WorldWideScience

Sample records for autoionization

  1. Autoionizing states of atomic boron

    Science.gov (United States)

    Argenti, Luca; Moccia, Roberto

    2016-04-01

    We present a B -spline K -matrix method for three-active-electron atoms in the presence of a polarizable core, with which it is possible to compute multichannel single-ionization scattering states with good accuracy. We illustrate the capabilities of the method by computing the parameters of several autoionizing states of the boron atom, with S2e, 2,o2P and D2e symmetry, up to at least the 2 p2(1S) excitation threshold of the B ii parent ion, as well as selected portions of the photoionization cross section from the ground state. Our results exhibit remarkable gauge consistency, they significantly extend the existing sparse record of data for the boron atom, and they are in good agreement with the few experimental and theoretical data available in the literature. These results open the way to extend to three-active-electron systems the spectral analysis of correlated wave packets in terms of accurate scattering states that has already been demonstrated for two-electron atoms in Argenti and Lindroth [Phys. Rev. Lett. 105, 053002 (2010), 10.1103/PhysRevLett.105.053002].

  2. Autoionizing states of atoms calculated using generalized sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2005-01-01

    The generalized Sturmian method is applied to autoionizing states of atoms and ions. If the Goscinskian basis sets allow for a sufficient amount of angular correletion, the calculated energies of doubly-excited (autoionizing) states are found to agree well with the few available experimental ener...

  3. Assignments of autoionization states of O2-asterisk

    Science.gov (United States)

    Wu, C. Y. Robert

    1987-01-01

    Attention is given to the uncertainties that remain concerning the autoionization states of O2 leading to the a 4Pi(u) and A 2Pi(u) states of O2(+), as well as some of the assignments of the autoionization states and the determinations of effective quantum numbers and quantum defects. The former problems of vibrational assignments are unambiguously established in view of a study of isotopic oxygen molecules. A systematic examination of the known Rydberg series is conducted, and new assignments and interpretations for several autoionization states leading to the various states of O2(+) are suggested.

  4. Creation and survival of autoionizing states in strong laser fields

    Science.gov (United States)

    Fechner, Lutz; Camus, Nicolas; Krupp, Andreas; Ullrich, Joachim; Pfeifer, Thomas; Moshammer, Robert

    2015-11-01

    Very sharp, low-energy structures observed in photoelectron spectra reveal the population of autoionizing states in krypton and argon in strong laser fields over a large range of different wavelengths. The energies of the electrons, emitted by autoionization in a field-free environment, provide direct information about the spectrum of states involved. Despite their ability to resist ionization by the populating laser pulse, we demonstrate the possibility to promote the excited electrons into the continuum by subsequent absorption of a single photon. Thus, applying a classical pump-probe scheme, we are able to manipulate the autoionization contribution on a picosecond time scale. Different scenarios for the creation of autoionizing states in strong laser fields are discussed.

  5. Relativistic Multichannel Theory: Theoretical Study of C+ Autoionization States

    Institute of Scientific and Technical Information of China (English)

    XIA Dan; ZHANG Shi-Zhong; PENG Yong-Lun; LI Jia-Ming

    2003-01-01

    Based on relativistic multichannel theory, the autoionization states of C+ are studied. We calculate all the autoionization states in the energy region of 193900 ~ 231700cm"1, and the results are in good agreement with the experimental data. The energy structure we obtain will be important in the dielectronic recombination processes, which plays a key role in determining the abundance of carbon in a nebula.

  6. Fluorescence polarization studies of autoionization in CS2

    Science.gov (United States)

    Poliakoff, E. D.; Dehmer, J. L.; Parr, A. C.; Leroi, G. E.

    1987-03-01

    The fluorescence polarization spectrum of CS2(+) produced by photoionization of CS2 (using synchrotron radiation from the NBS SURF-II electron-storage ring) at excitation wavelengths 875-967 A is investigated experimentally, with a focus on autoionization features. The results of polarization measurements for the A2Pi-X2Pi transition are presented in graphs and compared with spectra simulated using the procedure of Poliakoff et al. (1982); qualitative agreement is obtained, but quantitative discrepancies are noted, especially on the low-wavelength side of the resonance. The spectral assignments of Ogawa and Chang (1970) for the autoionizing Rydberg states are confirmed.

  7. Laser-induced collisional autoionization in europium and strontium atoms.

    Science.gov (United States)

    Buffa, R

    1995-01-15

    An experiment that involves laser-induced collisional autoionization in europium and strontium atoms is proposed and the spectral line shape of the cross section is calculated on the basis of data available in the literature. The feasibility of the experiment both in oven cells and in a crossed-atomic-beam geometry is discussed.

  8. Controlling autoionization in strontium two-electron-excited states

    Science.gov (United States)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  9. The chaotic property in the autoionization of Rydberg lithium atom

    Institute of Scientific and Technical Information of China (English)

    Zhou Hui; Li Hong-Yun; Gao Song; Zhang Yan-Hui; Jia Zheng-Mao; Lin Sheng-Lu

    2008-01-01

    This paper presents theoretical computations of the ionization rate of Rydberg lithium atom above the classical ionization threshold using semiclassical approximation. The yielded random pulse trains of the escape electrons are recorded as a function of emission time such that they can be related to the terms of the recurrence periods of the photoabsorption. This fact illustrates that it is ionic core scattering processes which give rise to chaos in autoionization dynamics and this is verified by comparison of our results with the hydrogen atom situation. In order to reveal the chaotic properties in detail, the sensitive dependence of the ionization rate upon the scaled energy is discussed for different scaled energies. This approach provides a simple explanation for the chaotic character in autoionization decay of Rydberg alkali-metal atoms.

  10. Precision angle-resolved autoionization resonances in Ar and Ne

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, N.; Langer, B.; Gorczyca, T.W. [Western Michigan Univ., Kalamazoo, MI (United States)] [and others

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  11. Observation of autoionization in O 2 by an electron-electron coincidence method

    Science.gov (United States)

    Doering, J. P.; Yang, J.; Cooper, J. W.

    1995-01-01

    A strong transition to an autoionizing stata has been observed in O 2 at 16.83 ± 0.11 eV by means of a new electron-electron conincidence method. The method uses the fact that electrons arising from autoionizing states appear at a constant energy loss corresponding to the excitation energy of the autoionizing state rather than at a constant ionization potential as do electrons produced by direct ionization. Comparison of the present data with previous photoionization studies suggests that the autoionizing O 2 state is the same state deduced to be responsible for abnormal vibrational intensities in the O 2+X 2Πg ground state when 16.85 eV Ne(I) photons are used. These electron-electron coincidence experiments provide a direct new method for the study of autoionization produced by electron impact.

  12. Formation of inner-shell autoionizing CO+ states below the CO++ threshold

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, Timur; Weber, Thorsten; Rescigno, Thomas N; Lee, Sun; Orel, Ann; Schoffler, Markus; Sturm, Felix; Schossler, S.; Lenz, U.; Havermeier, T.; Kuhnel, M.; Jahnke, Till; Williams, J. B.; Ray, D.; Landers, Alan; Dorner, Reinhard; Belkacem, Ali

    2009-12-27

    We report a kinematically complete experiment on the production of CO{sup +} autoionizing states following photoionization of carbon monoxide below its vertical double ionization threshold. Momentum imaging spectroscopy is used to measure the energies and body-frame angular distributions of both photo- and autoionization electrons, as well as the kinetic energy release (KER) of the atomic ions. This data, in combination with ab initio theoretical calculations, provides insight into the nature of the cation states produced and their subsequent dissociation into autoionizing atomic (O*) fragments.

  13. Autoionizing Distribution of the Triply Excited Double Rydberg States in La Atom

    Institute of Scientific and Technical Information of China (English)

    SUN Wei; XIE Xiu-Ping; HUANG Wen; ZHONG Zhi-Ping; XU Cheng-Bin; XUE Ping; XU Xiang-Yuan

    2000-01-01

    The autoionization distribution of the triply excited double Rydberg states (TEDRS) 5d5/2NLnl (N _< 22; n _<50; L, l < 4) of La has been investigated by using five-laser resonance excitation in combination with a method of sequential ionization by a pulsed electric field and a constant electric field. The experimental results exhibit that the La atoms in TEDRS predominantly single-autoionize to the ionic Rydberg states located in a few Rydberg manifolds. Furthermore, a difference of autoionization mechanisms between TEDRS above and those below the double ionization threshold is found.

  14. Resonance-enhanced photon excitation spectroscopy of the even-parity autoionizing Rydberg states of Kr

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Kr atoms were produced in their metastable states 4p55s [3/2]2 and 4p55s’ [1/2]0 in a pulsed DC dis-charge in a beam,and subsequently excited to the even-parity autoionizing Rydberg states 4p5np’ [3/2]1,2,[1/2]1 and 4p5nf’ [5/2]3 using single photon excitation.The excitation spectra of the even-parity autoionizing resonance series from the metastable Kr were obtained by recording the autoionized Kr+ ions with time-of-flight ion detection in the photon energy range of 29000-40000 cm1.A wealth of autoionizing resonances were newly observed,from which more precise and more systematic spec-troscopic data of the level energy and quantum defects were derived.

  15. Resonance-enhanced photon excitation spectroscopy of the even-parity autoionizing Rydberg states of Kr

    Institute of Scientific and Technical Information of China (English)

    LI ChunYan; WANG TingTing; ZHEN JunFeng; ZHANG Qun; CHEN Yang

    2009-01-01

    Kr atoms were produced in their metastable states 4p55s [3/2]2 and 4p55s' [1/2]0 in a pulsed DC discharge in a beam, and subsequently excited to the even-parity autoionizing Rydberg states 4p5np' [3/2]1,2, [1/2]1 and 4p5nf' [5/2]3 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable Kr were obtained by recording the autoionized Kr+ ions with time-of-flight ion detection in the photon energy range of 29000-40000 cm-1. A wealth of autoionizing resonances were newly observed, from which more precise and more systematic spec-troscopic data of the level energy and quantum defects were derived.

  16. Resonance-Enhanced Photon Excitation Spectroscopy of the Even-Parity Autoionizing Rydberg States of Xe

    Institute of Scientific and Technical Information of China (English)

    Chun-yan Li; Ting-ting Wang; Jun-feng Zhen; Qun Zhang; Yang Chen

    2008-01-01

    Xenon atoms were produced in their metastable states 5p56s[3/2]2 and 5p56s'[1/2]0 in a pulsed DC discharge in a beam, and subsequently excited to the even-parity autoionizing Rydberg states 5p5np' [3/2] 1 ,[1/2]1, t, and 5p5 nf'[5/2]3 using single photon excitation. The excitation spectra of the even-parity autoionizing resonance series from the metastable 129Xe were obtained by recording the autoionized Xe+ with time-of-flight ion detection in the photon energy range of 28000-42000 cm-1. A wealth of autoionizing resonances were newly observed, from which more precise and systematic spectroscopic data of the level energies and quantum defects were derived.

  17. Proceedings of the workshop on some aspects of autoionization in atoms and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, J.; Berry, H.G.; Berry, R.S. (eds.)

    1985-11-01

    Do we really understand the phenomenon of autoionization in atoms sufficiently well to consider it a ''mature'' topic. Can we generalize our understanding to predict behavior in systems not yet studied. Can we extract physical understanding from the encouraging results of the ''many-body calculations''. Or must we still try to understand one atom at a time. Molecular autoionization is clearly more difficult. Not only must we content with ''vibrational autoionization'' as well as ''electronic autoionization'', but the competing process of predissociation must also be taken into account. In this molecular domain, we have many experiments and many phenomena. The extant theories only deal with some cases, and are not yet able to explain some prominent observations. A group consisting of theorists and experimentalists active in the field of autoionization assembled at Argonne National Laboratory for a two-day Workshop on May 2-3, 1985, to try to provide some consensus of our present understanding and to point out the most promising direction for progress in the near future. Abstracts of individual items from the workshop were prepared separately for the data base.

  18. Saturation effects on Ba 6pnl (l= 0, 2) and 6pnk (|M| = 0, 1) autoionization spectra

    Institute of Scientific and Technical Information of China (English)

    Li Shi-Ben; Dai Chang-Jian

    2007-01-01

    Using a three-step laser saturation excitation technique, the saturation effects on the Ba 6pns (J = 1) and 6pnd (J = 1, 3) autoionization spectra are observed systemically in zero field. These saturation spectra are introduced to determine the high n members of 6pnl (l = 0, 2) autoionizing series and are used to analyse the channel interactions among the autoionizing series in zero field. Furthermore, the saturation excitation technique is applied to the electric field case, in which the saturation spectra of Ba 6pnk (|M|= 0, 1) autoionizing Stark states are measured. Most of these saturation spectra are observed for the first time so far as we know, which indicate the mixing of the autoionizing states in the electric fields.

  19. Calculation of autoionization of He and H/-/ using the projection-operator formalism

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.

    1975-01-01

    Improved calculations are reported for the first several autoionization states of the lower symmetries of He and H(-). Unshifted energies are calculated by diagonalizing QHQ using a Hylleraes basis with more terms than previously used; shifts, widths, and photoabsorption shape parameters are obtained with the additional use of exchange-approximate nonresonant continuum functions. Previous calculations of H(-) resonances are reviewed and slightly augmented by applying various nonresonant continua and correcting small errors. A comparison is made between the calculations and experimental results and is found to be very satisfactory except for the lowest 1P autoionization state of He, which is shown to need a more accurate experimental determination.

  20. EFFECT OF EXCITATION-AUTOIONIZATION IN NON-LOCAL THERMODYNAMIC EQUILIBRIUM PLASMAS

    Institute of Scientific and Technical Information of China (English)

    Wu Ze-qing; Zhang Ben-ai; Qiu Yu-bo

    2000-01-01

    Based on the detailed configuration accounting model, the authros havedeveloped a method to calculate the rate of excitation-autoionization(EA) in the average atom model and used it in the rate equations. Thenumerical results show that EA effect is signifficant in hightemperature low density plasma and can cause an additional ionization upto 15% of an ionization stage.

  1. Electron-impact excitation-autoionization of helium in the S-wave limit

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.

    2004-10-01

    Excitation of the autoionizing states of helium by electron impact is shown in calculations in the s-wave limit to leave a clear signature in the singly differential cross section for the (e,2e) process. It is suggested that such behavior should be seen generally in (e,2e) experiments on atoms that measure the single differential cross section.

  2. Decay of autoionizing states in time-dependent density functional and reduced density matrix functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.

  3. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Science.gov (United States)

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-01

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d-1, Xe4d-1, and Rn5d-1 ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  4. Calculation of autoionization positions and widths with applications to Penning ionization reactions. [Miller golden rule formula

    Energy Technology Data Exchange (ETDEWEB)

    Isaacson, A.D.

    1978-08-01

    Using an approximate evaluation of Miller's golden rule formula to calculate autoionization widths which allows for the consideration only of L/sup 2/ functions, the positions and lifetimes of the lowest /sup 1/,/sup 3/P autoionizing states of He have been obtained to reasonable accuracy. This method has been extended to molecular problems, and the ab initio configuration interaction potential energy and width surfaces for the He(2/sup 3/S) + H/sub 2/ system have been obtained. Quantum mechanical close-coupling calculations of ionization cross sections using the complex V* - (i/2) GAMMA-potential have yielded rate constants in good agreement with the experimental results of Lindinger, et al. The potential energy surface of the He(2/sup 1/S) + H/sub 2/ system has also been obtained and exhibits not only a high degree of anisotropy, but also contains a relative maximum for a perpendicular (C/sub 2//sub v/) approach which appears to arise from s-p hybridization of the outer He orbital. However, similar ab initio calculations on the He(2/sup 1/S) + Ar system do not show such anomalous structure. In addition, the complex poles of the S-matrix (Siegert eigenvalues) were calculated for several autoionizing states of He and H/sup -/, with encouraging results even for quite modest basis sets. This method was extended to molecular problems, and results obtained for the He(2/sup 3/S) + H and He(2/sup 1/S) + H systems. 75 references.

  5. Improved efficiency of selective photoionization of palladium isotopes via autoionizing Rydberg states

    Science.gov (United States)

    Locke, Clayton R.; Kobayashi, Tohru; Midorikawa, Katsumi

    2017-01-01

    Odd-mass-selective ionization of palladium for purposes of resource recycling and management of long-lived fission products can be achieved by exploiting transition selection rules in a well-established three-step excitation process. In this conventional scheme, circularly polarized lasers of the same handedness excite isotopes via two intermediate 2D5/2 core states, and a third laser is then used for ionization via autoionizing Rydberg states. We propose an alternative excitation scheme via intermediate 2D3/2 core states before the autoionizing Rydberg state, improving ionization efficiency by over 130 times. We confirm high selectivity and measure odd-mass isotopes of >99.7(3)% of the total ionized product. We have identified and measured the relative ionization efficiency of the series of Rydberg states that converge to upper ionization limit of the 4 d 9(2D3/2) level, and identify the most efficient excitation is via the Rydberg state at 67668.18(10) cm-1.

  6. Investigation of odd-parity Rydberg states of Eu I with autoionization detection

    Institute of Scientific and Technical Information of China (English)

    Xiao Ying; Dai Chang-Jian; Qin Wen-Jie

    2009-01-01

    Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization detection method with three different excitation paths via 4f~76s6p[~8P_(5/2)], 4f~76s6p[~8P_(7/2)]and 4f~76s6p[~8P_(9/2)]intermediate states, s respectively. In this paper the spectra of bound Rydberg states of Eu atom are reported, which cover the energy regions from 36000 cm~(-1) to 38250 cm~(-1) and from 38900 cm~(-1) to 39500 cm~(-1). The study provides the information about level energy, the possible J values and relative line intensity as well as the effective principal quantum number n~* for these states. This work not only confirms the previous results of many states, but also discovers 11 new Rydberg states of Eu atom.

  7. Electron emission following collective autoionization of He nanodroplets irradiated by intense XUV pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, Yevheniy; Moeller, Thomas [Technische Universitaet Berlin (Germany); Lyamayev, Viktor; Katzy, Raphael; LaForge, Aaron; Stienkemeier, Frank [Universitaet Freiburg (Germany); Devetta, Michele; Piseri, Paolo [University of Milan (Italy); Plekan, Oksana; Richter, Robert; Finetti, Paola; Prince, Kevin; Callegari, Carlo [Sincrotrone Trieste (Italy); O' Keeffe, Patrick; Coreno, Marcello [CNR-IMIP Rome (Italy); Mazza, Tommaso [European XFEL GmbH (Germany); Di Fraia, Michele [University of Trieste (Italy); Brauer, Nils-Benedict; Drabbels, Marcel [EPFL Lausanne (Switzerland); Stranges, Stefano [University of Rome ' ' Sapienza' ' (Italy)

    2013-07-01

    The narrow bandwidth and tunability of FERMI rate at Elettra seeded FEL (Free Electron Laser) open new areas in the study of ultrafast radiation-matter interaction. Using this unique source with high-brilliance femtosecond XUV-pulses, photoelectron spectroscopy of He-nanodroplets has been performed by velocity map imaging technique in the photon energy range 20-27 eV. The electron spectra show that ionization occurs not only by a direct process at photon energies above the ionization potential (IP) but also below the threshold. It was found that electron spectra below IP strongly depend on the total energy absorbed by nanodroplets and give evidence for a collective autoionization process with energy transfer between neighboring atoms.

  8. Electromagnetically induced transparency in systems with degenerate autoionizing levels in \\Lambda-configuration

    CERN Document Server

    Dinh, T Bui; Long, V Cao; Peřina, J

    2013-01-01

    We discuss a \\Lambda-like model of atomic levels involving two autoionizing (AI) states of the same energy. The system is irradiated by two external electromagnetic fields (strong -- driving and weak -- probing ones). For such a system containing degenerate AI levels we derive the analytical formula describing the medium susceptibility. We show that the presence of the second AI level lead to the additional electromagnetically induced transparency (EIT) window appearance. We show that the characteristic of this window can be manipulated by changes of the parameters describing the interactions of AI levels with other ones. This is a new mechanism which leads to additional transparency windows in EIT model, that differs from the mechanism, where a bigger number of Zeeman sublevels is taken into account.

  9. Semiclassical Calculations of Autoionization Rate for Lithium Atoms in Parallel Electric and Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    LIN Sheng-Lu; ZHOU Hui; XU Xue-You; JIA Zheng-Mao; DENG Shan-Hong

    2008-01-01

    @@ By using a semiclassical method, we present theoretical computations of the ionization rate of Rydberg lithium atoms in parallel electric and magnetic fields with different scaled energies above the classical saddle point.The yielded irregular pulse trains of the escape electrons are recorded as a function of emission time, which allows for relating themselves to the terms of the recurrence periods of the photoabsorption.This fact turns to illustrate the dynamic mechanism how the electron pulses are stochastically generated.Comparing our computations with previous investigation results, we can deduce that the complicated chaos under consideration here consists of two kinds of self-similar fractal structures which correspond to the contributions of the applied magnetic field and the core scattering events.Furthermore, the effect of the magnetic field plays a major role in the profile of the autoionization rate curves, while the contribution of the core scattering is critical for specifying the positions of the pulse peaks.

  10. Probing autoionizing states of molecular oxygen with XUV transient absorption: Electronic symmetry dependent lineshapes and laser induced modification

    CERN Document Server

    Liao, Chen-Ting; Haxton, Daniel J; Rescigno, Thomas N; Lucchese, Robert R; McCurdy, C William; Sandhu, Arvinder

    2016-01-01

    The dynamics of autoionizing Rydberg states of oxygen are studied using attosecond transient absorption technique, where extreme ultraviolet (XUV) initiates molecular polarization and near infrared (NIR) pulse perturbs its evolution. Transient absorption spectra show positive optical density (OD) change in the case of $ns\\sigma_g$ and $nd\\pi_g$ autoionizing states of oxygen and negative OD change for $nd\\sigma_g$ states. Multiconfiguration time-dependent Hartree-Fock (MCTDHF) calculation are used to simulate the transient absorption spectra and their results agree with experimental observations. The time evolution of superexcited states is probed in electronically and vibrationally resolved fashion and we observe the dependence of decay lifetimes on effective quantum number of the Rydberg series. We model the effect of near-infrared (NIR) perturbation on molecular polarization and find that the laser induced phase shift model agrees with the experimental and MCTDHF results, while the laser induced attenuation...

  11. Interference stabilization of autoionizing states in molecular $N_2$ studied by time- and angular-resolved photoelectron spectroscopy

    CERN Document Server

    Eckstein, Martin; Yang, Chung-Hsin; Sansone, Giuseppe; Vrakking, Marc J J; Ivanov, Misha; Kornilov, Oleg

    2016-01-01

    An autoionizing resonance in molecular N$_2$ is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of $20\\pm5$ fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations reveal, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry.

  12. Identification of weak autoionizing resonances observed through fluorescence from the satellite states of Ar{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, K.W.; Yenen, O.; Samson, J.A.R. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    Photoionization accompanied by excitation of the residual ionic state violates an independent electron model since, according to QED, photons interact only with individual electrons. By allowing measurements at a threshold event with high resolution, the observation of the fluorescence from the decay of these excited states (satellite states) is a sensitive method in the study of electron-electron interactions, providing complementary information to photoelectron spectroscopy. In the measurements reported here, an atomic beam of argon has been photoionized with 34 to 39 eV synchrotron radiation at beamline 9.0.1 of the Advanced Light Source. This energy range encompasses the 3p{sup 4} [{sup 3}P] 4p {sup 4}P, {sup 2}P, and {sup 2}D as well as the [{sup 1}D]4p {sup 2}F satellite states of Ar{sup +}. By observing the fine-structure resolved fluorescence from these satellite states, new Rydberg series and extensions of previously known series have been resolved with an energy resolution of 3 meV. With the high photon flux available from the high resolution monochromator of beamline 9.0.1, even the weakly excited [{sup 3}P] 4p ({sup 2}S) ns,d autoionizing structure has been observed for the first time.

  13. Ejected-electron spectroscopy of autoionizing resonances of helium excited by fast-electron impact

    Science.gov (United States)

    Zhang, Zhe; Shan, Xu; Wang, Enliang; Chen, Xiangjun

    2012-06-01

    The autoionizing resonances (2s2)1S, (2p2)1D, and (2s2p)1P of helium have been investigated employing ejected-electron spectroscopy by fast-electron impact at incident energies of 250-2000 eV and ejected angles of 26°-116°. Shore parameters of the line shapes for these three resonances have been obtained in such high incident energy regime except at 250 eV. Distinct discrepancies between the present results at 250 eV and those of McDonald and Crowe at 200 eV [D. G. McDonald and A. Crowe, J. Phys. BJPAMA40953-407510.1088/0953-4075/25/9/018 25, 2129 (1992); D. G. McDonald and A. Crowe, J. Phys. BJPAMA40953-407510.1088/0953-4075/25/20/024 25, 4313 (1992)] and Sise at 250 eV [O. Sise, M. Dogan, I. Okur, and A. Crowe, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.022705 84, 022705 (2011)], especially for 1D and 1P states, are also observed.

  14. Identification of autoionizing states of atomic chromium for resonance photo-ionization at the ISOLDE-RILIS

    CERN Document Server

    Goodacre, T Day; Fedorovc, D; Fedosseev, V N; Marsh, B A; Molkanov, P; Rossel, R E; Rothe, S; Seiffert, C

    2015-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  15. Theoretical Analysis of Ionic Autoionization Spectra of Lanthanum in the Energy Region of 90650-91500 cm-1

    Institute of Scientific and Technical Information of China (English)

    张新峰; 彭永伦; 钟志萍; 屈一至; 孙玮; 夏丹; 薛平; 许祥源

    2003-01-01

    Eigenquantum defects μα and transformation matrix Uiα of La+ are calculated from the first principles by relativistic multichannel theory, and dipole matrix elements Dα axe obtained by fitting the experimental spectra.With these parameters, ionic autoionization spectra of lanthanum via an intermediate state (Xe)5d6d 1P1 of La+in the energy region of 90650-91500 cm -1 are calculated within the framework of multichannel quantum defect theory. Our calculated spectra are in general agreement with the experimental data.

  16. Out-of-plane (e , 2 e) measurements on He autoionizing levels at 80, 150, and 488 eV

    Science.gov (United States)

    Martin, N. L. S.; Kim, B. N.; Weaver, C. M.; Deharak, B. A.; Bartschat, K.

    2016-05-01

    We report out-of-scattering-plane (e , 2 e) measurements on helium 2 l 2l' autoionizing levels for 80, 150, and 488 eV incident electron energies, and scattering angles 60°, 39. 2°, and 20. 5°, respectively. The kinematics are the same in all cases: ejected electrons are detected in a plane that contains the momentum transfer direction and is perpendicular to the scattering plane, and the momentum transfer is 2.1 a.u.. The 80 eV results complete our sets of measurements at low, intermediate, and high, incident energies. The results are presented as (e , 2 e) angular distributions energy-integrated over each level, and are compared with our theory calculated for 488 eV incident electron energy. The 150 eV and 488 eV experiments are characterized by recoil peaks appropriate to each autoionizing level. However, for the 80 eV angular distributions, these recoil peaks are largely absent for all levels, including the 3 P level observed at this energy. This work was supported by the National Science Foundation under Grants Nos. PHY-0855040 (NLSM), PHY-1402899 (BAdH), and PHY-1212450 (KB).

  17. Electron-impact excitation of the (n - 1)d{sup 9} ns{sup 2}np autoionizing states of cadmium (n = 5) and zinc (n = 4)

    Energy Technology Data Exchange (ETDEWEB)

    Predojevic, B [Institute of Physics, PO Box 57, 11001, Belgrade (Serbia and Montenegro); Sevic, D [Institute of Physics, PO Box 57, 11001, Belgrade (Serbia and Montenegro); Pejcev, V [Institute of Physics, PO Box 57, 11001, Belgrade (Serbia and Montenegro); Marinkovic, B P [Institute of Physics, PO Box 57, 11001, Belgrade (Serbia and Montenegro); Filipovic, D M [Institute of Physics, PO Box 57, 11001, Belgrade (Serbia and Montenegro)

    2003-06-14

    Electron-impact excitation of the 5{sup 3}P{sub 1} (12.062 eV) and 5{sup 1}P{sub 1} (12.810 eV) 4d{sup 9}5s{sup 2}5p autoionizing states of Cd has been experimentally investigated at incident electron energies (E{sub 0}) from 15 to 60 eV and scattering angles ({theta}) up to 40 deg. (at E{sub 0} = 40 eV, {theta} = 2 deg. -150 deg.). The absolute differential cross sections (DCSs) at E{sub 0} = 40 eV were determined through normalization to the optical oscillator strengths. These DCSs were extrapolated to 0 deg. and 180 deg. and numerically integrated to yield integral, momentum transfer and viscosity cross sections. Energy-loss spectra for Cd were recorded from 11 to 18 eV, and 22 autoionizing states were identified at different impact energies. Electron-impact excitation of the 3d{sup 9}4s{sup 2}4p autoionizing states was observed in energy-loss spectra of Zn at E{sub 0} = 20, 60, 80 and 100 eV ({theta} up to 10 deg.). The DCSs for Cd could not be compared with other results, because there are no available data in literature. The autoionizing energy levels and line widths are in good agreement with existing experimental and calculated values.

  18. Two-step laser optogalvanic spectroscopy of high J momentum 4dnd and 4dng autoionizing states of strontium

    Energy Technology Data Exchange (ETDEWEB)

    Jimoyiannis, A.; Bolovinos, A.; Tsekeris, P. (Ioannina Univ. (Greece). Atomic and Molecular Physics Lab.); Camus, P. (Centre National de la Recherche Scientifique, 91 - Orsay (France). Lab. Aime Cotton)

    1993-01-01

    We have measured the energies of about two hundred even parity J=3-5 autoionizing 4 dnd and 4 dng Rydberg states of strontium (Sr) using an optogalvanic method. These states are reached by a two-step dye laser excitation from the 4d 5s metastables through the 4d 5p [sup 3]P[sub 2], [sup 1]F[sub 3], [sup 3]F[sub 4] intermediates. The 4d 5s are populated in a d.c. glow discharge through a Sr heated cell. The electronic configuration of the observed J=3, 4 states is deduced from the Lu-Fano plots of their quantum defect values and the spectral characteristics of the corresponding transitions. (orig.).

  19. Extracting partial decay rates of helium from complex rotation: autoionizing resonances of the one-dimensional configurations

    CERN Document Server

    Zimmermann, Klaus; Jörder, Felix; Heitz, Nicolai; Schmidt, Maximilian; Bouri, Celsus; Rodriguez, Alberto; Buchleitner, Andreas

    2014-01-01

    Partial autoionization rates of doubly excited one-dimensional helium in the collinear Zee and eZe configuration are obtained by means of the complex rotation method. The approach presented here relies on a projection of back-rotated resonance wave functions onto singly ionized $\\textrm{He}^{+}$ channel wave functions and the computation of the corresponding particle fluxes. In spite of the long-range nature of the Coulomb potential between the electrons and the nucleus, an asymptotic region where the fluxes are stationary is clearly observed. Low-lying doubly excited states are found to decay predomintantly into the nearest single-ionization continuum. This approach paves the way for a systematic analysis of the decay rates observed in higher-dimensional models, and of the role of electronic correlations and atomic structure in recent photoionization experiments.

  20. The stereo-dynamics of collisional autoionization of ammonia by helium and neon metastable excited atoms through molecular beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Falcinelli, Stefano, E-mail: stefano.falcinelli@unipg.it; Vecchiocattivi, Franco [Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Bartocci, Alessio; Cavalli, Simonetta; Pirani, Fernando [Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via Elce di sotto 8, 06123 Perugia (Italy)

    2015-10-28

    A combined analysis of both new (energy spectra of emitted electrons) and previously published (ionization cross sections) experimental data, measured under the same conditions and concerning electronically excited lighter noble gas –NH{sub 3} collisional autoionization processes, is carried out. Such an analysis, performed by exploiting a formulation of the full potential energy surface both in the real and imaginary parts, provides direct information on energetics, structure, and lifetime of the intermediate collision complex over all the configuration space. The marked anisotropy in the attraction of the real part, driving the approach of reagents, and the selective role of the imaginary component, associated to the charge transfer coupling between entrance and exit channels, suggests that reactive events occur almost exclusively in the molecular hemisphere containing the nitrogen lone pair. Crucial details on the stereo-dynamics of elementary collisional autoionization processes are then obtained, in which the open shell nature of the disclosed ionic core of metastable atom plays a crucial role. The same analysis also suggests that the strength of the attraction and the anisotropy of the interaction increases regularly along the series Ne{sup *}({sup 3}P), He{sup *}({sup 3}S), He{sup *}({sup 1}S)–NH{sub 3}. These findings can be ascribed to the strong rise of the metastable atom electronic polarizability (deformability) along the series. The obtained results can stimulate state of the art ab initio calculations focused on specific features of the transition state (energetics, structure, lifetime, etc.) which can be crucial for a further improvement of the adopted treatment and to better understand the nature of the leading interaction components which are the same responsible for the formation of the intermolecular halogen and hydrogen bond.

  1. The stereo-dynamics of collisional autoionization of ammonia by helium and neon metastable excited atoms through molecular beam experiments.

    Science.gov (United States)

    Falcinelli, Stefano; Bartocci, Alessio; Cavalli, Simonetta; Pirani, Fernando; Vecchiocattivi, Franco

    2015-10-28

    A combined analysis of both new (energy spectra of emitted electrons) and previously published (ionization cross sections) experimental data, measured under the same conditions and concerning electronically excited lighter noble gas -NH3 collisional autoionization processes, is carried out. Such an analysis, performed by exploiting a formulation of the full potential energy surface both in the real and imaginary parts, provides direct information on energetics, structure, and lifetime of the intermediate collision complex over all the configuration space. The marked anisotropy in the attraction of the real part, driving the approach of reagents, and the selective role of the imaginary component, associated to the charge transfer coupling between entrance and exit channels, suggests that reactive events occur almost exclusively in the molecular hemisphere containing the nitrogen lone pair. Crucial details on the stereo-dynamics of elementary collisional autoionization processes are then obtained, in which the open shell nature of the disclosed ionic core of metastable atom plays a crucial role. The same analysis also suggests that the strength of the attraction and the anisotropy of the interaction increases regularly along the series Ne*((3)P), He*((3)S), He*((1)S)-NH3. These findings can be ascribed to the strong rise of the metastable atom electronic polarizability (deformability) along the series. The obtained results can stimulate state of the art ab initio calculations focused on specific features of the transition state (energetics, structure, lifetime, etc.) which can be crucial for a further improvement of the adopted treatment and to better understand the nature of the leading interaction components which are the same responsible for the formation of the intermolecular halogen and hydrogen bond.

  2. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    Science.gov (United States)

    Day Goodacre, T.; Chrysalidis, K.; Fedorov, D. V.; Fedosseev, V. N.; Marsh, B. A.; Molkanov, P. L.; Rossel, R. E.; Rothe, S.; Seiffert, C.

    2017-03-01

    This paper presents the results of an investigation into autoionizing states of atomic chromium, in the service of the resonance ionization laser ion source (RILIS): the principal ion source of the ISOLDE radioactive ion beam facility based at CERN. The multi-step resonance photo-ionization process enables element selective ionization which, in combination with mass separation, allows isotope specific selectivity in the production of radioactive ion beams at ISOLDE. The element selective nature of the process requires a multi-step "ionization scheme" to be developed for each element. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme originating from the 3d5(6S)4s a7S3 atomic ground state has been developed for chromium. The scheme uses an ionizing transition to one of the 15 newly observed autoionizing states reported here. Details of the spectroscopic studies are described and the new ionization scheme is summarized.

  3. Effects of autoionization in electron loss from helium-like highly charged ions in collisions with photons and fast atomic particles

    CERN Document Server

    Lyashchenko, K N; Voitkiv, A B

    2016-01-01

    We study theoretically single electron loss from helium-like highly charged ions involving excitation and decay of autoionizing states of the ion. Electron loss is caused by either photo absorption or the interaction with a fast atomic particle (a bare nucleus, a neutral atom, an electron). The interactions with the photon field and the fast particles are taken into account in the first order of perturbation theory. Two initial states of the ion are considered: $1s^2$ and $(1s2s)_{J=0}$. We analyze in detail how the shape of the emission pattern depends on the atomic number $Z_{I}$ of the ion discussing, in particular, the inter-relation between electron loss via photo absorption and due to the impact of atomic particles in collisions at modest relativistic and extreme relativistic energies. According to our results, in electron loss from the $1s^2$ state autoionization may substantially influence the shape of the emission spectra only up to $Z_{I} \\approx 35-40$. A much more prominent role is played by autoi...

  4. Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case: ground state, linear response, and autoionization

    CERN Document Server

    Brics, M

    2013-01-01

    Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the photoelectron spectra, and strong-field ionization in general. Equations of motion (EOM) for natural orbitals and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals (RNO) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on the two-electron spin-singlet system, known as being a "worst case" testing ground for TDDFT, and employ the widely used, numerically exactly solvable, one-dimens...

  5. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    Energy Technology Data Exchange (ETDEWEB)

    Bréchignac, Philippe, E-mail: philippe.brechignac@u-psud.fr; Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Pirali, Olivier [Institut des Sciences Moléculaires d’Orsay, CNRS UMR8214, Univ Paris-Sud, F-91405 Orsay (France); Garcia, Gustavo A.; Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony [IRAP, Université de Toulouse 3 - CNRS, 9 Av. Colonel Roche, B.P. 44346, F-31028 Toulouse Cedex 4 (France); Mulas, Giacomo [INAF - Osservatorio Astronomico di Cagliari, via della scienza 5, I-09047 Selargius (Italy)

    2014-10-28

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  6. Electron-impact excitation of the (2p2) 1D and (2s2p) 1Po autoionizing states of helium

    Science.gov (United States)

    Sise, Omer; Dogan, Mevlut; Okur, Ibrahim; Crowe, Albert

    2011-08-01

    An experimental study of the excitation of the (2p2) 1D and (2s2p) 1Po autoionizing states of helium by 250-eV electron impact is presented. The ejected-electron angular distributions and energy spectra are measured in coincidence with the corresponding scattered electrons for a scattering angle of -13∘ and for a range of ejected-electron angles in both the forward and backward directions. Resonance profiles are analyzed in terms of the Shore-Balashov parametrization to obtain the resonance asymmetry Aμ and yield Bμ parameters and the direct ionization cross section f. The spectra and their parameters are compared to the previous measurements of Lower and Weigold [J. Phys. B.JPAPEH0953-407510.1088/0953-4075/23/16/023 23, 2819 (1990)] and McDonald and Crowe [J. Phys. BJPAPEH0953-407510.1088/0953-4075/26/17/021 26, 2887 (1993)]. Comparison is also made with the recent theoretical triply differential cross-section calculations based on the first and second Born approximations. In general, good qualitative agreement is found between the experimental results. Some differences are found at the forward and backward directions. These differences in the shape and magnitude of the cross sections are attributed to the different incoming electron energies used in the experiments. The second Born approximation with inclusion of the three-body Coulomb interaction in the final state agrees reasonably well with experiments in the binary region. However, the 1Po resonance yield parameter Bμ is significantly overestimated at the recoil region, giving a relatively large recoil peak, in contradiction to the experiment. There is also a discrepancy between the two theories available for the 1D resonance yield parameter Bμ in this region. Remaining discrepancies between theories and experiments are also discussed.

  7. LETTER TO THE EDITOR: Excitation of the (2p2)1D and (2s2p)1P autoionizing states of helium by 200 eV electron impact

    Science.gov (United States)

    Godunov, A. L.; McGuire, J. H.; Schipakov, V. S.; Crowe, A.

    2002-06-01

    We report full second Born calculations with inclusion of post-collision interactions for excitation of the (2p2)1D and (2s2p)1P autoionizing states of helium by 200 eV electron impact. The calculations are compared to (e, 2e) measurements of McDonald and Crowe (McDonald D G and Crowe A 1993 J. Phys. B: At. Mol. Opt. Phys. 26 2887-97) and Lower and Weigold (Lower J and Weigold E 1990 J. Phys. B: At. Mol. Opt. Phys. 23 2819-45). It is shown that post-collision interactions or Coulomb interactions in the final state between the scattered particle, the ejected electron and the recoil ion have a strong influence on both the direct ionization and resonance profiles around the binary lobe. The second-order terms in the amplitude of double electron excitation also play an observable role under these kinematic conditions. Reasonable agreement is found between the full-scale calculations and the experimental data.

  8. Autoionization of water: does it really occur?

    CERN Document Server

    Artemov, V G; Sysoev, N N; Volkov, A A

    2015-01-01

    The ionization constant of water Kw is currently determined on the proton conductivity sigma1 which is measured at frequencies lower than 10^7 Hz. Here, we develop the idea that the high frequency conductivity sigma2 (~10^11 Hz), rather than sigma1 represents a net proton dynamics in water, to evaluate the actual concentration c of H3O+ and OH- ions from sigma2. We find c to be not dependent on temperature to conclude that i) water electrodynamics is due to a proton exchange between H3O+ (or OH-) ions and neutral H2O molecules rather than spontaneous ionization of H2O molecules, ii) the common Kw (or pH) reflects the thermoactivation of the H3O+ and OH- ions from the potential of their interaction, iii) the lifetime of a target water molecule does not exceed parts of nanosecond.

  9. Autoionization study of the Argon 2p satellites excited near the argon 2s threshold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Glans, P.; Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    The dynamics of near-threshold photoionization is a complex phenomenon in which the many-electron character of the wavefunctions plays an important role. According to generalized time-independent resonant scattering theory, the transition matrix element from an initial state to a final state is the summation of the amplitudes of direct photoionization and an indirect term in which intermediate states are involved and the resonant behavior is embedded. Studies of the interference effects of intermediate states have been explored in the cases where the direct term is negligible. In the present work, electron time-of-flight spectra of the Ar 2p satellites were measured at two angles (magic and 0{degrees}) in the dipole plane with the exciting photon energy tuned in the vicinity of the Ar 2s threshold. For excitation far below or above the 2s threshold, the 2p satellites spectrum is dominated by 3p to np shakeup contributions upon the ionization of a 2p electron.

  10. Stereoselectivity in Autoionization Reactions of Hydrogenated Molecules by Metastable Noble Gas Atoms: The Role of Electronic Couplings.

    Science.gov (United States)

    Falcinelli, Stefano; Rosi, Marzio; Cavalli, Simonetta; Pirani, Fernando; Vecchiocattivi, Franco

    2016-08-22

    Focus in the present paper is on the analysis of total and partial ionization cross sections, measured in absolute value as a function of the collision energy, representative of the probability of ionic product formation in selected electronic states in Ne*-H2 O, H2 S, and NH3 collisions. In order to characterize the imaginary part of the optical potential, related to electronic couplings, we generalize a methodology to obtain direct information on the opacity function of these reactions. Such a methodology has been recently exploited to test the real part of the optical potential (S. Falcinelli et al., Chem. Eur. J., 2016, 22, 764-771). Depending on the balance of noncovalent contributions, the real part controls the approach of neutral reactants, the removal of ionic products, and the structure of the transition state. Strength, range, and stereoselectivity of electronic couplings, triggering these and many other reactions, are directly obtained from the present investigation.

  11. Autoionization Rates Coefficients of Highly Ionized State in SOSA Model%SOSA模型下高剥离态的自电离系数

    Institute of Scientific and Technical Information of China (English)

    焦荣珍; 程新路; 李小红; 杨向东

    2001-01-01

    在SOSA模型下,计算得出Ni-like、Cu-like、Zn-like(Xe、Gd、Dy、Au)的3d-nf(n=4,5,6)的自电离系数Aa,结果表明,由于旁观电子对slater积分Rk的影响,使自电离系数呈规律性变化,同时对Ta45+的自电离系数与采用相对论参数势方法得出的自电离系数作了比较,结果比较一致.

  12. Complex-scaled equation-of-motion coupled-cluster method with single and double substitutions for autoionizing excited states: theory, implementation, and examples.

    Science.gov (United States)

    Bravaya, Ksenia B; Zuev, Dmitry; Epifanovsky, Evgeny; Krylov, Anna I

    2013-03-28

    Theory and implementation of complex-scaled variant of equation-of-motion coupled-cluster method for excitation energies with single and double substitutions (EOM-EE-CCSD) is presented. The complex-scaling formalism extends the EOM-EE-CCSD model to resonance states, i.e., excited states that are metastable with respect to electron ejection. The method is applied to Feshbach resonances in atomic systems (He, H(-), and Be). The dependence of the results on one-electron basis set is quantified and analyzed. Energy decomposition and wave function analysis reveal that the origin of the dependence is in electron correlation, which is essential for the lifetime of Feshbach resonances. It is found that one-electron basis should be sufficiently flexible to describe radial and angular electron correlation in a balanced fashion and at different values of the scaling parameter, θ. Standard basis sets that are optimized for not-complex-scaled calculations (θ = 0) are not sufficiently flexible to describe the θ-dependence of the wave functions even when heavily augmented by additional sets.

  13. Development of selective photoionization spectroscopy technology - Development of a computer program to calculate selective ionization of atoms with multistep processes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Soon; Nam, Baek Il [Myongji University, Seoul (Korea, Republic of)

    1995-08-01

    We have developed computer programs to calculate 2-and 3-step selective resonant multiphoton ionization of atoms. Autoionization resonances in the final continuum can be put into account via B-Spline basis set method. 8 refs., 5 figs. (author)

  14. REMPI Spectroscopy of HfF

    CERN Document Server

    Loh, Huanqian; Yahn, Tyler S; Looser, Herbert; Field, Robert W; Cornell, Eric A

    2012-01-01

    The spectrum of electronic states at 30000--33000 cm$^{-1}$ in hafnium fluoride has been studied using (1+1) resonance-enhanced multi-photon ionization (REMPI) and (1+1$'$) REMPI. Six $\\Omega' = 3/2$ and ten $\\Pi_{1/2}$ vibronic bands have been characterized. We report the molecular constants for these bands and estimate the electronic energies of the excited states using a correction derived from the observed isotope shifts. When either of two closely spaced $\\Pi_{1/2}$ electronic states is used as an intermediate state to access autoionizing Rydberg levels, qualitatively distinct autoionization spectra are observed. The intermediate state-specificity of the autoionization spectra bodes well for the possibility of using a selected $\\Pi_{1/2}$ state as an intermediate state to create ionic HfF$^+$ in various selected quantum states, an important requirement for our electron electric dipole moment (eEDM) search in HfF$^+$.

  15. Contribution of high-nl shells to electron-impact ionization processes

    CERN Document Server

    Jonauskas, V; Merkelis, G; Gaigalas, G; Kisielius, R; Kučas, S; Masys, Š; Radžiūtė, L; Rynkun, P

    2015-01-01

    The contribution to electron-impact ionization cross sections from excitations to high-nl shells and a consequent autoionization is investigated. We perform relativistic subconfiguration-average and detailed level-to-level calculations for this process. Ionization cross sections for the W27+ ion are presented to illustrate the large influence of the high shells (n >= 9) and orbitals (l >= 4) in the excitation-autoionization process. The obtained results show that the excitations to the high shells (n >= 9) increase cross sections of the indirect ionization process by a factor of 2 compared to the excitations to the lower shells (n <= 8). The excitations to the shells with orbital quantum number l = 4 give the largest contribution comparedwith the other orbital quantum numbers l. Radiative damping reduces the cross sections of the indirect process approximately twofold in the case of the level-to-level calculations. Determined data show that the excitation-autoionization process contributes approximately 40...

  16. Femtosecond transparency in the extreme ultraviolet

    CERN Document Server

    Tarana, Michal

    2011-01-01

    Electromagnetically induced transparency-like behavior in the extreme ultraviolet (XUV) is studied theoretically, including the effect of intense 800 nm laser dressing of He 2s2p (1Po) and 2p^2 (1Se) autoionizing states. We present an ab initio solution of the time-dependent Schrodinger equation (TDSE) in an LS-coupling configuration interaction basis set. The method enables a rigorous treatment of optical field ionization of these coupled autoionizing states into the N = 2 continuum in addition to N = 1. Our calculated transient absorption spectra show encouraging agreement with experiment.

  17. Ab initio time-dependent method to study the hydrogen molecule exposed to intense ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Vicario, J.L. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia)], E-mail: joseluis.sanzvicario@uam.es; Palacios, A. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Cardona, J.C. [Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia); Bachau, H. [Centre des Lasers Intenses et Applications, UMR 5107 du CNRS-Universite bordeaux I-CEA, Universite Bordeaux I, 33405 Talence Cedex (France); Martin, F. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain)

    2007-10-15

    An ab initio non-perturbative time dependent method to describe ionization of molecular systems by ultrashort (femtosecond) laser pulses has been developed. The method allows one to describe competing processes such as non dissociative ionization, dissociative ionization and dissociation into neutrals, including the possibility of autoionization. In this work we assess the validity of the method by applying it to different physical situations and by comparing with results previously obtained within stationary perturbation theory. In particular, it is shown that inclusion of the nuclear motion is essential to describe H{sub 2} resonance enhanced multiphoton ionization and interferences mediated by H{sub 2} autoionizing states.

  18. Lowest Landau excited states of a hydrogen atom in magnetic fields up to 4.7 X 10 to the 12th gauss

    Science.gov (United States)

    Chu, M.-C.; Friedrich, H.

    1983-12-01

    Autoionization widths and energies of the lowest-lying Landau excited states of a hydrogen atom in strong magnetic fields are calculated for azimuthal quantum numbers /m/ = 0, 1, and 2. For fields ranging from below 10 to the 9th G, where these states lie close to the ionization threshold, up to 4.7 x 10 to the 12th G, the width of the lowest autoionizing state in each m subspace is, to within the accuracy of the calculation, inversely proportional to the fourth root of the field strength. A comparison with radiative widths is made.

  19. The attosecond regime of impulsive stimulated electronic Raman excitation

    CERN Document Server

    Ware, Matthew R; Cryan, James P; Haxton, Daniel J

    2016-01-01

    We have calculated the resonant and nonresonant contributions to attosecond impulsive stimulated electronic Raman scattering (SERS) in regions of autoionizing transitions. Comparison with Multiconfiguration Time-Dependent Hartree-Fock (MCTDHF) calculations find that attosecond SERS is dominated by continuum transitions and not autoionizing resonances. These results agree quantitatively with a rate equation that includes second-order Raman and first-and second-order photoionization rates. Such rate models can be extended to larger molecular systems. Our results indicate that attosecond SERS transition probabilities may be understood in terms of two-photon generalized cross sections even in the high-intensity limit for extreme ultraviolet wavelengths.

  20. Understanding Chemical Equilibrium Using Entropy Analysis: The Relationship between [delta]S[subscript tot](sys[superscript o]) and the Equilibrium Constant

    Science.gov (United States)

    Bindel, Thomas H.

    2010-01-01

    Entropy analyses as a function of the extent of reaction are presented for a number of physicochemical processes, including vaporization of a liquid, dimerization of nitrogen dioxide, and the autoionization of water. Graphs of the total entropy change versus the extent of reaction give a visual representation of chemical equilibrium and the second…

  1. Calculations for electron-impact ionization of beryllium in the method of interacting configurations in the complex number representation

    CERN Document Server

    Simulik, V M; Tymchyk, R V

    2016-01-01

    The beginning of the application of the method of interacting configurations in the complex number representation to the compound atomic systems has been presented. The spectroscopic characteristics of the Be atom in the problem of the electron-impact ionization of this atom are investigated. The energies and the widths of the lowest autoionizing states of Be atom are calculated.

  2. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K

    2016-05-18

    We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d, n i, of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive - for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them \\'Tom\\' and \\'Jerry\\' for \\'big\\' and \\'small\\') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate. © 2016 IOP Publishing Ltd.

  3. Atomic excitation and recombination in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination.

  4. A fully relativistic approach for calculating atomic data for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong Lin [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sampson, Douglas H [PENNSYLVANIA STATE UNIV

    2009-01-01

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  5. Molecular (Feshbach) treatment of charge exchange Li/sup 3 +/+He collisions. I. Energies and couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Riera, A.; Yanez, M.

    1986-05-15

    We point out a fundamental difference between the molecular treatment of charge exchange X/sup n/++H(1s) and X/sup n/++He(1s/sup 2/) collisions, which is that the latter process involves molecular states that are formally autoionizing. Then standard ab initio methods do not, in general, yield the relevant wave functions that are needed in the collision treatment, irrespective of whether quasimolecular autoionization be significant or not during the collision. We implement a particularly simple and useful form of the Feshbach formalism to calculate the energies of those two electron systems, and a method to evaluate the corresponding dynamical couplings is presented for the first time. Our implementation of this formalism together with the new computational techniques involved are presented in detail.

  6. Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron

    Science.gov (United States)

    Gruson, V.; Barreau, L.; Jiménez-Galan, Á.; Risoud, F.; Caillat, J.; Maquet, A.; Carré, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; Argenti, L.; Taïeb, R.; Martín, F.; Salières, P.

    2016-11-01

    The dynamics of quantum systems are encoded in the amplitude and phase of wave packets. However, the rapidity of electron dynamics on the attosecond scale has precluded the complete characterization of electron wave packets in the time domain. Using spectrally resolved electron interferometry, we were able to measure the amplitude and phase of a photoelectron wave packet created through a Fano autoionizing resonance in helium. In our setup, replicas obtained by two-photon transitions interfere with reference wave packets that are formed through smooth continua, allowing the full temporal reconstruction, purely from experimental data, of the resonant wave packet released in the continuum. In turn, this resolves the buildup of the autoionizing resonance on an attosecond time scale. Our results, in excellent agreement with ab initio time-dependent calculations, raise prospects for detailed investigations of ultrafast photoemission dynamics governed by electron correlation, as well as coherent control over structured electron wave packets.

  7. Many-electron correlations in computations of sodium atom photoabsorption

    Directory of Open Access Journals (Sweden)

    Alexey V. Konovalov

    2016-03-01

    Full Text Available The role of many-electron correlations in photoabsorption processes has been investigated. The results of numerical computations of photoionization cross sections of sodium atom are presented. The many-body effects such as interchannel correlations resulting in autoionization resonance peaks, as well as effects of atomic core polarization were taken into account in the computations in terms of RPAE. Polarization corrections were accounted for using both static and dynamic polarization potentials. The influence of correlations on the position and the form of resonance peaks was studied. The obtained results demonstrate necessity of taking into account polarization effects, especially for clarification of autoionization resonance peaks position and the cross-section magnitudes in the low energy range. The best agreement with experimental data was reached with the model of dynamic polarization potential based on Dyson equation.

  8. A fully relativistic approach for calculating atomic data for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Douglas H. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang Honglin [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: zhang@lanl.gov; Fontes, Christopher J. [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: cjf@lanl.gov

    2009-07-15

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  9. Dielectronic recombination of tungsten ions

    Science.gov (United States)

    Li, Bowen; O'Sullivan, Gerry; Dong, Chenzhong; Chen, Ximeng

    2016-08-01

    Ab initio calculations of dielectronic recombination rate coefficients of Ne-, Pd- and Ag-like tungsten have been performed. Energy levels, radiative transition probabilities and autoionization rates were calculated using the Flexible Atomic Code. The contributions from different channels to the total rate coefficients are discussed. The present calculated rate coefficients are compared with other calculations where available. Excellent agreement has been found for Ne-like W while a large discrepancy was found for Pd-like W, which implies that more ab initio calculations and experimental measurements are badly needed. Further calculations demonstrated that the influence of configuration interaction is small while nonresonant radiative stabilizing (NRS) contribution to doubly excited non-autoionizing states are vital. The data obtained are expected to be useful for modeling plasmas for fusion applications, especially for the ITER community, which makes experimental verification even more essential.

  10. Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound.

    Science.gov (United States)

    Palasyuk, Taras; Troyan, Ivan; Eremets, Mikhail; Drozd, Vadym; Medvedev, Sergey; Zaleski-Ejgierd, Patryk; Magos-Palasyuk, Ewelina; Wang, Hongbo; Bonev, Stanimir A; Dudenko, Dmytro; Naumov, Pavel

    2014-03-24

    Modern ab initio calculations predict ionic and superionic states in highly compressed water and ammonia. The prediction apparently contradicts state-of-the-art experimentally established phase diagrams overwhelmingly dominated by molecular phases. Here we present experimental evidence that the threshold pressure of ~120 GPa induces in molecular ammonia the process of autoionization to yet experimentally unknown ionic compound--ammonium amide. Our supplementary theoretical simulations provide valuable insight into the mechanism of autoionization showing no hydrogen bond symmetrization along the transformation path, a remarkably small energy barrier between competing phases and the impact of structural rearrangement contribution on the overall conversion rate. This discovery is bridging theory and experiment thus opening new possibilities for studying molecular interactions in hydrogen-bonded systems. Experimental knowledge on this novel ionic phase of ammonia also provides strong motivation for reconsideration of the theory of molecular ice layers formation and dynamics in giant gas planets.

  11. Cross sections for short pulse single and double ionization ofhelium

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Alicia; Rescigno, Thomas N.; McCurdy, C. William

    2007-11-27

    In a previous publication, procedures were proposed for unambiguously extracting amplitudes for single and double ionization from a time-dependent wavepacket by effectively propagating for an infinite time following a radiation pulse. Here we demonstrate the accuracy and utility of those methods for describing two-photon single and one-photon double ionization of helium. In particular it is shown how narrow features corresponding to autoionizing states are easily resolved with these methods.

  12. Photoionization of Ar VIII

    Science.gov (United States)

    Liang, Liang; Jiang, Wen-xian; Zhou, Chao

    2017-01-01

    The photoionization cross section, energy levels and widths of 22 Rydberg series (in the autoionization region) for Na-like Ar VIII were investigated by using of R-matrix method. The relativistic distorted-wave method is used to calculate the radial functions, and QB method of Quigly-Berrington [Quigley et al. 1998] is employed to calculate the resonance levels and widths. We have identified the formant in the figure of the photoionization cross section.

  13. Resonance ionization scheme development for europium

    CERN Document Server

    Chrysalidis, K; Fedosseev, V N; Marsh, B A; Naubereit, P; Rothe, S; Seiffert, C; Kron, T; Wendt, K

    2017-01-01

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  14. Enhanced ionization of embedded clusters by Electron Transfer Mediated Decay in helium nanodroplets

    CERN Document Server

    LaForge, A C; Gokhberg, K; von Vangerow, J; Kryzhevoi, N; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L; Stienkemeier, F; Mudrich, M

    2015-01-01

    Here, we report the observation of electron transfer mediated decay For Mg clusters embedded in He nanodroplets. The process is mediated by the initial ionization of helium followed by an autoionization process by electron transfer in the Mg clusters. The photoelectron spectrum (PES) reveal a low energy ETMD peak. For Mg clusters larger than 7 atoms, we observe the formation of stable doubly ionized clusters. The process is shown to be the primamry ionization mechanism for embedded clusters.

  15. Partial photoionization of helium into the 2s{sup 2}S and 2p{sup 2}P ion states in the 3lnl' doubly-excited states region

    Energy Technology Data Exchange (ETDEWEB)

    Harries, James R [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Sullivan, James P [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Obara, Satoshi [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Azuma, Yoshiro [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Lambourne, J G [LDIAM, Universite P and M Curie, 75252 Paris 5 (France); Penent, F [LDIAM, Universite P and M Curie, 75252 Paris 5 (France); Hall, R I [LDIAM, Universite P and M Curie, 75252 Paris 5 (France); Lablanquie, P [LURE, Bat.209D, Centre Universitaire Paris-Sud, BP34, 91898 ORSAY Cedex (France); Bucar, K [J Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zitnik, M [J Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Hammond, Peter [CAMSP, School of Physics, University of Western Australia, Crawlay, WA 6009, Perth (Australia)

    2005-05-28

    We present experimental observations of the auto-ionization of 3lnl' doubly-excited states of helium into the 2s{sup 2}S and 2p{sup 2}P excited ion final-state channels using time-resolved detection techniques to separate the decay routes. A qualitative comparison to previously published theoretical results is given. (letter to the editor)

  16. R-matrix calculations for electron-impact excitation of C(+), N(2+), and O(3+) including fine structure

    Science.gov (United States)

    Luo, D.; Pradhan, A. K.

    1990-01-01

    The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.

  17. Double-hump resonance structure of the cross sections for electron impact ionization of Ar5+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Configuration-average distorted-wave calculations are carried out for electron-impact ionization of Ar5+. Both direct ionization and the indirect excitation autoionization processes are included in our calculations. Our theoretical values are in quite reasonable agreement with the experimental data. The indirect processes contribute up to 50% to the total ionization cross sections. The possible origin of double-hump resonance structure of the cross sections is demonstrated and the contributions of metastable states are also taken into account.

  18. University Research Initiative Research Program Summaries

    Science.gov (United States)

    1987-06-01

    Raman scattering, I-V, C-V, and DLTS. Choice of appropriate substrates and critical materials for a given requirement of optical properties...from the departments of Chemistry, Biochem- istry, Molecular and Cell Biology, Chemical Engineering, Plant Biology, Pharma - cology, Applied arnd...spectroscopy of slowly autoionizing levels, o Coherence properties of stimulated Raman scattering, o Instabilities and dynamics of laser systems, o

  19. A Young double-slit experiment using a single electron source: Oscillations in the angular distribution of Auger-line width

    Energy Technology Data Exchange (ETDEWEB)

    Fremont, F; Chesnel, J-Y [Universite de Caen-CEA-CNRS-EnsiCaen-CIMAP, 6 bd du Mal Juin, F-14050 Caen Cedex (France); Barrachina, R O; Suarez, S, E-mail: francois.fremont@ensicaen.f, E-mail: barra@cab.cnea.gov.a [Centro Atomico Bariloche and Instituto Balseiro 8400 S. C. de Bariloche, Rio Negro (Argentina)

    2009-11-01

    We present evidence for two-center interference effects in the autoionization of a Helium atom following a double capture process in a He''2''+ + H{sub 2} collision, by looking, not at the total intensity as in a previous article [1], but at the full width at half maximum of the energy distribution at a function of the observation angle.

  20. OSA (Optical Society of America) Proceedings on Short Wavelength Coherent Radiation: Generation and Applications Held in North Falmouth, Massachusetts on 26-29 September 1988. Volume 2

    Science.gov (United States)

    1988-09-01

    Applications Vacuum Ultraviolet Laser Spectroscopy of Molecular Autoionizing States by D. Milburn, D. J. Hart, and J. W. Hepburn...kV discharge pulse are illustrated Tecnicas de la Republica Argentina. M. in Figure 7. At the time of the peak Villagran Muniz was partially...is measured with two turbo- molecular pumps. axial and transverse spectrometers. 3. GAIN MEASUREMNTS AND DISCUSSIONS Typical XUV spectra in the axial

  1. Experimental approaches to the measurement of dielectronic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1984-01-01

    In dielectronic recombination, the first step involves a continuum electron which excites a previously bound electron and, in so doing, loses just enough energy to be captured in a bound state (nl). This results in a doubly excited ion of a lower charge state which may either autoionize or emit a photon resulting in a stabilized recombination. The complete signature of the event is an ion of reduced charge and an emitted photon. Methods of measuring this event are discussed.

  2. Photoionization of He in the 3lnl' doubly-excited state energy region: angular distribution of the fluorescence from the residual ion He{sup +}(2p){sup 2}P

    Energy Technology Data Exchange (ETDEWEB)

    Harries, James R [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Sullivan, James P [Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT (Australia); Hammond, Peter [School of Physics, CAMSP, University of Western Australia, Nedlands, Perth (Australia); Azuma, Yoshiro [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan)

    2006-12-14

    We present experimental observations of the photoexcitation of 3lnl' doubly-excited states of helium decaying by autoionization into the (2p){sup 2}P excited ion final-state channel. By determining the angular distribution of the fluorescence from the final ion state, the alignment of the ion and hence the partial 2pks and 2pkd cross-sections are determined and compared to recent theoretical calculations.

  3. Suppression and Enhancement in Parametric Two-Photon Resonant Nondegenerate Four-Wave Mixing via Quantum Interference

    Institute of Scientific and Technical Information of China (English)

    SUN Jiang; MI Xin; YU Zu-He; JIANG Qian; ZUO Zhan-Chun; WANG Yan-Bang; WU Ling-An; FU Pan-Ming

    2004-01-01

    @@ Quantum interference may lead to suppression and enhancement of the two-photon resonant nondegenerate fourwave mixing signal in a cascade four-level system. Such phenomena are demonstrated in Ba through inducing atomic coherence between the ground state 6s2 and the doubly excited autoionizing Rydberg state 6pnd. This method can be used as a new spectroscopic tool for measuring the transition dipole moment between two highly excited atomic states.

  4. Design and construction of a Fourier transform soft x-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Spring, John A.

    2000-05-10

    Helium, with its two electrons and one nucleus, is a three-body system. One of the models for investigating correlated electron motion in this system is autoionization, produced via double excitation of the electrons. Predictions about the autoionization spectrum of helium have differed from each other and from preliminary experimental data. However, previous experiments have not been able to distinguish among the theoretical predictions because their energy resolution is not high enough to resolve the narrow linewidths of quasi-forbidden peaks and the resonances that appear in the highest excited states. Consequently, a team of researchers at Lawrence Berkeley National Laboratory have embarked on a project for building a high-resolution Fourier-Transform Soft X-ray (or VUV) interferometer (FTSX) to provide definitive data to answer remaining questions about the autoionization spectrum of helium. The design and construction of this interferometer is described in detail below, including the use of a flexure stage to provide the large path length difference necessary for high resolution measurements, the manufacture of x-ray beamsplitters, a description of the software, and the solution to the problems of stick-slip, vibration, and alignment. Current progress of its development is also described, as well as future goals.

  5. Design and construction of a Fourier transform soft x-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Spring, John A. [San Francisco State Univ., CA (United States)

    2000-05-01

    Helium, with its two electrons and one nucleus, is a three-body system. One of the models for investigating correlated electron motion in this system is autoionization, produced via double excitation of the electrons. Predictions about the autoionization spectrum of helium have differed from each other and from preliminary experimental data. However, previous experiments have not been able to distinguish among the theoretical predictions because their energy resolution is not high enough to resolve the narrow linewidths of quasi-forbidden peaks and the resonances that appear in the highest excited states. Consequently, a team of researchers at Lawrence Berkeley National Laboratory have embarked on a project for building a high-resolution Fourier-Transform Soft X-ray (or VUV) interferometer (FTSX) to provide definitive data to answer remaining questions about the autoionization spectrum of helium. The design and construction of this interferometer is described in detail below, including the use of a flexure stage to provide the large path length difference necessary for high resolution measurements, the manufacture of x-ray beamsplitters, a description of the software, and the solution to the problems of stick-slip, vibration, and alignment. Current progress of its development is also described, as well as future goals.

  6. Efficient mass-selective three-photon ionization of zirconium atoms

    Science.gov (United States)

    Page, Ralph H.

    1994-01-01

    In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.

  7. Cluster model for the ionic product of water: accuracy and limitations of common density functional methods.

    Science.gov (United States)

    Svozil, Daniel; Jungwirth, Pavel

    2006-07-27

    In the present study, the performance of six popular density functionals (B3LYP, PBE0, BLYP, BP86, PBE, and SVWN) for the description of the autoionization process in the water octamer was studied. As a benchmark, MP2 energies with complete basis sets limit extrapolation and CCSD(T) correction were used. At this level, the autoionized structure lies 28.5 kcal.mol(-1) above the neutral water octamer. Accounting for zero-point energy lowers this value by 3.0 kcal.mol(-1). The transition state of the proton transfer reaction, lying only 0.7 kcal.mol(-1) above the energy of the ionized system, was identified at the MP2/aug-cc-pVDZ level of theory. Different density functionals describe the reactant and product with varying accuracy, while they all fail to characterize the transition state. We find improved results with hybrid functionals compared to the gradient-corrected ones. In particular, B3LYP describes the reaction energetics within 2.5 kcal.mol(-1) of the benchmark value. Therefore, this functional is suggested to be preferably used both for Carr-Parinello molecular dynamics and for quantum mechanics/molecular mechanics (QM/MM) simulations of autoionization of water.

  8. Transfer Ionization Cross-sections in Ar Ions on Neon Collisions

    Institute of Scientific and Technical Information of China (English)

    MaXinwen; LiuHelping; ChenXimeng; YangZhihu; ShenZhiyong; WangYoude; YuDeyang; CaiXiaohong; LiuZhaoyuan

    2003-01-01

    We measured the charge exchange cross-sections in collisions of Arq+(q=8, 9, 11, 12) on Ne atoms at low impact energies from 80 keV to 240 keV, and obtained a set of cross-section data. In order to understand the charge exchange processes, we combined the Molecular Classical over-Barrier Model (MCBM) developed by Niehaus[1] with auto-ionization and electron evaporation of multiply excited states. This was described in detail in Refs.[2, 3]. The de-excitation was considered only via Auger process (auto-ionization) in Refs.[4]. In our treatment, the multiply excited states of the projectile undergo Auger decay while the electrons in the multiply excited states of target ions undergo statistical evaporation[5'6]. For projectile auto-ionization, some criterions based on the Auger electron spectra are applied in order to proceed the sequential decay. To calculate the evaporation probability, one has to get the excitation energy of the system. In our case, the excitation energy was obtained according to the states occupied by the captured electrons based on the MCBM. The values are different from the ones in, but more realistic. If one traces each molecularized electrons to its final states in the processes, one can reproduce each possible reaction channel. The processes discussed can be summarized in the following equation

  9. Time-dependent wave packet approach to the pulse delay effect upon RbI photoelectron spectrum

    Institute of Scientific and Technical Information of China (English)

    LIU Chunhua; MENG Qingtian; ZHANG Qinggang

    2006-01-01

    The time-resolved photoelectron spectrum (TRPES) of Rbl molecule is simulated using the time-dependent wave-packet method. Both the normal three-photon ionization process and auto-ionization process are involved in the simulation. The calculated results show that the change of delay time will influence the shape of the photoelectron spectrum (PES), and the influence is substantially due to the existence of the crossing between excited states and the strong laser field which will change the position of relevant curves.

  10. Single and double ionization of magnesium by electron impact: A classical study

    Science.gov (United States)

    Dubois, J.; Berman, S. A.; Chandre, C.; Uzer, T.

    2017-02-01

    We consider electron impact-driven single and double ionization of magnesium in the energy range of 10 to 100 eV. Our classical Hamiltonian model of these (e ,2 e ) and (e ,3 e ) processes sheds light on their total cross sections and reveals the underlying ionization mechanisms. Two pathways are at play in single ionization: delayed and direct. In contrast, only the direct process is observed in double ionization, ruling out the excitation-autoionization channel. We also provide evidence that the so-called Two-Step 2 mechanism predominates over the Two-Step 1 mechanism, in agreement with experiments.

  11. Optically Forbidden Excitations of 2s Electron of Neon Studied by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    GE Min; ZHU Lin-Fan; LIU Cun-Ding; XU Ke-Zun

    2008-01-01

    The electron energy loss spectrum in the energy region of 42-48.5 eV of neon is measured with an angle-resolved fast-electron energy-loss spectrometer at an incident electron energy of 2500eV. Besides the dipole-allowed autoionization transitions of 2s-1np (n = 3, 4) and 2p-23s3p, the dipole-forbidden ones of 2s-1ns (n = 3 - 6) and 2s-13d are observed. The line profile parameters, i.e. ET, F and q for these transitions, are determined, and the momentum transfer dependence behaviour is discussed.

  12. The dielectronic recombination process in laser-produced Au plasmas

    Institute of Scientific and Technical Information of China (English)

    焦荣珍; 程新路; 杨向东

    2003-01-01

    The calculations of the rate coefficients for dielectronic recombination (DR) along the NiI isoelectronic sequence in the ground state Au51+ through Cu-like 3d9nln′f (n, n′=4,5,6) inner-shell excited configurations are performed using the spin-orbit-split array (SOSA) model Resonant and nonresonant radiative stabilizing transitions and decays to autoionizing levels followed by radiative cascades are included. Collisional transitions following electron capture are neglected. The trend of the DR rate coefficients and the ratio of dielectronic satellite lines intensities with the change of the electron temperature are discussed.

  13. The dielectronic satellites to the 2s-3p Ne-like krypton resonance lines

    Energy Technology Data Exchange (ETDEWEB)

    Khakhalin, S.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Dyakin, V.M. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Faenov, A.Ya. (MISDC, NPO ' ' VNIIFTRI' ' , Mendeleevo (Russian Federation)); Fiedorowicz, H. (Inst. of Optoelectronics, Warsaw (Poland)); Bartnik, A. (Inst. of Optoelectronics, Warsaw (Poland)); Parys, P. (Inst. of Plasma Physics and Laser Microfusion, Warsaw (Poland)); Nilsen, J. (Lawrence Livermore National Lab., Livermore, CA (United States)); Osterheld, A. (Lawrence Livermore National Lab., Livermore, CA (United States))

    1994-08-01

    We present an analysis of dielectronic satellite spectra of 2p[sup 6]-2s2p[sup 6]3p Ne-like krypton resonance lines. The satellite structure was registered with high (better than [lambda]/[Delta][lambda] > 3500) spectral resolution in the emission of a laser irradiated gas puff target. We perform an unambiguous identification of satellite lines caused by radiative transitions from autoionizing states of sodium-like krypton ions. A total of about 20 spectral features are identified, most of them for the first time. Very good agreement between the satellite structure calculations and experimental emission spectra is obtained. (orig.).

  14. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS

    CERN Document Server

    Day Goodacre, T.; Fedosseev, V.N.; Forster, L.; Marsh, B.A.; Rossel, R.E.; Rothe, S.; Veinhard, M.

    2016-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  15. Relativistic calculation of dielectronic recombination for He-like krypton

    Institute of Scientific and Technical Information of China (English)

    Shi Xi-Heng; Wang Yan-Sen; Chen Chong-Yang; Gu Ming-Feng

    2005-01-01

    Dielectronic recombination (DR) cross sections and rate coefficients of He-like Kr are calculated employing the relativistic flexible atomic code, in which autoionization rates are calculated based on the relativistic distorted-wave approximation and the configuration interaction is considered. The Auger and total radiative rates of some strong resonances are listed and compared with the results from multiconfiguration Dirac-Fock and Hebrew University Lawrence Livermore Atomic Code methods. The n-3 scaling law is checked and used to extrapolate rate coefficients. We also show the variation of DR branching ratio with different DR resonances or atomic number Z. The effect of radiative cascades on DR cross sections are studied.

  16. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Fedorov, D. [Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Fedosseev, V.N.; Forster, L.; Marsh, B.A. [CERN, CH-1211 Geneva 23 (Switzerland); Rossel, R.E. [CERN, CH-1211 Geneva 23 (Switzerland); Institut für Physik, Johannes Gutenberg Universität, D-55099 Mainz (Germany); Faculty of Design, Computer Science and Media, Hochschule RheinMain, Wiesbaden (Germany); Rothe, S.; Veinhard, M. [CERN, CH-1211 Geneva 23 (Switzerland)

    2016-09-11

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  17. Interferometry with Strontium Ions

    Science.gov (United States)

    Jackson, Jarom; Lambert, Enoch; Otterstrom, Nils; Jones, Tyler; Durfee, Dallin

    2014-05-01

    We describe progress on a cold ion matter-wave interferometer. Cold Strontium atoms are extracted from an LVIS. The atoms will be photo-ionized with a two-photon transition to an auto-ionizing state in the continuum. The ions will be split and recombined using stimulated Raman transitions from a pair of diode lasers injection locked to two beams from a master laser which have been shifted up and down by half the hyperfine splitting. We are developing laser instrumentation for this project including a method to prevent mode-hopping by analyzing laser frequency noise, and an inexpensive, robust wavelength meter. Supported by NSF Award No. 1205736.

  18. Cold Strontium Ion Source for Ion Interferometry

    Science.gov (United States)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  19. Application of the stabilization method to the molecular states of LiHeT : Energies and radial couplings

    Energy Technology Data Exchange (ETDEWEB)

    Macias, A.; Mendizabal, R.; Pelayo, F.; Riera, A.; Yaez, M.

    1986-01-01

    We have used the stabilization method to perform calculations on autoionizing states of the LiHeT system which are involved in LiT +He collisions. The molecular energies and radial couplings are calculated with use of programs developed at our laboratory. For both short and large internuclear distances, the stabilization treatment is complemented by block-diagonalization techniques. Our calculations allow us to draw conclusions on the conditions under which these methods can be used to calculate energy positions and radial couplings for states that lie in an ionization continuum.

  20. A High-resolution Vacuum Ultraviolet Laser Photoionization and Photoelectron Study of the Co Atom

    Science.gov (United States)

    Huang, Huang; Wang, Hailing; Luo, Zhihong; Shi, Xiaoyu; Chang, Yih-Chung; Ng, C. Y.

    2016-12-01

    We have measured the vacuum ultraviolet-photoionization efficiency (VUV-PIE) spectrum of Co in the energy range of 63,500-67,000 cm-1, which covers the photoionization transitions of Co(3d74s2 4F9/2) \\to Co+(3d8 3F4), Co(3d74s2 4F7/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F2), and Co(3d74s2 4F9/2) \\to Co+(3d74s1 5F5). We have also recorded the pulsed field ionization photoelectron spectrum of Co in the same energy range, allowing accurate determinations of ionization energies (IEs) for the photoionization transitions from the Co(3d74s2 4F9/2) ground neutral state to the Co+(3F J ) (J = 4 and 3) and Co+(5F5) ionic states, as well as from the Co(3d74s2 4F7/2) excited neural state to the Co+(3d8 3F3) ionic state. The high-resolution nature of the VUV laser used has allowed the observation of many well-resolved autoionizing resonances in the VUV-PIE spectrum, among which an autoionizing Rydberg series, 3d74s1(5F5)np (n = 19-38), converging to the Co+(3d74s1 5F5) ionic state from the Co(3d74s2 4F9/2) ground neutral state is identified. The fact that no discernible step-like structures are present at these ionization thresholds in the VUV-PIE spectrum indicates that direct photoionization of Co is minor compared to autoionization in this energy range. The IE values, the autoionizing Rydberg series, and the photoionization cross sections obtained in this experiment are valuable for understanding the VUV opacity and abundance measurement of the Co atom in stars and solar atmospheres, as well as for benchmarking the theoretical results calculated in the Opacity Project and the IRON Project, and thus are of relevance to astrophysics.

  1. Coherence of Auger and inter-Coulombic decay processes in the photoionization of Ar@C60 versus Kr@C60

    CERN Document Server

    Magrakvelidze, Maia; Javani, Mohammad H; Madjet, Mohamed E; Manson, Steven T; Chakraborty, Himadri S

    2015-01-01

    For the asymmetric spherical dimer of an endohedrally confined atom and a host fullerene, an innershell vacancy of either system can decay through the continuum of an outer electron hybridized between the systems. Such decays, viewed as coherent superpositions of the single-center Auger and two-center inter-Coulombic (ICD) amplitudes, are found to govern leading decay mechanisms in noble-gas endofullerenes, and are likely omnipresent in this class of nanomolecules. A comparison between resulting autoionizing resonances calculated in the photoionization of Ar@C60 and Kr@C60 exhibits details of the underlying processes.

  2. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    Science.gov (United States)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  3. The photoionization spectrum of neutral aluminium, Al I

    Science.gov (United States)

    Roig, R. A.

    1975-01-01

    The absorption spectrum of Al I has been studied for the wavelength range 1160 to 2000 A by the flash pyrolysis technique. Wavelengths and derived energy levels are reported for 70 new lines converging on the 3s3p(3)P(0) limits of Al II. The autoionization parameters of the 3p(2)P(0)-3p(2)(2)S doublet have been measured. Good agreement is obtained with the experiment of Kohl and Parkinson and the recent calculation of Le Dourneuf et al. The relative photoionization cross section has been measured in the wavelength region 1200 A to 2000 A.

  4. Attosecond time delay in the photoionization of Mn in the $3p \\rightarrow 3d$ giant resonance region

    CERN Document Server

    Dolmatov, V K; Deshmukh, P C; Manson, S T

    2014-01-01

    The dramatic effect of the $3p \\rightarrow 3d$ giant autoionization resonance on time delay of photoemission from the $3d$ and $4s$ valence subshells of the Mn atom is unraveled. Strong sensitivity of the time delay of the $4s$ photoemission to the final-state term of the ion-remainder [${\\rm Mn^{+}}(4s^{1},$$^{5}S)$ vs. ${\\rm Mn^{+}}(4s^{1},$$^{7}S)$] is discovered. The features of time delay uncovered in Mn photoionization are expected to be general properties of transition-metal atoms and ions. The "spin-polarized" random phase approximation with exchange was employed in the study.

  5. Precise Access to the Molecular-Frame Complex Recombination Dipole through High-Harmonic Spectroscopy

    Science.gov (United States)

    Schoun, S. B.; Camper, A.; Salières, P.; Lucchese, R. R.; Agostini, P.; DiMauro, L. F.

    2017-01-01

    We report on spectral intensity and group delay measurements of the highest-occupied molecular-orbital (HOMO) recombination dipole moment of N2 in the molecular-frame using high harmonic spectroscopy. We take advantage of the long-wavelength 1.3 μ m driving laser to isolate the HOMO in the near threshold region, 19-67 eV. The precision of our group delay measurements reveals previously unseen angle-resolved spectral features associated with autoionizing resonances, and allows quantitative comparison with cutting-edge correlated 8-channel photoionization dipole moment calculations.

  6. The Non-local Thermodynamical Equilibrium Effects on Opacity

    Institute of Scientific and Technical Information of China (English)

    WU Ze-Qing; ZHANG Ben-Ai; QIU Yu-Bo

    2001-01-01

    Based on the detailed configuration accounting (DCA) model, a method is developed to include the resonant photoionization and the excitation-autoionization in the non-local thermodynamical equilibrium (NLTE) average atom(AA) model. Using this new model, the mean charge states and the opacity are calculated for NLTE high-Z plasmas and compared with other results. The agreement w ith AA model is poor at low electron density. The present results agree well with those of DCA model within 10%. The calculations show that the NLTE effects on opacity are strong.

  7. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa-Dye ISOLDE RILIS

    Science.gov (United States)

    Day Goodacre, T.; Fedorov, D.; Fedosseev, V. N.; Forster, L.; Marsh, B. A.; Rossel, R. E.; Rothe, S.; Veinhard, M.

    2016-09-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  8. Would Dissociative Recombination of DNA+ be a Possible Pathway of DNA Damage?

    Science.gov (United States)

    Kwon, H. C.; Chen, Z. P.; Strom, R. A.; Andrianarijaona, V. M.

    2015-05-01

    It is known that dissociative recombination (DR) is one of the very efficient processes of destruction of molecular cations into neutral particles. During the past few years, the focus of DR has been expanded from small inorganic molecules to macromolecular cation. We are probing the possibility of the DR of DNA+ after ionization of DNA, for example due to ionizing radiation. Therefore we are investigating the existence of autoionization states within nucleotide bases (Guanine, Adenine, Cytosine, and Thymine). Our results from computational analysis using the modern electronic structure program ORCA will be presented. Authors wish to give special thanks to Pacific Union College Student Senate for their financial support.

  9. Inner-shell promotions in low-energy Li+-Al collisions at clean and alkali-covered Al(100) surfaces

    Science.gov (United States)

    German, K. A. H.; Weare, C. B.; Yarmoff, J. A.

    1994-11-01

    Spectra of scattered ions and ion-induced electron emissions are used to investigate the electronic processes that occur during 0.4-5.0-keV Li+ bombardment of clean and alkali-atom-covered Al(100). The results show that Li 1s electrons are promoted during hard Li-Al collisions, but not during Li-K or Li-Na collisions. Consequences of the inner-shell electron promotions are evident in the inelastic loss, neutralization behavior, and electron emissions of the scattered Li particles. Spectra of scattered Li+ ions exhibit discrete-loss features, which are resistant to the usual increase in resonant neutralization that accompanies the deposition of alkali atoms on the surface. The loss features are due to Li 1s excitation via electron promotion, while the production of ions away from the surface via autoionization is responsible for their lack of response to alkali-atom adsorption. Spectra of ion-induced electron emissions confirm that Li*(1s2s2) is produced and that it undergoes autoionization.

  10. Study on the AMO data production and evaluation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Yong Joo; Yoo, B. D.; Choe, A. S.; Han, J. M.; Jung, E. C.; Rho, S. P.; Yi, J. H.; Jeong, D. Y.; Lee, K. S.; Park, H. M.; Kim, S. K.; Song, K. S.; Lee, J. M

    1998-01-01

    AMODS (Atomic, Molecular, and Optical Database System) which can be accessed with the URL http://amods.kaeri.re.kr consists of a computer system which is an Alpha workstation 600 with UNIX O/S and the APACHE 1.2 WWW server installed on an independently mounted file system of 4.3 GB. Currently the data in AMODS is mostly atom-related and consists of atomic spectral lines, atomic transition probabilities, atomic energy levels, atomic transition lines, and CODATA 86 as well as several reference data. Meanwhile spectroscopic parameter of Sm which is one of the rare earth elements, has been measured, resulting in production of 36 isotope shift data of the high-lying even parity states, followed by the measurement of autoionization states. New 31 autoionization states are found and energy levels of them are measured. The Fano`s q parameters are determined through the theoretical analysis of the experimental data. (author). 11 refs., 3 tabs., 15 figs

  11. Photoionization studies with molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y.

    1976-09-01

    A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.

  12. Bootstrapping dielectronic recombination from second-row elements and the Orion Nebula

    CERN Document Server

    Badnell, N R; Gorczyca, T W; Nikolic, D; Wagle, G A

    2015-01-01

    Dielectronic recombination (DR) is the dominant recombination process for most heavy elements in photoionized clouds. Accurate DR rates for a species can be predicted when the positions of autoionizing states are known. Unfortunately such data are not available for most third and higher-row elements. This introduces an uncertainty that is especially acute for photoionized clouds, where the low temperatures mean that DR occurs energetically through very low-lying autoionizing states. This paper discusses S$^{2+} \\rightarrow$ S$^+$ DR, the process that is largely responsible for establishing the [S~III]/[S~II] ratio in nebulae. We derive an empirical rate coefficient using a novel method for second-row ions, which do have accurate data. Photoionization models are used to reproduce the [O~III] / [O~II] / [O~I] / [Ne~III] intensity ratios in central regions of the Orion Nebula. O and Ne have accurate atomic data and can be used to derive an empirical S$^{2+} \\rightarrow$ S$^+$ DR rate coefficient at $\\sim 10^{4}$...

  13. High lying energy positions of doubly (2pns) {sup 1,3}P{sup o} and (2pnd) {sup 1,3}P{sup o} excited states of the beryllium atom

    Energy Technology Data Exchange (ETDEWEB)

    Sakho, I., E-mail: aminafatima_sakho@yahoo.fr [UFR Sciences and Technologies, Department of physics, University of Ziguinchor, Ziguinchor (Senegal)

    2011-12-15

    The Screening Constant by Unit Nuclear Charge (SCUNC) method is used to study (2pns) {sup 1,3}P{sup o} and (2pnd) {sup 1,3}P{sup o} autoionizing states of the beryllium atom. Energy positions are reported up to n=20. In addition, resonance widths of the (2pns) {sup 1}P{sup o} states also presented. The current results compared very well to available theoretical and experimental literature values up to n=15. The accurate data presented in this work may be of interest for future experimental and theoretical studies in the photoabsorption spectrum of Be. - Highlights: > Accurate energy positions of (2pns) {sup 1,3}P{sup o} and (2pnd) {sup 1,3}P{sup o} (n=3-20) autoionizing states of Be atoms. > Currently results compared very well to theoretical and experimental literature values up to n=15. > Presently data may be of interest for future experimental and theoretical studies in the photoabsorption spectrum of Be.

  14. Correlation effects in double rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Camus, P. (Lab. Aime Cotton, Centre National de la Recherche Scientifique 2, 91 Orsay (France))

    1994-01-01

    The present review is devoted to the recent advances performed in alkaline-earth atoms by the selective laser preparation of autoionizing asymmetrical double Rydberg states which have, so far, not been observed in natural environments. Because the great amount of flexibility achieved by the sequential laser electron excitations, a wide choice of two-electron situations have been investigated and analyzed which exhibit spectral features due to long-range effects of the Coulomb electron-electron repulsion. To overcome the autoionization broadening of the lines, double Rydberg states with a non-core penetrating high-l outer electron were produced by combining temporal laser excitation technique with the electric-field switching method. The study of the spectral correlation signatures in N snl double Rydberg states versus l allow to understand their evolution from simple spectra (l [>=] 10) due to long-range dipole interaction to more complex data (l [<=] 7) induced by short-range multipole effects when two electrons start to influence more each other. (orig.).

  15. Birth of a resonant attosecond wavepacket

    Science.gov (United States)

    Argenti, L.; Gruson, V.; Barreau, L.; Jimenez-Galan, A.; Risoud, F.; Caillat, J.; Maquet, A.; Carre, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; Taieb, R.; Martin, F.; Salieres, P.

    2016-05-01

    Both amplitude and phase are needed to characterize the dynamics of a wavepacket. However, such characterization is difficult when both attosecond and femtosecond timescales are involved, as it is the case for broadband photoionization to a continuum encompassing autoionizing states. Here we demonstrate that Rainbow RABBIT, a new attosecond interferometry, allows the measurement of amplitude and phase of a photoelectron wavepacket created through a Fano resonance with unprecedented precision. In the experiment, a tunable attosecond pulse train is combined with the fundamental laser pulse to induce two-photon transitions in helium via an intermediate autoionizing state. From the energy and time-delay resolved signal, we fully reconstruct the resonant electron wavepacket as it builds up in the continuum. Measurements accurately match the predictions of a new time-resolved multi-photon resonant model, known to reproduce ab initio calculations. This agreement confirms the potential of Rainbow RABBIT to investigate photoemission delays in ultrafast processes governed by electron correlation, as well as to control structured electron wavepackets. now at Univ. Central Florida, Orlando, FL (USA).

  16. Synchrotron-based valence shell photoionization of CH radical

    Science.gov (United States)

    Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G. A.; Fittschen, C.; Loison, J.-C.; Alcaraz, C.

    2016-05-01

    We report the first experimental observations of X+ 1Σ+←X 2Π and a+ 3Π←X 2Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  17. Ionization photophysics and Rydberg spectroscopy of diacetylene

    KAUST Repository

    Schwell, Martin

    2012-11-01

    Photoionization of diacetylene was studied using synchrotron radiation over the range 8-24 eV, with photoelectron-photoion coincidence (PEPICO) and threshold photoelectron-photoion coincidence (TPEPICO) techniques. Mass spectra, ion yields, total and partial ionization cross-sections were measured. The adiabatic ionization energy of diacetylene was determined as IE ad=(10.17±0.01) eV, and the appearance energy of the principal fragment ion C4H+ as AE=(16.15±0.03) eV. Calculated appearance energies of other fragment ions were used to infer aspects of dissociation pathways forming the weaker fragment ions C+ 4, C3H+, C+3 and C 4H+. Structured autoionization features observed in the PEPICO spectrum of diacetylene in the 11-13 eV region were assigned to vibrational components of three new Rydberg series, R1(nsσg, n=4-11), R2(ndσg, n=4-7) and R3(ndδg, n=4-6) converging to the A2Πu state of the cation, and to a new series R01(nsσg, n=3) converging to the B\\' 2Σ+u state of the cation. The autoionization mechanisms and their consistence with specific selection rules are discussed. © 2012 Taylor and Francis.

  18. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  19. STUDIES OF ELECTRON CORRELATION IN THE PHOTOIONIZATION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard Allen

    1979-03-01

    Electron correlation is a result of the interaction of two or more electrons confined in a region of space, and may conveniently be treated under the formalism of configuration interaction (CI). Photoionization provides a rather direct experimental method for studying configuration interaction. The types of CI involved in the photoionization process can be divided into three categories: initial state configuration interaction (ISCI), final ionic state configuration interaction (FISCI), and continuum state configuration interaction (CSCI). This thesis deals with experimental studies which reveal how the various types of CI may become manifested in photoionization. The experimental methods utilized in this work are photoelectron spectroscopy (PES), electron impact spectroscopy (EIS), and time-resolved fluorescence spectroscopy. The EIS was carried out following the discovery that the UV lamp on a Perkin-Elmer photoelectron spectrometer could be utilized as a source of low energy electrons. The time-resolved fluorescence work utilized both the tunability and the time structure of the radiation available at the Stanford Synchrotron Radiation Laboratory (SSRL). A commercial photoelectron spectrometer equipped with a conventional UV lamp (Hei, Nei) was employed for some of the PES studies, and a novel time-of-flight photoelectron spectrometer was developed for the PES work performed using synchrotron radiation. The PES of Ba, Sm, Eu, and Yb was studied using both Hei (22.22 eV) and Nei (16.85 eV) radiation. Satellite structure observed in these spectra using Nei (and for Yb, Hei also) radiation could be satisfactorily explained by ISCI alone. The Hei spectra of Sm, Eu, and, in particular, Ba showed dramatic changes in the satellite population which could only be explained by a new mechanism, autoionization, which is a special form of CSCI. The detailed nature of this mechanism was explored in Ba using synchrotron radiation. It was found that the autoionizing level decays

  20. Effects of radiation damping on photorecombination of C4 + ions for the KLL resonance

    Science.gov (United States)

    Li, Chuan-Ying; Wu, Yong; Qu, Yi-Zhi; Wang, Jian-Guo

    2016-10-01

    A numerical method based on Zabaydullin and Dubau's work [O. Zabaydullin and J. Dubau, J. Phys. B: At. Mol. Opt. Phys. 45, 115002 (2012), 10.1088/0953-4075/45/11/115002] has been developed to calculate the Cauchy principal value integral in scattering matrices and obtain photorecombination (PR) cross sections of low-lying resonances according to Davies and Seaton's theory [J. Phys. B 2, 757 (1969), 10.1088/0022-3700/2/7/304], in which radiation damping is included. The Dirac R -matrix method is employed to secure the dipole matrix. Using this method, PR cross sections of C4 + for the KLL resonance are acquired, and compared with available experimental measurements and other close-coupling theoretical results. It is shown that our damped cross sections reproduce the experimental data and are in agreement with other theoretical results. Meanwhile, radiation damping can reduce the PR cross section for the 1 s 2 p22P resonance (corresponding to two levels [(1s2p1 /2) 12 p3 /2] 1 /2 and [1s (2p3/22)2] 3 /2 by three orders of magnitude. The unresolved and underestimated resonances 1 s 2 p24P , 1 s 2 s 2 p 4P , and 1 s 2 p22P in the undamped Breit-Pauli R -matrix calculations [H. L. Zhang et al., J. Phys. B: At. Mol. Opt. Phys. 32, 1459 (1999), 10.1088/0953-4075/32/6/010] are corrected. Besides, dielectronic recombination cross sections of C4 + for the KLL resonance are also presented for comparison using the relativistic configuration-interaction (RCI) method implemented in flexible atomic code (fac), which show radiation damping has pronounced influences on 1 s 2 p22P due to much larger radiative rates compared with autoionization rates. Furthermore, radiative and autoionization rates for the intermediate states [(1s2p1 /2) 12 p3 /2] 1 /2 and [1s (2p3/22)2] 3 /2 of the He-like ions with 6 ≤Z ≤83 are calculated using fac, scaling laws of which are checked. Autoionization rates comply with the Zeff0 scaling law for Z ≥32 , which is caused by relativistic effects.

  1. Free-carrier generation in aggregates of single-wall carbon nanotubes by photoexcitation in the ultraviolet regime.

    Science.gov (United States)

    Crochet, Jared J; Hoseinkhani, Sajjad; Lüer, Larry; Hertel, Tobias; Doorn, Stephen K; Lanzani, Guglielmo

    2011-12-16

    We present evidence for the generation of free carriers in aggregated single-wall carbon nanotubes by photoexcitation in the energetic range of the π→π(*) transition associated with the M saddle point of the graphene lattice. The underlying broad absorption culminating at 4.3 eV can be fit well with a Fano line shape that describes strong coupling of a saddle-point exciton to an underlying free electron-hole pair continuum. Moreover, it is demonstrated that transitions in this energetic region autoionize into the continuum by detecting features unique to the presence of free charges in the transient transmission spectra of the continuum-embedded second sub-band exciton, S(2).

  2. Determination of ionization potential of atomic gadolinium and its isotope effect. Analysis of unperturbed Rydberg series

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Masabumi; Ohba, Masaki; Wakaida, Ikuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Autoionizing Rydberg series converging to six states (0, 261.841, 633.273, 3082.011, 3427.274, 3444.235 cm{sup -1}) of Gd ion have been observed by using three-color three-step photoionization via ten different 2nd-step levels of J=0 or 1. While the perturbations with interlopers become significant in the region of n=30-35 for most of the observed series, long and well-defined series structures appeared in higher energy region. From an analysis of such unperturbed structures, the first ionization potential of Gd atom was estimated to be 49601.45 (30) cm{sup -1}. This is in good agreement with the previous value, but the accuracy is improved by about one order of magnitude. In addition, isotope effect on the ionization potential was also determined by isotope shifts of some Rydberg series. (author)

  3. Long-range interactions between Rydberg atoms

    Science.gov (United States)

    Deiglmayr, Johannes

    2016-10-01

    We present an overview over theoretical models to describe adiabatic potential-energy curves, experimental excitation spectra, and electronic and nuclear dynamics in interacting Rydberg-atom pairs at large internuclear separations. The potential-energy curves and molecular wavefunctions are determined from the multipole expansion of the static Coulomb interaction which is evaluated numerically in a product basis of atomic orbitals. The convergence of this approach both in the truncation of the multipole expansion as well as in the size of the product basis is discussed, and the comparison of simulated excitation spectra is established as a useful criterium to test the convergence of the calculation. We finally discuss the dynamics of electronic and nuclear motions of pairs of Rydberg atoms, focusing on the stability of ultralong range Rydberg molecules with respect to autoionization.

  4. Theoretical photoionization spectra for the Mg-like S4+ Ion in the energy range between the S5+ 4 s and 4 f thresholds

    Science.gov (United States)

    Kim, Dae-Soung; Kwon, Duck-Hee

    2014-03-01

    The partial and the total photoionization cross sections of the Mg-like S4+ ion, leaving the residual S5+ 3 l and 4 l states from the ground 3 s 2 1 S e and the excited 3 s3 p 3,1 P o initial states, have been calculated for photon energies ranging from the S5+ 4 s to the S5+ 4 f threshold. The complex features appearing in the cross sections represent the tangled autoionizing Rydberg resonances converging to the different S5+ 4 l thresholds. The present results are compared with the available previous National Institute of Standards and Technology(NIST) and Opacity Project(OP) results.

  5. Unusual electron dynamics in He clusters induced by intense XUV pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, Yevheniy; Moeller, Thomas [IOAP, TU-Berlin (Germany); LaForge, Aaron; Katzy, Raphael; Stienkemeier, Frank [Physikalisches Institut, Universitaet Freiburg (Germany); Lyamayev, Viktor [European XFEL, Hamburg (Germany); O' Keeffe, Patrick [CNR IMIP, Monterotondo Scalo (Italy); Plekan, Oksana; Finetti, Paola; Richter, Robert; Prince, Kevin; Callegari, Carlo [Elettra-Sincrotrone Trieste, Basovizza (Italy); Drabbels, Marcel [EPFL, Lausanne (Switzerland)

    2014-07-01

    The investigation of complex atomic and molecular systems in intense IR and XUV pulses has attracted considerable attention during the last decade, since it leads to a better understanding of light matter interaction. Recently, the first seeded Free Electron Laser FERMI became available for users and now offers unique possibility to perform detailed investigations in such systems due to the narrow bandwidth, fine energy tunability and high intensity in XUV energy range. By using this new source the ionization dynamics in He clusters has been explored with electron spectroscopy in a wide energy range. In addition to the conventional sequential multi-step ionization with a photon energy well above the first ionization potential (IP) a novel ionization process following resonant excitation below IP was observed. It is due to autoionization of two or more electronically excited cluster atoms as predicted recently. The process is very efficient and can exceed the rate of direct photoionization above IP.

  6. Modulation of attosecond beating in resonant two-photon ionization

    CERN Document Server

    Galán, Álvaro J; Martín, Fernando

    2014-01-01

    We present a theoretical study of the photoelectron attosecond beating at the basis of RABBIT (Reconstruction of Attosecond Beating By Interference of Two-photon transitions) in the presence of autoionizing states. We show that, as a harmonic traverses a resonance, its sidebands exhibit a peaked phase shift as well as a modulation of the beating frequency itself. Furthermore, the beating between two resonant paths persists even when the pump and the probe pulses do not overlap, thus providing a sensitive non-holographic interferometric means to reconstruct coherent metastable wave packets. We characterize these phenomena quantitatively with a general finite-pulse analytical model that accounts for the effect of both intermediate and final resonances on two-photon processes, at a negligible computational cost. The model predictions are in excellent agreement with those of accurate ab initio calculations for the helium atom in the region of the N=2 doubly excited states.

  7. Controlled free-induction decay in the extreme ultraviolet

    CERN Document Server

    Bengtsson, Samuel; Kroon, David; Camp, Seth; Miranda, Miguel; Arnold, Cord L; L'Huillier, Anne; Schafer, Kenneth J; Gaarde, Mette B; Rippe, Lars; Mauritsson, Johan

    2016-01-01

    Coherent sources of attosecond extreme ultraviolet (XUV) radiation present many challenges if their full potential is to be realized. While many applications benefit from the broadband nature of these sources, it is also desirable to produce narrow band XUV pulses, or to study autoionizing resonances in a manner that is free of the broad ionization background that accompanies above-threshold XUV excitation. Here we demonstrate a method for controlling the coherent XUV free induction decay that results from using attosecond pulses to excite a gas, yielding a fully functional modulator for XUV wavelengths. We use an infrared (IR) control pulse to manipulate both the spatial and spectral phase of the XUV emission, sending the light in a direction of our choosing at a time of our choosing. This allows us to tailor the light using opto-optical modulation, similar to devices available in the IR and visible wavelength regions.

  8. Progress on and Instrumentation for an Ion Inteferometer

    Science.gov (United States)

    Jackson, Jarom; Archibald, James; Christopher, Erickson; Durfee, Dallin

    2013-05-01

    We describe progress on a cold ion matter-wave interferometer. The ions are generated by laser-cooling strontium and then photo-ionizing the atoms with a two-photon transition to an auto-ionizing state in the continuum. A pair of electrodes will set the kinetic energy of the ions. Splitting and recombining the quantum waves will be achieved using Raman transitions driven by a pair of laser beams. These beams are created by injection locking a pair of diode lasers with two beams from a master laser which have been shifted to differ in frequency by the strontium ion hyperfine splitting. Optical pumping and detection of the ions will be done with a laser locked to a column of strontium vapor which has been photo-ionized. Funding provided by the NSF and NIST.

  9. Coherent and incoherent processes in resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, M.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.

  10. Single and double charge transfer in Be/sup 4+/+He collisions: A molecular (Feshbach) approach

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Riera, A.; Yaez, M.

    1986-12-01

    In recent articles, we pointed out the fundamental difference between the molecular treatment of processes involving a multicharged ion and hydrogen or helium atoms, which is the (formal) autoionizing character of the molecular channels, and we reported a (new) implementation of the Feshbach method to calculate the molecular energies and couplings. In the present work we use the wave functions calculated with this Feshbach method for the BeHe/sup 4+/ quasimolecule, introduce a common translation factor in the formalism, and calculate the single and double charge-exchange cross sections in Be/sup 4+/+He(1s/sup 2/) collisions for impact energies 0.2--20 keV/amu. The mechanisms of the processes are discussed in detail.

  11. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    Science.gov (United States)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  12. Doubly excited 2s2p 1,3p1 resonances in photoionization of helium

    Institute of Scientific and Technical Information of China (English)

    Wan Jian-Jie; Dong Chen-Zhong

    2009-01-01

    The multi-configuration Dirac-Fock (MCDF) method is implemented to study doubly excited 2s2p 1,3P1 resonances of the helium atom and the interference between photoionization and photoexcitation autoionization processes.In order to reproduce the total photoionization sprectra,the excited energies from the ground ls2 1 S0 state to the doubly excited 2s2p 1'3P1 states and the relevant Auger decay rates and widths are calculated in detail. Furthermore,the interference profile determined by the so-called Fano parameters q and p2 is also reproduced. Good agreement is found between the present results and other available theoretical and experimental results. This indeed shows a promising way to investigate the Fano resonances in photoionization of atoms within the MCDF scheme,although there are some discrepancies in the present calculations of the 2s2p 3P1 state.

  13. High-resolution dipole (e, e) study for optical oscillator strengths of helium

    Institute of Scientific and Technical Information of China (English)

    凤任飞; 杨炳忻; 武淑兰; 邢士林; 张芳; 钟志萍; 郭学哲; 徐克尊

    1996-01-01

    The optical oscillator strengths of helium have been studied by a high-resolution dipole (e, e) method on the recently built high-resolution fast-electron energy-loss spectrometer. The difficulties of optical measurement have been avoided and the experimental precision has been improved by using this method. The optical oscillator strength density spectrum corresponding to the 1S n’P transitions and ionization of helium has been measured in the energy loss range of 21 - 26 eV. And the same work corresponding to the autoionization resonance region has been done in energy loss ranges of 59-67 eV and 69-74 eV. The above results have also been compared with those of the previous work.

  14. Precision measurements and test of molecular theory in highly excited vibrational states of H2 ( v = 11)

    Science.gov (United States)

    Trivikram, T. Madhu; Niu, M. L.; Wcisło, P.; Ubachs, W.; Salumbides, E. J.

    2016-12-01

    Accurate EF^1Σ^+_g{-}X^1Σ^+_g transition energies in molecular hydrogen were determined for transitions originating from levels with highly excited vibrational quantum number, v = 11, in the ground electronic state. Doppler-free two-photon spectroscopy was applied on vibrationally excited H_2^*, produced via the photodissociation of H2S, yielding transition frequencies with accuracies of 45 MHz or 0.0015 cm-1. An important improvement is the enhanced detection efficiency by resonant excitation to autoionizing 7pπ electronic Rydberg states, resulting in narrow transitions due to reduced ac-Stark effects. Using known EF level energies, the level energies of X( v = 11, J = 1, 3-5) states are derived with accuracies of typically 0.002 cm-1. These experimental values are in excellent agreement with and are more accurate than the results obtained from the most advanced ab initio molecular theory calculations including relativistic and QED contributions.

  15. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  16. Atomic and molecular complex resonances from real eigenvalues using standard (hermitian) electronic structure calculations

    CERN Document Server

    Landau, Arie; Kaprálová-Žďánská, Petra Ruth; Moiseyev, Nimrod

    2015-01-01

    Complex eigenvalues, resonances, play an important role in large variety of fields in physics and chemistry. For example, in cold molecular collision experiments and electron scattering experiments, autoionizing and pre-dissociative metastable resonances are generated. However, the computation of complex resonance eigenvalues is difficult, since it requires severe modifications of standard electronic structure codes and methods. Here we show how resonance eigenvalues, positions and widths, can be calculated using the standard, widely used, electronic-structure packages. Our method enables the calculations of the complex resonance eigenvalues by using analytical continuation procedures (such as Pad\\'{e}). The key point in our approach is the existence of narrow analytical passages from the real axis to the complex energy plane. In fact, the existence of these analytical passages relies on using finite basis sets. These passages become narrower as the basis set becomes more complete, whereas in the exact limit,...

  17. Control of photodetachment spectra through laser dressing

    Science.gov (United States)

    Morrison, Nathan; Greene, Chris

    2013-05-01

    Photodetachment and photoionization spectra often display rich resonance structures. The properties of these spectra can be modified through dressing with intense laser fields, providing control over photon absorption and the emitted electron. We present a Floquet R-matrix method for calculating photodetachment cross sections in the presence of a dressing laser. The full wave functions in the Floquet formalism for bound and escaping electrons are found by solving the Schrödinger equation near the atomic core and applying analytic boundary conditions outside of the interaction region. These calculations are used to investigate the modification of existing resonances, such as modifying the shape, or q parameter, of Feshbach resonances. We also investigate the creation of new resonances in cases where high-lying bound states become autoionizing through the absorption of dressing laser photons. This work was supported by the DOE.

  18. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics.

    Science.gov (United States)

    Tirnakli, Ugur; Borges, Ernesto P

    2016-03-23

    As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical distributions. Since various important physical systems from particle confinement in magnetic traps to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an improved interpretation of diverse experimental and observational results.

  19. Single photon induced symmetry breaking of H2 dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Fernandez, J.; Havermeier, T.; Foucar, L.; Weber, Th; Kreidi, K.; Schoffler, M.; Schmidt, L.; Jahnke, T.; Landers, A.L.; Jagutzki, O.; Czasch, A.; Benis, E.; Osipov, T.; Belkacem, A.; Prior,M.H.; Schmidt-Bocking, H.; Cocke, C.L.; Dorner, R.

    2006-12-06

    H{sub 2}, the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? Here we show that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the emission of a photoelectron with subsequent dissociation of the remaining H{sub 2}{sup +} fragment shows no symmetry with respect to the ionic H+ and neutral H atomic fragments. This result is the consequence of the entanglement between symmetric and antisymmetric H{sub 2}{sup +} states resulting from autoionization. The mechanisms behind this symmetry breaking are general for all molecules.

  20. Analysis and modeling of Fano resonances using equivalent circuit elements.

    Science.gov (United States)

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-08-22

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.

  1. Excited electronic structure of methylcyanoacetylene probed by VUV Fourier-transform absorption spectroscopy

    Science.gov (United States)

    Lamarre, N.; Gans, B.; Vieira Mendes, L. A.; Gronowski, M.; Guillemin, J.-C.; De Oliveira, N.; Douin, S.; Chevalier, M.; Crépin, C.; Kołos, R.; Boyé-Péronne, S.

    2016-10-01

    High resolution photoabsorption spectrum of gas-phase methylcyanoacetylene (CH3C3 N) has been recorded from 44 500 to 130 000 cm-1 at room temperature with a vacuum ultraviolet Fourier-transform spectrometer on the DESIRS synchrotron beamline (SOLEIL). The absolute photoabsorption cross section in this range is reported for the first time. Valence shell transitions and Rydberg series converging to the ground state X˜+2E of the cation as well as series converging to electronically excited states (A˜+A21 and C˜+) are observed and assigned. Time-dependent density-functional-theory calculations have been performed to support the assignment of the experimental spectrum in the low energy range. A tentative scaling of the previously measured CH3C3N+ ion yield by Lamarre et al. [17] is proposed, based on the comparison of the absorption data above the first ionization potential with the observed autoionization structures.

  2. Electron impact double ionization of helium from classical trajectory calculations

    CERN Document Server

    Geyer, T

    2004-01-01

    With a recently proposed quasiclassical ansatz [Geyer and Rost, J. Phys. B 35 (2002) 1479] it is possible to perform classical trajectory ionization calculations on many electron targets. The autoionization of the target is prevented by a M\\o{}ller type backward--forward propagation scheme and allows to consider all interactions between all particles without additional stabilization. The application of the quasiclassical ansatz for helium targets is explained and total and partially differential cross sections for electron impact double ionization are calculated. In the high energy regime the classical description fails to describe the dominant TS1 process, which leads to big deviations, whereas for low energies the total cross section is reproduced well. Differential cross sections calculated at 250 eV await their experimental confirmation.

  3. Production of Excited Atomic Hydrogen and Deuterium from H2, D2 and HD Photodissociation

    Science.gov (United States)

    Machacek, J. R.; Andrianarijaona, V. M.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; McLaughlin, K. W.

    2009-10-01

    We have measured the production of Lyα and Hα fluorescence from atomic H and D resulting from the photodissociation of H2, D2 and HD by linearly-polarized photons with energies between 20 and 65 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Comparison between the relative cross sections of H2 and D2 and the available theory show only qualitative agreement. We will discuss the various systematic effects which affect this and other types of synchrotron-based measurements in this energy range. Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  4. Production of Excited Atomic Hydrogen and Deuterium from HD Photodissociation

    Science.gov (United States)

    Machacek, J. R.; Bozek, J. D.; Furst, J. E.; Gay, T. J.; Gould, H.; Kilcoyne, A. L. D.; McLaughlin, K. W.

    2008-05-01

    We have measured the production of Lyα, Hα, and Hβ fluorescence from atomic H and D for the photodissociation of HD by linearly-polarized photons with energies between 20 and 66 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Theoretical calculation are not yet available for HD, but comparison between the relative cross sections for H2, D2 and HD targets and the available theory for H2 and D2 [1] allow for an estimate of the relative strength of each dissociation channel in this energy range. [1] J. D. Bozek et al., J. Phys. B 39, 4871 (2006). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  5. Production of Atomic Hydrogen and Deuterium from H2, D2 and HD Photodissociation

    Science.gov (United States)

    Machacek, J. R.; Andrianarijaona, V. A.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; Litaker, E. T.; McLaughlin, K. W.

    2010-03-01

    We have measured the production of Lyα and Hα fluorescence from atomic H and D resulting from the photodissociation of H2, D2 and HD by linearly-polarized photons with energies between 22 and 64 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Comparison between the current relative cross section results, previous absolute and relative experimental results and the available theory show only qualitative agreement. We will discuss the various systematic effects which affect this and other types of synchrotron-based measurements in this energy range. Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  6. Development of an Ionization Scheme for Gold using the Selective Laser Ion Source at the On-Line Isotope Separator ISOLDE

    CERN Document Server

    Fedosseev, V; Marsh, B A; CERN. Geneva. AB Department

    2006-01-01

    At the ISOLDE on-line isotope separation facility, the resonance ionization laser ion source (RILIS) can be used to ionize reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionization of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. The number of elements available at RILIS has been extended to 26, with the addition of a new three-step ionization scheme for gold. The optimal ionization scheme was determined during an extensive study of the atomic energy levels and auto-ionizing states of gold, carried out by means of in-source resonance ionization spectroscopy. Details of the ionization scheme and a summary of the spectroscopy study are presented.

  7. Ionization Modeling Astrophysical Gaseous Structures. I. The Optically Thin Regime

    CERN Document Server

    Churchill, Christopher W; Medina, Amber; Vliet, Jacob R Vander

    2014-01-01

    We present a code for modelling the ionization conditions of optically thin astrophysical gas structures. Given the gas hydrogen density, equilibrium temperature, elemental abundances, and the ionizing spectrum, the code solves the equilibrium ionization fractions and number densities for all ions from hydrogen to zinc. The included processes are photoionization, Auger ionization, direct collisional ionization, excitation auto-ionization, charge exchange ionization, two-body radiative recombination, dielectronic recombination, and charge exchange recombination. The ionizing spectrum can be generalized to include the ultraviolet background (UVB) and/or Starburst99 stellar populations of various masses, ages, metallicities, and distances. The ultimate goal with the code is to provide fast computation of the ionization conditions of gas in N-body + hydrodynamics cosmological simulations, in particular adaptive mesh refinement codes, in order to facilitate absorption line analysis of the simulated gas for compari...

  8. Diffusion-Oscillatory Dynamics in Liquid Water on Data of Dielectric Spectroscopy

    CERN Document Server

    Volkov, A A; Volkov, A A; Sysoev, N N

    2016-01-01

    When analyzing the broadband absorption spectrum of liquid water (10^10 - 10^13 Hz), we find its relaxation-resonance features to be an indication of Frenkel's translation-oscillation motion of particles, which is fundamentally inherent to liquids. We have developed a model of water structure, of which the dynamics is due to diffusion of particles, neutral H2O molecules and H3O+ and OH- ions - with their periodic localizations and mutual transformations. This model establishes for the first time a link between the dc conductivity, the Debye and the high frequency sub-Debye relaxations and the infrared absorption peak at 180 cm-1. The model reveals the characteristic times of the relaxations, 50 ps and 3 ps, as the lifetimes of water molecules and water ions, respectively. The model sheds light on the anomalous mobility of a proton and casts doubt on the long lifetime of a water molecule, 10 hours, commonly associated with autoionization.

  9. A Lambda 1400 spectrophotometric census of the Orion belt region

    Science.gov (United States)

    Brown, Douglas N.; Shore, Steven N.

    1986-01-01

    Low dispersion IUE spectrophotometry were used to generate a pair of photometric indices which measure the strength of the broad continuum absorption feature at 1400 A, likely an autoionizing transition of Si II. Calibration of the indices as identifiers of silicon overabundance is based on measurements of 25 IUE spectral standards and a sample of O8-A0 IV-V stars, 18 of them silicon stars. The correlations of delta alpha 1400 with delta alpha 5200 and delta (VI-G) support the association of the lambda 5200 feature with silicon. Using this technique, a magnitude limited survey of 28 B-stars in sub-groups b1, b2 and b3 of the Orion OB1 association was conducted. Two previously unrecognized candidate (perhaps weakly overabundant) silicon stars, HD 37187 and BD - 0 deg 984 are identified.

  10. Analysis and modeling of Fano resonances using equivalent circuit elements

    Science.gov (United States)

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-08-01

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements.

  11. Lorentz meets Fano spectral line shapes: A universal phase and its laser control

    CERN Document Server

    Ott, Christian; Raith, Philipp; Meyer, Kristina; Laux, Martin; Evers, Jörg; Keitel, Christoph H; Greene, Chris H; Pfeifer, Thomas

    2013-01-01

    Symmetric Lorentzian and asymmetric Fano line shapes are fundamental spectroscopic signatures that quantify the structural and dynamical properties of nuclei, atoms, molecules, and solids. This study introduces a universal temporal-phase formalism, mapping the Fano asymmetry parameter q to a phase {\\phi} of the time-dependent dipole-response function. The formalism is confirmed experimentally by laser-transforming Fano absorption lines of autoionizing helium into Lorentzian lines after attosecond-pulsed excitation. We also prove the inverse, the transformation of a naturally Lorentzian line into a Fano profile. A further application of this formalism amplifies resonantly interacting extreme-ultraviolet light by quantum-phase control. The quantum phase of excited states and its response to interactions can thus be extracted from line-shape analysis, with scientific applications in many branches of spectroscopy.

  12. Photo association in metastable helium in the vicinity of the Bose-Einstein condensation and production of giant dimers; Photo-association de l'helium metastable au voisinage de la condensation de Bose-Einstein et formation de dimeres geants

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J

    2003-11-15

    In the vicinity of Bose-Einstein condensation, the collisional properties of a dilute gas of metastable helium (He{sub 2}{sup 3}S) are governed by the rate of ionizing Penning collisions and the s-wave scattering length. In order to investigate these properties, we have carried out new photo-association experiments in which a pair of free atoms absorbs a photon to produce a molecule in an excited electronic state. In particular, we have observed 'giant dimers' for which the autoionizing process is inhibited. Accurate spectra have been acquired by the use of an original 'calorimetric' detection scheme. In addition, we have calculated long-range electronic potentials for the 2{sup 3} S + 2{sup 3} P system. Our asymptotic approach is described in detail, which reproduces the measured binding energies of the giant dimers with very good accuracy. (author)

  13. The effect of configuration complex on dielectronic recombination process in highly ionized plasmas

    Institute of Scientific and Technical Information of China (English)

    Jiao Rong-Zhen; Feng Chen-Xu

    2008-01-01

    This paper analyses the effect of configuration complex on dielectronic recombination (DR) process in highly ionized plasmas (Xe26+,Dy38+,W46+) by using the multiconfiguration relativistic Hartree-Fock method.Resonant and nonresonant radiative stabilizing transitions and decays to autoionizing levels followed by radiative cascades are included. Collisional transitions following electron capture are neglected. The remarkable difference between the isoelectronic trend of the rate coefficients for DR through 3d94/4l4l' and through 3d94l5l' is emphasized.The trend of DR through 3d94l4l' shows irregularities at relatively low temperature due to the progressive closing of DR channels as atomic number Z increases.

  14. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy

    Science.gov (United States)

    Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.

    2016-05-01

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.

  15. Assessment of the Fluorescence and Auger Data Base used in Plasma Modeling

    CERN Document Server

    Gorczyca, T W; Korista, K T; Zatsarinny, O; Badnell, N R; Behar, E; Chen, M H; Savin, D W

    2003-01-01

    We have investigated the accuracy of the 1s-vacancy fluorescence data base of Kaastra & Mewe (1993, A&AS, 97, 443) resulting from the initial atomic physics calculations and the subsequent scaling along isoelectronic sequences. In particular, we have focused on the relatively simple Be-like and F-like 1s-vacancy sequences. We find that the earlier atomic physics calculations for the oscillator strengths and autoionization rates of singly-charged B II and Ne II are in sufficient agreement with our present calculations. However, the substantial charge dependence of these quantities along each isoelectronic sequence, the incorrect configuration averaging used for B II, and the neglect of spin-orbit effects (which become important at high-Z) all cast doubt on the reliability of the Kaastra & Mewe data for application to plasma modeling.

  16. Doubly excited helium. From strong correlation to chaos

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuhai

    2006-03-15

    In the present dissertation, the double excitation states of helium including the autoionization decay of these states were studied experimentally and theoretically in a broad energy region, which includes the transition from strong correlation below the low single ionization thresholds (SIT) to the region of quantum chaos at energies very close to the double-ionization threshold. Two kind of experiments were performed, namely total-ion-yield measurements with the aim to observe total cross sections (TCS) and electron time-of-flight (TOF) measurements to obtain partial cross sections (PCS) as well as angular distribution parameters (ADP). Both types of measurements were performed at the third generation synchrotron radiation facility BESSY II in Berlin. The TCSs were recorded up to the SIT I{sub 15}, and they were found to be in in excellent agreement with state-of-the-art complex-rotation calculations performed recently by D. Delande. These experimental and theoretical data on the TCSs were analyzed in order to study quantum chaos in doubly excited helium, and interesting signatures of quantum chaos were found. The TOF technique allowed to measure PCSs and ADPs in the energy regions from I{sub 5} to I{sub 9} and I{sub 7}, respectively. These experimental data provide a critical assessment of theoretical models that can be used to explore the dynamics of strong correlation as well as quantum chaos in helium. In the theoretical part of this dissertation, the n- and l-specific PCSs and ADPs below I{sub 4} were calculated employing the R-matrix method. The present theoretical results agree well with a recent experimental study of l-specific PCSs below I{sub 4} by J.R. Harries et al. An analysis of patterns in the PCSs and ADPs on the basis of the present experimental and theoretical l-specific data allowed to improve the present understanding of autoionization decay dynamics in this two-electron atom. (orig.)

  17. Excitation pro cesses in exp erimental photoionized plasmas%实验室光致电离等离子体中激发过程的研究∗

    Institute of Scientific and Technical Information of China (English)

    韩波; 王菲鹿; 梁贵云; 赵刚

    2016-01-01

    Photoionized plasmas widely exist nearby strong radiative sources in the universe. With the development of the high energy density facilities, photoionized plasmas related to astrophysical objects are generated in laboratories accord-ingly. RCF (radiative collisional code based on the flexible atomic code) is a theoretical model applied to steady-state photoionized plasmas. Its rate equation includes five groups of mutually inverse atomic processes, which are spontaneous decay and photoexcitation, electron impact excitation and deexcitation, photoionization and radiative recombination, electron impact ionization and three body recombination, autoionization and dielectronic capture. All of the atomic data are calculated by FAC (the flexible atomic code), and with four input parameters, RCF can calculate the charge distribution and emission spectrum of the plasma. RCF has well simulated the charge state distribution of a photoioniz-ing Fe experiment on Z-facility and the measured spectrum of photoionizing Si experiment on GEKKO-XII laser facility. According to the simulation results, the importance of photoexcitation and electron impact excitation processes in the two photoionization experiments is discussed. In the photoionizing Fe experiment condition, high energy photons not only ionize the ions by photoionization directly, but also excite the ions to autoionizing levels, ionizing the ions indirectly. What is more, far from ionizing the ions, electrons even suppress the ionization of the plasma by exciting the ions to levels with small ionization cross sections. In the photoionizing Si experiment condition, because of high photoexcitation rate, strong resonance line of He-like ion and some Li-like ion lines, which have similar spontaneous decay rates as the resonance line, are emitted. Although the intercombination line of He-like ion has lower spontaneous decay rate than the resonance lines, strong recombination makes them have comparable strengthes. Electron

  18. Radiative opacity of plasmas studied by detailed term (level) accounting approaches

    Institute of Scientific and Technical Information of China (English)

    ZENG Jiao-long; JIN Feng-tao; YUAN Jian-min

    2006-01-01

    Detailed term and level accounting (DTA and DLA) schemes have been developed to calculate the spectrally resolved and Rosseland and Planck mean opacities of plasmas in local thermodynamic equilibrium.Various physical effects,such as configuration interaction effect (including core-valence electron correlations effect and relativistic effect),detailed line width effect (including the line saturation effect),etc.,on the opacity of plasmas have been investigated in detail.Some of these physical effects are less capable or even impossible to be taken into account by statistical models such as unresolved transition arrays,super-transitionarray or average atom models.Our detailed model can obtain accurate opacity of plasmas.Using this model,we have systematically investigated the radiative opacities of low,medium and high-Z plasmas under different conditions of temperature and density.For example,for aluminum plasma,in the X-ray region,we demonstrated the effects of autoionization resonance broadening on the opacity for the first time.Furthermore,the relativistic effects play an important role on the opacity as well.Our results are in good agreement with other theoretical ones although better agreement can be obtained after the effects of autoionization resonance broadening and relativity have been considered.Our results also show that the modelling of the opacity is very complicated,since too many physical effects influence the accuracy of opacity.``For medium and high-Z plasmas,however,there are systematic discrepancies unexplained so far between the theoretical and experimental opacities.Here,the theoretical opacities are mainly obtained by statistical models.To clarify the discrepaneies,efforts from both sides are needed.From the viewpoint of theory,however,a DLA method,in which various physical effects can be taken into account,should be useful in resolving the difference.Taking gold plasma as an example,we studied in detail the effects of core-valence electron

  19. DNA strand breaks and crosslinks induced by transient anions in the range 2-20 eV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xinglan; Zheng, Yi, E-mail: Yizheng@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002 (China); Sanche, Léon [Group in the Radiation Sciences, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2014-04-21

    The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π{sup *} electronic transitions of the bases followed by electron transfer to the C–O σ{sup *} bond in the phosphate group. Occupancy of the σ{sup *} orbital ruptures the C–O bond of the backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1{sup 3}A{sup ′} (π{sub 2} → π{sub 3}{sup *}) and 1{sup 3}A{sup ″} (n{sub 2} → π{sub 3}{sup *}) of thymine and 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π{sup *} transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled

  20. High resolution pulsed field ionization photoelectron spectroscopy using multibunch synchrotron radiation: Time-of-flight selection scheme

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, G.K. [Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Song, Y.; Ng, C.Y. [Ames Laboratory, United States Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1999-06-01

    We have developed an efficient electron time-of-flight (TOF) selection scheme for high resolution pulsed field ionization (PFI) photoelectron (PFI-PE) measurements using monochromatized multibunch undulator synchrotron radiation at the Advanced Light Source. By employing a simple electron TOF spectrometer, we show that PFI-PEs produced by the PFI in the dark gap of a synchrotron ring period can be cleanly separated from prompt background photoelectrons. A near complete suppression of prompt electrons was achieved in PFI-PE measurements by gating the PFI-PE TOF peak, as indicated by monitoring background electron counts at the Ar(11s{sup {prime}}) autoionizing Rydberg peak, which is adjacent to the Ar{sup +}({sup 2}P{sub 3/2}) PFI-PE band. The rotational-resolved PFI-PE band for H{sub 2}{sup +} (X {sup 2}{Sigma}{sub g}{sup +},v{sup +}=0) measured using this electron TOF selection scheme is nearly free from residues of nearby autoionizing features, which were observed in the previous measurement by employing an electron spectrometer equipped with a hemispherical energy analyzer. This comparison indicates that the TOF PFI-PE scheme is significantly more effective in suppressing the hot-electron background. In addition to attaining a high PFI-PE transmission, a major advantage of the electron TOF scheme is that it allows the use of a smaller pulsed electric field and thus results in a higher instrumental PFI-PE resolution. We have demonstrated instrumental resolutions of 1.0 cm{sup {minus}1} full width at half maximum (FWHM) and 1.9 cm{sup {minus}1} FWHM in the PFI-PE bands for Xe{sup +}({sup 2}P{sub 3/2}) and Ar{sup +}({sup 2}P{sub 3/2}) at 12.123 and 15.760 eV, respectively. These resolutions are more than a factor 2 better than those achieved in previous synchrotron based PFI-PE studies. {copyright} {ital 1999 American Institute of Physics.}

  1. Spectroscopy of {sup 39}K{sup 85}Rb triplet excited states using ultracold a {sup 3}{sigma}{sup +} state molecules formed by photoassociation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J T; Wang, D; Eyler, E E; Gould, P L; Stwalley, W C [Physics Department, University of Connecticut, Storrs, CT 06269 (United States)], E-mail: w.stwalley@uconn.edu, E-mail: kimjt@chosun.ac.kr

    2009-05-15

    Convenient state-selective detection methods are proposed for exploring triplet Rydberg states from the metastable a {sup 3}{sigma}{sup +} state of ultracold KRb molecules by resonance-enhanced two-photon ionization and time-of-flight (TOF) mass spectroscopy. This would allow the first accurate determination of the ionization potential. Particularly suitable resonant intermediate states include the 2 {sup 3}{pi} {sub {omega}}, 3 {sup 3}{sigma}{sup +} and 4 {sup 3}{sigma}{sup +} states, and we report spectroscopic studies of these states. For the 2 {sup 3}{pi} {sub {omega}} state, the spin-orbit components ({omega} = 0{sup +}, 0{sup -}, 1 and 2) have been investigated and a shallow long-range state (5(0{sup +})) at {approx} 9.3 A has been observed. We compare our observations of these three states with predictions based on ab initio potential energy curves. Such studies may also permit the direct observation of autoionizing resonances leading to efficient formation of low-lying rovibrational levels of the {sup 2}{sigma}{sup +} ground state of KRb{sup +}, ideally in the v{sup +}= 0, N{sup +}= 0 level.

  2. Using the charge-stabilization technique in the double ionization potential equation-of-motion calculations with dianion references.

    Science.gov (United States)

    Kuś, Tomasz; Krylov, Anna I

    2011-08-28

    The charge-stabilization method is applied to double ionization potential equation-of-motion (EOM-DIP) calculations to stabilize unstable dianion reference functions. The auto-ionizing character of the dianionic reference states spoils the numeric performance of EOM-DIP limiting applications of this method. We demonstrate that reliable excitation energies can be computed by EOM-DIP using a stabilized resonance wave function instead of the lowest energy solution corresponding to the neutral + free electron(s) state of the system. The details of charge-stabilization procedure are discussed and illustrated by examples. The choice of optimal stabilizing Coulomb potential, which is strong enough to stabilize the dianion reference, yet, minimally perturbs the target states of the neutral, is the crux of the approach. Two algorithms of choosing optimal parameters of the stabilization potential are presented. One is based on the orbital energies, and another--on the basis set dependence of the total Hartree-Fock energy of the reference. Our benchmark calculations of the singlet-triplet energy gaps in several diradicals show a remarkable improvement of the EOM-DIP accuracy in problematic cases. Overall, the excitation energies in diradicals computed using the stabilized EOM-DIP are within 0.2 eV from the reference EOM spin-flip values.

  3. SPEX (Plasma Code Spectral Fitting Tool). Collisional ionization for atoms and ions of H to Zn.

    Science.gov (United States)

    Urdampilleta, I.; Kaastra, J. S.

    2017-03-01

    Every observation of astrophysical objects involving a spectrum requires atomic data for the interpretation of line fluxes, ratios and ionization state of the emitting plasma. One of processes which determines it is collisional ionization. In this study an update of the direct ionization (DI) and excitation-autoionization (EA) processes is discussed for the H to Zn-like isoelectronic sequences. The previous assessments were performed by Dere (2007, A&A 466, 771) for H to Zn isoelectronc sequences, Arnaud & Raymond (1992, ApJ. 398, 394) for Fe and Arnaud & Rothenflug (1985, A&AS, 60, 425). However, in the last years new laboratory measurements and theoretical calculations of ionization cross sections have become accessible. We provide a review, extension and update of this previous work and fit the cross sections of all individuals shells of all ions from H to Zn. These data are described using an extension of Younger's formula, suitable for integration over a Maxwellian velocity distribution to derive the subshell ionization rate coefficients. These ionization rate coefficients are included together with the radiative recombination rates data (Mao et al. 2016, A&AS, 27568) and a change-exchange model (Gu et al. 2016, A&A 588, A52, 11) into the high-resolution plasma code and spectral fit tool SPEX V3.0 (Kaastra et al. 1996, UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas).

  4. Penning ionization electron spectroscopy of hydrogen sulfide by metastable helium and neon atoms.

    Science.gov (United States)

    Falcinelli, Stefano; Candori, Pietro; Bettoni, Marta; Pirani, Fernando; Vecchiocattivi, Franco

    2014-08-21

    The dynamics of the Penning ionization of hydrogen sulfide molecules by collision with helium and metastable neon atoms, occurring in the thermal energy range, has been studied by analyzing the energy spectra of the emitted electrons obtained in our laboratory in a crossed beam experiment. These spectra are compared with the photoelectron spectra measured by using He(I) and Ne(I) photons under the same experimental conditions. In this way we obtained the negative energy shifts for the formation of H2S(+) ions in the first three accessible electronic states by He*(2(3,1)S1,0) and Ne*((3)P2,0) Penning ionization collisions: the 2b1 (X̃(2)B1) fundamental one, the first 5a1 (Ã(2)A1), and the second 2b2 (B̃(2)B2) excited states, respectively. The recorded energy shifts indicate that in the case of He* and Ne*-H2S the autoionization dynamics depends on the features of the collision complex and is mainly driven by an effective global attraction that comes from a balance among several non covalent intermolecular interaction components. This suggests that the Penning ionization should take place, in a specific range of intermolecular distances, as we have already observed in the case of Penning ionization of water molecules [Brunetti, B. G.; Candori, P.; Falcinelli, S.; Pirani, F.; Vecchiocattivi, F. J. Chem. Phys. 2013, 139, 164305-1-164305-8].

  5. Investigating tunnel and above-barrier ionization using complex-scaled coupled-cluster theory

    Science.gov (United States)

    Jagau, Thomas-C.

    2016-11-01

    The theory and implementation of the complex-scaled coupled-cluster method with singles and doubles excitations (cs-CCSD) for studying resonances induced by static electric fields are presented. Within this framework, Stark shifts and ionization rates are obtained directly from the real and imaginary parts of the complex energy. The method is applied to the ground states of hydrogen, helium, lithium, beryllium, neon, argon, and carbon at varying field strengths. Complex-scaled Hartree-Fock, second-order many-body perturbation theory, and CCSD results are reported and analyzed with a focus on the impact of electron correlation on the ionization process. cs-CCSD calculations with suitably augmented standard Gaussian basis sets are found to deliver accurate strong-field ionization rates over a range of six orders of magnitude. The field-induced resonances are characterized beyond energy and ionization rate through their dipole moments, second moments, as well as Dyson orbitals and comparisons are drawn to autoionizing and autodetaching resonances. Marked differences are found between the tunneling and above-barrier regimes allowing for a clear distinction of the two mechanisms.

  6. Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics

    Science.gov (United States)

    Falk von Rudorff, Guido; Jakobsen, Rasmus; Rosso, Kevin M.; Blumberger, Jochen

    2016-10-01

    The atom-scale characterisation of interfaces between transition metal oxides and liquid water is fundamental to our mechanistic understanding of diverse phenomena ranging from crystal growth to biogeochemical transformations to solar fuel production. Here we report on the results of large-scale hybrid density functional theory-based molecular dynamics simulations for the hematite(001)-liquid water interface. A specific focus is placed on understanding how different terminations of the same surface influence surface solvation. We find that the two dominant terminations for the hematite(001) surface exhibit strong differences both in terms of the active species formed on the surface and the strength of surface solvation. According to present simulations, we find that charged oxyanions (-O-) and doubly protonated oxygens (-OH2+ ) can be formed on the iron terminated layer via autoionization of neutral -OH groups. No such charged species are found for the oxygen terminated surface. In addition, the missing iron sublayer in the iron terminated surface strongly influences the solvation structure, which becomes less well ordered in the vicinity of the interface. These pronounced differences are likely to affect the reactivity of the two surface terminations, and in particular the energetics of excess charge carriers at the surface.

  7. Development of a multipurpose beam foil spectroscopy set-up for the low cross-section measurements

    Science.gov (United States)

    Sharma, Gaurav; Nandi, T.; Berry, H. G.; Puri, Nitin K.

    2016-08-01

    A multipurpose facility for low cross section measurements has been developed at Inter University Accelerator Centre, New Delhi, India. The facility consists of a multipurpose miniature chamber equipped with 1 m focal length normal incidence Monochromator and charge coupled device based detection system which has been aligned to realize the best resolution of the spectrometer. The chamber in this facility collects radiation 100 times more efficiently from the older system, without using any extra focusing mirror assembly. It is ensured to have the provision of mounting an X-ray detector and the spectrometer transverse to the beam direction simultaneously in the same chamber. The atomic spectroscopic studies can be performed by interaction of ions beams with both thin foil and gas targets. Provision for using photomultiplier tube instead of charge coupled device, is employed in the system depending on the condition of the source strength or other detection issues. We observed the essence of a very weak atomic phenomenon, a triply excited autoionizing forbidden transition, using the above facility to demonstrate its capability for measuring such low cross section phenomena. The present developed facility covers a large spectroscopic region from X-rays to the near infrared (0.1-10,000 Å).

  8. Anomalous dispersions of `hedgehog' particles

    Science.gov (United States)

    Bahng, Joong Hwan; Yeom, Bongjun; Wang, Yichun; Tung, Siu On; Hoff, J. Damon; Kotov, Nicholas

    2015-01-01

    Hydrophobic particles in water and hydrophilic particles in oil aggregate, but can form colloidal dispersions if their surfaces are chemically camouflaged with surfactants, organic tethers, adsorbed polymers or other particles that impart affinity for the solvent and increase interparticle repulsion. A different strategy for modulating the interaction between a solid and a liquid uses surface corrugation, which gives rise to unique wetting behaviour. Here we show that this topographical effect can also be used to disperse particles in a wide range of solvents without recourse to chemicals to camouflage the particles' surfaces: we produce micrometre-sized particles that are coated with stiff, nanoscale spikes and exhibit long-term colloidal stability in both hydrophilic and hydrophobic media. We find that these `hedgehog' particles do not interpenetrate each other with their spikes, which markedly decreases the contact area between the particles and, therefore, the attractive forces between them. The trapping of air in aqueous dispersions, solvent autoionization at highly developed interfaces, and long-range electrostatic repulsion in organic media also contribute to the colloidal stability of our particles. The unusual dispersion behaviour of our hedgehog particles, overturning the notion that like dissolves like, might help to mitigate adverse environmental effects of the use of surfactants and volatile organic solvents, and deepens our understanding of interparticle interactions and nanoscale colloidal chemistry.

  9. Gd激光等离子体的双电子复合过程研究%Dielectronic recombination process in laser-produced Gd Plasmas

    Institute of Scientific and Technical Information of China (English)

    焦荣珍; 郭爱鹏; 张茹

    2006-01-01

    Dielectronic recombination (DR) coefficients for the ground-state ion of Ni-like Gd have been calculated through Cu-like 3d9nln′f(n,n′=4,5,6) inner-shell excited configurations using the spin-orbit-split array(SOSA) model. Resonant and nonresonant radiative stabilizing transitions and decays to autoionizing levels followed by radiative cascades are included. Collisional transitions following electron capture are neglected. Nonresonant stabilizing transitions are found to enhance DR rates, and may even dominate the process at low electron temperature . The trend of the DR rate coefficients and the ratio of dielectronic satellite lines intensities with the change of the electron temperature are discussed.%在自旋-轨道劈裂阵模型下,通过类铜的内壳层激发组态计算了类镍Gd的双电子复合速率系数,其中考虑了共振和非共振辐射平衡跃迁对自电离能级的影响,而忽略了因碰撞跃迁引起的电子俘获,非共振辐射平衡跃迁在低电子温度条件下主要影响双电子复合过程;本文讨论了双电子复合系数及双电子伴线强度比随电子温度的变化.

  10. Resonance Ionization Spectroscopy of Europium: The First Application of the PISA at ISOLDE-RILIS

    CERN Document Server

    AUTHOR|(CDS)2099873; Marsh, Bruce Alan

    The following work has been carried out at the radioactive ion beam facility ISOLDE at CERN. A compact atomic beam unit named PISA (Photo Ionization Spectroscopy Apparatus) has been implemented as a recent addition to the laboratory of the Resonance Ionization Laser Ion Source (RILIS). The scope of this thesis work was to demonstrate different applications of the PISA, using the existing and highly developed laser setup of the RILIS installation. In a demonstration of the suitability of PISA for ionization scheme development, a new ionization scheme for Europium has been developed. This resulted in the observation of several new autoionizing states and Rydberg series. Through the analysis of the observed Rydberg resonances a refined value of $45734.33(3)(3)$ cm$^{-1}$ for the ionization potential of the europium atom has been determined. In addition this thesis reports on the feasibility of the use of the PISA as a RILIS performance monitoring device during laser ion source operations. Finally the present wor...

  11. Development of the Separation System of {sup 203}Tl Stable Isotope

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Lim, Gwon; Kim, Tak Soo; Park, Hyun Min; Rho, Si Pyo; Kim, Cheol Jung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2005-07-01

    Thallium has two naturally occurring isotopes, {sup 203}Tl and {sup 205}Tl, with abundances of 30% and 70%, respectively. {sup 203}Tl is an indispensable raw material for the production of {sup 201}Tl radioisotopes by a proton bombardment in a cyclotron. {sup 201}TlCl is a radiopharmaceutical used widely to diagnose a heart disease. Development of the isotope-selective photoionization technique of Tl has been attractive, but an isotope selective ionization of thallium has never been achieved so far because of its small isotope shift as well as the lack of an available autoionization state. We have proposed a new method to separate the thallium isotopes, which is based-on an isotope-selective optical pumping followed by infrared photoionization. Many photoionization methods are available, such as the two photon excitation followed by the direct ionization in a high electric field. But, other ionization methods do not have the sufficient selectivity for a single stage. Two or three stages have to be applied for obtaining the sufficient selectivity. Moreover, they need strict experimental conditions and are expected that the efficiency decreases in the ionization step. However, our method is expected to overcome these drawbacks. With this background, we developed the laser isotope separation system to have high isotopic abundance of {sup 203}Tl. The system configuration and characteristics are represented in this paper.

  12. Elemental speciation of neptunium in ultra trace amount ranges; Elementspeziation von Neptunium im Ultraspurenbereich

    Energy Technology Data Exchange (ETDEWEB)

    Stoebener, Nils

    2013-06-25

    In the presented work, the detection of the isotope Np-237 with resonance ionization mass spectrometry (RIMS) was developed and optimized. In RIMS, sample atoms are excited and ionized with laser radiation in several, resonant steps and are subsequently detected by a mass spectrometer. Energy levels suitable for the excitation and ionization of Np-237 were identified using resonance ionization spectroscopy (RIS). With RIS, more than 300 previously unknown electronic states and autoionizing resonances of Np-237 were identified. Using in-source-RIMS, a limit of detection of 9E+5 atoms was demonstrated for the isotope. The mobility of Np in the environment strongly depends on its elemental speciation. Therefore, safety assessments of proposed nuclear waste repositories require analytical methods for the detection of Np species. CE (capillary electrophoresis) was hyphenated to ICP-MS (inductively coupled plasma mass spectrometry) to examine the distribution of the Np redox species Np(IV) and Np(V), which was possible at Np concentrations as low as 1E-9 mol/L. The method was used to study the interaction of the element with Opalinus Clay at varying conditions. CE-ICP-MS revealed, that under the presence of Fe(II), Np(V) is reduced to Np(IV), which is sorbed onto the clay. This leads to a higher overall Np sorption.

  13. Core excitation and decay in rare gas mono- and multilayers on a metal surface: screening, deexcitation, and desorption of neutrals and ions

    Science.gov (United States)

    Rocker, G.; Feulner, P.; Scheuerer, R.; Zhu, L.; Menzel, D.

    1990-06-01

    In order to investigate the modification of excitation and decay of core holes by condensation and adsorption in the simplest possible cases, as well as the coupling to atomic motion, we have studied the Ar2p and Kr3d excitation regions in Ar and Kr mono- and multilayers on Ru(001). Using synchrotron radiation from BESSY (Berlin), total and Auger electron yields and yields of desorbing ions and neutrals, as function of photon energy, as well as decay electron spectra for specific primary excitations have been measured. The main results are: Multilayers: Energies for resonant core excitations are shifted to higher values by 0.6 to 1 eV compared to free atoms; for Kr, surface (smaller shifts) and bulk excitations can be distinguished. Autoionization and normal Auger spectra are clearly different, as in the gas phase. Besides desorption of neutral atoms as in the valence region, singly and doubly charged ions as well as ionic clusters are desorbed. Monolayers: The shift of resonant excitation energies relative to the gas phase is smaller than for condensed layers. Decay spectra for resonant and non-resonant excitations are identical, as for strongly coupled chemisorbates, proving that charge exchange with the metal is fast compared to core decay. As in the valence region, only neutral atoms desorb. The results shed light on the screening and charge transfer behaviour and on the mechanisms of stimulated desorption which are operative in them.

  14. Resonance poles and threshold energies for hadron physical problems by a model-independent universal algorithm

    CERN Document Server

    Tripolt, Ralf-Arno; Wambach, Jochen; Moiseyev, Nimrod

    2016-01-01

    We show how complex resonance poles and threshold energies for systems in hadron physics can be accurately obtained by using a method based on the Pad\\'{e}-approximant which was recently developed for the calculation of resonance poles for atomic and molecular auto-ionization systems. The main advantage of this method is the ability to calculate the resonance poles and threshold energies from \\emph{real} spectral data. In order to demonstrate the capabilities of this method we apply it here to an analytical model as well as to experimental data for the squared modulus of the vector pion form factor, the S0 partial wave amplitude for $\\pi\\pi$ scattering and the cross section ratio $R(s)$ for $e^+e^-$ collisions. The extracted values for the resonance poles of the $\\rho(770)$ and the $f_0(500)$ or $\\sigma$ meson are in very good agreement with the literature. When the data are noisy the prediction of decay thresholds proves to be less accurate but feasible.

  15. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  16. Precision measurements and test of molecular theory in highly-excited vibrational states of H$_2$ $(v=11)$

    CERN Document Server

    Trivikram, T Madhu; Wcisło, P; Ubachs, W; Salumbides, E J

    2016-01-01

    Accurate $EF{}^1\\Sigma^+_g-X{}^1\\Sigma^+_g$ transition energies in molecular hydrogen were determined for transitions originating from levels with highly-excited vibrational quantum number, $v=11$, in the ground electronic state. Doppler-free two-photon spectroscopy was applied on vibrationally excited H$_2^*$, produced via the photodissociation of H$_2$S, yielding transition frequencies with accuracies of $45$ MHz or $0.0015$ cm$^{-1}$. An important improvement is the enhanced detection efficiency by resonant excitation to autoionizing $7p\\pi$ electronic Rydberg states, resulting in narrow transitions due to reduced ac-Stark effects. Using known $EF$ level energies, the level energies of $X(v=11, J=1,3-5)$ states are derived with accuracies of typically 0.002 cm$^{-1}$. These experimental values are in excellent agreement with, and are more accurate than the results obtained from the most advanced ab initio molecular theory calculations including relativistic and QED contributions.

  17. Electron-Impact Ionization Cross Sections of H, He, N, O, Ar, Xe, Au, Pb Atoms and Their Ions in the Electron Energy Range from the Threshold up to 200 keV

    CERN Document Server

    Povyshev, V M; Shevelko, V P; Shirkov, G D; Vasina, E G; Vatulin, V V

    2001-01-01

    Single electron-impact ionization cross sections of H, He, N, O, Ar, Xe, Au, Pb atoms and their positive ions (i.e. all ionization stages) are presented in the electron energy range from the threshold up to 200 keV. The data-set for the cross sections has been created on the basis of available experimental data and calculations performed by the computer code ATOM. Consistent data for the ionization cross sections have been fitted by seven parameters using the LSM method. The accuracy of the calculated data presented is within a factor of 2 that in many cases is sufficient to solve the plasma kinetics problems. Contributions from excitation-autoionization and resonant-ionization processes as well as ionization of atoms and ions are not considered here. The results of the numerical calculations are compared with the well-known Lotz formulae for ionization of neutral atoms and positive ions. The material is illustrated by figures and includes tables of ionization cross sections, binding energies and fitting para...

  18. Exotic x-ray emission from dense plasmas

    Science.gov (United States)

    Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, M.; Renner, O.

    2015-11-01

    Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X → K1L X-1 + hν hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.

  19. Photoionization of hydrogen in atmospheres of magnetic neutron stars

    CERN Document Server

    Potekhin, A Yu

    1997-01-01

    The strong magnetic fields (B ~ 10^{12} - 10^{13} G) characteristic of neutron stars make all the properties of an atom strongly dependent on the transverse component K_\\perp of its generalized momentum. In particular, the photoionization process is modified substantially: (i) threshold energies are decreased as compared with those for an atom at rest, (ii) cross section values are changed significantly, and (iii) selection rules valid for atoms at rest are violated by the motion so that new photoionization channels become allowed. To calculate the photoionization cross sections, we, for the first time, employ exact numerical treatment of both initial and final atomic states. This enables us to take into account the quasi-bound (autoionizing) atomic states as well as coupling of different ionization channels. We extend the previous consideration, restricted to the so-called centered states corresponding to relatively small values of K_\\perp, to arbitrary states of atomic motion. We fold the cross sections wit...

  20. Shock-ionization in the Extended Emission-Line Region of 3C~305. The last piece of the (optical) puzzle

    CERN Document Server

    Reynaldi, Victoria

    2013-01-01

    We present new Gemini spectroscopical data of the Extended Emission-Line Region of 3C~305 radio galaxy in order to achieve the final answer of the long-standing question about the ionizing mechanism. The spectra show strong kinematic disturbances within the most intense line-emitting region. The relative intensities amongst the emission lines agree with the gas being shocked during the interaction of the powerful radio jets with the ambient medium. The emission from the recombination region acts as a very effective cooling mechanism, which is supported by the presence of a neutral outflow. However, the observed intensity is almost an order of magnitude lower than expected in a pure shock model. So auto-ionizing shock models, in low-density and low-abundance regime, are required in order to account for the observed emission within the region. This scenario also supports the hypothesis that the optical emitting gas and the X-ray plasma are in pressure balance.

  1. The band 12 issue of norbornane: A study of higher shake-up states

    Science.gov (United States)

    Knippenberg, S.; Hajgató, B.

    2012-03-01

    In line with a recent study of the electronic structure of the cage compound norbornane (J. Chem. Phys. 121 (2004), 10525; J. Phys. Chem. A 109 (2005), 4267), symmetry adapted cluster expansion configuration interaction (SAC-CI) general R calculations have been performed and compared with results obtained by the third order algebraic diagrammatic construction scheme [ADC(3)]. Comparison has been made with previously performed electron momentum spectroscopy (EMS) and ultraviolet photo-electron measurements. The region around ˜25 eV (band 12), characterized by an elaborated band in the EMS spectrum which is missing in previous Green's function and ADC calculations, is investigated. This study is completed with outer-valence Green's function (OVGF) and SAC-CI/SD-R calculations, and results are obtained by employing (single and double) ionization extended second order ADC [ADC(2)-x]. Since ADC(3) only includes 2h-1p shake-up states, while SAC-CI general-R also includes higher order states, the agreement between both methods assures that the higher order shake-up states do not play an important role in the ionization spectrum of norbornane. While the band-12 issue of norbornane is therefore still open for further discussion, a tentative description in terms of ultrafast nuclear dynamical effects and autoionization processes has become more plausible.

  2. Resonance effects in near-threshold electron-impact excitation of the 143.4 nm line in the Pb+formula specific-use="simple-math">+formula-> ion

    Science.gov (United States)

    Gomonai, Anna N.; Hutych, Yuriy I.; Gomonai, Aleksandr I.

    2017-02-01

    Electron-impact excitation of the resonance transition 6 s 26 d 2 D 3/2 → 6 s 26 p 2 P o 1/2 (143.4 nm) in the Pb+ ion within the (6-100) eV energy range is studied spectroscopically using a crossed-beam technique. The observed distinct structure in the energy dependence of the effective excitation cross section (including the energy region above the ion ionization potential) is primarily due to the decay of atomic and ionic autoionizing states, produced mainly by excitation of an electron from the subvalence 5 d 10 shell, to the resonance levels (directly or via the cascade transitions). The absolute cross section value for the line under investigation was determined by normalizing the experimental curve at the electron beam energy of 100 eV to the theoretical data obtained by the Van-Regemorter formula and found to be (0.5 ± 0.3) × 10-16 cm2.

  3. A high resolution pulsed field ionization photoelectron study of O{sub 2} using third generation undulator synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.; Heimann, P. [Chemical Sciences Division and Advanced Light Source, Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Evans, M.; Stimson, S.; Fenn, P.T.; Ng, C.Y. [Ames Laboratory, United States Department of Energy]|[Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    1997-06-01

    We have improved a newly developed experimental scheme for high resolution pulsed field ionization photoelectron (PFI-PE) studies [Hsu {ital et al.}, Rev. Sci. Instrum. (in press)] using the high resolution monochromatized multibunch undulator synchrotron source of the Chemical Dynamics Beamline at the Advanced Light Source. This improved scheme makes possible PFI-PE measurements with essentially no contamination by background electrons arising from direct photoionization and prompt autoionization processes. We present here a preliminary analysis of the rotationally resolved PFI-PE spectrum for O{sub 2} obtained at a resolution of 0.5 meV (full-width-at-half-maximum) in the photon energy range of 18.1{endash}19.4 eV, yielding accurate ionization energies for the transitions O{sub 2}{sup +}(b{sup 4}{Sigma}{sub g}{sup {minus}}, v{sup +}=0{endash}9, N{sup +}=1){l_arrow}O{sub 2}(X{sup 3}{Sigma}{sub g}{sup {minus}}, v=0, N=1). {copyright} {ital 1997 American Institute of Physics.}

  4. Communication: Low-energy free-electron driven molecular engineering: In situ preparation of intrinsically short-lived carbon-carbon covalent dimer of CO

    Science.gov (United States)

    Davis, Daly; Sajeev, Y.

    2017-02-01

    Molecular modification induced through the resonant attachment of a low energy electron (LEE) is a novel approach for molecular engineering. In this communication, we explore the possibility to use the LEE as a quantum tool for the in situ preparation of short lived molecules. Using ab initio quantum chemical methods, this possibility is best illustrated for the in situ preparation of the intrinsically short-lived carbon-carbon covalent dimer of CO from a glyoxal molecule. The chemical conversion of glyoxal to the covalent dimer of CO is initiated and driven by the resonant capture of a near 11 eV electron by the glyoxal molecule. The resulting two-particle one-hole (2p-1h) negative ion resonant state (NIRS) of the glyoxal molecule undergoes a barrierless radical dehydrogenation reaction and produces the covalent dimer of CO. The autoionization electron spectra from the 2p-1h NIRS at the dissociation limit of the dehydrogenation reaction provides access to the electronic states of the CO dimer. The overall process is an example of a catalytic electron reaction channel.

  5. Photoionisation of Cl$^+$ from the $3s^23p^4\\;^3P_{2,1,0}$ and the$3s^23p^4\\;^1D_2, ^1S_0$ states in the energy range 19 - 28 eV

    CERN Document Server

    McLaughlin, Brendan M

    2016-01-01

    Absolute photoionisation cross sections for the Cl$^+$ ion in its ground and the metastable states; $3s^2 3p^4\\; ^3P_{2,1,0}$, and $3s^2 3p^4\\; ^1D_2,\\; ^1S_0$, were measured recently at the Advanced Light Source ALS) at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at an photon energy resolution of 15 meV in the energy range 19 -- 28 eV. These measurements are compared with large-scale Dirac Coulomb {\\it R}-matrix calculations in the same energy range. Photoionisation of this sulphur-like chlorine ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionisation continuum. A wealth of resonance features observed in the experimental spectra are spectroscopically assigned and their resonance parameters tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from the present study. Theoretical resonance energies and quantum defects of the prominent Rydberg series $3s^2 3p...

  6. Photoionization of Cl+ from the 3s23p4 3P2,1,0 and the 3s23p4 1D2,1S0 states in the energy range 19-28 eV

    Science.gov (United States)

    McLaughlin, Brendan M.

    2017-01-01

    Absolute photoionization cross-sections for the Cl+ ion in its ground and the metastable states, 3s23p4 3P2,1,0 and 3s23p4 1D2,1S0, were measured recently at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at a photon energy resolution of 15 meV in the energy range 19-28 eV. These measurements are compared with large-scale Dirac-Coulomb R-matrix calculations in the same energy range. Photoionization of this sulphur-like chlorine ion is characterized by multiple Rydberg series of auto-ionizing resonances superimposed on a direct photoionization continuum. A wealth of resonance features observed in the experimental spectra is spectroscopically assigned, and their resonance parameters are tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from this study. Theoretical resonance energies and quantum defects of the prominent Rydberg series 3s23p3nd, identified in the spectra as 3p → nd transitions, are compared with the available measurements made on this element. Weaker Rydberg series 3s23p3ns, identified as 3p → ns transitions and window resonances 3s3p4(4P)np features, due to 3s → np transitions, are also found in the spectra.

  7. Photo ion spectrometer

    Science.gov (United States)

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  8. Angular momentum distributions of Rydberg state electrons of Be-like sulfur produced through foil penetration

    CERN Document Server

    Imai, M; Kitazawa, S; Komaki, K; Kawatsura, K; Shibata, H; Tawara, H; Azuma, T; Kanai, Y; Yamazaki, Y

    2002-01-01

    Spectra for Coster-Kronig (C-K) transition 1s sup 2 2p( sup 2 P sub 3 sub / sub 2)9l->1s sup 2 2s( sup 2 S sub 1 sub / sub 2)epsilon l sup ' of Be-like S sup 1 sup 2 sup + ions produced following penetration of 2.5 MeV/u S sup q sup + ions (q=7, 10, 12, 13) through C-foil targets of various thickness (1-6.9 mu g/cm sup 2) have been probed using zero-degree electron spectroscopy. It has been found that in collisions for S sup q sup + (q=7, 10) ion incidence, in which the C-K electrons originate from the projectile bound electrons, a fraction of the angular momentum l=1 of the Rydberg state decreases, and fractions of higher (l>=2) angular momenta increase, while the total intensity of the C-K electrons grows, as target foil thickness increases. The electron spectra for S sup q sup + (q=13) incident ions, in which the autoionizing Be-like state is preferably formed by electron capture from the target continuum upon or near the exiting surface, do not change in l-distribution or intensity. The shift to higher l ...

  9. Non-linear photoelectron effect contributes to the formation of negative matrix ions in UV-MALDI.

    Science.gov (United States)

    Alonso, E; Zenobi, R

    2016-07-20

    The mechanism of negative ion formation in matrix-assisted laser desorption/ionization (MALDI) is less well understood than that of positive ions: electron capture, disproportionation, and liberation of negatively charged sample molecules or clusters have been proposed to produce the initial anions in MALDI. Here, we propose that the non-linear photoelectric effect can explain the emission of electrons from the metallic target material. Moreover, electrons with sufficient kinetic energy (0-10 eV) could be responsible for the formation of initial negative ions. Gas-phase electron capture by neutral 2,5-dihydroxy benzoic acid (DHB) to yield M(-) is investigated on the basis of a coupled physical and chemical dynamics (CPCD) theory from the literature. A three-layer energy mass balance model is utilized to calculate the surface temperature of the matrix, which is used to determine the translational temperature, the number of desorbed matrix molecules per unit area, and the ion velocity. Calculations of dissociative attachment and autoionization rates of DHB are presented. It was found that both processes contribute significantly to the formation of [M - H](-) and [M - H2](-), although the predicted yield in the fluence range of 5-100 mJ cm(-2) is low, certainly less than that for positive ions M(+). This work represents the first proposal for a comprehensive theoretical description of negative ion formation in UV-MALDI.

  10. Photoionisation of Cl+ from the 3s23p4 3P2, 1, 0 and the 3s23p4 1D2, 1S0 states in the energy range 19 - 28 eV

    Science.gov (United States)

    McLaughlin, Brendan M.

    2016-10-01

    Absolute photoionisation cross sections for the Cl+ ion in its ground and the metastable states; 3s23p4 3P2, 1, 0, and 3s23p4 1D2, 1S0, were measured recently at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory using the merged beams photon-ion technique at an photon energy resolution of 15 meV in the energy range 19 - 28 eV. These measurements are compared with large-scale Dirac Coulomb R-matrix calculations in the same energy range. Photoionisation of this sulphur-like chlorine ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionisation continuum. A wealth of resonance features observed in the experimental spectra are spectroscopically assigned and their resonance parameters tabulated and compared with the recent measurements. Metastable fractions in the parent ion beam are determined from the present study. Theoretical resonance energies and quantum defects of the prominent Rydberg series 3s23p3nd, identified in the spectra as 3p → nd transitions are compared with the available measurements made on this element. Weaker Rydberg series 3s23p3ns, identified as 3p → ns transitions and window resonances 3s3p4(4P)np features, due to 3s → np transitions are also found in the spectra.

  11. Threshold photoelectron spectroscopy of acetaldehyde and acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Yencha, Andrew J., E-mail: ayencha@albany.edu [Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222 (United States); Siggel-King, Michele R.F. [Cockcroft Institute, Sci-Tech Daresbury, Warrrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); King, George C. [Department of Physics and Astronomy and Photon Science Institute, Manchester University, Manchester M13 9PL (United Kingdom); Malins, Andrew E.R. [Cockcroft Institute, Sci-Tech Daresbury, Warrrington WA4 4AD (United Kingdom); Eypper, Marie [School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2013-04-15

    Highlights: •High-resolution threshold photoelectron spectrum of acetaldehyde. •High-resolution threshold photoelectron spectrum of acrolein. •High-resolution total photoion yield spectrum of acetaldehyde. •High-resolution total photoion yield spectrum of acrolein. •Determination of vertical ionization potentials in acetaldehyde and acrolein. -- Abstract: High-resolution (6 meV and 12 meV) threshold photoelectron (TPE) spectra of acetaldehyde and acrolein (2-propenal) have been recorded over the valence binding energy region 10–20 eV, employing synchrotron radiation and a penetrating-field electron spectrometer. These TPE spectra are presented here for the first time. All of the band structures observed in the TPE spectra replicate those found in their conventional HeI photoelectron (PE) spectra. However, the relative band intensities are found to be dramatically different in the two types of spectra that are attributed to the different dominant operative formation mechanisms. In addition, some band shapes and their vertical ionization potentials are found to differ in the two types of spectra that are associated with the autoionization of Rydberg states in the two molecules.

  12. Production of Excited Atomic Hydrogen and Deuterium from H2 and D2 Photodissociation

    Science.gov (United States)

    Gay, T. J.; Bozek, J. D.; Furst, J. E.; Gould, H.; Kilcoyne, A. L. D.; Machacek, J. R.; Martin, F.; McLaughlin, K. W.; Sanz-Vicario, J. L.

    2007-06-01

    We have measured the production of both Lyα and Hα fluorescence from atomic H and D for the photodissociation of H2 and D2 by linearly-polarized photons with energies between 24 and 60 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Our data are compared with ab initio calculations of the dissociation process, in which both doubly-excited state production and prompt ionization through non-resonant channels are considered. Agreement between our experimental data and that of earlier work [1], and with our theoretical calculations, is qualitative at best. [1] E.Melero Garc'ia, J.'Alvarez Ruiz, S.Menmuir, E.Rachlew, P.Erman, A.Kivim"aki, M.Glass-Maujean, R.Richter, and M.Coreno, J.Phys.B 39, 205 (2006). Support provided by the NSF (Grant PHY-0354946), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  13. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  14. Electronic Structure of Helium Atom in a Quantum Dot

    Science.gov (United States)

    Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.

    2016-03-01

    Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India

  15. The Spectr-W3 database on the spectroscopic properties of atoms and ions

    Science.gov (United States)

    Skobelev, I. Yu.; Loboda, P. A.; Gagarin, S. V.; Ivliev, S. V.; Kozlov, A. I.; Morozov, S. V.; Pikuz, S. A.; Pikuz, T. A.; Popova, V. V.; Faenov, A. Ya.

    2016-04-01

    The Spectr-W3 database was developed in 2001-2013 and is available online (http://spectrw3. snz.ru). The database contains information on various spectroscopic constants of atoms and ions such as the wavelengths and probabilities of radiative transitions, energy levels of atoms and ions, ionization potentials, autoionization rates, and the parameters of analytical approximation of cross sections and rates of collisional transitions in atoms and ions. Spectr-W3 presently contains around 450 thousand records and is the world's largest factual database on spectral properties of multicharged ions. A new stage of development of Spectr-W3, which involves adding a new section titled "Emission Spectrograms" to the database, commenced in 2014. In contrast to the already existing sections that contain tabulated data, this new section provides graphical data (with necessary explanatory notes) on the spectrograms of emission of atoms and ions excited in various plasma sources. The structure of sections of the Spectr-W3 database is characterized, and examples of queries and the corresponding search results are given.

  16. Spectroscopic applications of the ISOLDE laser ion source

    CERN Document Server

    Sebastian, V; Fedosseev, V; Georg, U; Huber, G; Jading, Y; Jonsson, O; Köster, U; Koizumi, M; Kratz, K L; Kugler, E; Lettry, Jacques; Mishin, V I; Ravn, H L; Tamburella, C; Wöhr, A

    1998-01-01

    At the ISOLDE facility radioactive ion beams are produced via proton induced reactions in a target which is connected to a laser ion source. For beryllium a two step excitation scheme with laser light at wavelengths of lambda =235 nm and lambda =297 nm has been developed. Efficient laser ionization of beryllium was achieved with a new optical set-up using frequency tripling with two non-linear BBO crystals to generate laser light in the ultraviolet for the first excitation step. The second step was optimized to reach the 2p/sup 2 1/S/sub 0/ autoionizing state for high ionization efficiency. The isotope shift of /sup 7,9,10,11,12,14/Ba could be measured by tuning the wavelength of the first step. The laser ion source has also been used for the preparation of neutron-rich silver ion beams. Tuning the laser frequency of the first step it was possible to ionize selectively low- and high spin isomers of silver isotopes via the hyperfine structure. In both cases it was demonstrated that laser spectroscopy of exotic...

  17. New insight into the Auger decay process in O{sub 2}: The coincidence perspective

    Energy Technology Data Exchange (ETDEWEB)

    Arion, Tiberiu, E-mail: tiberiu.arion@cfel.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Puettner, Ralph [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Lupulescu, Cosmin [Technische Universitaet Berlin, Institut fuer Optik und atomare Physik, Hardenbergstr. 36, 10623 Berlin (Germany); Ovsyannikov, Ruslan [Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foerstel, Marko [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Oehrwall, Gunnar [MAX-lab, Lund University, P.O. Box 118, SE-22100 Lund (Sweden); Lindblad, Andreas [Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala (Sweden); Ueda, Kiyoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Svensson, Svante [Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala (Sweden); Bradshaw, Alex M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Eberhardt, Wolfgang [Technische Universitaet Berlin, Institut fuer Optik und atomare Physik, Hardenbergstr. 36, 10623 Berlin (Germany); Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg (Germany); and others

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We developed a new experimental set-up for e,e-coincidence experiments. Black-Right-Pointing-Pointer New information on the potential curves of the final states in O{sub 2} has been extracted. Black-Right-Pointing-Pointer We observed new features, assigned to autoionization of neutral doubly excited states. -- Abstract: Photoelectron-Auger electron coincidence spectroscopy is a powerful tool for the investigation of Auger decay processes with different core-ionized intermediate states. In this paper we describe an investigation into the Auger decay of the O{sub 2} molecule, with the purpose of bringing new insight into the dynamics of the core hole decay mechanism. Using a novel experimental approach to measuring such coincidence spectra we report the highest resolution Auger spectrum of O{sub 2} recorded hitherto. In our approach, we have combined the advantages of these coincidence spectra with the high resolution and excellent signal-to-noise ratios of non-coincident Auger spectra and a state-of-the-art fit analysis. In this way we have derived information about the potential energy curves of the final states W {sup 3}{Delta}{sub u}, B {sup 3}{Pi}{sub g}, and B Prime {sup 3}{Sigma}{sub u}{sup -} and concluded that the corresponding Auger transitions are formed to a large part by strongly overlapping vibrational progressions. The present findings are compared to earlier results reported in the literature confirming some theoretical predictions.

  18. Postcollision interactions in the Auger decay of the Ar L-shell

    Energy Technology Data Exchange (ETDEWEB)

    Samson, J.A.R.; Stolte, W.C.; He, Z.X. [Univ. of Nebraska, Lincoln, NE (United States)] [and others

    1997-04-01

    The photoionization cross sections for Ar{sup +} through Ar{sup 4+}, produced by the Auger decay of an inner shell 2p hole, have been measured between 242 eV and 253 eV on beamline 9.0.1 and 6.3.2. In this study the authors are interested in near threshold phenomenon involving postcollision interactions (PCI), which are related to the Auger decay of a vacancy in the Ar L-shell. During an Auger decay a postcollision interaction can occur causing the out-going photoelectron to be retarded thus losing a certain amount of energy. If the retardation is sufficiently large the photoelectron will not escape. This result produces a singly charged ion, which normally would not be present. Such evidence of electron capture by the PCI effect was first shown clearly by Eberhardt et al. and, with higher resolution, in the present work. However, capture of the photoelectron is expected to be 100% exactly at the L{sub 2,3} thresholds. Thus, from the authors results they would have expected the Ar{sup 2+} signal to be zero at threshold, but it was not? The authors can explain this anomoly on the basis that during the Auger decay the photoelectrons are captured into high lying excited states of Ar{sup +}, which subsequently decay through autoionization yielding Ar{sup 2+}. Future work in this area will seek experimental evidence to verify this prediction.

  19. Measurement of photoionization cross section from the 3s3p {sup 1}P{sub 1} excited state of magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, M; Hussain, Shahid; Saleem, M; Kalyar, M A; Baig, M A [Department of Physics, Atomic and Molecular Physics Laboratory, Quaid-i-Azam University, Islamabad (Pakistan)

    2007-06-28

    The photoionization cross section from the 3s3p {sup 1}P{sub 1} excited state has been measured in the energy region from the first ionization threshold up to 1.4 eV excess energy using a two-step photoionization and saturated ionization technique in conjunction with an atomic beam source and a time-of-flight mass spectrometer that enables the separation of the three stable isotopes of magnesium on the time axis. The absolute value of the photoionization cross sections from the 3s3p {sup 1}P{sub 1} excited state near the 3s ionization threshold has been measured as 90 {+-} 16 Mb (at 354.5 nm ionizing wavelength) for the dominating isotope ({sup 24}Mg) whereas the value at the peak of the 3p{sup 21}S{sub 0} auto-ionizing resonance has been determined as 785 {+-} 141 Mb. The present experimentally measured photoionization cross sections are compared with the existing experimental and theoretical work, showing excellent agreement.

  20. Molecular Frame Photoemission: Probe of the Photoionization Dynamics for Molecules in the Gas Phase

    Institute of Scientific and Technical Information of China (English)

    D. Dowek; Y. J. Picard; P. Billaud; C. Elkharrat; J. C. Houver

    2009-01-01

    Molecular frame photoemission is a very sensitive probe of the photoionization (PI) dynamics of molecules. This paper reports a comparative study of non-resonant and resonant photoionization of D2 induced by VUV circularly polarized synchrotron radiation at SOLEIL at the level of the molecular frame photoelectron angular distributions (MFPADs). We use the vector correlation method which combines imaging and time-of-flight resolved electron-ion coincidence techniques, and a generalized formalism for the expression of the I(X, θe,φe)MFPADs.where X is the orientation of the molecular axis with respect to the light quantization axis and (θe,φe) the electron emission direction in the molecular frame. Selected MFPADs for a molecule aligned parallel or perpendicular to linearly polarized light, or perpendicular to the propagation axis of circularly polarizcd light, are presented for dissociative photoionization (DPI) of D2 at two photon excitation energies, hv=19 eV, where direct PI is the only channel opened, and hv=32.5 eV, i.e. in the region involving resonant excitation of Q1 and Q2 doubly excited state series. We discuss in particular the properties of the circular dichroism characterizing photoemission in the molecular frame for direct and resonant PI. In the latter case, a remarkable behavior is observed which may be attributed to the interference occurring between undistinguishable autoionization decay channels.

  1. Dielectronic recombination of W^20+ (4d^10 4f^8): addressing the half-open f-shell

    CERN Document Server

    Badnell, N R; Griffin, D C; O'Mullane, M

    2012-01-01

    A recent measurement of the dielectronic recombination (DR) of W^20+ [Schippers et al Phys. Rev. A83, 012711 (2011)] found an exceptionally large contribution from near threshold resonances (<1eV). This still affected the Maxwellian rate coefficient at much higher temperatures. The experimental result was found to be a factor 4 or more than that currently in use in the 100-300eV range which is of relevance for modeling magnetic fusion plasmas. We have carried-out DR calculations with AUTOSTRUCTURE which include all significant single electron promotions. Our intermediate coupling (IC) results are more than a factor of 4 larger than our LS-coupling ones at 1eV but still lie a factor 3 below experiment here. If we assume complete (chaotic) mixing of near-threshold autoionizing states then our results come into agreement (to within 20%) with experiment below about 2eV. Our total IC Maxwellian rate coefficients are 50-30% smaller than those based-on experiment over 100-300eV.

  2. Dissociative photoionization of molecular hydrogen. A joint experimental and theoretical study of the electron-electron correlations induced by XUV photoionization and nuclear dynamics on IR-laser dressed transition states

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andreas

    2015-01-13

    In this thesis, the dissociative single-ionization of molecular hydrogen is investigated in a kinematically complete experiment by employing extreme ultraviolet attosecond pulse trains and infrared femtosecond laser pulses. Induced by the absorption of a single XUV photon, a pronounced energy-dependent asymmetry of the relative emission direction of the photoelectron and the ion is observed. The asymmetry pattern is explained in terms of an interference of two ionization pathways involving a doubly-excited state. This interpretation is validated by a semi-classical model which only takes the nuclear motion into account. Using this model and the observed asymmetry, it is furthermore possible to disentangle the two dissociation pathways which allows for the determination of the autoionization lifetime of the contributing doubly-excited state as a function of the internuclear distance. Moreover, using a pump-probe experiment the dissociation dynamics of molecular hydrogen is investigated. A time-delay dependent momentum distribution of the fragments is observed. With a combined quantum mechanical and semi-classical approach the mechanism giving rise to the observed time-dependence is identified in terms of an intuitive elevator mechanism.

  3. Charge transfer interactions of a Ru(II) dye complex and related ligand molecules adsorbed on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Andrew J.; Weston, Matthew; O' Shea, James N. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Nottingham Nanotechnology and Nanoscience Centre (NNNC), University of Nottingham, Nottingham NG7 2RD (United Kingdom); Taylor, J. Ben; Rienzo, Anna; Mayor, Louise C. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2011-10-28

    The interaction of the dye molecule, N3 (cis-bis(isothiocyanato)bis(2,2{sup '}-bipyridyl-4,4{sup '}-dicarboxylato) -ruthenium(II)), and related ligand molecules with a Au(111) surface has been studied using synchrotron radiation-based electron spectroscopy. Resonant photoemission spectroscopy (RPES) and autoionization of the adsorbed molecules have been used to probe the coupling between the molecules and the substrate. Evidence of charge transfer from the states near the Fermi level of the gold substrate into the lowest unoccupied molecular orbital (LUMO) of the molecules is found in the monolayer RPES spectra of both isonicotinic acid and bi-isonicotinic acid (a ligand of N3), but not for the N3 molecule itself. Calibrated x-ray absorption spectroscopy and valence band spectra of the monolayers reveals that the LUMO crosses the Fermi level of the surface in all cases, showing that charge transfer is energetically possible both from and to the molecule. A core-hole clock analysis of the resonant photoemission reveals a charge transfer time of around 4 fs from the LUMO of the N3 dye molecule to the surface. The lack of charge transfer in the opposite direction is understood in terms of the lack of spatial overlap between the {pi}*-orbitals in the aromatic rings of the bi-isonicotinic acid ligands of N3 and the gold surface.

  4. Two-photon finite-pulse model for resonant transitions in attosecond experiments

    CERN Document Server

    Galán, Álvaro Jiménez; Argenti, Luca

    2015-01-01

    We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fano's theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate \\emph{ab initio} calculations, or be extracted from few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N=2 threshold for the RABITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association to a weak IR probe, obtaining results in quantitative agreement with those from accurate \\emph{ab initio} simulations. In particular, we show that: i) Use of finite pulses results in a homogene...

  5. Strong-field absorption and emission of radiation in two-electron systems calculated with time-dependent natural orbitals

    CERN Document Server

    Brics, M; Bauer, D

    2016-01-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is based on the equations of motion for the so-called natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix. Exact TDRNOT can be formulated for any time-dependent two-electron system in either spin configuration. In this paper, the method is tested against high-order harmonic generation (HHG) and Fano profiles in absorption spectra with the help of a numerically exactly solvable one-dimensional model He atom, starting from the spin-singlet ground state. Such benchmarks are challenging because Fano profiles originate from transitions involving autoionizing states, and HHG is a strong-field phenomenon well beyond linear response. TDRNOT with just one natural orbital per spin in the helium spin-singlet case is equivalent to time-dependent Hartree-Fock or time-dependent density functional theory (TDDFT) in exact exchange-only approximation. It is not unexpected that TDDFT fails in reproducing Fano profiles ...

  6. Photoionization of ground and excited levels of P II

    Science.gov (United States)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  7. Dielectronic recombination process in laser-produced Xe plasmas%氙激光等离子体的双电子复合过程研究

    Institute of Scientific and Technical Information of China (English)

    焦荣珍; 冯晨旭; 张茹

    2007-01-01

    Dielectronic recombination(DR)coefficients for the ground-state ion of Ni-like Xe have been calculated through Cu-like 3d9nln'f(n,n'=4,5,6)inner-shell excited configurations using the spin-orbit-split array(SOSA)model.Resonant and nonresonant radiative stabilizing transitions and decays to autoionizing levels followed by radiative cacsades are included.Collisional transitions following electron capture are neglected.Nonresonant stabilizing transitions are found to enhance DR rates,and may even dominate the process at low electron temperature.The trend of the DR rate coefficients and the ratio of dielectronic satellite lines intensities with the change of the electron temperature are discussed.%在自旋-轨道劈裂阵模型下,通过类铜的内壳层激发组态计算了类镍氙的双电子复合速率系数,其中考虑了共振和非共振辐射平衡跃迁对自电离能级的影响,而忽略了因碰撞跃迁引起的电子俘获,非共振辐射平衡跃迁在低电子温度条件下主要影响双电子复合过程;本文讨论了双电子复合系数及双电子伴线强度比随电子温度的变化.

  8. Development of a method for the study of H{sub 2} gas emission in sealed compartments containing canister copper immersed in O{sub 2}-free water

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Andreas; Chukharkina, Alexandra; Eriksson, Lena; Hallbeck, Bjoern; Hallbeck, Lotta; Johansson, Jessica; Johansson, Linda; Pedersen, Karsten [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2013-06-15

    Current models of copper corrosion indicate that copper is not subject to corrosion by water in itself, but that additional components, such as O{sub 2}, chloride or sulphide are needed to initiate a corrosive process. Of late however, a number of reports have suggested that copper may be susceptible to water-induced corrosion in the absence of external constituents affecting the process. The process has been proposed to rely the auto-ionization driven presence of the hydroxide ions in pure water, and to result in the development of atomic hydrogen (H), with subsequent release of H{sub 2} gas. A suggested equilibrium is reached at a partial pressure of H{sub 2} of about 1 mbar (0.1 kPa) in 73 deg C, and the corrosion reaction is proposed to be rate-limited by the supply of hydroxide ions from the water, a process being slower than proposed formation of water from a H{sub 2}-O{sub 2} reaction. In consequence, the presence of O{sub 2} in the system would result in no detectable release of H{sub 2} until all O{sub 2} was consumed, while the absence of O{sub 2} would lead to water-driven corrosion of copper proceeding until the H{sub 2} equilibrium is reached, at a partial H{sub 2} pressure of about 1 mbar. The proposed mechanism presents a novel aspect on copper corrosion processes. By extension, the suggested corrosion process may have implications for proposed strategies for long-term storage of spent nuclear fuel waste (SNF), which in part rely on the long-term (>105 years) integrity of copper canisters stored in anoxic water inundated environments (SKB 2010)

  9. Probing charge transfer and hot carrier dynamics in organic solar cells with terahertz spectroscopy

    Science.gov (United States)

    Cunningham, Paul D.; Lane, Paul A.; Melinger, Joseph S.; Esenturk, Okan; Heilweil, Edwin J.

    2016-04-01

    Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

  10. Two-electron transfer and ionization mechanism in 80-keV/u Ne8 + on He collisions

    Science.gov (United States)

    Zhang, R. T.; Feng, W. T.; Zhu, X. L.; Zhang, S. F.; Guo, D. L.; Gao, Y.; Qian, D. B.; Xu, S.; Yan, S. C.; Zhang, P.; Huang, Z. K.; Wang, H. B.; Hai, B.; Zhao, D. M.; Ma, X.

    2016-03-01

    Autoionization decay from doubly excited states of Ne6 +[1 s23 l n l (n =3 ,4 ,5 )] (symmetric configurations) as well as the Coster-Kronig transition from doubly excited states of Ne6 +[1 s22 p n l (n ⩾7 ) ] (asymmetric configurations) are observed in the transfer ionization reaction channel of 80 keV/u Ne8 +-He collisions. It has been predicted that the formation of symmetric configurations results from uncorrelated double-electron capture processes [Z. Chen and C. D. Lin, Phys. Rev. A 48, 1298 (1993), 10.1103/PhysRevA.48.1298], and the formation of asymmetric configurations probably results from correlated double-electron capture caused by the dynamical electron-correlation effects which are attributed to small internuclear distances. However, previous experimental measurements were not able to obtain information about the dependence on internuclear distance which can be reflected in the transversal recoil-ion momentum. In this work, we measure the recoil-ion momentum in coincidence with the ejected electron velocity and find that the observed transverse recoil-ion momentum is smaller for the formation of symmetric Ne6 +[1 s23 l n l (n =3 ,4 ,5 ) ] states than the formation of asymmetric Ne6 +[1 s22 p n l (n ⩾7 ) ] states. Since large momentum transfer occurs for small internuclear distances (strong electron-electron interactions) and small momentum transfer occurs for large internuclear distances (weak electron-electron interactions), the results indicate that dynamical electron correlation is important for the formation of the asymmetric states.

  11. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al+ ion

    Science.gov (United States)

    Kim, Dae-Soung; Kim, Young Soon

    2008-08-01

    In the present work, we report the photoionization cross sections of the Al+ ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s21S and exited states 3s3p1,3P, 3s3d1,3D and 3s4s1,3S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al+ ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s21S and 3s3p3P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation.

  12. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  13. Ionization of molecular hydrogen and stripping of oxygen atoms and ions in collisions of Oq++H2 (q = 0- 8): Data for secondary electron production from ion precipitation at Jupiter

    Science.gov (United States)

    Schultz, D. R.; Ozak, N.; Cravens, T. E.; Gharibnejad, H.

    2017-01-01

    Energetic oxygen and sulfur ion precipitation into the atmosphere of Jupiter is thought to produce an X-ray aurora as well as to contribute to ionization, heating, and dissociation of the molecules of the atmosphere. At high energy, stripping of electrons from these ions by atmospheric gas molecules results in the production of high charge states throughout a portion of this passage through the atmosphere. Therefore, to enable modeling of the effects of secondary electrons produced by this ion precipitation, from either the solar wind or magnetospheric sources such as the Galilean moons, a large range of ionization and stripping data is calculated and tabulated here that otherwise is not available. The present data are for the abundant precipitating species, oxygen, colliding with the dominant upper atmosphere gas, molecular hydrogen, and cover the principal reaction channels leading to secondary electron production (single and double ionization, transfer ionization, and double capture followed by autoionization, and single and double stripping of electrons from the projectile). Since the ions possess initial energies at the upper atmosphere in the keV to MeV range, and are then slowed as they pass through the atmosphere, results are calculated for 1-2000 keV/u Oq++H2 (q =0-8). In addition to the total cross sections for ionization and stripping processes, models require the distribution in energy and angle of the ejected electrons, so cross sections differential in these parameters are also calculated. The data may be used to model the energy deposited by ion precipitation in Jupiter's atmosphere and thereby contribute to the elucidation of the ionosphere-atmosphere coupling.

  14. Ionization photophysics and spectroscopy of dicyanoacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney, E-mail: Sydney.Leach@obspm.fr, E-mail: Martin.Schwell@lisa.u-pec.fr; Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Schwell, Martin, E-mail: Sydney.Leach@obspm.fr, E-mail: Martin.Schwell@lisa.u-pec.fr; Bénilan, Yves; Fray, Nicolas; Gazeau, Marie-Claire [LISA UMR CNRS 7583, Université Paris-Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil (France); Garcia, Gustavo A.; Gaie-Levrel, François [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex (France); Guillemin, Jean-Claude [Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France)

    2013-11-14

    Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and detailed spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of dicyanoacetylene was measured as 11.80 ± 0.01 eV. A detailed analysis of the cation spectroscopy involves new aspects and new assignments of the vibrational components to excitation of the quasi-degenerate A{sup 2}Π{sub g}, B{sup 2}Σ{sub g}{sup +} states as well as the C{sup 2}Σ{sub u}{sup +} and D{sup 2}Π{sub u} states of the cation. Some of the structured autoionization features observed in the 12.4–15 eV region of the total ion yield spectrum were assigned to vibrational components of valence shell transitions and to two previously unknown Rydberg series converging to the D{sup 2}Π{sub u} state of C{sub 4}N{sub 2}{sup +}. The appearance energies of the fragment ions C{sub 4}N{sup +}, C{sub 3}N{sup +}, C{sub 4}{sup +}, C{sub 2}N{sup +}, and C{sub 2}{sup +} were measured and their heats of formation were determined and compared with existing literature values. Thermochemical calculations of the appearance potentials of these and other weaker ions were used to infer aspects of dissociative ionization pathways.

  15. Ionization photophysics and spectroscopy of cyanoacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Sydney; Champion, Norbert [LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon (France); Garcia, Gustavo A.; Fray, Nicolas; Gaie-Levrel, François [Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192, Gif-sur-Yvette Cedex (France); Mahjoub, Ahmed; Bénilan, Yves; Gazeau, Marie-Claire; Schwell, Martin [LISA UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil (France)

    2014-05-07

    Photoionization of cyanoacetylene was studied using synchrotron radiation over the non-dissociative ionization excitation range 11–15.6 eV, with photoelectron-photoion coincidence techniques. The absolute ionization cross-section and spectroscopic aspects of the parent ion were recorded. The adiabatic ionization energy of cyanoacetylene was measured as 11.573 ± 0.010 eV. A detailed analysis of photoelectron spectra of HC{sub 3}N involves new aspects and new assignments of the vibrational components to excitation of the A{sup 2}Σ{sup +} and B{sup 2}Π states of the cation. Some of the structured autoionization features observed in the 11.94 to 15.5 eV region of the total ion yield (TIY) spectrum were assigned to two Rydberg series converging to the B{sup 2}Π state of HC{sub 3}N{sup +}. A number of the measured TIY features are suggested to be vibrational components of Rydberg series converging to the C{sup 2}Σ{sup +} state of HC{sub 3}N{sup +} at ≈17.6 eV and others to valence shell transitions of cyanoacetylene in the 11.6–15 eV region. The results of quantum chemical calculations of the cation electronic state geometries, vibrational frequencies and energies, as well as of the C–H dissociation potential energy profiles of the ground and electronic excited states of the ion, are compared with experimental observations. Ionization quantum yields are evaluated and discussed and the problem of adequate calibration of photoionization cross-sections is raised.

  16. Electron attachment to pentafluorobenzene, to oxygen in a mixture of 90% argon and 10% methane, and to oxygen in various polar/nitrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, C. III

    1982-01-01

    By means of electron swarm experiments, electron attachment to pentafluorobenzene (C/sub 6/HF/sub 5/) in nitrogen (N/sub 2/) and to oxygen (O/sub 2/) in various gas mixtures has been studied. The variation of the electron attachment rate for C/sub 6/HF/sub 5/ in N/sub 2/ with the gas pressure and with the mean electron energy was determined. The lifetime of the species C/sub 6/HF/sub 5//sup -/ against autoionization was deduced and the electron attachment cross section for C/sub 6/HF/sub 5/ was calculated. The influence of the permanent electric dipole of C/sub 6/HF/sub 5/ upon the electron attachment process is discussed. Electron attachment to O/sub 2/ in P-10 (90% argon + 10% methane) and in mixtures of various polar molecules with N/sub 2/ was investigated. As a preliminary to these studies electron drift velocities in P-10 and in the various mixtures of polar species with N/sub 2/ were determined. These drift velocities are reported and discussed. The variation of the electron attachment rate for O/sub 2/ in P-10 with pressure and the mean electron energy was determined. The attachment rate as a function of mean electron energy was found to possess distinct structure. Models which account for this structure and for the variation of the attachment rate with the P-10 pressure are advanced and the corresponding reaction rate constant are presented. The electron attachment rates for O/sub 2/ in mixtures of N/sub 2/ with 1-butene, dimethyl amine, ammonia, trifluoromethane, and acetaldehyde were measured. Models of the variation of the attachment rate with the concentration of the polar species are advanced and the corresponding reaction rate constants are presented.

  17. Electron Attachment to Pentafluorobenzene, to Oxygen in a Mixture of 90% Argon and 10% Methane, and to Oxygen in Various Polar/nitrogen Mixtures.

    Science.gov (United States)

    Metcalfe, Clive, III

    By means of electron swarm experiments, electron attachment to pentafluorobenzene (C(,6)HF(,5)) in nitrogen (N(,2)) and to oxygen (O(,2)) in various gas mixtures has been studied. The variation of the electron attachment rate for C(,6)HF(,5) in N(,2) with the gas pressure and with the mean electron energy was determined. The lifetime of the species C(,6)HF(,5)('-*) against autoionization was deduced and the electron attachment cross section for C(,6)HF(,5) was calculated. The influence of the permanent electric dipole of C(,6)HF(,5) upon the electron attachment process is discussed. Electron attachment to O(,2) in P-10 (90% argon + 10% methane) and in mixtures of various polar molecules with N(,2) was investigated. As a preliminary to these studies electron drift velocities in P-10 and in the various mixtures of polar species with N(,2) were determined. These drift velocities are reported and discussed. The variation of the electron attachment rate for O(,2) in P-10 with the P-10 pressure and the mean electron energy was determined. The attachment rate as a function of mean electron energy was found to possess distinct structure. Models which account for this structure and for the variation of the attachment rate with the P-10 pressure are advanced and the corresponding reaction rate constants are presented. The electron attachment rates for O(,2) in mixtures of N(,2) with 1-butene, dimethyl amine, ammonia, trifluoromethane, and acetaldehyde were measured. Models of the variation of the attachment rate with the concentration of the polar species are advanced and the corresponding reaction rate constants are presented.

  18. Advances Toward Inner-Shell Photo-Ionization X-Ray Lasing at 45 (Angstrom)

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S J; Weber, F A; Celliers, P M; Eder, D C

    2002-07-18

    The inner-shell photo-ionization (ISPI) scheme requires photon energies at least high enough to photo-ionize the K-shell. {approx}286 eV, in the case of carbon. As a consequence of the higher cross-section, the inner-shell are selectively knocked out, leaving a hole state 1s2s{sup 2}2p{sup 2} in the singly charged carbon ion. This generates a population inversion to the radiatively connected state 1s{sup 2}2s{sup 2}2p in C+, leading to gain on the 1s-2p transition at 45 {angstrom}. The resonant character of the lasing transition in the single ionization state intrinsically allows much higher quantum efficiency compared to other schemes. Competing processes that deplete the population inversion include auto-ionization, Auger decay, and in particular collisional ionization of the outer-shell electrons by electrons generated during photo-ionization. These competing processes rapidly quench the gain. Consequently, the pump method must be capable of populating the inversion at a rate faster than the competing processes. This can be achieved by an ultra-fast, high intensity laser that is able to generate an ultra-fast, bright x-ray source. With current advances in the development of high-power, ultra-short pulse lasers it is possible to realize fast x-ray sources based that can deliver powerful pulses of light in the multiple hundred terawatt regime and beyond. They will discuss in greater detail concept, target design and a series of x-ray spectroscopy investigations they have conducted in order to optimize the absorber/x-ray converter--filter package.

  19. Double Electron Processes in Low Energy Isotope Bare Ions 13C6+ with Helium Collisions

    Institute of Scientific and Technical Information of China (English)

    YU De-Yang; SHAO Jian-Xiong; DING Bao-Wei; YANG Zhi-Hu; CHEN Xi-Meng; CAI Xiao-Hong; LU Rong-Chun; SHAO Cao-Jie; LU Jun; RUAN Fang-Fang; ZHANG Hong-Qiang; CUI Ying; XU Xu

    2005-01-01

    @@ The isotopic bare ion 13C6+ was employed to collide with helium at 4.15-11.08keV/u. The relative partial cross sections were measured by position-sensitive and time-of-flight coincident techniques. It is shown that the direct-ionization (DI) process can be completely ignored in this region, the transfer ionization (TI) process is the most important double-electron channel, and the probability of the pure double-electron capture (DC) process is quite small. The cross-section ratio of the total double-electron (DE) process (i.e. DC+TI) to the single-electron capture (SC) process is experimentally determined to be approximately a constant of 0.09 ± 0.03 in this region,and this value is obviously smaller than the predictions of the classical over-barrier models and the semi-empirical scaling laws. It is found that the cross-section ratio of pure DC to DE decreases obviously as the projectile velocity increases. Because the pure DC process only comes from the radiation de-excitation following the DC process and are competed by the TI process (comes from the auto-ionization following the DC process), this implies that the population of the two captured electrons depends distinctly on the collision velocity. Comparison with works on Ar16+-He by Wu et al. [Phys. Rev. A 48 (1993) 3617] reveals that the strong projectile-dependent character of the pure DC process exists.

  20. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  1. Quantum control of the XUV photoabsorption sp ectrum of helium atoms via the carrier-envelop e-phase of an infrared laser pulse%红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究∗

    Institute of Scientific and Technical Information of China (English)

    杨增强; 张力达

    2015-01-01

    In the present paper, we investigate the quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase (CEP) of an infrared (IR) laser pulse by numerically solving the time-dependent one-dimensional (1D) two-electron Schrödinger equation. The advantage of the 1D model is that the associated time-dependent Schrodinger equation (TDSE) can be solved numerically with high precision as taking full account of the interaction between the electrons and without making any assumptions about the dominant physical mechanisms. In our study, a single attosecond XUV pulse with broad bandwidth is used to create a wave packet consisting of several doubly-excited states. Helium atoms subjected to the XUV pulse can be ionized through two different pathways: either direct ionization into the continuum or indirect ionization via the autoionization of doubly excited states. The interference of these two paths gives rise to the well-known Fano line shape in the photoabsorption spectrum, which is determined by the ratio and relative phases of the two paths. In the presence of an IR laser pulse, however, we find that the Fano line profiles are strongly modified, in good agreement with recent experimental observations [C. Ott et al., Science 340, 716 (2013); C. Ott et al., Nature 516, 374 (2014)]. At certain time delays, we can observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections, indicating that the XUV light can be amplified during the interaction with atoms. We fit the absorption spectra with the Fano line profiles giving rise to the CEP-dependent Fano q parameters, which are modulated from extremely large positive value to extremely large negative value. Since the q parameter is proportional to the ratio between the dipole matrix of the indirect ionization path and the dipole matrix of the direct ionization path;these results indicate that the quantum interference between the two ionization paths can be e

  2. On the ionization and dissociative photoionization of iodomethane: a definitive experimental enthalpy of formation of CH3I.

    Science.gov (United States)

    Bodi, Andras; Shuman, Nicholas S; Baer, Tomas

    2009-12-14

    The dissociative photoionization onset energy of the CH(3)I --> CH(3)(+) + I reaction was studied at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source (SLS) using a new imaging photoelectron photoion coincidence (iPEPICO) apparatus operating with a photon resolution of 2 meV and a threshold electron kinetic energy resolution of about 1 meV. Three previous attempts at establishing this value accurately, namely a pulsed field ionization (PFI)-PEPICO measurement, ab initio calculations and a mass-analyzed threshold ionization (MATI) experiment, in which the onset energy was bracketed by state-selected excitation to vibrationally excited (2)A(1) A states of the parent ion, have yielded contradictory results. It is shown that dimers and adducts formed in the supersonic molecular beam affected the PFI-PEPICO onset energy. The room temperature iPEPICO experiment yields an accurate 0 K onset of 12.248 +/- 0.003 eV, from which we derive a Delta(f)H(o)(298 K)(CH(3)I) = 15.23 +/- 0.3 kJ mol(-1), and the C-I bond energy in CH(3)I is 232.4 +/- 0.4 kJ mol(-1). The room temperature breakdown diagram shows a fine structure that corresponds to the threshold photoelectron spectrum (TPES) of the A state. Low internal energy neutrals seem to be preferentially ionized in the A state when compared with the X state, and A state peaks in the TPES are Stark-shifted as a function of the DC field, whereas the dissociative photoionization of X state ions is not affected. This suggests that there are different competing mechanisms at play to produce ions in the A state vs. ions in the X state. The competition between field ionization and autoionization in CH(3)I is compared with that in Ar, N(2) and in the H-atom loss energy region in CH(4)(+). The binding energies of the neutral and ionic Ar-CH(3)I clusters were found to be 26 and 66 meV, respectively.

  3. One-photon two-electron processes in helium close to the double ionization threshold; Diexcitation electronique de l'helium par un photon au voisinage du seuil de double ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Bouri, C

    2007-04-15

    experimental results. We complete this work with the study of doubly excited autoionizing states.

  4. Multiphoton dissociation and ionization of nickelocene

    Science.gov (United States)

    Leutwyler, Samuel; Even, Uzi; Jortner, Joshua

    1981-01-01

    In this paper we report the results of an experimental study of collision-free molecular multiphoton dissociation (MPD) and molecular multiphoton ionization (MPI) of nickelocene (NiC 10H 10), induced by the light of a tunable dye laser in the wavelength region 3750-5200 A. The spectral dependence of the ion signal reveals a multitude of narrow (fwhm from <0.5 cm -1 to 1.5 cm -1) intense peaks superimposed on a very weak background (relative amplitude ratio for peaks/background ≈ 10 3). The sharp resonances in the ion signal are attributed, on the basis of spectroscopic analysis, to two-photon resonant three-photon ionization of Ni(I) and to one-photon resonant three-photon ionization of Ni(I), the Ni(I) being produced by MPD of nickelocene. The ion signal in the spectral range 3750-3950 A reveals enhanced continuous background due to MPI of nickelocene. This ion signal spectra, together with studies of the intensity dependence of the overall (nickelocene MPD) - (Ni(I) MPI) processes, as well as the (nickelocene molecular MPI) reaction, reveal four reactive processes. (a) Two-photon molecular MPI for hω ⩾ 3.10 eV photons. (b) Three-photon molecular MPI for hω = 3.10-2.10 eV. (c) Two-photon MPD at hω ⩾ 2.86 eV. (d) Three-photon MPD for hω = 2.8-1.9 eV. The overall dissociation energy of nickelocene (Nicp 2) to give Ni + 2cp was determined to be 5.76 ± 0.60 eV and the two-photon ionization potential of this molecule is 6.29 ± 0.015 eV. Our results provide dynamic evidence concerning a simultaneous "explosive" photodissociation mechanism of Nicp 2 by process (c) and for the dominating role of the dissociative channel, characterized by a branching ratio of ⩾50 in favor of predissociation over autoionization, for process (c) at 6.3-6.6 eV. The MPD processes (c) and (d) are expected to exhibit intramolecular erosion of phase coherence effects. Processes (c) and (d) are of high efficiency ≈0.01 ions/molecule at saturation exhibited at laser power of ≈ 10

  5. 4d → 4f resonance in photoabsorption of cerium ion Ce3+ and endohedral cerium in fullerene complex {\\rm{Ce}}@{{{\\rm{C}}}_{82}}^{+}

    Science.gov (United States)

    Schrange-Kashenock, G.

    2016-09-01

    cage decreases the autoionizing giant 4d\\to 4f resonance lifetime for endohedral cerium in {{Ce}}@{{{{C}}}82}+ due to the opening of additional decay channels involving electrons of the fullerene shell, which cannot be accounted as a static potential. From consideration of the two-step model, it is clear that these processes are important. However, they lead only to broadening of the resonance. The dramatic reduction in the integrated oscillator strength in the cerium 4d resonance region can only occur when additional processes besides photoionization come into play.

  6. Photoionization of iodine atoms: Angular distributions and relative partial photoionization cross-sections in the energy region 11.0-23.0 eV

    Science.gov (United States)

    Eypper, Marie; Innocenti, Fabrizio; Morris, Alan; Dyke, John M.; Stranges, Stefano; West, John B.; King, George C.

    2010-08-01

    states, relativistic effects including spin-orbit interaction, and autoionization via resonant Rydberg states.

  7. Computational Studies on the Anharmonic Dynamics of Molecular Clusters

    Science.gov (United States)

    Mancini, John S.

    Molecular nanoclusters present ideal systems to probe the physical forces and dynamics that drive the behavior of larger bulk systems. At the nanocluster limit the first instances of several phenomena can be observed including the breaking of hydrogen and molecular bonds. Advancements in experimental and theoretical techniques have made it possible to explore these phenomena in great detail. The most fruitful of these studies have involved the use of both experimental and theoretical techniques to leverage to strengths of the two approaches. This dissertation seeks to explore several important phenomena of molecular clusters using new and existing theoretical methodologies. Three specific systems are considered, hydrogen chloride clusters, mixed water and hydrogen chloride clusters and the first cluster where hydrogen chloride autoionization occurs. The focus of these studies remain as close as possible to experimentally observable phenomena with the intention of validating, simulating and expanding on experimental work. Specifically, the properties of interested are those related to the vibrational ground and excited state dynamics of these systems. Studies are performed using full and reduced dimensional potential energy surface alongside advanced quantum mechanical methods including diffusion Monte Carlo, vibrational configuration interaction theory and quasi-classical molecular dynamics. The insight gained from these studies are great and varied. A new on-they-fly ab initio method for studying molecular clusters is validated for (HCl)1--6. A landmark study of the dissociation energy and predissociation mechanism of (HCl)3 is reported. The ground states of mixed (HCl)n(H2O)m are found to be highly delocalized across multiple stationary point configurations. Furthermore, it is identified that the consideration of this delocalization is required in vibrational excited state calculations to achieve agreement with experimental measurements. Finally, the theoretical

  8. Communication: Direct measurements of nascent O({sup 3}P{sub 0,1,2}) fine-structure distributions and branching ratios of correlated spin-orbit resolved product channels CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) in VUV photodissociation of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhou; Chang, Yih Chung; Gao, Hong; Benitez, Yanice; Song, Yu; Ng, C. Y., E-mail: cyng@chem.ucdavis.edu, E-mail: wmjackson@ucdavis.edu; Jackson, W. M., E-mail: cyng@chem.ucdavis.edu, E-mail: wmjackson@ucdavis.edu [Department of Chemistry, University of California, Davis, Davis, California 95616 (United States)

    2014-06-21

    We present a generally applicable experimental method for the direct measurement of nascent spin-orbit state distributions of atomic photofragments based on the detection of vacuum ultraviolet (VUV)-excited autoionizing-Rydberg (VUV-EAR) states. The incorporation of this VUV-EAR method in the application of the newly established VUV-VUV laser velocity-map-imaging-photoion (VMI-PI) apparatus has made possible the branching ratio measurement for correlated spin-orbit state resolved product channels, CO(ã{sup 3}Π; v) + O({sup 3}P{sub 0,1,2}) and CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}), formed by VUV photoexcitation of CO{sub 2} to the 4s(1{sub 0}{sup 1}) Rydberg state at 97,955.7 cm{sup −1}. The total kinetic energy release (TKER) spectra obtained from the O{sup +} VMI-PI images of O({sup 3}P{sub 0,1,2}) reveal the formation of correlated CO(ã{sup 3}Π; v = 0–2) with well-resolved v = 0–2 vibrational bands. This observation shows that the dissociation of CO{sub 2} to form the spin-allowed CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel has no potential energy barrier. The TKER spectra for the spin-forbidden CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel were found to exhibit broad profiles, indicative of the formation of a broad range of rovibrational states of CO(Χ{sup ~1}Σ{sup +})  with significant vibrational populations for v = 18–26. While the VMI-PI images for the CO(ã{sup 3}Π; v = 0–2) + O({sup 3}P{sub 0,1,2}) channel are anisotropic, indicating that the predissociation of CO{sub 2} 4s(1{sub 0}{sup 1}) occurs via a near linear configuration in a time scale shorter than the rotational period, the angular distributions for the CO(Χ{sup ~1}Σ{sup +}; v) + O({sup 3}P{sub 0,1,2}) channel are close to isotropic, revealing a slower predissociation process, which possibly occurs on a triplet surface via an intersystem crossing mechanism.

  9. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    Science.gov (United States)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    Highly Excited Vibrational State * Investigation of the Stark Effect in Xenon Autoionizing Rydberg Series with the Use of Coherent Tunable XUV Radiation * Laser Spectroscopy of Autoionising 5 dnf J = 4.5 Rydberg Series of Ba I * Resonance Photoionization Spectroscopy of Atoms: Autoionization and Highly Excited States of Kr and U * Stark Spectra of Strontium and Calcium Atoms * Observation of Bidirectional Stimulated Radiation at 330 nm, 364 nm and 718 nm with 660 nm Laser Pumping in Sodium Vapour * Study of Molecular Rydberg States and their Discriminations in Na2 * The Measurement of the High Excited Spectra of Samarium by using Stepwise Laser Excitation Method * Product Analysis in the Reaction of the Two-photon Excited Xe(5p56p) States with Freons * Photoionization Spectra of Ca and Sr Atoms above the Classical Field-ionization Threshold * Effect of Medium Background on the Hydrogen Spectrum * Photoemission and Photoelectron Spectra from Autoionizing Atoms in Strong Laser Field * Natural Radiative Lifetime Measurements of High-lying States of Samarium * Two-step Laser Excitation of nf Rydberg States in Neutral Al and Observation of Stark Effect * Measurements of Excited Spectra of the Refractory Metal Elements using Discharge Synchronized with the Laser Pulse * Multiphoton Ionization of Atomic Lead at 1.06μ * Kinetic Processes in the Electron-beam pumped KrF Laser * Laser-induced Fluorescence of Zn2 Excimer * Calculation of Transition Intensity in Heteronuclear Dimer NaK: Comparison with Experiment * Laser-induced Fluorescence of CCl2 Carbene * Study of Multiphoton Ionization Spectrum of Benzene and Two-photon Absorption Cross Section * Dicke Narrowing of N2O Linewidth Perturbed by N2 at 10 μm Band * Polyatomic Molecular Ions Studied by Laser Photodissociation Spectroscopy * Transverse-optically Pumped Ultraviolet S2 Laser * Multiphoton Ionization of Propanal by High Power Laser * UV MPI Mass Spectroscopy and Dynamics of Photodissociation of SO2 * Multiphoton

  10. A Separable Insertion Method to Calculate Atomic and Molecular Resonances on a FE-DVR Grid using Exterior Complex Scaling

    Science.gov (United States)

    Abeln, Brant Anthony

    The study of metastable electronic resonances, anion or neutral states of finite lifetime, in molecules is an important area of research where currently no theoretical technique is generally applicable. The role of theory is to calculate both the position and width, which is proportional to the inverse of the lifetime, of these resonances and how they vary with respect to nuclear geometry in order to generate potential energy surfaces. These surfaces are the basis of time-dependent models of the molecular dynamics where the system moves towards vibrational excitation or fragmentation. Three fundamental electronic processes that can be modeled this way are dissociative electronic attachment, vibrational excitation through electronic impact and autoionization. Currently, experimental investigation into these processes is being preformed on polyatomic molecules while theoreticians continue their fifty-year-old search for robust methods to calculate them. The separable insertion method, investigated in this thesis, seeks to tackle the problem of calculating metastable resonances by using existing quantum chemistry tools along with a grid-based method employing exterior complex scaling (ECS). Modern quantum chemistry methods are extremely efficient at calculating ground and (bound) excited electronic states of atoms and molecules by utilizing Gaussian basis functions. These functions provide both a numerically fast and analytic solution to the necessary two-electron, six-dimensional integrals required in structure calculations. However, these computer programs, based on analytic Gaussian basis sets, cannot construct solutions that are not square-integrable, such as resonance wavefunctions. ECS, on the other hand, can formally calculate resonance solutions by rotating the asymptotic electronic coordinates into the complex plane. The complex Siegert energies for resonances, Eres = ER - iGamma/2 where ER is the real-valued position of the resonance and Gamma is the width

  11. Photonic, Electronic and Atomic Collisions

    Science.gov (United States)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    ionization of fixed in space deuterium molecules / T. Weber ... [et al.]. Coherence and intramolecular scattering in molecular photoionization / U. Becker. Experimental observation of interatomic coulombic decay in neon dimers / T. Jahnke ... [et al.]. Ionization by short UV laser pulses: secondary ATI peaks of the electron spectrum / V. D. Rodríguez, E. Cormier and R. Gayet. Molecular frame photoemission in photoionization of H[symbol] and D[symbol]: the role of dissociation on autoionization of the Q[symbol] and Q[symbol] doubly excited states / D. Dowek, M. Lebech and J. C. Houver. 3p photoemission of 3d transition metals - atoms, molecules and clusters / M. Martins -- Collisions involving electrons. Spin-resolved collisions of electrons with atoms and molecules / G. F. Hanne. Calculation of ionization and excitation processes using the convergent close-coupling method / D. V. Fursa, I. Bray and A. T. Stelbovics. The B-spline R-matrix method for electron and photon collisions with atoms and ions / O. Zatsarinny and K. Bartschat. Absolute angle-differential cross sections for excitation of neon atoms electrons of energy 16.6-19.2 eV / M. Allan ... [et al.]. Studies of QED and nuclear size effects with highly charged ions in an EBIT / J. R. Crespo López-Urrutia ... [et al.]. Recombination of astrophysically relevant ions: Be-like C, N, and O / M. Fogle ... [et al.]. Dissociation and excitation of molecules and molecular ions by electron impact / A. E. Orel and J. Royal state-selective X-ray study of the radiative recombination of U[symbol] ions with cooling electrons / M. Pajek ... [et al.]. Electron collisions with trapped, metastable helium / L. J. Uhlmann ... [et al.]. Non-dipole effects in electron and photon impact ionization / N. L. S. Martin. Electron driven processes in atmospheric behaviour / L. Campbell, M. J. Brunger and P. J. 0. Teubner. Calculation of excitation and ionization for electron-molecule collisions at intermediate energies / J. D. Gorfinkiel

  12. Solar Spectrum Synthesis. I. A Sample Atlas from 224 to 300 nm

    Science.gov (United States)

    Kurucz, Robert L.; Avrett, Eugene H.

    1981-05-01

    We have developed sophisticated computer programs for determining solar and stellar atmospheric structure through the analysis of spectra. These programs allow us to treat the spectrum as a whole and to draw much stronger conclusions than would be apparent from individual spectral features. For a given LTE or non-LTE model atmosphere, the programs compute the emergent flux or the specific intensity at up to 20 angles. The spectrum can be broadened by macroturbulence and rotation; it can be modified by transmission through the Earth's atmosphere; it can be convolved with the instrumental profile; and it can finally be plotted together with the observed spectrum with each line labeled. In the opacity calculation, the lines are broadened by radiative, Stark, and van der Waals damping, and they can have isotopic and hyperfine splitting, autoionization, partial redistribution, or be merged into a continuum. The departure coefficients for ions treated in non-LTE in the model atmosphere calculation can be used in the spectrum synthesis programs for all lines of these ions, and highly ionized lines can be treated in the coronal approximation. The model atmosphere can have depth-dependent doppler shifts corresponding to large-scale motions. Using the Vernazza, Avrett, and Loeser models for the average quiet sun, we have computed theoretical solar spectra that include all available atomic and molecular line data. In this atlas we compare with the best available observed spectra in the 224- to 300-nm wavelength range, namely, the Kohl, Parkinson, and Kurucz (Harvard) center and limb rocket spectra in the range 224 to 300 nm; the Allen, McAllister, and Jefferies (Hawaii) disk center rocket spectrum for 268 to 293 nm; and the Brault and Testerman disk center spectrum taken at Kitt Peak for 294 to 300 nm. We also compare the observed spectra with each other. The existing spectra are noisy and do not have adequate resolution, so that it is difficult or impossible to identify weak

  13. Non-thermal processes on ice and liquid micro-jet surfaces

    Science.gov (United States)

    Olanrewaju, Babajide O.

    The primary focus of this research is to investigate non-thermal processes occurring on ice surfaces and the photo-ejection of ions from liquid surfaces. Processes at the air-water/ice interface are known to play a very important role in the release of reactive halogen species with atmospheric aerosols serving as catalysts. The ability to make different types of ice with various morphologies, hence, different adsorption and surface properties in vacuum, provide a useful way to probe the catalytic effect of ice in atmospheric reactions. Also, the use of the liquid jet technique provides the rare opportunity to probe liquid samples at the interface; hitherto impossible to investigate with traditional surface science techniques. In Chapter 2, the effect of ice morphology on the release of reactive halogen species from photodissociation of adsorbed organic halides on ice will be presented. Quantum state resolved measurements of neutral atomic iodine from the photon irradiation of submonolayer coverages of methyl iodide adsorbed on low temperature water ice were conducted. Temperature programmed desorption (TPD) studies of methyl iodide adsorbed on ice were performed to provide information on the effect of ice morphology on the adsorption of submonolayer methyl iodide. The interaction and autoionization of HCl on low-temperature (80{140 K) water ice surfaces has been studied using low-energy (5-250 eV) electron-stimulated desorption (ESD) and temperature programmed desorption (TPD). A detailed ESD study of the interactions of low concentrations of HCl with low-temperature porous amorphous solid water (PASW), amorphous solid water (ASW) and crystalline ice (CI) surfaces will be presented in Chapter 3. The ESD cation yields from HCl adsorbed on ice, as well as the coverage dependence, kinetic energy distributions and TPD measurements were all monitored. Probing liquid surface using traditional surface science technique is usually difficult because of the problem of