histologic sections of normal and diseased bone samples, such as healing allografts and fractures, is widely used in bone research. However, the utility of traditional semi-automated methods is limited because they are labor-intensive and can have high interobserver variability depending upon the parameters being assessed, and primary data cannot be re-analyzed automatically. Automated histomorphometry has long been recognized as a solution for these issues, and ...

  18. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  19. Total Mini-Mental State Examination score and regional cerebral blood flow using Z score imaging and automated ROI analysis software in subjects with memory impairment

    International Nuclear Information System (INIS)

    Ikeda, Eiji; Shiozaki, Kazumasa; Takahashi, Nobukazu; Togo, Takashi; Odawara, Toshinari; Oka, Takashi; Inoue, Tomio; Hirayasu, Yoshio

    2008-01-01

    The Mini-Mental State Examination (MMSE) is considered a useful supplementary method to diagnose dementia and evaluate the severity of cognitive disturbance. However, the region of the cerebrum that correlates with the MMSE score is not clear. Recently, a new method was developed to analyze regional cerebral blood flow (rCBF) using a Z score imaging system (eZIS). This system shows changes of rCBF when compared with a normal database. In addition, a three-dimensional stereotaxic region of interest (ROI) template (3DSRT), fully automated ROI analysis software was developed. The objective of this study was to investigate the correlation between rCBF changes and total MMSE score using these new methods. The association between total MMSE score and rCBF changes was investigated in 24 patients (mean age±standard deviation (SD) 71.5±9.2 years; 6 men and 18 women) with memory impairment using eZIS and 3DSRT. Step-wise multiple regression analysis was used for multivariate analysis, with the total MMSE score as the dependent variable and rCBF change in 24 areas as the independent variable. Total MMSE score was significantly correlated only with the reduction of left hippocampal perfusion but not with right (P<0.01). Total MMSE score is an important indicator of left hippocampal function. (author)

  20. AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.

    Science.gov (United States)

    Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J

    2015-04-01

    A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.

  1. Global, Persistent, Real-time Multi-sensor Automated Satellite Image Analysis and Crop Forecasting in Commercial Cloud

    Science.gov (United States)

    Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.

    2016-12-01

    Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general

  2. Automated analysis of instructional text

    Energy Technology Data Exchange (ETDEWEB)

    Norton, L.M.

    1983-05-01

    The development of a capability for automated processing of natural language text is a long-range goal of artificial intelligence. This paper discusses an investigation into the issues involved in the comprehension of descriptive, as opposed to illustrative, textual material. The comprehension process is viewed as the conversion of knowledge from one representation into another. The proposed target representation consists of statements of the prolog language, which can be interpreted both declaratively and procedurally, much like production rules. A computer program has been written to model in detail some ideas about this process. The program successfully analyzes several heavily edited paragraphs adapted from an elementary textbook on programming, automatically synthesizing as a result of the analysis a working Prolog program which, when executed, can parse and interpret let commands in the basic language. The paper discusses the motivations and philosophy of the project, the many kinds of prerequisite knowledge which are necessary, and the structure of the text analysis program. A sentence-by-sentence account of the analysis of the sample text is presented, describing the syntactic and semantic processing which is involved. The paper closes with a discussion of lessons learned from the project, possible alternative approaches, and possible extensions for future work. The entire project is presented as illustrative of the nature and complexity of the text analysis process, rather than as providing definitive or optimal solutions to any aspects of the task. 12 references.

  3. Automated curved planar reformation of 3D spine images

    International Nuclear Information System (INIS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks

  4. Automated quantitative cytological analysis using portable microfluidic microscopy.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    Science.gov (United States)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  6. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  7. An approach to automated chromosome analysis

    International Nuclear Information System (INIS)

    Le Go, Roland

    1972-01-01

    The methods of approach developed with a view to automatic processing of the different stages of chromosome analysis are described in this study divided into three parts. Part 1 relates the study of automated selection of metaphase spreads, which operates a decision process in order to reject ail the non-pertinent images and keep the good ones. This approach has been achieved by Computing a simulation program that has allowed to establish the proper selection algorithms in order to design a kit of electronic logical units. Part 2 deals with the automatic processing of the morphological study of the chromosome complements in a metaphase: the metaphase photographs are processed by an optical-to-digital converter which extracts the image information and writes it out as a digital data set on a magnetic tape. For one metaphase image this data set includes some 200 000 grey values, encoded according to a 16, 32 or 64 grey-level scale, and is processed by a pattern recognition program isolating the chromosomes and investigating their characteristic features (arm tips, centromere areas), in order to get measurements equivalent to the lengths of the four arms. Part 3 studies a program of automated karyotyping by optimized pairing of human chromosomes. The data are derived from direct digitizing of the arm lengths by means of a BENSON digital reader. The program supplies' 1/ a list of the pairs, 2/ a graphic representation of the pairs so constituted according to their respective lengths and centromeric indexes, and 3/ another BENSON graphic drawing according to the author's own representation of the chromosomes, i.e. crosses with orthogonal arms, each branch being the accurate measurement of the corresponding chromosome arm. This conventionalized karyotype indicates on the last line the really abnormal or non-standard images unpaired by the program, which are of special interest for the biologist. (author) [fr

  8. An automated image processing method for classification of diabetic retinopathy stages from conjunctival microvasculature images

    Science.gov (United States)

    Khansari, Maziyar M.; O'Neill, William; Penn, Richard; Blair, Norman P.; Chau, Felix; Shahidi, Mahnaz

    2017-03-01

    The conjunctiva is a densely vascularized tissue of the eye that provides an opportunity for imaging of human microcirculation. In the current study, automated fine structure analysis of conjunctival microvasculature images was performed to discriminate stages of diabetic retinopathy (DR). The study population consisted of one group of nondiabetic control subjects (NC) and 3 groups of diabetic subjects, with no clinical DR (NDR), non-proliferative DR (NPDR), or proliferative DR (PDR). Ordinary least square regression and Fisher linear discriminant analyses were performed to automatically discriminate images between group pairs of subjects. Human observers who were masked to the grouping of subjects performed image discrimination between group pairs. Over 80% and 70% of images of subjects with clinical and non-clinical DR were correctly discriminated by the automated method, respectively. The discrimination rates of the automated method were higher than human observers. The fine structure analysis of conjunctival microvasculature images provided discrimination of DR stages and can be potentially useful for DR screening and monitoring.

  9. Evaluation of an automated karyotyping system for chromosome aberration analysis

    International Nuclear Information System (INIS)

    Prichard, H.M.

    1987-01-01

    Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal

  10. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  11. Advances in Automated Plankton Imaging: Enhanced Throughput, Automated Staining, and Extended Deployment Modes for Imaging FlowCytobot

    Science.gov (United States)

    Sosik, H. M.; Olson, R. J.; Brownlee, E.; Brosnahan, M.; Crockford, E. T.; Peacock, E.; Shalapyonok, A.

    2016-12-01

    Imaging FlowCytobot (IFCB) was developed to fill a need for automated identification and monitoring of nano- and microplankton, especially phytoplankton in the size range 10 200 micrometer, which are important in coastal blooms (including harmful algal blooms). IFCB uses a combination of flow cytometric and video technology to capture high resolution (1 micrometer) images of suspended particles. This proven, now commercially available, submersible instrument technology has been deployed in fixed time series locations for extended periods (months to years) and in shipboard laboratories where underway water is automatically analyzed during surveys. Building from these successes, we have now constructed and evaluated three new prototype IFCB designs that extend measurement and deployment capabilities. To improve cell counting statistics without degrading image quality, a high throughput version (IFCB-HT) incorporates in-flow acoustic focusing to non-disruptively pre-concentrate cells before the measurement area of the flow cell. To extend imaging to all heterotrophic cells (even those that do not exhibit chlorophyll fluorescence), Staining IFCB (IFCB-S) incorporates automated addition of a live-cell fluorescent stain (fluorescein diacetate) to samples before analysis. A horizontally-oriented IFCB-AV design addresses the need for spatial surveying from surface autonomous vehicles, including design features that reliably eliminate air bubbles and mitigate wave motion impacts. Laboratory evaluation and test deployments in waters near Woods Hole show the efficacy of each of these enhanced IFCB designs.

  12. Quantification of filamentation by uropathogenic Escherichia coli during experimental bladder cell infection by using semi-automated image analysis

    DEFF Research Database (Denmark)

    Klein, Kasper; Palarasah, Yaseelan; Kolmos, Hans Jørn

    2015-01-01

    in focus-stacked microscopy images. Used in combination with a flow-chamber based in vitro cystitis model, we study the factors involved in filament formation by uropathogenic E. coli (UPEC) during infection. The influence of substratum surface, intracellular proliferation and flow media on UPEC...... rod-shaped cells. Evidence has emerged over the past decade suggesting that this morphological transformation is controlled and reversible and provides selective advantages under certain growth conditions, such as during infection in humans. In order to identify the factors which induce filamentation...... filamentation is evaluated. We show that reversible UPEC filamentation during cystitis is not dependent on intracellular infection, which previous studies have suggested. Instead, we find that filamentation can be induced by contact with surfaces, both biological and artificial. Lastly our data indicate...

  13. Development and Evaluation of a Semi-automated Segmentation Tool and a Modified Ellipsoid Formula for Volumetric Analysis of the Kidney in Non-contrast T2-Weighted MR Images.

    Science.gov (United States)

    Seuss, Hannes; Janka, Rolf; Prümmer, Marcus; Cavallaro, Alexander; Hammon, Rebecca; Theis, Ragnar; Sandmair, Martin; Amann, Kerstin; Bäuerle, Tobias; Uder, Michael; Hammon, Matthias

    2017-04-01

    Volumetric analysis of the kidney parenchyma provides additional information for the detection and monitoring of various renal diseases. Therefore the purposes of the study were to develop and evaluate a semi-automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non-contrast T2-weighted magnetic resonance (MR)-images. Three readers performed semi-automated segmentation of the total kidney volume (TKV) in axial, non-contrast-enhanced T2-weighted MR-images of 24 healthy volunteers (48 kidneys) twice. A semi-automated threshold-based segmentation tool was developed to segment the kidney parenchyma. Furthermore, the three readers measured renal dimensions (length, width, depth) and applied different formulas to calculate the TKV. Manual segmentation served as a reference volume. Volumes of the different methods were compared and time required was recorded. There was no significant difference between the semi-automatically and manually segmented TKV (p = 0.31). The difference in mean volumes was 0.3 ml (95% confidence interval (CI), -10.1 to 10.7 ml). Semi-automated segmentation was significantly faster than manual segmentation, with a mean difference = 188 s (220 vs. 408 s); p T2-weighted MR data delivers accurate and reproducible results and was significantly faster than manual segmentation. Applying a modified ellipsoid formula quickly provides an accurate kidney volume.

  14. Feasibility of automated 3-dimensional magnetic resonance imaging pancreas segmentation

    Directory of Open Access Journals (Sweden)

    Shuiping Gou, PhD

    2016-07-01

    Conclusions: Our study demonstrated potential feasibility of automated segmentation of the pancreas on MRI scans with minimal human supervision at the beginning of imaging acquisition. The achieved accuracy is promising for organ localization.

  15. An automated 3D reconstruction method of UAV images

    Science.gov (United States)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  16. Image Analysis

    DEFF Research Database (Denmark)

    The 19th Scandinavian Conference on Image Analysis was held at the IT University of Copenhagen in Denmark during June 15-17, 2015. The SCIA conference series has been an ongoing biannual event for more than 30 years and over the years it has nurtured a world-class regional research and development...... area within the four participating Nordic countries. It is a regional meeting of the International Association for Pattern Recognition (IAPR). We would like to thank all authors who submitted works to this year’s SCIA, the invited speakers, and our Program Committee. In total 67 papers were submitted....... The topics of the accepted papers range from novel applications of vision systems, pattern recognition, machine learning, feature extraction, segmentation, 3D vision, to medical and biomedical image analysis. The papers originate from all the Scandinavian countries and several other European countries...

  17. Distribution system analysis and automation

    CERN Document Server

    Gers, Juan

    2013-01-01

    A comprehensive guide to techniques that allow engineers to simulate, analyse and optimise power distribution systems which combined with automation, underpin the emerging concept of the "smart grid". This book is supported by theoretical concepts with real-world applications and MATLAB exercises.

  18. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    International Nuclear Information System (INIS)

    Karaçalı, Bilge; Vamvakidou, Alexandra P; Tözeren, Aydın

    2007-01-01

    Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development

  19. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time.

    Science.gov (United States)

    Wollman, Adam J M; Leake, Mark C

    2015-01-01

    We present a single-molecule tool called the CoPro (concentration of proteins) method that uses millisecond imaging with convolution analysis, automated image segmentation and super-resolution localization microscopy to generate robust estimates for protein concentration in different compartments of single living cells, validated using realistic simulations of complex multiple compartment cell types. We demonstrate its utility experimentally on model Escherichia coli bacteria and Saccharomyces cerevisiae budding yeast cells, and use it to address the biological question of how signals are transduced in cells. Cells in all domains of life dynamically sense their environment through signal transduction mechanisms, many involving gene regulation. The glucose sensing mechanism of S. cerevisiae is a model system for studying gene regulatory signal transduction. It uses the multi-copy expression inhibitor of the GAL gene family, Mig1, to repress unwanted genes in the presence of elevated extracellular glucose concentrations. We fluorescently labelled Mig1 molecules with green fluorescent protein (GFP) via chromosomal integration at physiological expression levels in living S. cerevisiae cells, in addition to the RNA polymerase protein Nrd1 with the fluorescent protein reporter mCherry. Using CoPro we make quantitative estimates of Mig1 and Nrd1 protein concentrations in the cytoplasm and nucleus compartments on a cell-by-cell basis under physiological conditions. These estimates indicate a ∼4-fold shift towards higher values in the concentration of diffusive Mig1 in the nucleus if the external glucose concentration is raised, whereas equivalent levels in the cytoplasm shift to smaller values with a relative change an order of magnitude smaller. This compares with Nrd1 which is not involved directly in glucose sensing, and which is almost exclusively localized in the nucleus under high and low external glucose levels. CoPro facilitates time-resolved quantification of

  20. The contaminant analysis automation robot implementation for the automated laboratory

    International Nuclear Information System (INIS)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-01-01

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLM when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation

  1. Automated analysis of slitless spectra. II. Quasars

    International Nuclear Information System (INIS)

    Edwards, G.; Beauchemin, M.; Borra, F.

    1988-01-01

    Automated software have been developed to process slitless spectra. The software, described in a previous paper, automatically separates stars from extended objects and quasars from stars. This paper describes the quasar search techniques and discusses the results. The performance of the software is compared and calibrated with a plate taken in a region of SA 57 that has been extensively surveyed by others using a variety of techniques: the proposed automated software performs very well. It is found that an eye search of the same plate is less complete than the automated search: surveys that rely on eye searches suffer from incompleteness at least from a magnitude brighter than the plate limit. It is shown how the complete automated analysis of a plate and computer simulations are used to calibrate and understand the characteristics of the present data. 20 references

  2. IDAPS (Image Data Automated Processing System) System Description

    Science.gov (United States)

    1988-06-24

    This document describes the physical configuration and components used in the image processing system referred to as IDAPS (Image Data Automated ... Processing System). This system was developed by the Environmental Research Institute of Michigan (ERIM) for Eglin Air Force Base. The system is designed

  3. Automated identification of animal species in camera trap images

    NARCIS (Netherlands)

    Yu, X.; Wang, J.; Kays, R.; Jansen, P.A.; Wang, T.; Huang, T.

    2013-01-01

    Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the advancement of this field. Here, we present an automated species

  4. An Automated Self-Learning Quantification System to Identify Visible Areas in Capsule Endoscopy Images.

    Science.gov (United States)

    Hashimoto, Shinichi; Ogihara, Hiroyuki; Suenaga, Masato; Fujita, Yusuke; Terai, Shuji; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-08-01

    Visibility in capsule endoscopic images is presently evaluated through intermittent analysis of frames selected by a physician. It is thus subjective and not quantitative. A method to automatically quantify the visibility on capsule endoscopic images has not been reported. Generally, when designing automated image recognition programs, physicians must provide a training image; this process is called supervised learning. We aimed to develop a novel automated self-learning quantification system to identify visible areas on capsule endoscopic images. The technique was developed using 200 capsule endoscopic images retrospectively selected from each of three patients. The rate of detection of visible areas on capsule endoscopic images between a supervised learning program, using training images labeled by a physician, and our novel automated self-learning program, using unlabeled training images without intervention by a physician, was compared. The rate of detection of visible areas was equivalent for the supervised learning program and for our automatic self-learning program. The visible areas automatically identified by self-learning program correlated to the areas identified by an experienced physician. We developed a novel self-learning automated program to identify visible areas in capsule endoscopic images.

  5. Automated analysis in generic groups

    Science.gov (United States)

    Fagerholm, Edvard

    This thesis studies automated methods for analyzing hardness assumptions in generic group models, following ideas of symbolic cryptography. We define a broad class of generic and symbolic group models for different settings---symmetric or asymmetric (leveled) k-linear groups --- and prove ''computational soundness'' theorems for the symbolic models. Based on this result, we formulate a master theorem that relates the hardness of an assumption to solving problems in polynomial algebra. We systematically analyze these problems identifying different classes of assumptions and obtain decidability and undecidability results. Then, we develop automated procedures for verifying the conditions of our master theorems, and thus the validity of hardness assumptions in generic group models. The concrete outcome is an automated tool, the Generic Group Analyzer, which takes as input the statement of an assumption, and outputs either a proof of its generic hardness or shows an algebraic attack against the assumption. Structure-preserving signatures are signature schemes defined over bilinear groups in which messages, public keys and signatures are group elements, and the verification algorithm consists of evaluating ''pairing-product equations''. Recent work on structure-preserving signatures studies optimality of these schemes in terms of the number of group elements needed in the verification key and the signature, and the number of pairing-product equations in the verification algorithm. While the size of keys and signatures is crucial for many applications, another aspect of performance is the time it takes to verify a signature. The most expensive operation during verification is the computation of pairings. However, the concrete number of pairings is not captured by the number of pairing-product equations considered in earlier work. We consider the question of what is the minimal number of pairing computations needed to verify structure-preserving signatures. We build an

  6. Automated Registration Of Images From Multiple Sensors

    Science.gov (United States)

    Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.; Pang, Shirley S. N.

    1994-01-01

    Images of terrain scanned in common by multiple Earth-orbiting remote sensors registered automatically with each other and, where possible, on geographic coordinate grid. Simulated image of terrain viewed by sensor computed from ancillary data, viewing geometry, and mathematical model of physics of imaging. In proposed registration algorithm, simulated and actual sensor images matched by area-correlation technique.

  7. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    such networking systems are modelled in the process calculus LySa. On top of this programming language based formalism an analysis is developed, which relies on techniques from data and control ow analysis. These are techniques that can be fully automated, which make them an ideal basis for tools targeted at non...

  8. Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images

    Directory of Open Access Journals (Sweden)

    Akara Sopharak

    2013-07-01

    Full Text Available Diabetic retinopathy is the commonest cause of blindness in working age people. It is characterised and graded by the development of retinal microaneurysms, haemorrhages and exudates. The damage caused by diabetic retinopathy can be prevented if it is treated in its early stages. Therefore, automated early detection can limit the severity of the disease, improve the follow-up management of diabetic patients and assist ophthalmologists in investigating and treating the disease more efficiently. This review focuses on microaneurysm detection as the earliest clinically localised characteristic of diabetic retinopathy, a frequently observed complication in both Type 1 and Type 2 diabetes. Algorithms used for microaneurysm detection from retinal images are reviewed. A number of features used to extract microaneurysm are summarised. Furthermore, a comparative analysis of reported methods used to automatically detect microaneurysms is presented and discussed. The performance of methods and their complexity are also discussed.

  9. Automation of Cassini Support Imaging Uplink Command Development

    Science.gov (United States)

    Ly-Hollins, Lisa; Breneman, Herbert H.; Brooks, Robert

    2010-01-01

    "Support imaging" is imagery requested by other Cassini science teams to aid in the interpretation of their data. The generation of the spacecraft command sequences for these images is performed by the Cassini Instrument Operations Team. The process initially established for doing this was very labor-intensive, tedious and prone to human error. Team management recognized this process as one that could easily benefit from automation. Team members were tasked to document the existing manual process, develop a plan and strategy to automate the process, implement the plan and strategy, test and validate the new automated process, and deliver the new software tools and documentation to Flight Operations for use during the Cassini extended mission. In addition to the goals of higher efficiency and lower risk in the processing of support imaging requests, an effort was made to maximize adaptability of the process to accommodate uplink procedure changes and the potential addition of new capabilities outside the scope of the initial effort.

  10. Automated Technology for Verificiation and Analysis

    DEFF Research Database (Denmark)

    -of-the-art research on theoretical and practical aspects of automated analysis, verification, and synthesis. Among 74 research papers and 10 tool papers submitted to ATVA 2009, the Program Committee accepted 23 as regular papers and 3 as tool papers. In all, 33 experts from 17 countries worked hard to make sure......This volume contains the papers presented at the 7th International Symposium on Automated Technology for Verification and Analysis held during October 13-16 in Macao SAR, China. The primary objective of the ATVA conferences remains the same: to exchange and promote the latest advances of state...

  11. Automated processing of webcam images for phenological classification.

    Science.gov (United States)

    Bothmann, Ludwig; Menzel, Annette; Menze, Bjoern H; Schunk, Christian; Kauermann, Göran

    2017-01-01

    Along with the global climate change, there is an increasing interest for its effect on phenological patterns such as start and end of the growing season. Scientific digital webcams are used for this purpose taking every day one or more images from the same natural motive showing for example trees or grassland sites. To derive phenological patterns from the webcam images, regions of interest are manually defined on these images by an expert and subsequently a time series of percentage greenness is derived and analyzed with respect to structural changes. While this standard approach leads to satisfying results and allows to determine dates of phenological change points, it is associated with a considerable amount of manual work and is therefore constrained to a limited number of webcams only. In particular, this forbids to apply the phenological analysis to a large network of publicly accessible webcams in order to capture spatial phenological variation. In order to be able to scale up the analysis to several hundreds or thousands of webcams, we propose and evaluate two automated alternatives for the definition of regions of interest, allowing for efficient analyses of webcam images. A semi-supervised approach selects pixels based on the correlation of the pixels' time series of percentage greenness with a few prototype pixels. An unsupervised approach clusters pixels based on scores of a singular value decomposition. We show for a scientific webcam that the resulting regions of interest are at least as informative as those chosen by an expert with the advantage that no manual action is required. Additionally, we show that the methods can even be applied to publicly available webcams accessed via the internet yielding interesting partitions of the analyzed images. Finally, we show that the methods are suitable for the intended big data applications by analyzing 13988 webcams from the AMOS database. All developed methods are implemented in the statistical software

  12. Surge of Bering Glacier and Bagley Ice Field: Parameterization of surge characteristics based on automated analysis of crevasse image data and laser altimeter data

    Science.gov (United States)

    Stachura, M.; Herzfeld, U. C.; McDonald, B.; Weltman, A.; Hale, G.; Trantow, T.

    2012-12-01

    The dynamical processes that occur during the surge of a large, complex glacier system are far from being understood. The aim of this paper is to derive a parameterization of surge characteristics that captures the principle processes and can serve as the basis for a dynamic surge model. Innovative mathematical methods are introduced that facilitate derivation of such a parameterization from remote-sensing observations. Methods include automated geostatistical characterization and connectionist-geostatistical classification of dynamic provinces and deformation states, using the vehicle of crevasse patterns. These methods are applied to analyze satellite and airborne image and laser altimeter data collected during the current surge of Bering Glacier and Bagley Ice Field, Alaska.

  13. Automated analysis of damages for radiation in plastics surfaces

    International Nuclear Information System (INIS)

    Andrade, C.; Camacho M, E.; Tavera, L.; Balcazar, M.

    1990-02-01

    Analysis of damages done by the radiation in a polymer characterized by optic properties of polished surfaces, of uniformity and chemical resistance that the acrylic; resistant until the 150 centigrade grades of temperature, and with an approximate weight of half of the glass. An objective of this work is the development of a method that analyze in automated form the superficial damages induced by radiation in plastic materials means an images analyst. (Author)

  14. FULLY AUTOMATED IMAGE ORIENTATION IN THE ABSENCE OF TARGETS

    Directory of Open Access Journals (Sweden)

    C. Stamatopoulos

    2012-07-01

    Full Text Available Automated close-range photogrammetric network orientation has traditionally been associated with the use of coded targets in the object space to allow for an initial relative orientation (RO and subsequent spatial resection of the images. Over the past decade, automated orientation via feature-based matching (FBM techniques has attracted renewed research attention in both the photogrammetry and computer vision (CV communities. This is largely due to advances made towards the goal of automated relative orientation of multi-image networks covering untargetted (markerless objects. There are now a number of CV-based algorithms, with accompanying open-source software, that can achieve multi-image orientation within narrow-baseline networks. From a photogrammetric standpoint, the results are typically disappointing as the metric integrity of the resulting models is generally poor, or even unknown, while the number of outliers within the image matching and triangulation is large, and generally too large to allow relative orientation (RO via the commonly used coplanarity equations. On the other hand, there are few examples within the photogrammetric research field of automated markerless camera calibration to metric tolerances, and these too are restricted to narrow-baseline, low-convergence imaging geometry. The objective addressed in this paper is markerless automatic multi-image orientation, maintaining metric integrity, within networks that incorporate wide-baseline imagery. By wide-baseline we imply convergent multi-image configurations with convergence angles of up to around 90°. An associated aim is provision of a fast, fully automated process, which can be performed without user intervention. For this purpose, various algorithms require optimisation to allow parallel processing utilising multiple PC cores and graphics processing units (GPUs.

  15. Automated image registration for FDOPA PET studies

    International Nuclear Information System (INIS)

    Kang-Ping Lin; Sung-Cheng Huang, Dan-Chu Yu; Melega, W.; Barrio, J.R.; Phelps, M.E.

    1996-01-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention. (author)

  16. Automated retinal vessel type classification in color fundus images

    Science.gov (United States)

    Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.

    2013-02-01

    Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.

  17. Automated x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    O'Connell, A.M.

    1977-01-01

    A fully automated x-ray fluorescence analytical system is described. The hardware is based on a Philips PW1220 sequential x-ray spectrometer. Software for on-line analysis of a wide range of sample types has been developed for the Hewlett-Packard 9810A programmable calculator. Routines to test the system hardware are also described. (Author)

  18. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  19. Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology

    Directory of Open Access Journals (Sweden)

    Mohendra Roy

    2016-05-01

    Full Text Available Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al., we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, and HepG2, HeLa, and MCF7 cells. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings.

  20. Comparison of the automated evaluation of phantom mama in digital and digitalized images

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2011-01-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  1. IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis.

    Science.gov (United States)

    Rodríguez-Arribas, Mario; Pizarro-Estrella, Elisa; Gómez-Sánchez, Rubén; Yakhine-Diop, S M S; Gragera-Hidalgo, Antonio; Cristo, Alejandro; Bravo-San Pedro, Jose M; González-Polo, Rosa A; Fuentes, José M

    2016-04-01

    Most laboratories interested in autophagy use different imaging software for managing and analyzing heterogeneous parameters in immunofluorescence experiments (e.g., LC3-puncta quantification and determination of the number and size of lysosomes). One solution would be software that works on a user's laptop or workstation that can access all image settings and provide quick and easy-to-use analysis of data. Thus, we have designed and implemented an application called IFDOTMETER, which can run on all major operating systems because it has been programmed using JAVA (Sun Microsystems). Briefly, IFDOTMETER software has been created to quantify a variety of biological hallmarks, including mitochondrial morphology and nuclear condensation. The program interface is intuitive and user-friendly, making it useful for users not familiar with computer handling. By setting previously defined parameters, the software can automatically analyze a large number of images without the supervision of the researcher. Once analysis is complete, the results are stored in a spreadsheet. Using software for high-throughput cell image analysis offers researchers the possibility of performing comprehensive and precise analysis of a high number of images in an automated manner, making this routine task easier. © 2015 Society for Laboratory Automation and Screening.

  2. Automated Segmentation of Cardiac Magnetic Resonance Images

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.

    2001-01-01

    Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...

  3. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    Science.gov (United States)

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this technology to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

  4. Automated processing of X-ray images in medicine

    International Nuclear Information System (INIS)

    Babij, Ya.S.; B'yalyuk, Ya.O.; Yanovich, I.A.; Lysenko, A.V.

    1991-01-01

    Theoretical and practical achievements in application of computing technology means for processing of X-ray images in medicine were generalized. The scheme of the main directions and tasks of processing of X-ray images was given and analyzed. The principal problems appeared in automated processing of X-ray images were distinguished. It is shown that for interpretation of X-ray images it is expedient to introduce a notion of relative operating characteristic (ROC) of a roentgenologist. Every point on ROC curve determines the individual criteria of roentgenologist to put a positive diagnosis for definite situation

  5. Automated, parallel mass spectrometry imaging and structural identification of lipids

    DEFF Research Database (Denmark)

    Ellis, Shane R.; Paine, Martin R.L.; Eijkel, Gert B.

    2018-01-01

    We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments....... This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue....

  6. An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy

    Science.gov (United States)

    Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.

    2016-10-01

    Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.

  7. Planning representation for automated exploratory data analysis

    Science.gov (United States)

    St. Amant, Robert; Cohen, Paul R.

    1994-03-01

    Igor is a knowledge-based system for exploratory statistical analysis of complex systems and environments. Igor has two related goals: to help automate the search for interesting patterns in data sets, and to help develop models that capture significant relationships in the data. We outline a language for Igor, based on techniques of opportunistic planning, which balances control and opportunism. We describe the application of Igor to the analysis of the behavior of Phoenix, an artificial intelligence planning system.

  8. Analysis And Control System For Automated Welding

    Science.gov (United States)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  9. Improvement of Binary Analysis Components in Automated Malware Analysis Framework

    Science.gov (United States)

    2017-02-21

    AFRL-AFOSR-JP-TR-2017-0018 Improvement of Binary Analysis Components in Automated Malware Analysis Framework Keiji Takeda KEIO UNIVERSITY Final...TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 Nov 2016 4. TITLE AND SUBTITLE Improvement of Binary Analysis Components in Automated Malware ...analyze malicious software ( malware ) with minimum human interaction. The system autonomously analyze malware samples by analyzing malware binary program

  10. Automated Archiving of Archaeological Aerial Images

    Directory of Open Access Journals (Sweden)

    Michael Doneus

    2016-03-01

    Full Text Available The main purpose of any aerial photo archive is to allow quick access to images based on content and location. Therefore, next to a description of technical parameters and depicted content, georeferencing of every image is of vital importance. This can be done either by identifying the main photographed object (georeferencing of the image content or by mapping the center point and/or the outline of the image footprint. The paper proposes a new image archiving workflow. The new pipeline is based on the parameters that are logged by a commercial, but cost-effective GNSS/IMU solution and processed with in-house-developed software. Together, these components allow one to automatically geolocate and rectify the (oblique aerial images (by a simple planar rectification using the exterior orientation parameters and to retrieve their footprints with reasonable accuracy, which is automatically stored as a vector file. The data of three test flights were used to determine the accuracy of the device, which turned out to be better than 1° for roll and pitch (mean between 0.0 and 0.21 with a standard deviation of 0.17–0.46 and better than 2.5° for yaw angles (mean between 0.0 and −0.14 with a standard deviation of 0.58–0.94. This turned out to be sufficient to enable a fast and almost automatic GIS-based archiving of all of the imagery.

  11. Automated and unbiased image analyses as tools in phenotypic classification of small-spored Alternaria species

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Hansen, Michael Edberg; Smedsgaard, Jørn

    2005-01-01

    often has been broadly applied to various morphologically and chemically distinct groups of isolates from different hosts. The purpose of this study was to develop and evaluate automated and unbiased image analysis systems that will analyze different phenotypic characters and facilitate testing...

  12. Automated Loads Analysis System (ATLAS)

    Science.gov (United States)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  13. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  14. An automated wide-field time-gated optically sectioning fluorescence lifetime imaging multiwell plate reader for high-content analysis of protein-protein interactions

    Science.gov (United States)

    Alibhai, Dominic; Kumar, Sunil; Kelly, Douglas; Warren, Sean; Alexandrov, Yuriy; Munro, Ian; McGinty, James; Talbot, Clifford; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Dunsby, Chris; French, Paul M. W.

    2011-03-01

    We describe an optically-sectioned FLIM multiwell plate reader that combines Nipkow microscopy with wide-field time-gated FLIM, and its application to high content analysis of FRET. The system acquires sectioned FLIM images in fluorescent protein. It has been applied to study the formation of immature HIV virus like particles (VLPs) in live cells by monitoring Gag-Gag protein interactions using FLIM FRET of HIV-1 Gag transfected with CFP or YFP. VLP formation results in FRET between closely packed Gag proteins, as confirmed by our FLIM analysis that includes automatic image segmentation.

  15. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    Science.gov (United States)

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  16. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    1Birla Institute of Technology & Science (BITS), Pilani 333 031, India .... Our algorithm has the advantage that it is very simple to implement and .... Education. Jun J, Jun C and Xinglin C 2008 CISP, vol. 3, Congress on Image and Signal ...

  17. Comparison of semi-automated center-dot and fully automated endothelial cell analyses from specular microscopy images.

    Science.gov (United States)

    Maruoka, Sachiko; Nakakura, Shunsuke; Matsuo, Naoko; Yoshitomi, Kayo; Katakami, Chikako; Tabuchi, Hitoshi; Chikama, Taiichiro; Kiuchi, Yoshiaki

    2017-10-30

    To evaluate two specular microscopy analysis methods across different endothelial cell densities (ECDs). Endothelial images of one eye from each of 45 patients were taken by using three different specular microscopes (three replicates each). To determine the consistency of the center-dot method, we compared SP-6000 and SP-2000P images. CME-530 and SP-6000 images were compared to assess the consistency of the fully automated method. The SP-6000 images from the two methods were compared. Intraclass correlation coefficients (ICCs) for the three measurements were calculated, and parametric multiple comparisons tests and Bland-Altman analysis were performed. The ECD mean value was 2425 ± 883 (range 516-3707) cells/mm 2 . ICC values were > 0.9 for all three microscopes for ECD, but the coefficients of variation (CVs) were 0.3-0.6. For ECD measurements, Bland-Altman analysis revealed that the mean difference was 42 cells/mm 2 between the SP-2000P and SP-6000 for the center-dot method; 57 cells/mm 2 between the SP-6000 measurements from both methods; and -5 cells/mm 2 between the SP-6000 and CME-530 for the fully automated method (95% limits of agreement: - 201 to 284 cell/mm 2 , - 410 to 522 cells/mm 2 , and - 327 to 318 cells/mm 2 , respectively). For CV measurements, the mean differences were - 3, - 12, and 13% (95% limits of agreement - 18 to 11, - 26 to 2, and - 5 to 32%, respectively). Despite using three replicate measurements, the precision of the center-dot method with the SP-2000P and SP-6000 software was only ± 10% for ECD data and was even worse for the fully automated method. Japan Clinical Trials Register ( http://www.umin.ac.jp/ctr/index/htm9 ) number UMIN 000015236.

  18. Automated spectral and timing analysis of AGNs

    Science.gov (United States)

    Munz, F.; Karas, V.; Guainazzi, M.

    2006-12-01

    % We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.

  19. Techniques for Automated Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Ryan C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-02

    The performance of a particular HPC code depends on a multitude of variables, including compiler selection, optimization flags, OpenMP pool size, file system load, memory usage, MPI configuration, etc. As a result of this complexity, current predictive models have limited applicability, especially at scale. We present a formulation of scientific codes, nodes, and clusters that reduces complex performance analysis to well-known mathematical techniques. Building accurate predictive models and enhancing our understanding of scientific codes at scale is an important step towards exascale computing.

  20. Automated information retrieval system for radioactivation analysis

    International Nuclear Information System (INIS)

    Lambrev, V.G.; Bochkov, P.E.; Gorokhov, S.A.; Nekrasov, V.V.; Tolstikova, L.I.

    1981-01-01

    An automated information retrieval system for radioactivation analysis has been developed. An ES-1022 computer and a problem-oriented software ''The description information search system'' were used for the purpose. Main aspects and sources of forming the system information fund, characteristics of the information retrieval language of the system are reported and examples of question-answer dialogue are given. Two modes can be used: selective information distribution and retrospective search [ru

  1. Automated processing of webcam images for phenological classification.

    Directory of Open Access Journals (Sweden)

    Ludwig Bothmann

    Full Text Available Along with the global climate change, there is an increasing interest for its effect on phenological patterns such as start and end of the growing season. Scientific digital webcams are used for this purpose taking every day one or more images from the same natural motive showing for example trees or grassland sites. To derive phenological patterns from the webcam images, regions of interest are manually defined on these images by an expert and subsequently a time series of percentage greenness is derived and analyzed with respect to structural changes. While this standard approach leads to satisfying results and allows to determine dates of phenological change points, it is associated with a considerable amount of manual work and is therefore constrained to a limited number of webcams only. In particular, this forbids to apply the phenological analysis to a large network of publicly accessible webcams in order to capture spatial phenological variation. In order to be able to scale up the analysis to several hundreds or thousands of webcams, we propose and evaluate two automated alternatives for the definition of regions of interest, allowing for efficient analyses of webcam images. A semi-supervised approach selects pixels based on the correlation of the pixels' time series of percentage greenness with a few prototype pixels. An unsupervised approach clusters pixels based on scores of a singular value decomposition. We show for a scientific webcam that the resulting regions of interest are at least as informative as those chosen by an expert with the advantage that no manual action is required. Additionally, we show that the methods can even be applied to publicly available webcams accessed via the internet yielding interesting partitions of the analyzed images. Finally, we show that the methods are suitable for the intended big data applications by analyzing 13988 webcams from the AMOS database. All developed methods are implemented in the

  2. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  3. Semi-automated retinal vessel analysis in nonmydriatic fundus photography.

    Science.gov (United States)

    Schuster, Alexander Karl-Georg; Fischer, Joachim Ernst; Vossmerbaeumer, Urs

    2014-02-01

    Funduscopic assessment of the retinal vessels may be used to assess the health status of microcirculation and as a component in the evaluation of cardiovascular risk factors. Typically, the evaluation is restricted to morphological appreciation without strict quantification. Our purpose was to develop and validate a software tool for semi-automated quantitative analysis of retinal vasculature in nonmydriatic fundus photography. matlab software was used to develop a semi-automated image recognition and analysis tool for the determination of the arterial-venous (A/V) ratio in the central vessel equivalent on 45° digital fundus photographs. Validity and reproducibility of the results were ascertained using nonmydriatic photographs of 50 eyes from 25 subjects recorded from a 3DOCT device (Topcon Corp.). Two hundred and thirty-three eyes of 121 healthy subjects were evaluated to define normative values. A software tool was developed using image thresholds for vessel recognition and vessel width calculation in a semi-automated three-step procedure: vessel recognition on the photograph and artery/vein designation, width measurement and calculation of central retinal vessel equivalents. Mean vessel recognition rate was 78%, vessel class designation rate 75% and reproducibility between 0.78 and 0.91. Mean A/V ratio was 0.84. Application on a healthy norm cohort showed high congruence with prior published manual methods. Processing time per image was one minute. Quantitative geometrical assessment of the retinal vasculature may be performed in a semi-automated manner using dedicated software tools. Yielding reproducible numerical data within a short time leap, this may contribute additional value to mere morphological estimates in the clinical evaluation of fundus photographs. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Automated delineation of stroke lesions using brain CT images

    Directory of Open Access Journals (Sweden)

    Céline R. Gillebert

    2014-01-01

    Full Text Available Computed tomographic (CT images are widely used for the identification of abnormal brain tissue following infarct and hemorrhage in stroke. Manual lesion delineation is currently the standard approach, but is both time-consuming and operator-dependent. To address these issues, we present a method that can automatically delineate infarct and hemorrhage in stroke CT images. The key elements of this method are the accurate normalization of CT images from stroke patients into template space and the subsequent voxelwise comparison with a group of control CT images for defining areas with hypo- or hyper-intense signals. Our validation, using simulated and actual lesions, shows that our approach is effective in reconstructing lesions resulting from both infarct and hemorrhage and yields lesion maps spatially consistent with those produced manually by expert operators. A limitation is that, relative to manual delineation, there is reduced sensitivity of the automated method in regions close to the ventricles and the brain contours. However, the automated method presents a number of benefits in terms of offering significant time savings and the elimination of the inter-operator differences inherent to manual tracing approaches. These factors are relevant for the creation of large-scale lesion databases for neuropsychological research. The automated delineation of stroke lesions from CT scans may also enable longitudinal studies to quantify changes in damaged tissue in an objective and reproducible manner.

  5. Automated breast segmentation in ultrasound computer tomography SAFT images

    Science.gov (United States)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  6. Automated analysis of objective-prism spectra

    International Nuclear Information System (INIS)

    Hewett, P.C.; Irwin, M.J.; Bunclark, P.; Bridgeland, M.T.; Kibblewhite, E.J.; Smith, M.G.

    1985-01-01

    A fully automated system for the location, measurement and analysis of large numbers of low-resolution objective-prism spectra is described. The system is based on the APM facility at the University of Cambridge, and allows processing of objective-prism, grens or grism data. Particular emphasis is placed on techniques to obtain the maximum signal-to-noise ratio from the data, both in the initial spectral estimation procedure and for subsequent feature identification. Comparison of a high-quality visual catalogue of faint quasar candidates with an equivalent automated sample demonstrates the ability of the APM system to identify all the visually selected quasar candidates. In addition, a large population of new, faint (msub(J)approx. 20) candidates is identified. (author)

  7. Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement

    Directory of Open Access Journals (Sweden)

    Hakan Kartal

    2018-06-01

    Full Text Available Raw remotely sensed images contain geometric distortions and cannot be used directly for map-based applications, accurate locational information extraction or geospatial data integration. A geometric correction process must be conducted to minimize the errors related to distortions and achieve the desired location accuracy before further analysis. A considerable number of images might be needed when working over large areas or in temporal domains in which manual geometric correction requires more labor and time. To overcome these problems, new algorithms have been developed to make the geometric correction process autonomous. The Scale Invariant Feature Transform (SIFT algorithm is an image matching algorithm used in remote sensing applications that has received attention in recent years. In this study, the effects of the incidence angle, surface topography and land cover (LC characteristics on SIFT-based automated orthorectification were investigated at three different study sites with different topographic conditions and LC characteristics using Pleiades very high resolution (VHR images acquired at different incidence angles. The results showed that the location accuracy of the orthorectified images increased with lower incidence angle images. More importantly, the topographic characteristics had no observable impacts on the location accuracy of SIFT-based automated orthorectification, and the results showed that Ground Control Points (GCPs are mainly concentrated in the “Forest” and “Semi Natural Area” LC classes. A multi-thread code was designed to reduce the automated processing time, and the results showed that the process performed 7 to 16 times faster using an automated approach. Analyses performed on various spectral modes of multispectral data showed that the arithmetic data derived from pan-sharpened multispectral images can be used in automated SIFT-based RPC orthorectification.

  8. Internet of things and automation of imaging: beyond representationalism

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available It is no doubt that the production of digital imagery invites for the major update of theoretical apparatus: what up until now was perceived solely or primarily as the stable representation of the world gives way to the image understood in terms of “the continuous actualization of networked data” or “networked terminal.” In my article I would like to argue that analysis of this new visual environment should not be limited to the procedures of data processing. What also invites serious investigation is acknowledging the reliance of contemporary media ecology on wireless communication which according to Adrian Mackenzie functions as “prepositions (‘at,’ ‘in,’ ‘with,’ by’, ‘between,’ ‘near,’ etc in the grammar of contemporary media” It seems especially important in the case of the imagery accompanying some instances of internet of things, where the considerable part of networked imagery is produced in a fully automated and machinic way. This crowdsourced air pollution monitoring platform consists of networked sensors transmitting signals and data which are then visualized as graphs and maps through the IoT service provider, Xively.

  9. Full second order chromatographic/spectrometric data matrices for automated sample identification and component analysis by non-data-reducing image analysis

    DEFF Research Database (Denmark)

    Nielsen, Niles-Peter Vest; Smedsgaard, Jørn; Frisvad, Jens Christian

    1999-01-01

    A data analysis method is proposed for identification and for confirmation of classification schemes, based on single- or multiple-wavelength chromatographic profiles. The proposed method works directly on the chromatographic data without data reduction procedures such as peak area or retention...... classes from the reference chromatograms, This feature is a valuable aid in selecting components for further analysis, The identification method is demonstrated on two data sets: 212 isolates from 41 food-borne Penicillium species and 61 isolates from 6 soil-borne Penicillium species. Both data sets...

  10. Performance evaluation of contrast-detail in full field digital mammography systems using ideal (Hotelling) observer vs. conventional automated analysis of CDMAM images for quality control of contrast-detail characteristics.

    Science.gov (United States)

    Delakis, Ioannis; Wise, Robert; Morris, Lauren; Kulama, Eugenia

    2015-11-01

    The purpose of this work was to evaluate the contrast-detail performance of full field digital mammography (FFDM) systems using ideal (Hotelling) observer Signal-to-Noise Ratio (SNR) methodology and ascertain whether it can be considered an alternative to the conventional, automated analysis of CDMAM phantom images. Five FFDM units currently used in the national breast screening programme were evaluated, which differed with respect to age, detector, Automatic Exposure Control (AEC) and target/filter combination. Contrast-detail performance was analysed using CDMAM and ideal observer SNR methodology. The ideal observer SNR was calculated for input signal originating from gold discs of varying thicknesses and diameters, and then used to estimate the threshold gold thickness for each diameter as per CDMAM analysis. The variability of both methods and the dependence of CDMAM analysis on phantom manufacturing discrepancies also investigated. Results from both CDMAM and ideal observer methodologies were informative differentiators of FFDM systems' contrast-detail performance, displaying comparable patterns with respect to the FFDM systems' type and age. CDMAM results suggested higher threshold gold thickness values compared with the ideal observer methodology, especially for small-diameter details, which can be attributed to the behaviour of the CDMAM phantom used in this study. In addition, ideal observer methodology results showed lower variability than CDMAM results. The Ideal observer SNR methodology can provide a useful metric of the FFDM systems' contrast detail characteristics and could be considered a surrogate for conventional, automated analysis of CDMAM images. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis

    Science.gov (United States)

    Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2016-03-01

    The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.

  12. Detection of myocardial ischemia by automated, motion-corrected, color-encoded perfusion maps compared with visual analysis of adenosine stress cardiovascular magnetic resonance imaging at 3 T: a pilot study.

    Science.gov (United States)

    Doesch, Christina; Papavassiliu, Theano; Michaely, Henrik J; Attenberger, Ulrike I; Glielmi, Christopher; Süselbeck, Tim; Fink, Christian; Borggrefe, Martin; Schoenberg, Stefan O

    2013-09-01

    The purpose of this study was to compare automated, motion-corrected, color-encoded (AMC) perfusion maps with qualitative visual analysis of adenosine stress cardiovascular magnetic resonance imaging for detection of flow-limiting stenoses. Myocardial perfusion measurements applying the standard adenosine stress imaging protocol and a saturation-recovery temporal generalized autocalibrating partially parallel acquisition (t-GRAPPA) turbo fast low angle shot (Turbo FLASH) magnetic resonance imaging sequence were performed in 25 patients using a 3.0-T MAGNETOM Skyra (Siemens Healthcare Sector, Erlangen, Germany). Perfusion studies were analyzed using AMC perfusion maps and qualitative visual analysis. Angiographically detected coronary artery (CA) stenoses greater than 75% or 50% or more with a myocardial perfusion reserve index less than 1.5 were considered as hemodynamically relevant. Diagnostic performance and time requirement for both methods were compared. Interobserver and intraobserver reliability were also assessed. A total of 29 CA stenoses were included in the analysis. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for detection of ischemia on a per-patient basis were comparable using the AMC perfusion maps compared to visual analysis. On a per-CA territory basis, the attribution of an ischemia to the respective vessel was facilitated using the AMC perfusion maps. Interobserver and intraobserver reliability were better for the AMC perfusion maps (concordance correlation coefficient, 0.94 and 0.93, respectively) compared to visual analysis (concordance correlation coefficient, 0.73 and 0.79, respectively). In addition, in comparison to visual analysis, the AMC perfusion maps were able to significantly reduce analysis time from 7.7 (3.1) to 3.2 (1.9) minutes (P < 0.0001). The AMC perfusion maps yielded a diagnostic performance on a per-patient and on a per-CA territory basis comparable with the visual analysis

  13. Image mosaicing for automated pipe scanning

    International Nuclear Information System (INIS)

    Summan, Rahul; Dobie, Gordon; Guarato, Francesco; MacLeod, Charles; Marshall, Stephen; Pierce, Gareth; Forrester, Cailean; Bolton, Gary

    2015-01-01

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability of image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice

  14. Image mosaicing for automated pipe scanning

    Energy Technology Data Exchange (ETDEWEB)

    Summan, Rahul, E-mail: rahul.summan@strath.ac.uk; Dobie, Gordon, E-mail: rahul.summan@strath.ac.uk; Guarato, Francesco, E-mail: rahul.summan@strath.ac.uk; MacLeod, Charles, E-mail: rahul.summan@strath.ac.uk; Marshall, Stephen, E-mail: rahul.summan@strath.ac.uk; Pierce, Gareth [Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Forrester, Cailean [Inspectahire Instrument Company Ltd, Units 10 -12 Whitemyres Business Centre, Whitemyres Avenue, Aberdeen, AB16 6HQ (United Kingdom); Bolton, Gary [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom)

    2015-03-31

    Remote visual inspection (RVI) is critical for the inspection of the interior condition of pipelines particularly in the nuclear and oil and gas industries. Conventional RVI equipment produces a video which is analysed online by a trained inspector employing expert knowledge. Due to the potentially disorientating nature of the footage, this is a time intensive and difficult activity. In this paper a new probe for such visual inspections is presented. The device employs a catadioptric lens coupled with feature based structure from motion to create a 3D model of the interior surface of a pipeline. Reliance upon the availability of image features is mitigated through orientation and distance estimates from an inertial measurement unit and encoder respectively. Such a model affords a global view of the data thus permitting a greater appreciation of the nature and extent of defects. Furthermore, the technique estimates the 3D position and orientation of the probe thus providing information to direct remedial action. Results are presented for both synthetic and real pipe sections. The former enables the accuracy of the generated model to be assessed while the latter demonstrates the efficacy of the technique in a practice.

  15. Automating risk analysis of software design models.

    Science.gov (United States)

    Frydman, Maxime; Ruiz, Guifré; Heymann, Elisa; César, Eduardo; Miller, Barton P

    2014-01-01

    The growth of the internet and networked systems has exposed software to an increased amount of security threats. One of the responses from software developers to these threats is the introduction of security activities in the software development lifecycle. This paper describes an approach to reduce the need for costly human expertise to perform risk analysis in software, which is common in secure development methodologies, by automating threat modeling. Reducing the dependency on security experts aims at reducing the cost of secure development by allowing non-security-aware developers to apply secure development with little to no additional cost, making secure development more accessible. To automate threat modeling two data structures are introduced, identification trees and mitigation trees, to identify threats in software designs and advise mitigation techniques, while taking into account specification requirements and cost concerns. These are the components of our model for automated threat modeling, AutSEC. We validated AutSEC by implementing it in a tool based on data flow diagrams, from the Microsoft security development methodology, and applying it to VOMS, a grid middleware component, to evaluate our model's performance.

  16. Automated Reduction of Data from Images and Holograms

    Science.gov (United States)

    Lee, G. (Editor); Trolinger, James D. (Editor); Yu, Y. H. (Editor)

    1987-01-01

    Laser techniques are widely used for the diagnostics of aerodynamic flow and particle fields. The storage capability of holograms has made this technique an even more powerful. Over 60 researchers in the field of holography, particle sizing and image processing convened to discuss these topics. The research program of ten government laboratories, several universities, industry and foreign countries were presented. A number of papers on holographic interferometry with applications to fluid mechanics were given. Several papers on combustion and particle sizing, speckle velocimetry and speckle interferometry were given. A session on image processing and automated fringe data reduction techniques and the type of facilities for fringe reduction was held.

  17. Automated imaging dark adaptometer for investigating hereditary retinal degenerations

    Science.gov (United States)

    Azevedo, Dario F. G.; Cideciyan, Artur V.; Regunath, Gopalakrishnan; Jacobson, Samuel G.

    1995-05-01

    We designed and built an automated imaging dark adaptometer (AIDA) to increase accuracy, reliability, versatility and speed of dark adaptation testing in patients with hereditary retinal degenerations. AIDA increases test accuracy by imaging the ocular fundus for precise positioning of bleaching and stimulus lights. It improves test reliability by permitting continuous monitoring of patient fixation. Software control of stimulus presentation provides broad testing versatility without sacrificing speed. AIDA promises to facilitate the measurement of dark adaptation in studies of the pathophysiology of retinal degenerations and in future treatment trials of these diseases.

  18. Automated Tracking of Cell Migration with Rapid Data Analysis.

    Science.gov (United States)

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. Morphological observation and analysis using automated image cytometry for the comparison of trypan blue and fluorescence-based viability detection method.

    Science.gov (United States)

    Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean

    2015-05-01

    The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.

  20. SU-E-I-94: Automated Image Quality Assessment of Radiographic Systems Using An Anthropomorphic Phantom

    International Nuclear Information System (INIS)

    Wells, J; Wilson, J; Zhang, Y; Samei, E; Ravin, Carl E.

    2014-01-01

    Purpose: In a large, academic medical center, consistent radiographic imaging performance is difficult to routinely monitor and maintain, especially for a fleet consisting of multiple vendors, models, software versions, and numerous imaging protocols. Thus, an automated image quality control methodology has been implemented using routine image quality assessment with a physical, stylized anthropomorphic chest phantom. Methods: The “Duke” Phantom (Digital Phantom 07-646, Supertech, Elkhart, IN) was imaged twice on each of 13 radiographic units from a variety of vendors at 13 primary care clinics. The first acquisition used the clinical PA chest protocol to acquire the post-processed “FOR PRESENTATION” image. The second image was acquired without an antiscatter grid followed by collection of the “FOR PROCESSING” image. Manual CNR measurements were made from the largest and thickest contrast-detail inserts in the lung, heart, and abdominal regions of the phantom in each image. An automated image registration algorithm was used to estimate the CNR of the same insert using similar ROIs. Automated measurements were then compared to the manual measurements. Results: Automatic and manual CNR measurements obtained from “FOR PRESENTATION” images had average percent differences of 0.42%±5.18%, −3.44%±4.85%, and 1.04%±3.15% in the lung, heart, and abdominal regions, respectively; measurements obtained from “FOR PROCESSING” images had average percent differences of -0.63%±6.66%, −0.97%±3.92%, and −0.53%±4.18%, respectively. The maximum absolute difference in CNR was 15.78%, 10.89%, and 8.73% in the respective regions. In addition to CNR assessment of the largest and thickest contrast-detail inserts, the automated method also provided CNR estimates for all 75 contrast-detail inserts in each phantom image. Conclusion: Automated analysis of a radiographic phantom has been shown to be a fast, robust, and objective means for assessing radiographic

  1. Discrimination between smiling faces: Human observers vs. automated face analysis.

    Science.gov (United States)

    Del Líbano, Mario; Calvo, Manuel G; Fernández-Martín, Andrés; Recio, Guillermo

    2018-05-11

    This study investigated (a) how prototypical happy faces (with happy eyes and a smile) can be discriminated from blended expressions with a smile but non-happy eyes, depending on type and intensity of the eye expression; and (b) how smile discrimination differs for human perceivers versus automated face analysis, depending on affective valence and morphological facial features. Human observers categorized faces as happy or non-happy, or rated their valence. Automated analysis (FACET software) computed seven expressions (including joy/happiness) and 20 facial action units (AUs). Physical properties (low-level image statistics and visual saliency) of the face stimuli were controlled. Results revealed, first, that some blended expressions (especially, with angry eyes) had lower discrimination thresholds (i.e., they were identified as "non-happy" at lower non-happy eye intensities) than others (especially, with neutral eyes). Second, discrimination sensitivity was better for human perceivers than for automated FACET analysis. As an additional finding, affective valence predicted human discrimination performance, whereas morphological AUs predicted FACET discrimination. FACET can be a valid tool for categorizing prototypical expressions, but is currently more limited than human observers for discrimination of blended expressions. Configural processing facilitates detection of in/congruence(s) across regions, and thus detection of non-genuine smiling faces (due to non-happy eyes). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Retinal imaging and image analysis

    NARCIS (Netherlands)

    Abramoff, M.D.; Garvin, Mona K.; Sonka, Milan

    2010-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of

  3. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  4. Automated Steel Cleanliness Analysis Tool (ASCAT)

    Energy Technology Data Exchange (ETDEWEB)

    Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment

  5. Automated Steel Cleanliness Analysis Tool (ASCAT)

    International Nuclear Information System (INIS)

    Gary Casuccio; Michael Potter; Fred Schwerer; Richard J. Fruehan; Dr. Scott Story

    2005-01-01

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  6. Automated reasoning applications to design analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1984-01-01

    Given the necessary relationships and definitions of design functions and components, validation of system incarnation (the physical product of design) and sneak function analysis can be achieved via automated reasoners. The relationships and definitions must define the design specification and incarnation functionally. For the design specification, the hierarchical functional representation is based on physics and engineering principles and bounded by design objectives and constraints. The relationships and definitions of the design incarnation are manifested as element functional definitions, state relationship to functions, functional relationship to direction, element connectivity, and functional hierarchical configuration

  7. Automated analysis for nitrate by hydrazine reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kamphake, L J; Hannah, S A; Cohen, J M

    1967-01-01

    An automated procedure for the simultaneous determinations of nitrate and nitrite in water is presented. Nitrite initially present in the sample is determined by a conventional diazotization-coupling reaction. Nitrate in another portion of sample is quantitatively reduced with hydrazine sulfate to nitrite which is then determined by the same diazotization-coupling reaction. Subtracting the nitrite initially present in the sample from that after reduction yields nitrite equivalent to nitrate initially in the sample. The rate of analysis is 20 samples/hr. Applicable range of the described method is 0.05-10 mg/l nitrite or nitrate nitrogen; however, increased sensitivity can be obtained by suitable modifications.

  8. Usefulness of automated biopsy guns in image-guided biopsy

    International Nuclear Information System (INIS)

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi

    1994-01-01

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis

  9. Usefulness of automated biopsy guns in image-guided biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hyung; Rhee, Chang Soo; Lee, Sung Moon; Kim, Hong; Woo, Sung Ku; Suh, Soo Jhi [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1994-12-15

    To evaluate the usefulness of automated biopsy guns in image-guided biopsy of lung, liver, pancreas and other organs. Using automated biopsy devices, 160 biopsies of variable anatomic sites were performed: Biopsies were performed under ultrasonographic(US) guidance in 95 and computed tomographic (CT) guidance in 65. We retrospectively analyzed histologic results and complications. Specimens were adequate for histopathologic diagnosis in 143 of the 160 patients(89.4%)-Diagnostic tissue was obtained in 130 (81.3%), suggestive tissue obtained in 13(8.1%), and non-diagnostic tissue was obtained in 14(8.7%). Inadequate tissue was obtained in only 3(1.9%). There was no statistically significant difference between US-guided and CT-guided percutaneous biopsy. There was no occurrence of significant complication. We have experienced mild complications in only 5 patients-2 hematuria and 2 hematochezia in transrectal prostatic biopsy, and 1 minimal pneumothorax in CT-guided percutaneous lung biopsy. All of them were resolved spontaneously. The image-guided biopsy using the automated biopsy gun was a simple, safe and accurate method of obtaining adequate specimen for the histopathologic diagnosis.

  10. Automated metabolic gas analysis systems: a review.

    Science.gov (United States)

    Macfarlane, D J

    2001-01-01

    The use of automated metabolic gas analysis systems or metabolic measurement carts (MMC) in exercise studies is common throughout the industrialised world. They have become essential tools for diagnosing many hospital patients, especially those with cardiorespiratory disease. Moreover, the measurement of maximal oxygen uptake (VO2max) is routine for many athletes in fitness laboratories and has become a defacto standard in spite of its limitations. The development of metabolic carts has also facilitated the noninvasive determination of the lactate threshold and cardiac output, respiratory gas exchange kinetics, as well as studies of outdoor activities via small portable systems that often use telemetry. Although the fundamental principles behind the measurement of oxygen uptake (VO2) and carbon dioxide production (VCO2) have not changed, the techniques used have, and indeed, some have almost turned through a full circle. Early scientists often employed a manual Douglas bag method together with separate chemical analyses, but the need for faster and more efficient techniques fuelled the development of semi- and full-automated systems by private and commercial institutions. Yet, recently some scientists are returning back to the traditional Douglas bag or Tissot-spirometer methods, or are using less complex automated systems to not only save capital costs, but also to have greater control over the measurement process. Over the last 40 years, a considerable number of automated systems have been developed, with over a dozen commercial manufacturers producing in excess of 20 different automated systems. The validity and reliability of all these different systems is not well known, with relatively few independent studies having been published in this area. For comparative studies to be possible and to facilitate greater consistency of measurements in test-retest or longitudinal studies of individuals, further knowledge about the performance characteristics of these

  11. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images

    International Nuclear Information System (INIS)

    Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza

    2014-01-01

    Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods

  12. Automated analysis of organic particles using cluster SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, Greg; Zeissler, Cindy; Mahoney, Christine; Lindstrom, Abigail; Fletcher, Robert; Chi, Peter; Verkouteren, Jennifer; Bright, David; Lareau, Richard T.; Boldman, Mike

    2004-06-15

    Cluster primary ion bombardment combined with secondary ion imaging is used on an ion microscope secondary ion mass spectrometer for the spatially resolved analysis of organic particles on various surfaces. Compared to the use of monoatomic primary ion beam bombardment, the use of a cluster primary ion beam (SF{sub 5}{sup +} or C{sub 8}{sup -}) provides significant improvement in molecular ion yields and a reduction in beam-induced degradation of the analyte molecules. These characteristics of cluster bombardment, along with automated sample stage control and custom image analysis software are utilized to rapidly characterize the spatial distribution of trace explosive particles, narcotics and inkjet-printed microarrays on a variety of surfaces.

  13. Investigation of the performance of digital mammographic X-Ray equipment: Determination of noise equivalent quanta (NEQQC) and detective quantum efficiency (DQEQC) compared with the automated analysis of CDMAM test images with CDCOM and CDIC programs

    International Nuclear Information System (INIS)

    Loos, C.; Buhr, H.; Blendl, C.

    2013-01-01

    Purpose: The purpose of this study was to determine the values for noise equivalent quanta, detective quantum efficiency, modulation transfer function, noise power spectrum, and the values for the parameters for automated CDMAM test phantom analyses required to achieve satisfactory quality of digital mammograms. Materials and Methods: During the course of tests according to PAS 1054 (8 CR and 12 DR systems), test images were made with a test phantom insertion plate containing two lead edges in nearly horizontal and vertical directions. Only original data were processed with a program that was developed at the Cologne University of Applied Sciences (FH-Koeln). All equipment systems complied with the requirements regarding visual recognition of gold-plated mammo detail test objects. CDMAM test images were also evaluated using the CDIC (CUAS) and CDCOM (EUREF) programs. Results: CDMAM test images show comparable values for the parameters, precision, sensitivity and specificity. DR systems require about half the dose used for CR systems for similar results. The NEQ values achieved with the dose used for the CDMAM test images show larger scatter ranges. The MTF of the different equipment system types differ significantly from each other. Conclusion: Visual evaluation of CDMAM test images can be replaced by automated evaluation. Limiting values were determined for each parameter. Automated evaluation of CDMAM test phantom images should be used to determine the physical parameter NEQ QC . This method is much more sensitive to noise and sharpness influences and has a higher validity than diagnostic methods. Automated evaluation objectivizes testing. (orig.)

  14. Planning applications in image analysis

    Science.gov (United States)

    Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.

    1994-01-01

    We describe two interim results from an ongoing effort to automate the acquisition, analysis, archiving, and distribution of satellite earth science data. Both results are applications of Artificial Intelligence planning research to the automatic generation of processing steps for image analysis tasks. First, we have constructed a linear conditional planner (CPed), used to generate conditional processing plans. Second, we have extended an existing hierarchical planning system to make use of durations, resources, and deadlines, thus supporting the automatic generation of processing steps in time and resource-constrained environments.

  15. Automated tracking of the vascular tree on DSA images

    International Nuclear Information System (INIS)

    Alperin, N.; Hoffmann, K.R.; Doi, K.

    1990-01-01

    Determination of the vascular tree structure is important for reconstruction of three-dimensional vascular tree from biplane images, for assessment of the significance of a lesion, and for planning treatment for arteriovenous malformation. To automate these analyses, the authors of this paper are developing a method to determine the vascular tree structure from digital subtraction angiography (DSA) images. The authors have previously described a vessel tracking method, based on the double-square-box technique. To improve the tracking accuracy, they have developed and integrated with the previous method a connectivity test and guided-sector-search technique. The connectivity test, based on region growing techniques, eliminates tracking across nonvessel regions. The guided sector-search method incorporates information from a larger are of the image to guide the search for the next tracking point

  16. Automated analysis of small animal PET studies through deformable registration to an atlas

    International Nuclear Information System (INIS)

    Gutierrez, Daniel F.; Zaidi, Habib

    2012-01-01

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of rodent CT images from combined PET/CT studies to corresponding CT images of the Digimouse anatomical mouse model. The latter provides a pre-segmented atlas consisting of 21 anatomical regions suitable for automated quantitative analysis. Image registration is performed using a package based on the Insight Toolkit allowing the implementation of various image registration algorithms. The optimal parameters obtained for deformable registration were applied to simulated and experimental mouse PET/CT studies. The accuracy of the image registration procedure was assessed by segmenting mouse CT images into seven regions: brain, lungs, heart, kidneys, bladder, skeleton and the rest of the body. This was accomplished prior to image registration using a semi-automated algorithm. Each mouse segmentation was transformed using the parameters obtained during CT to CT image registration. The resulting segmentation was compared with the original Digimouse atlas to quantify image registration accuracy using established metrics such as the Dice coefficient and Hausdorff distance. PET images were then transformed using the same technique and automated quantitative analysis of tracer uptake performed. The Dice coefficient and Hausdorff distance show fair to excellent agreement and a mean registration mismatch distance of about 6 mm. The results demonstrate good quantification accuracy in most of the regions, especially the brain, but not in the bladder, as expected. Normalized mean activity estimates were preserved between the reference and automated quantification techniques with relative errors below 10 % in most of the organs considered. The proposed automated quantification technique is

  17. Analysis of engineering drawings and raster map images

    CERN Document Server

    Henderson, Thomas C

    2013-01-01

    Presents up-to-date methods and algorithms for the automated analysis of engineering drawings and digital cartographic maps Discusses automatic engineering drawing and map analysis techniques Covers detailed accounts of the use of unsupervised segmentation algorithms to map images

  18. Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images

    International Nuclear Information System (INIS)

    Wang, Cheng; Chan, Qing N.; Zhang, Renlin; Kook, Sanghoon; Hawkes, Evatt R.; Yeoh, Guan H.; Medwell, Paul R.

    2016-01-01

    The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.

  19. Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Chan, Qing N., E-mail: qing.chan@unsw.edu.au; Zhang, Renlin; Kook, Sanghoon; Hawkes, Evatt R.; Yeoh, Guan H. [UNSW, School of Mechanical and Manufacturing Engineering (Australia); Medwell, Paul R. [The University of Adelaide, Centre for Energy Technology (Australia)

    2016-05-15

    The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.

  20. Automated Identification of Fiducial Points on 3D Torso Images

    Directory of Open Access Journals (Sweden)

    Manas M. Kawale

    2013-01-01

    Full Text Available Breast reconstruction is an important part of the breast cancer treatment process for many women. Recently, 2D and 3D images have been used by plastic surgeons for evaluating surgical outcomes. Distances between different fiducial points are frequently used as quantitative measures for characterizing breast morphology. Fiducial points can be directly marked on subjects for direct anthropometry, or can be manually marked on images. This paper introduces novel algorithms to automate the identification of fiducial points in 3D images. Automating the process will make measurements of breast morphology more reliable, reducing the inter- and intra-observer bias. Algorithms to identify three fiducial points, the nipples, sternal notch, and umbilicus, are described. The algorithms used for localization of these fiducial points are formulated using a combination of surface curvature and 2D color information. Comparison of the 3D coordinates of automatically detected fiducial points and those identified manually, and geodesic distances between the fiducial points are used to validate algorithm performance. The algorithms reliably identified the location of all three of the fiducial points. We dedicate this article to our late colleague and friend, Dr. Elisabeth K. Beahm. Elisabeth was both a talented plastic surgeon and physician-scientist; we deeply miss her insight and her fellowship.

  1. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    International Nuclear Information System (INIS)

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes

  2. Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium

    Directory of Open Access Journals (Sweden)

    Konsti Juho

    2012-03-01

    Full Text Available Abstract Background Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC stainings and automated tumor segmentation. Methods Two tissue microarray (TMA slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images. Results Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and

  3. Some considerations on automated image processing of pathline photographs

    International Nuclear Information System (INIS)

    Kobayashi, T.; Saga, T.; Segawa, S.

    1987-01-01

    It is presently shown that flow visualization velocity vectors can be automatically obtained from tracer particle photographs by means of an image processing system. The system involves automated gray level threshold selection during the digitization process and separation or erasure of the intersecting path lines, followed by use of the pathline picture in the identification process and an adjustment of the averaging area in the rearrangement process. Attention is given to the results obtained for two-dimensional flows past an airfoil cascade and around a circular cylinder. 7 references

  4. Specdata: Automated Analysis Software for Broadband Spectra

    Science.gov (United States)

    Oliveira, Jasmine N.; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    With the advancement of chirped-pulse techniques, broadband rotational spectra with a few tens to several hundred GHz of spectral coverage are now routinely recorded. When studying multi-component mixtures that might result, for example, with the use of an electrical discharge, lines of new chemical species are often obscured by those of known compounds, and analysis can be laborious. To address this issue, we have developed SPECdata, an open source, interactive tool which is designed to simplify and greatly accelerate the spectral analysis and discovery. Our software tool combines both automated and manual components that free the user from computation, while giving him/her considerable flexibility to assign, manipulate, interpret and export their analysis. The automated - and key - component of the new software is a database query system that rapidly assigns transitions of known species in an experimental spectrum. For each experiment, the software identifies spectral features, and subsequently assigns them to known molecules within an in-house database (Pickett .cat files, list of frequencies...), or those catalogued in Splatalogue (using automatic on-line queries). With suggested assignments, the control is then handed over to the user who can choose to accept, decline or add additional species. Data visualization, statistical information, and interactive widgets assist the user in making decisions about their data. SPECdata has several other useful features intended to improve the user experience. Exporting a full report of the analysis, or a peak file in which assigned lines are removed are among several options. A user may also save their progress to continue at another time. Additional features of SPECdata help the user to maintain and expand their database for future use. A user-friendly interface allows one to search, upload, edit or update catalog or experiment entries.

  5. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    Science.gov (United States)

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  6. Management issues in automated audit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Hochberg, J.G.; Wilhelmy, S.K.; McClary, J.F.; Christoph, G.G.

    1994-03-01

    This paper discusses management issues associated with the design and implementation of an automated audit analysis system that we use to detect security events. It gives the viewpoint of a team directly responsible for developing and managing such a system. We use Los Alamos National Laboratory`s Network Anomaly Detection and Intrusion Reporter (NADIR) as a case in point. We examine issues encountered at Los Alamos, detail our solutions to them, and where appropriate suggest general solutions. After providing an introduction to NADIR, we explore four general management issues: cost-benefit questions, privacy considerations, legal issues, and system integrity. Our experiences are of general interest both to security professionals and to anyone who may wish to implement a similar system. While NADIR investigates security events, the methods used and the management issues are potentially applicable to a broad range of complex systems. These include those used to audit credit card transactions, medical care payments, and procurement systems.

  7. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    Using automated and standardized computer tools to calculate the pertinent test result values has several advantages such as: 1. allowing high-fidelity solutions to complex nonlinear phenomena that would be impractical to express in written equation form, 2. eliminating errors associated with the interpretation and programing of analysis procedures from the text of test standards, 3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, numerical methods, and/or finite element modeling, to achieve sound results, 4. and providing one computer tool and/or one set of solutions for all users for a more "standardized" answer. In summary, this approach allows a non-expert with rudimentary training to get the best practical solution based on the latest understanding with minimum difficulty.Other existing ASTM standards that cover complicated phenomena use standard computer programs: 1. ASTM C1340/C1340M-10- Standard Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant Barriers by Use of a Computer Program 2. ASTM F 2815 - Standard Practice for Chemical Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer Program 3. ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 1.0 The verification, validation, and round-robin processes required of a computer tool closely parallel the methods that are used to ensure the solution validity for equations included in test standard. The use of automated analysis tools allows the creation and practical implementation of advanced fracture mechanics test standards that capture the physics of a nonlinear fracture mechanics problem without adding undue burden or expense to the user. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  8. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.

    Science.gov (United States)

    Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A

    2018-03-01

    Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.

  9. Automated dental implantation using image-guided robotics: registration results.

    Science.gov (United States)

    Sun, Xiaoyan; McKenzie, Frederic D; Bawab, Sebastian; Li, Jiang; Yoon, Yongki; Huang, Jen-K

    2011-09-01

    One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.

  10. Infrared thermal imaging for automated detection of diabetic foot complications.

    Science.gov (United States)

    van Netten, Jaap J; van Baal, Jeff G; Liu, Chanjuan; van der Heijden, Ferdi; Bus, Sicco A

    2013-09-01

    Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had diffuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). No differences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with diffuse complications, mean temperature differences of >3 °C between ipsilateral and contralateral foot were found. With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or diffuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings. © 2013 Diabetes Technology Society.

  11. Automated otolith image classification with multiple views: an evaluation on Sciaenidae.

    Science.gov (United States)

    Wong, J Y; Chu, C; Chong, V C; Dhillon, S K; Loh, K H

    2016-08-01

    Combined multiple 2D views (proximal, anterior and ventral aspects) of the sagittal otolith are proposed here as a method to capture shape information for fish classification. Classification performance of single view compared with combined 2D views show improved classification accuracy of the latter, for nine species of Sciaenidae. The effects of shape description methods (shape indices, Procrustes analysis and elliptical Fourier analysis) on classification performance were evaluated. Procrustes analysis and elliptical Fourier analysis perform better than shape indices when single view is considered, but all perform equally well with combined views. A generic content-based image retrieval (CBIR) system that ranks dissimilarity (Procrustes distance) of otolith images was built to search query images without the need for detailed information of side (left or right), aspect (proximal or distal) and direction (positive or negative) of the otolith. Methods for the development of this automated classification system are discussed. © 2016 The Fisheries Society of the British Isles.

  12. AMDA: an R package for the automated microarray data analysis

    Directory of Open Access Journals (Sweden)

    Foti Maria

    2006-07-01

    Full Text Available Abstract Background Microarrays are routinely used to assess mRNA transcript levels on a genome-wide scale. Large amount of microarray datasets are now available in several databases, and new experiments are constantly being performed. In spite of this fact, few and limited tools exist for quickly and easily analyzing the results. Microarray analysis can be challenging for researchers without the necessary training and it can be time-consuming for service providers with many users. Results To address these problems we have developed an automated microarray data analysis (AMDA software, which provides scientists with an easy and integrated system for the analysis of Affymetrix microarray experiments. AMDA is free and it is available as an R package. It is based on the Bioconductor project that provides a number of powerful bioinformatics and microarray analysis tools. This automated pipeline integrates different functions available in the R and Bioconductor projects with newly developed functions. AMDA covers all of the steps, performing a full data analysis, including image analysis, quality controls, normalization, selection of differentially expressed genes, clustering, correspondence analysis and functional evaluation. Finally a LaTEX document is dynamically generated depending on the performed analysis steps. The generated report contains comments and analysis results as well as the references to several files for a deeper investigation. Conclusion AMDA is freely available as an R package under the GPL license. The package as well as an example analysis report can be downloaded in the Services/Bioinformatics section of the Genopolis http://www.genopolis.it/

  13. Automated analysis of invadopodia dynamics in live cells

    Directory of Open Access Journals (Sweden)

    Matthew E. Berginski

    2014-07-01

    Full Text Available Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner.

  14. Spatial structure of the zooplankton community in the coastal upwelling system off central-southern Chile in spring 2004 as assessed by automated image analysis

    Science.gov (United States)

    Manríquez, Karen; Escribano, Ruben; Riquelme-Bugueño, Ramiro

    2012-01-01

    Size spectra of the mesozooplankton community was studied under the influence of coastal upwelling during austral spring 2004 in the coastal upwelling zone off central-southern Chile. Size spectra were derived from the ZooImage analysis of digitalized zooplankton samples obtained from the upper 200 m during a survey carried out under active upwelling (November 2004). An upwelling filament extended up to 180 km offshore, and the upper boundary of the oxygen minimum zone (1 mL O 2 L -1) varied between 20 m (nearshore) and 300 m depth (oceanic). The community descriptors (slope of the size spectra, size class index, abundance of size classes) were derived from the size spectra. Stepwise multiple regression analysis found significant correlations between these descriptors and oceanographic variables (temperature, dissolved oxygen, chlorophyll-a, OMZ depth). These data suggest an upwelling-dependent zooplankton distribution characterized by aggregations in a mid-shelf zone, where the log-normalized size spectra become flatter due to an increased abundance of larger size classes (>3 mm). In contrast, the inshore and offshore zones were dominated by small (zone coincided with moderate levels of chlorophyll-a (ca. 1 μg L -1) and the OMZ depth near 200 m. These spatial patterns and slopes of the size spectra however, were subjected to a significant day vs. night effect mostly explained by the diel vertical migration of the euphausiid Euphausia mucronata. This migration can descend below 200 m during the daylight, causing the larger size classes to disappear from the size spectrum and resulting in a steeper slope. Time-dependent effects must, therefore, be considered when examining the spatial patterns of zooplankton in coastal upwelling zones.

  15. Clinical validation of semi-automated software for volumetric and dynamic contrast enhancement analysis of soft tissue venous malformations on magnetic resonance imaging examination

    Energy Technology Data Exchange (ETDEWEB)

    Caty, Veronique [Hopital Maisonneuve-Rosemont, Universite de Montreal, Department of Radiology, Montreal, QC (Canada); Kauffmann, Claude; Giroux, Marie-France; Oliva, Vincent; Therasse, Eric [Centre Hospitalier de l' Universite de Montreal (CHUM), Universite de Montreal and Research Centre, CHUM (CRCHUM), Department of Radiology, Montreal, QC (Canada); Dubois, Josee [Centre Hospitalier Universitaire Sainte-Justine et Universite de Montreal, Department of Radiology, Montreal, QC (Canada); Mansour, Asmaa [Institut de Cardiologie de Montreal, Heart Institute Coordinating Centre, Montreal, QC (Canada); Piche, Nicolas [Object Research System, Montreal, QC (Canada); Soulez, Gilles [Centre Hospitalier de l' Universite de Montreal (CHUM), Universite de Montreal and Research Centre, CHUM (CRCHUM), Department of Radiology, Montreal, QC (Canada); CHUM - Hopital Notre-Dame, Department of Radiology, Montreal, Quebec (Canada)

    2014-02-15

    To evaluate venous malformation (VM) volume and contrast-enhancement analysis on magnetic resonance imaging (MRI) compared with diameter evaluation. Baseline MRI was undertaken in 44 patients, 20 of whom were followed by MRI after sclerotherapy. All patients underwent short-tau inversion recovery (STIR) acquisitions and dynamic contrast assessment. VM diameters in three orthogonal directions were measured to obtain the largest and mean diameters. Volumetric reconstruction of VM was generated from two orthogonal STIR sequences and fused with acquisitions after contrast medium injection. Reproducibility (interclass correlation coefficients [ICCs]) of diameter and volume measurements was estimated. VM size variations in diameter and volume after sclerotherapy and contrast enhancement before sclerotherapy were compared in patients with clinical success or failure. Inter-observer ICCs were similar for diameter and volume measurements at baseline and follow-up (range 0.87-0.99). Higher percentages of size reduction after sclerotherapy were observed with volume (32.6 ± 30.7 %) than with diameter measurements (14.4 ± 21.4 %; P = 0.037). Contrast enhancement values were estimated at 65.3 ± 27.5 % and 84 ± 13 % in patients with clinical failure and success respectively (P = 0.056). Venous malformation volume was as reproducible as diameter measurement and more sensitive in detecting therapeutic responses. Patients with better clinical outcome tend to have stronger malformation enhancement. (orig.)

  16. Semi-Automated Analysis of Diaphragmatic Motion with Dynamic Magnetic Resonance Imaging in Healthy Controls and Non-Ambulant Subjects with Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Courtney A. Bishop

    2018-01-01

    Full Text Available Subjects with Duchenne Muscular Dystrophy (DMD suffer from progressive muscle damage leading to diaphragmatic weakness that ultimately requires ventilation. Emerging treatments have generated interest in better characterizing the natural history of respiratory impairment in DMD and responses to therapy. Dynamic (cine Magnetic Resonance Imaging (MRI may provide a more sensitive measure of diaphragm function in DMD than the commonly used spirometry. This study presents an analysis pipeline for measuring parameters of diaphragmatic motion from dynamic MRI and its application to investigate MRI measures of respiratory function in both healthy controls and non-ambulant DMD boys. We scanned 13 non-ambulant DMD boys and 10 age-matched healthy male volunteers at baseline, with a subset (n = 10, 10, 8 of the DMD subjects also assessed 3, 6, and 12 months later. Spirometry-derived metrics including forced vital capacity were recorded. The MRI-derived measures included the lung cross-sectional area (CSA, the anterior, central, and posterior lung lengths in the sagittal imaging plane, and the diaphragm length over the time-course of the dynamic MRI. Regression analyses demonstrated strong linear correlations between lung CSA and the length measures over the respiratory cycle, with a reduction of these correlations in DMD, and diaphragmatic motions that contribute less efficiently to changing lung capacity in DMD. MRI measures of pulmonary function were reduced in DMD, controlling for height differences between the groups: at maximal inhalation, the maximum CSA and the total distance of motion of the diaphragm were 45% and 37% smaller. MRI measures of pulmonary function were correlated with spirometry data and showed relationships with disease progression surrogates of age and months non-ambulatory, suggesting that they provide clinically meaningful information. Changes in the MRI measures over 12 months were consistent with weakening of

  17. Automated and unsupervised detection of malarial parasites in microscopic images

    Directory of Open Access Journals (Sweden)

    Purwar Yashasvi

    2011-12-01

    Full Text Available Abstract Background Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis and prone to human error (leading to erroneous diagnosis, even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. Method A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. Results The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Conclusion Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method

  18. Automated extraction of chemical structure information from digital raster images

    Directory of Open Access Journals (Sweden)

    Shedden Kerby A

    2009-02-01

    Full Text Available Abstract Background To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links

  19. Image-based path planning for automated virtual colonoscopy navigation

    Science.gov (United States)

    Hong, Wei

    2008-03-01

    Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.

  20. Ecological Automation Design, Extending Work Domain Analysis

    NARCIS (Netherlands)

    Amelink, M.H.J.

    2010-01-01

    In high–risk domains like aviation, medicine and nuclear power plant control, automation has enabled new capabilities, increased the economy of operation and has greatly contributed to safety. However, automation increases the number of couplings in a system, which can inadvertently lead to more

  1. Development of a methodology for automated assessment of the quality of digitized images in mammography

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2010-01-01

    The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. The purpose of this study is to develop a computational methodology to automate the process of assessing the quality of mammography images through techniques of digital imaging processing (PDI), using an existing image processing environment (ImageJ). With the application of PDI techniques was possible to extract geometric and radiometric characteristics of the images evaluated. The evaluated parameters include spatial resolution, high-contrast detail, low contrast threshold, linear detail of low contrast, tumor masses, contrast ratio and background optical density. The results obtained by this method were compared with the results presented in the visual evaluations performed by the Health Surveillance of Minas Gerais. Through this comparison was possible to demonstrate that the automated methodology is presented as a promising alternative for the reduction or elimination of existing subjectivity in the visual assessment methodology currently in use. (author)

  2. Brain-inspired algorithms for retinal image analysis

    NARCIS (Netherlands)

    ter Haar Romeny, B.M.; Bekkers, E.J.; Zhang, J.; Abbasi-Sureshjani, S.; Huang, F.; Duits, R.; Dasht Bozorg, Behdad; Berendschot, T.T.J.M.; Smit-Ockeloen, I.; Eppenhof, K.A.J.; Feng, J.; Hannink, J.; Schouten, J.; Tong, M.; Wu, H.; van Triest, J.W.; Zhu, S.; Chen, D.; He, W.; Xu, L.; Han, P.; Kang, Y.

    2016-01-01

    Retinal image analysis is a challenging problem due to the precise quantification required and the huge numbers of images produced in screening programs. This paper describes a series of innovative brain-inspired algorithms for automated retinal image analysis, recently developed for the RetinaCheck

  3. Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study

    Science.gov (United States)

    Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.

    2017-12-01

    Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.

  4. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma

    Science.gov (United States)

    Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan

    2009-09-01

    We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.

  5. Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images

    Science.gov (United States)

    Paesen, Rik; Smolders, Sophie; Vega, José Manolo de Hoyos; Eijnde, Bert O.; Hansen, Dominique; Ameloot, Marcel

    2016-02-01

    Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.

  6. Evolution of a Benthic Imaging System From a Towed Camera to an Automated Habitat Characterization System

    Science.gov (United States)

    2008-09-01

    automated processing of images for color correction, segmentation of foreground targets from sediment and classification of targets to taxonomic category...element in the development of HabCam as a tool for habitat characterization is the automated processing of images for color correction, segmentation of

  7. Automated 3D-Objectdocumentation on the Base of an Image Set

    Directory of Open Access Journals (Sweden)

    Sebastian Vetter

    2011-12-01

    Full Text Available Digital stereo-photogrammetry allows users an automatic evaluation of the spatial dimension and the surface texture of objects. The integration of image analysis techniques simplifies the automation of evaluation of large image sets and offers a high accuracy [1]. Due to the substantial similarities of stereoscopic image pairs, correlation techniques provide measurements of subpixel precision for corresponding image points. With the help of an automated point search algorithm in image sets identical points are used to associate pairs of images to stereo models and group them. The found identical points in all images are basis for calculation of the relative orientation of each stereo model as well as defining the relation of neighboured stereo models. By using proper filter strategies incorrect points are removed and the relative orientation of the stereo model can be made automatically. With the help of 3D-reference points or distances at the object or a defined distance of camera basis the stereo model is orientated absolute. An adapted expansion- and matching algorithm offers the possibility to scan the object surface automatically. The result is a three dimensional point cloud; the scan resolution depends on image quality. With the integration of the iterative closest point- algorithm (ICP these partial point clouds are fitted to a total point cloud. In this way, 3D-reference points are not necessary. With the help of the implemented triangulation algorithm a digital surface models (DSM can be created. The texturing can be made automatically by the usage of the images that were used for scanning the object surface. It is possible to texture the surface model directly or to generate orthophotos automatically. By using of calibrated digital SLR cameras with full frame sensor a high accuracy can be reached. A big advantage is the possibility to control the accuracy and quality of the 3d-objectdocumentation with the resolution of the images. The

  8. SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories

    Science.gov (United States)

    Zhang, M.; Collioud, A.; Charlot, P.

    2018-02-01

    We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.

  9. A novel tool for automated evaluation of radiographic weld images

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Venkatraman, B.; Jayakumar, T.; Kalyanasundaram, P.; Raj, B.

    2004-01-01

    Radiography is one of the oldest and the most widely used NDT method for the detection of volumetric defects in welds and castings. Once a radiograph of a weld or a casting or an assembly is taken, the radiographer examines the same. The task of the radiographer consists of identifying the defects and quantitatively evaluating the same based on codes and specifications. Radiographic interpretation primarily depends on the expertise of the individual radiographer. To overcome the subjectivity involved in human interpretation, it is thus desirable to develop a computer based automated system to aid in the interpretation of radiographs. Towards this goal, the authors have developed a flowchart chalking out the various stages involved. Typical weld images of tube to tubesheet weld joints were digitised using high resolution digitiser. The images were segmented and 52 invariant moments were computed to be used as features. The results of these are presented in this paper. Once the features (invariant moments) are extracted and ranked, a neural network classifier based on error back-propagation has to classify the (top ranking) features and evaluate the image for acceptance or rejection. (author)

  10. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging.

    Science.gov (United States)

    Patel, Tapan P; Man, Karen; Firestein, Bonnie L; Meaney, David F

    2015-03-30

    Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s-1000+neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. Copyright © 2015. Published by Elsevier B.V.

  11. Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals.

    Science.gov (United States)

    Medina, Christopher S; Manifold-Wheeler, Brett; Gonzales, Aaron; Bearer, Elaine L

    2017-07-05

    Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm 3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  12. Automated fault tree analysis: the GRAFTER system

    International Nuclear Information System (INIS)

    Sancaktar, S.; Sharp, D.R.

    1985-01-01

    An inherent part of probabilistic risk assessment (PRA) is the construction and analysis of detailed fault trees. For this purpose, a fault tree computer graphics code named GRAFTER has been developed. The code system centers around the GRAFTER code. This code is used interactively to construct, store, update and print fault trees of small or large sizes. The SIMON code is used to provide data for the basic event probabilities. ENCODE is used to process the GRAFTER files to prepare input for the WAMCUT code. WAMCUT is used to quantify the top event probability and to identify the cutsets. This code system has been extensively used in various PRA projects. It has resulted in reduced manpower costs, increased QA capability, ease of documentation and it has simplified sensitivity analyses. Because of its automated nature, it is also suitable for LIVING PRA Studies which require updating and modifications during the lifetime of the plant. Brief descriptions and capabilities of the GRAFTER, SIMON and ENCODE codes are provided; an application of the GRAFTER system is outlined; and conclusions and comments on the code system are given

  13. Automated and connected vehicle implications and analysis.

    Science.gov (United States)

    2017-05-01

    Automated and connected vehicles (ACV) and, in particular, autonomous vehicles have captured : the interest of the public, industry and transportation authorities. ACVs can significantly reduce : accidents, fuel consumption, pollution and the costs o...

  14. System analysis of automated speed enforcement implementation.

    Science.gov (United States)

    2016-04-01

    Speeding is a major factor in a large proportion of traffic crashes, injuries, and fatalities in the United States. Automated Speed Enforcement (ASE) is one of many approaches shown to be effective in reducing speeding violations and crashes. However...

  15. Delineated Analysis of Robotic Process Automation Tools

    OpenAIRE

    Ruchi Isaac; Riya Muni; Kenali Desai

    2017-01-01

    In this age and time when celerity is expected out of all the sectors of the country, the speed of execution of various processes and hence efficiency, becomes a prominent factor. To facilitate the speeding demands of these diverse platforms, Robotic Process Automation (RPA) is used. Robotic Process Automation can expedite back-office tasks in commercial industries, remote management tasks in IT industries and conservation of resources in multiple sectors. To implement RPA, many software ...

  16. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    Science.gov (United States)

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (Pdynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  17. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    to detect equipment failure and identify defective products at the assembly line. The research work in this thesis combines machine vision and image processing technology to build a digital imaging and processing system for monitoring and measuring lake ice thickness in real time. An ultra-compact USB camera is programmed to acquire and transmit high resolution imagery for processing with MATLAB Image Processing toolbox. The image acquisition and transmission process is fully automated; image analysis is semi-automated and requires limited user input. Potential design changes to the prototype and ideas on fully automating the imaging and processing procedure are presented to conclude this research work.

  18. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    Science.gov (United States)

    Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  19. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    Directory of Open Access Journals (Sweden)

    Vincenzo Della Mea

    Full Text Available The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  20. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  1. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  2. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Science.gov (United States)

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  3. Automated optics inspection analysis for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Laura M., E-mail: kegelmeyer1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Clark, Raelyn; Leach, Richard R.; McGuigan, David; Kamm, Victoria Miller; Potter, Daniel; Salmon, J. Thad; Senecal, Joshua; Conder, Alan; Nostrand, Mike; Whitman, Pamela K. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-12-15

    The National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 beamlines that house thousands of optics. These optics guide, amplify and tightly focus light onto a tiny target for fusion ignition research and high energy density physics experiments. The condition of these optics is key to the economic, efficient and maximally energetic performance of the laser. Our goal, and novel achievement, is to find on the optics any imperfections while they are tens of microns in size, track them through time to see if they grow and if so, remove the optic and repair the single site so the entire optic can then be re-installed for further use on the laser. This paper gives an overview of the image analysis used for detecting, measuring, and tracking sites of interest on an optic while it is installed on the beamline via in situ inspection and after it has been removed for maintenance. In this way, the condition of each optic is monitored throughout the optic's lifetime. This overview paper will summarize key algorithms and technical developments for custom image analysis and processing and highlight recent improvements. (Associated papers will include more details on these issues.) We will also discuss the use of OI Analysis for daily operation of the NIF laser and its extension to inspection of NIF targets.

  4. Automated optics inspection analysis for NIF

    International Nuclear Information System (INIS)

    Kegelmeyer, Laura M.; Clark, Raelyn; Leach, Richard R.; McGuigan, David; Kamm, Victoria Miller; Potter, Daniel; Salmon, J. Thad; Senecal, Joshua; Conder, Alan; Nostrand, Mike; Whitman, Pamela K.

    2012-01-01

    The National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 beamlines that house thousands of optics. These optics guide, amplify and tightly focus light onto a tiny target for fusion ignition research and high energy density physics experiments. The condition of these optics is key to the economic, efficient and maximally energetic performance of the laser. Our goal, and novel achievement, is to find on the optics any imperfections while they are tens of microns in size, track them through time to see if they grow and if so, remove the optic and repair the single site so the entire optic can then be re-installed for further use on the laser. This paper gives an overview of the image analysis used for detecting, measuring, and tracking sites of interest on an optic while it is installed on the beamline via in situ inspection and after it has been removed for maintenance. In this way, the condition of each optic is monitored throughout the optic's lifetime. This overview paper will summarize key algorithms and technical developments for custom image analysis and processing and highlight recent improvements. (Associated papers will include more details on these issues.) We will also discuss the use of OI Analysis for daily operation of the NIF laser and its extension to inspection of NIF targets.

  5. AUTOMATED ASSESSMENT OF EPIDERMAL THICKNESS AND VASCULAR DENSITY OF PORT WINE STAINS OCT IMAGE

    Directory of Open Access Journals (Sweden)

    CHENGMING WANG

    2014-01-01

    Full Text Available Optical coherence tomography (OCT enables in vivo imaging of port wine stains (PWS lesions. The knowledge of vascular structure and epidermal thickness (ET of PWS may aid the objective diagnosis and optimal treatment. To obtain the structural parameters more rapidly and avoid user intervention, an automated algorithm of energy map is introduced based on intensity and edge information to extract the skin surface using dynamic programming method. Subsequently, an averaged A-scan analysis is performed to obtain the mean ET and the relative intensity of dermis indicating the corresponding vascular density. This approach is currently successfully applied in clinical diagnosis and shows promising guidance and assessment of PDT treatment.

  6. Automating PACS Quality Control with the Vanderbilt Image Processing Enterprise Resource.

    Science.gov (United States)

    Esparza, Michael L; Welch, E Brian; Landman, Bennett A

    2012-02-12

    Precise image acquisition is an integral part of modern patient care and medical imaging research. Periodic quality control using standardized protocols and phantoms ensures that scanners are operating according to specifications, yet such procedures do not ensure that individual datasets are free from corruption-for example due to patient motion, transient interference, or physiological variability. If unacceptable artifacts are noticed during scanning, a technologist can repeat a procedure. Yet, substantial delays may be incurred if a problematic scan is not noticed until a radiologist reads the scans or an automated algorithm fails. Given scores of slices in typical three-dimensional scans and wide-variety of potential use cases, a technologist cannot practically be expected inspect all images. In large-scale research, automated pipeline systems have had great success in achieving high throughput. However, clinical and institutional workflows are largely based on DICOM and PACS technologies; these systems are not readily compatible with research systems due to security and privacy restrictions. Hence, quantitative quality control has been relegated to individual investigators and too often neglected. Herein, we propose a scalable system, the Vanderbilt Image Processing Enterprise Resource-VIPER, to integrate modular quality control and image analysis routines with a standard PACS configuration. This server unifies image processing routines across an institutional level and provides a simple interface so that investigators can collaborate to deploy new analysis technologies. VIPER integrates with high performance computing environments has successfully analyzed all standard scans from our institutional research center over the course of the last 18 months.

  7. Automated measurement of pressure injury through image processing.

    Science.gov (United States)

    Li, Dan; Mathews, Carol

    2017-11-01

    To develop an image processing algorithm to automatically measure pressure injuries using electronic pressure injury images stored in nursing documentation. Photographing pressure injuries and storing the images in the electronic health record is standard practice in many hospitals. However, the manual measurement of pressure injury is time-consuming, challenging and subject to intra/inter-reader variability with complexities of the pressure injury and the clinical environment. A cross-sectional algorithm development study. A set of 32 pressure injury images were obtained from a western Pennsylvania hospital. First, we transformed the images from an RGB (i.e. red, green and blue) colour space to a YC b C r colour space to eliminate inferences from varying light conditions and skin colours. Second, a probability map, generated by a skin colour Gaussian model, guided the pressure injury segmentation process using the Support Vector Machine classifier. Third, after segmentation, the reference ruler - included in each of the images - enabled perspective transformation and determination of pressure injury size. Finally, two nurses independently measured those 32 pressure injury images, and intraclass correlation coefficient was calculated. An image processing algorithm was developed to automatically measure the size of pressure injuries. Both inter- and intra-rater analysis achieved good level reliability. Validation of the size measurement of the pressure injury (1) demonstrates that our image processing algorithm is a reliable approach to monitoring pressure injury progress through clinical pressure injury images and (2) offers new insight to pressure injury evaluation and documentation. Once our algorithm is further developed, clinicians can be provided with an objective, reliable and efficient computational tool for segmentation and measurement of pressure injuries. With this, clinicians will be able to more effectively monitor the healing process of pressure

  8. Comparison of manual & automated analysis methods for corneal endothelial cell density measurements by specular microscopy.

    Science.gov (United States)

    Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Modak, Cristina; Marion, Ken; Sadda, SriniVas R; Chopra, Vikas; Lee, Olivia L

    2017-08-07

    To determine the reliability of corneal endothelial cell density (ECD) obtained by automated specular microscopy versus that of validated manual methods and factors that predict such reliability. Sharp central images from 94 control and 106 glaucomatous eyes were captured with Konan specular microscope NSP-9900. All images were analyzed by trained graders using Konan CellChek Software, employing the fully- and semi-automated methods as well as Center Method. Images with low cell count (input cells number <100) and/or guttata were compared with the Center and Flex-Center Methods. ECDs were compared and absolute error was used to assess variation. The effect on ECD of age, cell count, cell size, and cell size variation was evaluated. No significant difference was observed between the Center and Flex-Center Methods in corneas with guttata (p=0.48) or low ECD (p=0.11). No difference (p=0.32) was observed in ECD of normal controls <40 yrs old between the fully-automated method and manual Center Method. However, in older controls and glaucomatous eyes, ECD was overestimated by the fully-automated method (p=0.034) and semi-automated method (p=0.025) as compared to manual method. Our findings show that automated analysis significantly overestimates ECD in the eyes with high polymegathism and/or large cell size, compared to the manual method. Therefore, we discourage reliance upon the fully-automated method alone to perform specular microscopy analysis, particularly if an accurate ECD value is imperative. Copyright © 2017. Published by Elsevier España, S.L.U.

  9. Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images

    International Nuclear Information System (INIS)

    Aoyama, Masahito; Li Qiang; Katsuragawa, Shigehiko; MacMahon, Heber; Doi, Kunio

    2002-01-01

    A novel automated computerized scheme has been developed to assist radiologists for their distinction between benign and malignant solitary pulmonary nodules on chest images. Our database consisted of 55 chest radiographs (33 primary lung cancers and 22 benign nodules). In this method, the location of a nodule was indicated first by a radiologist. The difference image with a nodule was produced by use of filters and then represented in a polar coordinate system. The nodule was segmented automatically by analysis of contour lines of the gray-level distribution based on the polar-coordinate representation. Two clinical parameters (age and sex) and 75 image features were determined from the outline, the image, and histogram analysis for inside and outside regions of the segmented nodule. Linear discriminant analysis (LDA) and knowledge about benign and malignant nodules were used to select initial feature combinations. Many combinations for subgroups of 77 features were evaluated as input to artificial neural networks (ANNs). The performance of ANNs with the selected 7 features by use of the round-robin test showed Az=0.872, which was greater than Az=0.854 obtained previously with the manual method (P=0.53). The performance of LDA (Az=0.886) was slightly improved compared to that of ANNs (P=0.59) and was greater than that of the manual method (Az=0.854) reported previously (P=0.40). The high level of its performance indicates the potential usefulness of this automated computerized scheme in assisting radiologists as a second opinion for distinction between benign and malignant solitary pulmonary nodules on chest images

  10. Optical Coherence Tomography in the UK Biobank Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies.

    Directory of Open Access Journals (Sweden)

    Pearse A Keane

    Full Text Available To describe an approach to the use of optical coherence tomography (OCT imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness.In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available "spectral domain" OCT device (3D OCT-1000, Topcon. Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL. This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion.67,321 participants (134,642 eyes in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days.We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging.

  11. Automated Cache Performance Analysis And Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-23

    While there is no lack of performance counter tools for coarse-grained measurement of cache activity, there is a critical lack of tools for relating data layout to cache behavior to application performance. Generally, any nontrivial optimizations are either not done at all, or are done ”by hand” requiring significant time and expertise. To the best of our knowledge no tool available to users measures the latency of memory reference instructions for partic- ular addresses and makes this information available to users in an easy-to-use and intuitive way. In this project, we worked to enable the Open|SpeedShop performance analysis tool to gather memory reference latency information for specific instructions and memory ad- dresses, and to gather and display this information in an easy-to-use and intuitive way to aid performance analysts in identifying problematic data structures in their codes. This tool was primarily designed for use in the supercomputer domain as well as grid, cluster, cloud-based parallel e-commerce, and engineering systems and middleware. Ultimately, we envision a tool to automate optimization of application cache layout and utilization in the Open|SpeedShop performance analysis tool. To commercialize this soft- ware, we worked to develop core capabilities for gathering enhanced memory usage per- formance data from applications and create and apply novel methods for automatic data structure layout optimizations, tailoring the overall approach to support existing supercom- puter and cluster programming models and constraints. In this Phase I project, we focused on infrastructure necessary to gather performance data and present it in an intuitive way to users. With the advent of enhanced Precise Event-Based Sampling (PEBS) counters on recent Intel processor architectures and equivalent technology on AMD processors, we are now in a position to access memory reference information for particular addresses. Prior to the introduction of PEBS counters

  12. Automated SEM Modal Analysis Applied to the Diogenites

    Science.gov (United States)

    Bowman, L. E.; Spilde, M. N.; Papike, James J.

    1996-01-01

    Analysis of volume proportions of minerals, or modal analysis, is routinely accomplished by point counting on an optical microscope, but the process, particularly on brecciated samples such as the diogenite meteorites, is tedious and prone to error by misidentification of very small fragments, which may make up a significant volume of the sample. Precise volume percentage data can be gathered on a scanning electron microscope (SEM) utilizing digital imaging and an energy dispersive spectrometer (EDS). This form of automated phase analysis reduces error, and at the same time provides more information than could be gathered using simple point counting alone, such as particle morphology statistics and chemical analyses. We have previously studied major, minor, and trace-element chemistry of orthopyroxene from a suite of diogenites. This abstract describes the method applied to determine the modes on this same suite of meteorites and the results of that research. The modal abundances thus determined add additional information on the petrogenesis of the diogenites. In addition, low-abundance phases such as spinels were located for further analysis by this method.

  13. Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software

    Energy Technology Data Exchange (ETDEWEB)

    Ebersberger, Ullrich [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany); Marcus, Roy P.; Nikolaou, Konstantin; Bamberg, Fabian [University of Munich, Institute of Clinical Radiology, Munich (Germany); Schoepf, U.J.; Gray, J.C.; McQuiston, Andrew D. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Lo, Gladys G. [Hong Kong Sanatorium and Hospital, Department of Diagnostic and Interventional Radiology, Hong Kong (China); Wang, Yining [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Department of Radiology, Beijing (China); Blanke, Philipp [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University Hospital Freiburg, Department of Diagnostic Radiology, Freiburg (Germany); Geyer, Lucas L. [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); University of Munich, Institute of Clinical Radiology, Munich (Germany); Cho, Young Jun [Medical University of South Carolina, Heart and Vascular Center, Charleston, SC (United States); Konyang University College of Medicine, Department of Radiology, Daejeon (Korea, Republic of); Scheuering, Michael; Canstein, Christian [Siemens Healthcare, CT Division, Forchheim (Germany); Hoffmann, Ellen [Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich (Germany)

    2014-01-15

    To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. (orig.)

  14. Automated diagnosis of dry eye using infrared thermography images

    Science.gov (United States)

    Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis

    2015-07-01

    Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.

  15. Automated Detection of Firearms and Knives in a CCTV Image

    Science.gov (United States)

    Grega, Michał; Matiolański, Andrzej; Guzik, Piotr; Leszczuk, Mikołaj

    2016-01-01

    Closed circuit television systems (CCTV) are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims. PMID:26729128

  16. Automated Detection of Firearms and Knives in a CCTV Image

    Directory of Open Access Journals (Sweden)

    Michał Grega

    2016-01-01

    Full Text Available Closed circuit television systems (CCTV are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

  17. Automated Detection of Firearms and Knives in a CCTV Image.

    Science.gov (United States)

    Grega, Michał; Matiolański, Andrzej; Guzik, Piotr; Leszczuk, Mikołaj

    2016-01-01

    Closed circuit television systems (CCTV) are becoming more and more popular and are being deployed in many offices, housing estates and in most public spaces. Monitoring systems have been implemented in many European and American cities. This makes for an enormous load for the CCTV operators, as the number of camera views a single operator can monitor is limited by human factors. In this paper, we focus on the task of automated detection and recognition of dangerous situations for CCTV systems. We propose algorithms that are able to alert the human operator when a firearm or knife is visible in the image. We have focused on limiting the number of false alarms in order to allow for a real-life application of the system. The specificity and sensitivity of the knife detection are significantly better than others published recently. We have also managed to propose a version of a firearm detection algorithm that offers a near-zero rate of false alarms. We have shown that it is possible to create a system that is capable of an early warning in a dangerous situation, which may lead to faster and more effective response times and a reduction in the number of potential victims.

  18. Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.

    Science.gov (United States)

    Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A

    2011-04-01

    Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Automation of the method gamma of comparison dosimetry images

    International Nuclear Information System (INIS)

    Moreno Reyes, J. C.; Macias Jaen, J.; Arrans Lara, R.

    2013-01-01

    The objective of this work was the development of JJGAMMA application analysis software, which enables this task systematically, minimizing intervention specialist and therefore the variability due to the observer. Both benefits, allow comparison of images is done in practice with the required frequency and objectivity. (Author)

  20. Vaccine Images on Twitter: Analysis of What Images are Shared.

    Science.gov (United States)

    Chen, Tao; Dredze, Mark

    2018-04-03

    Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet's textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. ©Tao Chen, Mark Dredze. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 03.04.2018.

  1. Vaccine Images on Twitter: Analysis of What Images are Shared

    Science.gov (United States)

    Dredze, Mark

    2018-01-01

    Background Visual imagery plays a key role in health communication; however, there is little understanding of what aspects of vaccine-related images make them effective communication aids. Twitter, a popular venue for discussions related to vaccination, provides numerous images that are shared with tweets. Objective The objectives of this study were to understand how images are used in vaccine-related tweets and provide guidance with respect to the characteristics of vaccine-related images that correlate with the higher likelihood of being retweeted. Methods We collected more than one million vaccine image messages from Twitter and characterized various properties of these images using automated image analytics. We fit a logistic regression model to predict whether or not a vaccine image tweet was retweeted, thus identifying characteristics that correlate with a higher likelihood of being shared. For comparison, we built similar models for the sharing of vaccine news on Facebook and for general image tweets. Results Most vaccine-related images are duplicates (125,916/237,478; 53.02%) or taken from other sources, not necessarily created by the author of the tweet. Almost half of the images contain embedded text, and many include images of people and syringes. The visual content is highly correlated with a tweet’s textual topics. Vaccine image tweets are twice as likely to be shared as nonimage tweets. The sentiment of an image and the objects shown in the image were the predictive factors in determining whether an image was retweeted. Conclusions We are the first to study vaccine images on Twitter. Our findings suggest future directions for the study and use of vaccine imagery and may inform communication strategies around vaccination. Furthermore, our study demonstrates an effective study methodology for image analysis. PMID:29615386

  2. DNA index determination with Automated Cellular Imaging System (ACIS in Barrett's esophagus: Comparison with CAS 200

    Directory of Open Access Journals (Sweden)

    Klein Michael

    2005-08-01

    Full Text Available Abstract Background For solid tumors, image cytometry has been shown to be more sensitive for diagnosing DNA content abnormalities (aneuploidy than flow cytometry. Image cytometry has often been performed using the semi-automated CAS 200 system. Recently, an Automated Cellular Imaging System (ACIS was introduced to determine DNA content (DNA index, but it has not been validated. Methods Using the CAS 200 system and ACIS, we compared the DNA index (DI obtained from the same archived formalin-fixed and paraffin embedded tissue samples from Barrett's esophagus related lesions, including samples with specialized intestinal metaplasia without dysplasia, low-grade dysplasia, high-grade dysplasia and adenocarcinoma. Results Although there was a very good correlation between the DI values determined by ACIS and CAS 200, the former was 25% more sensitive in detecting aneuploidy. ACIS yielded a mean DI value 18% higher than that obtained by CAS 200 (p t test. In addition, the average time required to perform a DNA ploidy analysis was shorter with the ACIS (30–40 min than with the CAS 200 (40–70 min. Results obtained by ACIS gave excellent inter-and intra-observer variability (coefficient of correlation >0.9 for both, p Conclusion Compared with the CAS 200, the ACIS is a more sensitive and less time consuming technique for determining DNA ploidy. Results obtained by ACIS are also highly reproducible.

  3. Automated endoscopic navigation and advisory system from medical image

    Science.gov (United States)

    Kwoh, Chee K.; Khan, Gul N.; Gillies, Duncan F.

    1999-05-01

    , which is developed to obtain the relative depth of the colon surface in the image by assuming a point light source very close to the camera. If we assume the colon has a shape similar to a tube, then a reasonable approximation of the position of the center of the colon (lumen) will be a function of the direction in which the majority of the normal vectors of shape are pointing. The second layer is the control layer and at this level, a decision model must be built for endoscope navigation and advisory system. The system that we built is the models of probabilistic networks that create a basic, artificial intelligence system for navigation in the colon. We have constructed the probabilistic networks from correlated objective data using the maximum weighted spanning tree algorithm. In the construction of a probabilistic network, it is always assumed that the variables starting from the same parent are conditionally independent. However, this may not hold and will give rise to incorrect inferences. In these cases, we proposed the creation of a hidden node to modify the network topology, which in effect models the dependency of correlated variables, to solve the problem. The conditional probability matrices linking the hidden node to its neighbors are determined using a gradient descent method which minimizing the objective cost function. The error gradients can be treated as updating messages and ca be propagated in any direction throughout any singly connected network to adjust the network parameters. With the above two- level approach, we have been able to build an automated endoscope navigation and advisory system successfully.

  4. Automation of the Analysis of Moessbauer Spectra

    International Nuclear Information System (INIS)

    Souza, Paulo A. de Jr.; Garg, R.; Garg, V. K.

    1998-01-01

    In the present report we propose the automation of least square fitting of Moessbauer spectra, the identification of the substance, its crystal structure and the access to the references with the help of a genetic algorith, Fuzzy logic, and the artificial neural network associated with a databank of Moessbauer parameters and references. This system could be useful for specialists and non-specialists, in industry as well as in research laboratories

  5. Design and Demonstration of Automated Data Analysis Algorithms for Ultrasonic Inspection of Complex Composite Panels with Bonds

    Science.gov (United States)

    2016-02-01

    all of the ADA called indications into three groups: true positives (TP), missed calls (MC) and false calls (FC). Note, an indication position error...data review burden and improve the reliability of the ultrasonic inspection of large composite structures, automated data analysis ( ADA ) algorithms...thickness and backwall C-scan images. 15. SUBJECT TERMS automated data analysis ( ADA ) algorithms; time-of-flight indications; backwall amplitude dropout

  6. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    Science.gov (United States)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  7. Automated identification of intergranular corrosion in X-ray CT images

    International Nuclear Information System (INIS)

    Howell, Patricia A.; Winfree, William P.

    2003-01-01

    Characterization of a material or structure by computed tomography results in the acquisition of large quantities of data that need to be tediously examined to determine the location and size of damage. Since the computed tomography images are digital, there is significant potential for reducing the human effort evolved in this process by digital processing of this data to enhance the signatures of flaws and perform automated identification of suspected flaws. Techniques are presented that enhance the contrast between corroded and uncorroded regions to simplify the analysis and improve quality of flaw identification. Algorithms developed in part for computer vision, such as anisotropic diffusion and edge detection techniques, are applied to the data. Anisotropic diffusion techniques are shown to significantly reduce image noise while maintaining the contrast between intergranular corrosion and uncorroded regions and preserving the important features of the flaw. Edge detection techniques are shown to enable a rapid location of regions requiring further analysis. In regions identified by the edge detection technique, neural network techniques are applied to automate defect detection of the intergranular corrosion

  8. Oncological image analysis.

    Science.gov (United States)

    Brady, Sir Michael; Highnam, Ralph; Irving, Benjamin; Schnabel, Julia A

    2016-10-01

    Cancer is one of the world's major healthcare challenges and, as such, an important application of medical image analysis. After a brief introduction to cancer, we summarise some of the major developments in oncological image analysis over the past 20 years, but concentrating those in the authors' laboratories, and then outline opportunities and challenges for the next decade. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  10. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    International Nuclear Information System (INIS)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M.; Rahmat, K.; Ariffin, H.

    2012-01-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  11. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Rahmat, K. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); University Malaya, Biomedical Imaging Department, Kuala Lumpur (Malaysia); Ariffin, H. [University of Malaya, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2012-07-15

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  12. 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors.

    Science.gov (United States)

    Narayanaswamy, Arunachalam; Wang, Yu; Roysam, Badrinath

    2011-09-01

    The accuracy and reliability of automated neurite tracing systems is ultimately limited by image quality as reflected in the signal-to-noise ratio, contrast, and image variability. This paper describes a novel combination of image processing methods that operate on images of neurites captured by confocal and widefield microscopy, and produce synthetic images that are better suited to automated tracing. The algorithms are based on the curvelet transform (for denoising curvilinear structures and local orientation estimation), perceptual grouping by scalar voting (for elimination of non-tubular structures and improvement of neurite continuity while preserving branch points), adaptive focus detection, and depth estimation (for handling widefield images without deconvolution). The proposed methods are fast, and capable of handling large images. Their ability to handle images of unlimited size derives from automated tiling of large images along the lateral dimension, and processing of 3-D images one optical slice at a time. Their speed derives in part from the fact that the core computations are formulated in terms of the Fast Fourier Transform (FFT), and in part from parallel computation on multi-core computers. The methods are simple to apply to new images since they require very few adjustable parameters, all of which are intuitive. Examples of pre-processing DIADEM Challenge images are used to illustrate improved automated tracing resulting from our pre-processing methods.

  13. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline.

    Science.gov (United States)

    Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H

    2012-07-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.

  14. Automated segmentation of murine lung tumors in x-ray micro-CT images

    Science.gov (United States)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  15. Automating sensitivity analysis of computer models using computer calculus

    International Nuclear Information System (INIS)

    Oblow, E.M.; Pin, F.G.

    1986-01-01

    An automated procedure for performing sensitivity analysis has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with direct and adjoint sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies

  16. Automated retroillumination photography analysis for objective assessment of Fuchs Corneal Dystrophy severity

    Science.gov (United States)

    Eghrari, Allen O.; Mumtaz, Aisha A.; Garrett, Brian; Rezaei, Mahsa; Akhavan, Mina S.; Riazuddin, S. Amer; Gottsch, John D.

    2016-01-01

    Purpose Retroillumination photography analysis (RPA) is an objective tool for assessment of the number and distribution of guttae in eyes affected with Fuchs Corneal Dystrophy (FCD). Current protocols include manual processing of images; here we assess validity and interrater reliability of automated analysis across various levels of FCD severity. Methods Retroillumination photographs of 97 FCD-affected corneas were acquired and total counts of guttae previously summated manually. For each cornea, a single image was loaded into ImageJ software. We reduced color variability and subtracted background noise. Reflection of light from each gutta was identified as a local area of maximum intensity and counted automatically. Noise tolerance level was titrated for each cornea by examining a small region of each image with automated overlay to ensure appropriate coverage of individual guttae. We tested interrater reliability of automated counts of guttae across a spectrum of clinical and educational experience. Results A set of 97 retroillumination photographs were analyzed. Clinical severity as measured by a modified Krachmer scale ranged from a severity level of 1 to 5 in the set of analyzed corneas. Automated counts by an ophthalmologist correlated strongly with Krachmer grading (R2=0.79) and manual counts (R2=0.88). Intraclass correlation coefficient demonstrated strong correlation, at 0.924 (95% CI, 0.870- 0.958) among cases analyzed by three students, and 0.869 (95% CI, 0.797- 0.918) among cases for which images was analyzed by an ophthalmologist and two students. Conclusions Automated RPA allows for grading of FCD severity with high resolution across a spectrum of disease severity. PMID:27811565

  17. Automated identification of retained surgical items in radiological images

    Science.gov (United States)

    Agam, Gady; Gan, Lin; Moric, Mario; Gluncic, Vicko

    2015-03-01

    Retained surgical items (RSIs) in patients is a major operating room (OR) patient safety concern. An RSI is any surgical tool, sponge, needle or other item inadvertently left in a patients body during the course of surgery. If left undetected, RSIs may lead to serious negative health consequences such as sepsis, internal bleeding, and even death. To help physicians efficiently and effectively detect RSIs, we are developing computer-aided detection (CADe) software for X-ray (XR) image analysis, utilizing large amounts of currently available image data to produce a clinically effective RSI detection system. Physician analysis of XRs for the purpose of RSI detection is a relatively lengthy process that may take up to 45 minutes to complete. It is also error prone due to the relatively low acuity of the human eye for RSIs in XR images. The system we are developing is based on computer vision and machine learning algorithms. We address the problem of low incidence by proposing synthesis algorithms. The CADe software we are developing may be integrated into a picture archiving and communication system (PACS), be implemented as a stand-alone software application, or be integrated into portable XR machine software through application programming interfaces. Preliminary experimental results on actual XR images demonstrate the effectiveness of the proposed approach.

  18. An automated approach for segmentation of intravascular ultrasound images based on parametric active contour models

    International Nuclear Information System (INIS)

    Vard, Alireza; Jamshidi, Kamal; Movahhedinia, Naser

    2012-01-01

    This paper presents a fully automated approach to detect the intima and media-adventitia borders in intravascular ultrasound images based on parametric active contour models. To detect the intima border, we compute a new image feature applying a combination of short-term autocorrelations calculated for the contour pixels. These feature values are employed to define an energy function of the active contour called normalized cumulative short-term autocorrelation. Exploiting this energy function, the intima border is separated accurately from the blood region contaminated by high speckle noise. To extract media-adventitia boundary, we define a new form of energy function based on edge, texture and spring forces for the active contour. Utilizing this active contour, the media-adventitia border is identified correctly even in presence of branch openings and calcifications. Experimental results indicate accuracy of the proposed methods. In addition, statistical analysis demonstrates high conformity between manual tracing and the results obtained by the proposed approaches.

  19. Gabor Analysis for Imaging

    DEFF Research Database (Denmark)

    Christensen, Ole; Feichtinger, Hans G.; Paukner, Stephan

    2015-01-01

    , it characterizes a function by its transform over phase space, which is the time–frequency plane (TF-plane) in a musical context or the location–wave-number domain in the context of image processing. Since the transition from the signal domain to the phase space domain introduces an enormous amount of data...... of the generalities relevant for an understanding of Gabor analysis of functions on Rd. We pay special attention to the case d = 2, which is the most important case for image processing and image analysis applications. The chapter is organized as follows. Section 2 presents central tools from functional analysis......, the application of Gabor expansions to image representation is considered in Sect. 6....

  20. Automated image-matching technique for comparative diagnosis of the liver on CT examination

    International Nuclear Information System (INIS)

    Okumura, Eiichiro; Sanada, Shigeru; Suzuki, Masayuki; Tsushima, Yoshito; Matsui, Osamu

    2005-01-01

    When interpreting enhanced computer tomography (CT) images of the upper abdomen, radiologists visually select a set of images of the same anatomical positions from two or more CT image series (i.e., non-enhanced and contrast-enhanced CT images at arterial and delayed phase) to depict and to characterize any abnormalities. The same process is also necessary to create subtraction images by computer. We have developed an automated image selection system using a template-matching technique that allows the recognition of image sets at the same anatomical position from two CT image series. Using the template-matching technique, we compared several anatomical structures in each CT image at the same anatomical position. As the position of the liver may shift according to respiratory movement, not only the shape of the liver but also the gallbladder and other prominent structures included in the CT images were compared to allow appropriate selection of a set of CT images. This novel technique was applied in 11 upper abdominal CT examinations. In CT images with a slice thickness of 7.0 or 7.5 mm, the percentage of image sets selected correctly by the automated procedure was 86.6±15.3% per case. In CT images with a slice thickness of 1.25 mm, the percentages of correct selection of image sets by the automated procedure were 79.4±12.4% (non-enhanced and arterial-phase CT images) and 86.4±10.1% (arterial- and delayed-phase CT images). This automated method is useful for assisting in interpreting CT images and in creating digital subtraction images. (author)

  1. Analysis of Trinity Power Metrics for Automated Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Michalenko, Ashley Christine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    This is a presentation from Los Alamos National Laboraotyr (LANL) about the analysis of trinity power metrics for automated monitoring. The following topics are covered: current monitoring efforts, motivation for analysis, tools used, the methodology, work performed during the summer, and future work planned.

  2. Initial development of an automated task analysis profiling system

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1984-01-01

    A program for automated task analysis is described. Called TAPS (task analysis profiling system), the program accepts normal English prose and outputs skills, knowledges, attitudes, and abilities (SKAAs) along with specific guidance and recommended ability measurement tests for nuclear power plant operators. A new method for defining SKAAs is presented along with a sample program output

  3. Automating sensitivity analysis of computer models using computer calculus

    International Nuclear Information System (INIS)

    Oblow, E.M.; Pin, F.G.

    1985-01-01

    An automated procedure for performing sensitivity analyses has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with ''direct'' and ''adjoint'' sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies. 24 refs., 2 figs

  4. An Imaging And Graphics Workstation For Image Sequence Analysis

    Science.gov (United States)

    Mostafavi, Hassan

    1990-01-01

    This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.

  5. Flow injection analysis: Emerging tool for laboratory automation in radiochemistry

    International Nuclear Information System (INIS)

    Egorov, O.; Ruzicka, J.; Grate, J.W.; Janata, J.

    1996-01-01

    Automation of routine and serial assays is a common practice of modern analytical laboratory, while it is virtually nonexistent in the field of radiochemistry. Flow injection analysis (FIA) is a general solution handling methodology that has been extensively used for automation of routine assays in many areas of analytical chemistry. Reproducible automated solution handling and on-line separation capabilities are among several distinctive features that make FI a very promising, yet under utilized tool for automation in analytical radiochemistry. The potential of the technique is demonstrated through the development of an automated 90 Sr analyzer and its application in the analysis of tank waste samples from the Hanford site. Sequential injection (SI), the latest generation of FIA, is used to rapidly separate 90 Sr from interfering radionuclides and deliver separated Sr zone to a flow-through liquid scintillation detector. The separation is performed on a mini column containing Sr-specific sorbent extraction material, which selectively retains Sr under acidic conditions. The 90 Sr is eluted with water, mixed with scintillation cocktail, and sent through the flow cell of a flow through counter, where 90 Sr radioactivity is detected as a transient signal. Both peak area and peak height can be used for quantification of sample radioactivity. Alternatively, stopped flow detection can be performed to improve detection precision for low activity samples. The authors current research activities are focused on expansion of radiochemical applications of FIA methodology, with an ultimate goal of creating a set of automated methods that will cover the basic needs of radiochemical analysis at the Hanford site. The results of preliminary experiments indicate that FIA is a highly suitable technique for the automation of chemically more challenging separations, such as separation of actinide elements

  6. Automated Recognition of Vegetation and Water Bodies on the Territory of Megacities in Satellite Images of Visible and IR Bands

    Science.gov (United States)

    Mozgovoy, Dmitry k.; Hnatushenko, Volodymyr V.; Vasyliev, Volodymyr V.

    2018-04-01

    Vegetation and water bodies are a fundamental element of urban ecosystems, and water mapping is critical for urban and landscape planning and management. A methodology of automated recognition of vegetation and water bodies on the territory of megacities in satellite images of sub-meter spatial resolution of the visible and IR bands is proposed. By processing multispectral images from the satellite SuperView-1A, vector layers of recognized plant and water objects were obtained. Analysis of the results of image processing showed a sufficiently high accuracy of the delineation of the boundaries of recognized objects and a good separation of classes. The developed methodology provides a significant increase of the efficiency and reliability of updating maps of large cities while reducing financial costs. Due to the high degree of automation, the proposed methodology can be implemented in the form of a geo-information web service functioning in the interests of a wide range of public services and commercial institutions.

  7. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    International Nuclear Information System (INIS)

    Prieto, Elena; Peñuelas, Iván; Martí-Climent, Josep M; Lecumberri, Pablo; Gómez, Marisol; Pagola, Miguel; Bilbao, Izaskun; Ecay, Margarita

    2012-01-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18 F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools. (paper)

  8. NeuronMetrics: software for semi-automated processing of cultured neuron images.

    Science.gov (United States)

    Narro, Martha L; Yang, Fan; Kraft, Robert; Wenk, Carola; Efrat, Alon; Restifo, Linda L

    2007-03-23

    Using primary cell culture to screen for changes in neuronal morphology requires specialized analysis software. We developed NeuronMetrics for semi-automated, quantitative analysis of two-dimensional (2D) images of fluorescently labeled cultured neurons. It skeletonizes the neuron image using two complementary image-processing techniques, capturing fine terminal neurites with high fidelity. An algorithm was devised to span wide gaps in the skeleton. NeuronMetrics uses a novel strategy based on geometric features called faces to extract a branch number estimate from complex arbors with numerous neurite-to-neurite contacts, without creating a precise, contact-free representation of the neurite arbor. It estimates total neurite length, branch number, primary neurite number, territory (the area of the convex polygon bounding the skeleton and cell body), and Polarity Index (a measure of neuronal polarity). These parameters provide fundamental information about the size and shape of neurite arbors, which are critical factors for neuronal function. NeuronMetrics streamlines optional manual tasks such as removing noise, isolating the largest primary neurite, and correcting length for self-fasciculating neurites. Numeric data are output in a single text file, readily imported into other applications for further analysis. Written as modules for ImageJ, NeuronMetrics provides practical analysis tools that are easy to use and support batch processing. Depending on the need for manual intervention, processing time for a batch of approximately 60 2D images is 1.0-2.5 h, from a folder of images to a table of numeric data. NeuronMetrics' output accelerates the quantitative detection of mutations and chemical compounds that alter neurite morphology in vitro, and will contribute to the use of cultured neurons for drug discovery.

  9. Image analysis and modeling in medical image computing. Recent developments and advances.

    Science.gov (United States)

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  10. A catalog of automated analysis methods for enterprise models.

    Science.gov (United States)

    Florez, Hector; Sánchez, Mario; Villalobos, Jorge

    2016-01-01

    Enterprise models are created for documenting and communicating the structure and state of Business and Information Technologies elements of an enterprise. After models are completed, they are mainly used to support analysis. Model analysis is an activity typically based on human skills and due to the size and complexity of the models, this process can be complicated and omissions or miscalculations are very likely. This situation has fostered the research of automated analysis methods, for supporting analysts in enterprise analysis processes. By reviewing the literature, we found several analysis methods; nevertheless, they are based on specific situations and different metamodels; then, some analysis methods might not be applicable to all enterprise models. This paper presents the work of compilation (literature review), classification, structuring, and characterization of automated analysis methods for enterprise models, expressing them in a standardized modeling language. In addition, we have implemented the analysis methods in our modeling tool.

  11. Digital image analysis

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Vainer, Ben; Steiniche, Torben

    2012-01-01

    Digital image analysis (DIA) is increasingly implemented in histopathological research to facilitate truly quantitative measurements, decrease inter-observer variation and reduce hands-on time. Originally, efforts were made to enable DIA to reproduce manually obtained results on histological slides...... reproducibility, application of stereology-based quantitative measurements, time consumption, optimization of histological slides, regions of interest selection and recent developments in staining and imaging techniques....

  12. Direct identification of pure penicillium species using image analysis

    DEFF Research Database (Denmark)

    Dørge, Thorsten Carlheim; Carstensen, Jens Michael; Frisvad, Jens Christian

    2000-01-01

    This paper presents a method for direct identification of fungal species solely by means of digital image analysis of colonies as seen after growth on a standard medium. The method described is completely automated and hence objective once digital images of the reference fungi have been establish...

  13. Automation of reactor neutron activation analysis

    International Nuclear Information System (INIS)

    Pavlov, S.S.; Dmitriev, A.Yu.; Frontasyeva, M.V.

    2013-01-01

    The present status of the development of a software package designed for automation of NAA at the IBR-2 reactor of FLNP, JINR, Dubna, is reported. Following decisions adopted at the CRP Meeting in Delft, August 27-31, 2012, the missing tool - a sample changer - will be installed for NAA in compliance with the peculiar features of the radioanalytical laboratory REGATA at the IBR-2 reactor. The details of the design are presented. The software for operation with the sample changer consists of two parts. The first part is a user interface and the second one is a program to control the sample changer. The second part will be developed after installing the tool.

  14. Automated sensitivity analysis using the GRESS language

    International Nuclear Information System (INIS)

    Pin, F.G.; Oblow, E.M.; Wright, R.Q.

    1986-04-01

    An automated procedure for performing large-scale sensitivity studies based on the use of computer calculus is presented. The procedure is embodied in a FORTRAN precompiler called GRESS, which automatically processes computer models and adds derivative-taking capabilities to the normal calculated results. In this report, the GRESS code is described, tested against analytic and numerical test problems, and then applied to a major geohydrological modeling problem. The SWENT nuclear waste repository modeling code is used as the basis for these studies. Results for all problems are discussed in detail. Conclusions are drawn as to the applicability of GRESS in the problems at hand and for more general large-scale modeling sensitivity studies

  15. Automated drusen detection in retinal images using analytical modelling algorithms

    Directory of Open Access Journals (Sweden)

    Manivannan Ayyakkannu

    2011-07-01

    Full Text Available Abstract Background Drusen are common features in the ageing macula associated with exudative Age-Related Macular Degeneration (ARMD. They are visible in retinal images and their quantitative analysis is important in the follow up of the ARMD. However, their evaluation is fastidious and difficult to reproduce when performed manually. Methods This article proposes a methodology for Automatic Drusen Deposits Detection and quantification in Retinal Images (AD3RI by using digital image processing techniques. It includes an image pre-processing method to correct the uneven illumination and to normalize the intensity contrast with smoothing splines. The drusen detection uses a gradient based segmentation algorithm that isolates drusen and provides basic drusen characterization to the modelling stage. The detected drusen are then fitted by Modified Gaussian functions, producing a model of the image that is used to evaluate the affected area. Twenty two images were graded by eight experts, with the aid of a custom made software and compared with AD3RI. This comparison was based both on the total area and on the pixel-to-pixel analysis. The coefficient of variation, the intraclass correlation coefficient, the sensitivity, the specificity and the kappa coefficient were calculated. Results The ground truth used in this study was the experts' average grading. In order to evaluate the proposed methodology three indicators were defined: AD3RI compared to the ground truth (A2G; each expert compared to the other experts (E2E and a standard Global Threshold method compared to the ground truth (T2G. The results obtained for the three indicators, A2G, E2E and T2G, were: coefficient of variation 28.8 %, 22.5 % and 41.1 %, intraclass correlation coefficient 0.92, 0.88 and 0.67, sensitivity 0.68, 0.67 and 0.74, specificity 0.96, 0.97 and 0.94, and kappa coefficient 0.58, 0.60 and 0.49, respectively. Conclusions The gradings produced by AD3RI obtained an agreement

  16. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mei Zhan

    2015-04-01

    Full Text Available Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM. These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a

  17. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    Science.gov (United States)

    Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang

    2015-04-01

    Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision

  18. Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples

    NARCIS (Netherlands)

    Broersen, A.; Liere, van R.; Altelaar, A.F.M.; Heeren, R.M.A.; McDonnell, L.A.

    2008-01-01

    High-resolution imaging mass spectrometry of large biological samples is the goal of several research groups. In mosaic imaging, the most common method, the large sample is divided into a mosaic of small areas that are then analyzed with high resolution. Here we present an automated alignment

  19. An approach for automated analysis of particle holograms

    Science.gov (United States)

    Stanton, A. C.; Caulfield, H. J.; Stewart, G. W.

    1984-01-01

    A simple method for analyzing droplet holograms is proposed that is readily adaptable to automation using modern image digitizers and analyzers for determination of the number, location, and size distributions of spherical or nearly spherical droplets. The method determines these parameters by finding the spatial location of best focus of the droplet images. With this location known, the particle size may be determined by direct measurement of image area in the focal plane. Particle velocity and trajectory may be determined by comparison of image locations at different instants in time. The method is tested by analyzing digitized images from a reconstructed in-line hologram, and the results show that the method is more accurate than a time-consuming plane-by-plane search for sharpest focus.

  20. Automated detection of a prostate Ni-Ti stent in electronic portal images.

    Science.gov (United States)

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-12-01

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins.

  1. Automated detection of a prostate Ni-Ti stent in electronic portal images

    International Nuclear Information System (INIS)

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-01-01

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins

  2. An overview of the contaminant analysis automation program

    International Nuclear Information System (INIS)

    Hollen, R.M.; Erkkila, T.; Beugelsdijk, T.J.

    1992-01-01

    The Department of Energy (DOE) has significant amounts of radioactive and hazardous wastes stored, buried, and still being generated at many sites within the United States. These wastes must be characterized to determine the elemental, isotopic, and compound content before remediation can begin. In this paper, the authors project that sampling requirements will necessitate generating more than 10 million samples by 1995, which will far exceed the capabilities of our current manual chemical analysis laboratories. The Contaminant Analysis Automation effort (CAA), with Los Alamos National Laboratory (LANL) as to the coordinating Laboratory, is designing and fabricating robotic systems that will standardize and automate both the hardware and the software of the most common environmental chemical methods. This will be accomplished by designing and producing several unique analysis systems called Standard Analysis Methods (SAM). Each SAM will automate a specific chemical method, including sample preparation, the analytical analysis, and the data interpretation, by using a building block known as the Standard Laboratory Module (SLM). This concept allows the chemist to assemble an automated environmental method using standardized SLMs easily and without the worry of hardware compatibility or the necessity of generating complicated control programs

  3. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.

    Science.gov (United States)

    Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R

    2014-10-03

    Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image

  4. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    Science.gov (United States)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-03-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  5. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)

  6. Priming of pioneer tree Guazuma ulmifolia (Malvaceae seeds evaluated by an automated computer image analysis Condicionamento fisiológico de sementes da árvore pioneira Guazuma ulmifolia (Malvaceae avaliado por análise computadorizada de imagens

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Santin Brancalion

    2010-01-01

    Full Text Available Direct seeding is one of the most promising methods in restoration ecology, but low field seedling emergence from pioneer tree seeds still reduces its large scale applicability. The aim of this research was to evaluate seed priming for the pioneer tree species Guazuma ulmifolia. Priming treatments were selected based on seed hydration curves in water and in PEG 8000 solution. Seeds were primed in water for 16 h and in Polyethylene glycol - PEG 8000 (-0.8 MPa for 56 and 88 h at 20ºC to reach approximately 30% water content. Half of the seed sample of each treatment was dried back to the initial moisture content (7.2%; both dried and non-dried primed seeds as well as the unprimed seeds (control were tested for germination (percentage and rate and vigor (electrical conductivity of seed leachates. Seedling emergence percentage and rate were evaluated under greenhouse conditions, while seedling length and uniformity of seedling development were estimated using the automated image analysis software SVIS®. Primed seeds showed the highest physiological potential, which was mainly demonstrated by image analysis. Fresh or dried primed seeds in water for 16 h and in PEG (-0.8 MPa for 56 h, and fresh primed seeds in PEG for 88 h, improved G. ulmifolia germination performance. It is suggested that these treatments were promising to enhance efficiency of stand establishment of this species by direct seeding in restoration ecology programs.A semeadura direta é um dos métodos mais promissores para a restauração ecológica, mas a baixa emergência de plântulas em campo a partir de sementes de árvores pioneiras ainda limita sua aplicabilidade em larga escala. Avaliou-se a resposta de sementes da espécie florestal pioneira Guazuma ulmifolia ao condicionamento fisiológico. Os tratamentos foram selecionados com base em curvas de hidratação em água e em solução osmótica de Polietilenoglicol - PEG 8000. As sementes foram condicionadas em água por 16 h

  7. Evaluation of a software package for automated quality assessment of contrast detail images-comparison with subjective visual assessment

    International Nuclear Information System (INIS)

    Pascoal, A; Lawinski, C P; Honey, I; Blake, P

    2005-01-01

    Contrast detail analysis is commonly used to assess image quality (IQ) associated with diagnostic imaging systems. Applications include routine assessment of equipment performance and optimization studies. Most frequently, the evaluation of contrast detail images involves human observers visually detecting the threshold contrast detail combinations in the image. However, the subjective nature of human perception and the variations in the decision threshold pose limits to the minimum image quality variations detectable with reliability. Objective methods of assessment of image quality such as automated scoring have the potential to overcome the above limitations. A software package (CDRAD analyser) developed for automated scoring of images produced with the CDRAD test object was evaluated. Its performance to assess absolute and relative IQ was compared with that of an average observer. Results show that the software does not mimic the absolute performance of the average observer. The software proved more sensitive and was able to detect smaller low-contrast variations. The observer's performance was superior to the software's in the detection of smaller details. Both scoring methods showed frequent agreement in the detection of image quality variations resulting from changes in kVp and KERMA detector , which indicates the potential to use the software CDRAD analyser for assessment of relative IQ

  8. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning.

    Science.gov (United States)

    Wang, Xinggang; Yang, Wei; Weinreb, Jeffrey; Han, Juan; Li, Qiubai; Kong, Xiangchuang; Yan, Yongluan; Ke, Zan; Luo, Bo; Liu, Tao; Wang, Liang

    2017-11-13

    Prostate cancer (PCa) is a major cause of death since ancient time documented in Egyptian Ptolemaic mummy imaging. PCa detection is critical to personalized medicine and varies considerably under an MRI scan. 172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the prostate were obtained. A deep learning with deep convolutional neural network (DCNN) and a non-deep learning with SIFT image feature and bag-of-word (BoW), a representative method for image recognition and analysis, were used to distinguish pathologically confirmed PCa patients from prostate benign conditions (BCs) patients with prostatitis or prostate benign hyperplasia (BPH). In fully automated detection of PCa patients, deep learning had a statistically higher area under the receiver operating characteristics curve (AUC) than non-deep learning (P = 0.0007 deep learning method and 0.70 (95% CI 0.63-0.77) for non-deep learning method, respectively. Our results suggest that deep learning with DCNN is superior to non-deep learning with SIFT image feature and BoW model for fully automated PCa patients differentiation from prostate BCs patients. Our deep learning method is extensible to image modalities such as MR imaging, CT and PET of other organs.

  9. Image sequence analysis workstation for multipoint motion analysis

    Science.gov (United States)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  10. Automated hazard analysis of digital control systems

    International Nuclear Information System (INIS)

    Garrett, Chris J.; Apostolakis, George E.

    2002-01-01

    Digital instrumentation and control (I and C) systems can provide important benefits in many safety-critical applications, but they can also introduce potential new failure modes that can affect safety. Unlike electro-mechanical systems, whose failure modes are fairly well understood and which can often be built to fail in a particular way, software errors are very unpredictable. There is virtually no nontrivial software that will function as expected under all conditions. Consequently, there is a great deal of concern about whether there is a sufficient basis on which to resolve questions about safety. In this paper, an approach for validating the safety requirements of digital I and C systems is developed which uses the Dynamic Flowgraph Methodology to conduct automated hazard analyses. The prime implicants of these analyses can be used to identify unknown system hazards, prioritize the disposition of known system hazards, and guide lower-level design decisions to either eliminate or mitigate known hazards. In a case study involving a space-based reactor control system, the method succeeded in identifying an unknown failure mechanism

  11. Automated detection of diabetic retinopathy in retinal images

    Directory of Open Access Journals (Sweden)

    Carmen Valverde

    2016-01-01

    Full Text Available Diabetic retinopathy (DR is a disease with an increasing prevalence and the main cause of blindness among working-age population. The risk of severe vision loss can be significantly reduced by timely diagnosis and treatment. Systematic screening for DR has been identified as a cost-effective way to save health services resources. Automatic retinal image analysis is emerging as an important screening tool for early DR detection, which can reduce the workload associated to manual grading as well as save diagnosis costs and time. Many research efforts in the last years have been devoted to developing automatic tools to help in the detection and evaluation of DR lesions. However, there is a large variability in the databases and evaluation criteria used in the literature, which hampers a direct comparison of the different studies. This work is aimed at summarizing the results of the available algorithms for the detection and classification of DR pathology. A detailed literature search was conducted using PubMed. Selected relevant studies in the last 10 years were scrutinized and included in the review. Furthermore, we will try to give an overview of the available commercial software for automatic retinal image analysis.

  12. Automated detection of diabetic retinopathy in retinal images.

    Science.gov (United States)

    Valverde, Carmen; Garcia, Maria; Hornero, Roberto; Lopez-Galvez, Maria I

    2016-01-01

    Diabetic retinopathy (DR) is a disease with an increasing prevalence and the main cause of blindness among working-age population. The risk of severe vision loss can be significantly reduced by timely diagnosis and treatment. Systematic screening for DR has been identified as a cost-effective way to save health services resources. Automatic retinal image analysis is emerging as an important screening tool for early DR detection, which can reduce the workload associated to manual grading as well as save diagnosis costs and time. Many research efforts in the last years have been devoted to developing automatic tools to help in the detection and evaluation of DR lesions. However, there is a large variability in the databases and evaluation criteria used in the literature, which hampers a direct comparison of the different studies. This work is aimed at summarizing the results of the available algorithms for the detection and classification of DR pathology. A detailed literature search was conducted using PubMed. Selected relevant studies in the last 10 years were scrutinized and included in the review. Furthermore, we will try to give an overview of the available commercial software for automatic retinal image analysis.

  13. The influence of image setting on intracranial translucency measurement by manual and semi-automated system.

    Science.gov (United States)

    Zhen, Li; Yang, Xin; Ting, Yuen Ha; Chen, Min; Leung, Tak Yeung

    2013-09-01

    To investigate the agreement between manual and semi-automated system and the effect of different image settings on intracranial translucency (IT) measurement. A prospective study was conducted on 55 women carrying singleton pregnancy who attended first trimester Down syndrome screening. IT was measured both manually and by semi-automated system at the same default image setting. The IT measurements were then repeated with the post-processing changes in the image setting one at a time. The difference in IT measurements between the altered and the original images were assessed. Intracranial translucency was successfully measured on 55 images both manually and by semi-automated method. There was strong agreement in IT measurements between the two methods with a mean difference (manual minus semi-automated) of 0.011 mm (95% confidence interval--0.052 mm-0.094 mm). There were statistically significant variations in both manual and semi-automated IT measurement after changing the Gain and the Contrast. The greatest changes occurred when the Contrast was reduced to 1 (IT reduced by 0.591 mm in semi-automated; 0.565 mm in manual), followed by when the Gain was increased to 15 (IT reduced by 0.424 mm in semi-automated; 0.524 mm in manual). The image settings may affect IT identification and measurement. Increased Gain and reduced Contrast are the most influential factors and may cause under-measurement of IT. © 2013 John Wiley & Sons, Ltd.

  14. Capacity analysis of an automated kit transportation system

    NARCIS (Netherlands)

    Zijm, W.H.M.; Adan, I.J.B.F.; Buitenhek, R.; Houtum, van G.J.J.A.N.

    2000-01-01

    In this paper, we present a capacity analysis of an automated transportation system in a flexible assembly factory. The transportation system, together with the workstations, is modeled as a network of queues with multiple job classes. Due to its complex nature, the steadystate behavior of this

  15. Automation of the Analysis and Classification of the Line Material

    Directory of Open Access Journals (Sweden)

    A. A. Machuev

    2011-03-01

    Full Text Available The work is devoted to the automation of the process of the analysis and verification of various formats of data presentation for what the special software is developed. Working out and testing the special software were made on an example of files with the typical expansions which features of structure are known in advance.

  16. An Automated Data Analysis Tool for Livestock Market Data

    Science.gov (United States)

    Williams, Galen S.; Raper, Kellie Curry

    2011-01-01

    This article describes an automated data analysis tool that allows Oklahoma Cooperative Extension Service educators to disseminate results in a timely manner. Primary data collected at Oklahoma Quality Beef Network (OQBN) certified calf auctions across the state results in a large amount of data per sale site. Sale summaries for an individual sale…

  17. Automated procedure for performing computer security risk analysis

    International Nuclear Information System (INIS)

    Smith, S.T.; Lim, J.J.

    1984-05-01

    Computers, the invisible backbone of nuclear safeguards, monitor and control plant operations and support many materials accounting systems. Our automated procedure to assess computer security effectiveness differs from traditional risk analysis methods. The system is modeled as an interactive questionnaire, fully automated on a portable microcomputer. A set of modular event trees links the questionnaire to the risk assessment. Qualitative scores are obtained for target vulnerability, and qualitative impact measures are evaluated for a spectrum of threat-target pairs. These are then combined by a linguistic algebra to provide an accurate and meaningful risk measure. 12 references, 7 figures

  18. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Adam B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Joshua L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process data to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.

  19. An automated live imaging platform for studying merozoite egress-invasion in malaria cultures.

    Science.gov (United States)

    Crick, Alex J; Tiffert, Teresa; Shah, Sheel M; Kotar, Jurij; Lew, Virgilio L; Cicuta, Pietro

    2013-03-05

    Most cases of severe and fatal malaria are caused by the intraerythrocytic asexual reproduction cycle of Plasmodium falciparum. One of the most intriguing and least understood stages in this cycle is the brief preinvasion period during which dynamic merozoite-red-cell interactions align the merozoite apex in preparation for penetration. Studies of the molecular mechanisms involved in this process face formidable technical challenges, requiring multiple observations of merozoite egress-invasion sequences in live cultures under controlled experimental conditions, using high-resolution microscopy and a variety of fluorescent imaging tools. Here we describe a first successful step in the development of a fully automated, robotic imaging platform to enable such studies. Schizont-enriched live cultures of P. falciparum were set up on an inverted stage microscope with software-controlled motorized functions. By applying a variety of imaging filters and selection criteria, we identified infected red cells that were likely to rupture imminently, and recorded their coordinates. We developed a video-image analysis to detect and automatically record merozoite egress events in 100% of the 40 egress-invasion sequences recorded in this study. We observed a substantial polymorphism of the dynamic condition of pre-egress infected cells, probably reflecting asynchronies in the diversity of confluent processes leading to merozoite release. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Semi-automated scar detection in delayed enhanced cardiac magnetic resonance images

    Science.gov (United States)

    Morisi, Rita; Donini, Bruno; Lanconelli, Nico; Rosengarden, James; Morgan, John; Harden, Stephen; Curzen, Nick

    2015-06-01

    Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely delineate myocardial scars. We present a semi-automated method for detecting scars in cardiac MRI. This model has the potential to improve routine clinical practice since quantification is not currently offered due to time constraints. A first segmentation step was developed for extracting the target regions for potential scar and determining pre-candidate objects. Pattern recognition methods are then applied to the segmented images in order to detect the position of the myocardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of 111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS Foundation Trust (UK). At least one scar was present for each patient, and all the scars were manually annotated by an expert. A group of images (around one third of the entire set) was used for training the system which was subsequently tested on all the remaining images. Four different classifiers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN), Bayesian and feed-forward neural network) and their performance was evaluated by using Free response Receiver Operating Characteristic (FROC) analysis. Feature selection was implemented for analyzing the importance of the various features. The segmentation method proposed allowed the region affected by the scar to be extracted correctly in 96% of the blocks of images. The SVM was shown to be the best classifier for our task, and our system reached an overall sensitivity of 80% with less than 7 false positives per patient. The method we present provides an effective tool for detection of scars on cardiac MRI. This may be of value in clinical practice by permitting routine reporting of scar quantification.

  1. Automated Image Acquisition System for the Verification of Copper-Brass Seal Images

    International Nuclear Information System (INIS)

    Stringa, E.; Bergonzi, C.; Littmann, F.; ); Marszalek, Y.; Tempesta, S.; )

    2015-01-01

    This paper describes a system for the verification of copper-brass seals realized by JRC according to DG ENER requirements. DG ENER processes about 20,000 metal seals per year. The verification of metal seals consists in visually checking the identity of a removed seal. The identity of a copper-brass seal is defined by a random stain pattern realized by the seal producer together with random scratches engraved when the seals are initialized ('seal production'). In order to verify that the seal returned from the field is the expected one its pattern is compared with an image taken during seal production. Formerly, seal initialization and verification were very heavy tasks as seal pictures were acquired with a camera one by one both in the initialization and verification stages. During the initialization the Nuclear Safeguards technicians had to place one by one new seals under a camera and acquire the related reference images. During the verification, the technician had to take used seals and place them one by one under a camera to take new pictures. The new images were presented to the technicians without any preprocessing and the technicians had to recognize the seal. The new station described in this paper has an automated image acquisition system allowing to easily process seals in batches of 100 seals. To simplify the verification, a software automatically centres and rotates the newly acquired seal image in order to perfectly overlap with the reference image acquired during the production phase. The new system significantly speeds up seal production and helps particularly with the demanding task of seal verification. As a large part of the seals is dealt with by a joint Euratom-IAEA team, the IAEA directly profits from this development. The new tool has been in routine use since mid 2013. (author)

  2. Automated voxel-based analysis of brain perfusion SPECT for vasospasm after subarachnoid haemorrhage

    International Nuclear Information System (INIS)

    Iwabuchi, S.; Yokouchi, T.; Hayashi, M.; Kimura, H.; Tomiyama, A.; Hirata, Y.; Saito, N.; Harashina, J.; Nakayama, H.; Sato, K.; Aoki, K.; Samejima, H.; Ueda, M.; Terada, H.; Hamazaki, K.

    2008-01-01

    We evaluated regional cerebral blood flow (rCBF) during vasospasm after subarachnoid haemorrhage ISAH) using automated voxel-based analysis of brain perfusion single-photon emission computed tomography (SPELT). Brain perfusion SPECT was performed 7 to 10 days after onset of SAH. Automated voxel-based analysis of SPECT used a Z-score map that was calculated by comparing the patients data with a control database. In cases where computed tomography (CT) scans detected an ischemic region due to vasospasm, automated voxel-based analysis of brain perfusion SPECT revealed dramatically reduced rCBF (Z-score ≤ -4). No patients with mildly or moderately diminished rCBF (Z-score > -3) progressed to cerebral infarction. Some patients with a Z-score < -4 did not progress to cerebral infarction after active treatment with a angioplasty. Three-dimensional images provided detailed anatomical information and helped us to distinguish surgical sequelae from vasospasm. In conclusion, automated voxel-based analysis of brain perfusion SPECT using a Z-score map is helpful in evaluating decreased rCBF due to vasospasm. (author)

  3. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts

    International Nuclear Information System (INIS)

    Drukker, Karen; Sennett, Charlene A.; Giger, Maryellen L.

    2014-01-01

    Purpose: Develop a computer-aided detection method and investigate its feasibility for detection of breast cancer in automated 3D ultrasound images of women with dense breasts. Methods: The HIPAA compliant study involved a dataset of volumetric ultrasound image data, “views,” acquired with an automated U-Systems Somo•V ® ABUS system for 185 asymptomatic women with dense breasts (BI-RADS Composition/Density 3 or 4). For each patient, three whole-breast views (3D image volumes) per breast were acquired. A total of 52 patients had breast cancer (61 cancers), diagnosed through any follow-up at most 365 days after the original screening mammogram. Thirty-one of these patients (32 cancers) had a screening-mammogram with a clinically assigned BI-RADS Assessment Category 1 or 2, i.e., were mammographically negative. All software used for analysis was developed in-house and involved 3 steps: (1) detection of initial tumor candidates, (2) characterization of candidates, and (3) elimination of false-positive candidates. Performance was assessed by calculating the cancer detection sensitivity as a function of the number of “marks” (detections) per view. Results: At a single mark per view, i.e., six marks per patient, the median detection sensitivity by cancer was 50.0% (16/32) ± 6% for patients with a screening mammogram-assigned BI-RADS category 1 or 2—similar to radiologists’ performance sensitivity (49.9%) for this dataset from a prior reader study—and 45.9% (28/61) ± 4% for all patients. Conclusions: Promising detection sensitivity was obtained for the computer on a 3D ultrasound dataset of women with dense breasts at a rate of false-positive detections that may be acceptable for clinical implementation

  4. Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients.

    Science.gov (United States)

    Hosseini, Mohammad-Parsa; Nazem-Zadeh, Mohammad-Reza; Pompili, Dario; Jafari-Khouzani, Kourosh; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2016-01-01

    Segmentation of the hippocampus from magnetic resonance (MR) images is a key task in the evaluation of mesial temporal lobe epilepsy (mTLE) patients. Several automated algorithms have been proposed although manual segmentation remains the benchmark. Choosing a reliable algorithm is problematic since structural definition pertaining to multiple edges, missing and fuzzy boundaries, and shape changes varies among mTLE subjects. Lack of statistical references and guidance for quantifying the reliability and reproducibility of automated techniques has further detracted from automated approaches. The purpose of this study was to develop a systematic and statistical approach using a large dataset for the evaluation of automated methods and establish a method that would achieve results better approximating those attained by manual tracing in the epileptogenic hippocampus. A template database of 195 (81 males, 114 females; age range 32-67 yr, mean 49.16 yr) MR images of mTLE patients was used in this study. Hippocampal segmentation was accomplished manually and by two well-known tools (FreeSurfer and hammer) and two previously published methods developed at their institution [Automatic brain structure segmentation (ABSS) and LocalInfo]. To establish which method was better performing for mTLE cases, several voxel-based, distance-based, and volume-based performance metrics were considered. Statistical validations of the results using automated techniques were compared with the results of benchmark manual segmentation. Extracted metrics were analyzed to find the method that provided a more similar result relative to the benchmark. Among the four automated methods, ABSS generated the most accurate results. For this method, the Dice coefficient was 5.13%, 14.10%, and 16.67% higher, Hausdorff was 22.65%, 86.73%, and 69.58% lower, precision was 4.94%, -4.94%, and 12.35% higher, and the root mean square (RMS) was 19.05%, 61.90%, and 65.08% lower than LocalInfo, FreeSurfer, and

  5. Automated Photogrammetric Image Matching with Sift Algorithm and Delaunay Triangulation

    DEFF Research Database (Denmark)

    Karagiannis, Georgios; Antón Castro, Francesc/François; Mioc, Darka

    2016-01-01

    An algorithm for image matching of multi-sensor and multi-temporal satellite images is developed. The method is based on the SIFT feature detector proposed by Lowe in (Lowe, 1999). First, SIFT feature points are detected independently in two images (reference and sensed image). The features detec...... of each feature set for each image are computed. The isomorphism of the Delaunay triangulations is determined to guarantee the quality of the image matching. The algorithm is implemented in Matlab and tested on World-View 2, SPOT6 and TerraSAR-X image patches....

  6. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  7. Combined process automation for large-scale EEG analysis.

    Science.gov (United States)

    Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E

    2012-01-01

    Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. A Semi-automated Approach to Improve the Efficiency of Medical Imaging Segmentation for Haptic Rendering.

    Science.gov (United States)

    Banerjee, Pat; Hu, Mengqi; Kannan, Rahul; Krishnaswamy, Srinivasan

    2017-08-01

    The Sensimmer platform represents our ongoing research on simultaneous haptics and graphics rendering of 3D models. For simulation of medical and surgical procedures using Sensimmer, 3D models must be obtained from medical imaging data, such as magnetic resonance imaging (MRI) or computed tomography (CT). Image segmentation techniques are used to determine the anatomies of interest from the images. 3D models are obtained from segmentation and their triangle reduction is required for graphics and haptics rendering. This paper focuses on creating 3D models by automating the segmentation of CT images based on the pixel contrast for integrating the interface between Sensimmer and medical imaging devices, using the volumetric approach, Hough transform method, and manual centering method. Hence, automating the process has reduced the segmentation time by 56.35% while maintaining the same accuracy of the output at ±2 voxels.

  9. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  10. Solar Image Analysis and Visualization

    CERN Document Server

    Ireland, J

    2009-01-01

    This volume presents a selection of papers on the state of the art of image enhancement, automated feature detection, machine learning, and visualization tools in support of solar physics that focus on the challenges presented by new ground-based and space-based instrumentation. The articles and topics were inspired by the Third Solar Image Processing Workshop, held at Trinity College Dublin, Ireland but contributions from other experts have been included as well. This book is mainly aimed at researchers and graduate students working on image processing and compter vision in astronomy and solar physics.

  11. MRF-ANN: a machine learning approach for automated ER scoring of breast cancer immunohistochemical images.

    Science.gov (United States)

    Mungle, T; Tewary, S; DAS, D K; Arun, I; Basak, B; Agarwal, S; Ahmed, R; Chatterjee, S; Chakraborty, C

    2017-08-01

    Molecular pathology, especially immunohistochemistry, plays an important role in evaluating hormone receptor status along with diagnosis of breast cancer. Time-consumption and inter-/intraobserver variability are major hindrances for evaluating the receptor score. In view of this, the paper proposes an automated Allred Scoring methodology for estrogen receptor (ER). White balancing is used to normalize the colour image taking into consideration colour variation during staining in different labs. Markov random field model with expectation-maximization optimization is employed to segment the ER cells. The proposed segmentation methodology is found to have F-measure 0.95. Artificial neural network is subsequently used to obtain intensity-based score for ER cells, from pixel colour intensity features. Simultaneously, proportion score - percentage of ER positive cells is computed via cell counting. The final ER score is computed by adding intensity and proportion scores - a standard Allred scoring system followed by pathologists. The classification accuracy for classification of cells by classifier in terms of F-measure is 0.9626. The problem of subjective interobserver ability is addressed by quantifying ER score from two expert pathologist and proposed methodology. The intraclass correlation achieved is greater than 0.90. The study has potential advantage of assisting pathologist in decision making over manual procedure and could evolve as a part of automated decision support system with other receptor scoring/analysis procedure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. A5: Automated Analysis of Adversarial Android Applications

    Science.gov (United States)

    2014-06-03

    A5: Automated Analysis of Adversarial Android Applications Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin...detecting, on the device itself, that an application is malicious is much more complex without elevated privileges . In other words, given the...interface via website. Blasing et al. [7] describe another dynamic analysis system for Android . Their system focuses on classifying input applications as

  13. Automated synthesis of image processing procedures using AI planning techniques

    Science.gov (United States)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  14. Application of an Automated Discharge Imaging System and LSPIV during Typhoon Events in Taiwan

    OpenAIRE

    Wei-Che Huang; Chih-Chieh Young; Wen-Cheng Liu

    2018-01-01

    An automated discharge imaging system (ADIS), which is a non-intrusive and safe approach, was developed for measuring river flows during flash flood events. ADIS consists of dual cameras to capture complete surface images in the near and far fields. Surface velocities are accurately measured using the Large Scale Particle Image Velocimetry (LSPIV) technique. The stream discharges are then obtained from the depth-averaged velocity (based upon an empirical velocity-index relationship) and cross...

  15. Automated collimation testing by determining the statistical correlation coefficient of Talbot self-images.

    Science.gov (United States)

    Rana, Santosh; Dhanotia, Jitendra; Bhatia, Vimal; Prakash, Shashi

    2018-04-01

    In this paper, we propose a simple, fast, and accurate technique for detection of collimation position of an optical beam using the self-imaging phenomenon and correlation analysis. Herrera-Fernandez et al. [J. Opt.18, 075608 (2016)JOOPDB0150-536X10.1088/2040-8978/18/7/075608] proposed an experimental arrangement for collimation testing by comparing the period of two different self-images produced by a single diffraction grating. Following their approach, we propose a testing procedure based on correlation coefficient (CC) for efficient detection of variation in the size and fringe width of the Talbot self-images and thereby the collimation position. When the beam is collimated, the physical properties of the self-images of the grating, such as its size and fringe width, do not vary from one Talbot plane to the other and are identical; the CC is maximum in such a situation. For the de-collimated position, the size and fringe width of the self-images vary, and correspondingly the CC decreases. Hence, the magnitude of CC is a measure of degree of collimation. Using the method, we could set the collimation position to a resolution of 1 μm, which relates to ±0.25   μ    radians in terms of collimation angle (for testing a collimating lens of diameter 46 mm and focal length 300 mm). In contrast to most collimation techniques reported to date, the proposed technique does not require a translation/rotation of the grating, use of complicated phase evaluation algorithms, or an intricate method for determination of period of the grating or its self-images. The technique is fully automated and provides high resolution and precision.

  16. A method for fast automated microscope image stitching.

    Science.gov (United States)

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA

    Science.gov (United States)

    Staley, T. D.; Anderson, G. E.

    2015-11-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope-agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, of the sort typically acquired for transient surveys or follow-up. The algorithm aims to improve upon standard imaging pipelines by utilizing iterative RMS-estimation and automated source-detection to avoid so called 'Clean-bias', and makes use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. While targeted at automated imaging, the drive-casa interface can also be used to automate interaction with any of the CASA subroutines from a generic Python process. Additionally, these packages may be of wider technical interest beyond radio-astronomy, since they demonstrate use of the Python library pexpect to emulate terminal interaction with an external process. This approach allows for rapid development of a Python interface to any legacy or externally-maintained pipeline which accepts command-line input, without requiring alterations to the original code.

  18. Performance analysis of automated evaluation of Crithidia luciliae-based indirect immunofluorescence tests in a routine setting - strengths and weaknesses.

    Science.gov (United States)

    Hormann, Wymke; Hahn, Melanie; Gerlach, Stefan; Hochstrate, Nicola; Affeldt, Kai; Giesen, Joyce; Fechner, Kai; Damoiseaux, Jan G M C

    2017-11-27

    Antibodies directed against dsDNA are a highly specific diagnostic marker for the presence of systemic lupus erythematosus and of particular importance in its diagnosis. To assess anti-dsDNA antibodies, the Crithidia luciliae-based indirect immunofluorescence test (CLIFT) is one of the assays considered to be the best choice. To overcome the drawback of subjective result interpretation that inheres indirect immunofluorescence assays in general, automated systems have been introduced into the market during the last years. Among these systems is the EUROPattern Suite, an advanced automated fluorescence microscope equipped with different software packages, capable of automated pattern interpretation and result suggestion for ANA, ANCA and CLIFT analysis. We analyzed the performance of the EUROPattern Suite with its automated fluorescence interpretation for CLIFT in a routine setting, reflecting the everyday life of a diagnostic laboratory. Three hundred and twelve consecutive samples were collected, sent to the Central Diagnostic Laboratory of the Maastricht University Medical Centre with a request for anti-dsDNA analysis over a period of 7 months. Agreement between EUROPattern assay analysis and the visual read was 93.3%. Sensitivity and specificity were 94.1% and 93.2%, respectively. The EUROPattern Suite performed reliably and greatly supported result interpretation. Automated image acquisition is readily performed and automated image classification gives a reliable recommendation for assay evaluation to the operator. The EUROPattern Suite optimizes workflow and contributes to standardization between different operators or laboratories.

  19. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  20. Foreign object detection and removal to improve automated analysis of chest radiographs

    International Nuclear Information System (INIS)

    Hogeweg, Laurens; Sánchez, Clara I.; Melendez, Jaime; Maduskar, Pragnya; Ginneken, Bram van; Story, Alistair; Hayward, Andrew

    2013-01-01

    Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The method is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A z value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis

  1. Automated method and system for the alignment and correlation of images from two different modalities

    Science.gov (United States)

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  2. Automated extraction of radiation dose information from CT dose report images.

    Science.gov (United States)

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  3. Evaluation of an improved technique for automated center lumen line definition in cardiovascular image data

    International Nuclear Information System (INIS)

    Gratama van Andel, Hugo A.F.; Meijering, Erik; Vrooman, Henri A.; Stokking, Rik; Lugt, Aad van der; Monye, Cecile de

    2006-01-01

    The aim of the study was to evaluate a new method for automated definition of a center lumen line in vessels in cardiovascular image data. This method, called VAMPIRE, is based on improved detection of vessel-like structures. A multiobserver evaluation study was conducted involving 40 tracings in clinical CTA data of carotid arteries to compare VAMPIRE with an established technique. This comparison showed that VAMPIRE yields considerably more successful tracings and improved handling of stenosis, calcifications, multiple vessels, and nearby bone structures. We conclude that VAMPIRE is highly suitable for automated definition of center lumen lines in vessels in cardiovascular image data. (orig.)

  4. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Chris; Bazalova-Carter, Magdalena [University of Victoria (Australia)

    2016-08-15

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional data sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.

  5. Sci-Thur AM: YIS – 08: Automated Imaging Quality Assurance for Image-Guided Small Animal Irradiators

    International Nuclear Information System (INIS)

    Johnstone, Chris; Bazalova-Carter, Magdalena

    2016-01-01

    Purpose: To develop quality assurance (QA) standards and tolerance levels for image quality of small animal irradiators. Methods: A fully automated in-house QA software for image analysis of a commercial microCT phantom was created. Quantitative analyses of CT linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, modulation transfer function (MTF), and CT number evaluation was performed. Phantom microCT scans from seven institutions acquired with varying parameters (kVp, mA, time, voxel size, and frame rate) and five irradiator units (Xstrahl SARRP, PXI X-RAD 225Cx, PXI X-RAD SmART, GE explore CT/RT 140, and GE Explore CT 120) were analyzed. Multi-institutional data sets were compared using our in-house software to establish pass/fail criteria for each QA test. Results: CT linearity (R2>0.996) was excellent at all but Institution 2. Acceptable SNR (>35) and noise levels (<55HU) were obtained at four of the seven institutions, where failing scans were acquired with less than 120mAs. Acceptable MTF (>1.5 lp/mm for MTF=0.2) was obtained at all but Institution 6 due to the largest scan voxel size (0.35mm). The geometric accuracy passed (<1.5%) at five of the seven institutions. Conclusion: Our QA software can be used to rapidly perform quantitative imaging QA for small animal irradiators, accumulate results over time, and display possible changes in imaging functionality from its original performance and/or from the recommended tolerance levels. This tool will aid researchers in maintaining high image quality, enabling precise conformal dose delivery to small animals.

  6. An automated detection for axonal boutons in vivo two-photon imaging of mouse

    Science.gov (United States)

    Li, Weifu; Zhang, Dandan; Xie, Qiwei; Chen, Xi; Han, Hua

    2017-02-01

    Activity-dependent changes in the synaptic connections of the brain are tightly related to learning and memory. Previous studies have shown that essentially all new synaptic contacts were made by adding new partners to existing synaptic elements. To further explore synaptic dynamics in specific pathways, concurrent imaging of pre and postsynaptic structures in identified connections is required. Consequently, considerable attention has been paid for the automated detection of axonal boutons. Different from most previous methods proposed in vitro data, this paper considers a more practical case in vivo neuron images which can provide real time information and direct observation of the dynamics of a disease process in mouse. Additionally, we present an automated approach for detecting axonal boutons by starting with deconvolving the original images, then thresholding the enhanced images, and reserving the regions fulfilling a series of criteria. Experimental result in vivo two-photon imaging of mouse demonstrates the effectiveness of our proposed method.

  7. Automated software analysis of nuclear core discharge data

    International Nuclear Information System (INIS)

    Larson, T.W.; Halbig, J.K.; Howell, J.A.; Eccleston, G.W.; Klosterbuer, S.F.

    1993-03-01

    Monitoring the fueling process of an on-load nuclear reactor is a full-time job for nuclear safeguarding agencies. Nuclear core discharge monitors (CDMS) can provide continuous, unattended recording of the reactor's fueling activity for later, qualitative review by a safeguards inspector. A quantitative analysis of this collected data could prove to be a great asset to inspectors because more information can be extracted from the data and the analysis time can be reduced considerably. This paper presents a prototype for an automated software analysis system capable of identifying when fuel bundle pushes occurred and monitoring the power level of the reactor. Neural network models were developed for calculating the region on the reactor face from which the fuel was discharged and predicting the burnup. These models were created and tested using actual data collected from a CDM system at an on-load reactor facility. Collectively, these automated quantitative analysis programs could help safeguarding agencies to gain a better perspective on the complete picture of the fueling activity of an on-load nuclear reactor. This type of system can provide a cost-effective solution for automated monitoring of on-load reactors significantly reducing time and effort

  8. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao

    1998-01-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  9. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study

    International Nuclear Information System (INIS)

    Tomatis, Stefano; Carrara, Mauro; Bono, Aldo; Bartoli, Cesare; Lualdi, Manuela; Tragni, Gabrina; Colombo, Ambrogio; Marchesini, Renato

    2005-01-01

    The aim of this research was to evaluate the performance of a new spectroscopic system in the diagnosis of melanoma. This study involves a consecutive series of 1278 patients with 1391 cutaneous pigmented lesions including 184 melanomas. In an attempt to approach the 'real world' of lesion population, a further set of 1022 not excised clinically reassuring lesions was also considered for analysis. Each lesion was imaged in vivo by a multispectral imaging system. The system operates at wavelengths between 483 and 950 nm by acquiring 15 images at equally spaced wavelength intervals. From the images, different lesion descriptors were extracted related to the colour distribution and morphology of the lesions. Data reduction techniques were applied before setting up a neural network classifier designed to perform automated diagnosis. The data set was randomly divided into three sets: train (696 lesions, including 90 melanomas) and verify (348 lesions, including 53 melanomas) for the instruction of a proper neural network, and an independent test set (347 lesions, including 41 melanomas). The neural network was able to discriminate between melanomas and non-melanoma lesions with a sensitivity of 80.4% and a specificity of 75.6% in the 1391 histologized cases data set. No major variations were found in classification scores when train, verify and test subsets were separately evaluated. Following receiver operating characteristic (ROC) analysis, the resulting area under the curve was 0.85. No significant differences were found among areas under train, verify and test set curves, supporting the good network ability to generalize for new cases. In addition, specificity and area under ROC curve increased up to 90% and 0.90, respectively, when the additional set of 1022 lesions without histology was added to the test set. Our data show that performance of an automated system is greatly population dependent, suggesting caution in the comparison with results reported in the

  10. Tank Farm Operations Surveillance Automation Analysis

    International Nuclear Information System (INIS)

    MARQUEZ, D.L.

    2000-01-01

    The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities

  11. Micro photometer's automation for quantitative spectrograph analysis

    International Nuclear Information System (INIS)

    Gutierrez E, C.Y.A.

    1996-01-01

    A Microphotometer is used to increase the sharpness of dark spectral lines. Analyzing these lines one sample content and its concentration could be determined and the analysis is known as Quantitative Spectrographic Analysis. The Quantitative Spectrographic Analysis is carried out in 3 steps, as follows. 1. Emulsion calibration. This consists of gauging a photographic emulsion, to determine the intensity variations in terms of the incident radiation. For the procedure of emulsion calibration an adjustment with square minimum to the data obtained is applied to obtain a graph. It is possible to determine the density of dark spectral line against the incident light intensity shown by the microphotometer. 2. Working curves. The values of known concentration of an element against incident light intensity are plotted. Since the sample contains several elements, it is necessary to find a work curve for each one of them. 3. Analytical results. The calibration curve and working curves are compared and the concentration of the studied element is determined. The automatic data acquisition, calculation and obtaining of resulting, is done by means of a computer (PC) and a computer program. The conditioning signal circuits have the function of delivering TTL levels (Transistor Transistor Logic) to make the communication between the microphotometer and the computer possible. Data calculation is done using a computer programm

  12. Image sequence analysis

    CERN Document Server

    1981-01-01

    The processing of image sequences has a broad spectrum of important applica­ tions including target tracking, robot navigation, bandwidth compression of TV conferencing video signals, studying the motion of biological cells using microcinematography, cloud tracking, and highway traffic monitoring. Image sequence processing involves a large amount of data. However, because of the progress in computer, LSI, and VLSI technologies, we have now reached a stage when many useful processing tasks can be done in a reasonable amount of time. As a result, research and development activities in image sequence analysis have recently been growing at a rapid pace. An IEEE Computer Society Workshop on Computer Analysis of Time-Varying Imagery was held in Philadelphia, April 5-6, 1979. A related special issue of the IEEE Transactions on Pattern Anal­ ysis and Machine Intelligence was published in November 1980. The IEEE Com­ puter magazine has also published a special issue on the subject in 1981. The purpose of this book ...

  13. Automated reasoning applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1984-01-01

    Argonne National Laboratory (ANL) is actively involved in the LMFBR Man-Machine Integration (MMI) Safety Program. The objective of this program is to enhance the operational safety and reliability of fast-breeder reactors by optimum integration of men and machines through the application of human factors principles and control engineering to the design, operation, and the control environment. ANL is developing methods to apply automated reasoning and computerization in the validation and sneak function analysis process. This project provides the element definitions and relations necessary for an automated reasoner (AR) to reason about design validation and sneak function analysis. This project also provides a demonstration of this AR application on an Experimental Breeder Reactor-II (EBR-II) system, the Argonne Cooling System

  14. Automated Asteroseismic Analysis of Solar-type Stars

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Campante, T.L.; Chaplin, W.J.

    2010-01-01

    The rapidly increasing volume of asteroseismic observations on solar-type stars has revealed a need for automated analysis tools. The reason for this is not only that individual analyses of single stars are rather time consuming, but more importantly that these large volumes of observations open...... are calculated in a consistent way. Here we present a set of automated asterosesimic analysis tools. The main engine of these set of tools is an algorithm for modelling the autocovariance spectra of the stellar acoustic spectra allowing us to measure not only the frequency of maximum power and the large......, radius, luminosity, effective temperature, surface gravity and age based on grid modeling. All the tools take into account the window function of the observations which means that they work equally well for space-based photometry observations from e.g. the NASA Kepler satellite and ground-based velocity...

  15. A new automated assessment method for contrast–detail images by applying support vector machine and its robustness to nonlinear image processing

    International Nuclear Information System (INIS)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kumiharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-01-01

    The automated contrast–detail (C–D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C–D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C–D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5–5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C–D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C–D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C–D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  16. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    Science.gov (United States)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  17. Automated three-dimensional X-ray analysis using a dual-beam FIB

    International Nuclear Information System (INIS)

    Schaffer, Miroslava; Wagner, Julian; Schaffer, Bernhard; Schmied, Mario; Mulders, Hans

    2007-01-01

    We present a fully automated method for three-dimensional (3D) elemental analysis demonstrated using a ceramic sample of chemistry (Ca)MgTiO x . The specimen is serially sectioned by a focused ion beam (FIB) microscope, and energy-dispersive X-ray spectrometry (EDXS) is used for elemental analysis of each cross-section created. A 3D elemental model is reconstructed from the stack of two-dimensional (2D) data. This work concentrates on issues arising from process automation, the large sample volume of approximately 17x17x10 μm 3 , and the insulating nature of the specimen. A new routine for post-acquisition data correction of different drift effects is demonstrated. Furthermore, it is shown that EDXS data may be erroneous for specimens containing voids, and that back-scattered electron images have to be used to correct for these errors

  18. Experience based ageing analysis of NPP protection automation in Finland

    International Nuclear Information System (INIS)

    Simola, K.

    2000-01-01

    This paper describes three successive studies on ageing of protection automation of nuclear power plants. These studies were aimed at developing a methodology for an experience based ageing analysis, and applying it to identify the most critical components from ageing and safety points of view. The analyses resulted also to suggestions for improvement of data collection systems for the purpose of further ageing analyses. (author)

  19. An automated solution enrichment system for uranium analysis

    International Nuclear Information System (INIS)

    Jones, S.A.; Sparks, R.; Sampson, T.; Parker, J.; Horley, E.; Kelly, T.

    1993-01-01

    An automated Solution Enrichment system (SES) for analysis of Uranium and U-235 isotopes in process samples has been developed through a joint effort between Los Alamos National Laboratory and Martin Marietta Energy systems, Portsmouth Gase