WorldWideScience

Sample records for autologous dendritic cells

  1. The Mechanisms of Human Renal Epithelial Cell Modulation of Autologous Dendritic Cell Phenotype and Function.

    Directory of Open Access Journals (Sweden)

    Sandeep Sampangi

    Full Text Available Proximal tubule epithelial cells (PTEC of the kidney line the proximal tubule downstream of the glomerulus and play a major role in the re-absorption of small molecular weight proteins that may pass through the glomerular filtration process. In the perturbed disease state PTEC also contribute to the inflammatory disease process via both positive and negative mechanisms via the production of inflammatory cytokines which chemo-attract leukocytes and the subsequent down-modulation of these cells to prevent uncontrolled inflammatory responses. It is well established that dendritic cells are responsible for the initiation and direction of adaptive immune responses. Both resident and infiltrating dendritic cells are localised within the tubulointerstitium of the renal cortex, in close apposition to PTEC, in inflammatory disease states. We previously demonstrated that inflammatory PTEC are able to modulate autologous human dendritic cell phenotype and functional responses. Here we extend these findings to characterise the mechanisms of this PTEC immune-modulation using primary human PTEC and autologous monocyte-derived dendritic cells (MoDC as the model system. We demonstrate that PTEC express three inhibitory molecules: (i cell surface PD-L1 that induces MoDC expression of PD-L1; (ii intracellular IDO that maintains the expression of MoDC CD14, drives the expression of CD80, PD-L1 and IL-10 by MoDC and inhibits T cell stimulatory capacity; and (iii soluble HLA-G (sHLA-G that inhibits HLA-DR and induces IL-10 expression by MoDC. Collectively the results demonstrate that primary human PTEC are able to modulate autologous DC phenotype and function via multiple complex pathways. Further dissection of these pathways is essential to target therapeutic strategies in the treatment of inflammatory kidney disorders.

  2. The CD85j+ NK cell subset potently controls HIV-1 replication in autologous dendritic cells.

    Directory of Open Access Journals (Sweden)

    Daniel Scott-Algara

    Full Text Available Natural killer (NK cells and dendritic cells (DC are thought to play critical roles in the first phases of HIV infection. In this study, we examined changes in the NK cell repertoire and functions occurring in response to early interaction with HIV-infected DC, using an autologous in vitro NK/DC coculture system. We show that NK cell interaction with HIV-1-infected autologous monocyte-derived DC (MDDC modulates NK receptor expression. In particular, expression of the CD85j receptor on NK cells was strongly down-regulated upon coculture with HIV-1-infected MDDC. We demonstrate that CD85j(+ NK cells exert potent control of HIV-1 replication in single-round and productively HIV-1-infected MDDC, whereas CD85j(- NK cells induce a modest and transient decrease of HIV-1 replication. HIV-1 suppression in MDCC by CD85j(+ NK cells required cell-to-cell contact and did not appear mediated by cytotoxicity or by soluble factors. HIV-1 inhibition was abolished when NK-MDDC interaction through the CD85j receptor was blocked with a recombinant CD85j molecule, whereas inhibition was only slightly counteracted by blocking HLA class I molecules, which are known CD85j ligands. After masking HLA class I molecules with specific antibodies, a fraction of HIV-1 infected MDDC was still strongly stained by a recombinant CD85j protein. These results suggest that CD85j(+ NK cell inhibition of HIV-1 replication in MDDC is mainly mediated by CD85j interaction with an unknown ligand (distinct from HLA class I molecules preferentially expressed on HIV-1-infected MDDC.

  3. Therapeutic effect of autologous dendritic cell vaccine on patients with chronic hepatitis B: A clinical study

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Yong-Guo Li; Da-Zhi Zhang; Zhi-Yi Wang; Wei-Qun Zeng; Xiao-Feng Shi; Yuan Guo; Shu-Hua Guo; Hong Ren

    2005-01-01

    AIM: To investigate the therapeutic effect of autologous HBsAg-loaded dendritic cells (DCs) on patients with chronic hepatitis B.METHODS: Monocytes were isolated from fresh peripheral blood of 19 chronic HBV-infected patients by Ficoll-Hypaque density gradient centrifugation and cultured by plastic-adherence methods. DCs were induced and proliferated in the culture medium with recombinant human granulocyte-macrophage-colony- stimulating factor (rhGM-CSF) and human interleukin-4 (rhIL-4). DCs pulsed with HBsAg for twelve hours were injected into patients subcutaneously twice at intervals of two weeks. Two patients received 100 mg oral lamivudine daily for 12 mo at the same time. HBV-DNA and viral markers in sera of patients were tested every two months.RESULTS: By the end of 2003, 11 of 19 (57.9%) patients had a clinical response to DC-treatment. HBeAg of 10(52.6%) patients became negative, and the copies of HBVDNA decreased 101.77±2.39 averagely (t = 3.13, P<0.01).Two cases co-treated with DCs and lamivudine had a complete clinical response. There were no significant differences in the efficient rate between the cases with ALT level lower than 2xULN and those with ALT level higher than 2xULN before treatment (χ2 = 0.0026).CONCLUSION: Autologous DC-vaccine induced in vitro can effectively suppress HBV replication, reduce the virus load in sera, eliminate HBeAg and promote HBeAg/antiHBe transformation. Not only the patients with high serum ALT levels but also those with normal ALT levels can respond to DC vaccine treatment, and the treatment combining DCs with lamivudine can eliminate viruses more effectively.

  4. Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Berntsen, Annika; Hadrup, Sine Reker;

    2010-01-01

    vaccination with autologous monocyte-derived mature dendritic cells (DC) pulsed with p53, survivin and telomerase-derived peptides (HLA-A2+ patients) or with autologous/allogeneic tumor lysate (HLA-A2(-) patients) in combination with low-dose interleukin (IL)-2 and interferon (IFN)-alpha2b....

  5. Effect of mature dendritic cells primed with autologous tumor antigens, patients with epithelial ovarian cancer to stimulate the cytotoxic activity of mononuclear cells in vitro.

    OpenAIRE

    Irina Obleuhova

    2013-01-01

    Along with conservative treatment of epithelial ovarian carcinoma, which has the highest frequency of occurrence of gynecological cancers, specific immunotherapy is a modern and advanced way of treating the disease. Special role in the immunotherapy vaccine therapy is based on dendritic cells (DC). Therefore, the purpose of this study was to assess the effectiveness of the modulation of cytotoxic activity in vitro (in a culture of mononuclear cells) using autologous dendritic cells and tumor ...

  6. Adenosine deaminase regulates Treg expression in autologous T cell-dendritic cell cocultures from patients infected with HIV-1.

    Science.gov (United States)

    Naval-Macabuhay, Isaac; Casanova, Víctor; Navarro, Gemma; García, Felipe; León, Agathe; Miralles, Laia; Rovira, Cristina; Martinez-Navio, José M; Gallart, Teresa; Mallol, Josefa; Gatell, José M; Lluís, Carme; Franco, Rafael; McCormick, Peter J; Climent, Núria

    2016-02-01

    Regulatory T cells have an important role in immune suppression during HIV-1 infection. As regulatory T cells produce the immunomodulatory molecule adenosine, our aim here was to assess the potential of adenosine removal to revert the suppression of anti-HIV responses exerted by regulatory T cells. The experimental setup consisted of ex vivo cocultures of T and dendritic cells, to which adenosine deaminase, an enzyme that hydrolyzes adenosine, was added. In cells from healthy individuals, adenosine hydrolysis decreased CD4(+)CD25(hi) regulatory T cells. Addition of 5'-N-ethylcarboxamidoadenosine, an adenosine receptor agonist, significantly decreased CD4(+)CD25(lo) cells, confirming a modulatory role of adenosine acting via adenosine receptors. In autologous cocultures of T cells with HIV-1-pulsed dendritic cells, addition of adenosine deaminase led to a significant decrease of HIV-1-induced CD4(+)CD25(hi) forkhead box p3(+) cells and to a significant enhancement of the HIV-1-specific CD4(+) responder T cells. An increase in the effector response was confirmed by the enhanced production of CD4(+) and CD8(+) CD25(-)CD45RO(+) memory cell generation and secretion of Th1 cytokines, including IFN-γ and IL-15 and chemokines MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. These ex vivo results show, in a physiologically relevant model, that adenosine deaminase is able to enhance HIV-1 effector responses markedly. The possibility to revert regulatory T cell-mediated inhibition of immune responses by use of adenosine deaminase, an enzyme that hydrolyzes adenosine, merits attention for restoring T lymphocyte function in HIV-1 infection. PMID:26310829

  7. Clinical Benefit of Allogeneic Melanoma Cell Lysate-Pulsed Autologous Dendritic Cell Vaccine in MAGE-Positive Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Toh, Han Chong; Wang, Who-Whong; Chia, Whay Kuang;

    2009-01-01

    were cultured from peripheral blood mononuclear cells (PBMC), pulsed with the allogeneic MCL, and matured using cytokines that achieved high CD83- and CCR7-expressing DCs. Each patient received up to 10 intradermal vaccinations (3-5 x 10(6) cells per dose) at biweekly intervals. RESULTS: Twenty...

  8. Radioresistance of dendritic cells

    International Nuclear Information System (INIS)

    To evaluate radiation sensitivity of dendritic cells in comparison with lymphocytes. T lymphocytes captured from peripheral blood were irradiated by 0 Gy, 10 Gy, 30 Gy. Apoptosis was measured by flowcytometry for staining of annexin V 4 hours after irradiation. Immature and mature dendritic cells processed from blood hematopoietic stem cell were irradiated by 0 Gy, 10 Gy, 30 Gy, 100 Gy respectively and apoptosis was measured by flowcytometry with time differences as 4h, 24h and 48h after irradiation. Morphometric analysis by percent nucleus was measured in three cell groups, also. Lymphocytes showed radiation sensitivity by increasing apoptotic fraction according to radiation dose. However, both mature and immature dendritic cells showed consistent fraction of apoptosis in spite of increasing radiation dose. Percent nucleus ratio is significantly higher in lymphocytes than that of mature or immature dendritic cells. Stimulation of T-cell by dendritic cells was not changed after irradiation. Dendritic cells showed radioresistance which was associated with small size of nucleus in comparison with lymphocytes and this result would be used as a basal data of radio-labelling for the cellular trafficking studies in nuclear medicine fields

  9. A prospective study of the efficacy of a combination of autologous dendritic cells, cytokine-induced killer cells, and chemotherapy in advanced non-small cell lung cancer patients.

    Science.gov (United States)

    Zhong, Runbo; Han, Baohui; Zhong, Hua

    2014-02-01

    Dendritic cells (DC) play a crucial role in the induction of an effective antitumor immune response. Cytokine-induced killer (CIK) cells, a subset of T lymphocytes, have the capacity to eliminate cancer cells. This study was to evaluate the correlation between the frequency of DC/CIK immunotherapies following regular chemotherapy, the time-to-progression (TTP), and overall survival (OS) of advanced non-small lung cancer patients. Sixty patients with IIIB-IV non-small-cell lung carcinoma (NSCLC) were enrolled from August 2007 to December 2009 and were randomized into two groups. All 60 patients received four courses of navelbine-platinum (NP) chemotherapy. In one group, 30 patients were treated with adoptive autologous DC/CIK cell transfusion twice every 30 days. In the other group, the patients received immunotherapies more than twice every 30 days. The adverse effects, TTP, and OS were evaluated between the two groups. Median survival time of all 60 patients was 13.80 months. The 1-, 2-, and 3-year overall survival rates were 60.0, 21.7, and 15.0 %, respectively. The 1-, 2-, and 3-year overall survival rates of patients receiving more than two immunotherapies were 63.3, 30.0, and 23.3 %, and the rates of those receiving two immunotherapies were 56.7, 13.3, and 6.7 %, respectively. The difference between the two groups was statistically significant (P = 0.037). Compared with patients in the fewer immunotherapies group, TTP in the group receiving more immunotherapies significantly prolonged, with the median improving from 6.2 months (95 % CI, 5.35-9.24) to 7.3 months (95 % CI, 5.45-6.95; P = 0.034). The adverse effects of chemoimmunotherapy were tolerable. Advanced NSCLC patients can benefit from the combination of DC/CIK immunotherapies following conventional chemotherapy. More than two immunotherapies improved TTP and OS of those patients in this study. PMID:24006222

  10. Immune Monitoring Using mRNA-Transfected Dendritic Cells.

    Science.gov (United States)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by mRNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA. PMID:27236804

  11. A Model of Cytotoxic T Antitumor Activation Stimulated by Pulsed Dendritic Cells

    Science.gov (United States)

    Pennisi, Marzio; Pappalardo, Francesco; Chiacchio, Ferdinando; Motta, Santo

    2011-09-01

    We present a preliminary ODE model to sketch the immune response of cytotoxic T cells against cancer through the use of pulsed autologous dendritic cells. The model is partially based on data coming from experiments that are presently in progress in the wet lab of our collaborators, but it can be applied in principle to different tumors. To this end, we show the immune response of cytotoxic T cells stimulated by autologous dendritic cells for different cancers.

  12. Dendritic Cells and Liver Fibrosis

    OpenAIRE

    Rahman, Adeeb H.; Aloman, Costica

    2013-01-01

    Dendritic cells are a relative rare population of specialized antigen presenting cells that are distributed through most lymphoid and non-lymphoid tissues and play a critical role in linking the innate and adaptive arms of the immune system. The liver contains a heterogeneous population of dendritic cells that may contribute to liver inflammation and fibrosis through a number of mechanisms. This review summarizes current knowledge on the development and characterization of liver dendritic cel...

  13. 异体肿瘤mRNA电转染DC瘤苗的特异性抗骨肉瘤免疫学效应%Anti-osteosarcoma effects of autologous dendritic cells electrotransfected with allogeneic mRNA in rats

    Institute of Scientific and Technical Information of China (English)

    于哲; 耿捷; 戴霞; 靳雷; 范清宇

    2013-01-01

    Vaccination with dendritic cells (DCs) transfected with tumor-derived mRNA antigen has emerged as a promising strategy for generating protective immune responses in mammals. However, the integration of allogeneic osteosarcoma mRNA and autologous DCs has not been fully examined. This study was designed to investigate the antitumor effects of tumor vaccine produced by autologous DCs transfected with allogeneic osteosarcoma mRNA through electroporation in tumor-bearing rats model. In the present study, extraction of rat tumor-mRNA was performed as a two-step procedure. First, total-RN A was extracted by use of Trizol, and then mRNA purification was performed by use of polyT -coated magnetic beads. Then we transfected the allogeneic tumor mRNA to SD rat bone marrow-derived DCs through electroporation. The tumor vaccine was applied to tumor-bearing rat model and the specific antitumor effects of the tumor vaccine were observed. We found that the immunization using autologous DCs electrotransfected with allogeneic osteosarcoma mRNA induced specific CTL responses significantly (P〈0.05) and the cytotoxic activity was confirmed in cold target inhibition assays and using mAbs blocking MHC class Ⅰ molecules. In vivo preimmunized and active therapeutic experiments demonstrated that 70% of the rats immunized with allogeneic osteosarcoma mRNA-transfected DCs were typically able to reject tumor challenge and remained tumor-free. In conclusion, we demonstrated that allogeneic tumor mRNA, isolated from rat osteosarcoma cell line, could be applied to produce tumor vaccine inducing specific antitumor effects, especially in DC-based immunotherapy strategy. This study also provides the foundations for an effective and broadly applicable treatment of a wide range of cancer indications for which tumor -associated antigens have not been identified.%目的 应用肿瘤细胞来源的mRNA转染至树突状细胞(dendritic cells,DCs)已逐渐成为一种颇具潜能的抗肿瘤免疫治

  14. Dendritic cells in asthma.

    Science.gov (United States)

    van Helden, Mary J; Lambrecht, Bart N

    2013-12-01

    The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field. PMID:24455765

  15. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies. PMID:26210205

  16. Sweet Syndrome After Autologous Stem Cell Transplant.

    Science.gov (United States)

    Alkan, Ali; İdemen, Celal; Okçu Heper, Aylin; Utkan, Güngör

    2016-02-01

    Sweet syndrome (acute febrile neutrophilic dermatosis) is a rare clinical entity characterized by skin lesions, neutrophilia, fever, and neutrophilic infiltration of the dermis. It may be a consequence of malignant disease, comorbidities, or drugs. We present a case of acute febrile neutrophilic dermatosis in a patient after autologous stem cell transplant. PMID:25748978

  17. Can dendritic cells see light?

    Science.gov (United States)

    Chen, Aaron C.-H.; Huang, Ying-Ying; Sharma, Sulbha K.; Hamblin, Michael R.

    2010-02-01

    There are many reports showing that low-level light/laser therapy (LLLT) can enhance wound healing, upregulate cell proliferation and has anti-apoptotic effects by activating intracellular protective genes. In the field of immune response study, it is not known with any certainty whether light/laser is proinflammatory or anti-inflammatory. Increasingly in recent times dendritic cells have been found to play an important role in inflammation and the immunological response. In this study, we try to look at the impact of low level near infrared light (810-nm) on murine bone-marrow derived dendritic cells. Changes in surface markers, including MHC II, CD80 and CD11c and the secretion of interleukins induced by light may provide additional evidence to reveal the mystery of how light affects the maturation of dendritic cells as well how these light-induced mature dendritic cells would affect the activation of adaptive immune response.

  18. Characterization of CD8+ T-Cell Responses in the Peripheral Blood and Skin Injection Sites of Melanoma Patients Treated with mRNA Electroporated Autologous Dendritic Cells (TriMixDC-MEL

    Directory of Open Access Journals (Sweden)

    Daphné Benteyn

    2013-01-01

    Full Text Available Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL stimulates T-cell responses against the presented tumor-associated antigens (TAAs. In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71% patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  19. Efferocytosis promotes suppressive effects on dendritic cells through prostaglandin E2 production in the context of autoimmunity.

    Directory of Open Access Journals (Sweden)

    Irma Pujol-Autonell

    Full Text Available INTRODUCTION: Efferocytosis is a crucial process by which apoptotic cells are cleared by phagocytes, maintaining immune tolerance to self in the absence of inflammation. Peripheral tolerance, lost in autoimmune processes, may be restored by the administration of autologous dendritic cells loaded with islet apoptotic cells in experimental type 1 diabetes. OBJECTIVE: To evaluate tolerogenic properties in dendritic cells induced by the clearance of apoptotic islet cells, thus explaining the re-establishment of tolerance in a context of autoimmunity. METHODS: Bone marrow derived dendritic cells from non-obese diabetic mice, a model of autoimmune diabetes, were generated and pulsed with islet apoptotic cells. The ability of these cells to induce autologous T cell proliferation and to suppress mature dendritic cell function was assessed, together with cytokine production. Microarray experiments were performed using dendritic cells to identify differentially expressed genes after efferocytosis. RESULTS: Molecular and functional changes in dendritic cells after the capture of apoptotic cells were observed. 1 Impaired ability of dendritic cells to stimulate autologous T cell proliferation after the capture of apoptotic cells even after proinflammatory stimuli, with a cytokine profile typical for immature dendritic cells. 2 Suppressive ability of mature dendritic cell function. 3 Microarray-based gene expression profiling of dendritic cells showed differential expression of genes involved in antigen processing and presentation after efferocytosis. 4 Prostaglandin E2 increased production was responsible for immunosuppressive mechanism of dendritic cells after the capture of apoptotic cells. CONCLUSIONS: The tolerogenic behaviour of dendritic cells after islet cells efferocytosis points to a mechanism of silencing potential autoreactive T cells in the microenvironment of autoimmunity. Our results suggest that dendritic cells may be programmed to induce

  20. Cryptococcal meningitis post autologous stem cell transplantation.

    Science.gov (United States)

    Chaaban, S; Wheat, L J; Assi, M

    2014-06-01

    Disseminated Cryptococcus disease occurs in patients with defective T-cell immunity. Cryptococcal meningitis following autologous stem cell transplant (SCT) has been described previously in only 1 patient, 4 months post SCT and while off antifungal prophylaxis. We present a unique case of Cryptococcus meningitis pre-engraftment after autologous SCT, while the patient was receiving fluconazole prophylaxis. A 41-year-old man with non-Hodgkin's lymphoma underwent autologous SCT. Post-transplant prophylaxis consisted of fluconazole 400 mg daily, levofloxacin 500 mg daily, and acyclovir 800 mg twice daily. On day 9 post transplant, he developed fever and headache. Peripheral white blood cell count (WBC) was 700/μL. Magnetic resonance imaging of the brain showed lesions consistent with meningoencephalitis. Cerebrospinal fluid (CSF) analysis revealed a WBC of 39 with 77% lymphocytes, protein 63, glucose 38, CSF pressure 20.5 cmH2 O, and a positive cryptococcal antigen. CSF culture confirmed Cryptococcus neoformans. The patient was treated with liposomal amphotericin B 5 mg/kg intravenously daily, and flucytosine 37.5 mg/kg orally every 6 h. He was switched to fluconazole 400 mg daily after 3 weeks of amphotericin therapy, with sterilization of the CSF with negative CSFCryptococcus antigen and negative CSF culture. Review of the literature revealed 9 cases of cryptococcal disease in recipients of SCT. Median time of onset was 64 days post transplant. Only 3 meningitis cases were described; 2 of them after allogeneic SCT. Fungal prophylaxis with fluconazole post autologous SCT is recommended at least through engraftment, and for up to 100 days in high-risk patients. A high index of suspicion is needed to diagnose and treat opportunistic infections, especially in the face of immunosuppression and despite adequate prophylaxis. Infection is usually fatal without treatment, thus prompt diagnosis and therapy might be life saving. PMID:24750320

  1. Autologous cell sources in therapeutic vasculogenesis

    DEFF Research Database (Denmark)

    Szöke, Krisztina; Reinisch, Andreas; Østrup, Esben;

    2016-01-01

    BACKGROUND AIMS: Autologous endothelial cells are promising alternative angiogenic cell sources in trials of therapeutic vasculogenesis, in the treatment of vascular diseases and in the field of tissue engineering. A population of endothelial cells (ECs) with long-term proliferative capability...... functional assays, we wanted to evaluate the potential of these EC populations for use in clinical neovascularization. RESULTS: Global gene expression profiling of ECFCs, AT-ECs and the classical EC population, human umbilical vein ECs, showed that the EC populations clustered as unique populations, but very...

  2. Lymphoscintigraphy and autologous stem cell implantation

    International Nuclear Information System (INIS)

    Lymphoscintigraphy is the criterion standard technique for the diagnosis of lymphedema. Advances of the application of autologous hematopoietic stem cells in ischemic disorders of lower limbs have increased the attention of researchers in this field. Aim: To determine the usefulness of lymphoscintigraphy for the assessment the efficacy of autologous stem cell implantation in patients with chronic lymphedema of the upper and lower limbs. Methods: Sixty-five patients were included. Clinical evaluation and lymphoscintigraphy were performed before and six months after stem cells implantation. The stem cells implantations were carried out by multiple superficial and deep injections in the trajectory of the lymphatic vessels and also in the inguinal region. A volume of 0.75 to 1.00 mL of cell suspension (1.0-2.2 x 109 stem cells) was administered in each injection site. Lymphoscintigraphy: Whole-body scans were acquired at 20 minutes, 1 hour, and 3 hours after administration of 185 to 259 MBq (5–7mCi) of 99mTc-albumin nanocolloids in the interdigital space of both limbs. The anatomy and function of the lymphatic system were evaluated. Results: Functional assessment before implantation of stem cells showed that 69.2% of the patients had severe lymphatic insufficiency. The 61.5% of patients showed clinical improvement, confirmed by the results of the lymphoscintigraphy. The 46.1% of the cases evaluated showed a clear improvement. The study showed that the isotopic lymphography can evaluate the therapeutic response and its intensity. Conclusion: Lymphoscintigraphy is a useful technique for the evaluation and monitoring of autologous stem cell transplantation in patients with chronic lymphedema. (author)

  3. The Deterministic Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    The Dendritic Cell Algorithm is an immune-inspired algorithm orig- inally based on the function of natural dendritic cells. The original instantiation of the algorithm is a highly stochastic algorithm. While the performance of the algorithm is good when applied to large real-time datasets, it is difficult to anal- yse due to the number of random-based elements. In this paper a deterministic version of the algorithm is proposed, implemented and tested using a port scan dataset to provide a controllable system. This version consists of a controllable amount of parameters, which are experimented with in this paper. In addition the effects are examined of the use of time windows and variation on the number of cells, both which are shown to influence the algorithm. Finally a novel metric for the assessment of the algorithms output is introduced and proves to be a more sensitive metric than the metric used with the original Dendritic Cell Algorithm.

  4. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S;

    2008-01-01

    Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...... on dendritic cells pulsed with an allogenic tumor cell lysate. Twenty patients with advanced colorectal cancer were consecutively enrolled. Dendritic cells (DC) were generated from autologous peripheral blood mononuclear cells and pulsed with allogenic tumor cell lysate containing high levels of cancer...

  5. Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Fischer, Anders; Myschetzky, Peter S; Munksgaard, Signe B; Zocca, Mai-Britt; Claesson, Mogens Helweg; Rosenberg, Jacob

    2008-01-01

    Patients with disseminated colorectal cancer have a poor prognosis. Preliminary studies have shown encouraging results from vaccines based on dendritic cells. The aim of this phase II study was to evaluate the effect of treating patients with advanced colorectal cancer with a cancer vaccine based...... on dendritic cells pulsed with an allogenic tumor cell lysate. Twenty patients with advanced colorectal cancer were consecutively enrolled. Dendritic cells (DC) were generated from autologous peripheral blood mononuclear cells and pulsed with allogenic tumor cell lysate containing high levels of...

  6. Plerixafor for autologous CD34+ cell mobilization

    Directory of Open Access Journals (Sweden)

    Huda Salman

    2011-02-01

    Full Text Available Huda Salman, Hillard M LazarusDivision of Hematology-Oncology, Blood and Marrow Transplant Program, University Hospitals Case Medical Center, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USAAbstract: High-dose chemotherapy and autologous transplantation of hematopoietic cells is a crucial treatment option for hematologic malignancy patients. Current mobilization regimes often do not provide adequate numbers of CD34+ cells. The chemokine receptor CXCR4 and ligand SDF-1 are integrally involved in homing and mobilization of hematopoietic progenitor cells. Disruption of the CXCR4/SDF-1 axis by the CXCR4 antagonist, plerixafor, has been demonstrated in Phase II and Phase III trials to improve mobilization when used in conjunction with granulocyte colony-stimulating factor (G-CSF. This approach is safe with few adverse events and produces significantly greater numbers of CD34+ cells when compared to G-CSF alone. New plerixafor initiatives include use in volunteer donors for allogeneic hematopoietic cell transplant and in other disease targets.Keywords: plerixafor, autologous hematopoietic cell transplant, CD34, lymphoma, myeloma, granulocyte colony-stimulating factor (G-CSF

  7. Fast generation of dendritic cells

    DEFF Research Database (Denmark)

    Kvistborg, P; Bøgh, Marie; Claesson, M H; Pedersen, A W

    2009-01-01

    Dendritic cells (DC) are potent antigen presenting cells capable of inducing immune responses. DC are widely used as vaccine adjuvant in experimental clinical settings. DC-based vaccines are normally generated using a standard 8day DC protocol (SDDC). In attempts to shorten the vaccine production...

  8. Autologous rosette-forming T cells as the responding cells in human autologous mixed-lymphocyte reaction.

    OpenAIRE

    Palacios, R; Llorente, L; Alarcón-Segovia, D; Ruíz-Arguelles, A; Díaz-Jouanen, E

    1980-01-01

    Autologous rosette-forming cells (Tar cells) have surface and functional characteristics of post-thymic precursors and among these characteristics there are some that have been identified in the responsive cell of the autologous mixed-lymphocyte reaction (AMLR). We therefore did AMLR with circulating mononuclear cells from normal subjects using as responding cells either total T cells, T cells depleted of Tar cells, or purified Tar cells. The response of Tar cells in AMLR was significantly gr...

  9. Monocyte-derived dendritic cells

    OpenAIRE

    Kuhn, Sabine; Ronchese, Franca

    2013-01-01

    The elicitation of efficient antitumor immune responses requires the optimal activation of tumor-associated dendritic cells (DCs). Our comparison of the effect of various immunostimulatory treatments on DCs revealed that the best predictor of the success of immunotherapy is not the activation of existing DC populations, but the appearance of a population of monocyte-derived DC in tumor-draining lymph nodes.

  10. Autologous Stem Cell Transplant for AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Vivek Roy

    2012-01-01

    Full Text Available AL amyloidosis is caused by clonal plasma cells that produce immunoglobulin light chains which misfold and get deposited as amyloid fibrils. Therapy directed against the plasma cell clone leads to clinical benefit. Melphalan and corticosteroids have been the mainstay of treatment for a number of years and the recent availability of other effective agents (IMiDs and proteasome inhibitors has increased treatment options. Autologous stem cell transplant (ASCT has been used in the treatment of AL amyloidosis for many years. It is associated with high rates of hematologic response and improvement in organ function. However, transplant carries considerable risks. Careful patient selection is important to minimize transplant related morbidity and mortality and ensure optimal patient outcomes. As newer more affective therapies become available the role and timing of ASCT in the overall treatment strategy of AL amyloidosis will need to be continually reassessed.

  11. Canine PHA-stimulated adherent cell enhance interferon-gamma production and proliferation of autologous peripheral blood mononuclear cells.

    Science.gov (United States)

    Ide, Kaori; Momoi, Yasuyuki; Iwasaki, Toshiroh

    2005-03-01

    Dendritic cells are specialized antigen-presenting cells with immuno-modulating functions that are attractive for clinical applications for cancer immunotherapy. This study examined immunostimulatory functions of phytohemagglutinin (PHA)-stimulated adherent cells (PHA-Ad cells) from peripheral blood mononuclear cells (PBMCs) in dogs. PHA-Ad cells enhanced interferon-gamma from autologous PBMC in vitro. PHA-Ad cells also stimulated antigen-independent proliferation of peripheral blood lymphocytes. These results suggest that PHA-Ad cells from PBMC possess a stimulatory function to evoke anti-tumour immunity and that they demonstrate potential for therapeutic applications in dogs. PMID:19379211

  12. Chronic phase CML patients possess T cells capable of recognising autologous tumour cells.

    Science.gov (United States)

    Müller, Ludmila; Pawelec, Graham

    2002-05-01

    Much circumstantial evidence points to the immunogenicity of chronic myloid leukemia (CML) cells, most impressively the well-established T cell-dependent GvL effect seen in bone marrow transplantation. However, only a small number of shared antigens expressed by CML cells have been identified as potential targets for T cell-mediated immune responses which might be exploited for immunotherapy. It may be that unique antigens expressed by individual tumours are more potent rejection antigens if the patient's own T cells could be encouraged to react against them. Work is reviewed here which documents that in vitro mixed cultures between autologous T cells and dendritic cells of chronic-phase CML patients can give rise to sensitised T cells capable of recognising the patient's tumour cells. Additionally, mixed autologous tumour cell/lymphocyte cultures, modified by the addition of cytokine cocktails, may also result in the generation of similarly sensitised T cells. These results could be exploited for adoptive immunotherapy, and possibly, after identification of the antigens recognised, also for active immunotherapy, i.e. including therapeutic vaccination. PMID:12148904

  13. Anti tumor vaccination with hybrid dendritic-tumour cells

    International Nuclear Information System (INIS)

    Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell-tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach. (author)

  14. Renal dendritic cells: an update

    OpenAIRE

    Velázquez, Peter; Dustin, Michael L.; Peter J Nelson

    2009-01-01

    Discovery into the role of renal dendritic cells (rDCs) in health and disease of the kidney is rapidly accelerating. Progress in deciphering DC precursors and the heterogeneity of monocyte subsets in mice and humans are providing insights into the biology of rDCs. Recent findings have extended knowledge of the origins, anatomy, and function of the rDC network at steady-state and during periods of injury to the renal parenchyma. This brief review highlights these new findings and provides an u...

  15. Radiolabelled Autologous Cells: Methods and Standardization for Clinical Use

    International Nuclear Information System (INIS)

    This publication serves as a useful resource for nuclear medicine physicians, radiologists, radiopharmacists, pharmacologists and other researchers engaged with radiolabelling of autologous products for clinical application. It provides practical guidelines towards clinical work with radiolabelled autologous products and aims to streamline the variety of strategies that have evolved, for example, in the handling of radiolabelled red and white blood cells. The publication highlights the importance of the quality of radiolabelling services, provides advice on safety issues, and also addresses the use of other radiolabelled autologous products and their translation into the clinical environment

  16. Autologous stem cell transplantation in the treatment of Hodgkin's disease

    OpenAIRE

    Tarabar Olivera; Tukić Ljiljana; Stamatović Dragana; Balint Bela; Elez Marija; Ostojić Gordana; Tatomirović Željka; Marjanović Slobodan

    2009-01-01

    Background/Aim. High-dose chemotherapy with autologous stem cell transplantacion (ASCT) has shown to produce long-term disease-free survival in patients with chemotherapysensitive Hodgkin disease. The aim of the study was to evaluate efficacy of ASCT in the treatment of Hodgkin's disease. Methods. Between May 1997 and September 2008, 34 patients with Hodgkin's disease in median age of 25 (range 16-60) years, underwent ASCT. Autologous SCT were performed as consolidation therapy in one poor-ri...

  17. Dendritic Cells for Anomaly Detection

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    Artificial immune systems, more specifically the negative selection algorithm, have previously been applied to intrusion detection. The aim of this research is to develop an intrusion detection system based on a novel concept in immunology, the Danger Theory. Dendritic Cells (DCs) are antigen presenting cells and key to the activation of the human signals from the host tissue and correlate these signals with proteins know as antigens. In algorithmic terms, individual DCs perform multi-sensor data fusion based on time-windows. The whole population of DCs asynchronously correlates the fused signals with a secondary data stream. The behaviour of human DCs is abstracted to form the DC Algorithm (DCA), which is implemented using an immune inspired framework, libtissue. This system is used to detect context switching for a basic machine learning dataset and to detect outgoing portscans in real-time. Experimental results show a significant difference between an outgoing portscan and normal traffic.

  18. Autologous tumor cell lysate-loaded dendritic cells and cytokine-induced killer cells in combination with autologous hematopoietic stem cell transplatation in the treatment of refractory lymphoma%负载自体肿瘤抗原的DC-CIK细胞联合自体造血干细胞移植治疗难治性淋巴瘤的临床研究

    Institute of Scientific and Technical Information of China (English)

    苏毅; 邵文军; 闵敏; 李莉; 陈健; 范方教; 易海; 付利; 刘阳阳; 邓涛; 孙浩平; 孙薏; 钟国成

    2009-01-01

    目的 观察负载自体肿瘤抗原的DE-CIK细胞联合自体造血干细胞移植治疗难治性淋巴瘤的疗效.方法 选取难治性淋巴瘤35例,采用MAC预处理方案,用自体淋巴瘤抗原致敏DC-CIK细胞,于移植预处理后5-10d,将DC-CIK细胞回输给患者.结果 35例难治性淋巴瘤中,29例完全缓解(82.86%),4例部分缓解(14.43%),移植过程中死亡2例(5.71%)(均死于严重混合性感染).所有完全缓解和部分缓解病例均随访3-49个月:4名部分缓解患者分别于移植后3、6、10、13个月后病情进展死亡;完全缓解患者中有3人于移植后11、17、20个月再次复发死亡;现存活26例.结论 负载自体肿瘤抗原的DC-CIK细胞联合自体造血千细胞移植治疗难治性淋巴瘤高于单纯自体外周血造血干细胞的疗效,且无明显毒副作用.%Objective To study the efficacy and side effect of autologons tumor cell lysate-loaded DC-CIK plus autologous hematopoietic stem cell transplantation in the treatment of refractory lymphoma.Methods Thirty-five cases of refractory lymphoma were recruited,lymphoma antigen-pulsed autologous DE-CIK cells were infused 5-10 days after the MAC conditioning regimen.Results Out of the 35 Cases,complete remission Was achieved in 29(82.8%),partial remission in 4(14.4%).Two patients died during transplantation due to severe mixed infections,with a transplant-related mortality rate of 5.7%.All cases of complete remission and partial remission were followed-up for 3-49 months,4 cases with partial remission died 3,6,10,13 months after transplantation.Three cases with complete remission relapsed 11,17,20 months after transplantation.and the other 26 cases survived until now.Conclusion Autologous tumor cell lysate-loaded DE-CIK combined with autologous hematopoietic stem cell transplantation in the treatment of refractory lymphoma is safe and effective.

  19. Dendritic cells in lung immunopathology.

    Science.gov (United States)

    Cook, Peter C; MacDonald, Andrew S

    2016-07-01

    Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease. PMID:27256370

  20. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    Science.gov (United States)

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  1. Artificial Dendritic Cells: Multi-faceted Perspectives

    CERN Document Server

    Greensmith, Julie

    2009-01-01

    Dendritic cells are the crime scene investigators of the human immune system. Their function is to correlate potentially anomalous invading entities with observed damage to the body. The detection of such invaders by dendritic cells results in the activation of the adaptive immune system, eventually leading to the removal of the invader from the host body. This mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, resulting in the creation of information granules of variable structure. In this chapter we examine the multi-faceted nature of immunology and how research in this field has shaped the function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given in combination with the details of the processes used for its development. The chapter is concluded with a discussion of the parallels between our understanding of the human immune system a...

  2. Clinical Allogeneic and Autologous Islet Cell Transplantation: Update

    Directory of Open Access Journals (Sweden)

    Shinichi Matsumoto

    2011-06-01

    Full Text Available Islet cell transplantation is categorized as a β-cell replacement therapy for diabetic patients who lack the ability to secrete insulin. Allogeneic islet cell transplantation is for the treatment of type 1 diabetes, and autologous islet cell transplantation is for the prevention of surgical diabetes after a total pancreatectomy. The issues of allogeneic islet cell transplantation include poor efficacy of islet isolation, the need for multiple donor pancreata, difficulty maintaining insulin independence and undesirable side effects of immunosuppressive drugs. Those issues have been solved step by step and allogeneic islet cell transplantation is almost ready to be the standard therapy. The donor shortage will be the next issue and marginal and/or living donor islet cell transplantation might alleviate the issue. Xeno-islet cell transplantation, β-cell regeneration from human stem cells and gene induction of the naïve pancreas represent the next generation of β-cell replacement therapy. Autologous islet cell transplantation after total pancreatectomy for the treatment of chronic pancreatitis with severe abdominal pain is the standard therapy, even though only limited centers are able to perform this treatment. Remote center autologous islet cell transplantation is an attractive option for hospitals performing total pancreatectomies without the proper islet isolation facilities.

  3. SECOND MALIGNANCIES AFTER AUTOLOGOUS HEMATOPOIETIC CELL TRANSPLANTATION IN CHILDREN

    OpenAIRE

    Danner-Koptik, Karina E; Majhail, Navneet S.; Brazauskas, Ruta; Wang, Zhiwei; Buchbinder, David; Cahn, Jean-Yves; Dilley, Kimberley J.; Frangoul, Haydar A.; Gross, Thomas G.; Hale, Gregory A.; Hayashi, Robert J.; Hijiya, Nobuko; Kamble, Rammurti T.; Lazarus, Hillard M.; Marks, David I.

    2012-01-01

    Childhood autologous hematopoietic cell transplant (AHCT) survivors can be at risk for secondary malignant neoplasms (SMNs). We assembled a cohort of 1,487 pediatric AHCT recipients to investigate the incidence and risk factors for SMNs. Primary diagnoses included neuroblastoma (39%), lymphoma (26%), sarcoma (18%), CNS tumors (14%), and Wilms tumor (2%). Median follow-up was 8 years (range,

  4. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind;

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  5. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala

    2010-04-28

    The Joint Commission for Health Care Organizations recently declared the shortage of transplantable organs and tissues a public health crisis. As such, there is about one death every 30 seconds due to organ failure. Complications and rejection are still significant albeit underappreciated problems. It is often overlooked that organ transplantation results in the patient being placed on an immune suppression regimen that will ultimate shorten their life span. Patients facing reconstruction often find that surgery is difficult or impossible due to the shortage of healthy autologous tissue. In many cases, autografting is a compromise between the condition and the cure that can result in substantial diminution of quality of life. The national cost of caring for persons who might benefit from engineered tissues or organs has reached $600 billion annually. Autologous tissue technologies have been developed as an alternative to transplantation or reconstructive surgery. Autologous tissues derived from the patient's own cells are capable of correcting numerous pathologies and injuries. The use of autologous cells eliminates the risks of rejection and immunological reactions, drastically reduces the time that patients must wait for lifesaving surgery, and negates the need for autologous tissue harvest, thereby eliminating the associated morbidities. In fact, the use of autologous tissues to create functional organs is one of the most important and groundbreaking steps ever taken in medicine. Although the basic premise of creating tissues in the laboratory has progressed dramatically, only a limited number of tissue developments have reached the patients to date. This is due, in part, to the several major technological challenges that require solutions. To that end, we have been in pursuit of more efficient ways to expand cells in vitro, methods to improve vascular support so that relevant volumes of engineered tissues can be grown, and constructs that can mimic the

  6. Preimmunization of donor lymphocytes enhances antitumor immunity of autologous hematopoietic stem cell transplantation

    International Nuclear Information System (INIS)

    Lymphopenia-induced homeostatic proliferation (HP) of T cells following autologous hematopoietic stem cell transplantation (HSCT) skews the T-cell repertoire by engaging tumor-associated antigens (TAAs), leading to an induction of antitumor immunity. Here, as the tumor-reactive lymphocytes preferentially proliferate during the condition of HP, we examined whether the priming of a donor lymphocytes to TAAs could enhance HP-induced antitumor immunity in autologous HSCT recipients. First, to examine whether the tumor-bearing condition of donor influences the antitumor effect of HSCT, the lymphocytes isolated from CT26 tumor-bearing mice were infused into lethally irradiated mice. The growth of tumors was substantially suppressed in the mice that received HSCT from a tumor-bearing donor compared with a naïve donor, suggesting that a fraction of donor lymphocytes from tumor-bearing mice are primed in response to TAAs and remain responsive upon transplantation. We previously reported that type I interferon (IFN) maturates the dendritic cells and promotes the priming of T cells. We then investigated whether the further priming of donor cells by IFN-α can strengthen the antitumor effect of HSCT. The intratumoral IFN-α gene transfer significantly increased the number of IFN-γ-positive lymphocytes in response to CT26 cells but not the syngeneic lymphocytes in donor mice. The infusion of primed donor lymphocytes markedly suppressed the tumor growth in recipient mice, and cured 64% of the treated mice. Autologous HSCT with the infusion of primed donor lymphocytes is a promising strategy to induce an effective antitumor immunity for solid cancers

  7. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    OpenAIRE

    Le Thua Trung Hau; Duc Phu Bui; Nguyen Duy Thang; Pham Dang Nhat; Le Quy Bao; Nguyen Phan Huy; Tran Ngoc Vu; Le Phuoc Quang; Boeckx willy Denis; Mey Albert De

    2015-01-01

    Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone a...

  8. Murid herpesvirus-4 exploits dendritic cells to infect B cells

    OpenAIRE

    Miguel Gaspar; May, Janet S.; Soumi Sukla; Bruno Frederico; Michael B Gill; Smith, Christopher M.; Belz, Gabrielle T.; Stevenson, Philip G.

    2011-01-01

    Author Summary We detect invading viruses with dendritic cells and eliminate them with lymphocytes. A key interaction is lymphocyte activation by dendritic cells presenting viral antigens. Not all viruses can be eliminated, and some that persist deliberately colonize lymphocytes and dendritic cells, such that parasitism and host defence co-exist within the same sites. Once established, these infections are very hard to eliminate. Therefore to vaccinate against them we must determine how infec...

  9. Carotid Repair Using Autologous Adipose-Derived Endothelial Cells

    Science.gov (United States)

    Froehlich, Harald; Gulati, Rajiv; Boilson, Barry; Witt, Tyra; Harbuzariu, Adriana; Kleppe, Laurel; Dietz, Allan B.; Lerman, Amir; Simari, Robert D.

    2009-01-01

    Background and Purpose Adipose tissue is an abundant source of endothelial cells as well as stem and progenitor cells which can develop an endothelial phenotype. It has been demonstrated that these cells have distinct angiogenic properties in vitro and in vivo. However, whether these cells have the capacity to directly improve large vessel form and function following vascular injury remains unknown. To define whether delivery of adipose-derived endothelial cells (ADECs) would improve healing of injured carotid arteries, a rabbit model of acute arterial injury was employed. Methods Autologous rabbit ADECS were generated utilizing defined culture conditions. To test the ability of ADECs to enhance carotid artery repair, cells were delivered intra-arterially following acute balloon injury. Additional delivery studies were performed following functional selection of cells prior to delivery. Results Following rabbit omental fat harvest and digestion, a proliferative, homogenous, and distinctly endothelial population of ADECs was identified. Direct delivery of autologous ADECs resulted in marked re-endothelialization 48 hours following acute vascular injury as compared to saline controls (82.2 ±26.9% vs 4.2±3.0% pADECs that were selected for their ability to take up acetylated LDL significantly improved vasoreactivity and decreased intimal formation following vascular injury. Conclusions Taken together, these data suggest that ADECs represent an autologous source of proliferative endothelial cells which demonstrate the capacity to rapidly improve re-endothelialization, improve vascular reactivity, and decrease intimal formation in a carotid artery injury model. PMID:19286583

  10. Dendritic cells in peripheral tolerance and immunity

    DEFF Research Database (Denmark)

    Gad, Monika; Claesson, Mogens Helweg; Pedersen, Anders Elm

    Dendritic cells capable of influencing immunity exist as functionally distinct subsets, T cell-tolerizing and T cell-immunizing subsets. The present paper reviews how these subsets of DCs develop, differentiate and function in vivo and in vitro at the cellular and molecular level. In particular...

  11. Skin Dendritic Cells in Burn Patients

    OpenAIRE

    D’Arpa, N.; D’Amelio, L.; Accardo-Palumbo, A.; Pileri, D.; Mogavero, R.; Amato, G.; Napoli, B.; Alessandro, G.; Lombardo, C.; F. Conte

    2009-01-01

    The body's immunological response to burn injury has been a subject of great inquiry in recent years. Burn injury disturbs the immune system, resulting in a progressive suppression of the immune response that is thought to contribute to the development of sepsis. Dendritic cells (DCs) are potent antigen-presenting cells that possess the ability to stimulate naïve T cells.

  12. Generation of Immune Inhibitory Dendritic Cells and

    Directory of Open Access Journals (Sweden)

    Abediankenari Saeid

    2009-03-01

    Full Text Available Variety of positive as well as negative regulatory signals are provided by antigen presenting cell in particular by dendritic cells. In this research, we studied the capacity of dendritic cells to expand antigen-specific T regulatory cells.We also investigated the role of TGF-beta in induction inhibitory functions of dendritic cells in mixed leukocyte reactions.Dendritic cells were generated from blood CD14+ monocytes with granulocyte-Monocyte colony stimulating factor and interleukin-4 with or without TGF-beta (TGF-β-GM-DC or GM-DC. CD4+ T cell were isolated to assess lymphocyte proliferation by lymphocyte transformation test assay and the ratio of CD4+FOXp3+ CD25+ T cells were determined by fluorescene-activated cell sorter. T cell proliferation responses in GM-DC showed a significance antigen-specific proliferative response comparing with TGFβ-GM -DC. T Cell proliferation was inhibited in co-culture system containing DC-treated TGF-β. It can be suggested that the expsansion of T regulatory by TGF-β-GM-DC provides a means for antigen specific control of unwanted immune reactions.

  13. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody.

    NARCIS (Netherlands)

    Tacken, P.J.; Vries, I.J.M. de; Gijzen, K.; Joosten, B.H.G.M.; Wu, D.; Rother, R.P.; Faas, S.J.; Punt, C.J.A.; Torensma, R.; Adema, G.J.; Figdor, C.G.

    2005-01-01

    Current dendritic cell (DC)-based vaccines are based on ex vivo-generated autologous DCs loaded with antigen prior to readministration into patients. A more direct and less laborious strategy is to target antigens to DCs in vivo via specific surface receptors. Therefore, we developed a humanized ant

  14. Detecting Danger: The Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Cayzer, Steve

    2010-01-01

    The Dendritic Cell Algorithm (DCA) is inspired by the function of the dendritic cells of the human immune system. In nature, dendritic cells are the intrusion detection agents of the human body, policing the tissue and organs for potential invaders in the form of pathogens. In this research, and abstract model of DC behaviour is developed and subsequently used to form an algorithm, the DCA. The abstraction process was facilitated through close collaboration with laboratory- based immunologists, who performed bespoke experiments, the results of which are used as an integral part of this algorithm. The DCA is a population based algorithm, with each agent in the system represented as an 'artificial DC'. Each DC has the ability to combine multiple data streams and can add context to data suspected as anomalous. In this chapter the abstraction process and details of the resultant algorithm are given. The algorithm is applied to numerous intrusion detection problems in computer security including the detection of p...

  15. Follicular dendritic cells in health and disease

    OpenAIRE

    El Shikh, Mohey Eldin M.; Costantino ePitzalis

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerise Ags and present them polyvalently to B cells in periodically arranged arrays that extensively crosslink the B...

  16. Follicular dendritic cells in health and disease

    OpenAIRE

    El Shikh, Mohey Eldin M.; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B...

  17. An efficient strategy to induce and maintain in vitro human T cells specific for autologous non-small cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Glenda Canderan

    Full Text Available BACKGROUND: The efficient expansion in vitro of cytolytic CD8+ T cells (CTLs specific for autologous tumors is crucial both for basic and translational aspects of tumor immunology. We investigated strategies to generate CTLs specific for autologous Non-Small Cell Lung Carcinoma (NSCLC, the most frequent tumor in mankind, using circulating lymphocytes. PRINCIPAL FINDINGS: Classic Mixed Lymphocyte Tumor Cultures with NSCLC cells consistently failed to induce tumor-specific CTLs. Cross-presentation in vitro of irradiated NSCLC cells by autologous dendritic cells, by contrast, induced specific CTL lines from which we obtained a high number of tumor-specific T cell clones (TCCs. The TCCs displayed a limited TCR diversity, suggesting an origin from few tumor-specific T cell precursors, while their TCR molecular fingerprints were detected in the patient's tumor infiltrating lymphocytes, implying a role in the spontaneous anti-tumor response. Grafting NSCLC-specific TCR into primary allogeneic T cells by lentiviral vectors expressing human V-mouse C chimeric TCRalpha/beta chains overcame the growth limits of these TCCs. The resulting, rapidly expanding CD4+ and CD8+ T cell lines stably expressed the grafted chimeric TCR and specifically recognized the original NSCLC. CONCLUSIONS: This study defines a strategy to efficiently induce and propagate in vitro T cells specific for NSCLC starting from autologous peripheral blood lymphocytes.

  18. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  19. ISOLATION OF CHICKEN FOLLICULAR DENDRITIC CELLS

    Science.gov (United States)

    The aim of the present study was to isolate chicken follicular dendritic cells (FDC). A combination of methods involving panning, iodixanol density gradient centrifugation, and magnetic cell separation technology made it possible to obtain functional FDC from the cecal tonsils from chickens, which h...

  20. Synaptic development in the injured spinal cord cavity following co-transplantation of fetal spinal cord cells and autologous activated Schwann cells

    Institute of Scientific and Technical Information of China (English)

    Wendong Ruan; Yuan Xue; Ninghua Li; Xiaotao Zhao; Huajian Zhao; Peng Li

    2010-01-01

    Transplantation of activated transgenic Schwann cells or a fetal spinal cord cell suspension has been widely used to treat spinal cord injury. However, little is known regarding the effects of co-transplantation. In the present study, autologous Schwann cells in combination with a fetal spinal cord cell suspension were transplanted into adult Wistar rats with spinal cord injury, and newly generated axonal connections were observed ultrastructurally. Transmission electron microscopic observations showed that the neuroblast first presented cytoplasmic processes, followed by pre- and postsynaptic membranes with low electron density forming a dense projection. The number and types of synaptic vesicles were increased. Synaptic connections developed from single cell body-dendritic synapses into multiple cell body-dendritic anddendrite-dendritic synapses. In addition, the cell organs of the transplanted neuroblast, oligodendroblast and astroblast matured gradually. The blood-brain barrier appeared subsequently. Moreover, neurofilament, histamine, calcitonin-gene-related peptides, and glial fibrillary acidic protein positive fibers were observed in the transplant region. These findings demonstrate that fetal spinal cord cells in the presence of autologous activated Schwann cells can develop into mature synapses in the cavity of injured spinal cords, suggesting the possibility of information exchange through the reconstructed synapse between fetal spinal cord cells and the host.

  1. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate

    OpenAIRE

    Mogens H. Claesson; Ayako W. Pedersen; Pia Kvistborg; Mai-Britt Zocca; Lotte Engell-Noerregaard; Anders Mellemgaard

    2013-01-01

    Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac&174, Dandrit Biotech,Copenhagen,Denmark). Imiquimod cream, proleukin and celecoxib were used as adjuvants to the vaccines. The objective of the study was to evaluate specific T cell response in vitro by IFNg EliSpot. Secondary objectives were overall survival, response and qua...

  2. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor;

    2012-01-01

    the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications. In...... the human studies, so-called cell assisted lipotransfer (CAL) increased the ASC concentration 2-5 times compared with non-manipulated fat grafts, which caused a questionable improvement in survival of fat grafts, compared with that of traditional lipofilling. In contrast, in two of the murine studies......Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...

  3. Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies.

    Science.gov (United States)

    Hoogduijn, M J; Roemeling-van Rhijn, M; Korevaar, S S; Engela, A U; Weimar, W; Baan, C C

    2011-12-01

    Mesenchymal stem cells (MSCs) have potential for therapeutic application as an immunomodulatory and regenerative agent. The immunogenicity and survival of MSCs after infusion are, however, not clear and evidence suggests that allogeneic but also autologous MSCs disappear rapidly after infusion. This may be associated with the susceptibility of MSCs to lysis by natural killer (NK) cells, possibly a result of culture-induced stress. In the present study we examined whether NK cell-mediated lysis of MSCs could be inhibited by immunosuppressive drugs. Human MSCs were isolated from adipose tissue and expanded in culture. Peripheral blood mononuclear cells were activated with interleukin (IL)-2 (200 U/ml) and IL-15 (10 ng/ml) for 7 days. CD3(-)CD16(+)CD56(+) NK cells were then isolated by fluorescence-activated cell sorting and added to europium-labeled MSCs for 4 hr in the presence or absence of immunosuppressive drugs. Lysis of MSCs was determined by spectrophotometric measurement of europium release. Nonactivated NK cells were not capable of lysing MSCs. Cytokine-activated NK cells showed upregulated levels of granzyme B and perforin and efficiently lysed allogeneic and autologous MSCs. Addition of tacrolimus, rapamycin or sotrastaurin to the lysis assay did not inhibit MSC killing. Furthermore, preincubation of activated NK cells with the immunosuppressive drugs for 24 hr before exposure to MSCs had no effect on MSC lysis. Last, addition of the immunosuppressants before and during the activation of NK cells, reduced NK cell numbers but did not affect their capacity to lyse MSCs. We conclude that the immunosuppressive drugs tacrolimus, rapamycin, and sotrastaurin are not capable of inhibiting the lysis of allogeneic and autologous MSCs by activated NK cells. Other approaches to controlling lysis of MSCs should be investigated, as controlling lysis may determine the efficacy of MSC therapy. PMID:21732766

  4. Vaccines with dendritic cells in prostate cancer patients

    International Nuclear Information System (INIS)

    It has been shown that autologous D Cs pulsed with peptides specific for prostate specific Ag (PSA) or prostate-specific membrane Ag are capable of stimulating potent CT L in vitro. However there is evidence to believe that multiple tumour derived antigens would be more potent to elicit anti-tumour responses. Based on these observations a Phase I/II clinical trial in has been initiated. Autologous monocyte-derived dendritic cells (DC s) were transfected with mRNA from three prostate cancer cell lines (DU145, LNCaP and P C-3) and used for vaccination. Twenty patients have been enrolled and 19 have finished vaccination. Each patient received at least four weekly injections. Of them, 10 patients were vaccinated intranodally under ultrasonic guidance and 9 others received the vaccine intradermally. Safety and feasibility were evaluated. No evidence of toxicity and adverse events was observed. Immune response was measured as DTH and by vitro immunoassays including ELISPOT, T cell proliferation test and cytotoxicity test in pre- and post-vaccination peripheral blood samples. Twelve patients developed a specific immune response to tumour cells. Ten patients showed a significant decrease in log slope PSA. Patients with lower PSA tend to give a better response. The early clinical outcome was significantly related to immune responses (p<0.05). We conclude that the strategy of vaccinating with mRNA transfected D Cs functions to elicit cellular immune responses specific for antigens associated with prostate cancer cells and such responses may result in a clinical benefit for the patients

  5. Bacterial Probiotic Modulation of Dendritic Cells

    OpenAIRE

    Drakes, Maureen; Blanchard, Thomas; Czinn, Steven

    2004-01-01

    Intestinal dendritic cells are continually exposed to ingested microorganisms and high concentrations of endogenous bacterial flora. These cells can be activated by infectious agents and other stimuli to induce T-cell responses and to produce chemokines which recruit other cells to the local environment. Bacterial probiotics are of increasing use against intestinal disorders such as inflammatory bowel disease. They act as nonpathogenic stimuli within the gut to regain immunologic quiescence. ...

  6. Autologous Stem Cell Transplantation in Patient with Critical Limb Ischemia

    International Nuclear Information System (INIS)

    Critical limb ischemia (CLI) is clinical manifestation of an end-stage peripheral arterial obstruction disease. Progressive ischemia leads to development of ischemic rest pain and skin defects. Early recognition, medicamentous treatment and revascularisation are standard treatment practise in these patients. However, up to 30% of patients are not eligible for endovascular or surgical revascularisation. Remaining patients are threatened with disease progression and high risk for leg amputation. Some clinical studies demonstrated, that therapeutic angio genesis with autologous stem cells therapy may be effective in ulcer healing and prevention of limb amputation. This case report describes a 47-year old male with history of one year non-healing ulcer after the third and fifth finger amputation without option of endovascular or surgical revascularisation. Patient was successfully treated with intramuscular autologous bone marrow therapy with ulcer healing and limb salvage after 12-month follow-up. (author)

  7. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration

    OpenAIRE

    Heiman, Maxwell G.; Shaham, Shai

    2009-01-01

    Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, whic...

  8. Plasmacytoid Dendritic Cells: From Heart to Vessels

    OpenAIRE

    Rosalinda Sorrentino; Silvana Morello; Aldo Pinto

    2010-01-01

    Cardiovascular diseases, formerly only attributed to the alterations of the stromal component, are now recognized as immune-based pathologies. Plasmacytoid Dendritic Cells (pDCs) are important immune orchestrators in heart and vessels. They highly produce IFN type I that promote the polarization of T cells towards a Th1 phenotype; however, pDCs can also participate to suppressive networks via the recruitment of T regulatory cells that downmodulate proinflammatory responses. pDCs populate the ...

  9. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  10. Clinical and Immunological Effects in Patients with Advanced Non-Small Cell Lung-Cancer after Vaccination with Dendritic Cells Exposed to an Allogeneic Tumor Cell Lysate*

    DEFF Research Database (Denmark)

    Engell-Noerregaard, Lotte; Kvistborg, Pia; Zocca, Mai-Britt;

    2013-01-01

    Background: We evaluated the clinical and immunological effects of dendritic cell (DC) vaccination of patients with NSCLC. Autologous DCs were pulsed with a MAGE containing allogeneic melanoma cell lysate (MelCancerVac®, Dandrit Biotech, Copenhagen, Denmark). Imiquimod cream, proleukin and......-layed effect of DC vaccination after completion of the treatment. A prospective randomized phase-IIb or -III is needed to further evaluate the use of MelCancerVac® vaccine treatment in patients with progressive NSCLC....

  11. Myeloablative Chemotherapy with Autologous Stem Cell Transplant for Desmoplastic Small Round Cell Tumor

    OpenAIRE

    Forlenza, Christopher J.; Kushner, Brian H.; Nancy Kernan; Farid Boulad; Heather Magnan; Leonard Wexler; Wolden, Suzanne L.; LaQuaglia, Michael P.; Shakeel Modak

    2015-01-01

    Desmoplastic small round cell tumor (DSRCT), a rare, aggressive neoplasm, has a poor prognosis. In this prospective study, we evaluated the role of myeloablative chemotherapy, followed by autologous stem cell transplant in improving survival in DSRCT. After high-dose induction chemotherapy and surgery, 19 patients with chemoresponsive DSRCT underwent autologous stem cell transplant. Myeloablative chemotherapy consisted of carboplatin (400–700 mg/m2/day for 3 days) + thiotepa (300 mg/m2/day fo...

  12. Dendritic cells modified by vitamin D

    DEFF Research Database (Denmark)

    Pedersen, Ayako Wakatsuki; Claesson, Mogens Helweg; Zocca, Mai-Britt

    2011-01-01

    Dendritic cells (DCs), the most potent antigen-presenting cells of the immune system, express nuclear receptors for 1,25-dihydroxyvitamin D(3) (VD3) and they are one of its main targets. In the presence of VD3, DCs differentiate into a phenotype that resembles semimature DCs, with reduced T cell...... costimulatory molecules and hampered IL-12 production. These VD3-modulated DCs induce T cell tolerance in vitro using multiple mechanisms such as rendering T cells anergic, dampening of Th1 responses, and recruiting and differentiating regulatory T cells. Due to their ability to specifically target pathological...

  13. Dendritic Cells for SYN Scan Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Artificial immune systems have previously been applied to the problem of intrusion detection. The aim of this research is to develop an intrusion detection system based on the function of Dendritic Cells (DCs). DCs are antigen presenting cells and key to activation of the human immune system, behaviour which has been abstracted to form the Dendritic Cell Algorithm (DCA). In algorithmic terms, individual DCs perform multi-sensor data fusion, asynchronously correlating the the fused data signals with a secondary data stream. Aggregate output of a population of cells, is analysed and forms the basis of an anomaly detection system. In this paper the DCA is applied to the detection of outgoing port scans using TCP SYN packets. Results show that detection can be achieved with the DCA, yet some false positives can be encountered when simultaneously scanning and using other network services. Suggestions are made for using adaptive signals to alleviate this uncovered problem.

  14. Human induced pluripotent stem cells on autologous feeders.

    Directory of Open Access Journals (Sweden)

    Kazutoshi Takahashi

    Full Text Available BACKGROUND: For therapeutic usage of induced Pluripotent Stem (iPS cells, to accomplish xeno-free culture is critical. Previous reports have shown that human embryonic stem (ES cells can be maintained in feeder-free condition. However, absence of feeder cells can be a hostile environment for pluripotent cells and often results in karyotype abnormalities. Instead of animal feeders, human fibroblasts can be used as feeder cells of human ES cells. However, one still has to be concerned about the existence of unidentified pathogens, such as viruses and prions in these non-autologous feeders. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that human induced Pluripotent Stem (iPS cells can be established and maintained on isogenic parental feeder cells. We tested four independent human skin fibroblasts for the potential to maintain self-renewal of iPS cells. All the fibroblasts tested, as well as their conditioned medium, were capable of maintaining the undifferentiated state and normal karyotypes of iPS cells. Furthermore, human iPS cells can be generated on isogenic parental fibroblasts as feeders. These iPS cells carried on proliferation over 19 passages with undifferentiated morphologies. They expressed undifferentiated pluripotent cell markers, and could differentiate into all three germ layers via embryoid body and teratoma formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that autologous fibroblasts can be not only a source for iPS cells but also be feeder layers. Our results provide a possibility to solve the dilemma by using isogenic fibroblasts as feeder layers of iPS cells. This is an important step toward the establishment of clinical grade iPS cells.

  15. SKIN DENDRITIC CELLS: ACTIVATION, MATURATION AND MIGRATION

    OpenAIRE

    Eaton, Laura

    2012-01-01

    Langerhans’ cells (LC) are the dendritic cells (DC) of the epidermis and, as sentinels of the immune system, act as a bridge between the innate and adaptive immune responses. When LC, and other DC, recognise an antigen or pathogen they mature and are stimulated to migrate to the lymph nodes, where they orchestrate immune responses. Pathogen derived toll-like receptor (TLR) ligands, and chemical allergens, are recognised as being potentially harmful and stimulate LC to mobilise and mature. Cyt...

  16. Harnessing Dendritic Cells for Tumor Antigen Presentation

    International Nuclear Information System (INIS)

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8+ and CD4+ T cells; the in vitro loading of DCs with tumor antigens

  17. Pathological Consequence of Misguided Dendritic Cell Differentiation in Histiocytic Diseases

    OpenAIRE

    Berres, Marie-Luise; Allen, Carl E.; Merad, Miriam

    2013-01-01

    Histiocytic disorders represent a group of complex pathologies characterized by the accumulation of histiocytes, an old term for tissue-resident macrophages and dendritic cells. Langerhans cell histiocytosis is the most frequent of histiocytosis in humans and has been thought to arise from the abnormal accumulation of epidermal dendritic cells called Langerhans cells. In this chapter, we discuss the origin and differentiation of Langerhans cells and dendritic cells and present accumulated evi...

  18. Autologous Bone Marrow Mononuclear Cells Intrathecal Transplantation in Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2014-01-01

    Full Text Available Cell therapy is being widely explored in the management of stroke and has demonstrated great potential. It has been shown to assist in the remodeling of the central nervous system by inducing neurorestorative effect through the process of angiogenesis, neurogenesis, and reduction of glial scar formation. In this study, the effect of intrathecal administration of autologous bone marrow mononuclear cells (BMMNCs is analyzed on the recovery process of patients with chronic stroke. 24 patients diagnosed with chronic stroke were administered cell therapy, followed by multidisciplinary neurorehabilitation. They were assessed on functional independence measure (FIM objectively, along with assessment of standing and walking balance, ambulation, and hand functions. Out of 24 patients, 12 improved in ambulation, 10 in hand functions, 6 in standing balance, and 9 in walking balance. Further factor analysis was done. Patients of the younger groups showed higher percentage of improvement in all the areas. Patients who underwent cell therapy within 2 years after the stroke showed better changes. Ischemic type of stroke had better recovery than the hemorrhagic stroke. This study demonstrates the potential of autologous BMMNCs intrathecal transplantation in improving the prognosis of functional recovery in chronic stage of stroke. Further clinical trials are recommended. This trial is registered with NCT02065778.

  19. SHIPi Enhances Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sandra Fernandes

    2015-03-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi mobilizes functional HS-PC, accelerates hematologic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT.

  20. Immunisation of colorectal cancer patients with autologous tumour cells

    DEFF Research Database (Denmark)

    Diederichsen, Axel Cosmus Pyndt; Stenholm, A C; Kronborg, O; Fenger, C; Jensenius, Jens Christian; Zeuthen, J; Kristensen, T; Christensen, P B

    1998-01-01

    Patients with colorectal cancer were entered into a clinical phase I trial of immunotherapy with an autologous tumour cell/bacillus Calmette-Guerin (BCG) vaccine. We attempted to describe the possible effects and side effects of the immunisation, and further to investigate whether expression of...... immune-response-related surface molecules on the tumour cells in the vaccine correlated with survival. The first and second vaccine comprised of 107 irradiated tumour cells mixed with BCG, the third of irradiated tumour cells only. Thirty-nine patients were considered, but only 6 patients fulfilled the...... criteria for inclusion. No serious side effects were observed. With three years of observation time, two patients are healthy, while the rest have had recurrence, and two of them have died. In all vaccines, all tumour cells expressed HLA class I, some expressed HLA class II and none expressed CD80. There...

  1. Pulmonary dendritic cells: thinking globally, acting locally

    OpenAIRE

    Randall, Troy D.

    2010-01-01

    The phrase “think globally, act locally” was coined in the early 1970s and directed individuals to clean up their local environment with the ultimate goal of improving the health of the entire planet. Several recent studies indicate that similar considerations apply to the immune system, in which small numbers of leukocytes, such as pulmonary dendritic cells, can modify the local immune environment in the lung and promote a positive outcome for the organism.

  2. Dendritic cells and aging: consequences for autoimmunity

    OpenAIRE

    Agrawal, Anshu; Sridharan, Aishwarya; Prakash, Sangeetha; Agrawal, Harsh

    2012-01-01

    The immune system has evolved to mount immune responses against foreign pathogens and to remain silent against self-antigens. A balance between immunity and tolerance is required as any disturbance may result in chronic inflammation or autoimmunity. Dendritic cells (DCs) actively participate in maintaining this balance. Under steady-state conditions, DCs remain in an immature state and do not mount an immune response against circulating self-antigens in the periphery, which maintains a state ...

  3. Harnessing dendritic cells in inflammatory skin diseases

    OpenAIRE

    Chu, Chung-Ching; di Meglio, Paola; Nestle, Frank O

    2011-01-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-de...

  4. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  5. Phenotypic and functional characteristics of dendritic cells derived from human peripheral blood monocytes

    Institute of Scientific and Technical Information of China (English)

    TANG Ling-ling; ZHANG Zhe; ZHENG Jie-sheng; SHENG Ji-fang; LIU Ke-zhou

    2005-01-01

    Objective: This study is aimed at developing a simple and easy way to generate dendritic cells (DCs) from human peripheral blood monocytes (PBMCs) in vitro. Methods: PBMCs were isolated directly from white blood cell rather than whole blood and purified by patching methods (collecting the attached cell and removing the suspension cell). DCs were then generated by culturing PBMCs for six days with 30 ng/ml recombinant human granulocyte-macrophage stimulating factor (rhGM-CSF) and 20 ng/ml recombinant human interleukin-4 (rhIL-4) in vitro. On the sixth day, TNF-alpha (TNFα) 30 ng/ml was added into some DC cultures, which were then incubated for two additional days. The morphology was monitored by light microscopy and transmission electronic microscopy, and the phenotypes were determined by flow cytometry. Autologous mixed leukocyte reactions (MLR) were used to characterize DC function after TNFα or lipopolysaccharide (LPS) stimulations for 24 h. Results: After six days of culture, the monocytes developed significant dendritic morphology and a portion of cells expressed CD 1 a, CD80 and CD86, features of DCs. TNFα treatment induced DCs maturation and up-regulation of CD80, CD86 and CD83. Autologous MLR demonstrated that these DCs possess potent T-cell stimulatory capacity. Conclusion: This study developed a simple and easy way to generate DCs from PBMCs exposed to rhGM-CSF and rhIL-4. The DCs produced by this method acquired morphologic and antigenic characteristics of DCs.

  6. Persistent seropositivity for yellow fever in a previously vaccinated autologous hematopoietic stem cell transplantation recipient

    OpenAIRE

    Kayoko Hayakawa; Tomohiko Takasaki; Hiroko Tsunemine; Shuzo Kanagawa; Satoshi Kutsuna; Nozomi Takeshita; Momoko Mawatari; Yoshihiro Fujiya; Kei Yamamoto; Norio Ohmagari; Yasuyuki Kato

    2015-01-01

    The duration of a protective level of yellow fever antibodies after autologous hematopoietic stem cell transplantation in a previously vaccinated person is unclear. The case of a patient who had previously been vaccinated for yellow fever and who remained seropositive for 22 months after autologous peripheral blood stem cell transplantation for malignant lymphoma is described herein.

  7. Pulmonary heart valve replacement using stabilized acellular xenogeneic scaffolds; effects of seeding with autologous stem cells

    Directory of Open Access Journals (Sweden)

    Harpa Marius Mihai

    2015-12-01

    Full Text Available Background: We hypothesized that an ideal heart valve replacement would be acellular valve root scaffolds seeded with autologous stem cells. To test this hypothesis, we prepared porcine acellular pulmonary valves, seeded them with autologous adipose derived stem cells (ADSCs and implanted them in sheep and compared them to acellular valves.

  8. SECOND AUTOLOGOUS STEM CELL TRANSPLANTATION FOR RELAPSED LYMPHOMA AFTER A PRIOR AUTOLOGOUS TRANSPLANT

    Science.gov (United States)

    Smith, Sonali M.; van Besien, Koen; Carreras, Jeanette; Bashey, Asad; Cairo, Mitchell S.; Freytes, Cesar O.; Gale, Robert Peter; Hale, Gregory A.; Hayes-Lattin, Brandon; Holmberg, Leona A.; Keating, Armand; Maziarz, Richard T.; McCarthy, Philip L.; Navarro, Willis H.; Pavlovsky, Santiago; Schouten, Harry C.; Seftel, Matthew; Wiernik, Peter H.; Vose, Julie M.; Lazarus, Hillard M.; Hari, Parameswaran

    2012-01-01

    We determined treatment-related mortality (TRM), progression free survival (PFS), and overall survival (OS) after a second autologous HCT (HCT2) for patients with lymphoma relapse after a prior HCT (HCT1). Outcomes for patients with either Hodgkin lymphoma (HL, n=21) or non-Hodgkin lymphoma (NHL, n=19) receiving HCT2 reported to the Center for International Blood and Marrow Transplant Research (CIBMTR) were analyzed. The median age at HCT2 was 38 years (range, 16–61) and 22 (58%) patients had a Karnofsky performance score less than 90. HCT2 was performed >1 year after HCT1 in 82%. The probability of TRM at day 100 was 15% (95% CI, 3–22%). The 1, 3 and 5 yr probabilities of PFS were 50% (95% CI, 34–66%), 36% (95% CI, 21–52%) and 30% (95% CI, 16–46%), respectively. Corresponding probabilities of survival were 65% (95% CI, 50–79%), 36% (95% CI, 22–52%) and 30% (95% CI, 17–46%), respectively. At a median follow up of 72 months (range, 12–124 months) after HCT2, 29 patients (73%) have died, 18 (62%) secondary to relapsed lymphoma. The outcomes of patients with HL and NHL were similar. In summary, this series represents the largest reported group of patients with relapsed lymphomas undergoing SCT2 following failed SCT1, and with long-term follow-up. Our series suggests that SCT2 is feasible in patients relapsing after prior HCT1, with a lower TRM than that reported for allogeneic transplant in this setting. HCT2 should be considered for patients with relapsed HL or NHL after HCT1 without alternative allogeneic stem cell transplant options. PMID:18640574

  9. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    HuiWan; MarcelDupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation, they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo, studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments. Cellular & Molecular Immunology. 2005;2(1):28-35.

  10. Dendritic Cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui Wan; Marcel Dupasquier

    2005-01-01

    Dendritic cells (DC) are crucial cells of the immune system, and bridged the essential connection between innate and adaptive immunity. They reside in the periphery as sentinels where they take up antigens. Upon activation,they migrate to lymphoid organs and present there the processed antigens to T cells, thereby activating them and eliciting a potent immune response. Dendritic cells are bone marrow-derived cells, still big controversies exist about their in vivo development. In vitro, DC can be generated from multiple precursor cells, among them lymphoid and myeloid committed progenitors. Although it remains unknown how DC are generated in vivo,studying the functions of in vitro generated DC results in fundamental knowledge of the DC biology with promising applications for future medicine. Therefore, in this review, we present current protocols for the generation of DC from precursors in vitro. We will do this for the mouse system, where most research occurs and for the human system, where research concentrates on implementing DC biology in disease treatments.

  11. Dendritic Cells and Humoral Immunity in Humans

    Science.gov (United States)

    Ueno, Hideki; Schmitt, Nathalie; Palucka, A. Karolina; Banchereau, Jacques

    2010-01-01

    Summary Dendritic cells (DCs) orchestrate the innate and adaptive immune systems to induce tolerance and immunity. DC plasticity and subsets are prominent determinants in the regulation of immune responses. Our recent studies suggest that humoral and cellular immunity is regulated by different myeloid DC subsets with distinct intrinsic properties in humans. While antibody response is preferentially mediated by CD14+ dermal DCs, cytotoxic T cell response is preferentially mediated by Langerhans cells (LCs). Thus, mechanisms whereby DCs induce humoral and cellular immunity appear to be fundamentally distinct. In this review, we will focus on the role of DCs in the development of humoral immunity. We will also discuss the mechanisms whereby DCs induce CD4+ T cells associated with the help of B cell response, including T follicular helper (Tfh) cells, and why human LCs lack this ability. PMID:20309010

  12. An ethical framework for the disposal of autologous stem cells.

    Science.gov (United States)

    Petrini, Carlo

    2013-01-01

    The disposal of haematopoietic stem cells stored for autologous transplantation purposes becomes a problem for hospitals when the conditions for their preservation cease to exist. When these cells have been stored for a considerable time the problem often becomes an ethical one involving informed consent and is linked to at least two simultaneous circumstances: (i) the indications regarding disposal contained in available informed consent papers are either absent or too generic; (ii) the person who provided the sample can no longer be traced. This article proposes and discusses some of the ethical criteria for addressing this problem on the basis of the so-called "principles" of North American bioethics, and compares them with some of the principles and values proposed in other models of bioethics. PMID:23412868

  13. [Dendritic cells in cancer immunotherapy].

    Science.gov (United States)

    Gato, M; Liechtenstein, T; Blanco-Luquín, I; Zudaire, M I; Kochan, G; Escors, D

    2015-01-01

    Since the beginning of the 20th century, biomedical scientists have tried to take advantage of the natural anti-cancer activities of the immune system. However, all the scientific and medical efforts dedicated to this have not resulted in the expected success. In fact, classical antineoplastic treatments such as surgery, radio and chemotherapy are still first line treatments. Even so, there is a quantity of experimental evidence demonstrating that cancer cells are immunogenic. However, the effective activation of anti-cancer T cell responses closely depends on an efficient antigen presentation carried out by professional antigen presenting cells such as DC. Although there are a number of strategies to strengthen antigen presentation by DC, anti-cancer immunotherapy is not as effective as we would expect according to preclinical data accumulated in recent decades. We do not aim to make an exhaustive review of DC immunotherapy here, which is an extensive research subject already dealt with in many specialised reviews. Instead, we present the experimental approaches undertaken by our group over the last decade, by modifying DC to improve their anti-tumour capacities. PMID:26486534

  14. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    OpenAIRE

    Ana Belen Alvarez Palomo; Michaela Lucas; Dilley, Rodney J.; Samuel McLenachan; Fred Kuanfu Chen; Jordi Requena; Marti Farrera Sal; Andrew Lucas; Inaki Alvarez; Dolores Jaraquemada; Michael J. Edel

    2014-01-01

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and rege...

  15. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  16. Anti tumor vaccination with hybrid dendritic-tumour cells; Vacinacao antitumoral com celulas hibridas dendriticas tumorais

    Energy Technology Data Exchange (ETDEWEB)

    Barbuto, Jose Alexandre M.; Neves, Andreia R.; Ensina, Luis Felipe C.; Anselmo, Luciene B. [Sao Paulo Univ., SP (Brazil). Inst. de Ciencias Biomedicas. Dept. de Imunologia; Leite, Katia R.M.; Buzaid, Antonio C.; Camara Lopes, Luiz H. [Hospital Sirio-Libanes, Sao Paulo, SP (Brazil)

    2005-09-01

    Dendritic cells are the most potent antigen-presenting cells, and the possibility of their use for cancer vaccination has renewed the interest in this therapeutic modality. Nevertheless, the ideal immunization protocol with these cells has not been described yet. In this paper we describe the preliminary results of a protocol using autologous tumor and allogeneic dendritic hybrid cell vaccination every 6 weeks, for metastatic melanoma and renal cell carcinoma (RCC) patients. Thirty-five patients were enrolled between March 2001 and March 2003. Though all patients included presented with large tumor burdens and progressive diseases, 71% of them experienced stability after vaccination, with durations up to 19 months. Among RCC patients 3/22 (14%) presented objective responses. The median time to progression was 4 months for melanoma and 5.7 months for RCC patients; no significant untoward effects were noted. Furthermore, immune function, as evaluated by cutaneous delayed-type hypersensitivity reactions to recall antigens and by peripheral blood proliferative responses to tumor-specific and nonspecific stimuli, presented a clear tendency to recover in vaccinated patients. These data indicate that dendritic cell-tumor cell hybrid vaccination affects the natural history of advanced cancer and provide support for its study in less advanced patients, who should, more likely, benefit even more from this approach. (author)

  17. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    Science.gov (United States)

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-01

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes. PMID:27117416

  18. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  19. Targeting vaccines to dendritic cells

    DEFF Research Database (Denmark)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-01-01

    be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC are...... considered to play a central role for the provocation of primary immune responses by vaccination. A rational way of improving the potency and safety of new and already existing vaccines could therefore be to direct vaccines specifically to DC. There is a need for developing multifunctional vaccine drug...... delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC....

  20. Probiotics, dendritic cells and bladder cancer.

    Science.gov (United States)

    Feyisetan, Oladapo; Tracey, Christopher; Hellawell, Giles O

    2012-06-01

    What's known on the subject? and What does the study add? The suppressor effect of probiotics on superficial bladder cancer is an observed phenomenon but the specific mechanism is poorly understood. The evidence strongly suggests natural killer (NK) cells are the anti-tumour effector cells involved and NK cell activity correlates with the observed anti-tumour effect in mice. It is also known that dendritic cells (DC) cells are responsible for the recruitment and mobilization of NK cells so therefore it may be inferred that DC cells are most likely to be the interphase point at which probiotics act. In support of this, purification of NK cells was associated with a decrease in NK cells activity. The current use of intravesical bacille Calmette-Guérin in the management of superficial bladder cancer is based on the effect of a localised immune response. In the same way, understanding the mechanism of action of probiotics and the role of DC may potentially offer another avenue via which the immune system may be manipulated to resist bladder cancer. Probiotic foods have been available in the UK since 1996 with the arrival of the fermented milk drink (Yakult) from Japan. The presence of live bacterial ingredients (usually lactobacilli species) may confer health benefits when present in sufficient numbers. The role of probiotics in colo-rectal cancer may be related in part to the suppression of harmful colonic bacteria but other immune mechanisms are involved. Anti-cancer effects outside the colon were suggested by a Japanese report of altered rates of bladder tumour recurrence after ingestion of a particular probiotic. Dendritic cells play a central role to the general regulation of the immune response that may be modified by probiotics. The addition of probiotics to the diet may confer benefit by altering rates of bladder tumour recurrence and also alter the response to immune mechanisms involved with the application of intravesical treatments (bacille Calmette

  1. Gliadin fragments promote migration of dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Chládková, Barbara; Kamanová, Jana; Palová-Jelínková, Lenka; Cinová, Jana; Šebo, Peter; Tučková, Ludmila

    2011-01-01

    Roč. 15, č. 4 (2011), 938-948. ISSN 1582-1838 R&D Projects: GA ČR GA310/07/0414; GA ČR GD310/08/H077; GA ČR GA310/08/0447; GA AV ČR IAA500200801; GA AV ČR IAA500200914 Institutional research plan: CEZ:AV0Z50200510 Keywords : celiac disease * gliadin * dendritic cell Subject RIV: EC - Immunology Impact factor: 4.125, year: 2011

  2. Metamaterial absorber with random dendritic cells

    Science.gov (United States)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  3. Viruses, dendritic cells and the lung

    Directory of Open Access Journals (Sweden)

    Graham Barney S

    2001-06-01

    Full Text Available Abstract The interaction between viruses and dendritic cells (DCs is varied and complex. DCs are key elements in the development of a host response to pathogens such as viruses, but viruses have developed survival tactics to either evade or diminish the immune system that functions to kill and eliminate these micro-organisms. In the present review we summarize current concepts regarding the function of DCs in the immune system, our understanding of how viruses alter DC function to attenuate both the virus-specific and global immune response, and how we may be able to exploit DC function to prevent or treat viral infections.

  4. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses

    OpenAIRE

    Shaw, S. W. Steven; Bollini, Sveva; Nader, Khalil Abi; Gastadello, Annalisa; Mehta, Vedanta; Filppi, Elisa; Cananzi, Mara; Gaspar, H. Bobby; Qasim, Waseem; Coppi, Paolo; David, Anna L.

    2011-01-01

    Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection. Autologous cells could be obtained during gestation from the amniotic fluid with minimal risk for the fetus and the mother. Using a sheep model, we explored the possibility of using amniotic fluid mesenchymal stem cells (AFMSCs) for autologous in utero stem cell/gene therapy. We collected amniotic fluid (AF) under ultrasound-gu...

  5. Effect of growth hormone on the immune function of dendritic cells

    Institute of Scientific and Technical Information of China (English)

    LIU Qiu-liang; WANG Yi-sheng; WANG Jia-xiang

    2010-01-01

    Background Dendritic cells (DCs) are one of the most important antigen presenting cells in the human body, and DCs at various stages of maturation possess different or even opposite functions. The aim of this study was to investigate the influence of growth hormones on the functional status of cord blood-derived DCs encompassing immunophenotype, ability to excrete interleukin (IL)-12 and provoke autologous leukomonocyte.Methods Mononuclear cells were isolated from fresh cord blood, with IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) used to induce and stimulate the mononuclear cells. Growth hormone at different concentrations was used to modify DCs, and then DCs morphology, number and growth status were observed. The immunophenotype of DCs was detected with a flow cytometer. The concentration of IL-12 in the DCs supernatant was determined by enzyme linked immunosorbent assay (ELISA) and DCs functional status was evaluated by autologous mixed lymphocyte reactions. Results Mononuclear cells from cord blood can be differentiated into DCs by cytokine induction and growth hormone modification. With the increase in growth hormone concentrations (5-100 μ g/L), the expression of DCs HLA-DR, CD1α, CD80 and CD83 were significantly increased (P<0.05). The ability of DCs to secrete IL-12 was significantly improved (P <0.05), and the ability of DCs to activate autologous lymphocytes was significantly enhanced (P <0.05). Pegvisomant was able to ablate the effects of growth hormone on DCs.Conclusions Growth hormone may facilitate DCs induction and maturation, and improve the reproductive activity of autologous lymphocytes in a dose-dependent manner. Growth hormone may serve as a factor of modifying DCs to achieving maturity.

  6. Cutting edge: B220+CCR9- dendritic cells are not plasmacytoid dendritic cells but are precursors of conventional dendritic cells.

    Science.gov (United States)

    Segura, Elodie; Wong, June; Villadangos, José A

    2009-08-01

    Mouse lymphoid organs contain two major subsets of dendritic cells (DC) that differ in their phenotype and functions: conventional DC (cDC) and plasmacytoid DC (pDC). Recently, it has been proposed that differential expression of CCR9 could distinguish functionally distinct pDC subsets. We show that B220(+)CCR9(-) DC do not express classical pDC markers and have a developmental origin different from that of pDC. Furthermore, B220(+)CCR9(-) DC do not secrete IFN-alpha in response to CpG and, unlike pDC, can efficiently present exogenous Ags. Our results demonstrate that B220(+)CCR9(-) DC do not represent a subset of pDC. After in vivo transfer, these cells down-regulate B220 expression and convert into the two major cDC subsets, showing that they are a developmental stage of cDC differentiation. PMID:19570827

  7. Disseminated Fusarium infection in autologous stem cell transplant recipient

    OpenAIRE

    Vivian Iida Avelino-Silva; Jessica Fernandes Ramos; Fabio Eudes Leal; Leonardo Testagrossa; Yana Sarkis Novis

    2015-01-01

    Disseminated infection by Fusariumis a rare, frequently lethal condition in severely immunocompromised patients, including bone marrow transplant recipients. However, autologous bone marrow transplant recipients are not expected to be at high risk to develop fusariosis. We report a rare case of lethal disseminated Fusariuminfection in an autologous bone marrow transplant recipient during pre-engraftment phase.

  8. Harnessing Human Dendritic Cell Subsets for Medicine

    Science.gov (United States)

    Ueno, Hideki; Schmitt, Nathalie; Klechevsky, Eynav; Pedroza-Gonzales, Alexander; Matsui, Toshimichi; Zurawski, Gerard; Oh, SangKon; Fay, Joseph; Pascual, Virginia; Banchereau, Jacques; Palucka, Karolina

    2010-01-01

    Summary Immunity results from a complex interplay between the antigen-nonspecific innate immune system and the antigen-specific adaptive immune system. The cells and molecules of the innate system employ non-clonal recognition receptors including lectins, Toll-like receptors, NOD-like receptors and helicases. B and T lymphocytes of the adaptive immune system employ clonal receptors recognizing antigens or their derived peptides in a highly specific manner. An essential link between innate and adaptive immunity is provided by dendritic cells (DCs). DCs can induce such contrasting states as immunity and tolerance. The recent years have brought a wealth of information on the biology of DCs revealing the complexity of this cell system. Indeed, DC plasticity and subsets are prominent determinants of the type and quality of elicited immune responses. Here we summarize our recent studies aimed at a better understanding of the DC system to unravel the pathophysiology of human diseases and design novel human vaccines. PMID:20193020

  9. Plasmacytoid Dendritic Cells: From Heart to Vessels

    Directory of Open Access Journals (Sweden)

    Rosalinda Sorrentino

    2010-01-01

    Full Text Available Cardiovascular diseases, formerly only attributed to the alterations of the stromal component, are now recognized as immune-based pathologies. Plasmacytoid Dendritic Cells (pDCs are important immune orchestrators in heart and vessels. They highly produce IFN type I that promote the polarization of T cells towards a Th1 phenotype; however, pDCs can also participate to suppressive networks via the recruitment of T regulatory cells that downmodulate proinflammatory responses. pDCs populate the vessel wall layers during pathological conditions, such as atherosclerosis. It is thus clear that a better identification of pDCs activity in cardiovascular diseases can not only elucidate pathological mechanisms but also lead to new therapeutic approaches.

  10. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    Science.gov (United States)

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway. PMID:10590149

  11. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    OpenAIRE

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway.

  12. Up-Front Autologous Stem-Cell Transplantation in Peripheral T-Cell Lymphoma

    DEFF Research Database (Denmark)

    d'Amore, Francesco; Relander, Thomas; Lauritzsen, Grete F; Jantunen, Esa; Hagberg, Hans; Anderson, Harald; Holte, Harald; Osterborg, Anders; Merup, Mats; Brown, Peter De Nully; Kuittinen, Outi; Erlanson, Martin; Ostenstad, Bjørn; Fagerli, Unn-Merete; Gadeberg, Ole Vestergaard; Sundström, Christer; Delabie, Jan; Ralfkiaer, Elisabeth; Vornanen, Martine; Toldbod, Helle

    2012-01-01

    Systemic peripheral T-cell lymphomas (PTCLs) respond poorly to conventional therapy. To evaluate the efficacy of a dose-dense approach consolidated by up-front high-dose chemotherapy (HDT) and autologous stem-cell transplantation (ASCT) in PTCL, the Nordic Lymphoma Group (NLG) conducted a large...

  13. Design of tumor-specific immunotherapies using dendritic cells - effect of bromelain on dendritic cell maturation

    OpenAIRE

    Karlsen, Marie

    2009-01-01

    Immunotherapy using dendritic cells (DC) has shown promising results in clinical trials, but few relevant successes are recorded. Therefore, the choice of an appropriate DC population is critical for the outcome of this treatment. The DC used today in immunotherapy are often matured with a cytokine cocktail consisting of TNF-α, IL-1β, IL-6 and PGE2. These cells have deficits in their cytokine production, and also their migratory capacity in vivo needs improvement. After being introduced to br...

  14. Cell therapy of hip osteonecrosis with autologous bone marrow grafting

    Directory of Open Access Journals (Sweden)

    Hernigou Philippe

    2009-01-01

    Full Text Available Background: One of the reasons for bone remodeling leading to an insufficient creeping substitution after osteonecrosis in the femoral head may be the small number of progenitor cells in the proximal femur and the trochanteric region. Because of this lack of progenitor cells, treatment modalities should stimulate and guide bone remodeling to sufficient creeping substitution to preserve the integrity of the femoral head. Core decompression with bone graft is used frequently in the treatment of osteonecrosis of the femoral head. In the current series, grafting was done with autologous bone marrow obtained from the iliac crest of patients operated on for early stages of osteonecrosis of the hip before collapse with the hypothesis that before stage of subchondral collapse, increasing the number of progenitor cells in the proximal femur will stimulate bone remodeling and creeping substitution and thereby improve functional outcome. Materials and Methods: Between 1990 and 2000, 342 patients (534 hips with avascular osteonecrosis at early stages (Stages I and II were treated with core decompression and autologous bone marrow grafting obtained from the iliac crest of patients operated on for osteonecrosis of the hip. The percentage of hips affected by osteonecrosis in this series of 534 hips was 19% in patients taking corticosteroids, 28% in patients with excessive alcohol intake, and 31% in patients with sickle cell disease. The mean age of the patients at the time of decompression and autologous bone marrow grafting was 39 years (range: 16-61 years. The aspirated marrow was reduced in volume by concentration and injected into the femoral head after core decompression with a small trocar. To measure the number of progenitor cells transplanted, the fibroblast colony forming unit was used as an indicator of the stroma cell activity. Results: Patients were followed up from 8 to 18 years. The outcome was determined by the changes in the Harris hip score

  15. Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Tedesco, Gianni

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.

  16. Follicular dendritic cells in health and disease

    Directory of Open Access Journals (Sweden)

    Mohey Eldin M El Shikh

    2012-09-01

    Full Text Available Follicular dendritic cells (FDCs are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags in the form of highly immunogenic immune complexes (ICs consisting of Ag plus specific antibody (Ab and/or complement proteins. FDCs multimerise Ags and present them polyvalently to B cells in periodically arranged arrays that extensively crosslink the B cell receptors for Ag (BCRs. FDC-Fc-gamma-RIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6 and -C4bBP, are essential for the induction of the germinal centre (GC reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.

  17. Follicular dendritic cells in health and disease.

    Science.gov (United States)

    El Shikh, Mohey Eldin M; Pitzalis, Costantino

    2012-01-01

    Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses. PMID:23049531

  18. Regulation of B cell function by plasmacytoid dendritic cells

    OpenAIRE

    Gujer, Cornelia

    2011-01-01

    Dendritic cells (DCs) are early sentinels of pathogen exposure and central in the initiation and orchestration of adaptive immune responses. Apart from the prominent role of DCs in the activation of T cells, DCs have been shown to influence humoral B cell mediated responses. DCs are therefore important cells for regulating immune responses to vaccines. Many of the vaccines under development today are against pathogens such as Mycobacterium tuberculosis and HIV-1 that likely r...

  19. DENDRITIC CELL-BASED VACCINE THERAPY IN PATIENTS WITH RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    D. A. Nosov

    2014-07-01

    Full Text Available Objective: to study the efficiency and tolerance of autologous vaccine therapy based on dendritic cells (DC in patients with renal cell carcinoma (RCC and to examine changes in immunological parameters and their association with the efficiency of the therapy. Subjects and methods. Twenty-nine patients with RCC received autologous vaccine therapy based on DC in 2002 to 2008. Therapy was performed in the induction mode in 16 patients before disease progression and in the adjuvant mode (8 vaccinations in 13 patients after radical nephrectomy (grade III or radical metastasectomy. Peripheral blood monocyte-derived DCs treated with autologous tumor lysate were used to prepare the vaccine. Results. In a group of 16 patients with distant metastases, partial regressions were recorded in 2 (12.5% patients and long (> 6-month stabilizations of a tumor process were observed in other 2 (12.5% patients. The median time prior to progression was 3 (range 1.5-12 months. Thirteen patients on adjuvant treatment did not achieve the median time to progression: 4 patients showed no signs of disease progression ?12 to ?25 months after metastasectomy. Patients with a clinical effect (disease regression or long stabilization showed a significant increase in the populations of CD3+CD8+ and CD3-CD16+ T lymphocytes (natural killers (NK cells after 3 vaccinations from 23.3 to 27.2% (p = 0.018 and from 15.17 to 20.3%, respectively (p = 0.03. Prior to vaccine therapy, the count of CD3+CD16+-NK cells was thrice greater in patients with the progressive disease than that in the donor group - 11.2 and 3.5%, respectively. The baseline count of CD4+CD25+ Т lymphocytes in patients with progressive disease was also significantly higher than that in patients with the clinical effect - 12.01 and 5.6%, respectively. Conclusion. In patients with RCC, DC-based vaccine therapy is able to induce a specific anti-tumor immune response that is transformed into the clinical effect in some

  20. GATA2 regulates dendritic cell differentiation.

    Science.gov (United States)

    Onodera, Koichi; Fujiwara, Tohru; Onishi, Yasushi; Itoh-Nakadai, Ari; Okitsu, Yoko; Fukuhara, Noriko; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2016-07-28

    Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation. PMID:27259979

  1. Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    OpenAIRE

    Greensmith, Julie; Aickelin, Uwe; Tedesco, Gianni

    2010-01-01

    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial im...

  2. Busulfan,cyclophosphamide and etoposide as conditioning for autologous stem cell transplantation in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    张春阳

    2013-01-01

    Objective To evaluate the efficacy and safety of dose-reduced intravenous busulfan,cyclophosphamide and etoposide(BCV)as conditioning for autologous stem cell transplantation(ASCT)in multiple myeloma(MM)

  3. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive traet

    OpenAIRE

    Liang, Wei; Wang, Hui; Sun, Tie-Mie; Yao, Wen-Qing; Chen, Li-Li; Jin, Yu; Chun-ling LI; Meng, Fan-Juan

    2003-01-01

    AIM: To treat patients with stage I-IV malignant tumors of digestive tract using autologous tumor cell vaccine and NDV (Newcastle disease virus) vaccine, and observe the survival period and curative effect.

  4. Transplantation of autologous noncultured epidermal cell suspension in treatment of patients with stable vitiligo

    Institute of Scientific and Technical Information of China (English)

    XU Ai-e; WEI Xiao-dong; CHENG Dong-qing; ZHOU He-fen; QIAN Guo-pei

    2005-01-01

    @@ Treatment of vitiligo by transplantation of noncultured melanocytes containing keratino-cytes has been successful since 1992,1 We report the encouraging results of autologous epidermal cell suspension in the treatment of 24 patients with stable vitiligo since 1998.

  5. A novel cell subset: Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    WANG JiongKun; XING FeiYue

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells (IKDCs). IKDCs not only secret type Ⅰ and type Ⅱ interferons to recognize and kill tumor cells effectively, but also express MHC-Ⅱ molecules to present antigens. Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  6. A novel cell subset:Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  7. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration.

    Science.gov (United States)

    Heiman, Maxwell G; Shaham, Shai

    2009-04-17

    Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, which act cooperatively at the time and place of anchoring. DEX-1 and DYF-7 contain, respectively, zonadhesin and zona pellucida domains, and DYF-7 self-associates into multimers important for anchoring. Thus, unlike other dendrites, amphid dendritic tips are positioned by DEX-1 and DYF-7 without the need for long-range guidance cues. In sequence and function, DEX-1 and DYF-7 resemble tectorins, which anchor stereocilia in the inner ear, suggesting that a sensory dendrite anchor may have evolved into part of a mechanosensor. PMID:19344940

  8. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André;

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...... still require optimization. An alternative technique for providing antigens to DC consists of the direct fusion of dendritic cells with tumor cells. These resulting hybrid cells may express both major histocompatibility complex (MHC) class I and II molecules associated with tumor antigens and the...... appropriate co-stimulatory molecules required for T-cell activation. Initially tested in animal models, this approach has now been evaluated in clinical trials, although with limited success. We summarize and discuss the results from the animal studies and first clinical trials. We also present a new approach...

  9. Generation of functional CD8+ T Cells by human dendritic cells expressing glypican-3 epitopes

    Directory of Open Access Journals (Sweden)

    Farzaneh Farzin

    2010-05-01

    Full Text Available Abstract Background Glypican 3 (GPC-3 is an oncofoetal protein that is expressed in most hepatocellular carcinomas (HCC. Since it is a potential target for T cell immunotherapy, we investigated the generation of functional, GPC-3 specific T cells from peripheral blood mononuclear cells (PBMC. Methods Dendritic cells (DC were derived from adherent PBMC cultured at 37°C for 7 days in X-Vivo, 1% autologous plasma, and 800 u/ml GM-CSF plus 500 u/ml IL-4. Immature DC were transfected with 20 μg of in vitro synthesised GPC-3 mRNA by electroporation using the Easy-ject plus system (Equibio, UK (300 V, 150 μF and 4 ms pulse time, or pulsed with peptide, and subsequently matured with lipopolysaccharide (LPS. Six predicted GPC-3 peptide epitopes were synthesized using standard f-moc technology and tested for their binding affinity to HLA-A2.1 molecules using the cell line T2. Results DC transfected with GPC-3 mRNA but not control DC demonstrated strong intracellular staining for GPC-3 and in vitro generated interferon-gamma expressing T cells from autologous PBMC harvested from normal subjects. One peptide, GPC-3522-530 FLAELAYDL, fulfilled our criteria as a naturally processed, HLA-A2-restricted cytotoxic T lymphocyte (CTL epitope: i it showed high affinity binding to HLA-A2, in T2 cell binding assay; ii it was generated by the MHC class I processing pathway in DC transfected with GPC-3 mRNA, and iii HLA-A2 positive DC loaded with the peptide stimulated proliferation in autologous T cells and generated CTL that lysed HLA-A2 and GPC-3 positive target cells. Conclusions These findings demonstrate that electroporation of GPC-3 mRNA is an efficient method to load human monocyte-derived DC with antigen because in vitro they generated GPC-3-reactive T cells that were functional, as shown by interferon-gamma production. Furthermore, this study identified a novel naturally processed, HLA-A2-restricted CTL epitope, GPC-3522-530 FLAELAYDL, which can be used to

  10. Current state and future directions of autologous hematopoietic stem cell transplantation in systemic lupus erythematosus

    OpenAIRE

    Illei, Gabor G.; Cervera, Ricard; Burt, Richard K.; Doria, Andrea; Hiepe, Falk; Jayne, David; Pavletic, Steven; Martin, Thierry; Marmont, Alberto; Saccardi, Riccardo; Voskuyl, Alexandre E; Farge, Dominique

    2011-01-01

    Autologous hematopoietic stem cell transplantation (AHSCT) has been proposed as a treatment modality which may arrest the autoimmune disease process and lead to sustained treatment-free remissions. Since the first consensus statement in 1997, approximately 200 autologous bone marrow or hematopoietic stem cell transplantations have been reported world-wide for SLE. The current state of AHSCT in SLE was reviewed at a recent meeting of the Autoimmune Working Party of the European Group for Blood...

  11. Harnessing dendritic cells in inflammatory skin diseases.

    Science.gov (United States)

    Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O

    2011-02-01

    The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. PMID:21295490

  12. Isolation of Human Skin Dendritic Cell Subsets.

    Science.gov (United States)

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages. PMID:27142012

  13. Immunotherapy of hematological malignancies using dendritic cells.

    Science.gov (United States)

    Van de Velde, Ann L R; Berneman, Zwi N; Van Tendeloo, Viggo F I

    2008-03-01

    The arsenal of therapeutic weapons against hematological malignancies is constantly growing. Unravelling the secrets of tumor immunobiology has allowed researchers to manipulate the immune system in order to stimulate tumor immunity or to bypass tumor-induced immunosuppression. An area of great interest is active specific immunotherapy where dendritic cell (DC)-based therapeutic vaccines for cancer have definitely grabbed the spotlight. DC are intensively investigated as cellular adjuvants to harness the immune system to fight off cancer by augmenting the number and effector functions of tumor-specific CD8+ cytotoxic T lymphocytes. In the present review we present a comprehensive synopsis and an update of the use of DC in hematological malignancies. In the future, more basic research as well as more clinical trials are warranted to fully establish the value of DC vaccination as an adjuvant therapy for modern hematological oncology. PMID:18390412

  14. Role of Dendritic Cells in Immune Dysfunction

    Science.gov (United States)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  15. Regeneration of Tissues and Organs Using Autologous Cells

    Energy Technology Data Exchange (ETDEWEB)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bear on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat

  16. Dendritic Cells in the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Yang Ma, Galina V. Shurin, Zhu Peiyuan, Michael R. Shurin

    2013-01-01

    Full Text Available The complexity of the tumor immunoenvironment is underscored by the emergence and discovery of different subsets of immune effectors and regulatory cells. Tumor-induced polarization of immune cell differentiation and function makes this unique environment even more intricate and variable. Dendritic cells (DCs represent a special group of cells that display different phenotype and activity at the tumor site and exhibit differential pro-tumorigenic and anti-tumorigenic functions. DCs play a key role in inducing and maintaining the antitumor immunity, but in the tumor environment their antigen-presenting function may be lost or inefficient. DCs might be also polarized into immunosuppressive/tolerogenic regulatory DCs, which limit activity of effector T cells and support tumor growth and progression. Although various factors and signaling pathways have been described to be responsible for abnormal functioning of DCs in cancer, there are still no feasible therapeutic modalities available for preventing or reversing DC malfunction in tumor-bearing hosts. Thus, better understanding of DC immunobiology in cancer is pivotal for designing novel or improved therapeutic approaches that will allow proper functioning of DCs in patients with cancer.

  17. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field. PMID:26892963

  18. Autologous Bone Marrow Stem Cells combined with Allograft Cancellous Bone in Treatment of Nonunion

    Directory of Open Access Journals (Sweden)

    Le Thua Trung Hau

    2015-12-01

    Full Text Available Autologous cancellous bone graft is currently used as a gold standard method for treatment of bone nonunion. However, there is a limit to the amount of autologous cancellous bone that can be harvested and the donor site morbidity presents a major disadvantage to autologous bone grafting. Embedding viable cells within biological scaffolds appears to be extremely promising. The purpose of this study was to assess the outcome of autologous bone marrow stem cells combined with a cancellous bone allograft as compared to an autologous bone graft in the treatment of bone nonunion. Bone marrow aspiration concentrate (BMAC was previously produced from bone marrow aspirate via a density gradient centrifugation. Autologous cancellous bone was harvested in 9 patients and applied to the nonunion site. In 18 patients of the clinical trial group after the debridement, the bone gaps were filled with a composite of BMAC and allograft cancellous bone chips (BMAC-ACB. Bone consolidation was obtained in 88.9 %, and the mean interval between the cell transplantation and union was 4.6 +/- 1.5 months in the autograft group. Bone union rate was 94.4 % in group of composite BMAC-ACB implantation. The time to union in BMAC-ACB grafting group was 3.3 +/- 0.90 months, and led to faster healing when compared to the autograft. A mean concentration of autologous progenitor cells was found to be 2.43 +/- 1.03 (x106 CD34+ cells/ml, and a mean viability of CD34+ cells was 97.97 +/- 1.47 (%. This study shows that the implantation of BMAC has presented the efficacy for treatment of nonunion and may contribute an available alternative to autologous cancellous bone graft. But large clinical application of BM-MSCs requires a more appropriate and profound scientific investigations. [Biomed Res Ther 2015; 2(12.000: 409-417

  19. Follicular Dendritic Cell Sarcoma of the Abdomen: the Imaging Findings

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook; Lee, Soon Jin; Song, Hye Jong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-04-15

    Follicular dendritic cell sarcoma is a rare neoplasm that originates from follicular dendritic cells in lymphoid follicles. This disease usually involves the lymph nodes, and especially the head and neck area. Rarely, extranodal sites may be affected, including tonsil, the oral cavity, liver, spleen and the gastrointestinal tract. We report here on the imaging findings of follicular dendritic cell sarcoma of the abdomen that involved the retroperitoneal lymph nodes and colon. It shows as a well-defined, enhancing homogenous mass with internal necrosis and regional lymphadenopathy.

  20. Loss of quiescence and impaired function of CD34+/CD38low cells one year following autologous stem cell transplantation

    OpenAIRE

    Woolthuis, Carolien M.; Brouwers-Vos, Annet Z.; Huls, Gerwin; de Wolf, Joost Th. M.; Schuringa, Jan Jacob; Vellenga, Edo

    2013-01-01

    Patients who have undergone autologous stem cell transplantation are subsequently more susceptible to chemotherapy-induced bone marrow toxicity. In the present study, bone marrow primitive progenitor cells were examined one year after autologous stem cell transplantation and compared with normal bone marrow and mobilized peripheral blood stem cells. Post-transplantation bone marrow contained a significantly lower percentage of quiescent cells in the CD34+/CD38low fraction compared to normal b...

  1. Vaccination with melanoma lysate-pulsed dendritic cells, of patients with advanced colorectal carcinoma: report from a phase I study

    DEFF Research Database (Denmark)

    Burgdorf, S K; Fischer, A; Claesson, M H; Kirkin, A F; Dzhandzhugazyan, K N; Rosenberg, J

    2006-01-01

    Immune therapy have shown new and exciting perspectives for cancer treatment. Aim of our study was to evaluate toxicity and possible adverse effects from vaccination of patients with advanced colorectal cancer with autologous dendritic cells (DC) pulsed with lysate from a newly developed melanoma...... selected melanoma cell line enriched in expression of MAGE-A antigens and deficient in expression of melanoma differentiation antigens: tyrosinase, MART-1 and gp100. Vaccinations were administered intradermally on the proximal thigh with a total of five given vaccines at 2 weeks intervals. Each vaccine...

  2. Human plasmacytoid dendritic cells: from molecules to intercellular communication network

    OpenAIRE

    Till Sebastian Manuel Mathan; Carl Gustav Figdor; Sonja Ingrid Buschow

    2013-01-01

    Plasmacytoid Dendritic Cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells (APCs), making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this ...

  3. Human Plasmacytoid Dendritic Cells: From Molecules to Intercellular Communication Network

    OpenAIRE

    Mathan, Till S. M.; Figdor, Carl G.; Buschow, Sonja I.

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review ...

  4. Interstitial and Langerhans' dendritic cells in chronic periodontitis and gingivitis

    OpenAIRE

    Patricia Ramos Cury; Cristiane Furuse; Ana Elisa Amaro Rodrigues; José Alexandre Barbuto; Cavalcanti de Araújo; Ney Soares de Araújo

    2008-01-01

    The aim of the present study was to compare quantitatively the distribution of dendritic cell subpopulations in chronic periodontitis and gingivitis. Fourteen biopsies from patients with chronic periodontitis and fifteen from patients with gingivitis were studied. An immunoperoxidase technique was used to quantify the number of Langerhans' cells (CD1a) and interstitial dendritic cells (factor XIIIa) in the oral and sulcular and junctional/pocket epithelia and in the lamina propria. A greater ...

  5. Baicalin induced dendritic cell apoptosis in vitro

    Directory of Open Access Journals (Sweden)

    HuahuaZhang

    2011-03-01

    Full Text Available This study was aimed to investigate the effects of Baicalin (BA, a major flavonoid constituent found in the herb Baikal skullcap, on dendritic cells (DCs. DCs were generated by culturing murine bone marrow cells for 6 days with granulocyte-macrophage colony-stimulating factor and interleukin-4, and lipopolysaccharide (LPS was added on day 5 to stimulate DCs maturation. The expression levels of DC maturity markers (CD80/CD86 were assessed by flow cytometry using direct immunofluorescence method. Interleukin-12 (IL-12 levels in the culture supernatants were assayed by ELISA. Apoptosis of DCs was analyzed by flow cytometry after Annexin V/propidium iodide staining. The mitochondrial membrane potential changes were measured by using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1. Exposure of DCs to BA (2-50 microM during bone marrow cell differentiation showed no effects on the up-regulation of CD80/CD86 expression on DCs in response to LPS stimulation, but reduced DCs recovery by inducing apoptosis, and significantly inhibited the release of IL-12 to culture supernatants. BA induced DC apoptosis in a time- and dose-dependent way, and immature DCs were more sensitive for BA-induced apoptosis than mature DC. BA also induced mitochondrial membrane potential changes in DCs. These results demonstrate that BA induces selective apoptosis in immature DCs possibly through mitochondria-mediated pathway.

  6. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  7. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  8. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh; Møller, Bjarne Kuno

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important for...... internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  9. Hepatitis B-related events in autologous hematopoietic stem cell transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    zcan; eneli; Zübeyde; Nur; zkurt; Kadir; Acar; Seyyal; Rota; Sahika; Zeynep; Aki; Zeynep; Arzu; Yegin; Münci; Yagci; Seren; zenirler; Gülsan; Türkz; Sucak

    2010-01-01

    AIM: To investigate the frequency of occult hepatitis B, the clinical course of hepatitis B virus (HBV) reactivation and reverse seroconversion and associated risk factors in autologous hematopoietic stem cell transplantation (HSCT) recipients. METHODS: This study was conducted in 90 patients undergoing autologous HSCT. Occult HBV infection was investigated by HBV-DNA analysis prior to transplantation, while HBV serology and liver function tests were screened prior to and serially after transplantation. HBV...

  10. Incidence and predictors of congestive heart failure after autologous hematopoietic cell transplantation

    OpenAIRE

    Armenian, Saro H; Sun, Can-Lan; Shannon, Tabitha; Mills, George; Francisco, Liton; Venkataraman, Kalyanasundaram; Wong, F. Lennie; Forman, Stephen J.; Bhatia, Smita

    2011-01-01

    Advances in autologous hematopoietic cell transplantation (HCT) strategies have resulted in a growing number of long-term survivors. However, these survivors are at increased risk of developing cardiovascular complications due to pre-HCT therapeutic exposures and conditioning and post-HCT comorbidities. We examined the incidence and predictors of congestive heart failure (CHF) in 1244 patients undergoing autologous HCT for a hematologic malignancy between 1988 and 2002. The cumulative inciden...

  11. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Directory of Open Access Journals (Sweden)

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  12. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  13. Deciphering dendritic cell heterogenity in immunity

    Directory of Open Access Journals (Sweden)

    Michaël eChopin

    2012-02-01

    Full Text Available Dendritic cells (DCs are specialized antigen presenting cells that are exquisitely adapted to sense pathogens and induce the development of adaptive immune responses. They form a complex network of phenotypically and functionally distinct subsets. Within this network, individual DC subsets display highly specific roles in local immunosurveillance, migration and antigen presentation. This division of labor amongst DCs offers great potential to tune the immune response by harnessing subset-specific attributes of DCs in the clinical setting. Until recently, our understanding of DC subsets has been limited and paralleled by poor clinical translation and efficacy. We have now begun to unravel how different DC subsets develop within a complex multilayered system. These finding open up exciting possibilities for targeted manipulation of DC subsets. Furthermore, ground-breaking developments overcoming a major translational obstacle – identification of similar DC populations in mouse and man – now set the stage for significant advances in the field. Here we explore the determinants that underpin cellular and transcriptional heterogeneity within the DC network, how these influence DC distribution and localization at steady-state, and the capacity of DCs to present antigens via direct or cross-presentation during pathogen infection.

  14. Dendritic Cells, Viruses, and the Development of Atopic Disease

    Directory of Open Access Journals (Sweden)

    Jonathan S. Tam

    2012-01-01

    Full Text Available Dendritic cells are important residents of the lung environment. They have been associated with asthma and other inflammatory diseases of the airways. In addition to their antigen-presenting functions, dendritic cells have the ability to modulate the lung environment to promote atopic disease. While it has long been known that respiratory viral infections associate with the development and exacerbation of atopic diseases, the exact mechanisms have been unclear. Recent studies have begun to show the critical importance of the dendritic cell in this process. This paper focuses on these data demonstrating how different populations of dendritic cells are capable of bridging the adaptive and innate immune systems, ultimately leading to the translation of viral illness into atopic disease.

  15. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  16. Autologous tumor antibody-pulsed dendritic cells combined with cytokine-induced killer cells in the clinical treatment of lung adenocarcinoma%自体肿瘤抗原致敏的树突状细胞联合细胞因子诱导杀伤细胞应用于肺腺癌治疗的临床研究

    Institute of Scientific and Technical Information of China (English)

    钟国成; 张小玉; 孙薏; 李硕; 匡红; 敬新蓉; 闵敏; 陈健

    2010-01-01

    目的:探讨负载自身肿瘤裂解物的树突状细胞(dendritic cells, DCs)联合细胞因子诱导杀伤 (cytokine induced killer, CIK) 细胞治疗肺腺癌的临床疗效及安全性.方法:选择30例肺腺癌患者,分离获得外周血单个核细胞(peripheral blood mononuclear cells, PBMCs),其中贴壁细胞经重组人粒细胞巨噬细胞集落刺激因子(recombinant human granulocyte-macrophage colony stimulating factor, rhGM-CSF)和重组人白细胞介素- 4(recombinant human interleukin-4, rhIL-4)诱导产生DCs,并负载自体肺腺癌细胞裂解物,培养获得Ag-DCs;悬浮细胞经干扰素-α(interferon,IFN-α)、白细胞介素-2(interleukin-2,IL-2)、抗CD3单克隆抗体和白细胞介素-1α(interleukin-1α,IL-1α)体外诱导产生CIK细胞; 将Ag-DCs与CIK细胞共培养,观察CIK细胞体外对肺腺癌细胞株A549和自体肿瘤细胞的杀伤活性;30 例患者接受Ag-DCs+CIK细胞过继免疫治疗,观察疗效.结果: Ag-DCs与CIK细胞共培养后,提高了CIK细胞对A549细胞和自体肿瘤细胞的杀伤活性;Ag-DCs联合CIK细胞治疗肺腺癌,可增强患者细胞免疫功能,改善生活质量,提高临床疗效;除一过性发热和畏寒外,未见其他不良反应.结论:Ag-DCs联合CIK细胞可作为中晚期肺腺癌的一种有效治疗手段.

  17. Follicular dendritic cell sarcoma of the pharyngeal region

    OpenAIRE

    HU, TENGPENG; Wang, Xinhua; Yu, Chang; YAN, JIAQIN; ZHANG, XUNDONG; Li, Ling; Li, Xin; Zhang, Lei; Wu, Jingjing; MA, WANG; Li, Wencai; Wang, Guannan; ZHAO, WUGAN; GAO, XIANZHENG; Zhang, Dandan

    2013-01-01

    Follicular dendritic cell sarcoma (FDCS) is a rare neoplasm arising most commonly from follicular dendritic cells in the lymph nodes. It is exceedingly rare in extranodal sites, particularly in the pharyngeal region. The present study reports 3 cases occurring in the pharyngeal region. Case 1 had tonsil and cervical lymph node involvement, while case 3 also had tonsil involvement. Cases 1 and 3 relapsed locally at 3 and 17 months after surgery, respectively. Case 2 was diagnosed with a tumor ...

  18. Dendritic Cells and Innate Immunity in Kidney Transplantation

    OpenAIRE

    Zhuang, Quan; Lakkis, Fadi G.

    2015-01-01

    Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by ...

  19. Dendritic cell reprogramming by the hypoxic environment.

    Science.gov (United States)

    Bosco, Maria Carla; Varesio, Luigi

    2012-12-01

    Myeloid dendritic cells (DCs) are professional antigen-presenting cells central to the orchestration of innate and acquired immunity and the maintenance of self-tolerance. The local microenvironment contributes to the regulation of DC development and functions, and deregulated DC responses may result in amplification of inflammation, loss of tolerance, or establishment of immune escape mechanisms. DC generation from monocytic precursors recruited at sites of inflammation, tissue damage, or neoplasia occurs under condition of low partial oxygen pressure (pO(2), hypoxia). We reviewed the literature addressing the phenotypic and functional changes triggered by hypoxia in monocyte-derived immature (i) and mature (m) DCs. The discussion will revolve around in vitro studies of gene expression profile, which give a comprehensive representation of the complexity of response of these cells to low pO(2). The gene expression pattern of hypoxic DC will be discussed to address the question of the relationship with a specific maturation stage. We will summarize data relative to the regulation of the chemotactic network, which points to a role for hypoxia in promoting a migratory phenotype in iDCs and a highly proinflammatory state in mDCs. Current knowledge of the strict regulatory control exerted by hypoxia on the expression of immune-related cell surface receptors will also be addressed, with a particular focus on a newly identified marker of hypoxic DCs endowed with proinflammatory properties. Furthermore, we discuss the literature on the transcription mechanisms underlying hypoxia-regulated gene expression in DCs, which support a major role for the HIF/HRE pathway. Finally, recent advances shedding light on the in vivo influence of the local hypoxic microenvironment on DCs infiltrating the inflamed joints of juvenile idiopathic arthritis patients are outlined. PMID:22901977

  20. Activated protein C modulates the proinflammatory activity of dendritic cells

    Directory of Open Access Journals (Sweden)

    Matsumoto T

    2015-05-01

    Full Text Available Takahiro Matsumoto,1,2* Yuki Matsushima,1* Masaaki Toda,1 Ziaurahman Roeen,1 Corina N D'Alessandro-Gabazza,1,5 Josephine A Hinneh,1 Etsuko Harada,1,3 Taro Yasuma,4 Yutaka Yano,4 Masahito Urawa,1,5 Tetsu Kobayashi,5 Osamu Taguchi,5 Esteban C Gabazza1 1Department of Immunology, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, 2BONAC Corporation, BIO Factory 4F, Fukuoka, 3Iwade Research Institute of Mycology, 4Department of Endocrinology, Diabetes and Metabolism, 5Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie Prefecture, Japan *These authors contributed equally to this work Background: Previous studies have demonstrated the beneficial activity of activated protein C in allergic diseases including bronchial asthma and rhinitis. However, the exact mechanism of action of activated protein C in allergies is unclear. In this study, we hypothesized that pharmacological doses of activated protein C can modulate allergic inflammation by inhibiting dendritic cells. Materials and methods: Dendritic cells were prepared using murine bone marrow progenitor cells and human peripheral monocytes. Bronchial asthma was induced in mice that received intratracheal instillation of ovalbumin-pulsed dendritic cells. Results: Activated protein C significantly increased the differentiation of tolerogenic plasmacytoid dendritic cells and the secretion of type I interferons, but it significantly reduced lipopolysaccharide-mediated maturation and the secretion of inflammatory cytokines in myeloid dendritic cells. Activated protein C also inhibited maturation and the secretion of inflammatory cytokines in monocyte-derived dendritic cells. Activated protein C-treated dendritic cells were less effective when differentiating naïve CD4 T-cells from Th1 or Th2 cells, and the cellular effect of activated protein C was mediated by its receptors. Mice that received adoptive transfer of activated protein C

  1. Dendritic cell – regulatory T-cell interaction

    Directory of Open Access Journals (Sweden)

    Justyna Wojas

    2010-03-01

    Full Text Available The one of the main modes of homeostasis protection is maintaining the balance between antimicrobial immunological reactions and mechanisms involved in immune response suppression. The interaction between dendritic and T cells plays a crucial role in inducing both an immune response and immunological tolerance. Dendritic cells are also able to affect the differentiation, migration, and activation of CD4 T cells using cell-to-cell contact and/or cytokine production. The proper cytokine microenvironment can influence the induction of FoxP3 transcription factor in T cells, determining the regulatory properties of these cells. However, it is still unclear what is more substantial for Treg induction: th e cytokines in the microenvironment, stimulation by a specific DC population, or the type of antigens presented by DC. Activated natural Treg as well as induced Treg cells use similar mechanisms to generate tolerance, for example by the production of such anti-inflammatory cytokines as TGF-β or IL-10 and by direct contact with target cells. Recently, some reports have described the possibility that Treg cells lose FoxP3 expression followed by loss of suppressive function directed against proliferating T lymphocytes.

  2. Dendritic cells in inflammatory sinonasal diseases.

    Science.gov (United States)

    Cao, P-P; Shi, L-L; Xu, K; Yao, Y; Liu, Z

    2016-07-01

    Dendritic cells (DCs) are critical in linking the innate and adaptive immune responses, which have been implicated in the pathogenesis of many immune and inflammatory diseases as well as the development of tumours. The role of DCs in the pathophysiology of lung diseases has been widely studied. However, the phenotype, subset and function of DCs in upper airways under physiological or pathological conditions remain largely undefined. Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are two important upper airway diseases with a high worldwide prevalence. Aberrant innate and adaptive immune responses have been considered to play an important role in the pathogenesis of AR and CRS. To this end, understanding the function of DCs in shaping the immune responses in sinonasal mucosa is critical in exploring the pathogenic mechanisms underlying AR and CRS as well as in developing novel therapeutic strategies. This review summarizes the phenotype, subset, function and regulation of DCs in sinonasal mucosa, particularly in the setting of AR and CRS. Furthermore, this review discusses the perspectives for future research and potential clinical utility focusing on DC pathways in the context of AR and CRS. PMID:27159777

  3. Ion channels modulating mouse dendritic cell functions.

    Science.gov (United States)

    Matzner, Nicole; Zemtsova, Irina M; Nguyen, Thi Xuan; Duszenko, Michael; Shumilina, Ekaterina; Lang, Florian

    2008-11-15

    Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions. PMID:18981098

  4. The effect of dendritic cells on the retinal cell transplantation

    International Nuclear Information System (INIS)

    The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy

  5. Kicking off adaptive immunity: the discovery of dendritic cells

    OpenAIRE

    Katsnelson, Alla

    2006-01-01

    In 1973, Ralph Steinman and Zanvil Cohn discovered an unusual looking population of cells with an unprecedented ability to activate naive T cells. Dubbed “dendritic cells,” these cells are now known as the primary instigators of adaptive immunity.

  6. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  7. Myeloablative Chemotherapy with Autologous Stem Cell Transplant for Desmoplastic Small Round Cell Tumor

    Directory of Open Access Journals (Sweden)

    Christopher J. Forlenza

    2015-01-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT, a rare, aggressive neoplasm, has a poor prognosis. In this prospective study, we evaluated the role of myeloablative chemotherapy, followed by autologous stem cell transplant in improving survival in DSRCT. After high-dose induction chemotherapy and surgery, 19 patients with chemoresponsive DSRCT underwent autologous stem cell transplant. Myeloablative chemotherapy consisted of carboplatin (400–700 mg/m2/day for 3 days + thiotepa (300 mg/m2/day for 3 days ± topotecan (2 mg/m2/day for 5 days. All patients were engrafted and there was no treatment-related mortality. Seventeen patients received radiotherapy to sites of prior or residual disease at a median of 12 weeks after transplant. Five-year event-free and overall survival were 11 ± 7% and 16 ± 8%, respectively. Two patients survive disease-free 16 and 19 years after transplant (both in complete remission before transplant. 14 patients had progression and died of disease at a median of 18 months following autologous transplant. These data do not justify the use of myeloablative chemotherapy with carboplatin plus thiotepa in patients with DSRCT. Alternative therapies should be considered for this aggressive neoplasm.

  8. Complete response of metastatic renal cancer with dendritic cell vaccine

    Directory of Open Access Journals (Sweden)

    Dall'Oglio Marcos

    2003-01-01

    Full Text Available INTRODUCTION: We report a case of metastatic renal cell carcinoma that presented involution following therapy with dendritic cells. CASE REPORT: Male, 51-year old patient underwent left radical nephrectomy in September 1999 due to renal cell carcinoma, evolved with recurrence of the neoplasia in January 2002, confirmed by resection of the lesion. A vaccine therapy based on dendritic cells was then performed during 5 months (4 applications. After this period, there was occurrence of new lesions, whose resection revealed areas of necrosis and inflammatory infiltrate. DISCUSSION: The outcome of renal cell carcinoma is influenced by prognostic factors that confer more aggressive tumor characteristics. However, in cases of recurrence, the systemic therapy with dendritic cells-based vaccine can be associated with a better outcome with regression of disease.

  9. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  10. Induction of an antitumor response using dendritic cells transfected with DNA constructs encoding the HLA-A*02:01-restricted epitopes of tumor-associated antigens in culture of mononuclear cells of breast cancer patients.

    Science.gov (United States)

    Sennikov, Sergey Vital'evich; Shevchenko, Julia Alexandrovna; Kurilin, Vasilii Vasil'evich; Khantakova, Julia Nikolaevna; Lopatnikova, Julia Anatol'evna; Gavrilova, Elena Vasil'evna; Maksyutov, Rinat Amirovich; Bakulina, Anastasiya Yur'evna; Sidorov, Sergey Vasil'evich; Khristin, Alexander Alexandrovich; Maksyutov, Amir Zakievich

    2016-02-01

    Advances in oncoimmunology related to the definition of the basic mechanisms of the formation of antitumor immune response, as well as the opening of tumor-associated antigens recognized by immune cells, allowed to start developing ways to influence the effector cells of the immune system to generate effective antitumor cytotoxic response. We investigated the possibility to stimulate an antitumor response in a culture of mononuclear cells of breast cancer patients by dendritic cells transfected with HLA-A*02:01-restricted DNA constructs. We isolated dendritic cells from peripheral blood monocytes and delivered our constructs to these cells by magnetic transfection. Additionally, a series of experiments with loading of dendritic cells with autologous tumor cell lysate antigens was conducted. We have shown that dendritic cells transfected with the HLA-A*02:01-restricted DNA constructs are effective in inducing an antitumor response in a culture of mononuclear cells of breast cancer patients. Dendritic cells transfected with DNA constructor dendritic cells loaded with lysate antigens revealed a comparable stimulated cytotoxic response of mononuclear cells to these two ways of antigen delivery. We conclude that using DNA constructs in conjunction with patient stratification by HLA type allows the application of transfected DCs as an effective method to stimulate antitumor immunity in vitro. PMID:26590947

  11. Fatal CMV-Infection after Autologous Stem Cell Transplantation in Refractory Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    László Váróczy

    2012-01-01

    Full Text Available High-dose chemotherapy followed by autologous stem cell transplantation can be a rescue for patients with severe refractory systemic lupus erythematosus (SLE. However, the procedure might have fatal complications including infections and bleeding. We report on a young female patient with SLE whose disease started in her early childhood. After many years, severe renal, neurological, and bone marrow involvement developed that did not respond to conventional therapy. She was selected for autologous stem cell transplantation. A successful peripheral stem cell apheresis was performed in March 2006. The nonselected graft was reinfused in August 2006 after a conditioning chemotherapy containing high-dose cyclophosphamide and antithymocyte globulin. Engraftment was detected within 11 days. On the 38th posttransplant day, severe cytomegalovirus (CMV infection developed that included pneumonitis, hepatitis, and pancytopenia. The patient died in a week due to multiorgan failure. With her case, we want to call the attention to this rare, but lethal complication of the autologous transplantation.

  12. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  13. P02.03INCREASED COUNTS OF NK AND NKT CELLS ARE ASSOCIATED WITH PROLONGED SURVIVAL IN PRIMARY GLIOBLASTOMA PATIENTS TREATED WITH DENDRITIC CELL IMMUNOTHERAPY IN COMBINATION WITH RADIO- AND CHEMO-THERAPY

    OpenAIRE

    Pellegatta, S.; Eoli, M.; Cantini, G.; Anghileri, E.; Antozzi, C.; S. Frigerio; Bruzzone, M.; Pollo, B; Parati, E; Finocchiaro, G.

    2014-01-01

    Two clinical studies, DENDR1 and DENDR2 including, respectively, the treatment of first diagnosis and recurrent glioblastoma (GB) patients with dendritic cells (DCs) loaded with autologous tumor lysate are currently active at Istituto Neurologico Besta, Milan. Our first results obtained on a group of recurrent GB patients demonstrated that the response of NK cells correlates with significantly prolonged survival. Here we provide results of the interim analysis on 22 patients affected by prima...

  14. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma: long-term follow-up

    NARCIS (Netherlands)

    Bjorkstrand, B.; Iacobelli, S.; Hegenbart, U.; Gruber, A.; Greinix, H.; Volin, L.; Narni, F.; Musto, P.; Beksac, M.; Bosi, A.; Milone, G.; Corradini, P.; Goldschmidt, H.; Witte, T.J.M. de; Morris, C.; Niederwieser, D.; Gahrton, G.

    2011-01-01

    PURPOSE: Results of allogeneic stem-cell transplantation (allo) in myeloma are controversial. In this trial autologous stem-cell transplantation (auto) followed by reduced-intensity conditioning matched sibling donor allo (auto-allo) was compared with auto only in previously untreated multiple myelo

  15. Research progresses in treating diabetic foot with autologous stem cell transplantation

    International Nuclear Information System (INIS)

    Because the distal arteries of lower extremities become narrowed or even occluded in diabetic foot, the clinical therapeutic results for diabetic foot have been unsatisfactory so far. Autologous stem cell transplantation that has emerged in recent years is a new, safe and effective therapy for diabetic foot, which achieves its excellent clinical success in restoring the blood supply of ischemic limb by way of therapeutic angiogenesis. Now autologous stem cell transplantation has become one of the hot points in medical research both at home and abroad, moreover, it has brought a new hope of cure to the patients with diabetic foot. (authors)

  16. Autologous Bone Marrow Stem Cell Infusion (AMBI therapy for Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Rajkumar JS

    2007-01-01

    Full Text Available Liver Cirrhosis is the end stage of chronic liver disease which may happen due to alcoholism, viral infections due to Hepatitis B, Hepatitis C viruses and is difficult to treat. Liver transplantation is the only available definitive treatment which is marred by lack of donors, post operative complications such as rejection and high cost. Autologous bone marrow stem cells have shown a lot of promise in earlier reported animal studies and clinical trials. We have in this study administered in 22 patients with chronic liver disease, autologous bone marrow stem cell whose results are presented herewith.

  17. Involvement of dendritic cells in autoimmune diseases in children

    Directory of Open Access Journals (Sweden)

    Reed Ann M

    2007-07-01

    Full Text Available Abstract Dendritic cells (DCs are professional antigen-presenting cells that are specialized in the uptake of antigens and their transport from peripheral tissues to the lymphoid organs. Over the last decades, the properties of DCs have been intensely studied and much knowledge has been gained about the role of DCs in various diseases and health conditions where the immune system is involved, particularly in cancer and autoimmune disorders. Emerging clues in autoimmune diseases, suggest that dendritic cell dysregulation might be involved in the development of various autoimmune disorders in both adults and children. However, studies investigating a possible contribution of DCs in autoimmune diseases in the pediatric population alone are scanty. The purpose of this review is to give a general overview of the current literature on the relevance of dendritic cells in the most common autoimmune conditions of childhood.

  18. Plasmacytoid dendritic cells migrate in afferent skin lymph.

    Science.gov (United States)

    Pascale, Florentina; Pascale, Florentia; Contreras, Vanessa; Bonneau, Michel; Courbet, Alexandre; Chilmonczyk, Stefan; Bevilacqua, Claudia; Epardaud, Mathieu; Eparaud, Mathieu; Niborski, Violeta; Riffault, Sabine; Balazuc, Anne-Marie; Foulon, Eliane; Guzylack-Piriou, Laurence; Riteau, Beatrice; Hope, Jayne; Bertho, Nicolas; Charley, Bernard; Schwartz-Cornil, Isabelle

    2008-05-01

    Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells. PMID:18424716

  19. CD8+ T cell priming by dendritic cell vaccines requires antigen transfer to endogenous antigen presenting cells.

    Directory of Open Access Journals (Sweden)

    Alice W Yewdall

    Full Text Available Immunotherapeutic strategies to stimulate anti-tumor immunity are promising approaches for cancer treatment. A major barrier to their success is the immunosuppressive microenvironment of tumors, which inhibits the functions of endogenous dendritic cells (DCs that are necessary for the generation of anti-tumor CD8+ T cells. To overcome this problem, autologous DCs are generated ex vivo, loaded with tumor antigens, and activated in this non-suppressive environment before administration to patients. However, DC-based vaccines rarely induce tumor regression.We examined the fate and function of these DCs following their injection using murine models, in order to better understand their interaction with the host immune system. Contrary to previous assumptions, we show that DC vaccines have an insignificant role in directly priming CD8+ T cells, but instead function primarily as vehicles for transferring antigens to endogenous antigen presenting cells, which are responsible for the subsequent activation of T cells.This reliance on endogenous immune cells may explain the limited success of current DC vaccines to treat cancer and offers new insight into how these therapies can be improved. Future approaches should focus on creating DC vaccines that are more effective at directly priming T cells, or abrogating the tumor induced suppression of endogenous DCs.

  20. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    Science.gov (United States)

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM. PMID:26758672

  1. Autologous stem-cell transplantation in refractory autoimmune diseases after in vivo immunoablation and ex vivo depletion of mononuclear cells

    OpenAIRE

    Rosen, Oliver; Thiel, Andreas; Massenkeil, Gero; Hiepe, Falk; Häupl, Thomas; Radtke, Hartmut; Burmester, Gerd R.; Gromnica-Ihle, Erika; Radbruch, Andreas; Arnold, Renate

    2000-01-01

    Introduction: Patients with persistently active autoimmune diseases are considered to be candidates for autologous SCT. We performed a phase 1/2 study in a limited number of patients who were refractory to conventional immunosuppressive treatment. Following a period of uncontrolled disease activity for at least 6 months, autologous SCT was performed, after in vivo immunoablation and ex vivo depletion of mononuclear cells. Aims: To investigate feasibility, toxicity and efficacy of the treatmen...

  2. In vivo migration of labeled autologous natural killer cells to liver metastases in patients with colon carcinoma

    Directory of Open Access Journals (Sweden)

    Satolli Maria A

    2006-11-01

    Full Text Available Abstract Background Besides being the effectors of native anti-tumor cytotoxicity, NK cells participate in T-lymphocyte responses by promoting the maturation of dendritic cells (DC. Adherent NK (A-NK cells constitute a subset of IL-2-stimulated NK cells which show increased expression of integrins and the ability to adhere to solid surface and to migrate, infiltrate, and destroy cancer. A critical issue in therapy of metastatic disease is the optimization of NK cell migration to tumor tissues and their persistence therein. This study compares localization to liver metastases of autologous A-NK cells administered via the systemic (intravenous, i.v. versus locoregional (intraarterial, i.a. routes. Patients and methods A-NK cells expanded ex-vivo with IL-2 and labeled with 111In-oxine were injected i.a. in the liver of three colon carcinoma patients. After 30 days, each patient had a new preparation of 111In-A-NK cells injected i.v. Migration of these cells to various organs was evaluated by SPET and their differential localization to normal and neoplastic liver was demonstrated after i.v. injection of 99mTc-phytate. Results A-NK cells expressed a donor-dependent CD56+CD16+CD3- (NK or CD56+CD16+CD3+ (NKT phenotype. When injected i.v., these cells localized to the lung before being visible in the spleen and liver. By contrast, localization of i.a. injected A-NK cells was virtually confined to the spleen and liver. Binding of A-NK cells to liver neoplastic tissues was observed only after i.a. injections. Conclusion This unique study design demonstrates that A-NK cells adoptively transferred to the liver via the intraarterial route have preferential access and substantial accumulation to the tumor site.

  3. Human thymic epithelial cells directly induce activation of autologous immature thymocytes.

    OpenAIRE

    Denning, S M; Kurtzberg, J; Le, P. T.; Tuck, D T; Singer, K H; Haynes, B. F.

    1988-01-01

    To study the role that epithelial cells of the thymic microenvironment play in promoting activation of immature CD7+, CD2+, CD4-, CD8- (double-negative) human thymocytes, we have isolated thymocyte subsets from normal postnatal thymus and have cocultured autologous double-negative thymocytes with pure populations of thymic epithelial (TE) cells. We report that TE cells directly activate double-negative thymocytes to proliferate and that TE cells enhance the ability of double-negative thymocyt...

  4. Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells

    NARCIS (Netherlands)

    J.J. García-Vallejo; M. Ambrosini; A. Overbeek; W.E. van Riel; K. Bloem; W.W.J. Unger; F. Chiodo; J.G. Bolscher; K. Nazmi; H. Kalay; Y. van Kooyk

    2013-01-01

    Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells

  5. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  6. Controversies in autologous and allogeneic hematopoietic cell transplantation in peripheral T/NK-cell lymphomas.

    Science.gov (United States)

    Shustov, Andrei

    2013-03-01

    Peripheral T-cell and NK-cell lymphomas (PT/NKCL) are a heterogeneous group of lymphoid neoplasms with poor outcomes. There is no consensus on the best front line therapy or management of relapsed/refractory disease. The use of autologous and allogeneic hematopoietic cell transplantation (HCT) has been studied in both settings to improve outcomes. Multiple retrospective and several prospective trials were reported. While at first sight the outcomes in the relapsed/refractory setting appear similar in B-cell and T-cell lymphomas when treated with high dose therapy (HDT) and autologous HCT, it is becoming obvious that only specific subtypes of PTCL benefit from this approach (i.e. anaplastic large cell lymphoma [ALCL] and angioimmunoblastic lymphoma [AITL] in second CR). In less favorable histologies, HDT seems to provide limited benefit, with the majority of patients experiencing post-transplant relapse. The use of autologous HCT to consolidate first remission has been evaluated in several prospective trials. Again, the best results were observed in ALCL, but the superiority of this approach over chemotherapy alone needs confirmation in randomized trials. In less favorable histologies, high-dose consolidation resulted in low survival rates comparable to those obtained with chemotherapy alone, and without randomized trials it is hard to recommend this strategy to all patients with newly diagnosed PT/NKCL. Allogeneic HCT might provide potent and potentially curative graft-vs-lymphoma effect and overcome chemotherapy resistance. Only a few studies have been reported to date on allogeneic HCT in PT/NKCL. Based on available data, eligible patients benefit significantly from this approach, with 50% or more patients achieving long-term disease control or cure, although at the expense of significant treatment related mortality (TRM). Reduced-intensity conditioning regimens appear to have lower TRM and might extend this approach to older patients. With the recent approval of

  7. Physiological problems in patients undergoing autologous and allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sevgisun Kapucu

    2014-01-01

    Full Text Available Objective: Stem cell transplantation is usually performed in an effort to extend the patient′s life span and to improve their quality of life. This study was conducted to determine the postoperative physiological effects experienced by patients who had undergone autologous and allogeneic stem cell transplantation. Methods: The research is a descriptive study conducted with a sample of 60 patients at Stem Cell Transplantation Units in Ankara. Percentile calculation and chi-square tests were used to evaluate the data. Results: When a comparison was made between patients who had undergone allogeneic Hematopoietic stem cell transplantation (HSCT and those who had undergone autologous HSCT, results indicated that problems occurred more often for the allogeneic HSCT patients. The problems included: Digestion (94.3%, dermatological (76.7%, cardiac and respiratory (66.7%, neurological (66.7%, eye (56.7%, infections (26.7% and Graft Versus Host Disease (5 patients. Furthermore, the problems with pain (50%, numbness and tingling (40%, and speech disorders (3 patients were observed more often in autologous BMT patients. Conclusion: Autologous and allogeneic patients experienced most of physical problems due to they receive high doses of chemotherapy. Therefore, it is recommended that an interdisciplinary support team approach should be usedtohelp reduce and manage the problems that may arise during patient care.

  8. Induced autologous stem cell transplantation for treatment of rabbit renal interstitial fibrosis.

    Directory of Open Access Journals (Sweden)

    Guang-Ping Ruan

    Full Text Available INTRODUCTION: Renal interstitial fibrosis (RIF is a significant cause of end-stage renal failure. The goal of this study was to characterize the distribution of transplanted induced autologous stem cells in a rabbit model of renal interstitial fibrosis and evaluate its therapeutic efficacy for treatment of renal interstitial fibrosis. METHODS: A rabbit model of renal interstitial fibrosis was established. Autologous fibroblasts were cultured, induced and labeled with green fluorescent protein (GFP. These labeled stem cells were transplanted into the renal artery of model animals at 8 weeks. RESULTS: Eight weeks following transplantation of induced autologous stem cells, significant reductions (P < 0.05 were observed in serum creatinine (SCr (14.8 ± 1.9 mmol/L to 10.1 ± 2.1 mmol/L and blood urea nitrogen (BUN (119 ± 22 µmol/L to 97 ± 13 µmol/L, indicating improvement in renal function. CONCLUSIONS: We successfully established a rabbit model of renal interstitial fibrosis and demonstrated that transplantation of induced autologous stem cells can repair kidney damage within 8 weeks. The repair occurred by both inhibition of further development of renal interstitial fibrosis and partial reversal of pre-existing renal interstitial fibrosis. These beneficial effects lead to the development of normal tissue structure and improved renal function.

  9. Intrathecal application of autologous bone marrow cell preparations in parkinsonian syndromes

    DEFF Research Database (Denmark)

    Storch, Alexander; Csoti, Ilona; Eggert, Karla;

    2012-01-01

    A growing number of patients is treated with intrathecal application of autologous bone marrow cells (aBMCs), but clinical data are completely lacking in movement disorders. We provide first clinical data on efficacy and safety of this highly experimental treatment approach in parkinsonian...

  10. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans

    OpenAIRE

    Cao, Yun; Bender, Ingrid K.; Konstantinidis, Athanasios K.; Shin, Soon Cheon; Jewell, Christine M.; Cidlowski, John A; Schleimer, Robert P.; Lu, Nick Z.

    2013-01-01

    Mature, but not immature, dendritic cells are sensitive to glucocorticoid-induced apoptosis.Mature, but not immature, dendritic cells express proapoptotic glucocorticoid receptor translational isoforms.

  11. Blastic plasmacytoid dendritic cell neoplasm with absolute monocytosis at presentation

    Directory of Open Access Journals (Sweden)

    Jaworski JM

    2015-02-01

    Full Text Available Joseph M Jaworski,1,2 Vanlila K Swami,1 Rebecca C Heintzelman,1 Carrie A Cusack,3 Christina L Chung,3 Jeremy Peck,3 Matthew Fanelli,3 Micheal Styler,4 Sanaa Rizk,4 J Steve Hou1 1Department of Pathology and Laboratory Medicine, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 2Department of Pathology, Mercy Fitzgerald Hospital, Darby, PA, USA; 3Department of Dermatology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 4Department of Hematology/Oncology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Blastic plasmacytoid dendritic cell neoplasm is an uncommon malignancy derived from precursors of plasmacytoid dendritic cells. Nearly all patients present initially with cutaneous manifestations, with many having extracutaneous disease additionally. While response to chemotherapy initially is effective, relapse occurs in most, with a leukemic phase ultimately developing. The prognosis is dismal. While most of the clinical and pathologic features are well described, the association and possible prognostic significance between peripheral blood absolute monocytosis (>1.0 K/µL and blastic plasmacytoid dendritic cell neoplasm have not been reported. We report a case of a 68-year-old man who presented with a rash for 4–5 months. On physical examination, there were multiple, dull-pink, indurated plaques on the trunk and extremities. Complete blood count revealed thrombocytopenia, absolute monocytosis of 1.7 K/µL, and a negative flow cytometry study. Biopsy of an abdominal lesion revealed typical features of blastic plasmacytoid dendritic cell neoplasm. Patients having both hematologic and nonhematologic malignancies have an increased incidence of absolute monocytosis. Recent studies examining Hodgkin and non-Hodgkin lymphoma patients have suggested that this is a negative prognostic factor. The association between

  12. Dendritic cells in asthma: a function beyond sensitization

    OpenAIRE

    Rijt, Leonie

    2004-01-01

    textabstractThe aim of this thesis is to characterize the involvement of dendritic cells in the induction and maintenance of the secondary immune response leading to an eosinophilic airway inflammation as seen in asthma. Special attention was attributed to the mechanisms by which these cells accumulate in the airways of challenged mice, to their interaction with primed CD4+ T cells as well as to their functional contribution to primed T cell activation. These questions were addressed in a wel...

  13. Human monocyte-derived dendritic cells turn into foamy dendritic cells with IL-17A.

    Science.gov (United States)

    Salvatore, Giulia; Bernoud-Hubac, Nathalie; Bissay, Nathalie; Debard, Cyrille; Daira, Patricia; Meugnier, Emmanuelle; Proamer, Fabienne; Hanau, Daniel; Vidal, Hubert; Aricò, Maurizio; Delprat, Christine; Mahtouk, Karène

    2015-06-01

    Interleukin 17A (IL-17A) is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases. In the field of immunometabolism, we have studied the impact of IL-17A on the lipid metabolism of human in vitro-generated monocyte-derived dendritic cells (DCs). Microarrays and lipidomic analysis revealed an intense remodeling of lipid metabolism induced by IL-17A in DCs. IL-17A increased 2-12 times the amounts of phospholipids, cholesterol, triglycerides, and cholesteryl esters in DCs. Palmitic (16:0), stearic (18:0), and oleic (18:ln-9c) acid were the main fatty acid chains present in DCs. They were strongly increased in response to IL-17A while their relative proportion remained unchanged. Capture of extracellular lipids was the major mechanism of lipid droplet accumulation, visualized by electron microscopy and Oil Red O staining. Besides this foamy phenotype, IL-17A induced a mixed macrophage-DC phenotype and expression of the nuclear receptor NR1H3/liver X receptor-α, previously identified in the context of atherosclerosis as the master regulator of cholesterol homeostasis in macrophages. These IL-17A-treated DCs were as competent as untreated DCs to stimulate allogeneic naive T-cell proliferation. Following this first characterization of lipid-rich DCs, we propose to call these IL-17A-dependent cells "foamy DCs" and discuss the possible existence of foamy DCs in atherosclerosis, a metabolic and inflammatory disorder involving IL-17A. PMID:25833686

  14. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  15. Effects of cytotoxic T lymphocytes on hepatoma cell line SMMC-7721 induced by different subsets of dendritic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jia-Xiang Wang; Guang-Hui Liu; Ying-Zhong Fan; Qiu-Liang Liu; Juan Zhou; Dong-Yun Zhang; Yuan-Ming Qi

    2006-01-01

    BACKGROUND:Dendritic cells (DCs) loaded with complex antigen are always used to induce cytotoxic T lymphocytes (CTLs) which have a speciifc anti-tumor activity. However, CTLs can assault autologous cells induced by DCs loaded with autologous antigen. This study aimed to explore how to weaken the autoimmune reaction induced by DC vaccine by combining mature DC (mDC) activating immunity and immature DC (imDC) leading to immune tolerance to make hepatocellular carcinoma (HCC) vaccine in vitro. METHODS: DC progenitors derived from human peripheral blood were assigned to two groups. One was cultured to mDC and pulsed with frozen-thawed antigen (FTA) of human HCC cell line SMMC-7721 cells (mDC group), and the other was cultured to imDC and pulsed with FTA of human liver cell line L-02 cells (imDC group). The morphology of DCs was monitored and cells phenotypes including HLA-DR, CD80, CD1α, CD83 were assayed by lfowcytometry (FCM). The concentrations of interleukin-12 (IL-12) in the supernatant were assayed by ELISA. Methyl thiazolyl tetrazolium (MTT) was used to evaluate T cell proliferation induced by mDC and imDC and the killing rate of CTL induced by mDC and imDC respectively/together on SMMC-7721 and L-02 cells. RESULTS: Compared with the imDC group, the mDC group was characterized by the following: increased secretion of IL-12 (P0.05). CTL induced by mDC and imDC together had a higher killing response to SMMC-7721, but a lower killing rate for L-02 (P CONCLUSIONS:CTL induced by mDC and imDC together has a higher antigen-speciifc killing response in vitro than that induced by mDC alone. This may be of greater clinical value.

  16. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122427,SRX122425,SRX122423,SRX122424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  17. File list: InP.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX122480,...82,SRX667878,SRX667880,SRX667876,SRX667874 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.50.AllAg.Dendritic_Cells.bed ...

  18. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...189,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  19. File list: Oth.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Dendritic_Cells.bed ...

  20. File list: Pol.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...88,SRX122458 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Dendritic_Cells.bed ...

  1. File list: Oth.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Dendritic_Cells.bed ...

  2. File list: ALL.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...95,SRX818194 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Dendritic_Cells.bed ...

  3. File list: ALL.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...96,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Dendritic_Cells.bed ...

  4. File list: Pol.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...88,SRX891789 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.10.AllAg.Dendritic_Cells.bed ...

  5. File list: Unc.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...181,SRX818182,SRX818188,SRX818202,SRX818195,SRX818194 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Dendritic_Cells.bed ...

  6. File list: InP.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX122480,...83,SRX667878,SRX667880,SRX667876,SRX667874 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Dendritic_Cells.bed ...

  7. File list: Unc.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122424,SRX122426,SRX122422,SRX122425,SRX122427,SRX122423 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Dendritic_Cells.bed ...

  8. File list: His.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2835,SRX742821,SRX742837 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Dendritic_Cells.bed ...

  9. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...203,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  10. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX885956,...76,SRX122481,SRX667880,SRX667874,SRX667878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  11. File list: Oth.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX122577,SRX122506,SRX122505 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Dendritic_Cells.bed ...

  12. File list: ALL.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX122407,S...424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Dendritic_Cells.bed ...

  13. File list: Oth.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Dendritic_Cells hg19 TFs and others Blood Dendritic Cells SRX62742...8,SRX627430 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Dendritic_Cells.bed ...

  14. File list: ALL.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...94,SRX818182 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Dendritic_Cells.bed ...

  15. File list: InP.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Dendritic_Cells.bed ...

  16. File list: ALL.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX835924,S...427,SRX122423,SRX122425 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Dendritic_Cells.bed ...

  17. File list: Pol.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Dendritic_Cells mm9 RNA polymerase Blood Dendritic Cells SRX330713...90,SRX891788 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Dendritic_Cells.bed ...

  18. File list: His.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2836,SRX742837,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Dendritic_Cells.bed ...

  19. File list: InP.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627427...,SRX627429 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Dendritic_Cells.bed ...

  20. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  1. File list: Unc.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...195,SRX818202,SRX818181,SRX818188,SRX818194,SRX818182 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Dendritic_Cells.bed ...

  2. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells mm9 Unclassified Blood Dendritic Cells SRX185717,S...RX122427,SRX122425,SRX122423,SRX122424,SRX122422,SRX122426 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  3. File list: His.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835922,SRX835...2837,SRX742836,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Dendritic_Cells.bed ...

  4. File list: Oth.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX708765,SRX041328,SRX041331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Dendritic_Cells.bed ...

  5. File list: His.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Dendritic_Cells mm9 Histone Blood Dendritic Cells SRX835924,SRX835...2820,SRX742836,SRX742834 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Dendritic_Cells.bed ...

  6. File list: ALL.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Dendritic_Cells hg19 All antigens Blood Dendritic Cells SRX818200,...96,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.Dendritic_Cells.bed ...

  7. File list: ALL.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Dendritic_Cells mm9 All antigens Blood Dendritic Cells SRX122407,S...765,SRX041328,SRX041331 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Dendritic_Cells.bed ...

  8. File list: Oth.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Dendritic_Cells mm9 TFs and others Blood Dendritic Cells SRX122407...RX122520,SRX122522,SRX122577 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Dendritic_Cells.bed ...

  9. [Monomorphic post-transplant T-lymphoproliferative disorder after autologous stem cell transplantation for multiple myeloma].

    Science.gov (United States)

    Ishikawa, Tetsuya; Shimizu, Hiroaki; Takei, Toshifumi; Koya, Hiroko; Iriuchishima, Hirono; Hosiho, Takumi; Hirato, Junko; Kojima, Masaru; Handa, Hiroshi; Nojima, Yoshihisa; Murakami, Hirokazu

    2016-01-01

    We report a rare case of T cell type monomorphic post-transplant lymphoproliferative disorders (PTLD) after autologous stem cell transplantation. A 53-year-old man with multiple myeloma received autologous stem cell transplantation and achieved a very good partial response. Nine months later, he developed a high fever and consciousness disturbance, and had multiple swollen lymph nodes and a high titer of Epstein-Barr (EB) virus DNA in his peripheral blood. Neither CT nor MRI of the brain revealed any abnormalities. Cerebrospinal fluid contained no malignant cells, but the EB virus DNA titer was high. Lymph node biopsy revealed T cell type monomorphic PTLD. Soon after high-dose treatment with methotrexate and cytosine arabinoside, the high fever and consciousness disturbance subsided, and the lymph node swelling and EB virus DNA disappeared. Given the efficacy of chemotherapy in this case, we concluded that the consciousness disturbance had been induced by central nervous system involvement of monomorphic PTLD. PMID:26861102

  10. Comparison of murine hepatic accessory cells and splenic dendritic cells

    International Nuclear Information System (INIS)

    Accessory cells are required for proliferation and antibody synthesis of B lymphocytes and proliferation of T lymphocytes in primary immune responses in vitro. The obligatory cells derived from the spleen are referred to as dendritic cells. Accessory cells were isolated from normal adult livers which were functionally interchangeable with splenic DC. Both hepatic accessory cells (AC) and splenic DC adhere firmly to plastic culture dishes or wells within 2 hr; but hepatic AC, unlike splenic DC, do not detach during 22 hr additional incubation. Hepatic AC, unlike splenic DC, are not lysed or inactivated by monoclonal antibody 33D1 and C'. Hepatic AC and splenic DC are similarly sensitive to irradiation in vivo and insensitive to irradiation in vitro. Hepatic AC are separated with cells which are predominantly phagocytic and FcR+ and contain nonspecific esterase. Both hepatic AC and splenic DC are suppressed or eliminated by activation of NK cells in vivo, a phenomenon prevented by prior elimination of NK cells

  11. Role of plasmacytoid dendritic cells in breast cancer bone dissemination

    OpenAIRE

    Sawant, Anandi; Ponnazhagan, Selvarangan

    2013-01-01

    Elevated levels of plasmacytoid dendritic cells (pDC) have been observed as breast cancer disseminates to the bone. The selective depletion of pDC in mice led to a total abrogation of bone metastasis as well as to an increase in TH1 antitumor response, suggesting that pDC may be considered as a potential therapeutic target for metastatic breast cancer.

  12. Dendritic Cell Protection from Cisplatin Nephrotoxicity Is Independent of Neutrophils

    Directory of Open Access Journals (Sweden)

    Raghu K. Tadagavadi

    2015-08-01

    Full Text Available Cisplatin is a very effective chemotherapeutic agent used against a wide range of solid tumors. A major adverse effect of cisplatin therapy is acute kidney injury (AKI. Neutrophils are reported to infiltrate and exacerbate injury in a wide range of sterile inflammatory models of tissue injury. Here, we studied the kinetics of neutrophil infiltration into kidneys and their role in cisplatin-mediated AKI. Mice treated with cisplatin showed an increase in circulating neutrophils 24 and 48 h after cisplatin administration. Cisplatin treatment caused an increase in kidney leukocytes with neutrophils accounting for the majority of the infiltrating leukocytes. The extent of neutrophil infiltration coincided with the severity of kidney injury and renal dysfunction. To examine the functional relevance of infiltrating neutrophils in cisplatin nephrotoxicity, we depleted neutrophils using a neutrophil-specific antibody (anti-Ly-6G. This antibody resulted in greater than 90% depletion of neutrophils in both the blood and kidney. Of note, depletion of neutrophils had no impact on the extent of cisplatin-induced AKI as compared to non-depleted mice. Earlier, we reported that dendritic cell depletion in CD11c-DTRtg mice causes exacerbation of AKI and a dramatic increase in renal neutrophils. Thus, we also examined the role of neutrophils in dendritic cell-depleted mice treated with cisplatin. Dendritic cell depletion exacerbated AKI in spite of neutrophil depletion. These data demonstrate that cisplatin nephrotoxicity is not mediated by neutrophils and that dendritic cells protect kidneys via neutrophil-independent mechanisms.

  13. Genetically modified dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 47, č. 5 (2001), s. 153-155. ISSN 0015-5500 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * cancer vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.519, year: 2001

  14. Genetically engineered dendritic cell-based cancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 18, č. 3 (2001), s. 475-478. ISSN 1019-6439 R&D Projects: GA MZd NC5526 Keywords : dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.330, year: 2001

  15. Activation of human dendritic cells by gliadin and LPS

    Czech Academy of Sciences Publication Activity Database

    Pecharová, Barbara; Palová-Jelínková, Lenka; Roková, D.; Cinová, Jana; Šedivá, A.; Tlaskalová, Helena; Spíšek, R.; Tučková, Ludmila

    New York : Columbia University, 2006, s. 54-54. [International Celiac Disease Symposium /12./. New York (US), 09.11.2006-11.11.2006] R&D Projects: GA ČR GA310/05/2245 Institutional research plan: CEZ:AV0Z50200510 Keywords : dendritic cells * gliadin * peptides Subject RIV: EE - Microbiology, Virology

  16. Stimulation effects of gliadin to human dendritic cells

    Czech Academy of Sciences Publication Activity Database

    Pecharová, Barbara; Palová-Jelínková, Lenka; Rožková, D.; Bártová, J.; Šedivá, A.; Tlaskalová, Helena; Spíšek, R.; Tučková, Ludmila

    Praha : Verlag, 2006, s. 93-93. [Meeting of European Mucosal Immunology Group /5./. Praha (CZ), 05.10.2006-07.10.2006] R&D Projects: GA AV ČR IAA5020210 Institutional research plan: CEZ:AV0Z50200510 Keywords : dendritic cells * antigen * gliadin peptides Subject RIV: EE - Microbiology, Virology

  17. The dendritic density field of a cortical pyramidal cell

    Directory of Open Access Journals (Sweden)

    Hermann eCuntz

    2012-02-01

    Full Text Available Much is known about the computation in individual neurons in the cortical column. Also, the selective connectivity between many cortical neuron types has been studied in great detail. But due to the complexity of this microcircuitry its functional role within the cortical column remains a mystery. Some of the wiring behavior between neurons can be interpreted directly from their particular dendritic and axonal shapes. Here, I describe the dendritic density field as one key element that remains to be better understood. I sketch an approach to relate dendritic density fields in general to their underlying potential connectivity schemes. As an example, I show how the characteristic shape of a cortical pyramidal cell appears as a direct consequence of connecting inputs arranged in two separate parallel layers.

  18. Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors

    OpenAIRE

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L.; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B.; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich

    2012-01-01

    The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ+-derived cells abolished FDC, indicating that FDC originate from PDGFRβ+ cells. Lymphotoxin-α-overexpressing pr...

  19. Redefining the role of dendritic cells in periodontics

    OpenAIRE

    Gomathinayagam Venkatesan; Ashita Uppoor; Naik, Dilip G.

    2013-01-01

    A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed. DCs consist of a family of antigen presenting cells, which are bone-marrow-derived cells that patrol all tissues of the body with the possible exceptions of the brain and te...

  20. Dendritic cell-based in vitro assays for vaccine immunogenicity

    OpenAIRE

    Vandebriel, Rob J.; Hoefnagel, Marcel H. N.

    2012-01-01

    Dendritic cells (DC) are pivotal in the induction of adaptive immune responses because they can activate naive T-cells. Moreover, they steer these adaptive immune responses by integrating various stimuli, such as from different pathogen associated molecular patterns and the cytokine milieu. Immature DC are very well capable of ingesting protein antigens, whereas mature DC are efficient presenters of peptides to naive T cells. Human DC can be readily cultured from peripheral blood mononuclear ...

  1. Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Early clinical trials, mostly in the setting of melanoma, have shown that dendritic cells (DCs) expressing tumor antigens induce some immune responses and some clinical responses. A major difficulty is the extension to other tumors, such as breast carcinoma, for which few defined tumor-associated antigens are available. We have demonstrated, using both prostate carcinoma and melanoma as model systems, that DCs loaded with killed allogeneic tumor cell lines can induce CD8+ T cells to differentiate into cytotoxic T lymphocytes (CTLs) specific for shared tumor antigens. The present study was designed to determine whether DCs would capture killed breast cancer cells and present their antigens to autologous CD4+ and CD8+ T cells. We show that killed breast cancer cells are captured by immature DCs that, after induced maturation, can efficiently present MHC class I and class II peptides to CD8+ and CD4+ T lymphocytes. The elicited CTLs are able to kill the target cells without a need for pretreatment with interferon gamma. CTLs can be obtained by culturing the DCs loaded with killed breast cancer cells with unseparated peripheral blood lymphocytes, indicating that the DCs can overcome any potential inhibitory effects of breast cancer cells. Loading DCs with killed breast cancer cells may be considered a novel approach to breast cancer immunotherapy and to identification of shared breast cancer antigens

  2. Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells.

    Science.gov (United States)

    Nestle, F O; Burg, G; Fäh, J; Wrone-Smith, T; Nickoloff, B J

    1997-02-01

    Immune surveillance of skin cancer involves the stimulation of effector T cells by tumor-derived antigens and antigen-presenting cells (APCs). An effective APC must not only display processed antigen in the context of MHC molecules but also express co-stimulatory molecules that are required to fully activate T cells. One of the most common cutaneous neoplasms is basal cell carcinoma. To investigate expression of the co-stimulatory molecules CD80 (B7-1) and CD86 (B7-2) on tumor-associated dendritic cells (TADCs), cryosections from basal cell carcinomas were immunostained. In basal cell carcinomas, only 1 to 2% of intratumor and 5 to 10% of peritumor APCs expressed CD80 or CD86. In contrast, biopsies of immunological/inflammatory dermatoses revealed that 38 to 73% of APCs expressed CD80 and CD86. To further evaluate their phenotype and function, TADCs were isolated from tissue samples of basal cell carcinomas; they were non-adherent to plastic, displayed a typical dendritic morphology, and expressed high levels of major histocompatibility class II molecules on their surface. When TADCs were compared with dendritic cells from blood for presentation of superantigens (staphylococcal enterotoxins A and B) to resting autologous T cells, TADCs were consistently weaker stimulators of T cell proliferation than blood dendritic cells. When analyzed by flow cytometry, TADCs expressed high levels of HLA-DR, but only 5 to 10% co-expressed CD80 or CD86. A 3-day culture in granulocyte/macrophage colony-stimulating factor-containing medium partially reconstituted the TADC expression of CD80 and CD86 as well as their immunostimulatory capacity. Thus, in this common skin cancer, although there are prominent collections of HLA-DR-positive APCs in and around tumor cells, the TADCs are deficient in important co-stimulatory molecules as well as being weak stimulators of T cell proliferation. The paucity of co-stimulatory molecule expression and functional activity of TADCs may explain why

  3. Concise Review: Guidance in Developing Commercializable Autologous/Patient-Specific Cell Therapy Manufacturing

    OpenAIRE

    Eaker, Shannon; Armant, Myriam; Brandwein, Harvey; Burger, Scott; Campbell, Andrew; Carpenito, Carmine; Clarke, Dominic; Fong, Timothy; Karnieli, Ohad; Niss, Knut; van"t Hof, Wouter; Wagey, Ravenska

    2013-01-01

    In this technical review, members of the International Society for Cell Therapy (ISCT) provide guidance in developing commercializable autologous and patient-specific manufacturing strategies from the perspective of process development. Guidance is provided to help small academic or biotech researchers determine what questions can be addressed at the bench level in order to make their cell therapy products more feasible for commercial-scale production.

  4. Intra-arterial Autologous Bone Marrow Cell Transplantation in a Patient with Upper-extremity Critical Limb Ischemia

    International Nuclear Information System (INIS)

    Induction of therapeutic angiogenesis by autologous bone marrow mononuclear cell transplantation has been identified as a potential new option in patients with advanced lower-limb ischemia. There is little evidence of the benefit of intra-arterial cell application in upper-limb critical ischemia. We describe a patient with upper-extremity critical limb ischemia with digital gangrene resulting from hypothenar hammer syndrome successfully treated by intra-arterial autologous bone marrow mononuclear cell transplantation.

  5. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive tract

    Institute of Scientific and Technical Information of China (English)

    Wei Liang; Hui Wang; Tie-Mie Sun; Wen-Qing Yao; Li-Li Chen; Yu Jin; Chun-Ling Li; Fan-Juan Meng

    2003-01-01

    AIM: To treat patients with stage Ⅰ-Ⅳ malignant tumors of digestive tract using autologous tumor cell vaccine and NDV (Newcastle disease virus) vaccine, and observe the survival period and curative effect.METHODS: 335 patients with malignant tumors of digestive tract were treated with autologous tumor cell vaccine and NDV vaccine. The autologous tumor cell vaccine were assigned for long-term survival observation. While these failed to obtain the autologous tumor tissue were given with NDV vaccine for a short-term observation on curative effect.RESULTS: The colorectal cancer patients treated with autologous tumor cell vaccine were divided into two groups:the controlled group (subjected to resection alone) (n=257),the vaccine group (subjected to both resection and immunotherapy) (n=310). 25 patients treated with NDV immunotherapy were all at stage Ⅳ without having resection.In postoperation adjuvant therapy patients, the 5, 6 and 7-year survival rates were 66.51%, 60.52 %, 56.50 %respectively; whereas in patients with resection alone, only 45.57 %, 44.76 % and 43.42 % respectively. The average survival period was 5.13 years (resection alone group 4.15years), the median survival period was over 7 years (resection alone group 4.46 years). There were significant differences between the two groups. The patients treated with resection plus vaccine were measured delayed-type hypersensitivity (DTH) reactions after vaccination, (indurative scope >5 mm).The magnitude of DTH was related to the prognosis. The 5-year survival rate was 80 % for those with indurations greater than 5 mm, compared with 30 % for those with indurations less than 5 mm. The 1-year survival rate was 96 % for 25patients treated with NDV immunotherapy. The total effective rate (CR+PR) was 24.00 % in NDV immunotherapy; complete remission (CR) in 1 case (4.00 %), partial remission (PR) in 5 cases (20.00 %), stabilizedin in 16 cases (64.00 %),progression (PD) in 1 case (4.00 %). After NDV vaccine

  6. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  7. High dose therapy with autologous stem cell support in malignant disorders

    International Nuclear Information System (INIS)

    New biomedical knowledge may improve the diagnostic procedures and treatment provided by the Health Services, but at additional cost. In a social democratic health care system, the hospital budgets have no room for expensive, new procedures or treatments, unless these are funded through extra allocation from the central authorities. High dose therapy with autologous stem cell support in malignant disorders is an example of a new and promising, but rather expensive treatment, but its role in cancer therapy has yet to be established. The indications for testing high dose therapy with autologous stem cell support in various malignancies are discussed, with emphasis on the principles for deciding which categories of disease should have priority. The authors suggest some malignant disorder for which high dose therapy with stem cell support should be explored versus conventional treatment in randomized prospective trials. 8 refs., 1 tab

  8. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-11-01

    Full Text Available Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  9. Two cases of extranodal follicular dendritic cell sarcoma

    Institute of Scientific and Technical Information of China (English)

    王坚; 孔蕴仪; 陆洪芬; 许越香

    2003-01-01

    @@ Follicular dendritic cell (FDC) is an essential component of the nonlymphoid, nonphagocytic immunoaccessory reticulum cells of the peripheral lymphoid tissue.1 Follicular dendritic cell sarcoma (FDCs) are confined largely to the primary and secondary B-cell follicles, where they form a tight interlacing meshwork. They play a role in the capture and presentation of antigens, generation and regulation of immune complexes. FDCs can be recognized morphologically by their indistinct cellular borders, pale eosinophilic cytoplasm, round-to-ovoid nuclei with delicate nuclear membranes and clear-to-vesicular chromatin with inconspicuous or small nucleoli. FDCs are best identified through immunostaining using CD21, CD35, R4/23, KiM4, KiM4p and Ki-FDC1p.

  10. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Andersen, Niels S; Pedersen, Lone B; Laurell, Anna;

    2009-01-01

    PURPOSE: Minimal residual disease (MRD) is predictive of clinical progression in mantle-cell lymphoma (MCL). According to the Nordic MCL-2 protocol we prospectively analyzed the efficacy of pre-emptive treatment using rituximab to MCL patients in molecular relapse after autologous stem cell...

  11. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease. PMID:20357073

  12. Leishmania donovani Lipophosphoglycan : Modulation of Macrophage and Dendritic Cell Function

    OpenAIRE

    Tejle, Katarina

    2006-01-01

    Leishmania donovani is a blood-borne tropicial parasite, which infects humans through bites by Phlebotomus sandflies. The parasite survives and multiplies inside macrophages in inner organs, and causes the deadly disease visceral leishmaniasis (Kala-Azar). Macrophages and dendritic cells (DC) are professional antigen-presenting cells involved in the initiation of immune responses. Immature DC are present in all tissues where they internalise and process antigen, in response to which they migr...

  13. Dendritic Cell Responses to Surface Properties of Clinical Titanium Surfaces

    OpenAIRE

    Kou, Peng Meng; Schwartz, Zvi; Boyan, Barbara D; Babensee, Julia E.

    2010-01-01

    Dendritic cells (DCs) play pivotal roles in responding to foreign entities during an innate immune response and initiating effective adaptive immunity as well as maintaining immune tolerance. The sensitivity of DCs to foreign stimuli also makes them useful cells to assess the inflammatory response to biomaterials. Elucidating the material property-DC phenotype relationships using a well-defined biomaterial system is expected to provide criteria for immuno-modulatory biomaterial design. Clinic...

  14. Follicular Dendritic Cells and Dissemination of Creutzfeldt-Jakob Disease

    OpenAIRE

    Manuelidis, Laura; Zaitsev, Igor; Koni, Pandelakis; Yun Lu, Zhi; Richard A Flavell; Fritch, William

    2000-01-01

    The contribution of immune system cells to the propagation of transmissible encephalopathies is not well understood. To determine how follicular dendritic cells (FDC) may act, we challenged lymphotoxin β null and wild-type (wt) controls with a Creutzfeldt-Jakob disease (CJD) agent. There was only a small difference in incubation time to clinical disease even after peripheral challenge with low infectious doses (31 in a total of 410 days). Brain pathology with extensive microglial infiltration...

  15. Dendritic Cells for Real-Time Anomaly Detection

    OpenAIRE

    Greensmith, Julie; Aickelin, Uwe

    2006-01-01

    Dendritic Cells (DCs) are innate immune system cells which have the power to activate or suppress the immune system. The behaviour of human DCs is abstracted to form an algorithm suitable for anomaly detection. We test this algorithm on the real-time problem of port scan detection. Our results show a significant difference in artificial DC behaviour for an outgoing portscan when compared to behaviour for normal processes.

  16. Retinal Ganglion Cell Dendritic Atrophy in DBA/2J Glaucoma

    OpenAIRE

    Williams, Pete A.; Howell, Gareth R.; Barbay, Jessica M.; Braine, Catherine E.; Sousa, Gregory L.; John, Simon W. M.; Morgan, James E.

    2013-01-01

    Glaucoma is a complex disease affecting an estimated 70 million people worldwide, characterised by the progressive degeneration of retinal ganglion cells and accompanying visual field loss. The common site of damage to retinal ganglion cells is thought to be at the optic nerve head, however evidence from other optic neuropathies and neurodegenerative disorders suggests that dendritic structures undergo a prolonged period of atrophy that may accompany or even precede soma loss and neuronal cel...

  17. Dendritic Cells for Real-Time Anomaly Detection

    CERN Document Server

    Greensmith, Julie

    2010-01-01

    Dendritic Cells (DCs) are innate immune system cells which have the power to activate or suppress the immune system. The behaviour of human of human DCs is abstracted to form an algorithm suitable for anomaly detection. We test this algorithm on the real-time problem of port scan detection. Our results show a significant difference in artificial DC behaviour for an outgoing portscan when compared to behaviour for normal processes.

  18. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines

    OpenAIRE

    Shigeo Koido

    2016-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whol...

  19. Murine and Human Model Systems for the Study of Dendritic Cell Immunobiology.

    Science.gov (United States)

    Hargadon, Kristian M

    2016-03-01

    Dendritic cells are a population of innate immune cells that possess their own effector functions as well as numerous regulatory properties that shape the activity of other innate and adaptive cells of the immune system. Following their development from either lymphoid or myeloid progenitors, the function of dendritic cells is tightly linked to their maturation and activation status. Differentiation into specialized subsets of dendritic cells also contributes to the diverse immunologic functions of these cells. Because of the key role played by dendritic cells in the regulation of both immune tolerance and activation, significant efforts have been focused on understanding dendritic cell biology. This review highlights the model systems currently available to study dendritic cell immunobiology and emphasizes the advantages and disadvantages to each system in both murine and human settings. In particular, in vitro cell culture systems involving immortalized dendritic cell lines, ex vivo systems for differentiating and expanding dendritic cells from their precursor populations, and systems for expanding, ablating, and manipulating dendritic cells in vivo are discussed. Emphasis is placed on the contribution of these systems to our current understanding of the development, function, and immunotherapeutic applications of dendritic cells, and insights into how these models might be extended in the future to answer remaining questions in the field are discussed. PMID:25203775

  20. A Rat Model of Autologous Oral Mucosal Epithelial Transplantation for Corneal Limbal Stem Cell Failure

    Institute of Scientific and Technical Information of China (English)

    Weihua Li; Qiaoli Li; Wencong Wang; Kaijing Li; Shiqi Ling; Yuanzhe Yang; Lingyi Liang

    2014-01-01

    Purpose:.To establish an animal model of autologous oral mucosa grafting for limbal stem cell deficiency. Methods:.The study was carried from August to October 2012. Fourteen SD rats were randomly and evenly allocated to study group A and control group B. Limbal stem cell defi-ciency was established by alkali burn in the right eye of each rat in both groups. Rats in group A received autologous oral mucosa strip transplantation following the chemical burn. Rats in group B did not receive surgery after the chemical burn. Topical antibiotics and dexamethasone were used in all rats. Corneal clarity,.corneal fluorescein staining,.oral mucosal graft survival, and complications at postoperative days 1,3,7, 14 were observed. Results:.The oral mucosa strip graft was detached in one rat in group A. Reepithelialization was observed starting from the graft position and was completed within 14 days in the re-maining 6 eyes in group A. However, persistent corneal ep-ithelium defect was observed in all eyes in group B, among which corneal melting and perforation was observed in 2 eyes and corneal opacification with neovascularization was ob-served in the remaining 5 eyes. Conclusion:.Autologous oral mucosa strip grafting for limbal stem cell deficiency can be achieved by a rat model following chemical burn. The fate of the transplanted oral mucosal ep-ithelial cells warrants further study. (Eye Science 2014; 29:1-5).

  1. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    OpenAIRE

    Stefania Bruno; Cristina Grange; Marta Tapparo; Chiara Pasquino; Renato Romagnoli; Ennia Dametto; Antonio Amoroso; Ciro Tetta; Giovanni Camussi

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell co...

  2. Noncultured Autologous Adipose-Derived Stem Cells Therapy for Chronic Radiation Injury

    Directory of Open Access Journals (Sweden)

    Sadanori Akita

    2010-01-01

    Full Text Available Increasing concern on chronic radiation injuries should be treated properly for life-saving improvement of wound management and quality of life. Recently, regenerative surgical modalities should be attempted with the use of noncultured autologous adipose-derived stem cells (ADSCs with temporal artificial dermis impregnated and sprayed with local angiogenic factor such as basic fibroblast growth factor, and secondary reconstruction can be a candidate for demarcation and saving the donor morbidity. Autologous adipose-derived stem cells, together with angiogenic and mitogenic factor of basic fibroblast growth factor and an artificial dermis, were applied over the excised irradiated skin defect and tested for Patients who were uneventfully healed with minimal donor-site morbidity, which lasts more than 1.5 years.

  3. The Current Immune Function of Hepatic Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Willy Hsu; Shang-An Shu; Eric Gershwin; Zhe-Xiong Lian

    2007-01-01

    While only a small percentage of the liver as dendritic cells, they play a major role in the regulation of liver immunity. Four major types of dendritic cell subsets include myeloid CD8α-B220-, lymphoid CD8α+B220-,plasmacytoid CD8α-B220+, and natural killer dendritic cell with CD8α-B220-NK1.1+ phenotype. Although these subsets have slightly different characteristics, they are all poor na(i)ve T cell stimulators. In exchange for their reduced capacity for allostimulation, hepatic DCs are equipped with an enhanced ability to secrete cytokines in response to TLR stimulation. In addition, they have increased level of phagocytosis. Both of these traits suggest hepatic DC as part of the innate immune system. With such a high rate of exposure to the dietary and commensal antigens, it is important for the hepatic DCs to have an enhanced innate response while maintaining a tolerogenic state to avoid chronic inflammation. Only upon secondary infectivity does the hepatic DC activate memory T cells for rapid eradication of recurring pathogen. On the other hand, overly tolerogenic characteristics of hepatic DC may be responsible for the increase prevalence of autoimmunity or liver malignancies.

  4. Evaluation of two different dendritic cell preparations with BCG reactivity

    Directory of Open Access Journals (Sweden)

    Fol Marek

    2016-01-01

    Full Text Available Dendritic cells (DCs play a key-role in the immune response against intracellular bacterial pathogens, including mycobacteria. Monocyte-derived dendritic cells (MoDCs are considered to behave as inflammatory cell populations. Different immunomagnetic methods (positive and negative can be used to purify monocytes before their in vitro differentiation and their culture behavior can be expected to be different. In this study we evaluated the reactivity of two dendritic cell populations towards the Bacillus Calmette-Guérin (BCG antigen. Monocytes were obtained from the blood of healthy donors, using positive and negative immunomagnetic separation methods. The expression of DC-SIGN, CD86, CD80, HLA-DR and CD40 on MoDCs was estimated by flow cytometry. The level of IL-12p70, IL-10 and TNF-α was measured by ELISA. Neither of the tested methods affected the surface marker expression of DCs. No significant alteration in immunological response, measured by cytokine production, was noted either. After BCG stimulation, the absence of IL-12, but the IL-23 production was observed in both cell preparations. Positive and negative magnetic separation methods are effective techniques to optimize the preparation of monocytes as the source of MoDCs for potential clinical application.

  5. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    Science.gov (United States)

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  6. Human autologous serum as a substitute for fetal bovine serum in human Schwann cell culture.

    Directory of Open Access Journals (Sweden)

    Parisa Goodarzi

    2014-04-01

    Full Text Available Nowadays, cell -based and tissue engineered products have opened new horizons in treatment of incurable nervous system disorders. The number of studies on the role of Schwann cells (SC in treating nervous disorders is higher than other cell types. Different protocols have been suggested for isolation and expansion of SC which most of them have used multiple growth factors, mitogens and fetal bovine sera (FBS in culture medium. Because of potential hazards of animal-derived reagents, this study was designed to evaluate the effect of replacing FBS with human autologous serum (HAS on SC's yield and culture parameters. Samples from 10 peripheral nerve biopsies were retrieved and processed under aseptic condition. The isolated cells cultured in FBS (1st group or autologous serum (2nd group. After primary culture the cells were seeded at 10000 cell/cm2 in a 12 wells cell culture plate for each group. At 100% confluency, the cell culture parameters (count, viability, purity and culture duration of 2 groups were compared using paired t-test. The average donors' age was 35.80 (SD=13.35 and except for 1 sample the others cultured successfully. In first group, the averages of cell purity, viability and culture duration were 97% (SD=1.32, 97/33% (SD=1.22 and 11.77 (SD=2.58 days respectively. This parameters were 97.33% (SD=1.00, 97.55% (SD=1.33 and 10.33 days (SD=1.65 in second group. The difference of cell count, purity and viability were not significant between 2 groups (P>0.05. The cells of second group reached to 100% confluency in shorter period of time (P=0.03. The results of this study showed that autologous serum can be a good substitute for FBS in human SC culture. This can reduce the costs and improve the safety of cell product for clinical application.

  7. Autologous peripheral blood stem cell transplantation in children and adolescents with non-Hodgkin lymphoma

    OpenAIRE

    Gui, Wei; Su, Liping; He, Jianxia; WANG, LIEYANG; Guan, Tao

    2015-01-01

    The aim of this study was to evaluate the effect and safety of autologous peripheral blood stem cell transplantation (APBSCT) in children and adolescents with non-Hodgkin lymphoma (NHL). Ten patients with NHL were analyzed retrospectively. In all the patients, lymph node enlargement was most frequently detected. Patients with a mediastinal mass presented with a cough, palpitation and shortness of breath. Extranodal patients presented with abdominal pain, inability to walk and vaginal bleeding...

  8. Stomatitis-Related Pain in Women with Breast Cancer Undergoing Autologous Hematopoietic Stem Cell Transplant

    OpenAIRE

    Fall-Dickson, Jane M.; Mock, Victoria; Berk, Ronald A.; Grimm, Patricia M.; Davidson, Nancy; Gaston-Johansson, Fannie

    2008-01-01

    The purpose of this cross-sectional, correlational study was to describe stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant. Hypotheses tested were that significant, positive relationships would exist between oral pain and stomatitis, state anxiety, depression, and alteration in swallowing. Stomatitis, sensory dimension of oral pain, and state anxiety were hypothesized to most accurately predict oral pain overall intensity. Thirty-two ...

  9. Autologous Stem Cell Transplant Study in Lymphoma Patients: Statistical Analysis of Multi-State Models

    Czech Academy of Sciences Publication Activity Database

    Furstová, J.; Valenta, Zdeněk

    ISCB, 2012. s. 67-68. ISBN 978-82-8045-026-5. [Annual Conference of the International Society for Clinical Biostatistics /33./. 19.08.2012-23.08.2012, Bergen] Grant ostatní: ESF CZ.1.07/2.4.00/174.0117 Institutional support: RVO:67985807 Keywords : multi-state model * disability model * illness-death model * Markov model * autologous stem cell transplant Subject RIV: BB - Applied Statistics, Operational Research

  10. Autologous Transplantation of Lentivector/Acid Ceramidase–Transduced Hematopoietic Cells in Nonhuman Primates

    OpenAIRE

    Walia, Jagdeep S; Neschadim, Anton; Lopez-Perez, Orlay; Alayoubi, Abdulfatah; Fan, Xin; Carpentier, Stéphane; Madden, Melissa; Lee, Chyan-Jang; Cheung, Fred; Jaffray, David A.; Levade, Thierry; McCart, J Andrea; Jeffrey A Medin

    2011-01-01

    Farber disease is a rare lysosomal storage disorder (LSD) that manifests due to acid ceramidase (AC) deficiencies and ceramide accumulation. We present a preclinical gene therapy study for Farber disease employing a lentiviral vector (LV-huAC/huCD25) in three enzymatically normal nonhuman primates. Autologous, mobilized peripheral blood (PB) cells were transduced and infused into fully myelo-ablated recipients with tracking for at least 1 year. Outcomes were assessed by measuring the AC speci...

  11. Autologous Stem Cell Transplantation in Patients with Acute Myeloid Leukemia: a Single-Centre Experience

    Directory of Open Access Journals (Sweden)

    Kakucs Enikő

    2013-04-01

    Full Text Available Introduction: Autologous haemopoietic stem cell transplantation (SCT is an important treatment modality for patients with acute myeloid leukemia with low and intermediate risk disease. It has served advantages over allogenic transplantation, because it does not need a matched donor, there is no graft versus host disease, there are less complications and a faster immune reconstitution than in the allo-setting. The disadvantage is the lack of the graft versus leukaemia effect.

  12. Comparison of monocyte-derived dendritic cells from colorectal cancer patients, non-small-cell-lung-cancer patients and healthy donors

    DEFF Research Database (Denmark)

    Kvistborg, P; Bechmann, C M; Pedersen, A W;

    2009-01-01

    Dendritic cells (DCs) are bone marrow-derived professional antigen presenting cells. Due to their role as potent inducers of immune responses, these cells are widely used as adjuvant in experimental clinical settings for cancer immune therapy. We have developed a DC-based vaccine using autologous...... blood monocytes loaded with allogeneic tumor cell lysate rich in cancer/testis antigens. This vaccine has at present been tested for activity in three phase II clinical trials including two cohorts of patients with advanced colorectal cancer (CRC) and one cohort of patients with advanced non-small-cell-lung-cancer...... (NSCLC). In the present paper we retrospectively compare the maturation profile based on surface marker expression on DCs generated from the three patient cohorts and between cancer patient cohorts and a cohort of healthy donors. Vaccines were generated under cGMP conditions and phenotypic profiles of DC...

  13. Dextromethorphan inhibits activations and functions in dendritic cells.

    Science.gov (United States)

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  14. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Der-Yuan Chen

    2013-01-01

    Full Text Available Dendritic cells (DCs play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM, a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS, proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs. These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases.

  15. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren;

    2003-01-01

    for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity......During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... and in selected patients to tumor regression. However, the majority of clinical trials are still in phase I, and interpretations are hampered by pronounced variation in study design related to technical aspects of DC preparation, treatment and schedule, monitoring of immune response, and clinically relevant...

  16. Colored visible light metamaterials based on random dendritic cells

    CERN Document Server

    Song, K; Liu, B Q; Zhao, X P

    2011-01-01

    Optical metamaterials(OMs) at visible wavelengths have been extensively developed. OMs reported presently are all composed of periodic structure, and fabricated by top-down approaches. Here, the colored visible light frequencies metamaterials composed of double layer array disordered and geometrical variational dendritic cells are demonstrated, fabricating by a novel bottom-up approach. The experiment demonstrated that the OMs composed of random silver dendritic cells caused the appearance of multiple transmission passbands at red and yellow light frequencies. The slab focusing experiment reveals a clear point image in the range of half-wavelength with an intensity of 5% higher than that of the light source. Proposed colored OMs will open a new way to prepare the cloak and the perfect lens suitable for optical frequency.

  17. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M;

    2002-01-01

    The mitral cell primary dendrite plays an important role in transmitting distal olfactory nerve input from olfactory glomerulus to the soma-axon initial segment. To understand how dendritic active properties are involved in this transmission, we have combined dual soma and dendritic patch recordi...

  18. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  19. The influence of infectious factors on dendritic cell apoptosis

    OpenAIRE

    Kubicka-Sierszen, Agata; Grzegorczyk, Janina Ł.

    2015-01-01

    Pathogens can have a negative influence on dendritic cells (DCs), causing their apoptosis, which prevents active presentation of foreign antigens. It results in a state of immunosuppression which makes the body susceptible to secondary infections. Infected immature DCs have lower expression of co-stimulatory and adhesion molecules, reduced ability to secrete cytokines and an inhibited maturation process and are incapable of effective antigen presentation and activation of T-lymphocytes. In so...

  20. Phenotypic Characterization of Five Dendritic Cell Subsets in Human Tonsils

    OpenAIRE

    Summers, Kelly L.; Hock, Barry D.; McKenzie, Judith L.; Hart, Derek N.J.

    2001-01-01

    Heterogeneous expression of several antigens on the three currently defined tonsil dendritic cell (DC) subsets encouraged us to re-examine tonsil DCs using a new method that minimized DC differentiation and activation during their preparation. Three-color flow cytometry and dual-color immunohistology was used in conjunction with an extensive panel of antibodies to relevant DC-related antigens to analyze lin− HLA-DR+ tonsil DCs. Here we identify, quantify, and locate five tonsil DC subsets bas...

  1. Harnessing Human Dendritic Cell Subsets to Design Novel Vaccines

    Science.gov (United States)

    Banchereau, Jacques; Klechevsky, Eynav; Schmitt, Nathalie; Morita, Rimpei; Palucka, Karolina; Ueno, Hideki

    2009-01-01

    Summary Dendritic cells (DCs) orchestrate a repertoire of immune responses that endow resistance to infection and tolerance to self. DC plasticity and subsets are prominent determinants of the quality of elicited immune responses. Different DC subsets display different receptors and surface molecules, and express different sets of cytokines/chemokines, all of which lead to distinct immunological outcomes. Recent findings on human DC subsets and their functional specialization have provided insights for the design of novel human vaccines. PMID:19769733

  2. Simian Immunodeficiency Virus Interactions with Macaque Dendritic Cells

    OpenAIRE

    Teleshova, Natalia; Derby, Nina; Martinelli, Elena; Pugach, Pavel; Calenda, Giulia; Robbiani, Melissa

    2013-01-01

    This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus–host interactions critical for transmis...

  3. Utilization of oncoprotein-pulsed dendritic cells as tumor vaccines

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2001-01-01

    Roč. 127, č. 8 (2001), s. 463-466. ISSN 0171-5216 R&D Projects: GA MZd NC5526; GA MZd NC45011; GA ČR GA312/98/0826; GA ČR GA312/99/0542; GA ČR GA301/00/0114 Institutional research plan: CEZ:AV0Z5052915 Keywords : dendritic cells * tumor vaccines * oncoproteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.194, year: 2001

  4. Articulation and Clarification of the Dendritic Cell Algorithm

    CERN Document Server

    Greensmith, Julie; Twycross, Jamie

    2009-01-01

    The Dendritic Cell algorithm (DCA) is inspired by recent work in innate immunity. In this paper a formal description of the DCA is given. The DCA is described in detail, and its use as an anomaly detector is illustrated within the context of computer security. A port scan detection task is performed to substantiate the influence of signal selection on the behaviour of the algorithm. Experimental results provide a comparison of differing input signal mappings.

  5. Dendritic cell-based cancer immunotherapy for colorectal cancer

    OpenAIRE

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are curr...

  6. Natural antibodies sustain differentiation and maturation of human dendritic cells

    OpenAIRE

    Bayry, Jagadeesh; Lacroix-Desmazes, Sébastien; Donkova-Petrini, Vladimira; Carbonneil, Cédric; Misra, Namita; Lepelletier, Yves; Delignat, Sandrine; Varambally, Sooryanarayana; Oksenhendler, Eric; Lévy, Yves; Debré, Marianne; Kazatchkine, Michel D.; Hermine, Olivier; Kaveri, Srini V.

    2004-01-01

    The differentiation and maturation of dendritic cells (DCs) is governed by various signals in the microenvironment. Monocytes and DCs circulate in peripheral blood, which contains high levels of natural antibodies (NAbs). NAbs are germ-line-encoded and occur in the absence of deliberate immunization or microbial aggression. To assess the importance of NAbs in the milieu on DC development, we examined the status of DCs in patients with X-linked agammaglobulinemia, a disease characterized by pa...

  7. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  8. Induction of cytotoxic T lymphocytes primed with Tumor RNA-loaded Dendritic Cells in esophageal squamous cell carcinoma: preliminary step for DC vaccine design

    International Nuclear Information System (INIS)

    Dendritic Cells (DC) are potent antigen presenting cells with the ability to prime naïve T cells and convert them to cytotoxic T-lymphocytes (CTL). We evaluated the capability of autologous DCs transfected with total tumor and normal RNA to induce cytotoxic CTL as the preliminary step to design a DC-based vaccine in the esophageal squamous cell carcinoma (ESCC). Monocytes-derived DCs were electroporated with either total tumor RNA or normal RNA. T cells were then primed with tumor RNA transfected DCs and lytic effects of the generated CTL were measured with Cytotoxicity assay and IFN-γ Release Elispot assay. Cytotoxicity was induced against DCs loaded with tumoral RNA (%24.8 ± 5.2 SEM) while in normal RNA-loaded DCs, it was minimal (%6.1 ± 2.4 SEM) and significantly lower (p < 0.05). INF-γ secretion was more than 2-folds higher in tumoral RNA-loaded DCs when compared with normal RNA-loaded DCs (p < 0.05). Electroporating DCs with tumor RNA generated tumor antigen presenting cells which in turn enhanced cytotoxic effects of the T cells against ESCC. This may be a useful autologous ex vivo screening tool for confirming the lytic effects of primed T cells on tumors and evaluate probable further adverse effects on noncancerous tissues. These data provide crucial preliminary information to establish a total tumor RNA-pulsed DC vaccine therapy of ESCC

  9. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  10. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  11. Nectin-1 spots regulate the branching of olfactory mitral cell dendrites.

    Science.gov (United States)

    Fujiwara, Takeshi; Inoue, Takahito; Maruo, Tomohiko; Rikitake, Yoshiyuki; Ieki, Nao; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Takai, Yoshimi; Mizoguchi, Akira

    2015-09-01

    Olfactory mitral cells extend lateral secondary dendrites that contact the lateral secondary and apical primary dendrites of other mitral cells in the external plexiform layer (EPL) of the olfactory bulb. The lateral dendrites further contact granule cell dendrites, forming dendrodendritic reciprocal synapses in the EPL. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. We recently showed that the immunoglobulin-like cell adhesion molecule nectin-1 constitutes a novel adhesion apparatus at the contacts between mitral cell lateral dendrites, between mitral cell lateral and apical dendrites, and between mitral cell lateral dendrites and granule cell dendritic spine necks in the deep sub-lamina of the EPL of the developing mouse olfactory bulb and named them nectin-1 spots. We investigated here the role of the nectin-1 spots in the formation of dendritic structures in the EPL of the mouse olfactory bulb. We showed that in cultured nectin-1-knockout mitral cells, the number of branching points of mitral cell dendrites was reduced compared to that in the control cells. In the deep sub-lamina of the EPL in the nectin-1-knockout olfactory bulb, the number of branching points of mitral cell lateral dendrites and the number of dendrodendritic reciprocal synapses were reduced compared to those in the control olfactory bulb. These results indicate that the nectin-1 spots regulate the branching of mitral cell dendrites in the deep sub-lamina of the EPL and suggest that the nectin-1 spots are required for odor information processing in the olfactory bulb. PMID:26169026

  12. Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Changsuo Xia; Yajuan Li; Wen Cao; Zhaohua Yu

    2010-01-01

    Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects.

  13. Renal function in high dose chemotherapy and autologous hematopoietic cell support treatment for breast cancer.

    Science.gov (United States)

    Merouani, A; Shpall, E J; Jones, R B; Archer, P G; Schrier, R W

    1996-09-01

    Autologous and allogeneic bone marrow grafting both require cytoreductive therapy but only the allogeneic procedure requires immunosuppressive agents. Allogeneic bone marrow transplantation has been reported to be associated with a high incidence of both renal failure and veno-occlusive disease (VOD) of the liver, the combination of which is associated with a high morbidity and mortality. There is less known about the frequency and severity of these complications in patients undergoing autologous bone marrow transplantation. In the present study renal, hepatic and other complications were examined in 232 patients with Stages II/III and IV breast cancer who were treated with high-dose chemotherapy and autologous hematopoietic cell support with either marrow or peripheral blood progenitor cells. The post-treatment severity of the renal dysfunction was classified as follows: Grade 0, normal renal function [ 25% decrement in GFR but twofold rise in serum creatinine but no need for dialysis; Grade 3 > than twofold rise in serum creatinine and need for dialysis. There were 102 patients (44%) who were classified as Grade 0 and 81 patients (35%) who were classified as Grade 1 renal dysfunction. Severe renal dysfunction (Grades 2 and 3) was observed in 49 of the 232 patients (21%). This severe renal dysfunction of 21% compares with a previously reported 53% incidence of severe renal dysfunction for allogeneic bone marrow transplantation. Similarly, the frequency of hepatic VOD was less (4.7% or 11 of 232 patients) in this autologous bone marrow transplant study as compared to a reported incidence of hepatic VOD ranging from 22 to 53% in large series of allogeneic bone marrow transplant patients. The severe renal dysfunction (Grades 2 and 3) in the present autologous hematopoietic cell support study correlated most significantly with sepsis, liver and pulmonary dysfunction. The major fall in GFR occurred during chemotherapy but before hematopoietic cell support, thus

  14. Targeting dendritic cells in vivo for cancer therapy

    Directory of Open Access Journals (Sweden)

    Irina eCaminschi

    2012-02-01

    Full Text Available Monoclonal antibodies that recognise cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC for induction of immune responses. The encouraging anti-tumour immunity elicited using this immunisation strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialisation of DC-subsets, the immunological outcomes of targeting different DC-subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumour immunity. Finally, we review preclinical experiments and the progress towards targeting human DC in vivo.

  15. Targeting Human Dendritic Cell Subsets for Improved Vaccines

    Science.gov (United States)

    Ueno, Hideki; Klechevsky, Eynav; Schmitt, Nathalie; Ni, Ling; Flamar, Anne-Laure; Zurawski, Sandra; Zurawski, Gerard; Palucka, Karolina; Banchereau, Jacques; Oh, SangKon

    2011-01-01

    Summary Dendritic cells (DCs) were discovered in 1973 by Ralph Steinman as a previously undefined cell type in the mouse spleen and are now recognized as a group of related cell populations that induce and regulate adaptive immune responses. Studies of the past decade show that, both in mice and humans, DCs are composed of subsets that differ in their localization, phenotype, and functions. These progresses in our understanding of DC biology provide a new framework for improving human health. In this review, we discuss human DC subsets in the context of their medical applications, with a particular focus on DC targeting. PMID:21277223

  16. Role of plasmacytoid dendritic cell subsets in allergic asthma

    OpenAIRE

    Maazi, Hadi; Lam, Jonathan; Lombardi, Vincent; Akbari, Omid

    2013-01-01

    Plasmacytoid dendritic cells (pDCs) are major type-I interferon producing cells that play important roles in antiviral immunity and tolerance induction. These cells share a common DC progenitor with conventional DCs and Fms-like tyrosine kinase-3 ligand is essential for their development. Several subsets of pDCs have been identified to date including CCR9+, CD9+ and CD2+ pDCs. Recently, three subsets of pDCs were described namely, CD8α−β−, CD8α+β− and CD8α+β+ subsets. Interestingly, CD8α+β− a...

  17. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-01

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation. PMID:27147029

  18. The autologous bone marrow mononuclear cell transplantation by intracoronary route treat patients with severe heart failure after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    高连如

    2006-01-01

    Objective To investigate the chronic effects of intracoronary autologous bone marrow mononuclear cell (BM-MNCs) transplantation in patients with refractory heart failure (RIHF) after myocardial infarction. Methods Thirty patients with RIHF (LVEF<40%) were enrolled in this nonrandomized study, autologous BM-MNCs (5.0±0.7)×107 were transplanted with via infarct-related coronary artery in 16 patients and 14 patients received

  19. Xenopus laevis retinal ganglion cell dendritic arbors develop independently of visual stimulation

    OpenAIRE

    Barbara Lom; Rebecca L. Rigel

    2004-01-01

    Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC) dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arbo...

  20. Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation.

    Science.gov (United States)

    Harding, Jeffrey S; Rayasam, Aditya; Schreiber, Heidi A; Fabry, Zsuzsanna; Sandor, Matyas

    2015-01-01

    The disappearance and reformation of granulomas during tuberculosis has been described using PET/CT/X-ray in both human clinical settings and animal models, but the mechanisms of granuloma reformation during active disease remains unclear. Granulomas can recruit inflammatory dendritic cells (iDCs) that can regulate local T-cell responses and can carry bacteria into the lymph nodes, which is crucial for generating systemic T-cell responses against mycobacteria. Here, we report that a subset of mycobacterium-infected iDCs are associated with bacteria-specific T-cells in infected tissue, outside the granuloma, and that this results in the formation of new and/or larger multi-focal lesions. Mycobacterium-infected iDCs express less CCR7 and migrate less efficiently compared to the non-infected iDCs, which may support T-cell capture in granulomatous tissue. Capture may reduce antigen availability in the lymph node, thereby decreasing systemic priming, resulting in a possible regulatory loop between systemic T-cell responses and granuloma reformation. T-cell/infected iDCs clusters outside the granuloma can be detected during the acute and chronic phase of BCG and Mtb infection. Our studies suggest a direct role for inflammatory dendritic cells in the dissemination of granulomatous inflammation. PMID:26515292

  1. Infusion of Autologous Retrodifferentiated Stem Cells into Patients with Beta-Thalassemia

    Directory of Open Access Journals (Sweden)

    Ilham Saleh Abuljadayel

    2006-01-01

    Full Text Available Beta-thalassemia is a genetic, red blood cell disorder affecting the beta-globin chain of the adult hemoglobin gene. This results in excess accumulation of unpaired alpha-chain gene products leading to reduced red blood cell life span and the development of severe anemia. Current treatment of this disease involves regular blood transfusion and adjunct chelation therapy to lower blood transfusion–induced iron overload. Fetal hemoglobin switching agents have been proposed to treat genetic blood disorders, such as sickle cell anemia and beta-thalassemia, in an effort to compensate for the dysfunctional form of the beta-globin chain in adult hemoglobin. The rationale behind this approach is to pair the excess normal alpha-globin chain with the alternative fetal gamma-chain to promote red blood cell survival and ameliorate the anemia. Reprogramming of differentiation in intact, mature, adult white blood cells in response to inclusion of monoclonal antibody CR3/43 has been described. This form of retrograde development has been termed “retrodifferentiation”, with the ability to re-express a variety of stem cell markers in a heterogeneous population of white blood cells. This form of reprogramming, or reontogeny, to a more pluripotent stem cell state ought to recapitulate early hematopoiesis and facilitate expression of a fetal and/or adult program of hemoglobin synthesis or regeneration on infusion and subsequent redifferentiation. Herein, the outcome of infusion of autologous retrodifferentiated stem cells (RSC into 21 patients with beta-thalassemia is described. Over 6 months, Infusion of 3-h autologous RSC subjected to hematopoietic-conducive conditions into patients with beta-thalassemia reduced mean blood transfusion requirement, increased mean fetal hemoglobin synthesis, and significantly lowered mean serum ferritin. This was always accompanied by an increase in mean corpuscular volume (MCV, mean corpuscular hemoglobin (MCH, and mean

  2. Autologous bone marrow stem cells--properties and advantages.

    Science.gov (United States)

    Rice, Claire M; Scolding, Neil J

    2008-02-15

    The properties of self-renewal and multi-lineage differentiation make stem cells attractive candidates for use in cellular reparative therapy, particularly in neurological diseases where there is a paucity of treatment options. However, clinical trials using foetal material in Parkinson's disease have been disappointing and highlighted problems associated with the use of embryonic stem cells, including ethical issues and practical concerns regarding teratoma formation. Understandably, this has led investigators to explore alternative sources of stem cells for transplantation. The expression of neuroectodermal markers by cells of bone marrow origin focused attention on these adult stem cells. Although early enthusiasm has been tempered by dispute regarding the validity of reports of in vitro (trans)differentiation, the demonstration of functional benefit in animal models of neurological disease is encouraging. Here we will review some of the required properties of stem cells for use in transplantation therapy with specific reference to the development of bone marrow-derived cells as a source of cells for repair in demyelination. PMID:17669432

  3. Unique immunomodulatory effects of azelastine on dendritic cells in vitro.

    Science.gov (United States)

    Schumacher, S; Kietzmann, M; Stark, H; Bäumer, W

    2014-11-01

    Allergic contact dermatitis and atopic dermatitis are among the most common inflammatory skin diseases in western countries, and antigen-presenting cells like dendritic cells (DC) are key players in their pathophysiology. Histamine, an important mediator of allergic reactions, influences DC maturation and cytokine secretion, which led us to investigate the immunomodulatory potential of the well-known histamine H1 receptor antagonists: azelastine, olopatadine, cetirizine, and pyrilamine. Unlike other H1 antihistamines, azelastine decreased lipopolysaccharide-induced tumor necrosis factor α and interleukin-12 secretion from murine bone marrow-derived DC. This effect was independent of histamine receptors H1, H2, or H4 and may be linked to inhibition of the nuclear factor kappa B pathway. Moreover, only azelastine reduced proliferation of allogenic T cells in a mixed leukocyte reaction. We then tested topical application of the H1 antihistamines on mice sensitized against toluene-2,4-diisocyanate, a model of Th2-mediated allergic contact dermatitis. In contrast to the in vitro results, all investigated substances were efficacious in reducing allergic ear swelling. Azelastine has unique effects on dendritic cells and T cell interaction in vitro. However, this did not translate into superior in vivo efficacy for Th2-mediated allergic dermatitis, possibly due to the effects of the antihistamines on other cell types involved in skin inflammation. Future research will have to clarify whether these properties are relevant to in vivo models of allergic inflammation with a different T cell polarization. PMID:25119779

  4. Transcatheter Arterial Infusion of Autologous CD133+ Cells for Diabetic Peripheral Artery Disease

    Science.gov (United States)

    Zhang, Xiaoping; Lian, Weishuai; Lou, Wensheng; Han, Shilong; Lu, Chenhui; Zuo, Keqiang; Su, Haobo; Xu, Jichong; Cao, Chuanwu; Tang, Tao; Jia, Zhongzhi; Jin, Tao; Uzan, Georges; Gu, Jianping; Li, Maoquan

    2016-01-01

    Microvascular lesion in diabetic peripheral arterial disease (PAD) still cannot be resolved by current surgical and interventional technique. Endothelial cells have the therapeutic potential to cure microvascular lesion. To evaluate the efficacy and immune-regulatory impact of intra-arterial infusion of autologous CD133+ cells, we recruited 53 patients with diabetic PAD (27 of CD133+ group and 26 of control group). CD133+ cells enriched from patients' PB-MNCs were reinfused intra-arterially. The ulcer healing followed up till 18 months was 100% (3/3) in CD133+ group and 60% (3/5) in control group. The amputation rate was 0 (0/27) in CD133+ group and 11.54% (3/26) in control group. Compared with the control group, TcPO2 and ABI showed obvious improvement at 18 months and significant increasing VEGF and decreasing IL-6 level in the CD133+ group within 4 weeks. A reducing trend of proangiogenesis and anti-inflammatory regulation function at 4 weeks after the cells infusion was also found. These results indicated that autologous CD133+ cell treatment can effectively improve the perfusion of morbid limb and exert proangiogenesis and anti-inflammatory immune-regulatory impacts by paracrine on tissue microenvironment. The CD133+ progenitor cell therapy may be repeated at a fixed interval according to cell life span and immune-regulatory function. PMID:26981134

  5. Serum after autologous transplantation stimulates proliferation and expansion of human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Thomas Walenda

    Full Text Available Regeneration after hematopoietic stem cell transplantation (HSCT depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34(+ cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT significantly enhanced proliferation, maintained primitive immunophenotype (CD34(+, CD133(+, CD45(- for more cell divisions and increased colony forming units (CFU as well as the number of cobblestone area-forming cells (CAFC. The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT. Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1 increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool.

  6. Dendritic cell podosome dynamics does not depend on the F-actin regulator SWAP-70.

    Directory of Open Access Journals (Sweden)

    Anne Götz

    Full Text Available In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.

  7. Tissue Engineering Bone Using Autologous Progenitor Cells in the Peritoneum

    OpenAIRE

    Jinhui Shen; Ashwin Nair; Ramesh Saxena; Cheng Cheng Zhang; Joseph Borrelli; Liping Tang

    2014-01-01

    Despite intensive research efforts, there remains a need for novel methods to improve the ossification of scaffolds for bone tissue engineering. Based on a common phenomenon and known pathological conditions of peritoneal membrane ossification following peritoneal dialysis, we have explored the possibility of regenerating ossified tissue in the peritoneum. Interestingly, in addition to inflammatory cells, we discovered a large number of multipotent mesenchymal stem cells (MSCs) in the periton...

  8. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+ T cell responses in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Núria Climent

    Full Text Available Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B in human monocyte-derived dendritic cells (MDDC and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α. MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

  9. Autologous bone marrow cell therapy for peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Botti C

    2012-09-01

    Full Text Available C Botti, C Maione, A Coppola, V Sica, G CobellisDepartment of General Pathology, Second University of Naples, Naples, ItalyAbstract: Inadequate blood supply to tissues caused by obstruction of arterioles and/or capillaries results in ischemic injuries – these injuries can range from mild (eg, leg ischemia to severe conditions (eg, myocardial infarction, stroke. Surgical and/or endovascular procedures provide cutting-edge treatment for patients with vascular disorders; however, a high percentage of patients are currently not treatable, owing to high operative risk or unfavorable vascular involvement. Therapeutic angiogenesis has recently emerged as a promising new therapy, promoting the formation of new blood vessels by the introduction of bone marrow–derived stem and progenitor cells. These cells participate in the development of new blood vessels, the enlargement of existing blood vessels, and sprouting new capillaries from existing blood vessels, providing evidence of the therapeutic utility of these cells in ischemic tissues. In this review, the authors describe peripheral arterial disease, an ischemic condition affecting the lower extremities, summarizing different aspects of vascular regeneration and discussing which and how stem cells restore the blood flow. The authors also present an overview of encouraging results from early-phase clinical trials using stem cells to treat peripheral arterial disease. The authors believe that additional research initiatives should be undertaken to better identify the nature of stem cells and that an intensive cooperation between laboratory and clinical investigators is needed to optimize the design of cell therapy trials and to maximize their scientific rigor. Only this will allow the results of these investigations to develop best clinical practices. Additionally, although a number of stem cell therapies exist, many treatments are performed outside international and national regulations and many

  10. Classification of dendritic cell phenotypes from gene expression data

    Directory of Open Access Journals (Sweden)

    Zolezzi Francesca

    2011-08-01

    Full Text Available Abstract Background The selection of relevant genes for sample classification is a common task in many gene expression studies. Although a number of tools have been developed to identify optimal gene expression signatures, they often generate gene lists that are too long to be exploited clinically. Consequently, researchers in the field try to identify the smallest set of genes that provide good sample classification. We investigated the genome-wide expression of the inflammatory phenotype in dendritic cells. Dendritic cells are a complex group of cells that play a critical role in vertebrate immunity. Therefore, the prediction of the inflammatory phenotype in these cells may help with the selection of immune-modulating compounds. Results A data mining protocol was applied to microarray data for murine cell lines treated with various inflammatory stimuli. The learning and validation data sets consisted of 155 and 49 samples, respectively. The data mining protocol reduced the number of probe sets from 5,802 to 10, then from 10 to 6 and finally from 6 to 3. The performances of a set of supervised classification models were compared. The best accuracy, when using the six following genes --Il12b, Cd40, Socs3, Irgm1, Plin2 and Lgals3bp-- was obtained by Tree Augmented Naïve Bayes and Nearest Neighbour (91.8%. Using the smallest set of three genes --Il12b, Cd40 and Socs3-- the performance remained satisfactory and the best accuracy was with Support Vector Machine (95.9%. These data mining models, using data for the genes Il12b, Cd40 and Socs3, were validated with a human data set consisting of 27 samples. Support Vector Machines (71.4% and Nearest Neighbour (92.6% gave the worst performances, but the remaining models correctly classified all the 27 samples. Conclusions The genes selected by the data mining protocol proposed were shown to be informative for discriminating between inflammatory and steady-state phenotypes in dendritic cells. The

  11. Autologous peripheral hematopoietic stem-cell transplantation in a patient with refractory pemphigus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aim of this study is to explore the effectiveness of autologous peripheral hematopoietic stem-cell transplantation in the treatment of refractory pemphigus.A 35-year-old male patient presented with a 4-year history of recurrent bullae on his trunk and extremities.The diagnosis of pemphigus was made on the basis of the clinical,histologic and immunofluorescence findings.The patient had shown resistance to conventional therapy with glucocorticoid and immunosuppressive agents.Two months before admission,he complained of hip joint pain.X-ray and CT scan revealed aseptic necrosis of the femoral head.Stem-cell mobilization was achieved by treatment with cyclophosphamide,granulocyte colony-stimulating factor (G-CSF)and rituximab.Peripheral blood stem cells were collected via leukapheresis and cryopreserved for later use.Immunoablation was accomplished by using cyclophosphamide(200 mg/kg;divided into 50 mg/kg on days-5,-4,-3,and-2),antithymocyte globulin(ATG;10 mg/kg;divided into 2.5 mg/kg on days-6,-5,-4,and-3),and rituximab (1200 mg/d;divided into 600 mg/d on days 0 and 7).Autologous peripheral hematopoietic stem cell transplantation was followed by reconstitution of the immune system which was monitored by flow cytometry.The glucocorticoid was withdrawn immediately after transplantation.The pemphigus titer turned negative 6 weeks after transplantation and remained negative.The patient was in complete drug-free remission with no evidence of residual clinical or serological activity of pemphigus during 1 year of followup.The patient's response suggests that autologous peripheral hematopoietic stem cell transplantation may be a potential "cure" for refractory pemphigus.However,further studies are needed to evaluate the risk-benefit ratio of this approach in patients with pemphigus showing resistance to conventional therapy.

  12. Autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Lu Debin; Jiang Youzhao; Liang Ziwen; Li Xiaoyan; Zhang Zhonghui; Chen Bing

    2008-01-01

    Objective: To study the efficacy and safety of autologous transplantation of bone marrow mesenchymal stem cells on diabetic patients with lower limb ischemia. Methods: Fifty Type 2 diabetic patients with lower limb ischemia were enrolled and randomized to either transplanted group or control group. Patients in both group received the same conventional treatment. Meanwhile, 20 ml bone marrow from each transplanted patient were collected, and the mesenchymal stem cells were separated by density gradient centrifugation and cultured in the medium with autologous serum. After three-weeks adherent culture in vitro, 7.32×108-5.61×109 mesenchymal stern cells were harvested and transplanted by multiple intramuscular and hypodermic injections into the impaired lower limbs. Results: At the end of 12-week follow-up, 5 patients were excluded from this study because of clinical worsening or failure of cell culture. Main ischemic symptoms, including rest pain and intermittent claudication, were improved significantly in transplanted patients. The ulcer healing rate of the transplanted group (15 of 18, 83.33%) was significantly higher than that of the control group (9 of 20, 45.00%, P=0.012).The mean of resting ankle-brachial index (ABI) in transplanted group significantly was increased from 0.61±0.09 to 0.74±0.11 (P<0.001). Magnetic resonance angiography (MRA) demonstrated that there were more patients whose score of new vessels exceeded or equaled to 2 in the transplant patients (11 of 15) than in control patients (2 of 14, P=0.001). Lower limb amputation rate was significantly lower in transplanted group than in the control group (P=0.040). No adverse effects was observed in transplanted group. Conclusion: These results indicate that the autologous transplantation of bone marrow mesenehymal stem cells relieves critical lower limb ischemia and promotes ulcers healing in Type 2 diabetic patients.

  13. Follicular dendritic cells in lymph nodes after X-irradiation

    International Nuclear Information System (INIS)

    Follicular dendritic cells (FDC), non lymphoid cells present in lymph follicles, are characterized by numerous cytoplasmic processes retaining antigen-antibody complexes. Their origin, nature and function are unknown. Mice inguinal lymph nodes after 4.5 or 7.5 Gy X-irradiation were depleted of lymphoid cells. Ultrastructural observations during the first few days post-irradiation show that FDC are unaltered and possess dendritic processes enveloping dense material. Furthermore, they show intense metabolic activity. A lamina densa, never observed so well-developed in other lymph node cells, was detected around the nuclear envelope. The localization of junctions between FDC was analysed. FDC preserve their typical cytoplasmic processes even if lymphoid cells are rare. The latter thus seem not to be responsible for the maintenance of FDC integrity or their development. The possible role of this for antibody production is discussed. Irradiated lymph nodes of lymphoid cells are highly convenient for studying FDC. Isolation of FDC from irradiated lymph organs would seem to be possible. (author)

  14. Dendritic Cell Cancer Vaccines: From the Bench to the Bedside

    Directory of Open Access Journals (Sweden)

    Tamar Katz

    2014-10-01

    Full Text Available The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both “passive” (e.g. strategies relying on the administration of specific T cells and “active” vaccines (e.g. peptide-directed or whole-cell vaccines have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target “immunosuppressive checkpoints” (anti-CTLA-4, PD-1, etc. is likely to improve and maintain immune response induced by vaccination.

  15. Our Experience with Autologous Bone Marrow Stem Cell Application in Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mukund K

    2009-01-01

    Full Text Available Background - Use of autologous bone marrow stem cell is a newly evolving treatment modality for end stage cardiac failure as reported in the literature. We report our experience with two patients with dilated cardiomyopathy who underwent this treatment after failure of maximal conventional therapy. Methods - A 29 year old Male patient with history of orthopnea and PND, with a diagnosis of dilated cardiomyopathy and echocardiographic evidence of severe LV dysfunction was referred for further treatment. His echo on admission showed EF of 17% and no other abnormal findings except elevated bilirubin levels. He was in NYHA functional class IV. He received intracoronary injection of autologous bone marrow stem cells in January 2009. 254X106 cells were injected with a CD34+ of 0.20%. His clinical condition stabilized and he was discharged home. He received a second injection of 22X106 in vitro expanded stem cells with a CD34+ of 0.72% in Aug 2009. He is now in NYHA class II-III with EF 24%. A 31year old Male patient with history of increasing shortness of breath, severe over the past 3-4 days was admitted for evaluation and treatment. His echo on admission showed EF of 20% and was in NYHA functional class IV. Coronary angiogram was normal and he was stabilized on maximal anti failure measures. He received intracoronary autologous bone marrow stem cell injection of 56X106 with a CD34+ of 0.53% in August 2009. His clinical condition stabilized over the next 10 days and he was discharged home. Conclusions - In our experience of two cases of dilated cardiomyopathy, safety of intracoronary injection of autologous bone marrow stem cells both isolated and in vitro expanded has been proven in both the cases with efficacy proven in one of the cases. Long term follow-up of these two cases and inclusion of more number of similar cases where all available conventional therapies have not resulted in significant improvement for such studies are planned.

  16. [Outcomes of using autologous peripheral-blood stem cells in patients with chronic lower arterial insufficiency].

    Science.gov (United States)

    Maksimov, A V; Kiiasov, A P; Plotnikov, M V; Maianskaia, S D; Shamsutdinova, I I; Gazizov, I M; Mavlikeev, M O

    2011-01-01

    Presented herein are the outcomes of using autologous peripheral blood stem cells (SCs) in patients with stage II В lower limb chronic obliterating diseases (according to A.V. Pokrovsky's classification). Autologous SCs had previously been stimulated by means of the recombinant granulocytic colony stimulating factor (G-CSF) for five days. On day six, we performed mobilization of the peripheral blood stem cells on the MSC+ unit by means of leukopheresis followed by intramuscular administration of half of the obtained dose into the affected extremity. The mean number of the transplanted mononuclears amounted to 6.73 ± 2.2 x 10(9) cells, with the number of CD34+ cells averaging 2.94 ± 2.312 x 10(7). Assessing the therapeutic outcomes at 3 and 6 months of follow-up showed a statistically significant increase in the ankle-brachial pressure index (ABPI) [being at baseline 0.59 ± 0.04, at 3 months - 0.66 ± 0.04 (P=0.001), and after 6 months - 0.73 ± .08 (P=0.035)], accompanied and followed by improved measures of the treadmill test, with the pain-free walking distance at baseline equalling 102.2 ± 11.55 m, after 3 months - 129 ± 11.13 m (P<0.001), and after 6 months - 140 ± 13.11 m=0.021 vs baseline). The findings of the immunohistochemical study confirmed the development of neoangiogenesis in the skeletal muscle and a 25 percent increase in the capillary-network density following administration of autologous stem cells into the muscle. The method of transplanting peripheral-blood autologous stem cells for treatment of patients presenting with distal forms of chronic obliterating insufficiency of the lower limbs proved safe and efficient. The findings obtained during this study made it possible to recommend extending the indications for its application at the expense of patients with critical ischaemia. PMID:21983456

  17. Immune reconstitution after autologous hematopoietic stem cell transplantation 

    OpenAIRE

    João, Cristina Maria Pires

    2007-01-01

    Abstract The investigation of the web of relationships between the different elements of the immune system has proven instrumental to better understand this complex biological system. This is particularly true in the case of the interactions between B and T lymphocytes, both during cellular development and at the stage of cellular effectors functions. The understanding of the B–T cells interdependency and the possibility to manipulate this relationship may be directly applicable t...

  18. Leishmania infantum amastigotes enhance HIV-1 production in cocultures of human dendritic cells and CD4 T cells by inducing secretion of IL-6 and TNF-alpha.

    Directory of Open Access Journals (Sweden)

    Ravendra Garg

    Full Text Available BACKGROUND: Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs are cocultured together with autologous CD4(+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1alpha, IL-2, IL-6, IL-10 and TNF-alpha and chemokines (i.e. MIP-1alpha, MIP-1beta and RANTES in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-alpha. CONCLUSIONS/SIGNIFICANCE: Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment.

  19. Functional changes of dendritic cells in hypersensivity reactions to amoxicillin

    Directory of Open Access Journals (Sweden)

    C.M.F. Lima

    2010-10-01

    Full Text Available A better understanding of dendritic cell (DC involvement in responses to haptenic drugs is needed, because it represents a possible approach to the development of an in vitro test, which could identify patients prone to drug allergies. There are two main DC subsets: plasmacytoid DC (pDC and myeloid DC (mDC. β-lactams form hapten-carrier conjugates and may provide a suitable model to study DC behavior in drug allergy reactions. It has been demonstrated that drugs interact differently with DC in drug allergic and non-allergic patients, but there are no studies regarding these subsets. Our aim was to assess the functional changes of mDC and pDC harvested from an amoxicillin-hypersensitive 32-year-old woman who experienced a severe maculopapular exanthema as reflected in interleukin-6 (IL-6 production after stimulation with this drug and penicillin. We also aim to demonstrate, for the first time, the feasibility of this method for dendritic cell isolation followed by in vitro stimulation for studies of drug allergy physiopathology. DC were harvested using a double Percoll density gradient, which generates a basophil-depleted cell (BDC suspension. Further, pDC were isolated by blood DC antigen 4-positive magnetic selection and gravity filtration through magnetized columns. After stimulation with amoxicillin, penicillin and positive and negative controls, IL-6 production was measured by ELISA. A positive dose-response curve for IL-6 after stimulation with amoxicillin and penicillin was observed for pDC, but not for mDC or BDC suspension. These preliminary results demonstrate the feasibility of this methodology to expand the knowledge of the effect of dendritic cell activation by drug allergens.

  20. Investigating evolutionary conservation of dendritic cell subset identity and functions

    Directory of Open Access Journals (Sweden)

    Thien-Phong eVu Manh

    2015-06-01

    Full Text Available Dendritic cells (DC were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types

  1. Cross-presentation of cell-associated antigens by MHC class I in dendritic cell subsets

    Directory of Open Access Journals (Sweden)

    Enric eGutiérrez-Martínez

    2015-07-01

    Full Text Available Dendritic cells have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ dendritic cells subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen presenting cells. Here we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by dendritic cells subsets

  2. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Science.gov (United States)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  3. Regulation of intestinal immune system by dendritic cells.

    Science.gov (United States)

    Ko, Hyun-Jeong; Chang, Sun-Young

    2015-02-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell. PMID:25713503

  4. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    International Nuclear Information System (INIS)

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking

  5. Co-transplantation of macaque autologous Schwann cells and human embryonic nerve stem cells in treatment of macaque Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Ying Xia; Chengchuan Jiang; Zuowei Cao; Keshan Shi; Yang Wang

    2012-01-01

    Objective:To investigate the therapeutic effects of co-transplantation with Schwann cells (SCs) and human embryonic nerve stem cells (NSCs) on macaque Parkinson's disease (PD). Methods:Macaque autologous SCs and human embryonic NSCs were adopted for the treatment of macaque PD. Results: Six months after transplantation, positron emission computerized tomography showed that 18F-FP-β-CIT was significantly concentrated in the injured striatum in the co-transplanted group. Immunohistochemical staining of transplanted area tissue showed migration of tyroxine hydroxylase positive cells from the transplant area to the surrounding area was significantly increased in the co-transplanted group. Conclusions: Co-transplantation of SCs and NSCs could effectively cure PD in macaques. SCs harvested from the autologous peripheral nerves can avoid rejection and the ethics problems, so it is expected to be applied clinically.

  6. Regulatory T cells diminish transmission of HIV from Dendritic cells to conventional CD4+ T cells

    OpenAIRE

    Maria Eugenia Moreno-Fernandez; Joedicke, Jara J; Claire Anne Chougnet

    2014-01-01

    Formation of immunological synapses between dendritic cells (DC) and conventional CD4+ T cells (Tcon) is critical for productive immune responses. However, when DCs are HIV-infected such synapses are critical to establish HIV infection. As regulatory T cells (Treg) control DC-Tcon interactions, we inquired whether Treg might interfere with DC to Tcon HIV transmission. We developed a model, using monocyte-derived DC infected with R5-HIV, and cultured with Tcon in the presence or absence of a...

  7. Xenopus laevis retinal ganglion cell dendritic arbors develop independently of visual stimulation

    Directory of Open Access Journals (Sweden)

    Rebecca L. Rigel

    2004-06-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  8. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  9. Influence of lipid rafts on CD1d presentation by dendritic cells

    DEFF Research Database (Denmark)

    Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie; Cédile, Oriane; Reynier-Vigouroux, Anne; Boucraut, Jose

    Our main objective was to analyze the role of lipid rafts in the activation of Valpha-14(-) and Valpha-14(+) T hybridomas by dendritic cells. We showed that activation of Valpha-14(+) hybridomas by dendritic cells or other CD1d-expressing cells was altered by disruption of lipid rafts with the...

  10. Functional Role of Dendritic Cells in Patients with Unstable Angina

    Institute of Scientific and Technical Information of China (English)

    LI Dazhu; Sharma Ranjit; ZENG Qiutang

    2005-01-01

    To investigate the function of dendritic cells (DC) in patients with unstable angina, 10 mL of blood was drawn from 30 subjects. 15 patients diagnosed as having unstable angina and 15 healthy subjects were included in an observation and a control groups respectively. The mononuclear cells were separated from the peripheral blood and cultured in RPMI1640 supplemented with recombinant human granulocyte/macrophage-colony stimulating factor (rh GM-CSF) and recombinant human interleukin-4 (rh IL-4) to induce dendritic cells. The shape and ultrastructure of DC was examined with electronic microscope. The phenotype of DC was analyzed with FACS and the alloantigen presenting capacity of DC was evaluated by mixed lymphocyte reaction (MLR). The expression rate of CD86 of DC in patients with unstable angina was (40.7±3.6) %, which was obviously higher than that of normal DC (29.6±2.5 %) (P<0.001). The capacity of the DCs in unstable angina patients to induce allogenic T cells (OD 2.73±1.10), was significantly higher than that of the normal DC (OD:0.9±0.21) (P<0.005). It is suggested that the function of DC in patients with unstable angina is increased, which may play an important role in the initiation of immune reaction in the plaque.

  11. Resistivity and thickness effects in dendritic web silicon solar cells

    Science.gov (United States)

    Meier, D. L.; Hwang, J. M.; Greggi, J.; Campbell, R. B.

    The decrease of minority carrier lifetime as resistivity decreases in dendritic-web silicon solar cells is addressed. This variation is shown to be consistent with the presence of defect levels in the bandgap which arise from extended defects in the web material. The extended defects are oxide precipitates (SiOx) and the dislocation cores they decorate. Sensitivity to this background distribution of defect levels increases with doping because the Fermi level moves closer to the majority carrier band edge. For high-resistivity dendritic-web silicon, which has a low concentration of these extended defects, cell efficiencies as high as 16.6 percent (4 sq cm, 40 ohm-cm boron-doped base, AM1.5 global, 100 mW/sq cm, 25 C JPL LAPSS1 measurement) and a corresponding electron lifetime of 38 microsec have been obtained. Thickness effects occur in bifacial cell designs and in designs which use light trapping. In some cases, the dislocation/precipitate defect can be passivated through the full thickness of web cells by hydrogen ion implantation.

  12. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    NARCIS (Netherlands)

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the

  13. Dendritic cell-based cancer immunotherapy for colorectal cancer

    Science.gov (United States)

    Kajihara, Mikio; Takakura, Kazuki; Kanai, Tomoya; Ito, Zensho; Saito, Keisuke; Takami, Shinichiro; Shimodaira, Shigetaka; Okamoto, Masato; Ohkusa, Toshifumi; Koido, Shigeo

    2016-01-01

    Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients. PMID:27158196

  14. Bone marrow dendritic cell-based anticancer vaccines

    Czech Academy of Sciences Publication Activity Database

    Indrová, Marie; Mendoza, Luis; Reiniš, Milan; Vonka, V.; Šmahel, M.; Němečková, Š.; Jandlová, Táňa; Bubeník, Jan

    2001-01-01

    Roč. 495, - (2001), s. 355-358. ISSN 0065-2598 R&D Projects: GA MZd NC5526; GA ČR GA312/98/0826; GA ČR GA312/99/0542; GA ČR GA301/00/0114; GA ČR GA301/01/0985; GA AV ČR IAA7052002 Institutional research plan: CEZ:AV0Z5052915 Keywords : HPV16 * dendritic cells * tumour vaccines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.513, year: 2000

  15. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  16. Apoptosis and systemic autoimmunity: the dendritic cell connection

    Directory of Open Access Journals (Sweden)

    AA Manfredi

    2009-12-01

    Full Text Available Much effort has been devoted in recent years to the events linking recognition and disposal of apoptotic cells to sustained immunity towards the antigens they contain. Programmed death via apoptosis indeed provides most of the raw material the immune system exploits to establish self tolerance, i.e. to learn how to distinguish between self constituents and foreign antigens, belonging to invading pathogens. In parallel, events occurring during cell death may enable a restricted array of molecules endowed with diverse structure, function and intracellular distribution to satisfy the requirement to evoke and maintain autoimmune responses. Dendritic cells (DCs, the most potent antigen presenting cells, appear to play a crucial role. Here we will discuss some of the constrains regulating the access of dying cells’ antigens to DCs, as well as censorship mechanisms that prevent their maturation and the full explication of their antigen presenting function.

  17. The influence of infectious factors on dendritic cell apoptosis.

    Science.gov (United States)

    Kubicka-Sierszen, Agata; Grzegorczyk, Janina Ł

    2015-10-12

    Pathogens can have a negative influence on dendritic cells (DCs), causing their apoptosis, which prevents active presentation of foreign antigens. It results in a state of immunosuppression which makes the body susceptible to secondary infections. Infected immature DCs have lower expression of co-stimulatory and adhesion molecules, reduced ability to secrete cytokines and an inhibited maturation process and are incapable of effective antigen presentation and activation of T-lymphocytes. In some cases, the ability of DCs to undergo rapid apoptosis is important for the body defense, which is probably because of DCs' ability to cross-present and cooperate with other cells. Apoptotic bodies released from the infected DCs are phagocytosed by other DCs, which then stimulate the effector cells and present antigens more efficiently than infected cells. The aim of this article is to review how the DCs respond to viral and bacterial factors and which biochemical mechanisms are responsible for their apoptosis. PMID:26528349

  18. Topical vaccination with functionalized particles targeting dendritic cells.

    Science.gov (United States)

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Reiter, Yoran; Baude, Barbara; Dähne, Lars; Patzelt, Alexa; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-08-01

    Needle-free vaccination, for reasons of safety, economy, and convenience, is a central goal in vaccine development, but it also needs to meet the immunological requirements for efficient induction of prophylactic and therapeutic immune responses. Combining the principles of noninvasive delivery to dendritic cells (DCs) through skin and the immunological principles of cell-mediated immunity, we developed microparticle-based topical vaccines. We show here that the microparticles are efficient carriers for coordinated delivery of the essential vaccine constituents to DCs for cross-presentation of the antigens and stimulation of T-cell responses. When applied to the skin, the microparticles penetrate into hair follicles and target the resident DCs, the immunologically most potent cells and site for induction of efficient immune responses. The microparticle vaccine principle can be applied to different antigen formats such as peptides and proteins, or nucleic acids coding for the antigens. PMID:23426134

  19. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-01-01

    Full Text Available

    Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  20. Reengineering autologous bone grafts with the stem cell activator WNT3A.

    Science.gov (United States)

    Jing, Wei; Smith, Andrew A; Liu, Bo; Li, Jingtao; Hunter, Daniel J; Dhamdhere, Girija; Salmon, Benjamin; Jiang, Jie; Cheng, Du; Johnson, Chelsey A; Chen, Serafine; Lee, Katherine; Singh, Gurpreet; Helms, Jill A

    2015-04-01

    Autologous bone grafting represents the standard of care for treating bone defects but this biomaterial is unreliable in older patients. The efficacy of an autograft can be traced back to multipotent stem cells residing within the bone graft. Aging attenuates the viability and function of these stem cells, leading to inconsistent rates of bony union. We show that age-related changes in autograft efficacy are caused by a loss in endogenous Wnt signaling. Blocking this endogenous Wnt signal using Dkk1 abrogates autograft efficacy whereas providing a Wnt signal in the form of liposome-reconstituted WNT3A protein (L-WNT3A) restores bone forming potential to autografts from aged animals. The bioengineered autograft exhibits significantly better survival in the hosting site. Mesenchymal and skeletal stem cell populations in the autograft are activated by L-WNT3A and mitotic activity and osteogenic differentiation are significantly enhanced. In a spinal fusion model, aged autografts treated with L-WNT3A demonstrate superior bone forming capacity compared to the standard of care. Thus, a brief incubation in L-WNT3A reliably improves autologous bone grafting efficacy, which has the potential to significantly improve patient care in the elderly. PMID:25682158

  1. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo

    OpenAIRE

    Tadokoro, Carlos E.; Shakhar, Guy; Shen, Shiqian; Ding, Yi; Lino, Andreia C.; Maraver, Antonio; Lafaille, Juan J.; Dustin, Michael L.

    2006-01-01

    Regulatory T (T reg) cells exert powerful down-modulatory effects on immune responses, but it is not known how they act in vivo. Using intravital two-photon laser scanning microscopy we determined that, in the absence of T reg cells, the locomotion of autoantigen-specific T cells inside lymph nodes is decreased, and the contacts between T cells and antigen-loaded dendritic cells (DCs) are of longer duration. Thus, T reg cells can exert an early effect on immune responses by attenuating the es...

  2. Localized extramedullary relapse after autologous hematopoietic stem cell transplantation in multiple myeloma

    International Nuclear Information System (INIS)

    Extramedullary plasmacytomas are rare manifestation of plasma cell malignancies. After hematopoietic stem cell transplantation HSCT, presentation of localized plasmacytoma with extramedullary growth is very unusual. We report a case of a 56-year-old woman with Dune-Salmon stage IIIA immunoglobulin A-kappa multiple myeloma, which presented 120 days after autologous HSCT with extramedullary plasmacytoma arising from a lymph node in supraclavicular region. The patient had no pretransplant-history related with extramedullary disease. There was no increase of plasma cells in bone marrow or monoclonal protein in urine or serum. Aspiration smears of lymph node revealed a population of plasmacytoid cells at various stages of maturation. The patient was successfully treated with local radiotherapy and has remained progression-free for more than 20 months. (author)

  3. Autologous bone marrow stem cell intralesional transplantation repairing bisphosphonate related osteonecrosis of the jaw

    Directory of Open Access Journals (Sweden)

    Cella Luigi

    2011-08-01

    Full Text Available Abstract Purpose Bisphosphonate - related osteonecrosis of the JAW (BRONJ is a well known side effect of bisphosphonate therapies in oncologic and non oncologic patients. Since to date no definitive consensus has been reached on the treatment of BRONJ, novel strategies for the prevention, risk reduction and treatment need to be developed. We report a 75 year old woman with stage 3 BRONJ secondary to alendronate and pamidronate treatment of osteoporosis. The patient was unresponsive to recommended treatment of the disease, and her BRONJ was worsening. Since bone marrow stem cells are know as being multipotent and exhibit the potential for differentiation into different cells/tissue lineages, including cartilage, bone and other tissue, we performed autologous bone marrow stem cell transplantation into the BRONJ lesion of the patient. Methods Under local anesthesia a volume of 75 ml of bone marrow were harvested from the posterior superior iliac crest by aspiration into heparinized siringes. The cell suspension was concentrated, using Ficoll - Hypaque® centrifugation procedures, in a final volume of 6 ml. Before the injection of stem cells into the osteonecrosis, the patient underwent surgical toilet, local anesthesia was done and spongostan was applied as a carrier of stem cells suspension in the bone cavity, then 4 ml of stem cells suspension and 1 ml of patient's activated platelet-rich plasma were injected in the lesion of BRONJ. Results A week later the residual spongostan was removed and two weeks later resolution of symptoms was obtained. Then the lesion improved with progressive superficialization of the mucosal layer and CT scan, performed 15 months later, shows improvement also of bone via concentric ossification: so complete healing of BRONJ (stage 0 was obtained in our patient, and 30 months later the patient is well and without signs of BRONJ. Conclusion To our knowledge this is the first case of BRONJ successfully treated with

  4. Plasmacytoid dendritic cells in antiviral immunity and autoimmunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Plasmacytoid dendritic cells (pDCs) represent a unique and crucial immune cell population capable of producing large amounts of type I interferons (IFNs) in response to viral infection.The function of pDCs as the professional type I IFN-producing cells is linked to their selective expression of Toll-like receptor 7 (TLR7) and TLR9,which sense viral nucleic acids within the endosomal compartments.Type I IFNs produced by pDCs not only directly inhibit viral replication but also play an essential role in linking the innate and adaptive immune system.The aberrant activation of pDCs by self nucleic acids through TLR signaling and the ongoing production of type I IFNs do occur in some autoimmune diseases.Therefore,pDC may serve as an attractive target for therapeutic manipulations of the immune system to treat viral infectious diseases and autoimmune diseases.

  5. Monocyte-derived dendritic cells in innate and adaptive immunity.

    Science.gov (United States)

    León, Beatriz; Ardavín, Carlos

    2008-01-01

    Monocytes have been classically considered essential elements in relation with innate immune responses against pathogens, and inflammatory processes caused by external aggressions, infection and autoimmune disease. However, although their potential to differentiate into dendritic cells (DCs) was discovered 14 years ago, their functional relevance with regard to adaptive immune responses has only been uncovered very recently. Studies performed over the last years have revealed that monocyte-derived DCs play an important role in innate and adaptive immunity, due to their microbicidal potential, capacity to stimulate CD4(+) and CD8(+) T-cell responses and ability to regulate Immunoglobulin production by B cells. In addition, monocyte-derived DCs not only constitute a subset of DCs formed at inflammatory foci, as previously thought, but also comprise different subsets of DCs located in antigen capture areas, such as the skin and the intestinal, respiratory and reproductive tracts. PMID:18362945

  6. Epstein-Barr Virus–Associated Posttransplantation Lymphoproliferative Disorder after High-Dose Immunosuppressive Therapy and Autologous CD34-Selected Hematopoietic Stem Cell Transplantation for Severe Autoimmune Diseases

    OpenAIRE

    Nash, Richard A.; Dansey, Roger; Storek, Jan; Georges, George E.; Bowen, James D.; Holmberg, Leona A.; Kraft, George H.; Maureen D Mayes; McDonagh, Kevin T; Chen, Chien-Shing; DiPersio, John; LeMaistre, C. Fred; Pavletic, Steven; Sullivan, Keith M.; Sunderhaus, Julie

    2003-01-01

    High-dose immunosuppressive therapy followed by autologous hematopoietic stem cell transplantation (HSCT) is currently being evaluated for the control of severe autoimmune diseases. The addition of antithymocyte globulin (ATG) to high-dose chemoradiotherapy in the high-dose immunosuppressive therapy regimen and CD34 selection of the autologous graft may induce a higher degree of immunosuppression compared with conventional autologous HSCT for malignant diseases. Patients may be at higher risk...

  7. The role of autologous haemopoietic stem cell transplantation in the treatment of autoimmune disorders.

    Science.gov (United States)

    Rebeiro, P; Moore, J

    2016-01-01

    Autologous haemopoietic stem cell transplantation (HSCT) has been used for over 30 years for malignant haematological diseases, such as myeloma and lymphoma, with considerable success. More recently this procedure has been adopted as a form of high dose immunosuppression in selected patients with autoimmune diseases that are resistant to conventional therapies. Animal models have previously outlined the rationale and validity of HSCT in patients with these non-malignant, but in many cases, life-threatening conditions. Recent data have that deletion of putative autoreactive immune clones with reconstitution of a thymic driven, tolerant immune system occurs in HSCT for auto-immune patients. Two randomised control trials have confirmed that HSCT is superior to monthly cyclophosphamide in systemic sclerosis with a highly significant disease free and overall survival benefit demonstrated in the Autologous Stem cell Transplantation International Scleroderma trial. Over 2000 patients worldwide with autoimmune conditions have been treated with HSCT - the commonest indications being multiple sclerosis (MS) and systemic sclerosis. Encouraging relapse free survival of 70-80% at 4 years, in heavily pre-treated MS patients, has been demonstrated in Phase II trials. A Phase III trial in MS patients who have failed interferon is currently accruing patients. Future challenges include improvements in safety of HSCT, particularly in cardiac assessment of systemic sclerosis patients, cost-benefit analyses of HSCT compared to standard therapy and establishment of centres of excellence to continue to enhance the safety and benefit of this exciting new therapy. PMID:26524106

  8. Identification of a novel immunoregulatory signaling pathway exploited by M. tuberculosis in dendritic cells

    DEFF Research Database (Denmark)

    Laursen, Janne Marie; Schoof, Erwin; Søndergaard, Jonas Nørskov;

    highly sophisticated infectious machinery employed by the bacterium. The dendritic cell (DC) plays a crucial role in shaping the nature of the immune response after exposure to pathogens, and the interaction between M. tuberculosis and the dendritic cell is of profound importance for the course of...

  9. Lentivirus-Induced Dendritic Cells (iDC for Immune-Regenerative Therapies in Cancer and Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Renata Stripecke

    2014-08-01

    Full Text Available Conventional dendritic cells (cDC are ex vivo differentiated professional antigen presenting cells capable of potently stimulating naïve T cells and with vast potential for immunotherapeutic applications. The manufacture of clinical-grade cDC is relatively complex and requires several days for completion. Clinical trials showed poor trafficking of cDC from subcutaneous injection sites to lymph nodes (LN, where DC can optimally stimulate naïve lymphocytes for long-lasting memory responses. We demonstrated in mouse and human systems that a single overnight ex vivo lentiviral (LV gene transfer into DC precursors for production of combination of cytokines and antigens was capable to induce autonomous self-differentiation of antigen-loaded DC in vitro and in vivo. These highly viable induced DC (iDC effectively migrated from the injected skin to LN, where they effectively activated de novo antigen-specific effector memory T cells. Two iDC modalities were validated in relevant animal models and are now in clinical development: Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors co-expressing GM-CSF/IL-4/TRP2 for melanoma immunotherapy in the autologous setting (SmartDCtrp2, and Self-differentiated Myeloid-derived Lentivirus-induced against human cytomegalovirus as an allogeneic matched adoptive cell after stem cell transplantation (SmyleDCpp65. The lentiviral vector design and packaging methodology has “evolved” continuously in order to simplify and optimize function and biosafety of in vitro and in vivo genetic reprogramming of iDC. Here, we address the challenges seeking for new creations of genetically programmed iDC and integrase-defective LV vaccines for immune regeneration.

  10. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne;

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes, but it is...

  11. Dendritic cells are defective in breast cancer patients: a potential role for polyamine in this immunodeficiency

    International Nuclear Information System (INIS)

    Dendritic cells (DCs) are antigen-presenting cells that are currently employed in cancer clinical trials. However, it is not clear whether their ability to induce tumour-specific immune responses when they are isolated from cancer patients is reduced relative to their ability in vivo. We determined the phenotype and functional activity of DCs from cancer patients and investigated the effect of putrescine, a polyamine molecule that is released in large amounts by cancer cells and has been implicated in metastatic invasion, on DCs. The IL-4/GM-CSF (granulocyte–macrophage colony-stimulating factor) procedure for culturing blood monocyte-derived DCs was applied to cells from healthy donors and patients (17 with breast, 7 with colorectal and 10 with renal cell carcinoma). The same peroxide-treated tumour cells (M74 cell line) were used for DC pulsing. We investigated the effects of stimulation of autologous lymphocytes by DCs pulsed with treated tumour cells (DC-Tu), and cytolytic activity of T cells was determined in the same target cells. Certain differences were observed between donors and breast cancer patients. The yield of DCs was dramatically weaker, and expression of MHC class II was lower and the percentage of HLA-DR-Lin- cells higher in patients. Whatever combination of maturating agents was used, expression of markers of mature DCs was significantly lower in patients. Also, DCs from patients exhibited reduced ability to stimulate cytotoxic T lymphocytes. After DC-Tu stimulation, specific cytolytic activity was enhanced by up to 40% when DCs were from donors but only up to 10% when they were from patients. IFN-γ production was repeatedly found to be enhanced in donors but not in patients. By adding putrescine to DCs from donors, it was possible to enhance the HLA-DR-Lin- cell percentage and to reduce the final cytolytic activity of lymphocytes after DC-Tu stimulation, mimicking defective DC function. These putrescine-induced deficiencies were reversed by

  12. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  13. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  14. Dendritic cells and oral transmission of prion diseases.

    Science.gov (United States)

    Huang, Fang-Ping; MacPherson, G Gordon

    2004-04-19

    Transmissible spongiform encephalopathies (scrapie, BSE, Kuru) develop as central nervous system (CNS) diseases after long incubation periods, and many of which may arise following the consumption of infected material. The infectious agent is thought to be a misfolded form (scrapie associated PrP (PrP(Sc))) of a normal host protein (cellular isoform of PrP (PrP(C))), which is relatively resistant to proteolytic degradation and which serves as a template, directing host prion protein (PrP) to accumulate in the misfolded form. Animal experiments have shown that CNS disease is preceded by a period in which the agent accumulates in secondary lymphoid organs (Peyer's patches (PP), lymph nodes, spleen), particularly follicular dendritic cells (FDCs) in the B cell areas of these organs. How the agent is transmitted from the intestinal lumen to the FDCs is largely unknown. Dendritic cells (DCs, cells quite distinct from FDCs) are cells that are specialised to acquire antigens from peripheral tissues and to transport them to secondary lymphoid organs for presentation to T and B lymphocytes. We have shown that DCs can acquire PrP(Sc) from the intestinal lumen and deliver it to mesenteric lymph nodes. In this review we discuss the different stages involved in the migration of PrP(Sc) from the intestine to FDCs and consider the different stages and barriers involved in this process. We conclude that transport of the causative agent, using PrP(Sc) as a biomarker, from the intestine to FDCs is a very inefficient process, which may help to account for the apparent low frequency of individuals who have consumed infected material that go on to develop clinical disease. PMID:15063597

  15. Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORα

    Directory of Open Access Journals (Sweden)

    Bois-Joyeux Brigitte

    2010-07-01

    Full Text Available Abstract Background The active form (T3 of thyroid hormone (TH controls critical aspects of cerebellar development, such as migration of postmitotic neurons and terminal dendritic differentiation of Purkinje cells. The effects of T3 on early dendritic differentiation are poorly understood. Results In this study, we have analyzed the influence of T3 on the progression of the early steps of Purkinje cell dendritic differentiation in postnatal day 0 organotypic cerebellar cultures. These steps include, successively, regression of immature neuritic processes, a stellate cell stage, and the extension of several long and mature perisomatic protrusions before the growth of the ultimate dendritic tree. We also studied the involvement of RORα, a nuclear receptor controlling early Purkinje cell dendritic differentiation. We show that T3 treatment leads to an accelerated progression of the early steps of dendritic differentiation in culture, together with an increased expression of RORα (mRNA and protein in both Purkinje cells and interneurons. Finally, we show that T3 failed to promote early dendritic differentiation in staggerer RORα-deficient Purkinje cells. Conclusions Our results demonstrate that T3 action on the early Purkinje cell dendritic differentiation process is mediated by RORα.

  16. Breast cancer tumor growth is efficiently inhibited by dendritic cell transfusion in a murine model

    Directory of Open Access Journals (Sweden)

    Viet Quoc Pham

    2014-03-01

    Full Text Available The ability of dendritic cells to efficiently present tumor-derived antigens when primed with tumor cell lysates makes them attractive as an approach for cancer treatment. This study aimed to evaluate the effects of dendritic cell transfusion dose on breast cancer tumor growth in a murine model. Dendritic cells were produced from allogeneic bone marrow-derived mononuclear cells that were cultured in RPMI 1640 medium supplemented with 20 ng/mL GM-CSF and 20 ng/mL IL-4 for 7 days. These cells were checked for maturation before being primed with a cancer cell-derived antigen. Cancer cell antigens were produced by a rapid freeze-thaw procedure using a 4T1 cell line. Immature dendritic cells were loaded with 4T1 cellderived antigens. Dendritic cells were transfused into mice bearing tumors at three different doses, included 5.104, 105, and 106 cells/mouse with a control consisting of RPMI 1640 media alone. The results showed that dendritic cell therapy inhibited breast cancer tumors in a murine model; however, this effect depended on dendritic cell dose. After 17 days, in the treated groups, tumor size decreased by 43%, 50%, and 87.5% for the doses of 5 and times; 104, 105, and 106 dendritic cells, respectively, while tumor size in the control group decreased by 44%. This result demonstrated that dendritic cell therapy is a promising therapy for breast cancer treatment. [Biomed Res Ther 2014; 1(3.000: 85-92

  17. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming.

    Science.gov (United States)

    Allan, Rhys S; Waithman, Jason; Bedoui, Sammy; Jones, Claerwen M; Villadangos, Jose A; Zhan, Yifan; Lew, Andrew M; Shortman, Ken; Heath, William R; Carbone, Francis R

    2006-07-01

    Skin dendritic cells (DCs) are thought to act as key initiators of local T cell immunity. Here we show that after skin infection with herpes simplex virus (HSV), cytotoxic T lymphocyte (CTL) activation required MHC class I-restricted presentation by nonmigratory CD8(+) DCs rather than skin-derived DCs. Despite a lack of direct presentation by migratory DCs, blocking their egress from infected skin substantially inhibited class I-restricted presentation and HSV-specific CTL responses. These results support the argument for initial transport of antigen by migrating DCs, followed by its transfer to the lymphoid-resident DCs for presentation and CTL priming. Given that relatively robust CTL responses were seen with small numbers of skin-emigrant DCs, we propose that this inter-DC antigen transfer functions to amplify presentation across a larger network of lymphoid-resident DCs for efficient T cell activation. PMID:16860764

  18. Modulation of Dendritic Cells by Nanotechnology-Based Immunotherapeutic Strategies.

    Science.gov (United States)

    Mogrão, Joana; da Costa, Catarina A; Gaspar, Rogério; Florindo, Helena F

    2016-03-01

    In preceding decades, different mechanisms have been proposed to "instruct" dendritic cells (DCs) to induce immune responses against tumor antigens (TAs), thus breaking immune tolerance. Immunotherapy has been, for the last two decades, an attractive and promising therapeutic approach to fight cancer. This review will approach the nature of the immune response during cancer development and its correlation with DC function, as well as cancer vaccine principles and limitations. An overview of several delivery strategies used for in vivo modulation of DCs and direct activation of T cells will be provided, highlighting their advantages, limitations, and optimization strategies. This manuscript also presents a critical and systematic review of recent clinical trials that are investigating the therapeutic effect of these approaches, discussing prognostic outcomes of combined-treatment modalities. PMID:27280242

  19. Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus

    Science.gov (United States)

    Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.

    2012-10-01

    Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.

  20. Curcumin prevents human dendritic cell response to immune stimulants

    Science.gov (United States)

    Shirley, Shawna A.; Montpetit, Alison J.; Lockey, R.F.; Mohapatra, Shyam S.

    2012-01-01

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing naïve CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant. PMID:18639521

  1. Curcumin prevents human dendritic cell response to immune stimulants

    International Nuclear Information System (INIS)

    Curcumin, a compound found in the Indian spice turmeric, has anti-inflammatory and immunomodulatory properties, though the mechanism remains unclear. Dendritic cells (DCs) are important to generating an immune response and the effect of curcumin on human DCs has not been explored. The role curcumin in the DC response to bacterial and viral infection was investigated in vitro using LPS and Poly I:C as models of infection. CD14+ monocytes, isolated from human peripheral blood, were cultured in GM-CSF- and IL-4-supplemented medium to generate immature DCs. Cultures were incubated with curcumin, stimulated with LPS or Poly I:C and functional assays were performed. Curcumin prevents DCs from responding to immunostimulants and inducing CD4+ T cell proliferation by blocking maturation marker, cytokine and chemokine expression and reducing both migration and endocytosis. These data suggest a therapeutic role for curcumin as an immune suppressant

  2. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Adriana J Michielsen

    Full Text Available Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5 could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  3. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  4. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan; Hansen, Morten H; Berntsen, Annika; Svane, Inge Marie

    2008-01-01

    -regulation of inhibitory molecules such as PD-L1, ILT2, ILT3 as compared to sDC. Although alphaDC1 matured DCs secreted more IL-12p70 and IL-23 these DCs had lower or similar stimulatory capacity compared to sDCs when used as stimulating cells in mixed lymphocyte reaction (MLR) or for induction of autologous...

  5. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells

    Directory of Open Access Journals (Sweden)

    Sun X

    2012-06-01

    Full Text Available Xun Sun, Simu Chen, Jianfeng Han, Zhirong ZhangKey Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of ChinaBackground: To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG and a series of its mannosylated derivatives.Methods: PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs using flow cytometry.Results: PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation.Conclusion: These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system.Keywords: dendritic cells, DCs, mannose, polyethyleneimine, PEI, gene delivery

  6. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    Science.gov (United States)

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  7. Cardiac atrioventricular conduction improved by autologous transplantation of mesenchymal stem cells in canine atrioventricular block models

    Institute of Scientific and Technical Information of China (English)

    Xiaoqing Ren; Jielin Pu; Shu Zhang; Liang Meng; Fangzheng Wang

    2007-01-01

    Objective Atrioventricular block (AVB) is a common and serious arrhythmia. At present, there is no perfect method of treatment for this kind of arrhythmia. The purpose of this study was to regenerate cardiac atrioventricular conduction by autologous transplantation of bone marrow mesenchymal stem cells (MSCs), and explore new methods for therapy of atrioventricular block. Methods Eleven Mongrel canines were randomized to MSCs transplantation (n=6) or control (n=5) group. The models of permanent and complete AVB in 11 canines were established by ablating His bundle with radiofrequency technique. At 4 weeks after AVB, bone marrow was aspirated from the iliac crest. MSCs were isolated and culture-expanded by means of gradient centrifugal and adherence to growth technique, and differentiated by 5-azacytidine in vitro. Differentiated MSCs (1ml, 1.5×107cells) labeled with BrdU were autotransplanted into His bundle area of canines by direct injection in the experimental group, and 1ml DMEM in the control group. At 1-12 weeks after operation,the effects of autologous MSCs transplantation on AVB models were evaluated by electrocardiogram, pathologic and immunohistochemical staining technique. Results Compared with the control group, there was a distinct improvement in atrioventricular conduction function in the experimental group. MSCs transplanted in His bundle were differentiated into analogous conduction system cells and endothelial cells in vivo, and established gap junction with host cardiomyocytes. Conclusions The committed-induced MSCs transplanted into His bundle area could differentiate into analogous conduction system cells and improve His conduction function in canine AVB models.

  8. DMPD: The role of type I interferon production by dendritic cells in host defense. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17544561 The role of type I interferon production by dendritic cells in host defens...tml) (.csml) Show The role of type I interferon production by dendritic cells in host defense. PubmedID 1754...4561 Title The role of type I interferon production by dendritic cells in host de

  9. DMPD: Heterogeneity of TLR-induced responses in dendritic cells: from innate toadaptive immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15481153 Heterogeneity of TLR-induced responses in dendritic cells: from innate toa...w Heterogeneity of TLR-induced responses in dendritic cells: from innate toadaptive immunity. PubmedID 15481...153 Title Heterogeneity of TLR-induced responses in dendritic cells: from innate

  10. PLACE CELL FORMATION BY GRID CELL CONVERGENCE IN THE DENDRITES OF A CA1 MODEL NEURON

    Directory of Open Access Journals (Sweden)

    Evangelia Pollali

    2014-04-01

    Full Text Available Place cells are pyramidal neurons in CA1 and CA3 regions of hippocampus which fire selectively when the animal is located in a particular place in space. CA1 place cells receive synaptic input from CA3 via the Schaffer collateral fibers to their proximal apical and basal dendrites and from the third layer of medial entorhinal cortex to their apical tuft dendrites. Both of these input pathways encode spatial information. Grid cells, which form the entorhinal input to CA1 cells, have a spatial firing field with multiple peaks which displays a regularly spaced, triangular grid pattern that covers the entire space of a given environment. Both grid and place cells are phase-modulated by theta rhythm and this modulation may be important for their spatial properties. Studying the formation of place cells is an important step in understanding how representation of the external environment is coded in neural networks that constitute spatial maps. It is not currently known how place fields emerge in CA1 neurons. An influential model of place cell formation predicts the convergence of various grid field inputs which combine linearly to create the place field output of CA1 cells. In this study, we constructed a model of CA1 place cell formation through the convergence of grid field inputs to the distal dendrites of our model neuron. We created a model of grid cell activity which represents the firing of grid cells modulated be the theta rhythm. We varied the number of different grid fields used as synaptic inputs to stimulate the distal dendrites of a biophysically constrained, detailed compartmental CA1 pyramidal cell model. In addition, inhibition was placed in both the distal and proximal dendrites. These inhibitory pathways are known to be active in different phases of the theta rhythm. We used this model to study the properties of CA1 place cell formation and to assess the output of the CA1 model cell during place cell activity. Additionally, we

  11. Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig.

    Science.gov (United States)

    Laumonier, Thomas; Yang, Sheng; Konig, Stephane; Chauveau, Christine; Anegon, Ignacio; Hoffmeyer, Pierre; Menetrey, Jacques

    2008-02-01

    Cell therapy for Duchenne muscular dystrophy and other muscle diseases is limited by a massive early cell death following injections. In this study, we explored the potential benefit of heme oxygenase-1 (HO-1) expression in the survival of porcine myogenic precursor cells (MPCs) transplanted in pig skeletal muscle. Increased HO-1 expression was assessed either by transient hyperthermia or by HO-1 lentiviral infection. One day after the thermic shock, we observed a fourfold and a threefold increase in HSP70/72 and HO-1 levels, respectively. This treatment protected 30% of cells from staurosporine-induced apoptosis in vitro. When porcine MPC were heat-shocked prior to grafting, we improved cell survival by threefold at 5 days after autologous transplantation (26.3 +/- 5.5% surviving cells). After HO-1 lentiviral transduction, almost 60% of cells expressed the transgene and kept their myogenic properties to proliferate and fuse in vitro. Apoptosis of HO-1 transduced cells was reduced by 50% in vitro after staurosporine induction. Finally, a fivefold enhancement in cell survival was observed after transplantation of HO-1-group (47.5 +/- 9.1% surviving cells) as compared to the nls-LacZ-group or control group. These results identify HO-1 as a protective gene against early MPC death post-transplantation. PMID:18026170

  12. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  13. Role of regulatory dendritic cells in allergy and asthma.

    Science.gov (United States)

    Akbari, Omid; Umetsu, Dale T

    2005-01-01

    Dendritic cells (DCs) are the most efficient inducers of all immune responses, and are capable of either inducing productive immunity or maintaining the state of tolerance to self antigens and allergens. In this review, we summarize the emerging literature on DCs, with emphasis on the regulatory function of DCs in allergy and asthma. In particular, we summarize recent data regarding the relationship between DC subsets and TH1, TH2, and regulatory T (TReg) cells. The diverse functions of DCs have been attributed to distinct lineages of DCs, which arise from common immature precursor cells that differentiate in response to specific maturation-inducing or local microenvironment conditions. These subsets of DCs induce different lineages of T cells, such as TH1, TH2, and TReg cells, including Th1Reg and Th2Reg cells, which regulate allergic diseases and asthma. Subsets of DCs regulate the induction of a variety of T-cell subtypes, which suppress the development of allergy and asthma, thus providing anti-inflammatory responses and protective immunity. PMID:15659264

  14. Uptake and intracellular trafficking of superantigens in dendritic cells.

    Directory of Open Access Journals (Sweden)

    María B Ganem

    Full Text Available Bacterial superantigens (SAgs are exotoxins produced mainly by Staphylococcus aureus and Streptococcus pyogenes that can cause toxic shock syndrome (TSS. According to current paradigm, SAgs interact directly and simultaneously with T cell receptor (TCR on the T cell and MHC class II (MHC-II on the antigen-presenting cell (APC, thereby circumventing intracellular processing to trigger T cell activation. Dendritic cells (DCs are professional APCs that coat nearly all body surfaces and are the most probable candidate to interact with SAgs. We demonstrate that SAgs are taken up by mouse DCs without triggering DC maturation. SAgs were found in intracellular acidic compartment of DCs as biologically active molecules. Moreover, SAgs co-localized with EEA1, RAB-7 and LAMP-2, at different times, and were then recycled to the cell membrane. DCs loaded with SAgs are capable of triggering in vitro lymphocyte proliferation and, injected into mice, stimulate T cells bearing the proper TCR in draining lymph nodes. Transportation and trafficking of SAgs in DCs might increase the local concentration of these exotoxins where they will produce the highest effect by promoting their encounter with both MHC-II and TCR in lymph nodes, and may explain how just a few SAg molecules can induce the severe pathology associated with TSS.

  15. Autologous transplantation and management of younger patients with mantle cell lymphoma

    DEFF Research Database (Denmark)

    Geisler, Christian H

    2012-01-01

    -term disease control. The efficacy of CHOP as induction therapy before ASCT in MCL is questioned and there is now evidence that as pretreatment before ASCT, AraC + rituximab leads to deeper remission and prolongs progression-free survival compared to rituximab + CHOP. The treatment goal of complete clinical......Mantle cell lymphoma is traditionally conceived as one of the NHL subtypes with the worst prognosis and incurable. In responders to frontline induction with CHOP-like chemotherapy autologous stem cell transplantation (ASCT) is proven superior to interferon maintenance, but does not lead to long...... approach might lead to a shift of paradigm of MCL from an incurable to a curable lymphoma....

  16. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    OpenAIRE

    Euler Moraes Penha; Cássio Santana Meira; Elisalva Teixeira Guimarães; Marcus Vinícius Pinheiro Mendonça; Faye Alice Gravely; Cláudia Maria Bahia Pinheiro; Taiana Maria Bahia Pinheiro; Stella Maria Barrouin-Melo; Ricardo Ribeiro-dos-Santos; Milena Botelho Pereira Soares

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten...

  17. Application of reticulated platelets to transfusion management during autologous stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Parco S

    2012-01-01

    Full Text Available Sergio Parco, Fulvia VascottoInstitute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, ItalyBackground: The immature (or reticulated platelet fraction (IPF is rich in nucleic acids, especially RNA, and can be used as a predictive factor for platelet recovery in platelet immunomediated consumption or in postchemotherapy myelosuppression. Our aim was to determine if transfusions with IPF-rich solutions, during autologous peripheral blood stem cell transplantation, reduce the occurrence of bleeding and hemorrhagic complications.Patients and methods: Transfusions were administered to 40 children, affected with hematological pathologies, who underwent autologous peripheral hematopoietic progenitor cell transplantation. There were two groups of 20 patients, one group treated with IPF-poor and the other with IPF-rich solutions. In the two groups, the conditioning regimen was the same for the same pathology (hematological pathologies: 14 acute lymphoblastic leukemia; twelve acute myelocytic leukemia; four non-Hodgkin's lymphoma; two Hodgkin's lymphoma; eight solid tumors. A new automated analyzer was used to quantify the IPF: the XE2100 (Sysmex, Kobe, Japan blood cell counter with upgraded software.Results: The 20 patients who received solutions with a high percentage of IPF (3%–9% of total number of infused platelets required fewer transfusions than the 20 patients who received transfusions with a low percentage of IPF (0%–1% of total number of infused platelets: 83 versus 129 (mean of number of transfusions 4.15 versus 6.45 and a significant difference was found between the two groups by using the Mann–Whitney test (P < 0.001. The prophylactic transfusions decreased from three to two per week. There was only one case of massive hemorrhage.Conclusion: The use of IPF solutions reduces the number of transfusions and bleedings after peripheral blood stem cell transplantation in pediatric patients.Keywords: children, reticulated

  18. Hodgkin's disease as unusual presentation of post-transplant lymphoproliferative disorder after autologous hematopoietic cell transplantation for malignant glioma

    Directory of Open Access Journals (Sweden)

    Scelsi Mario

    2005-08-01

    Full Text Available Abstract Background Post-transplant lymphoproliferative disorder (PTLD is a complication of solid organ and allogeneic hematopoietic stem cell transplantation (HSCT; following autologous HSCT only rare cases of PTLD have been reported. Here, a case of Hodgkin's disease (HD, as unusual presentation of PTLD after autologous HSCT for malignant glioma is described. Case presentation 60-years old man affected by cerebral anaplastic astrocytoma underwent subtotal neurosurgical excision and subsequent high-dose chemotherapy followed by autologous HSCT. During the post HSCT course, cranial irradiation and corticosteroids were administered as completion of therapeutic program. At day +105 after HSCT, the patient developed HD, nodular sclerosis type, with polymorphic HD-like skin infiltration. Conclusion The clinical and pathological findings were consistent with the diagnosis of PTLD.

  19. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  20. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    Institute of Scientific and Technical Information of China (English)

    Kun Zhang; Peng-Fen Gao; Pei-Wu Yu; Yun Rao; Li-Xin Zhou

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines.METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems.The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes' proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals.RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes' proliferations were remarkably increased than their parental dendritic cells.CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their antitumor biotherapies.

  1. Allergen Recognition by Innate Immune Cells: Critical Role of Dendritic and Epithelial Cells

    OpenAIRE

    Salazar, Fabián; Ghaemmaghami, Amir M.

    2013-01-01

    Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells (DCs), leading to Th2 polarization, switching to IgE production by B cells, culminating in mast cell sensitization and triggering. DCs have been demonstrated to play a crucial...

  2. C-type lectin receptors on dendritic cells and Langerhans cells.

    NARCIS (Netherlands)

    Figdor, C.G.; Kooyk, Y. van; Adema, G.J.

    2002-01-01

    Dendritic cells and Langerhans cells are specialized for the recognition of pathogens and have a pivotal role in the control of immunity. As guardians of the immune system, they are present in essentially every organ and tissue, where they operate at the interface of innate and acquired immunity. Re

  3. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  4. Involvement of IRF4 dependent dendritic cells in T cell dependent colitis

    DEFF Research Database (Denmark)

    Pool, Lieneke; Rivollier, Aymeric Marie Christian; Agace, William Winston

    genetically susceptible individuals and pathogenic CD4+ T cells, which accumulate in the inflamed mucosa, are believed to be key drivers of the disease. While dendritic cells (DCs) are important in the priming of intestinal adaptive immunity and tolerance their role in the initiation and perpetuation of...

  5. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.; Buschow, S.I.; Anderton, S.M.; Stoorvogel, W.; Wauben, M.H.M.

    2009-01-01

    Dendritic cells (DCs) are known to secrete exosomes that transfer membrane proteins, like major histocompatibility complex class II, to other DCs. Intercellular transfer of membrane proteins is also observed during cognate interactions between DCs and CD4(+) T cells. The acquired proteins are functi

  6. Follicular dendritic cells emerge from ubiquitous perivascular precursors.

    Science.gov (United States)

    Krautler, Nike Julia; Kana, Veronika; Kranich, Jan; Tian, Yinghua; Perera, Dushan; Lemm, Doreen; Schwarz, Petra; Armulik, Annika; Browning, Jeffrey L; Tallquist, Michelle; Buch, Thorsten; Oliveira-Martins, José B; Zhu, Caihong; Hermann, Mario; Wagner, Ulrich; Brink, Robert; Heikenwalder, Mathias; Aguzzi, Adriano

    2012-07-01

    The differentiation of follicular dendritic cells (FDC) is essential to the remarkable microanatomic plasticity of lymphoid follicles. Here we show that FDC arise from ubiquitous perivascular precursors (preFDC) expressing platelet-derived growth factor receptor β (PDGFRβ). PDGFRβ-Cre-driven reporter gene recombination resulted in FDC labeling, whereas conditional ablation of PDGFRβ(+)-derived cells abolished FDC, indicating that FDC originate from PDGFRβ(+) cells. Lymphotoxin-α-overexpressing prion protein (PrP)(+) kidneys developed PrP(+) FDC after transplantation into PrP(-) mice, confirming that preFDC exist outside lymphoid organs. Adipose tissue-derived PDGFRβ(+) stromal-vascular cells responded to FDC maturation factors and, when transplanted into lymphotoxin β receptor (LTβR)(-) kidney capsules, differentiated into Mfge8(+)CD21/35(+)FcγRIIβ(+)PrP(+) FDC capable of trapping immune complexes and recruiting B cells. Spleens of lymphocyte-deficient mice contained perivascular PDGFRβ(+) FDC precursors whose expansion required both lymphoid tissue inducer (LTi) cells and lymphotoxin. The ubiquity of preFDC and their strategic location at blood vessels may explain the de novo generation of organized lymphoid tissue at sites of lymphocytic inflammation. PMID:22770220

  7. Effects of Aedes aegypti salivary components on dendritic cell and lymphocyte biology

    Czech Academy of Sciences Publication Activity Database

    Bizzarro, B.; Barros, M.S.; Maciel, C.; Gueroni, D.I.; Lino, C.N.; Campopiano, J.; Kotsyfakis, Michalis; Amarante-Mendes, G.P.; Calvo, E.; Capurro, M.L.; Sa-Nunes, A.

    2013-01-01

    Roč. 6, NOV 2013 (2013), s. 329. ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : dendritic cells * T-cells * Aedes aegypti * saliva * apoptosis Subject RIV: EC - Immunology Impact factor: 3.251, year: 2013

  8. Short intensive sequential therapy followed by autologous stem cell transplantation in adult Burkitt, Burkitt-like and lymphoblastic lymphoma

    NARCIS (Netherlands)

    G. van Imhoff (Gustaaf); B. van der Holt (Bronno); M.A. MacKenzie (Marius); G.J. Ossenkoppele (Gert); P.W. Wijermans (Pierre); M.H.H. Kramer (Mark); M.B. van 't Veer (Mars); H. Schouten (Harry); M. van Marwijk Kooy (Marinus); M.H.J. van Oers (Marinus); J. Raemaekers; P. Sonneveld (Pieter); L.A.M.H. Meulendijks (L. A M H); P.M. Kluin; H.C. Kluin-Nelemans (H.); L.F. Verdonck (Leo)

    2005-01-01

    textabstractThe feasibility and efficacy of up-front high-dose sequential chemotherapy followed by autologous stem cell transplantation (ASCT) in previously untreated adults (median age 33 years; range 15-64) with Burkitt lymphoma (BL), Burkitt-like lymphoma (BLL) or lymphoblastic lymphoma (LyLy), b

  9. Short intensive sequential therapy followed by autologous stem cell transplantation in adult Burkitt, Burkitt-like and lymphoblastic lymphoma

    NARCIS (Netherlands)

    van Imhoff, GW; van der Holt, B; MacKenzie, MA; Ossenkoppele, GJ; Wijermans, PW; Kramer, MHH; van't Veer, MB; Schouten, HC; Kooy, MV; van Oers, MHJ; Raemaekers, JMM; Sonneveld, P; Meulendijks, LAMH; Kluin, PM; Kluin-Nelemans, HC; Verdonck, LF

    2005-01-01

    The feasibility and efficacy of up- front high- dose sequential chemotherapy followed by autologous stem cell transplantation ( ASCT) in previously untreated adults ( median age 33 years; range 15 - 64) with Burkitt lymphoma ( BL), Burkitt- like lymphoma ( BLL) or lymphoblastic lymphoma ( LyLy), bot

  10. Treatment of massive gastrointestinal bleeding occurred during autologous stem cell transplantation with recombinant activated factor VII and octreotide

    Directory of Open Access Journals (Sweden)

    Erman Atas

    2015-01-01

    Full Text Available After hematopoietic stem cell transplantation (HSCT, patients may suffer from bleeding. One of the bleeding type is gastrointestinal (GI which has serious morbidity and mortality in children with limited treatment options. Herein, we presented a child with upper GI bleeding post autologous HSCT controlled successfully by using recombinant activated factor VII (rFVIIa and octreotide infusion.

  11. Effect of Remission Status and Induction Chemotherapy Regimen on Outcome of Autologous Stem Cell Transplantation for Mantle Cell Lymphoma

    OpenAIRE

    Till, Brian G.; Gooley, Theodore A.; Crawford, Nathan; Gopal, Ajay K.; Maloney, David G; Petersdorf, Stephen H.; Pagel, John M.; Holmberg, Leona; Bensinger, William; Press, Oliver W.

    2008-01-01

    We analyzed the outcomes of autologous stem cell transplantation (ASCT) following high-dose therapy with respect to remission status at the time of transplantation and induction regimen used in 56 consecutive patients with mantle cell lymphoma (MCL). Twenty-one patients received induction chemotherapy with HyperCVAD with or without rituximab (±R) followed by ASCT in first complete or partial remission (CR1/PR1), 15 received CHOP (±R) followed by ASCT in CR1/PR1, and 20 received ASCT following...

  12. Feasibility of Bone Marrow Stromal Cells Autologous Transplantation for Dilated Cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng; YANG Chenyuan; XIAO Shiliang; FEI Hongwen

    2007-01-01

    The feasibility of bone marrow stromal cells autologous transplantation for rabbit model of dilated cardiomyopathy induced by adriamycin was studied. Twenty rabbits received 2 mg/kg of adriamycin intravenously once a week for 8 weeks (total dose, 16 mg/kg) to induce the cardiomyopathy model with the monitoring of cardiac function by transthoracic echocardiography. Marrow stromal cells were isolated from cell-transplanted group rabbits and were culture-expanded on the 8th week. On the 10th week, cells were labeled with 4,6-diamidino-2-phenylindole (DAPI), and then injected into the myocardium of the same rabbits. The results showed that viable cells labeled with DAPI could be identified in myocardium at 2nd week after transplantation. Histological findings showed the injury of the myocardium around the injection site was relieved with less apoptosis and more expression of bcl-2. The echocardiography found the improvement of local tissue movement from (2.12±0.51) cm/s to (3.81±0.47) cm/s (P<0.05) around the inject site, but no improvement of heart function as whole. It was concluded bone marrow stromal cells transplantation for dilated cardiomyopathy was feasibe. The management of cells in vitro, the quantity and the pattern of the cells transplantation and the action mechanism still need further research.

  13. Autologous Stem Cell Injection for Spinal Cord Injury - A Clinical Study from India.

    Directory of Open Access Journals (Sweden)

    Ravikumar R

    2007-01-01

    Full Text Available We studied 100 patients with Spinal Cord injury (SCI after Autologous Stem cell Injection in the Spinal fluid with a Follow up of 6 months post Stem cell injection. There were 69 males and 31 females; age ranging from 8 years to 55 years.? Time after Spinal Injury ranged from 11 years - 3 months (Average: 4.5 years. The Level of Injury ranged from Upper Thoracic (T1-T7 - 34 pts, Lower thoracic (T7-T12 -45 pts, Lumbar -12, Cervical-9 pts. All patients had an MRI Scan, urodynamic study and SSEP (somatosensory Evoked Potential tests before and 3 months after Stem cell Injection.80% of patients had Grade 0 power in the Lower limbs and rest had grade 1-2 power before stem cell injections. 70% of cases had complete lack of Bladder control and 95% had reduced detrusor function.We Extracted CD34 and CD 133 marked Stem cells from 100 ml of Bone marrow Aspirate using Ficoll Gradient method with Cell counting done using flowcytometry.15 ml of the Stem cell concentrate was injected into the Lumbar spinal fluid in aseptic conditions. The CD 34/CD45 counts ranged from 120-400 million cells in the total volume.6 months after Injection, 8 patients had more than 2 grades of Motor power improvement, 3 are able to walk with support. 1 patient with T12/L1 injury was able to walk without support. 12 had sensory tactile and Pain perception improvement and 8 had objective improvement in bladder control and Bladder Muscle contractility. A total of 18 patients had reported or observed improvement in Neurological status. 85% of patients who had motor Improvement had Lesions below T8. MRI, SSEP and Urodynamic Study data are gathered at regular intervals. Conclusion: This study shows that Quantitative and qualitative Improvement in the Neurological status of paralyzed patients after Spinal cord injury is possible after autologous bone marrow Stem cell Injections in select patients. There was no report of Allodynia indicating the safety of the procedure. Further studies to

  14. Gene expression profiles identify inflammatory signatures in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Anna Torri

    Full Text Available Dendritic cells (DCs constitute a heterogeneous group of antigen-presenting leukocytes important in activation of both innate and adaptive immunity. We studied the gene expression patterns of DCs incubated with reagents inducing their activation or inhibition. Total RNA was isolated from DCs and gene expression profiling was performed with oligonucleotide microarrays. Using a supervised learning algorithm based on Random Forest, we generated a molecular signature of inflammation from a training set of 77 samples. We then validated this molecular signature in a testing set of 38 samples. Supervised analysis identified a set of 44 genes that distinguished very accurately between inflammatory and non inflammatory samples. The diagnostic performance of the signature genes was assessed against an independent set of samples, by qRT-PCR. Our findings suggest that the gene expression signature of DCs can provide a molecular classification for use in the selection of anti-inflammatory or adjuvant molecules with specific effects on DC activity.

  15. Autologous Bone Marrow Mononuclear Cell Transplantation Delays Progression of Carotid Atherosclerosis in Rabbits.

    Science.gov (United States)

    Cui, Kefei; Ma, Xiao; Yu, Lie; Jiang, Chao; Fu, Chao; Fu, Xiaojie; Yu, Xiaofang; Huang, Yuanjing; Hou, Suyun; Si, Caifeng; Chen, Zhengguang; Yu, Jing; Wan, Jieru; Wang, Jian

    2016-09-01

    Bone marrow mononuclear cells (BMMNCs) can counteract oxidative stress and inhibit the inflammatory response in focal ischemic stroke models. However, the effect of BMMNC transplantation on carotid atherosclerosis needs to be determined. The carotid atherosclerotic plaque model was established in New Zealand White rabbits by balloon injury and 8 weeks of high-fat diet. Rabbits were randomized to receive an intravenous injection of autologous bromodeoxyuridine (BrdU)-labeled BMMNCs or an equal volume of phosphate-buffered saline. Plaques were evaluated for expression of proinflammatory and anti-inflammatory cytokines, anti-oxidant proteins, and markers of cell death. BMMNCs migrated into atherosclerotic plaque on the first day after cell transplantation. BMMNC-treated rabbits had smaller plaques and more collagen deposition than did the vehicle-treated controls on day 28 (p < 0.05). BMMNC treatment significantly increased endothelial nitric oxide synthase and the anti-oxidant enzymes glutathione peroxidase and superoxide dismutase in plaques compared to vehicle treatment on day 7. BMMNC-treated rabbits also had lower levels of cleaved caspase-3 expression; lower levels of proinflammatory cytokines interleukin-1β, tumor necrosis factor alpha, and matrix metalloproteinase 9; and higher levels of insulin-like growth factor-1 and its receptor (p < 0.05). Autologous BMMNC transplantation can suppress the process of atherosclerotic plaque formation and is associated with enhanced anti-oxidative effect, reduced levels of inflammatory cytokines and cleaved caspase-3, and increased expression of insulin-like growth factor-1 and its receptor. BMMNC transplantation represents a novel approach for the treatment of carotid atherosclerosis. PMID:26232064

  16. HIV-1 Infection of Placental Cord Blood Monocyte-Derived Dendritic Cells

    OpenAIRE

    FOLCIK, RENEE M.; Merrill, Jeffrey D.; Li, Yuan; GUO, CHANG-JIANG; Douglas, Steven D.; STARR, STUART E.; Ho, Wen-Zhe

    2001-01-01

    Dendritic cells (DC), the most potent antigen-presenting cells (APC), have been implicated as the initial targets of HIV infection in skin and mucosal surfaces. DC can be generated in vitro from blood-isolated CD14+ monocytes or CD34+ hematopoietic progenitor cells in the presence of various cytokines. In this study, we investigated whether monocytes obtained from placental cord blood are capable of differentiation into dendritic cells when cultured with a combination of cytokines—granulocyte...

  17. Distribution of Dendritic Cells in Normal Human Salivary Glands

    International Nuclear Information System (INIS)

    Dendritic cells (DC) are believed to contribute to development of autoimmune sialadenitis, but little is known about their distribution in normal salivary glands. In this study, DC were identified and their distribution was determined in normal human parotid and submandibular glands. For light microscopy, salivary gland sections were stained with H&E or immunocytochemically using antibodies to DC markers. Transmission electron microscopy (TEM) was used to evaluate the ultrastructural characteristics of DC. In H&E sections, elongated, irregularly shaped nuclei were occasionally seen in the striated and excretory duct epithelium. Immunolabeling with anti-HLA-DR, anti-CD11c and anti-S100 revealed DC with numerous processes extending between ductal epithelial cells, often close to the lumen. Morphometric analyses indicated that HLA-DR-positive DC occupied approximately 4–11% of the duct wall volume. Similar reactive cells were present in acini, intercalated ducts and interstitial tissues. TEM observations revealed cells with indented nuclei containing dense chromatin, pale cytoplasm with few organelles, and lacking junctional attachments to adjacent cells. These results indicate that DC are abundant constituents of normal human salivary glands. Their location within ductal and acinar epithelium suggests a role in responding to foreign antigens and/or maintaining immunological tolerance to salivary proteins

  18. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany); Hoss, Mareike [Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Wong, John Erik, E-mail: John.Wong@avt.rwth-aachen.de [Chemical Process Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen (Germany); DWI – Leibniz Institute for Interactive Materials Research, Forckenbeckstrasse 50, Aachen (Germany); Hieronymus, Thomas, E-mail: thomas.hieronymus@rwth-aachen.de [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany)

    2015-04-15

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3{sup +} DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  19. Ginseng Berry Extract Promotes Maturation of Mouse Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Ginseng extract has been shown to possess certain anti-virus, anti-tumor and immune-activating effects. However, the immunostimulatory effect of ginseng berry extract (GB has been less well characterized. In this study, we investigated the effect of GB on the activation of mouse dendritic cells (DCs in vitro and in vivo. GB treatment induced up-regulation of co-stimulatory molecules in bone marrow-derived DCs (BMDCs. Interestingly, GB induced a higher degree of co-stimulatory molecule up-regulation than ginseng root extract (GR at the same concentrations. Moreover, in vivo administration of GB promoted up-regulation of CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen DCs. GB also promoted the generation of Th1 and Tc1 cells. Furthermore, Toll like receptor 4 (TLR4 and myeloid differentiation primary response 88 (MyD88 signaling pathway were essential for DC activation induced by GB. In addition, GB strongly prompted the proliferation of ovalbumin (OVA-specific CD4 and CD8 T cells. Finally, GB induced DC activation in tumor-bearing mice and the combination of OVA and GB treatment inhibited B16-OVA tumor cell growth in C57BL/6 mice. These results demonstrate that GB is a novel tumor therapeutic vaccine adjuvant by promoting DC and T cell activation.

  20. Thrombin regulates the function of human blood dendritic cells

    International Nuclear Information System (INIS)

    Thrombin is the key enzyme in the coagulation cascade and activates endothelial cells, neutrophils and monocytes via protease-activated receptors (PARs). At the inflammatory site, immune cells have an opportunity to encounter thrombin. However little is known about the effect of thrombin for dendritic cells (DC), which are efficient antigen-presenting cells and play important roles in initiating and regulating immune responses. The present study revealed that thrombin has the ability to stimulate blood DC. Plasmacytoid DC (PDC) and myeloid DC (MDC) isolated from PBMC expressed PAR-1 and released MCP-1, IL-10, and IL-12 after thrombin stimulation. Unlike blood DC, monocyte-derived DC (MoDC), differentiated in vitro did not express PAR-1 and were unresponsive to thrombin. Effects of thrombin on blood DC were significantly diminished by the addition of anti-PAR-1 Ab or hirudin, serine protease inhibitor. Moreover, thrombin induced HLA-DR and CD86 expression on DC and the thrombin-treated DC induced allogenic T cell proliferation. These findings indicate that thrombin plays a role in the regulation of blood DC functions

  1. Different localisation of cystatin C in immature and mature dendritic cells

    International Nuclear Information System (INIS)

    Background. Limited antigen degradation by proteolytic enzymes and their control by protease inhibitors represent a crucial step in generating antigenic peptides inside the endocytic pathway of antigen-presenting cells such as dendritic cells. Methods. Human dendritic cells were used as a cell model in which quantitative immunogold electron microscopy was applied in order to study endogenous protease inhibitor cystatin C. Ultrathin cryosections were prepared from immature and mature dendritic cells and labelled with specific antibody. Under the transmission electron microscope gold particles, bound to specific probe (antibody), pointed the exact localization of labelled inhibitor. Results. Quantification of immunogold labelling and further statistical analysis by chi-squared test emphasized the differences in cystatin C content in different cell compartments. Conclusions. Statistically significant differences in intracellular distribution of cystatin C have been determined between immature and mature dendritic cell population. (author)

  2. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.

    Directory of Open Access Journals (Sweden)

    Roger Kenneth Whealands Smith

    Full Text Available Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs, supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X10(7 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05 although no significant difference in calculated modulus of elasticity, lower (improved histological scoring of organisation (p<0.003 and crimp pattern (p<0.05, lower cellularity (p<0.007, DNA content (p<0.05, vascularity (p<0.03, water content (p<0.05, GAG content (p<0.05, and MMP-13 activity (p<0.02. Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair

  3. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  4. Therapeutic neovascularization by autologous transplantation with expanded endothelial progenitor cells from peripheral blood into ischemic hind limbs

    Institute of Scientific and Technical Information of China (English)

    Chun-ling FAN; Ping-jin GAO; Zai-qian CHE; Jian-jun LIU; Jian WEI; Ding-liang ZHU

    2005-01-01

    Aim: To investigate the hypothesis that transplantation with expanded autologous endothelial progenitor cells (EPC) could enhance neovascularization.Methods: Peripheral blood mononuclear cells (PB-MNC) isolated from New Zealand White rabbits were cultured in vitro. At d 7, the adherent cells were collected for autologous transplantation. Rabbits with severe unilateral hind limb ischemia were randomly assigned to receive phosphate-buffered saline or expanded EPC in phosphate-buffered saline, administered by intramuscular injection in 6 sites of the ischemic thigh at postoperative d 7. Neovascularization was monitored by using the calf blood pressure ratio to indicate tissue perfusion, digital subtraction angiography to identify collateral vessel development and histological analysis of capillary density in the ischemic limb at d 35 after surgery. Results: Autologous EPC transplantation produced significant amelioration in ischemic hind limbs,as indicated by a greater calf blood pressure ratio (0.52±0.04 vs 0.42±0.05, P<0.01),angiographic score (1.44±0.06 vs 0.98±0.08, P<0.01) and capillary density in muscle (195.2±5.4/mm2 vs 169.4±6.4/mm2, P<0.05), than controls. Conclusion: Transplantation of autologous expanded EPC can promote neovascularization in ischemic hindlimbs.

  5. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  6. Challenging complications of treatment – human herpes virus 6 encephalitis and pneumonitis in a patient undergoing autologous stem cell transplantation for relapsed Hodgkin's disease: a case report

    Directory of Open Access Journals (Sweden)

    Pauls Sandra

    2009-07-01

    Full Text Available Abstract Background Reactivation of human herpesvirus 6 (HHV-6 occurs frequently in patients after allogeneic stem cell transplantation and is associated with bone-marrow suppression, enteritis, pneumonitis, pericarditis and also encephalitis. After autologous stem cell transplantation or intensive polychemotherapy HHV-6 reactivation is rarely reported. Case report This case demonstrates a severe symptomatic HHV-6 infection with encephalitis and pneumonitis after autologous stem cell transplantation of a patient with relapsed Hodgkin's disease. Conclusion Careful diagnostic work up in patients with severe complications after autologous stem cell transplantation is mandatory to identify uncommon infections.

  7. Engraftment Syndrome after Autologous Stem Cell Transplantation: An Update Unifying the Definition and Management Approach.

    Science.gov (United States)

    Cornell, Robert Frank; Hari, Parameswaran; Drobyski, William R

    2015-12-01

    Engraftment syndrome (ES) encompasses a continuum of periengraftment complications after autologous hematopoietic stem cell transplantation. ES may include noninfectious fever, skin rash, diarrhea, hepatic dysfunction, renal dysfunction, transient encephalopathy, and capillary leak features, such as noncardiogenic pulmonary infiltrates, hypoxia, and weight gain with no alternative etiologic basis other than engraftment. Given its pleiotropic clinical presentation, the transplant field has struggled to clearly define ES and related syndromes. Here, we present a comprehensive review of ES in all documented disease settings. Furthermore, we discuss the proposed risk factors, etiology, and clinical relevance of ES. Finally, our current approach to ES is included along with a proposed treatment algorithm for the management of this complication. PMID:26327628

  8. Autologous peripheral blood stem cell transplantation in malignancies involving bone marrow.

    Science.gov (United States)

    Sica, S; Leone, G; Teofili, L; Pierelli, L; Menichella, G; Di Mario, A; Paoloni, A; Iovino, M S; Bizzi, B

    1991-03-01

    Six patients suffering from refractory malignancies (3 NHL, 1 MM, 1 AML, 1 neuroblastoma) received high dose of chemotherapy and autologous peripheral blood stem cell transplantation (APBSCT). The recruitment of PBSC was performed using conventional salvatage schedules of therapy. The patients received a median of 8.69 MNC/kg bw and 20.87 CFU-GM x 10(4)/kg bw. Prompt engraftment occurred in all patients and the median number of days to achieve WBC greater than 1 x 10(9)/l was 16.5 (range 7-26), PMN greater than 0.5 x 10(9)/l was 21.5 (range 6-37) and PLTs greater than 50 x 10(9)/l was 17.5 (range 4-31). Four patients achieved a complete remission. One patient (neuroblastoma) died of progressive disease after a partial response. One patient died in relapse because of drug related toxicity. PMID:1677914

  9. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  10. Dendritic Cells in the Periphery Control Antigen-Specific Natural and Induced Regulatory T Cells

    OpenAIRE

    Yamazaki, Sayuri; Morita, Akimichi

    2013-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence...

  11. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    OpenAIRE

    Liu, Tao; Mu, Hong; SHEN, ZHONGYANG; Song, Zhuolun; CHEN, XIAOBO; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  12. Autologous MUC1-Specific Th1 Effector Cell Immunotherapy Induce Differential Levels of Systemic TReg Cell Subpopulations That Result in Increased Ovarian Cancer Patient Survival

    OpenAIRE

    Dobrzanski, Mark J.; Rewers-Felkins, Kathleen A.; Quinlin, Imelda S.; Samad, Khaliquzzaman A.; Phillips, Catherine A.; Robinson, William; Dobrzanski, David J.; Wright, Stephen E.

    2009-01-01

    Adoptive T cell immunotherapy using autologous lymphocytes is a viable treatment for patients with cancer and requires participation of Ag-specific CD4 and CD8 T cells. Here, we assessed the immunotherapeutic effects of autologous MUC1 peptide-stimulated CD4+ effector cells following adoptive transfer in patients with ovarian cancer. Using MUC1 peptide and IL-2 for ex vivo CD4+/Th1 effector cell generation, we show that three monthly treatment cycles of peripheral blood T cell restimulation a...

  13. CXCR4 engagement promotes dendritic cell survival and maturation

    International Nuclear Information System (INIS)

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response

  14. Exploration Of The Dendritic Cell Algorithm Using The Duration Calculus

    CERN Document Server

    Gu, Feng; Aickelin, Uwe

    2010-01-01

    As one of the newest members in Artificial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been applied to a range of problems. These applications mainly belong to the field of anomaly detection. However, real-time detection, a new challenge to anomaly detection, requires improvement on the real-time capability of the DCA. To assess such capability, formal methods in the research of rea-time systems can be employed. The findings of the assessment can provide guideline for the future development of the algorithm. Therefore, in this paper we use an interval logic based method, named the Duration Calculus (DC), to specify a simplified single-cell model of the DCA. Based on the DC specifications with further induction, we find that each individual cell in the DCA can perform its function as a detector in real-time. Since the DCA can be seen as many such cells operating in parallel, it is potentially capable of performing real-time detection. However, the analysis process of the standard DCA constrict...

  15. Role of mucosal dendritic cells in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Jan Hendrik Niess

    2008-01-01

    The gastrointestinal innate and adaptive immune system continuously faces the challenge of potent stimuli from the commensal microflora and food constituents.These local immune responses require a tight control,the outcome of which is in most cases the induction of tolerance.Local T cell immunity is an important compartment of the specific intestinal immune system.T cell reactivity is programmed during the initial stage of its activation by professional presenting cells.Mucosal dendritic cells(DCs)are assumed to play key roles in regulating immune responses in the antigen-rich gastrointestinal environment.Mucosal DCs are a heterogeneous population that can either initiate(innate and adaptive)immune responses,or control intestinal inflammation and maintain tolerance.Defects in this regulation are supposed to lead to the two major forms of inflammatory bowel disease(IBD),Crohn's disease(CD)and ulcerative colitis(UC).This review will discuss the emerging role of mucosal DCs in regulating intestinal inflammation and immune responses.(C)2008 The WJG Press.All rights reserved.

  16. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Hedi Harizi

    2004-01-01

    Full Text Available 5-lipoxygenase (5-LO pathway is the major source of potent proinflammatory leukotrienes (LTs issued from the metabolism of arachidonic acid (AA, and best known for their roles in the pathogenesis of asthma. These lipid mediators are mainly released from myeloid cells and may act as physiological autocrine and paracrine signalling molecules, and play a central role in regulating the interaction between innate and adaptive immunity. The biological actions of LTs including their immunoregulatory and proinflammatory effects are mediated through extracellular specific G-protein-coupled receptors. Despite their role in inflammatory cells, such as neutrophils and macrophages, LTs may have important effects on dendritic cells (DC-mediated adaptive immunity. Several lines of evidence show that DC not only are important source of LTs, but also become targets of their actions by producing other lipid mediators and proinflammatory molecules. This review focuses on advances in 5-LO pathway biology, the production of LTs from DC and their role on various cells of immune system and in adaptive immunity.

  17. Membrane specializations and endosome maturation in dendritic cells and B cells.

    Science.gov (United States)

    Boes, Marianne; Cuvillier, Armelle; Ploegh, Hidde

    2004-04-01

    Interest in the cell biology of antigen presentation is centered on dendritic cells (DCs) as initiators of the immune response. The ability to examine primary antigen-presenting cells, as opposed to cell lines, has opened a new window for study of antigen processing and peptide acquisition by Class II major histocompatibility complex (MHC) products, especially where intracellular trafficking of peptide-Class-II complexes is concerned. Here, we review the dynamics of Class II MHC-positive intracellular structures in dendritic cells as well as B cells. We focus on the generation of multivesicular bodies, where Class II MHC products acquire antigenic peptide, on the endosomal transport of peptide-loaded Class II MHC to the cell surface and on the importance of Class II MHC localization in membrane microdomains. PMID:15066635

  18. Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells.

    Science.gov (United States)

    Bloss, Erik B; Cembrowski, Mark S; Karsh, Bill; Colonell, Jennifer; Fetter, Richard D; Spruston, Nelson

    2016-03-01

    Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation. VIDEO ABSTRACT. PMID:26898780

  19. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Sandra Winning

    2016-01-01

    Full Text Available Dendritic cells (DCs are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate immunity.

  20. Lentivirus-induced 'Smart' dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma.

    Science.gov (United States)

    Sundarasetty, B S; Chan, L; Darling, D; Giunti, G; Farzaneh, F; Schenck, F; Naundorf, S; Kuehlcke, K; Ruggiero, E; Schmidt, M; von Kalle, C; Rothe, M; Hoon, D S B; Gerasch, L; Figueiredo, C; Koehl, U; Blasczyk, R; Gutzmer, R; Stripecke, R

    2015-09-01

    Monocyte-derived conventional dendritic cells (ConvDCs) loaded with melanoma antigens showed modest responses in clinical trials. Efficacy studies were hampered by difficulties in ConvDC manufacturing and low potency. Overcoming these issues, we demonstrated higher potency of lentiviral vector (LV)-programmed DCs. Monocytes were directly induced to self-differentiate into DCs (SmartDC-TRP2) upon transduction with a tricistronic LV encoding for cytokines (granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4)) and a melanoma antigen (tyrosinase-related protein 2 (TRP2)). Here, SmartDC-TRP2 generated with monocytes from five advanced melanoma patients were tested in autologous DC:T cell stimulation assays, validating the activation of functional TRP2-specific cytotoxic T lymphocytes (CTLs) for all patients. We described methods compliant to good manufacturing practices (GMP) to produce LV and SmartDC-TRP2. Feasibility of monocyte transduction in a bag system and cryopreservation following a 24-h standard operating procedure were achieved. After thawing, 50% of the initial monocyte input was recovered and SmartDC-TRP2 self-differentiated in vitro, showing uniform expression of DC markers, detectable LV copies and a polyclonal LV integration pattern not biased to oncogenic loci. GMP-grade SmartDC-TRP2 expanded TRP2-specific autologous CTLs in vitro. These results demonstrated a simpler GMP-compliant method of manufacturing an effective individualized DC vaccine. Such DC vaccine, when in combination with checkpoint inhibition therapies, might provide higher specificity against melanoma. PMID:25965393

  1. Blastic Plasmacytoid Dendritic Cell Neoplasm: From Origin of the Cell to Targeted Therapies.

    Science.gov (United States)

    Laribi, Kamel; Denizon, Nathalie; Besançon, Anne; Farhi, Jonathan; Lemaire, Pierre; Sandrini, Jeremy; Truong, Catherine; Ghnaya, Habib; Baugier de Materre, Alix

    2016-08-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy with an aggressive clinical course. It is grouped with acute myeloid leukemia-related precursor neoplasms in the 2008 World Health Organization classification. Most patients with BPDCN have skin lesions at diagnosis and subsequent or simultaneous involvement of the bone marrow, peripheral blood, and lymph nodes. Patients usually respond to initial chemotherapy but often relapse. Stem cell transplantation may improve survival. This neoplasm is derived from precursors of plasmacytoid dendritic cells and is characterized by the coexpression of the immunophenotypic markers CD4, CD56, CD123, blood dendritic cell antigen-2, blood dendritic cell antigen-4, CD2AP, and lineage(-). Atypical immunophenotype expression may be present, making diagnosis difficult. BPDCN is often associated with a complex karyotype, frequent deletions of tumor suppressor genes, and mutations affecting either the DNA methylation or chromatin remodeling pathways. A better understanding of the etiology and pathophysiology of this neoplasm could open the way to new therapies targeting specific signaling pathways or involving epigenetics. PMID:27026248

  2. Autologous Doping with Cryopreserved Red Blood Cells - Effects on Physical Performance and Detection by Multivariate Statistics.

    Science.gov (United States)

    Malm, Christer B; Khoo, Nelson S; Granlund, Irene; Lindstedt, Emilia; Hult, Andreas

    2016-01-01

    The discovery of erythropoietin (EPO) simplified blood doping in sports, but improved detection methods, for EPO has forced cheating athletes to return to blood transfusion. Autologous blood transfusion with cryopreserved red blood cells (RBCs) is the method of choice, because no valid method exists to accurately detect such event. In endurance sports, it can be estimated that elite athletes improve performance by up to 3% with blood doping, regardless of method. Valid detection methods for autologous blood doping is important to maintain credibility of athletic performances. Recreational male (N = 27) and female (N = 11) athletes served as Transfusion (N = 28) and Control (N = 10) subjects in two different transfusion settings. Hematological variables and physical performance were measured before donation of 450 or 900 mL whole blood, and until four weeks after re-infusion of the cryopreserved RBC fraction. Blood was analyzed for transferrin, iron, Hb, EVF, MCV, MCHC, reticulocytes, leucocytes and EPO. Repeated measures multivariate analysis of variance (MANOVA) and pattern recognition using Principal Component Analysis (PCA) and Orthogonal Projections of Latent Structures (OPLS) discriminant analysis (DA) investigated differences between Control and Transfusion groups over time. Significant increase in performance (15 ± 8%) and VO2max (17 ± 10%) (mean ± SD) could be measured 48 h after RBC re-infusion, and remained increased for up to four weeks in some subjects. In total, 533 blood samples were included in the study (Clean = 220, Transfused = 313). In response to blood transfusion, the largest change in hematological variables occurred 48 h after blood donation, when Control and Transfused groups could be separated with OPLS-DA (R2 = 0.76/Q2 = 0.59). RBC re-infusion resulted in the best model (R2 = 0.40/Q2 = 0.10) at the first sampling point (48 h), predicting one false positive and one false negative. Over all, a 25% and 86% false positives ratio was

  3. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    Science.gov (United States)

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity. PMID:27234553

  4. Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie

    OpenAIRE

    Aucouturier, Pierre; Geissmann, Frédéric; Damotte, Diane; Saborio, Gabriela P.; Meeker, Harry C.; Kascsak, Regina; Kascsak, Richard; Carp, Richard I.; Wisniewski, Thomas

    2001-01-01

    Transmissible spongiform encephalopathies display long incubation periods at the beginning of which the titer of infectious agents (prions) increases in peripheral lymphoid organs. This “replication” leads to a progressive invasion of the CNS. Follicular dendritic cells appear to support prion replication in lymphoid follicles. However, the subsequent steps of neuroinvasion remain obscure. CD11c+ dendritic cells, an unrelated cell type, are candidate vectors for prion propagation. We found a ...

  5. EXERCISE in pediatric autologous stem cell transplant patients: a randomized controlled trial protocol

    Directory of Open Access Journals (Sweden)

    Chamorro-Viña Carolina

    2012-09-01

    Full Text Available Abstract Background Hematopoietic stem cell transplantation is an intensive therapy used to improve survivorship and cure various oncologic diseases. However, this therapy is associated with high mortality rates and numerous negative side-effects. The recovery of the immune system is a special concern and plays a key role in the success of this treatment. In healthy populations it is known that exercise plays an important role in immune system regulation, but little is known about the role of exercise in the hematological and immunological recovery of children undergoing hematopoietic stem cell transplant. The primary objective of this randomized-controlled trial (RCT is to study the effect of an exercise program (in- and outpatient on immune cell recovery in patients undergoing an autologous stem cell transplantation. The secondary objective is to determine if an exercise intervention diminishes the usual deterioration in quality of life, physical fitness, and the acquisition of a sedentary lifestyle. Methods This RCT has received approval from The Conjoint Health Research Ethics Board (CHREB of the University of Calgary (Ethics ID # E-24476. Twenty-four participants treated for a malignancy with autologous stem cell transplant (5 to 18 years in the Alberta Children’s Hospital will be randomly assigned to an exercise or control group. The exercise group will participate in a two-phase exercise intervention (in- and outpatient from hospitalization until 10 weeks after discharge. The exercise program includes strength, flexibility and aerobic exercise. During the inpatient phase this program will be performed 5 times/week and will be supervised. The outpatient phase will combine a supervised session with two home-based exercise sessions with the use of the Wii device. The control group will follow the standard protocol without any specific exercise program. A range of outcomes, including quantitative and functional recovery of immune system

  6. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    International Nuclear Information System (INIS)

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3+ stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  7. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Sebastian [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Fernandes, Fabiana [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Department of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Sanroman, Laura [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Hodenius, Michael [Institute for Biomedical Engineering and Helmholtz Institute for Biomedical Engineering, Department of Applied Medical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Lang, Claus [Department of Microbiology, Ludwig-Maximillians-University of Munich, Maria-Ward-Str. 1a, 80638 Munich (Germany); Himmelreich, Uwe [In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne (Germany); Biomedical NMR Unit, MoSAIC, Faculty of Medicine, KU Leuven, Onderwijs en Navorsing 1, bus 505, 3000 Leuven (Belgium); Schmitz-Rode, Thomas [Institute for Biomedical Engineering and Helmholtz Institute for Biomedical Engineering, Department of Applied Medical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany); Schueler, Dirk [Department of Microbiology, Ludwig-Maximillians-University of Munich, Maria-Ward-Str. 1a, 80638 Munich (Germany); Hoehn, Mathias [In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne (Germany)] (and others)

    2009-05-15

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3{sup +} stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  8. Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates.

    Science.gov (United States)

    Peterson, Christopher W; Wang, Jianbin; Norman, Krystin K; Norgaard, Zachary K; Humbert, Olivier; Tse, Collette K; Yan, Jenny J; Trimble, Richard G; Shivak, David A; Rebar, Edward J; Gregory, Philip D; Holmes, Michael C; Kiem, Hans-Peter

    2016-05-19

    Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well. PMID:26980728

  9. Proliferation and Differentiation of Autologic and Allogenic Stem Cells in Supralethally X-Irradiated Dogs

    International Nuclear Information System (INIS)

    Full text: Allogenic bone marrow after transplantation into dogs irradiated with 1000 R X-rays differentiates in the normal way only for 3-4 days, afterwards transforming into lymphoid cells. This transformation is due to the antigen stimulus of the host on the grafted stem cells. The lymphoid cells, obtained from the host's blood on the 7-8th day after grafting, showed specific, immune activity under the Immune Lymphocyte Transfer test. Within a short duration of the immune response immunoblasts and immunocytes Undergo degenerative changes: destroyed mitochondria, formation of autophagic vacuoles and, finally, lysis of the cells. These changes are suggested to be the result of overloading of immune cells with antigen. Preliminary sensitization of the donor with prospective host's haemopoietic tissue does not hasten the immune transformation of haemopoiesis. Injections of bacterial pyrogen, cortisone or 6-mercaptopurine into recipients, as well as incubation of bone marrow at 37°C for 2 hours, do not prevent the immune transformation. Preliminary thymectomy of the prospective recipients prevents in some of the cases immune transformation of the bone-marrow graft. The delay of allogenic bone-marrow transplantation for 5-6 days prevents in some dogs (X-irradiated with 1000 R, but not with 1200 R) the immune transformation. Transplantation of autologic bone marrow or shielding of the legs during irradiation is accompanied with good restoration of normal haemopoiesis without lymphoid transformation. (author)

  10. Targeting dendritic cells for improved HIV-1 vaccines.

    Science.gov (United States)

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen. PMID:22975879

  11. Generation of immunogenic and tolerogenic clinical-grade dendritic cells.

    Science.gov (United States)

    Kalantari, Tahereh; Kamali-Sarvestani, Eskandar; Ciric, Bogoljub; Karimi, Mohamad H; Kalantari, Mohsen; Faridar, Alireza; Xu, Hui; Rostami, Abdolmohamad

    2011-12-01

    Immunotherapy with dendritic cells (DCs), which have been manipulated ex vivo to become immunogenic or tolerogenic, has been tested in clinical trials for disease therapy. DCs are sentinels of the immune system, which after exposure to antigenic or inflammatory signals and crosstalk with effector CD4(+) T cells express high levels of costimulatory molecules and cytokines. Upregulation of either costimulatory molecules or cytokines promotes immunologic DCs, whereas their downregulation generates tolerogenic DCs (TDCs), which induce T regulatory cells (Tregs) and a state of tolerance. Immunogenic DCs are used for the therapy of infectious diseases such as HIV-1 and cancer, whereas tolerogenic DCs are used in treating various autoimmune diseases and in transplantation. DC vaccination is still at an early stage, and improvements are mainly needed in quality control of monitoring assays to generate clinical-grade DC products and to assess the effect of DC vaccination in future clinical trials. Here, we review the recent work in DC generation and monitoring approaches for DC-based trials with immunogenic or tolerogenic DCs. PMID:22105838

  12. Follicular dendritic-like cells derived from human monocytes

    Directory of Open Access Journals (Sweden)

    Peters J Hinrich

    2005-09-01

    Full Text Available Abstract Background Follicular dendritic cells (FDCs play a central role in controlling B-cell response maturation, isotype switching and the maintenance of B-cell memory. These functions are based on prolonged preservation of antigen and its presentation in its native form by FDCs. However, when entrapping entire pathogens, FDCs can turn into dangerous long-term reservoirs that may preserve viruses or prions in highly infectious form. Despite various efforts, the ontogeny of FDCs has remained elusive. They have been proposed to derive either from bone marrow stromal cells, myeloid cells or local mesenchymal precursors. Still, differentiating FDCs from their precursors in vitro may allow addressing many unsolved issues associated with the (patho- biology of these important antigen-presenting cells. The aim of our study was to demonstrate that FDC-like cells can be deduced from monocytes, and to develop a protocol in order to quantitatively generate them in vitro. Results Employing highly purified human monocytes as a starter population, low concentrations of Il-4 (25 U/ml and GM-CSF (3 U/ml in combination with Dexamethasone (Dex (0.5 μM in serum-free medium trigger the differentiation into FDC-like cells. After transient de-novo membrane expression of alkaline phosphatase (AP, such cells highly up-regulate surface expression of complement receptor I (CD35. Co-expression of CD68 confirms the monocytic origin of both, APpos and CD35pos cells. The common leukocyte antigen CD45 is strongly down-regulated. Successive stimulation with TNF-α up-regulates adhesion molecules ICAM-1 (CD54 and VCAM (CD106. Importantly, both, APpos as well as APneg FDC-like cells, heterotypically cluster with and emperipolese B cells and exhibit the FDC characteristic ability to entrap functionally preserved antigen for prolonged times. Identical characteristics are found in monocytes which were highly expanded in vitro by higher doses of GM-CSF (25 U/ml in the absence of

  13. Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes

    OpenAIRE

    1992-01-01

    We have evaluated the capacity of dendritic cells to function as antigen-presenting cells (APCs) for influenza and have examined their mechanism of action. Virus-pulsed dendritic cells were 100 times more efficient than bulk spleen cells in stimulating cytotoxic T lymphocyte (CTL) formation. The induction of CTLs required neither exogenous lymphokines nor APCs in the responding T cell population. Infectious virus entered dendritic cells through intracellular acidic vacuoles and directed the s...

  14. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    Science.gov (United States)

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850576

  15. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lars A Ormandy; Tim F Greten; Anatol F(a)rber; Tobias Cantz; Susanne Petrykowska; Heiner Wedemeyer; Monique H(o)rning; Frank Lehner; Michael P Manns; Firouzeh Korangy

    2006-01-01

    AIM: To analyze the phenotype and function of dendritic cells (DC) from patients with hepatocellular carcinoma (HCC) in order to understand their role in this disease.METHODS: Myeloid dendritic cells were enumerated in peripheral blood of HCC patients. CD80, CD83, CD86 and HLA-DR expression on naive and stimulated myeloid dendritic cells from peripheral blood were analyzed. Myeloid dendritic cells were isolated from peripheral blood and their function was tested. Phagocytosis was analyzed using FITC-dextran beads, peptide specific stimulation, the capacity to stimulate allogeneic T cells and secretion of cytokines upon poly dI:dC was tested.RESULTS: Myeloid dendritic cells were reduced in patients with HCC. No differences in CD80, CD83, CD86 and HLA-DR expression were found on naive and stimulated myeloid dendritic cells from HCC patients and healthy controls. Normal phagocytosis or stimulation of peptide specific T cells was observed in contrast to an impaired allo-stimulatory capacity and a reduced IL-12 secretion.CONCLUSION: Impaired IL-12 production of mDCs in patients could lead to an impaired stimulatory capacity of naive T cells suggesting that IL-12 directed therapies may enhance tumor specific immune responses in HCC patients.

  16. Exploiting the role of endogenous lymphoid-resident dendritic cells in the priming of NKT cells and CD8+ T cells to dendritic cell-based vaccines.

    Directory of Open Access Journals (Sweden)

    Troels R Petersen

    Full Text Available Transfer of antigen between antigen-presenting cells (APCs is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs, were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs, suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT cells. In fact, injection of α-GalCer-loaded CD1d-/- BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose.

  17. Characterization of canine dendritic cells in healthy, atopic, and non-allergic inflamed skin.

    Science.gov (United States)

    Ricklin, Meret Elisabeth; Roosje, Petra; Summerfield, Artur

    2010-11-01

    Atopic dermatitis in humans and dogs is a chronic relapsing allergic skin disease. Dogs show a spontaneous disease similar to the human counterpart and represent a model to improve our understanding of the immunological mechanisms, the pathogenesis of the disease, and new therapy development. The aim of the study was to determine the frequency and phenotype of dendritic cells (DC) in the epidermis and dermis of healthy, canine atopic dermatitis lesional, and non-allergic inflammatory skin to further validate the model and to obtain insights into the contribution of DC to the pathogenesis of skin diseases in dogs. We first characterized canine skin DC using flow-cytometric analysis of isolated skin DC combined with an immunohistochemical approach. A major population of canine skin dendritic cells was identified as CD1c(+)CD11c(+)CD14(-)CD80(+)MHCII(+)MAC387(-) cells, with dermal DC but not Langerhans cells expressing CD11b. In the epidermis of lesional canine atopic dermatitis and non-allergic inflammatory skin, we found significantly more dendritic cells compared with nonlesional and control skin. Only in canine atopic dermatitis skin did we find a subset of dendritic cells positive for IgE, in the epidermis and the dermis. Under all inflammatory conditions, dermal dendritic cells expressed more CD14 and CD206. MAC387(+) putative macrophages were absent in healthy but present in inflamed skin, in particular during non-allergic diseases. This study permits a phenotypic identification and differentiation of canine skin dendritic cells and has identified markers and changes in dendritic cells and macrophage populations related to allergic and non-allergic inflammatory conditions. Our data suggest the participation of dendritic cells in the pathogenesis of canine atopic dermatitis similar to human atopic dermatitis and further validate the only non-murine spontaneous animal model for this disease. PMID:20676740

  18. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy

    OpenAIRE

    Jinhong Meng; John R. Counsell; Mojgan Reza; Steven H. Laval; Olivier Danos; Adrian Thrasher; Hanns Lochmüller; Francesco Muntoni; Morgan, Jennifer E

    2016-01-01

    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-o...

  19. Analysis of the feasibility of early hospital discharge after autologous hematopoietic stem cell transplantation and the implications to nursing care

    OpenAIRE

    Alessandra Barban; Fabio Luiz Coracin; Priscila Tavares Musqueira; Andrea Barban; Lilian Piron Ruiz; Milton Artur Ruiz; Rosaura Saboya; Frederico Luiz Dulley

    2014-01-01

    INTRODUCTION: Autologous hematopoietic stem cell transplantation is a conduct used to treat some hematologic diseases and to consolidate the treatment of others. In the field of nursing, the few published scientific studies on nursing care and early hospital discharge of transplant patients are deficient. Knowledge about the diseases treated using hematopoietic stem cell transplantation, providing guidance to patients and caregivers and patient monitoring are important nursing activities in ...

  20. Autologous bone marrow stem cell transplantation for the treatment of type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    WANG Li; ZHAO Shi; MAO Hong; ZHOU Ling; WANG Zhong-jing; WANG Hong-xiang

    2011-01-01

    Background Autologous peripheral stem cell transplantation was first reported in 2007 to treat type 1 diabetes mellitus (DM) and achieved encouraging effect,but whether similar outcome can be achieved in type 2 DM is not well demonstrated.The objective of this study was to determine the effect of combination of autologous bone marrow stem cell transplantation (BMT) and hyperbaric oxygen treatment on type 2 DM.Methods The study involved 31 patients with type 2 DM (aged 33 to 62 years) from January 2009 to January 2011 in the Central Hospital of Wuhan,China.Clinical variables (body mass index,duration of DM,insulin requirement,oral hypoglycemic drugs,time free from insulin,time free from oral drugs) and laboratory variables (hemoglobin A1c (HbA1c)),mononuclear cells infused,and C-peptide in four time points) were assessed.Purified bone marrow stem cells were infused into major pancreatic arteries.Follow-up was performed at the 30,90,180,360,540 and 720 days (mean 321 days) after BMT.Results Mean HbA1c values showed a significant reduction during follow-up in all patients after BMT.It decreased by more than 1.5% (from 8.7% to 7.1%) as quickly as at 30 days after BMT.Afterwards mean HbA1c fluctuated between plus or minus 0.5% until 24 months rather than declined continuously.At 90 days after the combined therapy C-peptide increased significantly compared with baseline (P <0.0001).But in other time points C-peptide was similar with baseline data (P>0.3).All patients had insulin and/or oral hypoglycemic drugs reduced to different levels.The dose of insulin of 7 patients (7/26,27%) reduced for a period of time after BMT.Conclusions Combined therapy of intrapancreatic BMT and hyperbaric oxygen treatment can improve glucose control and reduce the dose of insulin and/or oral hypoglycemic drugs in type 2 DM patients,but it only improve pancreatic β-cell function transiently.Further randomized controlled clinical trials involved more patients will be required to

  1. Completely resected follicular dendritic cell sarcoma of the posterior mediastinum: report of a case.

    Science.gov (United States)

    Miyoshi, Ryo; Sonobe, Makoto; Miyamoto, Ei; Date, Hiroshi

    2016-12-01

    Follicular dendritic cell sarcoma is a rare malignant neoplasm originating from follicular dendritic cells, and most of them develop in lymph nodes of the head and neck. One third of follicular dendritic cell sarcomas occur in the extranodal sites such as the tonsils, mesentery, and retroperitoneal organs, but those of mediastinal origin are rare. Here, we present the case of a 16-year-old female with a large follicular dendritic cell sarcoma of posterior mediastinal origin. The tumor was found by a chest X-ray mass examination at her high school, and she had no subjective symptoms or significant past medical history. The tumor was diagnosed as a follicular dendritic cell sarcoma by computed tomography-guided needle biopsy. Although the tumor compressed the mediastinal organs and showed moderate uptake in 18-fluorodeoxyglucose positron emission tomography imaging, it was completely resected through posterolateral incision. Histological examination revealed that spindle-shaped tumor cells formed fascicular or storiform pattern with cellular pleomorphism. By immunohistochemical examination, the tumor cells were found to be positive for CD21 and follicular dendritic cell antigen. Two years after surgery, the patient remains alive with no signs of tumor recurrence. PMID:27001632

  2. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo

    OpenAIRE

    Darrasse-Jèze, Guillaume; Deroubaix, Stephanie; Mouquet, Hugo; Victora, Gabriel D.; Eisenreich, Thomas; Yao, Kai-Hui; Masilamani, Revati F.; Dustin, Michael L; Rudensky, Alexander; Liu, Kang; Nussenzweig, Michel C.

    2009-01-01

    CD4+CD25+Foxp3+ natural regulatory T cells (T reg cells) maintain self-tolerance and suppress autoimmune diseases such as type 1 diabetes and inflammatory bowel disease (IBD). In addition to their effects on T cells, T reg cells are essential for maintaining normal numbers of dendritic cells (DCs): when T reg cells are depleted, there is a compensatory Flt3-dependent increase in DCs. However, little is known about how T reg cell homeostasis is maintained in vivo. We demonstrate the existence ...

  3. Evidence for local dendritic cell activation in pulmonary sarcoidosis

    Directory of Open Access Journals (Sweden)

    Berge Bregje

    2012-04-01

    Full Text Available Abstract Background Sarcoidosis is a granulomatous disease characterized by a seemingly exaggerated immune response against a difficult to discern antigen. Dendritic cells (DCs are pivotal antigen presenting cells thought to play an important role in the pathogenesis. Paradoxically, decreased DC immune reactivity was reported in blood samples from pulmonary sarcoidosis patients. However, functional data on lung DCs in sarcoidosis are lacking. We hypothesized that at the site of disease DCs are mature, immunocompetent and involved in granuloma formation. Methods We analyzed myeloid DCs (mDCs and plasmacytoid DCs (pDCs in broncho-alveolar lavage (BAL and blood from newly diagnosed, untreated pulmonary sarcoidosis patients and healthy controls using 9-color flowcytometry. DCs, isolated from BAL using flowcytometric sorting (mDCs or cultured from monocytes (mo-DCs, were functionally assessed in a mixed leukocyte reaction with naïve allogeneic CD4+ T cells. Using Immunohistochemistry, location and activation status of CD11c+DCs was assessed in mucosal airway biopsies. Results mDCs in BAL, but not in blood, from sarcoidosis patients were increased in number when compared with mDCs from healthy controls. mDCs purified from BAL of sarcoidosis patients induced T cell proliferation and differentiation and did not show diminished immune reactivity. Mo-DCs from patients induced increased TNFα release in co-cultures with naïve allogeneic CD4+ T cells. Finally, immunohistochemical analyses revealed increased numbers of mature CD86+ DCs in granuloma-containing airway mucosal biopsies from sarcoidosis patients. Conclusion Taken together, these finding implicate increased local DC activation in granuloma formation or maintenance in pulmonary sarcoidosis.

  4. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  5. On dendritic cell-based therapy for cancers

    Institute of Scientific and Technical Information of China (English)

    Morikazu Onji; Sk. Md. Fazle Akbar

    2005-01-01

    Dendritic cells (DCs), the most prevalent antigen-presenting cell in vivo, had been widely characterized in the last three decades. DCs are present in almost all tissues of the body and play cardinal roles in recognition of microbial agents,autoantigens, allergens and alloantigen. DCs process the microbial agents or their antigens and migrate to lymphoid tissues to present the antigenic peptide to lymphocytes. This leads to activation of antigen-specific lymphocytes. Initially, it was assumed that DCs are principally involved in the induction and maintenance of adaptive immune responses, but now it is evident that DCs also have important roles in innate immunity. These features make DCs very good candidates for therapy against various pathological conditions including malignancies. Initially, DC-based therapy was used in animal models of cancers. Data from these studies inspired considerable optimism and DC-based therapies was started in human cancers 8 years ago. In general,DC-based therapy has been found to be safe in patients with cancers, although few controlled trials have been conducted in this regard. Because the fundamentals principles of human cancers and animal models of cancers are different, the therapeutic efficacy of the ongoing regime of DC-based therapy in cancer patients is not satisfactory. In this review, we covered the various aspects that should be considered for developing better regime of DC-based therapy for human cancers.

  6. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy

    Directory of Open Access Journals (Sweden)

    Mohammad G. Mohammad

    2012-12-01

    Full Text Available Multiple sclerosis (MS is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE, the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs, the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.

  7. Dendritic Cells as a Pharmacological Target of Traditional Chinese Medicine

    Institute of Scientific and Technical Information of China (English)

    Xin Chen; Lu Yang; O. M. Zack Howard; Joost J. Oppenheim

    2006-01-01

    Dendritic cells (DCs) represent a heterogeneous population of professional antigen-presenting cells (APCs) that play a central role in the initiation and regulation of immune responses. There is considerable evidence that DCs can be used as therapeutic targets for pharmacological modulation of immune responses. Traditional Chines emedicine (TCM) has a long-standing history of using herbal medicine in the treatment of variety of human diseases.Many of the clinical effects of TCM have reportedly been attributed to the up- or down-regulation of immune responses. Accumulating evidence indicates that TCM and its components can interfere with immune responses at the earliest stage by targeting key functions of DCs. Here, we review those published studies of TCM with respect to their effects on immunobiological functions of DCs. Investigations based on both chemical entities derived from TCM as well as TCM herbal mixtures are presented. These studies suggest that various TCM herbal medicines have the capacity to inhibit or promote major functions of DCs, such as differentiation, maturation, cytokine production, survival, antigen uptake and presentation as well as trafficking. These studies have revealed novel biological effects of TCM and documented the utility of this approach to discover novel biological modifier of DC functions derived from natural sources.

  8. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells

    Science.gov (United States)

    Barbosa, João P; Neves, Ana R; Silva, Andreia M; Barbosa, Mário A; Reis, M Salette; Santos, Susana G

    2016-01-01

    Dendritic cells (DCs) are promising targets for drug delivery, as they can induce immunity or tolerance. The current study aims to examine the potential of using nanostructured lipid carriers (NLC) as delivery systems for human DC by evaluating nanoparticle internalization, cell labeling, and drug activity. NLC were formulated incorporating the fluorochrome fluorescein isothiocyanate (FITC-NLC) or the natural anti-inflammatory molecule resveratrol (rsv-NLC). Primary human DCs were differentiated from peripheral blood monocytes, and the innovative imaging flow cytometry technique was used to examine FITC-NLC internalization. The capacity of rsv-NLC to inhibit DC activation in response to proinflammatory cytokine tumor necrosis factor-α (TNF- α) was investigated by conventional flow cytometry. A combination of imaging and conventional flow cytometry was used to assess NLC cytotoxicity. The results obtained indicate that both NLC formulations were stable over time, with mean diameter nuclear factor κ beta phosphorylation and significantly decrease the level of interleukin-12/23, both upregulated in response to TNF-α, while 10 µM free rsv were needed to promote a similar effect. Taken together, the results presented show that NLC are suitable carriers of fluorescent labels or bioactive molecules for human DCs, leading to inflammation modulation.

  9. The effects of gliadin fragments on human dendritic cells migratory capacities and cytoskeletal remodelling

    Czech Academy of Sciences Publication Activity Database

    Pecharová, Barbara; Palová-Jelínková, Lenka; Kamanová, Jana; Tučková, Ludmila

    Amsterdam : Springer, 2009. s. 71-72. [International Coeliac Disease Symposium 2009 /13./. 06.04.2009-08.04.2009, Amsterdam] Institutional research plan: CEZ:AV0Z50200510 Keywords : dendritic cells * gliadin Subject RIV: EC - Immunology

  10. A population-based cohort study of late mortality in adult autologous hematopoietic stem cell transplant recipients in Australia.

    Science.gov (United States)

    Ashton, Lesley J; Le Marsney, Renate E; Dodds, Anthony J; Nivison-Smith, Ian; Wilcox, Leonie; O'Brien, Tracey A; Vajdic, Claire M

    2014-07-01

    We assessed overall and cause-specific mortality and risk factors for late mortality in a nation-wide population-based cohort of 4547 adult cancer patients who survived 2 or more years after receiving an autologous hematopoietic stem cell transplantation (HSCT) in Australia between 1992 and 2005. Deaths after HSCT were identified from the Australasian Bone Marrow Transplant Recipient Registry and through data linkage with the National Death Index. Overall, the survival probability was 56% at 10 years from HSCT, ranging from 34% for patients with multiple myeloma to 90% for patients with testicular cancer. Mortality rates moved closer to rates observed in the age- and sex-matched Australian general population over time but remained significantly increased 11 or more years from HSCT (standardized mortality ratio, 5.9). Although the proportion of deaths from nonrelapse causes increased over time, relapse remained the most frequent cause of death for all diagnoses, 10 or more years after autologous HSCT. Our findings show that prevention of disease recurrence remains 1 of the greatest challenges for autologous HSCT recipients, while the increasing rates of nonrelapse deaths due to the emergence of second cancers, circulatory diseases, and respiratory diseases highlight the long-term health issues faced by adult survivors of autologous HSCT. PMID:24631736

  11. Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties

    Directory of Open Access Journals (Sweden)

    Berneman Zwi N

    2009-12-01

    Full Text Available Abstract Background Optimization of the current dendritic cell (DC culture protocol in order to promote the therapeutic efficacy of DC-based immunotherapy is warranted. Alternative differentiation of monocyte-derived DCs using granulocyte macrophage colony-stimulating factor (GM-CSF and interleukin (IL-15 has been propagated as an attractive strategy in that regard. The applicability of these so-called IL-15 DCs has not yet been firmly established. We therefore developed a novel pre-clinical approach for the generation of IL-15 DCs with potent immunostimulatory properties. Methods Human CD14+ monocytes were differentiated with GM-CSF and IL-15 into immature DCs. Monocyte-derived DCs, conventionally differentiated in the presence of GM-CSF and IL-4, served as control. Subsequent maturation of IL-15 DCs was induced using two clinical grade maturation protocols: (i a classic combination of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, prostaglandin E2 and (ii a Toll-like receptor (TLR7/8 agonist-based cocktail (R-848, interferon-γ, TNF-α and prostaglandin E2. In addition, both short-term (2-3 days and long-term (6-7 days DC culture protocols were compared. The different DC populations were characterized with respect to their phenotypic profile, migratory properties, cytokine production and T cell stimulation capacity. Results The use of a TLR7/8 agonist-based cocktail resulted in a more optimal maturation of IL-15 DCs, as reflected by the higher phenotypic expression of CD83 and costimulatory molecules (CD70, CD80, CD86. The functional superiority of TLR7/8-activated IL-15 DCs over conventionally matured IL-15 DCs was evidenced by their (i higher migratory potential, (ii advantageous cytokine secretion profile (interferon-γ, IL-12p70 and (iii superior capacity to stimulate autologous, antigen-specific T cell responses after passive peptide pulsing. Aside from a less pronounced production of bioactive IL-12p70, short

  12. Rapid Stereology Based Quantitative Immunohistochemistry of Dendritic Cells in Lymph Nodes: A Methodological Study

    OpenAIRE

    van Hensbergen, Yvette; Luykx‐de Bakker, Sylvia A.; Heideman, Daniëlle A.M.; Meijer, Gerrit A.; Pinedo, Herbert M.; Paul J. van Diest

    2001-01-01

    This study was done to arrive at a fast and reliable protocol for assessment of fractional volumes of immunohistochemically stained dendritic cells in lymph nodes. Twenty axillary lymph nodes of patients with locally advanced breast cancer were immuno‐histochemically stained with an S100 antibody. Fractional volumes of dendritic cells were assessed by stereology based quantitative immunohistochemistry using an interactive video overlay system including an automated microscope. The gold standa...

  13. Two Human Immunodeficiency Virus Vaccinal Lipopeptides Follow Different Cross-Presentation Pathways in Human Dendritic Cells

    OpenAIRE

    Andrieu, Muriel; Desoutter, Jean-François; Loing, Estelle; Gaston, Jésintha; Hanau, Daniel; Guillet, Jean-Gérard; Hosmalin, Anne

    2003-01-01

    An efficient vaccine against human immunodeficiency virus (HIV) must induce good cellular immune responses. To do this, it must be processed and presented by dendritic cells, which are required for primary T-lymphocyte stimulation. We have previously shown that a model lipopeptide containing a short epitopic peptide from HIV-1 was endocytosed and presented in association with major histocompatibility complex class I molecules by human dendritic cells to specific CD8+ T lymphocytes, but the cr...

  14. Paraneoplastic Pemphigus Associated with Follicular Dendritic Cell Tumor in the Mediastinum

    OpenAIRE

    Prakasan, Aparna Mullangath; Prabhu, Anne Jennifer; Velarasan, Kanmani; Backianathan, Selvamani; Ram, Thomas Samuel

    2016-01-01

    Paraneoplastic Pemphigus (PNP) is an autoimmune bullous disease characterized by severe stomatitis, polymorphous skin eruptions, and underlying neoplasms. Diagnosis of cutaneous paraneoplastic disorders requires high index of suspicion. We describe a patient with PNP associated with follicular dendritic cell (FDC) tumor in the mediastinum, a rare neoplasm originating from follicular dendritic cells. Its management requires identification of underlying malignancy and treatment of the same. Our...

  15. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    Science.gov (United States)

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  16. IRF8 Transcription-Factor-Dependent Classical Dendritic Cells Are Essential for Intestinal T Cell Homeostasis

    DEFF Research Database (Denmark)

    Luda, Katarzyna M.; Joeris, Thorsten; Persson, Emma K.; Rivollier, Aymeric Marie Christian; Demiri, Mimoza; Sitnik, Katarzyna Maria; Pool, Lieneke; Holm, Jacob B.; Melo-Gonzalez, F.; Richter, Lisa; Lambrecht, Bart N.; Kristiansen, Karsten; Travis, Mark A.; Svensson-Frej, Marcus; Kotarsky, Knut; Agace, William Winston

    2016-01-01

    The role of dendritic cells (DCs) in intestinal immune homeostasis remains incompletely defined. Here we show that mice lacking IRF8 transcription-factor-dependent DCs had reduced numbers of T cells in the small intestine (SI), but not large intestine (LI), including an almost complete absence of......-derived MLN DCs, and inefficient T cell localization to the SI. These mice also lacked intestinal T helper 1 (Th1) cells, and failed to support Th1 cell differentiation in MLN and mount Th1 cell responses to Trichuris muris infection. Collectively these results highlight multiple non-redundant roles for IRF8...

  17. CD1-mediated γ/δ T Cell Maturation of Dendritic Cells

    OpenAIRE

    Leslie, David S; Vincent, Michael S.; Spada, Franca M.; Das, Hiranmoy; Sugita, Masahiko; Morita, Craig T.; Brenner, Michael B.

    2002-01-01

    Immature myeloid dendritic cells (DCs) express only low levels of major histocompatibility complex (MHC) class II but express high levels of CD1 a, b, and c antigen-presenting molecules at the cell surface. As Vδ1+ γ/δ T cells are the main tissue subset of γ/δ T cells and they are known to recognize CD1c in the absence of specific foreign antigen recognition, we examined the possible interaction of these T cells with immature DCs. We show that CD1-restricted γ/δ T cells can mediate the matura...

  18. Autologous tissue patch rich in stem cells created in the subcutaneous tissue

    Institute of Scientific and Technical Information of China (English)

    Ignacio; Garcia-Gomez; Krishnamurthy; P; Gudehithlu; Jose; A; L; Arruda; Ashok; K; Singh

    2015-01-01

    AIM:To investigate whether we could create natural autologous tissue patches in the subcutaneous space for organ repair. METHODS: We implanted the following three types of inert foreign bodies in the subcutaneous tissue of rats to produce autologous tissue patches of different geometries:(1) a large-sized polyvinyl tube(L = 25 mm,internal diameter = 7 mm) sealed at both ends by heat application for obtaining a large flat piece of tissue patch for organ repair;(2) a fine polyvinyl tubing(L = 25 mm,internal diameter = 3 mm) for creating cylindrically shaped grafts for vascular or nerve repair; and(3) a slurry of polydextran particle gel for inducing a bladder-like tissue. Implantation of inert materials was carried out by making a small incision on one or either side of the thoracic-lumbar region of rats. Subcutaneous pockets were created by blunt dissection around the incision into which the inert bodies were inserted(1 or 2 per rat). The incisions were closed with silk sutures,and the animals were allowed to recover. In case of the polydextran gel slurry 5 m L of the slurry was injected in the subcutaneous space using an 18 gauge needle. After implanting the foreign bodies a newly regenerated encapsulating tissue developed around the foreign bodies. The tissues were harvested after 4-42 d of implantation and studied by gross examination,histology,and histochemistry for organization,vascularity,and presence of mesenchymal stem cells(MSCs)(CD271+CD34+ cells). RESULTS: Implanting a large cylindrically shaped polyvinyl tube resulted in a large flat sheet of tissue that could be tailored to a specific size and shape for use as a tissue patch for repairing large organs. Implanting a smaller sized polyvinyl tube yielded a cylindrical tissue that could be useful for repairing nerves and blood vessels. This type of patch could be obtained in different lengths by varying the length of the implanted tube. Implanting a suspension of inert polydextran suspension gave rise to a

  19. Development of a xeno-free autologous culture system for endothelial progenitor cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Moon

    Full Text Available Despite promising preclinical outcomes in animal models, a number of challenges remain for human clinical use. In particular, expanding a large number of endothelial progenitor cells (EPCs in vitro in the absence of animal-derived products is the most critical hurdle remaining to be overcome to ensure the safety and efficiency of human therapy. To develop in vitro culture conditions for EPCs derived from human cord blood (hCB-EPCs, we isolated extracts (UCE and collagen (UC-collagen from umbilical cord tissue to replace their animal-derived counterparts. UC-collagen and UCE efficiently supported the attachment and proliferation of hCB-EPCs in a manner comparable to that of animal-derived collagen in the conventional culture system. Our developed autologous culture system maintained the typical characteristics of hCB-EPCs, as represented by the expression of EPC-associated surface markers. In addition, the therapeutic potential of hCB-EPCs was confirmed when the transplantation of hCB-EPCs cultured in this autologous culture system promoted limb salvage in a mouse model of hindlimb ischemia and was shown to contribute to attenuating muscle degeneration and fibrosis. We suggest that the umbilical cord represents a source for autologous biomaterials for the in vitro culture of hCB-EPCs. The main characteristics and therapeutic potential of hCB-EPCs were not compromised in developed autologous culture system. The absence of animal-derived products in our newly developed in vitro culture removes concerns associated with secondary contamination. Thus, we hope that this culture system accelerates the realization of therapeutic applications of autologous hCB-EPCs for human vascular diseases.

  20. Immune receptors involved in Streptococcus suis recognition by dendritic cells.

    Directory of Open Access Journals (Sweden)

    Marie-Pier Lecours

    Full Text Available Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs. Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR signaling. Supporting this fact, TLR2(-/- DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.

  1. Regulation of Dendritic Cell Function by Dietary Polyphenols.

    Science.gov (United States)

    Del Cornò, Manuela; Scazzocchio, Beatrice; Masella, Roberta; Gessani, Sandra

    2016-04-01

    Marked changes in socioeconomic status, cultural traditions, population growth, and agriculture have been affecting diets worldwide. Nutrition is known to play a pivotal role in the pathogenesis of several chronic diseases, and the use of bioactive food compounds at pharmacologic doses is emerging as a preventive and/or therapeutic approach to target metabolic dysregulations occurring in aging, obesity-related chronic diseases, and cancer. Only recently have data on the effects of specific nutrients or food on the immune system become available, and studies regarding the human immune system are still in their infancy. Beyond providing essential nutrients, diet can actively influence the immune system. Understanding how diet and nutritional status influence the innate and adaptive arms of our immune system represents an area of scientific need, opportunity, and challenge. The insights gleaned should help to address several pressing global health problems. Recently, biologically active polyphenols, which are widespread constituents of fruit and vegetables, have gained importance as complex regulators of various cellular processes, critically involved in the maintenance of body homeostasis. This review outlines the potential effects of polyphenols on the function of dendritic cells (DCs), key players in the orchestration of the immune response. Their effects on different aspects of DC biology including differentiation, maturation, and DC capacity to shift immune response toward tolerance or immune activation will be outlined. PMID:24941314

  2. Simian immunodeficiency virus interactions with macaque dendritic cells.

    Science.gov (United States)

    Teleshova, Natalia; Derby, Nina; Martinelli, Elena; Pugach, Pavel; Calenda, Giulia; Robbiani, Melissa

    2013-01-01

    This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV. PMID:22975875

  3. The Influence of Ouabain on Human Dendritic Cells Maturation

    Directory of Open Access Journals (Sweden)

    C. R. Nascimento

    2014-01-01

    Full Text Available Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua. Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days. To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance.

  4. Clinical Grade of Gerneration of Dendritic Cells for Immunotherapy

    Institute of Scientific and Technical Information of China (English)

    TANG Duozhuang; TAO Si; CAO Yang; ZHOU Jianfeng; MA Ding; HUANG Wei

    2007-01-01

    In order to develop a protocol for clinical grade generation of dendritic cells (DCs) for cancer immumotherapy, aphereses were performed with the continuous flow cell separator and materials were derived from 10 leukemia patients that had achieved complete remission. Peripheral blood monocytes were cultured in vitro with GM-CSF, IL-4 for 6 days, then TNF-α (the TNF-α group) or TNF-α, IL-1β, IL-6, PGE2 (the cytokine mixture group) were added to promote maturation. Cell number was counted by hematology analyzer, and phenotype study (CD1a, CD14, CD83) was carried out by flow cytometry, and the function of DCs was examined by mixed lymphocyte reaction. The results showed that (0.70±0.13)×107/mL (the TNF-α group) and (0.79±0.04)×107/mL (the cytokine mixture group) DCs were generated respectively in peripheral blood obtained by leucapheresis. The phenotypes were as follows: CD1a+ (74.65±4.45)%, CD83+(39.50±4.16)%, CD14+(2.90±1.76)% in TNF-α group, and CD1a+ (81.86±5.87)%, CD83+ (81.65±6.36)%, CD14+ (2.46±1.68)% in the cytokine mixture group. It was concluded that leucapheresis may be a feasible way to provide large number of peripheral blood monocytes for DC generation, and combined administration of TNF-α, IL-1β,IL-6, and PGE2 may greatly promote maturity.

  5. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs

    Directory of Open Access Journals (Sweden)

    Camila Marx

    2014-01-01

    Full Text Available Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n=4 or allogeneic cultured adipose-derived stem cells (ASCs, n=5 injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases.

  6. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs.

    Science.gov (United States)

    Marx, Camila; Silveira, Maiele Dornelles; Selbach, Isabel; da Silva, Ariel Silveira; Braga, Luisa Maria Gomes de Macedo; Camassola, Melissa; Nardi, Nance Beyer

    2014-01-01

    Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, n = 4) or allogeneic cultured adipose-derived stem cells (ASCs, n = 5) injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases. PMID:25180040

  7. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Zurab Kakabadze

    2016-01-01

    Full Text Available Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50% cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA scale, 7 (78% out of the 9 patients observed an improvement by one grade, while two cases (22% saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury.

  8. Phase 1 Trial of Autologous Bone Marrow Stem Cell Transplantation in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Kakabadze, Zurab; Kipshidze, Nickolas; Mardaleishvili, Konstantine; Chutkerashvili, Gocha; Chelishvili, Irakli; Harders, Albrecht; Loladze, George; Shatirishvili, Gocha; Kipshidze, Nodar; Chakhunashvili, David; Chutkerashvili, Konstantine

    2016-01-01

    Introduction. A total of 18 patients, with complete motor deficits and paraplegia caused by thoracic and lumbar spine trauma without muscle atrophy or psychiatric problems, were included into this study. Materials and Methods. The bone marrow was aspirated from the anterior iliac crest under local anesthesia and the mononuclear fraction was isolated by density gradient method. At least 750 million mononuclear-enriched cells, suspended in 2 mL of saline, were infused intrathecally. Results and Discussion. The study reports demonstrated improvement of motor and sensory functions of various degrees observed in 9 of the 18 (50%) cases after bone marrow stem cell transplantation. Measured by the American Spinal Injury Association (ASIA) scale, 7 (78%) out of the 9 patients observed an improvement by one grade, while two cases (22%) saw an improvement by two grades. However, there were no cases in which the condition was improved by three grades. Conclusions. Analysis of subsequent treatment results indicated that the transplantation of mononuclear-enriched autologous BMSCs is a feasible and safe technique. However, successful application of the BMSCs in the clinical practice is associated with the necessity of executing more detailed examinations to evaluate the effect of BMSCs on the patients with spinal cord injury. PMID:27433165

  9. Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome.

    Directory of Open Access Journals (Sweden)

    Fabien Forcheron

    Full Text Available Cutaneous radiation syndrome (CRS is the delayed consequence of localized skin exposure to high doses of ionizing radiation. Here we examined for the first time in a large animal model the therapeutic potential of autologous adipose tissue-derived stroma cells (ASCs. For experiments, Göttingen minipigs were locally gamma irradiated using a (60Co source at the dose of 50 Gy and grafted (n = 5 or not (n = 8. ASCs were cultured in MEM-alpha with 10% fetal calf serum and basic fibroblast growth factor (2 ng.mL(-1 and post irradiation were intradermally injected on days 25, 46, 67 and finally between days 95 and 115 (50 × 10(6 ASCs each time into the exposed area. All controls exhibited a clinical evolution with final necrosis (day 91. In grafted pigs an ultimate wound healing was observed in four out of five grafted animals (day 130 +/- 28. Immunohistological analysis of cytokeratin expression showed a complete epidermis recovery. Grafted ASCs accumulated at the dermis/subcutis barrier in which they attracted numerous immune cells, and even an increased vasculature in one pig. Globally this study suggests that local injection of ASCs may represent a useful strategy to mitigate CRS.

  10. Italian consensus conference for the outpatient autologous stem cell transplantation management in multiple myeloma.

    Science.gov (United States)

    Martino, M; Lemoli, R M; Girmenia, C; Castagna, L; Bruno, B; Cavallo, F; Offidani, M; Scortechini, I; Montanari, M; Milone, G; Postacchini, L; Olivieri, A

    2016-08-01

    Multiple myeloma (MM) is the leading indication for autologous stem cell transplantation (ASCT) worldwide. The safety and efficacy of reducing hospital stay for MM patients undergoing ASCT have been widely explored, and different outpatient models have been proposed. However, there is no agreement on the criteria for selecting patients eligible for this strategy as well as the standards for their clinical management. On the basis of this rationale, the Italian Group for Stem Cell Transplantation (GITMO) endorsed a project to develop guidelines for the management of outpatient ASCT in MM, using evidence-based knowledge and consensus-formation techniques. An expert panel convened to discuss the currently available data on the practice of outpatient ASCT management and formulated recommendations according to the supporting evidence. Evidence gaps were filled with consensus-based statements. Three main topics were addressed: (1) the identification of criteria for selecting MM patients eligible for outpatient ASCT management; (2) the definition of standard procedures for performing outpatient ASCT (model, supportive care and monitoring during the aplastic phase); (3) the definition of the standard criteria and procedures for re-hospitalization during the aplastic phase at home. Herein, we report the summary and the results of the discussion and the consensus. PMID:27042841

  11. Clinical outcomes after autologous haematopoietic stem cell transplantation in patients with progressive multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    XU Juan; JI Bing-xin; SU Li; DONG Hui-qing; SUN Xue-jing; LIU Cong-yan

    2006-01-01

    Background Multiple sclerosis (MS) is a continuously disabling disease and it is unresponsive to high dose steroid and immunomodulation with disease progression. The autologous haematopoietic stem cell transplantation (ASCT) has been introduced in the treatment of refractory forms of multiple sclerosis. In this study, the clinical outcomes followed by ASCT were evaluated for patients with progressive MS.Methods Twenty-two patients with secondary progressive MS were treated with ASCT. Peripheral blood stem cells were obtained by leukapheresis after mobilization with granulocyte colony stimulating factor. Etoposide,melphalan, carmustin and cytosine arabinoside were administered as conditioning regimen. Outcomes were evaluated by the expanded disability status scale and progression free survival. No maintenance treatment was administered during a median follow-up of 39 months (range, 6 to 59 months).Results No death occurred following the treatment. The overall confirmed progression free survival rate was77% up to 59 months after transplantation which was significantly higher compared with pre-transplantation (P=0.000). Thirteen patients (59%) had remarkable improvement in neurological manifestations, four (18%)stabilized their disability status and five (23%) showed clinical recurrence of active symptoms.Conclusions ASCT as a therapy is safe and available. It can improve or stabilize neurological manifestations in most patients with progressive MS following failure of conventional therapy.

  12. [High dosage therapy and autologous peripheral stem cell transplantation in breast carcinoma].

    Science.gov (United States)

    Kier, P; Ruckser, R; Buxhofer, V; Habertheuer, K H; Zelenka, P; Tatzreiter, G; Hübl, G; Kittl, E; Hauser, A; Sebesta, C; Hinterberger, W

    2000-01-01

    42 breast cancer patients were treated by high-dose chemotherapy (HDC) and autologous peripheral stem-cell transplantation (ASTx) in the Donauspital between 1992 and 1999. 24 patients had stage II/III breast cancer with high risk for relapse. The other 18 patients underwent HDC and ASTx in chemosensitive stage IV. After previous conventional chemotherapy peripheral stem-cells were harvested by one cycle of mobilisation chemotherapy (epirubicin/taxol, FEC 120 or cyclophosphamide) followed by cytokine stimulation. 16 patients were treated by a tandem transplantation (conditioning protocol for 1st ASTx was melphalan 200 mg/m2 and for 2nd transplant it was CTC: cyclophosphamide 6 g/m2; thiotepa 500 mg/m2; carboplatin 800 mg/m2). The other 26 patients received one HDC with CTC as conditioning protocol. The HDC was well tolerated by all patients, there was no transplant-related mortality. The median survival and the progression-free survival (PFS) after HDC and ASTx in stage IV breast cancer patients were 28 and 11 months, respectively. The median survival and PFS were not yet reached in stage II/III patients after 55 months. The actuarial survival and PFS in that patient group were 70% after 55 months. Our data confirm the low risk and good efficacy of HDC and ASTx in breast cancer patients. Nevertheless randomised studies are necessary to evaluate the importance of HDC compared to intensified conventional protocols without ASTx. PMID:11261276

  13. [High dosage chemotherapy with autologous stem cell transplantation in multiple myeloma].

    Science.gov (United States)

    Ruckser, R; Kier, P; Buxhofer, V; Kittl, E; Tatzreiter, G; Vedovelli, H; Zelenka, P; Hübl, G; Hinterberger, W

    2000-01-01

    Between 1992 and 1999 15 patients (pts.) suffering from multiple myeloma (MM) were treated with high-dose chemotherapy and consecutive autologous stem-cell transplantation (ASTx). 10/15 pts underwent two courses of ASTx (tandem- or double ASTx). So 25 ASTx were performed in these 15 pts. in total. All pts. were under 60 a. of age. 13/15 pts. received 6 cycles of chemotherapy on an average according to the VAD-protocol (Vincristin, Adriamycin, Dexamethason). Mobilisation of peripheral hematopoietic stem cells was performed with high-dose cyclophosphamide and hematopoietic growth-factors (CSFs). The conditioning protocol consisted of high-dose melphalan (200-225 mg/m2) in 24/25 ASTx. In one single case total body irradiation (TBI) plus melphalan 140 mg/m2 was used. 2/15 pts. died within 30 days from ASTx; one patient from interstitial pneumonia after TBI, and the other, who was in a very advanced stage of his disease with multiple pretreatment courses before ASTx. The overall survival (OS) was in the mean 68 months, the progression-free survival (PFS) after ASTx 21 m respectively. In pts. with MM high-dose melphalan (up to 225 mg/m2) without TBI plus ASTx is a safe and effective procedure when performed in the early course of the disease. PMID:11261278

  14. Steroids prevent engraftment syndrome after autologous hematopoietic stem cell transplantation without increasing the risk of infection.

    Science.gov (United States)

    Mossad, S; Kalaycio, M; Sobecks, R; Pohlman, B; Andresen, S; Avery, R; Rybicki, L; Jarvis, J; Bolwell, B

    2005-02-01

    Engraftment syndrome (ES) following autologous hematopoietic stem cell transplantation (AHSCT) is characterized by fever and rash. In January 2002, we instituted steroid prophylaxis for ES from day +4 to +14. This study was conducted to assess whether this practice increased the risk of infection. In total, 194 consecutive patients were reviewed, 111 did not receive steroid prophylaxis (group A), and 83 did (group B). Initial antimicrobial prophylaxis was the same in both groups. There were no significant differences between groups in age, gender, race, prior radiation therapy, number of prior chemotherapy regimens, disease status at transplant, mobilization regimen, days of leukopheresis, CD34(+) cell dose, and days to platelet and neutrophil engraftment. Group B had significantly fewer patients with non-Hodgkin's lymphoma and multiple myeloma, shorter median duration from diagnosis to transplant, lower risk of ES, and shorter mean length of hospital stay. The incidence of early and late microbiologically confirmed infections was not significantly different between groups. Types of infections and types of organisms identified were similar in both groups. Hospital readmission rates were similar in both groups. Steroid prophylaxis significantly decreases the risk of ES following AHSCT, and is associated with shortened hospitalization, without increasing risk of infection. PMID:15640827

  15. A Clinical Study of Autologous Bone Marrow Mononuclear Cells for Cerebral Palsy Patients: A New Frontier

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2015-01-01

    Full Text Available Cerebral palsy is a nonprogressive heterogeneous group of neurological disorders with a growing rate of prevalence. Recently, cellular therapy is emerging as a potential novel treatment strategy for cerebral palsy. The various mechanisms by which cellular therapy works include neuroprotection, immunomodulation, neurorestoration, and neurogenesis. We conducted an open label, nonrandomized study on 40 cases of cerebral palsy with an aim of evaluating the benefit of cellular therapy in combination with rehabilitation. These cases were administered autologous bone marrow mononuclear cells intrathecally. The follow-up was carried out at 1 week, 3 months, and 6 months after the intervention. Adverse events of the treatment were also monitored in this duration. Overall, at six months, 95% of patients showed improvements. The study population was further divided into diplegic, quadriplegic, and miscellaneous group of cerebral palsy. On statistical analysis, a significant association was established between the symptomatic improvements and cell therapy in diplegic and quadriplegic cerebral palsy. PET-CT scan done in 6 patients showed metabolic improvements in areas of the brain correlating to clinical improvements. The results of this study demonstrate that cellular therapy may accelerate the development, reduce disability, and improve the quality of life of patients with cerebral palsy.

  16. Total Marrow Irradiation as Part of Autologous Stem Cell Transplantation for Asian Patients with Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Shih-Chiang Lin

    2013-01-01

    Full Text Available To compare the outcomes of melphalan 200 mg/m2 (HDM200 and 8 Gy total marrow irradiation (TMI delivered by helical tomotherapy plus melphalan 140 mg/m2 (HDM140 + TMI 8 Gy in newly diagnosed symptomatic multiple myeloma (MM Asian patients. Between 2007 and 2010, nine consecutive myeloma patients who were scheduled to undergo autologous stem cell transplantation (ASCT were studied. The patients received three cycles of vincristine-adriamycin-dexamethasone (VAD regimen as induction chemotherapy, and if they had a partial response, peripheral blood stem cells were collected by dexamethasone-etoposide-cyclophosphamide-cisplatin (DECP. In arm A, six patients received the HDM200. In arm B, three patients received HDM140 + TMI 8 Gy. In arm B, the neutropenic duration was slightly longer than in arm A (P=0.048. However, hematologic recovery (except for neutrophils, transfusion requirement, median duration of hospitalization, and the dose of G-CSF were similar in both arms. The median duration of overall survival and event-free survival was similar in the two arms (P=0.387. As a conditioning regiment, HDM140 + TMI 8 Gy provide another chance for MM Asian patients who were not feasible for HDM200.

  17. The early diagnosis of kidney graft rejection with radioactive autologous bloodplatelets; importance of cell viability

    International Nuclear Information System (INIS)

    This study concerns the possible suitability of gamma camera scintigraphy after injection of 111In-labelled autologous thrombocytes as an early diagnostic method for the initial events of kidney graft rejection. The maintenance of cell function and viability after cell labelling appeared to be essential for the adequate interpretation of the results of subsequent in vivo measurements. Thrombocytes labelled according to the described procedure showed a normal collagen induced aggregation pattern and normal behaviour in vivo. A small group of individuals with well functioning kidneys, transplanted 4 - 6 months before, served as a control group. The transplanted kidneys could always be located on the scintigram taken 24 hours after 111In-thrombocyte injection. Increased accumulation of radioactive thrombocytes in the graft was observed in patients with clinical and biochemical signs of graft rejection. After adequate therapy, this accumulation decreased towards normal values. Concomitantly a reduced survival of circulating labelled platelets was found in periods with high kidney radioactivity and vice versa. However, in order to assess the value of the technique as an early indication of graft rejection more frequent measurements (i.e. 2 - 3 times a day) are necessary. A method using a portable crystal detector is now under investigation. Finally, it might be possible with this method to discriminate between various clinical courses (i.e. the type of rejection) after transplantation. (author)

  18. Antibody responses to vaccination and immune function in patients with haematological malignancies - studies in patients with chronic lymphocytic leukaemia autologous stem cell recipients

    OpenAIRE

    Velden, A.M.T. van der

    2007-01-01

    This thesis concerns the antibody responses to vaccination and immune function of patients with several forms of haematological diseases. Antibody responses in patients with chronic lymphocytic leukaemia (CLL) and in autologous stem cell transplant recipients were studied. In the autologous stem cell transplantation (aSCT) group, immune reconstitution after aSCT was analysed in detail during 15 months following transplantation. The first part of the thesis concerns patients with chronic lymph...

  19. Case of relapsed AIDS-related plasmablastic lymphoma treated with autologous stem cell transplantation and highly active antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Hiroki Goto

    2011-03-01

    Full Text Available Plasmablastic lymphoma is a rare and aggressive malignancy strongly associated with HIV infection. The refractory/relapsed disease rate is high, and the survival rate is characteristically poor. There are no satisfactory salvage regimens for relapsed cases. We successfully performed autologous stem cell transplantation using a regimen consisting of MCNU (ranimustine, etoposide, cytarabine, and melphalan in a Japanese patient with relapsed AIDS-related plasmablastic lymphoma of the oral cavity. Highly active antiretroviral therapy continued during the therapy. Therapy-related toxicity was tolerable, and a total of 40 Gy of irradiation was administered after autologous stem cell transplantation. The patient has remained in complete remission for 16 months since transplantation.

  20. On/off TLR segnaling decides immunogenic or tolerogenic dendritic cell maturation upon NKT cell contact

    OpenAIRE

    Caielli,

    2009-01-01

    Invariant Natural Killer (iNK)T cells play opposite immune functions. They participate in the innate immune response to promote anti-microbial and anti-tumor immunity and they are crucial to maintain T cell tolerance and prevent autoimmune diseases. While it is well known that the adjuvant function of iNKT cells is mediated through maturation of dendritic cells (DC), the mechanism underlying the tolerogenic function of iNKT cells remains unclear. We performed co-culture experiments with immat...

  1. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial.

    OpenAIRE

    Roncalli, Jérôme; Mouquet, Frédéric; Piot, Christophe; Trochu, Jean-Noel; Le Corvoisier, Philippe; Neuder, Yannick; Le Tourneau, Thierry; Agostini, Denis; Gaxotte, Virginia; Sportouch, Catherine; Galinier, Michel; Crochet, Dominique,; Teiger, Emmanuel; Richard, Marie-Jeanne; Polge, Anne-Sophie

    2011-01-01

    International audience AIMS: Intracoronary administration of autologous bone marrow cells (BMCs) leads to a modest improvement in cardiac function, but the effect on myocardial viability is unknown. The aim of this randomized multicentre study was to evaluate the effect of BMC therapy on myocardial viability in patients with decreased left ventricular ejection fraction (LVEF) after acute myocardial infarction (AMI) and to identify predictive factors for improvement of myocardial viability....

  2. Autologous Bone Marrow Mononuclear Cell Transplantation in Patients with Decompensated Alcoholic Liver Disease: A Randomized Controlled Trial

    OpenAIRE

    Spahr, Laurent François Joséph; Chalandon, Yves; Terraz, Sylvain; Kindler, Vincent Lucien; Rubbia-Brandt, Laura; Frossard, Jean-Louis; Breguet, Romain; Lanthier, Nicolas; Farina, Annarita; Passweg, Jakob; Becker, Christoph; Hadengue, Antoine

    2013-01-01

    Objective Impaired liver regeneration is associated with a poor outcome in patients with decompensated alcoholic liver disease (ALD). We assessed whether autologous bone marrow mononuclear cell transplantation (BMMCT) improved liver function in decompensated ALD. Design 58 patients (mean age 54 yrs; mean MELD score 19, all with cirrhosis, 81% with alcoholic steatohepatitis at baseline liver biopsy) were randomized early after hospital admission to standard medical therapy (SMT) alone (n = 30)...

  3. Treatment of one case of cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells

    OpenAIRE

    Li Min; Yu Aixue; Zhang Fangfang; Dai GuangHui; Cheng Hongbin; Wang Xiaodong; An Yihua

    2012-01-01

    Abstract Background Cerebral palsy is currently one of the major diseases that cause severe paralysis of the nervous system in children; approximately 9–30% of cerebral palsy patients are also visually impaired, for which no effective treatment is available. Bone marrow mesenchymal stem cells (BMSCs) have very strong self-renewal, proliferation, and pluripotent differentiation potentials. Therefore, autologous BMSC transplantation has become a novel method for treating cerebral palsy. Methods...

  4. High-Dose Chemotherapy Followed by Autologous Stem Cell Transplantation for Metastatic Rhabdomyosarcoma—A Systematic Review

    OpenAIRE

    Frank Peinemann; Nicolaus Kröger; Carmen Bartel; Ulrich Grouven; Max Pittler; Rudolf Erttmann; Michael Kulig

    2011-01-01

    INTRODUCTION: Patients with metastatic rhabdomyosarcoma (RMS) have a poor prognosis. The aim of this systematic review is to investigate whether high-dose chemotherapy (HDCT) followed by autologous hematopoietic stem cell transplantation (HSCT) in patients with metastatic RMS has additional benefit or harm compared to standard chemotherapy. METHODS: Systematic literature searches were performed in MEDLINE, EMBASE, and The Cochrane Library. All databases were searched from inception to Februar...

  5. Substantial variation in post-engraftment infection prophylaxis and revaccination practice in autologous stem cell transplant patients.

    Science.gov (United States)

    Lim, H Y; Grigg, A

    2016-03-01

    There is a paucity of evidence supporting the necessity or duration of Pneumocystis jirovecii and antiviral prophylaxis as well as revaccination following autologous stem cell transplant (ASCT). A survey aimed at evaluating these policies was distributed to 34 ASCT centres across Australasia. The 26 survey respondents demonstrated significant heterogeneity in their infection prophylaxis and revaccination strategy post-transplant despite the availability of consensual guidelines. PMID:26968596

  6. High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for adult histiocytic disorders with central nervous system involvement

    OpenAIRE

    Gaspar, Nathalie; Van Den Neste, Eric; Boudou, Pascaline; Haroche, Julien; Wechsler, Bertrand; Hoang-Xuan, Khe; Amoura, Zahir; Guillevin, Remy; Savatovski, Julien; Azar, Nabih; Piette, Jean-Charles; Leblond, Veronique

    2006-01-01

    We postulated that high-dose chemotherapy (HDC) followed by peripheral autologous hematopoietic stem cell transplantation might help to control refractory central nervous system (CNS) histiocytic disorders. Six patients with histiocytic CNS involvement were treated in this way. Two patients achieved non-active disease status, although one relapsed at 84 months. Two patients had regressive disease, one of whom progressed at 21 months. One patient had progressive disease at 14 months. One patie...

  7. Autologous Doping with Cryopreserved Red Blood Cells – Effects on Physical Performance and Detection by Multivariate Statistics

    OpenAIRE

    Malm, Christer B; Khoo, Nelson S.; Granlund, Irene; Lindstedt, Emilia; Hult, Andreas

    2016-01-01

    The discovery of erythropoietin (EPO) simplified blood doping in sports, but improved detection methods, for EPO has forced cheating athletes to return to blood transfusion. Autologous blood transfusion with cryopreserved red blood cells (RBCs) is the method of choice, because no valid method exists to accurately detect such event. In endurance sports, it can be estimated that elite athletes improve performance by up to 3% with blood doping, regardless of method. Valid detection methods for a...

  8. Autologous Endothelial Progenitor Cell-Seeding Technology and Biocompatibility Testing For Cardiovascular Devices in Large Animal Model

    OpenAIRE

    Jantzen, Alexandra E.; Lane, Whitney O.; Gage, Shawn M.; Haseltine, Justin M; Galinat, Lauren J; Jamiolkowski, Ryan M.; Lin, Fu-Hsiung; Truskey, George A.; Achneck, Hardean E.

    2011-01-01

    Implantable cardiovascular devices are manufactured from artificial materials (e.g. titanium (Ti), expanded polytetrafluoroethylene), which pose the risk of thromboemboli formation1,2,3. We have developed a method to line the inside surface of Ti tubes with autologous blood-derived human or porcine endothelial progenitor cells (EPCs)4. By implanting Ti tubes containing a confluent layer of porcine EPCs in the inferior vena cava (IVC) of pigs, we tested the improved biocompatibility of the cel...

  9. Challenges and outcomes of a randomized study of early nutrition support during autologous stem-cell transplantation

    OpenAIRE

    Kiss, N.; Seymour, J.F.; Prince, H M; Dutu, G.

    2014-01-01

    Patients undergoing myeloablative conditioning regimens and autologous stem-cell transplantation (asct) are at high risk of malnutrition. This randomized study aimed to determine if early nutrition support (commenced when oral intake is less than 80% of estimated requirements) compared with usual care (commenced when oral intake is less than 50% of estimated requirements) reduces weight loss in well-nourished patients undergoing high-nutritional-risk conditioning chemotherapy and asct.

  10. Clostridium difficile infection after adult autologous stem cell transplantation: A multicenter study of epidemiology and risk factors

    OpenAIRE

    Alonso, Carolyn D.; Dufresne, Simon F.; Hanna, David B.; Labbé, Annie-Claude; Treadway, Suzanne B.; Neofytos, Dionissios; Bélanger, Sylvie; Huff, Carol Ann; Laverdière, Michel; Marr, Kieren A.

    2013-01-01

    We sought to describe the epidemiology of Clostridium difficile infection (CDI) among adult recipients of autologous hematopoietic stem cell transplantation (auto HSCT) within the first year after HSCT in centers with variable epidemiology of hyper-toxigenic strains. A multicenter, retrospective nested case-control study was conducted among 873 auto HSCT recipients at Johns Hopkins Hospital (JHH, Baltimore, MD) and Hôpital Maisonneuve-Rosemont (HMR, Montreal, Canada) between 1/2003-12/2008. D...

  11. The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells.

    Science.gov (United States)

    Ifergan, Igal; Kébir, Hania; Bernard, Monique; Wosik, Karolina; Dodelet-Devillers, Aurore; Cayrol, Romain; Arbour, Nathalie; Prat, Alexandre

    2008-03-01

    Trafficking of antigen-presenting cells into the CNS is essential for lymphocyte reactivation within the CNS compartment. Although perivascular dendritic cells found in inflammatory lesions are reported to polarize naive CD4+ T lymphocytes into interleukin-17-secreting-cells, the origin of those antigen-presenting cells remains controversial. We demonstrate that a subset of CD14+ monocytes migrate across the inflamed human blood-brain barrier (BBB) and differentiate into CD83+CD209+ dendritic cells under the influence of BBB-secreted transforming growth factor-beta and granulocyte-macrophage colony-stimulating factor. We also demonstrate that these dendritic cells secrete interleukin-12p70, transforming growth factor-beta and interleukin-6 and promote the proliferation and expansion of distinct populations of interferon-gamma-secreting Th1 and interleukin-17-secreting Th17 CD4+ T lymphocytes. We further confirmed the abundance of such dendritic cells in situ, closely associated with microvascular BBB-endothelial cells within acute multiple sclerosis lesions, as well as a significant number of CD4+ interleukin-17+ T lymphocytes in the perivascular infiltrate. Our data support the notion that functional perivascular myeloid CNS dendritic cells arise as a consequence of migration of CD14+ monocytes across the human BBB, through the concerted actions of BBB-secreted transforming growth factor-beta and granulocyte-macrophage colony-stimulating factor. PMID:18156156

  12. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  13. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells

    NARCIS (Netherlands)

    Rodriguez, A; Regnault, A; Kleijmeer, M; Ricciardi-Castagnoli, P; Amigorena, S

    1999-01-01

    In order for cytotoxic T cells to initiate immune responses, peptides derived from internalized antigens must be presented to the cytotoxic T cells on major histocompatibility complex (MHC) class I molecules. Here we show that dendritic cells, the only antigen-presenting cells that initiate immune r

  14. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study.

    Science.gov (United States)

    Suehiro, Youko; Hasegawa, Atsuhiko; Iino, Tadafumi; Sasada, Amane; Watanabe, Nobukazu; Matsuoka, Masao; Takamori, Ayako; Tanosaki, Ryuji; Utsunomiya, Atae; Choi, Ilseung; Fukuda, Tetsuya; Miura, Osamu; Takaishi, Shigeo; Teshima, Takanori; Akashi, Koichi; Kannagi, Mari; Uike, Naokuni; Okamura, Jun

    2015-05-01

    Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL. PMID:25612920

  15. Sphingosylphosphorylcholine stimulates human monocyte-derived dendritic cell chemotaxis

    Institute of Scientific and Technical Information of China (English)

    Ha-young LEE; Eun-ha SHIN; Yoe-sik BAE

    2006-01-01

    Aim: To investigate the effects of Sphingosylphosphorylcholine (SPC) on human monocyte-derived dendritic cell (DC) chemotaxis. Methods: Human DC were generated from peripheral blood monocytes by culturing them with granulocyte macrophage-colony stimulating factor and interleukin-4. The effect of SPC on the DC chemotactic migration was measured by chemotaxis assay. Intracellular signaling event involved in the SPC-induced DC chemotaxis was investigated with several inhibitors for specific kinase. The expression of the SPC receptors was examined by reverse transcription polymerase chain reaction. Results: We found that SPC induced chemotactic migration in immature DC (iDC) and mature DC (mDC). In terms of SPC-induced signaling events, mitogen activated protein kinase activation and Akt activation in iDC and mDC were stimulated. SPC-induced chemotaxis was mediated by extracellular signal-regulated protein kinase and phosphoino-sitide-3-kinase, but not by calcium in both iDC and mDC. Although mDC express ovarian cancer G protein-coupled receptor 1, but not G protein-coupled receptor 4, iDC do not express any of these receptors. To examine the involvement of sphin-gosine-1-phosphate (SIP) receptors, we checked the effect of an SIP receptor antagonist (VPC23019) on SPC-induced DC chemotaxis. VPC23019 did not affect SPC-induced DC chemotaxis. Conclusion: The results suggest that SPC may play a role in regulating DC trafficking during phagocytosis and the T cell-stimulating phase, and the unique SPC receptor, which is different from SIP receptors, is involved in SPC-induced chemotaxis.

  16. Biodistribution of radiolabelled human dendritic cells injected by various routes

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the biodistribution of mature dendritic cells (DCs) injected by various routes, during a cell therapy protocol. In the context of a vaccine therapy protocol for melanoma, DCs matured with Ribomunyl and interferon-gamma were labelled with111In-oxine and injected into eight patients along various routes: afferent lymphatic vessel (IL) (4 times), lymph node (IN) (5 times) and intradermally (ID) (6 times). Scintigraphic investigations showed that the IL route allowed localisation of 80% of injected radioactivity in eight to ten nodes. In three cases of IN injection, the entire radioactivity stagnated in the injected nodes, while in two cases, migration to adjacent nodes was observed. This migration was detected rapidly after injection, as with IL injections, suggesting that passive transport occurred along the physiological lymphatic pathways. In two of the six ID injections, 1-2% of injected radioactivity reached a proximal lymph node. Migration was detectable in the first hour, but increased considerably after 24 h, suggesting an active migration mechanism. In both of the aforementioned cases, DCs were strongly CCR7-positive, but this feature was not a sufficient condition for effective migration. In comparison with DCs matured with TNF-α, IL-1β, IL-6 and PGE2, our DCs showed a weaker in vitro migratory response to CCL21, despite comparable CCR7 expression, and higher allostimulatory and TH1 polarisation capacities. The IL route allowed reproducible administration of specified numbers of DCs. The IN route sometimes yielded fairly similar results, but not reproducibly. Lastly, we showed that DCs matured without PGE2 that have in vitro TH1 polarisation capacities can migrate to lymph nodes after ID injection. (orig.)

  17. Lung Dendritic Cells Facilitate Extrapulmonary Bacterial Dissemination during Pneumococcal Pneumonia

    Directory of Open Access Journals (Sweden)

    Alva eRosendahl

    2013-06-01

    Full Text Available Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DC-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DC-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9 in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection.

  18. Changes in dendritic cells and dendritic cell subpopulations in peripheral blood of recipients during acute rejection after kidney transplantation

    Institute of Scientific and Technical Information of China (English)

    Ma Linlin; Liu Yong; Wu Junjie; Xu Xiuhong; Liu Fen; Feng Lang; Xie Zelin

    2014-01-01

    Background Advances in transplantation immunology show that the balance between dendritic cells (DCs) and their subsets can maintain stable immune status in the induction of tolerance after transplantation.The aim of this study was to investigate if DCs and DC subpopulations in recipient peripheral blood are effective diagnostic indicators of acute rejection following kidney transplantation.Methods Immunofluorescent flow cytometry was used to classify white blood cells (WBCs),the levels of mononuclear cells and DCs (including the dominant subpopulations,plasmacytoid DC (pDC) and myeloid DC (mDC)) in peripheral blood at 0,1,7,and 28 days and 1 year after kidney transplantation in 33 patients.In addition,the blood levels of interleukin-10 (IL-10) and IL-12 were monitored before and after surgery.Fifteen healthy volunteers served as normal controls.Patients were undertaking hemodialysis owing to uremia before surgery.Results The total number of DCs,pDC,and mDC in peripheral blood and the pDC/mDC ratio were significantly lower in patients than controls (P <0.05).Peripheral DCs suddenly decreased at the end of day 1,then gradually increased through day 28 but remained below normal levels.After 1 year,levels were higher than before surgery but lower than normal.The mDC levels were higher in patients with acute rejection before and 1 day after surgery (P <0.005).There was no significant difference in IL-10 and IL-12 levels between patients with and without acute rejection.Conclusion The changes in DCs and DC subpopulations during the acute rejection period may serve as effective markers and referral indices for monitoring the immune state,and predicting rejection and reasonably adjusting immunosuppressants.

  19. Clinical efficacy of sunitinib combined with autologous DC and CIK for patients with metastatic renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2014-01-01

    Full Text Available Objective To analyze the clinical efficacy and safety of sunitinib combined with autologous dentritic cell (DC and cytokine induced killer cell (CIK for patients suffering from metastatic renal cell carcinoma (mRCC. Methods Clinical data of 27 mRCC patients treated with sunitinib combined with autologous DC and CIK were reviewed retrospectively. Efficacy, quality of life, immunology and safety of this treatment were evaluated. Results Follow-up time ranged from 4 to 25 months. Out of all the patients, sunitinib was reduced in 1 and discontinued in 2 due to side effects; 1 patient quit for personal reasons; 14 patients developed progressive disease. The progression-free survival (PFS was 4 to 19.5 months. Ten patients died from tumor, the overall survival time (OS was 6 to 21 months. The median PFS was 16 months (95%CI 12.5-19.5. The OS was not achieved. The efficacy was evaluated according to Response Evaluation Criteria in Solid Tumors (RECIST. All the patients received treatment over 1 cycle. After one course of treatment, among 27 patients, 0 had complete remission (CR, 4 had partial remission (PR, 17 had stable disease (SD, and 6 had progressive disease (PD. The overall objective remission rate (ORR and disease control rate (DCR were 14.8% (4/27 and 77.8% (21/27, respectively. Sunitinib and autologous transfusion of DC and CIK improved the immune function and quality of life. The major adverse events were fatigue, hand-foot syndrome, hypertension, hypothyroidism, thrombocytopenia, neutropenia and fever. Most of the adverse events were ameliorated by supportive treatment or dose reduction. Conclusions  Sunitinib combined with autologous DC and CIK may be beneficial in the treatment of mRCC with acceptable toxic reactions, and it may be considered as a new approach for the comprehensive treatment of RCC. DOI: 10.11855/j.issn.0577-7402.2013.12.06

  20. Autologous Bone Marrow Mononuclear Cell Therapy for Autism: An Open Label Proof of Concept Study

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2013-01-01

    Full Text Available Cellular therapy is an emerging therapeutic modality with a great potential for the treatment of autism. Recent findings show that the major underlying pathogenetic mechanisms of autism are hypoperfusion and immune alterations in the brain. So conceptually, cellular therapy which facilitates counteractive processes of improving perfusion by angiogenesis and balancing inflammation by immune regulation would exhibit beneficial clinical effects in patients with autism. This is an open label proof of concept study of autologous bone marrow mononuclear cells (BMMNCs intrathecal transplantation in 32 patients with autism followed by multidisciplinary therapies. All patients were followed up for 26 months (mean 12.7. Outcome measures used were ISAA, CGI, and FIM/Wee-FIM scales. Positron Emission Tomography-Computed Tomography (PET-CT scan recorded objective changes. Out of 32 patients, a total of 29 (91% patients improved on total ISAA scores and 20 patients (62% showed decreased severity on CGI-I. The difference between pre- and postscores was statistically significant (P<0.001 on Wilcoxon matched-pairs signed rank test. On CGI-II 96% of patients showed global improvement. The efficacy was measured on CGI-III efficacy index. Few adverse events including seizures in three patients were controlled with medications. The encouraging results of this leading clinical study provide future directions for application of cellular therapy in autism.