WorldWideScience

Sample records for autism candidate gene

  1. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain

    Science.gov (United States)

    Nguyen, AnhThu; Rauch, Tibor A.; Pfeifer, Gerd P.; Hu, Valerie W.

    2010-01-01

    Autism is currently considered a multigene disorder with epigenetic influences. To investigate the contribution of DNA methylation to autism spectrum disorders, we have recently completed large-scale methylation profiling by CpG island microarray analysis of lymphoblastoid cell lines derived from monozygotic twins discordant for diagnosis of autism and their nonautistic siblings. Methylation profiling revealed many candidate genes differentially methylated between discordant MZ twins as well as between both twins and nonautistic siblings. Bioinformatics analysis of the differentially methylated genes demonstrated enrichment for high-level functions including gene transcription, nervous system development, cell death/survival, and other biological processes implicated in autism. The methylation status of 2 of these candidate genes, BCL-2 and retinoic acid-related orphan receptor alpha (RORA), was further confirmed by bisulfite sequencing and methylation-specific PCR, respectively. Immunohistochemical analyses of tissue arrays containing slices of the cerebellum and frontal cortex of autistic and age- and sex-matched control subjects revealed decreased expression of RORA and BCL-2 proteins in the autistic brain. Our data thus confirm the role of epigenetic regulation of gene expression via differential DNA methylation in idiopathic autism, and furthermore link molecular changes in a peripheral cell model with brain pathobiology in autism.—Nguyen, A., Rauch, T. A., Pfeifer, G. P., Hu, V. W. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. PMID:20375269

  2. Whole Exome Sequencing in Females with Autism Implicates Novel and Candidate Genes

    Directory of Open Access Journals (Sweden)

    Merlin G. Butler

    2015-01-01

    Full Text Available Classical autism or autistic disorder belongs to a group of genetically heterogeneous conditions known as Autism Spectrum Disorders (ASD. Heritability is estimated as high as 90% for ASD with a recently reported compilation of 629 clinically relevant candidate and known genes. We chose to undertake a descriptive next generation whole exome sequencing case study of 30 well-characterized Caucasian females with autism (average age, 7.7 ± 2.6 years; age range, 5 to 16 years from multiplex families. Genomic DNA was used for whole exome sequencing via paired-end next generation sequencing approach and X chromosome inactivation status. The list of putative disease causing genes was developed from primary selection criteria using machine learning-derived classification score and other predictive parameters (GERP2, PolyPhen2, and SIFT. We narrowed the variant list to 10 to 20 genes and screened for biological significance including neural development, function and known neurological disorders. Seventy-eight genes identified met selection criteria ranging from 1 to 9 filtered variants per female. Five females presented with functional variants of X-linked genes (IL1RAPL1, PIR, GABRQ, GPRASP2, SYTL4 with cadherin, protocadherin and ankyrin repeat gene families most commonly altered (e.g., CDH6, FAT2, PCDH8, CTNNA3, ANKRD11. Other genes related to neurogenesis and neuronal migration (e.g., SEMA3F, MIDN, were also identified.

  3. Autism genes keep turning up chromatin.

    Science.gov (United States)

    Lasalle, Janine M

    2013-06-19

    Autism-spectrum disorders (ASD) are complex genetic disorders collectively characterized by impaired social interactions and language as well as repetitive and restrictive behaviors. Of the hundreds of genes implicated in ASD, those encoding proteins acting at neuronal synapses have been most characterized by candidate gene studies. However, recent unbiased genome-wide analyses have turned up a multitude of novel candidate genes encoding nuclear factors implicated in chromatin remodeling, histone demethylation, histone variants, and the recognition of DNA methylation. Furthermore, the chromatin landscape of the human genome has been shown to influence the location of de novo mutations observed in ASD as well as the landscape of DNA methylation underlying neurodevelopmental and synaptic processes. Understanding the interactions of nuclear chromatin proteins and DNA with signal transduction pathways and environmental influences in the developing brain will be critical to understanding the relevance of these ASD candidate genes and continued uncovering of the "roots" of autism etiology.

  4. Cumulative Impact of Polychlorinated Biphenyl and Large Chromosomal Duplications on DNA Methylation, Chromatin, and Expression of Autism Candidate Genes.

    Science.gov (United States)

    Dunaway, Keith W; Islam, M Saharul; Coulson, Rochelle L; Lopez, S Jesse; Vogel Ciernia, Annie; Chu, Roy G; Yasui, Dag H; Pessah, Isaac N; Lott, Paul; Mordaunt, Charles; Meguro-Horike, Makiko; Horike, Shin-Ichi; Korf, Ian; LaSalle, Janine M

    2016-12-13

    Rare variants enriched for functions in chromatin regulation and neuronal synapses have been linked to autism. How chromatin and DNA methylation interact with environmental exposures at synaptic genes in autism etiologies is currently unclear. Using whole-genome bisulfite sequencing in brain tissue and a neuronal cell culture model carrying a 15q11.2-q13.3 maternal duplication, we find that significant global DNA hypomethylation is enriched over autism candidate genes and affects gene expression. The cumulative effect of multiple chromosomal duplications and exposure to the pervasive persistent organic pollutant PCB 95 altered methylation of more than 1,000 genes. Hypomethylated genes were enriched for H2A.Z, increased maternal UBE3A in Dup15q corresponded to reduced levels of RING1B, and bivalently modified H2A.Z was altered by PCB 95 and duplication. These results demonstrate the compounding effects of genetic and environmental insults on the neuronal methylome that converge upon dysregulation of chromatin and synaptic genes. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    OpenAIRE

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A ...

  6. Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children

    Directory of Open Access Journals (Sweden)

    Tavassoli Teresa

    2012-07-01

    Full Text Available Abstract Background Autism spectrum conditions have a strong genetic component. Atypical sensory sensitivities are one of the core but neglected features of autism spectrum conditions. GABRB3 is a well-characterised candidate gene for autism spectrum conditions. In mice, heterozygous Gabrb3 deletion is associated with increased tactile sensitivity. However, no study has examined if tactile sensitivity is associated with GABRB3 genetic variation in humans. To test this, we conducted two pilot genetic association studies in the general population, analysing two phenotypic measures of tactile sensitivity (a parent-report and a behavioural measure for association with 43 SNPs in GABRB3. Findings Across both tactile sensitivity measures, three SNPs (rs11636966, rs8023959 and rs2162241 were nominally associated with both phenotypes, providing a measure of internal validation. Parent-report scores were nominally associated with six SNPs (P Conclusions This is the first human study to show an association between GABRB3 variation and tactile sensitivity. This provides support for the evidence from animal models implicating the role of GABRB3 variation in the atypical sensory sensitivity in autism spectrum conditions. Future research is underway to directly test this association in cases of autism spectrum conditions.

  7. Neurexin gene family variants as risk factors for autism spectrum disorder.

    Science.gov (United States)

    Wang, Jia; Gong, Jianhua; Li, Li; Chen, Yanlin; Liu, Lingfei; Gu, HuaiTing; Luo, Xiu; Hou, Fang; Zhang, Jiajia; Song, Ranran

    2018-01-01

    Increasing evidence suggests that abnormal synaptic function leads to neuronal developmental disorders and is an important component of the etiology of autism spectrum disorder (ASD). Neurexins are presynaptic cell-adhesion molecules that affect the function of synapses and mediate the conduction of nerve signals. Thus, neurexins are attractive candidate genes for autism. Since gene families have greater power to reveal genetic association than single genes, we designed this case-control study to investigate six genetic variants in three neurexin genes (NRXN1, NRXN2, and NRXN3) in a Chinese population including 529 ASD patients and 1,923 healthy controls. We found that two SNPs were significantly associated with ASD after false discovery rate (FDR) adjustment for multiple comparisons. The NRXN2 rs12273892 polymorphism T allele and AT genotype were significantly associated with increased risk of ASD (respectively: OR = 1.328, 95% CI = 1.133-1.557, P Autism Res 2018, 11: 37-43. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is highly heritable, and studies have found a number of candidate genes that might contribute to ASD. Neurexins are presynaptic cell-adhesion molecules that affect the function of synapses and mediate the conduction of nerve signals, and they play an important role in normal brain development and become candidate genes for autism. The purpose of our study is to explore the association between variants of the neurexins gene family and ASD in a Chinese population through a case-control study. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Coalitional game theory as a promising approach to identify candidate autism genes.

    Science.gov (United States)

    Gupta, Anika; Sun, Min Woo; Paskov, Kelley Marie; Stockham, Nate Tyler; Jung, Jae-Yoon; Wall, Dennis Paul

    2018-01-01

    Despite mounting evidence for the strong role of genetics in the phenotypic manifestation of Autism Spectrum Disorder (ASD), the specific genes responsible for the variable forms of ASD remain undefined. ASD may be best explained by a combinatorial genetic model with varying epistatic interactions across many small effect mutations. Coalitional or cooperative game theory is a technique that studies the combined effects of groups of players, known as coalitions, seeking to identify players who tend to improve the performance--the relationship to a specific disease phenotype--of any coalition they join. This method has been previously shown to boost biologically informative signal in gene expression data but to-date has not been applied to the search for cooperative mutations among putative ASD genes. We describe our approach to highlight genes relevant to ASD using coalitional game theory on alteration data of 1,965 fully sequenced genomes from 756 multiplex families. Alterations were encoded into binary matrices for ASD (case) and unaffected (control) samples, indicating likely gene-disrupting, inherited mutations in altered genes. To determine individual gene contributions given an ASD phenotype, a "player" metric, referred to as the Shapley value, was calculated for each gene in the case and control cohorts. Sixty seven genes were found to have significantly elevated player scores and likely represent significant contributors to the genetic coordination underlying ASD. Using network and cross-study analysis, we found that these genes are involved in biological pathways known to be affected in the autism cases and that a subset directly interact with several genes known to have strong associations to autism. These findings suggest that coalitional game theory can be applied to large-scale genomic data to identify hidden yet influential players in complex polygenic disorders such as autism.

  9. Protocadherin α (PCDHA) as a novel susceptibility gene for autism

    Science.gov (United States)

    Anitha, Ayyappan; Thanseem, Ismail; Nakamura, Kazuhiko; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Iwata, Yasuhide; Suzuki, Katsuaki; Sugiyama, Toshiro; Tsujii, Masatsugu; Yoshikawa, Takeo; Mori, Norio

    2013-01-01

    Background Synaptic dysfunction has been shown to be involved in the pathogenesis of autism. We hypothesized that the protocadherin α gene cluster (PCDHA), which is involved in synaptic specificity and in serotonergic innervation of the brain, could be a suitable candidate gene for autism. Methods We examined 14 PCDHA single nucleotide polymorphisms (SNPs) for genetic association with autism in DNA samples of 3211 individuals (841 families, including 574 multiplex families) obtained from the Autism Genetic Resource Exchange. Results Five SNPs (rs251379, rs1119032, rs17119271, rs155806 and rs17119346) showed significant associations with autism. The strongest association (p < 0.001) was observed for rs1119032 (z score of risk allele G = 3.415) in multiplex families; SNP associations withstand multiple testing correction in multiplex families (p = 0.041). Haplotypes involving rs1119032 showed very strong associations with autism, withstanding multiple testing corrections. In quantitative transmission disequilibrium testing of multiplex families, the G allele of rs1119032 showed a significant association (p = 0.033) with scores on the Autism Diagnostic Interview–Revised (ADI-R)_D (early developmental abnormalities). We also found a significant difference in the distribution of ADI-R_A (social interaction) scores between the A/A, A/G and G/G genotypes of rs17119346 (p = 0.002). Limitations Our results should be replicated in an independent population and/or in samples of different racial backgrounds. Conclusion Our study provides strong genetic evidence of PCDHA as a potential candidate gene for autism. PMID:23031252

  10. Analysis of transmission of novel polymorphisms in the somatostatin receptor 5 (SSTR5) gene in patients with autism

    DEFF Research Database (Denmark)

    Lauritsen, Marlene B; Nyegaard, Mette; Betancur, Catalina

    2003-01-01

    growth hormone response has been reported in some individuals with autism. Moreover, the somatostatinergic system interacts with the dopaminergic system, which has been hypothesized to be involved in the etiology of autism; in particular, somatostatin secretion is regulated by dopamine, and the dopamine......Infantile autism is a pervasive developmental disorder with a strong genetic component. The mode of inheritance appears to be complex and no specific susceptibility genes have yet been identified. Chromosome 16p13.3 may contain a susceptibility gene based on findings from genome scans and reports...... of chromosome abnormalities in individuals with autism. The somatostatin receptor 5 (SSTR5) gene is located on chromosome 16p13.3 and is thus a positional candidate gene for autism. SSTR5 may also be a functional candidate gene for autism because somatostatin inhibits growth hormone secretion, and increased...

  11. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

    Science.gov (United States)

    Yuen, Ryan KC; Merico, Daniele; Bookman, Matt; Howe, Jennifer L; Thiruvahindrapuram, Bhooma; Patel, Rohan V; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A; Walker, Susan; Marshall, Christian R; Uddin, Mohammed; Zarrei, Mehdi; Deneault, Eric; D’Abate, Lia; Chan, Ada JS; Koyanagi, Stephanie; Paton, Tara; Pereira, Sergio L; Hoang, Ny; Engchuan, Worrawat; Higginbotham, Edward J; Ho, Karen; Lamoureux, Sylvia; Li, Weili; MacDonald, Jeffrey R; Nalpathamkalam, Thomas; Sung, Wilson WL; Tsoi, Fiona J; Wei, John; Xu, Lizhen; Tasse, Anne-Marie; Kirby, Emily; Van Etten, William; Twigger, Simon; Roberts, Wendy; Drmic, Irene; Jilderda, Sanne; Modi, Bonnie MacKinnon; Kellam, Barbara; Szego, Michael; Cytrynbaum, Cheryl; Weksberg, Rosanna; Zwaigenbaum, Lonnie; Woodbury-Smith, Marc; Brian, Jessica; Senman, Lili; Iaboni, Alana; Doyle-Thomas, Krissy; Thompson, Ann; Chrysler, Christina; Leef, Jonathan; Savion-Lemieux, Tal; Smith, Isabel M; Liu, Xudong; Nicolson, Rob; Seifer, Vicki; Fedele, Angie; Cook, Edwin H; Dager, Stephen; Estes, Annette; Gallagher, Louise; Malow, Beth A; Parr, Jeremy R; Spence, Sarah J; Vorstman, Jacob; Frey, Brendan J; Robinson, James T; Strug, Lisa J; Fernandez, Bridget A; Elsabbagh, Mayada; Carter, Melissa T; Hallmayer, Joachim; Knoppers, Bartha M; Anagnostou, Evdokia; Szatmari, Peter; Ring, Robert H; Glazer, David; Pletcher, Mathew T; Scherer, Stephen W

    2017-01-01

    We are performing whole genome sequencing (WGS) of families with Autism Spectrum Disorder (ASD) to build a resource, named MSSNG, to enable the sub-categorization of phenotypes and underlying genetic factors involved. Here, we report WGS of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible in a cloud platform, and through an internet portal with controlled access. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertion/deletions (indels) or copy number variations (CNVs) per ASD subject. We identified 18 new candidate ASD-risk genes such as MED13 and PHF3, and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (p=6×10−4). In 294/2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried CNV/chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD. PMID:28263302

  12. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci

    Directory of Open Access Journals (Sweden)

    Hedges Dale J

    2012-04-01

    Full Text Available Abstract Background Autism spectrum disorders (ASD represent a group of neurodevelopmental disorders characterized by a core set of social-communicative and behavioral impairments. Gamma-aminobutyric acid (GABA is the major inhibitory neurotransmitter in the brain, acting primarily via the GABA receptors (GABR. Multiple lines of evidence, including altered GABA and GABA receptor expression in autistic patients, indicate that the GABAergic system may be involved in the etiology of autism. Methods As copy number variations (CNVs, particularly rare and de novo CNVs, have now been implicated in ASD risk, we examined the GABA receptors and genes in related pathways for structural variation that may be associated with autism. We further extended our candidate gene set to include 19 genes and regions that had either been directly implicated in the autism literature or were directly related (via function or ancestry to these primary candidates. For the high resolution CNV screen we employed custom-designed 244 k comparative genomic hybridization (CGH arrays. Collectively, our probes spanned a total of 11 Mb of GABA-related and additional candidate regions with a density of approximately one probe every 200 nucleotides, allowing a theoretical resolution for detection of CNVs of approximately 1 kb or greater on average. One hundred and sixty-eight autism cases and 149 control individuals were screened for structural variants. Prioritized CNV events were confirmed using quantitative PCR, and confirmed loci were evaluated on an additional set of 170 cases and 170 control individuals that were not included in the original discovery set. Loci that remained interesting were subsequently screened via quantitative PCR on an additional set of 755 cases and 1,809 unaffected family members. Results Results include rare deletions in autistic individuals at JAKMIP1, NRXN1, Neuroligin4Y, OXTR, and ABAT. Common insertion/deletion polymorphisms were detected at several

  13. Examination of tetrahydrobiopterin pathway genes in autism.

    Science.gov (United States)

    Schnetz-Boutaud, N C; Anderson, B M; Brown, K D; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L

    2009-11-01

    Autism is a complex disorder with a high degree of heritability and significant phenotypic and genotypic heterogeneity. Although candidate gene studies and genome-wide screens have failed to identify major causal loci associated with autism, numerous studies have proposed association with several variations in genes in the dopaminergic and serotonergic pathways. Because tetrahydrobiopterin (BH4) is the essential cofactor in the synthesis of these two neurotransmitters, we genotyped 25 SNPs in nine genes of the BH4 pathway in a total of 403 families. Significant nominal association was detected in the gene for 6-pyruvoyl-tetrahydropterin synthase, PTS (chromosome 11), with P = 0.009; this result was not restricted to an affected male-only subset. Multilocus interaction was detected in the BH4 pathway alone, but not across the serotonin, dopamine and BH4 pathways.

  14. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q

    DEFF Research Database (Denmark)

    Bonora, E.; Lamb, J.A.; Barnby, G.

    2005-01-01

    in the genes CUTL1, LAMB1 and PTPRZ1. Analysis of genetic variants provided evidence for association with autism for one of the new missense changes identified in LAMB1; this effect was stronger in a subgroup of affected male sibling pair families, implying a possible specific sex-related effect......Genetic studies have provided evidence for an autism susceptibility locus (AUTS1) on chromosome 7q. Screening for mutations in six genes mapping to 7q, CUTL1, SRPK2, SYPL, LAMB1, NRCAM and PTPRZ1 in 48 unrelated individuals with autism led to the identification of several new coding variants...

  15. Autism Spectrum Disorder and High Confidence Gene Factors

    OpenAIRE

    Mai, MOCHIZUKI

    2017-01-01

    Autism spectrum disorder (ASD) is a neurological developmental disorder whose mechanism isyet unclear. However, recent ASD studies, which employ exome- and genome-wide sequencing,have identified some high-confidence ASD genes. Those ASD studies have revealed that CHD8is likely associated with ASD. In this article, we highlight that CHD8 may regulate othercandidate ASD risk genes. Current research indicates that there exist some thousand autismsusceptibility candidate genes. Moreover, we sugge...

  16. Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC.

    Science.gov (United States)

    Toma, Claudio; Hervás, Amaia; Balmaña, Noemí; Salgado, Marta; Maristany, Marta; Vilella, Elisabet; Aguilera, Francisco; Orejuela, Carmen; Cuscó, Ivon; Gallastegui, Fátima; Pérez-Jurado, Luis Alberto; Caballero-Andaluz, Rafaela; Diego-Otero, Yolanda de; Guzmán-Alvarez, Guadalupe; Ramos-Quiroga, Josep Antoni; Ribasés, Marta; Bayés, Mònica; Cormand, Bru

    2013-09-01

    Neurotransmitter systems and neurotrophic factors can be considered strong candidates for autism spectrum disorder (ASD). The serotoninergic and dopaminergic systems are involved in neurotransmission, brain maturation and cortical organization, while neurotrophic factors (NTFs) participate in neurodevelopment, neuronal survival and synapses formation. We aimed to test the contribution of these candidate pathways to autism through a case-control association study of genes selected both for their role in central nervous system functions and for pathophysiological evidences. The study sample consisted of 326 unrelated autistic patients and 350 gender-matched controls from Spain. We genotyped 369 tagSNPs to perform a case-control association study of 37 candidate genes. A significant association was obtained between the DDC gene and autism in the single-marker analysis (rs6592961, P = 0.00047). Haplotype-based analysis pinpointed a four-marker combination in this gene associated with the disorder (rs2329340C-rs2044859T-rs6592961A-rs11761683T, P = 4.988e-05). No significant results were obtained for the remaining genes after applying multiple testing corrections. However, the rs167771 marker in DRD3, associated with ASD in a previous study, displayed a nominal association in our analysis (P = 0.023). Our data suggest that common allelic variants in the DDC gene may be involved in autism susceptibility.

  17. Association of autism with polymorphisms in the paired-like homeodomain transcription factor 1 (PITX1) on chromosome 5q31: a candidate gene analysis.

    Science.gov (United States)

    Philippi, Anne; Tores, Frédéric; Carayol, Jérome; Rousseau, Francis; Letexier, Mélanie; Roschmann, Elke; Lindenbaum, Pierre; Benajjou, Abdel; Fontaine, Karine; Vazart, Céline; Gesnouin, Philippe; Brooks, Peter; Hager, Jörg

    2007-12-06

    Autism is a complex, heterogeneous, behaviorally-defined disorder characterized by disruptions of the nervous system and of other systems such as the pituitary-hypothalamic axis. In a previous genome wide screen, we reported linkage of autism with a 1.2 Megabase interval on chromosome 5q31. For the current study, we hypothesized that 3 of the genes in this region could be involved in the development of autism: 1) paired-like homeodomain transcription factor 1 (PITX1), which is a key regulator of hormones within the pituitary-hypothalamic axis, 2) neurogenin 1, a transcription factor involved in neurogenesis, and 3) histone family member Y (H2AFY), which is involved in X-chromosome inactivation in females and could explain the 4:1 male:female gender distortion present in autism. A total of 276 families from the Autism Genetic Resource Exchange (AGRE) repository composed of 1086 individuals including 530 affected children were included in the study. Single nucleotide polymorphisms tagging the three candidate genes were genotyped on the initial linkage sample of 116 families. A second step of analysis was performed using tightly linked SNPs covering the PITX1 gene. Association was evaluated using the FBAT software version 1.7.3 for single SNP analysis and the HBAT command from the same package for haplotype analysis respectively. Association between SNPs and autism was only detected for PITX1. Haplotype analysis within PITX1 showed evidence for overtransmission of the A-C haplotype of markers rs11959298 - rs6596189 (p = 0.0004). Individuals homozygous or heterozygous for the A-C haplotype risk allele were 2.54 and 1.59 fold more likely to be autistic than individuals who were not carrying the allele, respectively. Strong and consistent association was observed between a 2 SNPs within PITX1 and autism. Our data suggest that PITX1, a key regulator of hormones within the pituitary-hypothalamic axis, may be implicated in the etiology of autism.

  18. Association of autism with polymorphisms in the paired-like homeodomain transcription factor 1 (PITX1 on chromosome 5q31: a candidate gene analysis

    Directory of Open Access Journals (Sweden)

    Fontaine Karine

    2007-12-01

    Full Text Available Abstract Background Autism is a complex, heterogeneous, behaviorally-defined disorder characterized by disruptions of the nervous system and of other systems such as the pituitary-hypothalamic axis. In a previous genome wide screen, we reported linkage of autism with a 1.2 Megabase interval on chromosome 5q31. For the current study, we hypothesized that 3 of the genes in this region could be involved in the development of autism: 1 paired-like homeodomain transcription factor 1 (PITX1, which is a key regulator of hormones within the pituitary-hypothalamic axis, 2 neurogenin 1, a transcription factor involved in neurogenesis, and 3 histone family member Y (H2AFY, which is involved in X-chromosome inactivation in females and could explain the 4:1 male:female gender distortion present in autism. Methods A total of 276 families from the Autism Genetic Resource Exchange (AGRE repository composed of 1086 individuals including 530 affected children were included in the study. Single nucleotide polymorphisms tagging the three candidate genes were genotyped on the initial linkage sample of 116 families. A second step of analysis was performed using tightly linked SNPs covering the PITX1 gene. Association was evaluated using the FBAT software version 1.7.3 for single SNP analysis and the HBAT command from the same package for haplotype analysis respectively. Results Association between SNPs and autism was only detected for PITX1. Haplotype analysis within PITX1 showed evidence for overtransmission of the A-C haplotype of markers rs11959298 – rs6596189 (p = 0.0004. Individuals homozygous or heterozygous for the A-C haplotype risk allele were 2.54 and 1.59 fold more likely to be autistic than individuals who were not carrying the allele, respectively. Conclusion Strong and consistent association was observed between a 2 SNPs within PITX1 and autism. Our data suggest that PITX1, a key regulator of hormones within the pituitary-hypothalamic axis, may be

  19. Identification of chromosome 7 inversion breakpoints in an autistic family narrows candidate region for autism susceptibility.

    Science.gov (United States)

    Cukier, Holly N; Skaar, David A; Rayner-Evans, Melissa Y; Konidari, Ioanna; Whitehead, Patrice L; Jaworski, James M; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2009-10-01

    Chromosomal breaks and rearrangements have been observed in conjunction with autism and autistic spectrum disorders. A chromosomal inversion has been previously reported in autistic siblings, spanning the region from approximately 7q22.1 to 7q31. This family is distinguished by having multiple individuals with autism and associated disabilities. The region containing the inversion has been strongly implicated in autism by multiple linkage studies, and has been particularly associated with language defects in autism as well as in other disorders with language components. Mapping of the inversion breakpoints by FISH has localized the inversion to the region spanning approximately 99-108.75 Mb of chromosome 7. The proximal breakpoint has the potential to disrupt either the coding sequence or regulatory regions of a number of cytochrome P450 genes while the distal region falls in a relative gene desert. Copy number variant analysis of the breakpoint regions detected no duplication or deletion that could clearly be associated with disease status. Association analysis in our autism data set using single nucleotide polymorphisms located near the breakpoints showed no significant association with proximal breakpoint markers, but has identified markers near the distal breakpoint ( approximately 108-110 Mb) with significant associations to autism. The chromosomal abnormality in this family strengthens the case for an autism susceptibility gene in the chromosome 7q22-31 region and targets a candidate region for further investigation.

  20. Mutation analysis of the NRXN1 gene in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Onay H

    2016-12-01

    Full Text Available The aim of this study was to identify the sequence mutations in the Neurexin 1 (NRXN1 gene that has been considered as one of the strong candidate genes. A total of 30 children and adolescents (aged 3-18 with non syndromic autism were enrolled this study. Sequencing of the coding exons and the exon-intron boundaries of the NRXN1 gene was performed. Two known mutations were described in two different cases. Heterozygous S14L was determined in one patient and heterozygous L748I was determined in another patient. The S14L and L748I mutations have been described in the patients with autism before. Both of these mutations were inherited from their father. In this study, two of 30 (6.7% autism spectrum disorder (ASD patients carrying NRXN1 gene mutations were detected. It indicates that variants in the NRXN1 gene might confer a risk of developing nonsyndromic ASD. However, due to the reduced penetrance in the gene, the causal role of the NRXN1 gene mutations must be evaluated carefully in all cases.

  1. Haplotypes in the gene encoding protein kinase c-beta (PRKCB1) on chromosome 16 are associated with autism.

    Science.gov (United States)

    Philippi, A; Roschmann, E; Tores, F; Lindenbaum, P; Benajou, A; Germain-Leclerc, L; Marcaillou, C; Fontaine, K; Vanpeene, M; Roy, S; Maillard, S; Decaulne, V; Saraiva, J P; Brooks, P; Rousseau, F; Hager, J

    2005-10-01

    Autism is a developmental disorder characterized by impairments in social interaction and communication associated with repetitive patterns of interest or behavior. Autism is highly influenced by genetic factors. Genome-wide linkage and candidate gene association approaches have been used to try and identify autism genes. A few loci have repeatedly been reported linked to autism. Several groups reported evidence for linkage to a region on chromosome 16p. We have applied a direct physical identity-by-descent (IBD) mapping approach to perform a high-density (0.85 megabases) genome-wide linkage scan in 116 families from the AGRE collection. Our results confirm linkage to a region on chromosome 16p with autism. High-resolution single-nucleotide polymorphism (SNP) genotyping and analysis of this region show that haplotypes in the protein kinase c-beta gene are strongly associated with autism. An independent replication of the association in a second set of 167 trio families with autism confirmed our initial findings. Overall, our data provide evidence that the PRKCB1 gene on chromosome 16p may be involved in the etiology of autism.

  2. Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children.

    Science.gov (United States)

    Kuwano, Yuki; Kamio, Yoko; Kawai, Tomoko; Katsuura, Sakurako; Inada, Naoko; Takaki, Akiko; Rokutan, Kazuhito

    2011-01-01

    Autism spectrum disorder (ASD) is a severe neuropsychiatric disorder which has complex pathobiology with profound influences of genetic factors in its development. Although the numerous autism susceptible genes were identified, the etiology of autism is not fully explained. Using DNA microarray, we examined gene expression profiling in peripheral blood from 21 individuals in each of the four groups; young adults with ASD, age- and gender-matched healthy subjects (ASD control), healthy mothers having children with ASD (asdMO), and asdMO control. There was no blood relationship between ASD and asdMO. Comparing the ASD group with control, 19 genes were found to be significantly changed. These genes were mainly involved in cell morphology, cellular assembly and organization, and nerve system development and function. In addition, the asdMO group possessed a unique gene expression signature shown as significant alterations of protein synthesis despite of their nonautistic diagnostic status. Moreover, an ASD-associated gene expression signature was commonly observed in both individuals with ASD and asdMO. This unique gene expression profiling detected in peripheral leukocytes from affected subjects with ASD and unaffected mothers having ASD children suggest that a genetic predisposition to ASD may be detectable even in peripheral cells. Altered expression of several autism candidate genes such as FMR-1 and MECP2, could be detected in leukocytes. Taken together, these findings suggest that the ASD-associated genes identified in leukocytes are informative to explore the genetic, epigenetic, and environmental background of ASD and might become potential tools to assess the crucial factors related to the clinical onset of the disorder.

  3. Examination of association to autism of common genetic variationin genes related to dopamine.

    Science.gov (United States)

    Anderson, B M; Schnetz-Boutaud, N; Bartlett, J; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L

    2008-12-01

    Autism is a severe neurodevelopmental disorder characterized by a triad of complications. Autistic individuals display significant disturbances in language and reciprocal social interactions, combined with repetitive and stereotypic behaviors. Prevalence studies suggest that autism is more common than originally believed, with recent estimates citing a rate of one in 150. Although multiple genetic linkage and association studies have yielded multiple suggestive genes or chromosomal regions, a specific risk locus has yet to be identified and widely confirmed. Because many etiologies have been suggested for this complex syndrome, we hypothesize that one of the difficulties in identifying autism genes is that multiple genetic variants may be required to significantly increase the risk of developing autism. Thus, we took the alternative approach of examining 14 prominent dopamine pathway candidate genes for detailed study by genotyping 28 single nucleotide polymorphisms. Although we did observe a nominally significant association for rs2239535 (P=0.008) on chromosome 20, single-locus analysis did not reveal any results as significant after correction for multiple comparisons. No significant interaction was identified when Multifactor Dimensionality Reduction was employed to test specifically for multilocus effects. Although genome-wide linkage scans in autism have provided support for linkage to various loci along the dopamine pathway, our study does not provide strong evidence of linkage or association to any specific gene or combination of genes within the pathway. These results demonstrate that common genetic variation within the tested genes located within this pathway at most play a minor to moderate role in overall autism pathogenesis.

  4. Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum.

    Science.gov (United States)

    James, S J; Shpyleva, Svitlana; Melnyk, Stepan; Pavliv, Oleksandra; Pogribny, I P

    2013-02-19

    The elucidation of epigenetic alterations in the autism brain has potential to provide new insights into the molecular mechanisms underlying abnormal gene expression in this disorder. Given strong evidence that engrailed-2 (EN-2) is a developmentally expressed gene relevant to cerebellar abnormalities and autism, the epigenetic evaluation of this candidate gene was undertaken in 26 case and control post-mortem cerebellar samples. Assessments included global DNA methylation, EN-2 promoter methylation, EN-2 gene expression and EN-2 protein levels. Chromatin immunoprecipitation was used to evaluate trimethylation status of histone H3 lysine 27 (H3K27) associated with gene downregulation and histone H3 lysine 4 (H3K4) associated with gene activation. The results revealed an unusual pattern of global and EN-2 promoter region DNA hypermethylation accompanied by significant increases in EN-2 gene expression and protein levels. Consistent with EN-2 overexpression, histone H3K27 trimethylation mark in the EN-2 promoter was significantly decreased in the autism samples relative to matched controls. Supporting a link between reduced histone H3K27 trimethylation and increased EN-2 gene expression, the mean level of histone H3K4 trimethylation was elevated in the autism cerebellar samples. Together, these results suggest that the normal EN-2 downregulation that signals Purkinje cell maturation during late prenatal and early-postnatal development may not have occurred in some individuals with autism and that the postnatal persistence of EN-2 overexpression may contribute to autism cerebellar abnormalities.

  5. Autism-associated gene expression in peripheral leucocytes commonly observed between subjects with autism and healthy women having autistic children.

    Directory of Open Access Journals (Sweden)

    Yuki Kuwano

    Full Text Available Autism spectrum disorder (ASD is a severe neuropsychiatric disorder which has complex pathobiology with profound influences of genetic factors in its development. Although the numerous autism susceptible genes were identified, the etiology of autism is not fully explained. Using DNA microarray, we examined gene expression profiling in peripheral blood from 21 individuals in each of the four groups; young adults with ASD, age- and gender-matched healthy subjects (ASD control, healthy mothers having children with ASD (asdMO, and asdMO control. There was no blood relationship between ASD and asdMO. Comparing the ASD group with control, 19 genes were found to be significantly changed. These genes were mainly involved in cell morphology, cellular assembly and organization, and nerve system development and function. In addition, the asdMO group possessed a unique gene expression signature shown as significant alterations of protein synthesis despite of their nonautistic diagnostic status. Moreover, an ASD-associated gene expression signature was commonly observed in both individuals with ASD and asdMO. This unique gene expression profiling detected in peripheral leukocytes from affected subjects with ASD and unaffected mothers having ASD children suggest that a genetic predisposition to ASD may be detectable even in peripheral cells. Altered expression of several autism candidate genes such as FMR-1 and MECP2, could be detected in leukocytes. Taken together, these findings suggest that the ASD-associated genes identified in leukocytes are informative to explore the genetic, epigenetic, and environmental background of ASD and might become potential tools to assess the crucial factors related to the clinical onset of the disorder.

  6. Candidate gene study of HOXB1 in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Muscarella Lucia A

    2010-05-01

    Full Text Available Abstract Background HOXB1 plays a major role in brainstem morphogenesis and could partly determine the cranial circumference in conjunction with HOXA1. In our sample, HOXA1 alleles significantly influence head growth rates both in autistic patients and in population controls. An initial report, suggesting that HOXB1 could confer autism vulnerability in interaction with HOXA1, was not confirmed by five small association studies. Methods Our sample includes 269 autistic individuals, belonging to 219 simplex and 28 multiplex families. A mutational analysis of the two exons and flanking intronic sequences of the HOXB1 gene was carried out in 84 autistic patients by denaturing high performance liquid chromatography, followed by DNA sequencing. Identified rare variants were then searched by a restriction analysis in 236 autistic patients and 325-345 controls. Case-control and family-based association studies were performed on two common variants in 169 Italian patients versus 184 Italian controls and in 247 trios. Results We identified three common polymorphisms, rs72338773 [c.82insACAGCGCCC (INS/nINS], rs12939811 [c.309A>T (Q103H], and rs7207109 [c.450G>A (A150A] and three rare variants, namely IVS1+63G>A, rs35115415 [c.702G>A (V234V] and c.872_873delinsAA (S291N. SNPs rs72338773 and rs12939811 were not associated with autism, using either a case-control (alleles, exact P = 0.13 or a family-based design [transmission/disequilibrium test (TDTχ2 = 1.774, P = 0.183]. The rare variants, all inherited from one of the parents, were present in two Italian and in two Caucasian-American families. Autistic probands in two families surprisingly inherited a distinct rare variant from each parent. The IVS1+63A allele was present in 3/690 control chromosomes, whereas rare alleles at rs35115415 and c.872_873delinsAA (S291N were not found in 662 and 650 control chromosomes, respectively. The INS-T309 allele influenced head size, but its effect appears more modest

  7. Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection.

    Science.gov (United States)

    Sykes, Nuala H; Toma, Claudio; Wilson, Natalie; Volpi, Emanuela V; Sousa, Inês; Pagnamenta, Alistair T; Tancredi, Raffaella; Battaglia, Agatino; Maestrini, Elena; Bailey, Anthony J; Monaco, Anthony P

    2009-10-01

    SHANK3 is located on chromosome 22q13.3 and encodes a scaffold protein that is found in excitatory synapses opposite the pre-synaptic active zone. SHANK3 is a binding partner of neuroligins, some of whose genes contain mutations in a small subset of individuals with autism. In individuals with autism spectrum disorders (ASDs), several studies have found SHANK3 to be disrupted by deletions ranging from hundreds of kilobases to megabases, suggesting that 1% of individuals with ASDs may have these chromosomal aberrations. To further analyse the involvement of SHANK3 in ASD, we screened the International Molecular Genetic Study of Autism Consortium (IMGSAC) multiplex family sample, 330 families, for SNP association and copy number variants (CNVs) in SHANK3. A collection of 76 IMGSAC Italian probands from singleton families was also examined by multiplex ligation-dependent probe amplification for CNVs. No CNVs or SNP associations were found within the sample set, although sequencing of the gene was not performed. Our data suggest that SHANK3 deletions may be limited to lower functioning individuals with autism.

  8. Gene X Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Sylvie eTordjman

    2014-08-01

    Full Text Available Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD. First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene X environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention and early therapeutic intervention of ASD.

  9. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns.

    Science.gov (United States)

    Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.

  10. Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon.

    Directory of Open Access Journals (Sweden)

    Mingyan Lin

    Full Text Available Schizophrenia (SZ and autism spectrum disorders (ASD are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA, play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05, including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs, although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.

  11. Synergistic interactions between Drosophila orthologues of genes spanned by de novo human CNVs support multiple-hit models of autism.

    Science.gov (United States)

    Grice, Stuart J; Liu, Ji-Long; Webber, Caleb

    2015-03-01

    Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates

  12. Heterozygous Disruption of Autism susceptibility candidate 2 Causes Impaired Emotional Control and Cognitive Memory.

    Directory of Open Access Journals (Sweden)

    Kei Hori

    Full Text Available Mutations in the Autism susceptibility candidate 2 gene (AUTS2 have been associated with a broad range of psychiatric illnesses including autism spectrum disorders, intellectual disability and schizophrenia. We previously demonstrated that the cytoplasmic AUTS2 acts as an upstream factor for the Rho family small GTPase Rac1 and Cdc42 that regulate the cytoskeletal rearrangements in neural cells. Moreover, genetic ablation of the Auts2 gene in mice has resulted in defects in neuronal migration and neuritogenesis in the developing cerebral cortex caused by inactivation of Rac1-signaling pathway, suggesting that AUTS2 is required for neural development. In this study, we conducted a battery of behavioral analyses on Auts2 heterozygous mutant mice to examine the involvement of Auts2 in adult cognitive brain functions. Auts2-deficient mice displayed a decrease in exploratory behavior as well as lower anxiety-like behaviors in the absence of any motor dysfunction. Furthermore, the capability for novel object recognition and cued associative memory were impaired in Auts2 mutant mice. Social behavior and sensory motor gating functions were, however, normal in the mutant mice as assessed by the three-chamber test and prepulse inhibition test, respectively. Together, our findings indicate that AUTS2 is critical for the acquisition of neurocognitive function.

  13. A Family-Based Association Study of CYP11A1 and CYP11B1 Gene Polymorphisms With Autism in Chinese Trios.

    Science.gov (United States)

    Deng, Hong-Zhu; You, Cong; Xing, Yu; Chen, Kai-Yun; Zou, Xiao-Bing

    2016-05-01

    Autism spectrum disorder is a group of neurodevelopmental disorders with the higher prevalence in males. Our previous studies have indicated lower progesterone levels in the children with autism spectrum disorder, suggesting involvement of the cytochrome P-450scc gene (CYP11A1) and cytochrome P-45011beta gene (CYP11B1) as candidate genes in autism spectrum disorder. The aim of this study was to investigate the family-based genetic association between single-nucleotide polymorphisms, rs2279357 in the CYP11A1 gene and rs4534 and rs4541 in the CYP11B1 gene and autism spectrum disorder in Chinese children, which were selected according to the location in the coding region and 5' and 3' regions and minor allele frequencies of greater than 0.05 in the Chinese populations. The transmission disequilibrium test and case-control association analyses were performed in 100 Chinese Han autism spectrum disorder family trios. The genotype and allele frequency of the 3 single-nucleotide polymorphisms had no statistical difference between the children with autism spectrum disorder and their parents (P> .05). Transmission disequilibrium test analysis showed transmission disequilibrium of CYP11A1 gene rs2279357 single-nucleotide polymorphisms (χ(2)= 5.038,Pautism spectrum disorder exists within or near the CYP11A1 gene in the Han Chinese population. © The Author(s) 2015.

  14. An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males

    Directory of Open Access Journals (Sweden)

    Chung Ren-Hua

    2011-11-01

    Full Text Available Abstract Background Autism spectrum disorder (ASD is a complex neurodevelopmental disorder with a strong genetic component. The skewed prevalence toward males and evidence suggestive of linkage to the X chromosome in some studies suggest the presence of X-linked susceptibility genes in people with ASD. Methods We analyzed genome-wide association study (GWAS data on the X chromosome in three independent autism GWAS data sets: two family data sets and one case-control data set. We performed meta- and joint analyses on the combined family and case-control data sets. In addition to the meta- and joint analyses, we performed replication analysis by using the two family data sets as a discovery data set and the case-control data set as a validation data set. Results One SNP, rs17321050, in the transducin β-like 1X-linked (TBL1X gene [OMIM:300196] showed chromosome-wide significance in the meta-analysis (P value = 4.86 × 10-6 and joint analysis (P value = 4.53 × 10-6 in males. The SNP was also close to the replication threshold of 0.0025 in the discovery data set (P = 5.89 × 10-3 and passed the replication threshold in the validation data set (P = 2.56 × 10-4. Two other SNPs in the same gene in linkage disequilibrium with rs17321050 also showed significance close to the chromosome-wide threshold in the meta-analysis. Conclusions TBL1X is in the Wnt signaling pathway, which has previously been implicated as having a role in autism. Deletions in the Xp22.2 to Xp22.3 region containing TBL1X and surrounding genes are associated with several genetic syndromes that include intellectual disability and autistic features. Our results, based on meta-analysis, joint analysis and replication analysis, suggest that TBL1X may play a role in ASD risk.

  15. Variations of the candidate SEZ6L2 gene on Chromosome 16p11.2 in patients with autism spectrum disorders and in human populations.

    Directory of Open Access Journals (Sweden)

    Marina Konyukh

    Full Text Available BACKGROUND: Autism spectrum disorders (ASD are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. METHODOLOGY/PRINCIPAL FINDINGS: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP, complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. CONCLUSIONS/SIGNIFICANCE: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD.

  16. Mining the 30UTR of Autism-implicated Genes for SNPs Perturbing MicroRNA Regulation

    Institute of Scientific and Technical Information of China (English)

    Varadharajan Vaishnavi; Mayakannan Manikandan; Arasambattu Kannan Munirajan

    2014-01-01

    Autism spectrum disorder (ASD) refers to a group of childhood neurodevelopmental dis-orders with polygenic etiology. The expression of many genes implicated in ASD is tightly regulated by various factors including microRNAs (miRNAs), a class of noncoding RNAs 22 nucleotides in length that function to suppress translation by pairing with‘miRNA recognition elements’ (MREs) present in the 30untranslated region (30UTR) of target mRNAs. This emphasizes the role played by miRNAs in regulating neurogenesis, brain development and differentiation and hence any perturba-tions in this regulatory mechanism might affect these processes as well. Recently, single nucleotide polymorphisms (SNPs) present within 30UTRs of mRNAs have been shown to modulate existing MREs or even create new MREs. Therefore, we hypothesized that SNPs perturbing miRNA-medi-ated gene regulation might lead to aberrant expression of autism-implicated genes, thus resulting in disease predisposition or pathogenesis in at least a subpopulation of ASD individuals. We developed a systematic computational pipeline that integrates data from well-established databases. By following a stringent selection criterion, we identified 9 MRE-modulating SNPs and another 12 MRE-creating SNPs in the 30UTR of autism-implicated genes. These high-confidence candidate SNPs may play roles in ASD and hence would be valuable for further functional validation.

  17. Candidate genes and favoured loci: strategies for molecular genetic research into schizophrenia, manic depression, autism, alcoholism and Alzheimer's disease.

    Science.gov (United States)

    Gurling, H

    1986-01-01

    It is argued that further research to achieve more detailed diagnostic systems in many psychiatric disorders is unlikely to be productive without taking genetic effects into account. Even when this is done, for example when carrying out segregation analysis to determine a mode of genetic transmission, mental illnesses often pose specific problems that preclude accurate analysis. Because techniques in molecular biology and genetics have made it possible to study gene effects in human disease systematically it should now be possible to specify the genes that are involved. When this has been achieved then a diagnostic system based on genetic causation can develop. This will have the advantage of helping to pinpoint environmental factors more accurately. Specific strategies will need to be adopted to overcome uncertain modes of inheritance, incomplete or non-penetrance of disease alleles and disease heterogeneity. Highly speculative hypotheses can be put forward for a locus causing Alzheimer's disease on a portion of the long arm of chromosome 21. For autism it is plausible that there is a disease locus at or near the fragile X site on the X chromosome. A locus for manic depression has been very tentatively mapped using DNA markers to chromosome 11 and in a small proportion of families DNA markers have also shown some evidence for X linkage. Schizophrenia does not seem to be associated with any favoured loci. Candidate genes for schizophrenia include those encoding dopamine, other neurotransmitter receptors or enzymes and various neuropeptides such as enkephalin and beta endorphin.

  18. Whole-Exome Sequencing Identifies One De Novo Variant in the FGD6 Gene in a Thai Family with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Chuphong Thongnak

    2018-01-01

    Full Text Available Autism spectrum disorder (ASD has a strong genetic basis, although the genetics of autism is complex and it is unclear. Genetic testing such as microarray or sequencing was widely used to identify autism markers, but they are unsuccessful in several cases. The objective of this study is to identify causative variants of autism in two Thai families by using whole-exome sequencing technique. Whole-exome sequencing was performed with autism-affected children from two unrelated families. Each sample was sequenced on SOLiD 5500xl Genetic Analyzer system followed by combined bioinformatics pipeline including annotation and filtering process to identify candidate variants. Candidate variants were validated, and the segregation study with other family members was performed using Sanger sequencing. This study identified a possible causative variant for ASD, c.2951G>A, in the FGD6 gene. We demonstrated the potential for ASD genetic variants associated with ASD using whole-exome sequencing and a bioinformatics filtering procedure. These techniques could be useful in identifying possible causative ASD variants, especially in cases in which variants cannot be identified by other techniques.

  19. High-Resolution Chromosome Ideogram Representation of Currently Recognized Genes for Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Merlin G. Butler

    2015-03-01

    Full Text Available Recently, autism-related research has focused on the identification of various genes and disturbed pathways causing the genetically heterogeneous group of autism spectrum disorders (ASD. The list of autism-related genes has significantly increased due to better awareness with advances in genetic technology and expanding searchable genomic databases. We compiled a master list of known and clinically relevant autism spectrum disorder genes identified with supporting evidence from peer-reviewed medical literature sources by searching key words related to autism and genetics and from authoritative autism-related public access websites, such as the Simons Foundation Autism Research Institute autism genomic database dedicated to gene discovery and characterization. Our list consists of 792 genes arranged in alphabetical order in tabular form with gene symbols placed on high-resolution human chromosome ideograms, thereby enabling clinical and laboratory geneticists and genetic counsellors to access convenient visual images of the location and distribution of ASD genes. Meaningful correlations of the observed phenotype in patients with suspected/confirmed ASD gene(s at the chromosome region or breakpoint band site can be made to inform diagnosis and gene-based personalized care and provide genetic counselling for families.

  20. Neurodevelopmental disorders associated with dosage imbalance of ZBTB20 correlate with the morbidity spectrum of ZBTB20 candidate target genes

    DEFF Research Database (Denmark)

    Rasmussen, Malene B; Nielsen, Jakob V; Lourenço, Charles M

    2014-01-01

    (SRO) involved five RefSeq genes, including the transcription factor gene ZBTB20 and the dopamine receptor gene DRD3, considered as candidate genes for the syndrome. METHODS AND RESULTS: We used array comparative genomic hybridization and next-generation mate-pair sequencing to identify key structural...... patient with developmental delay and autism, we detected the first microdeletion at 3q13.31, which truncated ZBTB20 but did not involve DRD3 or the other genes within the previously defined SRO. Zbtb20 directly represses 346 genes in the developing murine brain. Of the 342 human orthologous ZBTB20...

  1. Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jessie M. Cameron

    2017-07-01

    Full Text Available Creatine deficiency syndrome (CDS comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase (GATM gene, glycine amidinotransferase, guanidinoacetate methyltransferase (GAMT gene, and creatine transporter deficiency (SLC6A8 gene, solute carrier family 6 member 8. CDS presents with developmental delays/regression, intellectual disability, speech and language impairment, autistic behaviour, epileptic seizures, treatment-refractory epilepsy, and extrapyramidal movement disorders; symptoms that are also evident in children with autism. The objective of the study was to test the hypothesis that genetic variability in creatine metabolism genes is associated with autism. We sequenced GATM, GAMT and SLC6A8 genes in 166 patients with autism (coding sequence, introns and adjacent untranslated regions. A total of 29, 16 and 25 variants were identified in each gene, respectively. Four variants were novel in GATM, and 5 in SLC6A8 (not present in the 1000 Genomes, Exome Sequencing Project (ESP or Exome Aggregation Consortium (ExAC databases. A single variant in each gene was identified as non-synonymous, and computationally predicted to be potentially damaging. Nine variants in GATM were shown to have a lower minor allele frequency (MAF in the autism population than in the 1000 Genomes database, specifically in the East Asian population (Fisher’s exact test. Two variants also had lower MAFs in the European population. In summary, there were no apparent associations of variants in GAMT and SLC6A8 genes with autism. The data implying there could be a lower association of some specific GATM gene variants with autism is an observation that would need to be corroborated in a larger group of autism patients, and with sub-populations of Asian ethnicities. Overall, our findings suggest that the genetic variability of creatine synthesis/transport is unlikely to play a part in the pathogenesis of autism

  2. Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Cameron, Jessie M; Levandovskiy, Valeriy; Roberts, Wendy; Anagnostou, Evdokia; Scherer, Stephen; Loh, Alvin; Schulze, Andreas

    2017-07-31

    Creatine deficiency syndrome (CDS) comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase ( GATM gene, glycine amidinotransferase), guanidinoacetate methyltransferase ( GAMT gene), and creatine transporter deficiency ( SLC6A8 gene, solute carrier family 6 member 8). CDS presents with developmental delays/regression, intellectual disability, speech and language impairment, autistic behaviour, epileptic seizures, treatment-refractory epilepsy, and extrapyramidal movement disorders; symptoms that are also evident in children with autism. The objective of the study was to test the hypothesis that genetic variability in creatine metabolism genes is associated with autism. We sequenced GATM , GAMT and SLC6A8 genes in 166 patients with autism (coding sequence, introns and adjacent untranslated regions). A total of 29, 16 and 25 variants were identified in each gene, respectively. Four variants were novel in GATM , and 5 in SLC6A8 (not present in the 1000 Genomes, Exome Sequencing Project (ESP) or Exome Aggregation Consortium (ExAC) databases). A single variant in each gene was identified as non-synonymous, and computationally predicted to be potentially damaging. Nine variants in GATM were shown to have a lower minor allele frequency (MAF) in the autism population than in the 1000 Genomes database, specifically in the East Asian population (Fisher's exact test). Two variants also had lower MAFs in the European population. In summary, there were no apparent associations of variants in GAMT and SLC6A8 genes with autism. The data implying there could be a lower association of some specific GATM gene variants with autism is an observation that would need to be corroborated in a larger group of autism patients, and with sub-populations of Asian ethnicities. Overall, our findings suggest that the genetic variability of creatine synthesis/transport is unlikely to play a part in the pathogenesis of autism spectrum

  3. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes.

    Science.gov (United States)

    Ingham, Victoria A; Jones, Christopher M; Pignatelli, Patricia; Balabanidou, Vasileia; Vontas, John; Wagstaff, Simon C; Moore, Jonathan D; Ranson, Hilary

    2014-11-25

    The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot

  4. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  5. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism.

    Science.gov (United States)

    Naaijen, J; Bralten, J; Poelmans, G; Glennon, J C; Franke, B; Buitelaar, J K

    2017-01-10

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) often co-occur. Both are highly heritable; however, it has been difficult to discover genetic risk variants. Glutamate and GABA are main excitatory and inhibitory neurotransmitters in the brain; their balance is essential for proper brain development and functioning. In this study we investigated the role of glutamate and GABA genetics in ADHD severity, autism symptom severity and inhibitory performance, based on gene set analysis, an approach to investigate multiple genetic variants simultaneously. Common variants within glutamatergic and GABAergic genes were investigated using the MAGMA software in an ADHD case-only sample (n=931), in which we assessed ASD symptoms and response inhibition on a Stop task. Gene set analysis for ADHD symptom severity, divided into inattention and hyperactivity/impulsivity symptoms, autism symptom severity and inhibition were performed using principal component regression analyses. Subsequently, gene-wide association analyses were performed. The glutamate gene set showed an association with severity of hyperactivity/impulsivity (P=0.009), which was robust to correcting for genome-wide association levels. The GABA gene set showed nominally significant association with inhibition (P=0.04), but this did not survive correction for multiple comparisons. None of single gene or single variant associations was significant on their own. By analyzing multiple genetic variants within candidate gene sets together, we were able to find genetic associations supporting the involvement of excitatory and inhibitory neurotransmitter systems in ADHD and ASD symptom severity in ADHD.

  6. Autism: the quest for the genes.

    Science.gov (United States)

    Sykes, Nuala H; Lamb, Janine A

    2007-09-03

    Autism, at its most extreme, is a severe neurodevelopmental disorder, and recent studies have indicated that autism spectrum disorders are considerably more common than previously supposed. However, although one of the most heritable neuropsychiatric syndromes, autism has so far eluded attempts to discover its genetic origins in the majority of cases. Several whole-genome scans for autism-susceptibility loci have identified specific chromosomal regions, but the results have been inconclusive and fine mapping and association studies have failed to identify the underlying genes. Recent advances in knowledge from the Human Genome and HapMap Projects, and progress in technology and bioinformatic resources, have aided study design and made data generation more efficient and cost-effective. Broadening horizons about the landscape of structural genetic variation and the field of epigenetics are indicating new possible mechanisms underlying autism aetiology, while endophenotypes are being used in an attempt to break down the complexity of the syndrome and refine genetic data. Although the genetic variants underlying idiopathic autism have proven elusive so far, the future for this field looks promising.

  7. Evidence for association between Disrupted-in-schizophrenia 1 (DISC1 gene polymorphisms and autism in Chinese Han population: a family-based association study

    Directory of Open Access Journals (Sweden)

    Ruan Yan

    2011-05-01

    Full Text Available Abstract Background Disrupted-in-Schizophrenia 1 (DISC1 gene is one of the most promising candidate genes for major mental disorders. In a previous study, a Finnish group demonstrated that DISC1 polymorphisms were associated with autism and Asperger syndrome. However, the results were not replicated in Korean population. To determine whether DISC1 is associated with autism in Chinese Han population, we performed a family-based association study between DISC1 polymorphisms and autism. Methods We genotyped seven tag single nucleotide polymorphisms (SNPs in DISC1, spanning 338 kb, in 367 autism trios (singleton and their biological parents including 1,101 individuals. Single SNP association and haplotype association analysis were performed using the family-based association test (FBAT and Haploview software. Results We found three SNPs showed significant associations with autism (rs4366301: G > C, Z = 2.872, p = 0.004; rs11585959: T > C, Z = 2.199, p = 0.028; rs6668845: A > G, Z = 2.326, p = 0.02. After the Bonferroni correction, SNP rs4366301, which located in the first intron of DISC1, remained significant. When haplotype were constructed with two-markers, three haplotypes displayed significant association with autism. These results were still significant after using the permutation method to obtain empirical p values. Conclusions Our study provided evidence that the DISC1 may be the susceptibility gene of autism. It suggested DISC1 might play a role in the pathogenesis of autism.

  8. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    2011-02-01

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  9. Evaluating historical candidate genes for schizophrenia

    DEFF Research Database (Denmark)

    Farrell, M S; Werge, T; Sklar, P

    2015-01-01

    Prior to the genome-wide association era, candidate gene studies were a major approach in schizophrenia genetics. In this invited review, we consider the current status of 25 historical candidate genes for schizophrenia (for example, COMT, DISC1, DTNBP1 and NRG1). The initial study for 24 of thes...

  10. Investigation of SLC6A4 gene expression in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Elif Funda Şener

    2015-06-01

    Full Text Available Objective: Autism is defined as a complex neurodevelopmental disorder. Genetics plays a major role in the etiology of autism spectrum disorders (ASD. The role of the serotonin in the development of autism has been widely investigated. SLC6A4 gene (SERT or 5-HT has an important role reuptaking of serotonin. Because of this, our study examined the expression level of SLC6A4 gene in autism patients. Methods: Thirty-four patients (26 male, 8 female who diagnosed as autism firstly according to DSM-V criteria in the Department of child psychiatry, Erciyes University Medical Faculty and healthy 23 controls (16 male, 7 female were enrolled in this study. Total RNA was isolated from peripheral blood samples using TRIzol. Quantitative Real-time PCR (qRT-PCR was performed to detect SLC6A4 gene expression. Results: SLC6A4 gene expression was found statistically significant and low in autism group compared with controls (p=0,027. Conclusion: The low gene expression in the patient group implied that there is an abnormality of serotonin reuptake. According to our results, we suggest that much more studies may be planned with the expression and methylation profile of this gene combined with gene polymorphisms especially affecting the expression in larger sample sizes. J Clin Exp Invest 2015; 6 (2: 165-169

  11. Brain region-specific altered expression and association of mitochondria-related genes in autism.

    Science.gov (United States)

    Anitha, Ayyappan; Nakamura, Kazuhiko; Thanseem, Ismail; Yamada, Kazuo; Iwayama, Yoshimi; Toyota, Tomoko; Matsuzaki, Hideo; Miyachi, Taishi; Yamada, Satoru; Tsujii, Masatsugu; Tsuchiya, Kenji J; Matsumoto, Kaori; Iwata, Yasuhide; Suzuki, Katsuaki; Ichikawa, Hironobu; Sugiyama, Toshiro; Yoshikawa, Takeo; Mori, Norio

    2012-11-01

    Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC

  12. Brain region-specific altered expression and association of mitochondria-related genes in autism

    Directory of Open Access Journals (Sweden)

    Anitha Ayyappan

    2012-11-01

    Full Text Available Abstract Background Mitochondrial dysfunction (MtD has been observed in approximately five percent of children with autism spectrum disorders (ASD. MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA. Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG, motor cortex (MC and thalamus (THL from autism patients (n=8 and controls (n=10 were obtained from the Autism Tissue Program (Princeton, NJ, USA. Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2, neurofilament, light polypeptide (NEFL and solute carrier family 25, member 27 (SLC25A27 showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066 and SLC25A27 (P = 0.046; Z-score 1.990 showed genetic association with autism in Caucasian and Japanese samples, respectively. The

  13. Possible Links among Mirror Neurons and Genes Related to Autism

    OpenAIRE

    MOCHIZUKI, Mai; 望月,麻衣

    2016-01-01

    Autism includes many neurodevelopmental disorders and defi cits in communication. Althoughresearchers have considered various origins, the onset mechanism is still not clear. The aim ofthis article is to provide some clues for interaction of autism with mirror neuronal and geneticfactors. First, the impact of neural brain cells considered to infl uence autism will be discussedwith reference to mirror neurons. Then, the discussion will move to genes related to autism.Consequently, it is argued...

  14. MTHFR Gene C677T Polymorphism in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Elif Funda Sener

    2014-01-01

    Full Text Available Aim. Autism is a subgroup of autism spectrum disorders, classified as a heterogeneous neurodevelopmental disorder and symptoms occur in the first three years of life. The etiology of autism is largely unknown, but it has been accepted that genetic and environmental factors may both be responsible for the disease. Recent studies have revealed that the genes involved in the folate/homocysteine pathway may be risk factors for autistic children. In particular, C677T polymorphism in the MTHFR gene as a possible risk factor for autism is still controversial. We aimed to investigate the possible effect of C677T polymorphism in a Turkish cohort. Methods. Autism patients were diagnosed by child psychiatrists according to DSM-IV and DSM-V criteria. A total of 98 children diagnosed as autistic and 70 age and sex-matched children who are nonautistic were tested for C677T polymorphism. This polymorphism was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP methods. Results. MTHFR 677T-allele frequency was found to be higher in autistic children compared with nonautistic children (29% versus 24%, but it was not found statistically significant. Conclusions. We conclude that other MTHFR polymorphisms such as A1298C or other folate/homocysteine pathway genes may be studied to show their possible role in autism.

  15. Candidate genes in panic disorder

    DEFF Research Database (Denmark)

    Howe, A. S.; Buttenschön, Henriette N; Bani-Fatemi, A.

    2016-01-01

    The utilization of molecular genetics approaches in examination of panic disorder (PD) has implicated several variants as potential susceptibility factors for panicogenesis. However, the identification of robust PD susceptibility genes has been complicated by phenotypic diversity, underpowered...... association studies and ancestry-specific effects. In the present study, we performed a succinct review of case-control association studies published prior to April 2015. Meta-analyses were performed for candidate gene variants examined in at least three studies using the Cochrane Mantel-Haenszel fixed......-effect model. Secondary analyses were also performed to assess the influences of sex, agoraphobia co-morbidity and ancestry-specific effects on panicogenesis. Meta-analyses were performed on 23 variants in 20 PD candidate genes. Significant associations after correction for multiple testing were observed...

  16. Limited impact of Cntn4 mutation on autism-related traits in developing and adult C57BL/6J mice

    OpenAIRE

    Molenhuis, Remco T.; Bruining, Hilgo; Remmelink, Esther; de Visser, Leonie; Loos, Maarten; Burbach, J. Peter H.; Kas, Martien J. H.

    2016-01-01

    Background Mouse models offer an essential tool to unravel the impact of genetic mutations on autism-related phenotypes. The behavioral impact of some important candidate gene models for autism spectrum disorder (ASD) has not yet been studied, and existing characterizations mostly describe behavioral phenotypes at adult ages, disregarding the developmental nature of the disorder. In this context, the behavioral influence of CNTN4, one of the strongest suggested ASD candidate genes, is unknown...

  17. Principal genetic syndromes and autism: from phenotypes, proteins to genes%孤独性障碍及其相关的主要遗传综合征:从表型、蛋白到基因

    Institute of Scientific and Technical Information of China (English)

    侯萌; 王曼捷; Nanbert ZHONG

    2006-01-01

    Autism is a neurodevelopmental disorder characterized by impairments in social skills, language, and behavior. It is now clear that autism is not a disease, but a syndrome characterized by phenotypic and genetic complexity. The etiology of autism is still poorly understood. Available evidence from a variety of sources strongly suggests that many genetic disorders are frequently associated with autism for their similar phenotypes. Based on this fact, this review begins by highlighting several principal genetic syndromes consistently associated with autism (fragile X, tuberous sclerosis, Angelman syndrome, Pader-Willi syndrome, Rett syndrome, Down syndrome and Turner syndrome). These genetic disorders include both chromosome disorders and single gene disorders. By comparing the similar phenotype, protein marker and candidate genes, we might make some breakthrough in the mechanism of autism and other genetic disorders.

  18. No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes.

    Science.gov (United States)

    Johnson, Emma C; Border, Richard; Melroy-Greif, Whitney E; de Leeuw, Christiaan A; Ehringer, Marissa A; Keller, Matthew C

    2017-11-15

    A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same study identified other variants within those candidate genes that demonstrated genome-wide significant associations with schizophrenia. As such, it is possible that variants within historic schizophrenia candidate genes are associated with schizophrenia at levels above those expected by chance, even if the most-studied specific polymorphisms are not. The present study used association statistics from the largest schizophrenia genome-wide association study conducted to date as input to a gene set analysis to investigate whether variants within schizophrenia candidate genes are enriched for association with schizophrenia. As a group, variants in the most-studied candidate genes were no more associated with schizophrenia than were variants in control sets of noncandidate genes. While a small subset of candidate genes did appear to be significantly associated with schizophrenia, these genes were not particularly noteworthy given the large number of more strongly associated noncandidate genes. The history of schizophrenia research should serve as a cautionary tale to candidate gene investigators examining other phenotypes: our findings indicate that the most investigated candidate gene hypotheses of schizophrenia are not well supported by genome-wide association studies, and it is likely that this will be the case for other complex traits as well. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Common Gene Variants Account for Most Genetic Risk for Autism

    Science.gov (United States)

    ... gene variants account for most genetic risk for autism Roles of heritability, mutations, environment estimated – NIH-funded study. The bulk of risk, or liability, for autism spectrum disorders (ASD) was traced to inherited variations ...

  20. Synaptic, transcriptional and chromatin genes disrupted in autism.

    Science.gov (United States)

    De Rubeis, Silvia; He, Xin; Goldberg, Arthur P; Poultney, Christopher S; Samocha, Kaitlin; Cicek, A Erucment; Kou, Yan; Liu, Li; Fromer, Menachem; Walker, Susan; Singh, Tarinder; Klei, Lambertus; Kosmicki, Jack; Shih-Chen, Fu; Aleksic, Branko; Biscaldi, Monica; Bolton, Patrick F; Brownfeld, Jessica M; Cai, Jinlu; Campbell, Nicholas G; Carracedo, Angel; Chahrour, Maria H; Chiocchetti, Andreas G; Coon, Hilary; Crawford, Emily L; Curran, Sarah R; Dawson, Geraldine; Duketis, Eftichia; Fernandez, Bridget A; Gallagher, Louise; Geller, Evan; Guter, Stephen J; Hill, R Sean; Ionita-Laza, Juliana; Jimenz Gonzalez, Patricia; Kilpinen, Helena; Klauck, Sabine M; Kolevzon, Alexander; Lee, Irene; Lei, Irene; Lei, Jing; Lehtimäki, Terho; Lin, Chiao-Feng; Ma'ayan, Avi; Marshall, Christian R; McInnes, Alison L; Neale, Benjamin; Owen, Michael J; Ozaki, Noriio; Parellada, Mara; Parr, Jeremy R; Purcell, Shaun; Puura, Kaija; Rajagopalan, Deepthi; Rehnström, Karola; Reichenberg, Abraham; Sabo, Aniko; Sachse, Michael; Sanders, Stephan J; Schafer, Chad; Schulte-Rüther, Martin; Skuse, David; Stevens, Christine; Szatmari, Peter; Tammimies, Kristiina; Valladares, Otto; Voran, Annette; Li-San, Wang; Weiss, Lauren A; Willsey, A Jeremy; Yu, Timothy W; Yuen, Ryan K C; Cook, Edwin H; Freitag, Christine M; Gill, Michael; Hultman, Christina M; Lehner, Thomas; Palotie, Aaarno; Schellenberg, Gerard D; Sklar, Pamela; State, Matthew W; Sutcliffe, James S; Walsh, Christiopher A; Scherer, Stephen W; Zwick, Michael E; Barett, Jeffrey C; Cutler, David J; Roeder, Kathryn; Devlin, Bernie; Daly, Mark J; Buxbaum, Joseph D

    2014-11-13

    The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107 genes, which show unusual evolutionary constraint against mutations, incur de novo loss-of-function mutations in over 5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin remodellers-most prominently those that mediate post-translational lysine methylation/demethylation modifications of histones.

  1. Autism genetic database (AGD: a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites

    Directory of Open Access Journals (Sweden)

    Talebizadeh Zohreh

    2009-09-01

    Full Text Available Abstract Background Autism is a highly heritable complex neurodevelopmental disorder, therefore identifying its genetic basis has been challenging. To date, numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism, but most discoveries either fail to be replicated or account for a small effect. Thus, in most cases the underlying causative genetic mechanisms are not fully understood. In the present work, the Autism Genetic Database (AGD was developed as a literature-driven, web-based, and easy to access database designed with the aim of creating a comprehensive repository for all the currently reported genes and genomic copy number variations (CNVs associated with autism in order to further facilitate the assessment of these autism susceptibility genetic factors. Description AGD is a relational database that organizes data resulting from exhaustive literature searches for reported susceptibility genes and CNVs associated with autism. Furthermore, genomic information about human fragile sites and noncoding RNAs was also downloaded and parsed from miRBase, snoRNA-LBME-db, piRNABank, and the MIT/ICBP siRNA database. A web client genome browser enables viewing of the features while a web client query tool provides access to more specific information for the features. When applicable, links to external databases including GenBank, PubMed, miRBase, snoRNA-LBME-db, piRNABank, and the MIT siRNA database are provided. Conclusion AGD comprises a comprehensive list of susceptibility genes and copy number variations reported to-date in association with autism, as well as all known human noncoding RNA genes and fragile sites. Such a unique and inclusive autism genetic database will facilitate the evaluation of autism susceptibility factors in relation to known human noncoding RNAs and fragile sites, impacting on human diseases. As a result, this new autism database offers a valuable tool for the research

  2. Bioinformatics Approach Based Research of Profile Protein Carbonic Anhydrase II Analysis as a Potential Candidate Cause Autism for The Variation of Learning Subjects Biotechnology

    Directory of Open Access Journals (Sweden)

    Dian Eka A. F. Ningrum

    2017-03-01

    Full Text Available This study aims to determine the needs of learning variations on Biotechnology courses using bioinformatics approaches. One example of applied use of bioinformatics in biotechnology course is the analysis of protein profiles carbonic anhydrase II as a potential cause of autism candidate. This research is a qualitative descriptive study consisted of two phases. The first phase of the data obtained from observations of learning, student questionnaires, and questionnaires lecturer. Results from the first phase, namely the need for variations learning in Biotechnology course using bioinformatics. Collecting data on the second stage uses three webserver to predict the target protein and scientific articles. Visualization of proteins using PyMOL software. 3 based webserver which is used, the candidate of target proteins associated with autism is carbonic anhydrase II. The survey results revealed that the protein carbonic anhydrase II as a potential candidate for the cause of autism classified metaloenzim are able to bind with heavy metals. The content of heavy metals in autistic patients high that affect metabolism. This prediction of protein candidate cause autism is applied use to solve the problem in society, so that can achieve the learning outcome in biotechnology course.

  3. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN

    2008-10-01

    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  4. Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes

    Science.gov (United States)

    2013-03-14

    behavioral teaching strategies and best practice for teaching students with autism spectrum disorders 4.52 Learn strategies for incorporating IEP goals...AFRL-SA-WP-TR-2013-0013 Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes...Genetic Mapping for the Discovery of Autism Susceptibility Genes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6

  5. Disease candidate gene identification and prioritization using protein interaction networks

    Directory of Open Access Journals (Sweden)

    Aronow Bruce J

    2009-02-01

    Full Text Available Abstract Background Although most of the current disease candidate gene identification and prioritization methods depend on functional annotations, the coverage of the gene functional annotations is a limiting factor. In the current study, we describe a candidate gene prioritization method that is entirely based on protein-protein interaction network (PPIN analyses. Results For the first time, extended versions of the PageRank and HITS algorithms, and the K-Step Markov method are applied to prioritize disease candidate genes in a training-test schema. Using a list of known disease-related genes from our earlier study as a training set ("seeds", and the rest of the known genes as a test list, we perform large-scale cross validation to rank the candidate genes and also evaluate and compare the performance of our approach. Under appropriate settings – for example, a back probability of 0.3 for PageRank with Priors and HITS with Priors, and step size 6 for K-Step Markov method – the three methods achieved a comparable AUC value, suggesting a similar performance. Conclusion Even though network-based methods are generally not as effective as integrated functional annotation-based methods for disease candidate gene prioritization, in a one-to-one comparison, PPIN-based candidate gene prioritization performs better than all other gene features or annotations. Additionally, we demonstrate that methods used for studying both social and Web networks can be successfully used for disease candidate gene prioritization.

  6. Candidate gene studies and the quest for the entrepreneurial gene

    NARCIS (Netherlands)

    M.J.H.M. van der Loos (Matthijs); Ph.D. Koellinger (Philipp); P.J.F. Groenen (Patrick); C.A. Rietveld (Niels); F. Rivadeneira Ramirez (Fernando); F.J.A. van Rooij (Frank); A.G. Uitterlinden (André); A. Hofman (Albert); A.R. Thurik (Roy)

    2011-01-01

    textabstractCandidate gene studies of human behavior are gaining interest in economics and entrepreneurship research. Performing and interpreting these studies is not straightforward because the selection of candidates influences the interpretation of the results. As an example, Nicolaou et al.

  7. Copy number variants in extended autism spectrum disorder families reveal candidates potentially involved in autism risk.

    Directory of Open Access Journals (Sweden)

    Daria Salyakina

    Full Text Available Copy number variations (CNVs are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs. In the multifaceted etiology of autism spectrum disorders (ASDs, CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology.

  8. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.

    Science.gov (United States)

    Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P

    2014-06-01

    With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.

  9. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  10. Finding gene regulatory network candidates using the gene expression knowledge base.

    Science.gov (United States)

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  11. The WNT2 Gene Polymorphism Associated with Speech Delay Inherent to Autism

    Science.gov (United States)

    Lin, Ping-I; Chien, Yi-Ling; Wu, Yu-Yu; Chen, Chia-Hsiang; Gau, Susan Shur-Fen; Huang, Yu-Shu; Liu, Shih-Kai; Tsai, Wen-Che; Chiu, Yen-Nan

    2012-01-01

    Previous evidence suggests that language function is modulated by genetic variants on chromosome 7q31-36. However, it is unclear whether this region harbors loci that contribute to speech delay in autism. We previously reported that the WNT2 gene located on 7q31 was associated with the risk of autism. Additionally, two other genes on 7q31-36,…

  12. Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions--that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders.

  13. Candidate genes in ocular dominance plasticity

    NARCIS (Netherlands)

    Rietman, M.L.; Sommeijer, J.-P.; Levelt, C.N.; Heimel, J.A.; Brussaard, A.B.; Borst, J.G.G.; Elgersma, Y.; Galjart, N.; van der Horst, G.T.; Pennartz, C.M.; Smit, A.B.; Spruijt, B.M.; Verhage, M.; de Zeeuw, C.I.

    2012-01-01

    Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated

  14. Investigation of the Mitochondrial ATPase 6/8 and tRNA(Lys) Genes Mutations in Autism.

    Science.gov (United States)

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNA(Lys) genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions.

  15. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder

    NARCIS (Netherlands)

    Yuen, Ryan K C; Merico, Daniele; Bookman, Matt; Howe, Jennifer L.; Thiruvahindrapuram, Bhooma; Patel, Rohan V.; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A.; Walker, Susan; Marshall, Christian R.; Uddin, Mohammed; Zarrei, Mehdi; Deneault, Eric; D'Abate, Lia; Chan, Ada J S; Koyanagi, Stephanie; Paton, Tara; Pereira, Sergio L.; Hoang, Ny; Engchuan, Worrawat; Higginbotham, Edward J.; Ho, Karen; Lamoureux, Sylvia; Li, Weili; MacDonald, Jeffrey R.; Nalpathamkalam, Thomas; Sung, Wilson W L; Tsoi, Fiona J.; Wei, John; Xu, Lizhen; Tasse, Anne Marie; Kirby, Emily; Van Etten, William; Twigger, Simon; Roberts, Wendy; Drmic, Irene; Jilderda, Sanne; Modi, Bonnie Mackinnon; Kellam, Barbara; Szego, Michael; Cytrynbaum, Cheryl; Weksberg, Rosanna; Zwaigenbaum, Lonnie; Woodbury-Smith, Marc; Brian, Jessica; Senman, Lili; Iaboni, Alana; Doyle-Thomas, Krissy; Thompson, Ann; Chrysler, Christina; Leef, Jonathan; Savion-Lemieux, Tal; Smith, Isabel M.; Liu, Xudong; Nicolson, Rob; Seifer, Vicki; Fedele, Angie; Cook, Edwin H.; Dager, Stephen; Estes, Annette; Gallagher, Louise; Malow, Beth A.; Parr, Jeremy R.; Spence, Sarah J.; Vorstman, Jacob; Frey, Brendan J.; Robinson, James T.; Strug, Lisa J.; Fernandez, Bridget A.; Elsabbagh, Mayada; Carter, Melissa T.; Hallmayer, Joachim; Knoppers, Bartha M.; Anagnostou, Evdokia; Szatmari, Peter; Ring, Robert H.; Glazer, David; Pletcher, Mathew T.; Scherer, Stephen W.

    2017-01-01

    We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information,

  16. Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes

    Science.gov (United States)

    2012-12-05

    teaching students with autism spectrum disorders 4.52 Learn strategies for incorporating IEP goals and district standard into daily teaching...W403 Columbus, OH 43205 Final Report Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes...QFOXGHDUHDFRGH 1.0 Summary In 2006, the Central Ohio Registry for Autism (CORA) was initiated as a collaboration between Wright-Patterson Air

  17. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    Science.gov (United States)

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  18. Limited impact of Cntn4 mutation on autism-related traits in developing and adult C57BL/6J mice

    NARCIS (Netherlands)

    Molenhuis, Remco T; Bruining, Hilgo; Remmelink, Esther; de Visser, Leonie; Loos, Maarten; Burbach, J Peter H; Kas, Martien J H

    2016-01-01

    BACKGROUND: Mouse models offer an essential tool to unravel the impact of genetic mutations on autism-related phenotypes. The behavioral impact of some important candidate gene models for autism spectrum disorder (ASD) has not yet been studied, and existing characterizations mostly describe

  19. A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism 'epidemic'.

    Science.gov (United States)

    King, Chiara R

    2011-05-01

    Human alpha-fetoprotein is a pregnancy-associated protein with an undetermined physiological role. As human alpha-fetoprotein binds retinoids and inhibits estrogen-dependent cancer cell proliferation, and because retinoic acid (a retinol metabolite) and estradiol (an estrogen) can both initiate cellular gene transcription, it is hypothesized here that alpha-fetoprotein functions during critical gestational periods to prevent retinoic acid and maternal estradiol from inappropriately stimulating gene expression in developing brain regions which are sensitive to these chemicals. Prenatal/maternal factors linked to increased autism risk include valproic acid, thalidomide, alcohol, rubella, cytomegalovirus, depression, schizophrenia, obsessive-compulsive disorder, autoimmune disease, stress, allergic reaction, and hypothyroidism. It will be shown how each of these risk factors may initiate expression of genes which are sensitive to retinoic acid and/or estradiol - whether by direct promotion or by reducing production of alpha-fetoprotein. It is thus hypothesized here that autism is not a genetic disorder, but is rather an epigenetic disruption in brain development caused by gestational exposure to chemicals and/or conditions which either inhibit alpha-fetoprotein production or directly promote retinoic acid-sensitive or estradiol-sensitive gene expression. This causation model leads to potential chemical explanations for autistic brain morphology, the distinct symptomatology of Asperger's syndrome, and the differences between high-functioning and low-functioning autism with regard to mental retardation, physical malformation, and sex ratio. It will be discussed how folic acid may cause autism under the retinoic acid/estradiol model, and the history of prenatal folic acid supplementation will be shown to coincide with the history of what is popularly known as the autism epidemic. It is thus hypothesized here that prenatal folic acid supplementation has contributed to the

  20. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  1. A case report of two male siblings with autism and duplication of Xq13-q21, a region including three genes predisposing for autism.

    Science.gov (United States)

    Wentz, Elisabet; Vujic, Mihailo; Kärrstedt, Ewa-Lotta; Erlandsson, Anna; Gillberg, Christopher

    2014-05-01

    Autism spectrum disorder, severe behaviour problems and duplication of the Xq12 to Xq13 region have recently been described in three male relatives. To describe the psychiatric comorbidity and dysmorphic features, including craniosynostosis, of two male siblings with autism and duplication of the Xq13 to Xq21 region, and attempt to narrow down the number of duplicated genes proposed to be leading to global developmental delay and autism. We performed DNA sequencing of certain exons of the TWIST1 gene, the FGFR2 gene and the FGFR3 gene. We also performed microarray analysis of the DNA. In addition to autism, the two male siblings exhibited severe learning disability, self-injurious behaviour, temper tantrums and hyperactivity, and had no communicative language. Chromosomal analyses were normal. Neither of the two siblings showed mutations of the sequenced exons known to produce craniosynostosis. The microarray analysis detected an extra copy of a region on the long arm of chromosome X, chromosome band Xq13.1-q21.1. Comparison of our two cases with previously described patients allowed us to identify three genes predisposing for autism in the duplicated chromosomal region. Sagittal craniosynostosis is also a new finding linked to the duplication.

  2. Reciprocal Relationship between Head Size, an Autism Endophenotype, and Gene Dosage at 19p13.12 Points to AKAP8 and AKAP8L.

    Directory of Open Access Journals (Sweden)

    Rebecca A Nebel

    Full Text Available Microcephaly and macrocephaly are overrepresented in individuals with autism and are thought to be disease-related risk factors or endophenotypes. Analysis of DNA microarray results from a family with a low functioning autistic child determined that the proband and two additional unaffected family members who carry a rare inherited 760 kb duplication of unknown clinical significance at 19p13.12 are macrocephalic. Consideration alongside overlapping deletion and duplication events in the literature provides support for a strong relationship between gene dosage at this locus and head size, with losses and gains associated with microcephaly (p=1.11x10(-11 and macrocephaly (p=2.47x10(-11, respectively. Data support A kinase anchor protein 8 and 8-like (AKAP8 and AKAP8L as candidate genes involved in regulation of head growth, an interesting finding given previous work implicating the AKAP gene family in autism. Towards determination of which of AKAP8 and AKAP8L may be involved in the modulation of head size and risk for disease, we analyzed exome sequencing data for 693 autism families (2591 individuals where head circumference data were available. No predicted loss of function variants were observed, precluding insights into relationship to head size, but highlighting strong evolutionary conservation. Taken together, findings support the idea that gene dosage at 19p13.12, and AKAP8 and/or AKAP8L in particular, play an important role in modulation of head size and may contribute to autism risk. Exome sequencing of the family also identified a rare inherited variant predicted to disrupt splicing of TPTE / PTEN2, a PTEN homologue, which may likewise contribute to both macrocephaly and autism risk.

  3. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons

    Science.gov (United States)

    Lin, Yu-Chih; Frei, Jeannine A.; Kilander, Michaela B. C.; Shen, Wenjuan; Blatt, Gene J.

    2016-01-01

    Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families. PMID:27909399

  4. [Obesity studies in candidate genes].

    Science.gov (United States)

    Ochoa, María del Carmen; Martí, Amelia; Martínez, J Alfredo

    2004-04-17

    There are more than 430 chromosomic regions with gene variants involved in body weight regulation and obesity development. Polymorphisms in genes related to energy expenditure--uncoupling proteins (UCPs), related to adipogenesis and insulin resistance--hormone-sensitive lipase (HLS), peroxisome proliferator-activated receptor gamma (PPAR gamma), beta adrenergic receptors (ADRB2,3), and alfa tumor necrosis factor (TNF-alpha), and related to food intake--ghrelin (GHRL)--appear to be associated with obesity phenotypes. Obesity risk depends on two factors: a) genetic variants in candidate genes, and b) biographical exposure to environmental risk factors. It is necessary to perform new studies, with appropriate control groups and designs, in order to reach relevant conclusions with regard to gene/environmental (diet, lifestyle) interactions.

  5. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Anthony R Torres

    2016-10-01

    Full Text Available The common variant - common disease hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased versus matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the common variant—common disease hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics.Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14bp-indel frequencies are significantly increased by more than 5% over control populations (Table2. The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2. Three activating KIR genes: 3DS1, 2DS1 and 2DS2 have increased frequencies of 15%, 22% and 14% in autism populations, respectively. There is a 6% increase in total activating KIR

  6. A review of gene-environment correlations and their implications for autism: a conceptual model.

    Science.gov (United States)

    Meek, Shantel E; Lemery-Chalfant, Kathryn; Jahromi, Laudan B; Valiente, Carlos

    2013-07-01

    A conceptual model is proposed that explains how gene-environment correlations and the multiplier effect function in the context of social development in individuals with autism. The review discusses the current state of autism genetic research, including its challenges, such as the genetic and phenotypic heterogeneity of the disorder, and its limitations, such as the lack of interdisciplinary work between geneticists and social scientists. We discuss literature on gene-environment correlations in the context of social development and draw implications for individuals with autism. The review expands upon genes, behaviors, types of environmental exposure, and exogenous variables relevant to social development in individuals on the autism spectrum, and explains these factors in the context of the conceptual model to provide a more in-depth understanding of how the effects of certain genetic variants can be multiplied by the environment to cause largely phenotypic individual differences. Using the knowledge gathered from gene-environment correlations and the multiplier effect, we outline novel intervention directions and implications. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Degrees of separation as a statistical tool for evaluating candidate genes.

    Science.gov (United States)

    Nelson, Ronald M; Pettersson, Mats E

    2014-12-01

    Selection of candidate genes is an important step in the exploration of complex genetic architecture. The number of gene networks available is increasing and these can provide information to help with candidate gene selection. It is currently common to use the degree of connectedness in gene networks as validation in Genome Wide Association (GWA) and Quantitative Trait Locus (QTL) mapping studies. However, it can cause misleading results if not validated properly. Here we present a method and tool for validating the gene pairs from GWA studies given the context of the network they co-occur in. It ensures that proposed interactions and gene associations are not statistical artefacts inherent to the specific gene network architecture. The CandidateBacon package provides an easy and efficient method to calculate the average degree of separation (DoS) between pairs of genes to currently available gene networks. We show how these empirical estimates of average connectedness are used to validate candidate gene pairs. Validation of interacting genes by comparing their connectedness with the average connectedness in the gene network will provide support for said interactions by utilising the growing amount of gene network information available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Candidate genes detected in transcriptome studies are strongly dependent on genetic background.

    Directory of Open Access Journals (Sweden)

    Pernille Sarup

    2011-01-01

    Full Text Available Whole genome transcriptomic studies can point to potential candidate genes for organismal traits. However, the importance of potential candidates is rarely followed up through functional studies and/or by comparing results across independent studies. We have analysed the overlap of candidate genes identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same genetic backgrounds. Putative candidates found using transcriptomics therefore appear very sensitive to genetic background and this can mask or override effects of treatments. The functional importance of putative candidate genes emerging from transcriptome studies needs to be validated through additional experiments and in future studies we suggest a focus on the genes, networks and pathways affecting traits in a consistent manner across backgrounds.

  9. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated...

  10. Candidate Gene Identification of Flowering Time Genes in Cotton

    Directory of Open Access Journals (Sweden)

    Corrinne E. Grover

    2015-07-01

    Full Text Available Flowering time control is critically important to all sexually reproducing angiosperms in both natural ecological and agronomic settings. Accordingly, there is much interest in defining the genes involved in the complex flowering-time network and how these respond to natural and artificial selection, the latter often entailing transitions in day-length responses. Here we describe a candidate gene analysis in the cotton genus , which uses homologs from the well-described flowering network to bioinformatically and phylogenetically identify orthologs in the published genome sequence from Ulbr., one of the two model diploid progenitors of the commercially important allopolyploid cottons, L. and L. Presence and patterns of expression were evaluated from 13 aboveground tissues related to flowering for each of the candidate genes using allopolyploid as a model. Furthermore, we use a comparative context to determine copy number variability of each key gene family across 10 published angiosperm genomes. Data suggest a pattern of repeated loss of duplicates following ancient whole-genome doubling events in diverse lineages. The data presented here provide a foundation for understanding both the parallel evolution of day-length neutrality in domesticated cottons and the flowering-time network, in general, in this important crop plant.

  11. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Science.gov (United States)

    Jespersen, David; Belanger, Faith C; Huang, Bingru

    2017-01-01

    Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L.) x creeping bentgrass (Agrostis stolonifera L.) hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease), antioxidant defense (catalase and glutathione-S-transferase), energy metabolism (glyceraldehyde-3-phosphate dehydrogenase), cell expansion (expansin), and stress protection (heat shock proteins HSP26, HSP70, and HSP101). Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  12. Candidate genes and molecular markers associated with heat tolerance in colonial Bentgrass.

    Directory of Open Access Journals (Sweden)

    David Jespersen

    Full Text Available Elevated temperature is a major abiotic stress limiting the growth of cool-season grasses during the summer months. The objectives of this study were to determine the genetic variation in the expression patterns of selected genes involved in several major metabolic pathways regulating heat tolerance for two genotypes contrasting in heat tolerance to confirm their status as potential candidate genes, and to identify PCR-based markers associated with candidate genes related to heat tolerance in a colonial (Agrostis capillaris L. x creeping bentgrass (Agrostis stolonifera L. hybrid backcross population. Plants were subjected to heat stress in controlled-environmental growth chambers for phenotypic evaluation and determination of genetic variation in candidate gene expression. Molecular markers were developed for genes involved in protein degradation (cysteine protease, antioxidant defense (catalase and glutathione-S-transferase, energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, cell expansion (expansin, and stress protection (heat shock proteins HSP26, HSP70, and HSP101. Kruskal-Wallis analysis, a commonly used non-parametric test used to compare population individuals with or without the gene marker, found the physiological traits of chlorophyll content, electrolyte leakage, normalized difference vegetative index, and turf quality were associated with all candidate gene markers with the exception of HSP101. Differential gene expression was frequently found for the tested candidate genes. The development of candidate gene markers for important heat tolerance genes may allow for the development of new cultivars with increased abiotic stress tolerance using marker-assisted selection.

  13. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  14. Candidate genes for COPD: current evidence and research

    Directory of Open Access Journals (Sweden)

    Kim WJ

    2015-10-01

    Full Text Available Woo Jin Kim,1 Sang Do Lee2 1Department of Internal Medicine and Environmental Health Center, Kangwon National University, Chuncheon, 2Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Abstract: COPD is a common complex disease characterized by progressive airflow limitation. Several genome-wide association studies (GWASs have discovered genes that are associated with COPD. Recently, candidate genes for COPD identified by GWASs include CHRNA3/5 (cholinergic nicotine receptor alpha 3/5, IREB2 (iron regulatory binding protein 2, HHIP (hedgehog-interacting protein, FAM13A (family with sequence similarity 13, member A, and AGER (advanced glycosylation end product–specific receptor. Their association with COPD susceptibility has been replicated in multiple populations. Since these candidate genes have not been considered in COPD, their pathological roles are still largely unknown. Herein, we review some evidences that they can be effective drug targets or serve as biomarkers for diagnosis or subtyping. However, more study is required to understand the functional roles of these candidate genes. Future research is needed to characterize the effect of genetic variants, validate gene function in humans and model systems, and elucidate the genes’ transcriptional and posttranscriptional regulatory mechanisms. Keywords: chronic obstructive pulmonary disease, genetics, genome-wide association study

  15. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-05-01

    Soil salinity is a major abiotic stress for land plants, and multiple mechanisms of salt tolerance have evolved. Tissue tolerance is one of these mechanisms, which involves the sequestration of sodium into the vacuole to retain low cytosolic sodium concentrations. This enables the plant to maintain cellular functions, and ultimately maintain growth and yield. However, the molecular components involved in tissue tolerance remain elusive. Several candidate genes for vacuolar sodium sequestration have recently been identified by proteome analysis of vacuolar membranes purified from the salt-tolerant cereal Hordeum vulgare (barley). In this study, I aimed to characterize these candidates in more detail. I successfully cloned coding sequences for the majority of candidate genes with primers designed based on the barley reference genome sequence. During the course of this study a newer genome sequence with improved annotations was published, to which I also compared my observations. To study the candidate genes, I used the heterologous expression system Saccharomyces cerevisiae (yeast). I used several salt sensitive yeast strains (deficient in intrinsic sodium transporters) to test whether the candidate genes would affect their salt tolerance by mediating the sequestration of sodium into the yeast vacuole. I observed a reduction in growth upon expression for several of the gene candidate under salt-stress conditions. However, confocal microscopy suggests that most gene products are subject to degradation, and did not localize to the vacuolar membrane (tonoplast). Therefore, growth effects cannot be linked to protein function without further evidence. Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  16. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    Full Text Available Combining path consistency (PC algorithms with conditional mutual information (CMI are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference, to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.

  17. Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

    DEFF Research Database (Denmark)

    Hansen, Niclas Tue; Brunak, Søren; Altman, R. B.

    2009-01-01

    A critical task in pharmacogenomics is identifying genes that may be important modulators of drug response. High-throughput experimental methods are often plagued by false positives and do not take advantage of existing knowledge. Candidate gene lists can usefully summarize existing knowledge...

  18. The oscillopathic nature of language deficits in autism: from genes to language evolution

    Directory of Open Access Journals (Sweden)

    Antonio eBenítez-Burraco

    2016-03-01

    Full Text Available Autism spectrum disorders (ASD are pervasive neurodevelopmental disorders involving a number of deficits to linguistic cognition. The gap between genetics and the pathophysiology of ASD remains open, in particular regarding its distinctive linguistic profile. The goal of this paper is to attempt to bridge this gap, focusing on how the autistic brain processes language, particularly through the perspective of brain rhythms. Due to the phenomenon of pleiotropy, which may take some decades to overcome, we believe that studies of brain rhythms, which are not faced with problems of this scale, may constitute a more tractable route to interpreting language deficits in ASD and eventually other neurocognitive disorders. Building on recent attempts to link neural oscillations to certain computational primitives of language, we show that interpreting language deficits in ASD as oscillopathic traits is a potentially fruitful way to construct successful endophenotypes of this condition. Additionally, we will show that candidate genes for ASD are overrepresented among the genes that played a role in the evolution of language. These genes include (and are related to genes involved in brain rhythmicity. We hope that the type of steps taken here will additionally lead to a better understanding of the comorbidity, heterogeneity, and variability of ASD, and may help achieve a better treatment of the affected populations.

  19. Characterisation of five candidate genes within the ETEC F4ab/ac candidate region in pigs

    DEFF Research Database (Denmark)

    Jacobsen, Mette Juul; Cirera Salicio, Susanna; Joller, David

    2011-01-01

    by haplotype sharing to a 2.5 Mb region on pig chromosome 13, a region containing 18 annotated genes. FINDINGS: The coding regions of five candidate genes for susceptibility to ETEC F4ab/ac infection (TFRC, ACK1, MUC20, MUC4 and KIAA0226), all located in the 2.5 Mb region, were investigated for the presence...... polymorphism in exon 22 of KIAA0226. Transcriptional profiles of the five genes were investigated in a porcine tissue panel including various intestinal tissues. All five genes were expressed in intestinal tissues at different levels but none of the genes were found differentially expressed between ETEC F4ab/ac...... of the amino acids composition. However, we cannot exclude that the five tested genes are bona fide candidate genes for susceptibility to ETEC F4ab/ac infection since the identified polymorphism might affect the translational apparatus, alternative splice forms may exist and post translational mechanisms might...

  20. Web tools for the prioritization of candidate disease genes.

    NARCIS (Netherlands)

    Oti, M.O.; Ballouz, S.; Wouters, M.A.

    2011-01-01

    Despite increasing sequencing capacity, genetic disease investigation still frequently results in the identification of loci containing multiple candidate disease genes that need to be tested for involvement in the disease. This process can be expedited by prioritizing the candidates prior to

  1. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    to investigate locomotor activity, and applied genomic feature prediction models to identify gene ontology (GO) cate- gories predictive of this phenotype. Next, we applied the covariance association test to partition the genomic variance of the predictive GO terms to the genes within these terms. We...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated......Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...

  2. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish.

    Directory of Open Access Journals (Sweden)

    Wanlada Klangnurak

    Full Text Available We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm, were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.

  3. NCAM2 deletion in a boy with macrocephaly and autism: Cause, association or predisposition?

    Science.gov (United States)

    Scholz, Caroline; Steinemann, Doris; Mälzer, Madeleine; Roy, Mandy; Arslan-Kirchner, Mine; Illig, Thomas; Schmidtke, Jörg; Stuhrmann, Manfred

    2016-10-01

    We report on an 8-year-old boy with autism spectrum disorder (ASD), speech delay, behavioural problems, disturbed sleep and macrosomia including macrocephaly carrying a microdeletion that contains the entire NCAM2 gene and no other functional genes. Other family members with the microdeletion show a large skull circumference but do not exhibit any symptoms of autism spectrum disorder. Among many ASD-candidate genes, NCAM2 has been assumed to play a pivotal role in the development of ASD because of its function in the outgrowth and bundling of neurites. Our reported case raises the questions whether the NCAM2-deletion is the true cause of the ASD or only a risk factor and whether there might be any connection in NCAM2 with skull-size autism spectrum disorder, macrocephaly, neural cell adhesion molecule 2 protein (NCAM2), array comparative genomic hybridization (microarray). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. LOD score exclusion analyses for candidate genes using random population samples.

    Science.gov (United States)

    Deng, H W; Li, J; Recker, R R

    2001-05-01

    While extensive analyses have been conducted to test for, no formal analyses have been conducted to test against, the importance of candidate genes with random population samples. We develop a LOD score approach for exclusion analyses of candidate genes with random population samples. Under this approach, specific genetic effects and inheritance models at candidate genes can be analysed and if a LOD score is < or = - 2.0, the locus can be excluded from having an effect larger than that specified. Computer simulations show that, with sample sizes often employed in association studies, this approach has high power to exclude a gene from having moderate genetic effects. In contrast to regular association analyses, population admixture will not affect the robustness of our analyses; in fact, it renders our analyses more conservative and thus any significant exclusion result is robust. Our exclusion analysis complements association analysis for candidate genes in random population samples and is parallel to the exclusion mapping analyses that may be conducted in linkage analyses with pedigrees or relative pairs. The usefulness of the approach is demonstrated by an application to test the importance of vitamin D receptor and estrogen receptor genes underlying the differential risk to osteoporotic fractures.

  5. The cld mutation: narrowing the critical chromosomal region and selecting candidate genes.

    Science.gov (United States)

    Péterfy, Miklós; Mao, Hui Z; Doolittle, Mark H

    2006-10-01

    Combined lipase deficiency (cld) is a recessive, lethal mutation specific to the tw73 haplotype on mouse Chromosome 17. While the cld mutation results in lipase proteins that are inactive, aggregated, and retained in the endoplasmic reticulum (ER), it maps separately from the lipase structural genes. We have narrowed the gene critical region by about 50% using the tw18 haplotype for deletion mapping and a recombinant chromosome used originally to map cld with respect to the phenotypic marker tf. The region now extends from 22 to 25.6 Mbp on the wild-type chromosome, currently containing 149 genes and 50 expressed sequence tags (ESTs). To identify the affected gene, we have selected candidates based on their known role in associated biological processes, cellular components, and molecular functions that best fit with the predicted function of the cld gene. A secondary approach was based on differences in mRNA levels between mutant (cld/cld) and unaffected (+/cld) cells. Using both approaches, we have identified seven functional candidates with an ER localization and/or an involvement in protein maturation and folding that could explain the lipase deficiency, and six expression candidates that exhibit large differences in mRNA levels between mutant and unaffected cells. Significantly, two genes were found to be candidates with regard to both function and expression, thus emerging as the strongest candidates for cld. We discuss the implications of our mapping results and our selection of candidates with respect to other genes, deletions, and mutations occurring in the cld critical region.

  6. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    Science.gov (United States)

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  7. Mining biological databases for candidate disease genes

    Science.gov (United States)

    Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.

    2001-07-01

    The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).

  8. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    Science.gov (United States)

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  9. Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    Directory of Open Access Journals (Sweden)

    Delorme Richard

    2007-11-01

    Full Text Available Abstract Background Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. Methods We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean. Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. Results We identified three missense variants (R604L, S822C and E1499G in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. Conclusion Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.

  10. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    Directory of Open Access Journals (Sweden)

    Clark Taane G

    2010-04-01

    Full Text Available Abstract Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%. Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes

  11. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Science.gov (United States)

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons

  12. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Directory of Open Access Journals (Sweden)

    Maggie L Chow

    Full Text Available Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess

  13. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    Science.gov (United States)

    Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons

  14. CANDIDATE GENE ANALYSIS IN ISRAELI SOLDIERS WITH STRESS FRACTURES

    Directory of Open Access Journals (Sweden)

    Ran Yanovich

    2012-03-01

    Full Text Available To investigate the association of polymorphisms within candidate genes which we hypothesized may contribute to stress fracture predisposition, a case-control, cross- sectional study design was employed. Genotyping 268 Single Nucleotide Polymorphisms- SNPs within 17 genes in 385 Israeli young male and female recruits (182 with and 203 without stress fractures. Twenty-five polymorphisms within 9 genes (NR3C1, ANKH, VDR, ROR2, CALCR, IL6, COL1A2, CBG, and LRP4 showed statistically significant differences (p < 0.05 in the distribution between stress fracture cases and non stress fracture controls. Seventeen genetic variants were associated with an increased stress fracture risk, and eight variants with a decreased stress fracture risk. None of the SNP associations remained significant after correcting for multiple comparisons (false discovery rate- FDR. Our findings suggest that genes may be involved in stress fracture pathogenesis. Specifically, the CALCR and the VDR genes are intriguing candidates. The putative involvement of these genes in stress fracture predisposition requires analysis of more cases and controls and sequencing the relevant genomic regions, in order to define the specific gene mutations

  15. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Josephine Erhiakporeh

    2016-07-06

    Jul 6, 2016 ... candidate genes for drought tolerance in sesame. (Sesamum ... Our results provided genomic resources for further functional analysis and genetic engineering .... reverse transcribed using the Reverse Transcription System.

  16. Support for calcium channel gene defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Lu Ake Tzu-Hui

    2012-12-01

    Full Text Available Abstract Background Alternation of synaptic homeostasis is a biological process whose disruption might predispose children to autism spectrum disorders (ASD. Calcium channel genes (CCG contribute to modulating neuronal function and evidence implicating CCG in ASD has been accumulating. We conducted a targeted association analysis of CCG using existing genome-wide association study (GWAS data and imputation methods in a combined sample of parent/affected child trios from two ASD family collections to explore this hypothesis. Methods A total of 2,176 single-nucleotide polymorphisms (SNP (703 genotyped and 1,473 imputed covering the genes that encode the α1 subunit proteins of 10 calcium channels were tested for association with ASD in a combined sample of 2,781 parent/affected child trios from 543 multiplex Caucasian ASD families from the Autism Genetics Resource Exchange (AGRE and 1,651 multiplex and simplex Caucasian ASD families from the Autism Genome Project (AGP. SNP imputation using IMPUTE2 and a combined reference panel from the HapMap3 and the 1,000 Genomes Project increased coverage density of the CCG. Family-based association was tested using the FBAT software which controls for population stratification and accounts for the non-independence of siblings within multiplex families. The level of significance for association was set at 2.3E-05, providing a Bonferroni correction for this targeted 10-gene panel. Results Four SNPs in three CCGs were associated with ASD. One, rs10848653, is located in CACNA1C, a gene in which rare de novo mutations are responsible for Timothy syndrome, a Mendelian disorder that features ASD. Two others, rs198538 and rs198545, located in CACN1G, and a fourth, rs5750860, located in CACNA1I, are in CCGs that encode T-type calcium channels, genes with previous ASD associations. Conclusions These associations support a role for common CCG SNPs in ASD.

  17. Test for positional candidate genes for body composition on pig chromosome 6

    Directory of Open Access Journals (Sweden)

    Pérez-Enciso Miguel

    2002-07-01

    Full Text Available Abstract One QTL affecting backfat thickness (BF, intramuscular fat content (IMF and eye muscle area (MA was previously localized on porcine chromosome 6 in an F2 cross between Iberian and Landrace pigs. This work was done to study the effect of two positional candidate genes on these traits: H-FABP and LEPR genes. The QTL mapping analysis was repeated with a regression method using genotypes for seven microsatellites and two PCR-RFLPs in the H-FABP and LEPR genes. H-FABP and LEPR genes were located at 85.4 and 107 cM respectively, by linkage analysis. The effects of the candidate gene polymorphisms were analyzed in two ways. When an animal model was fitted, both genes showed significant effects on fatness traits, the H-FABP polymorphism showed significant effects on IMF and MA, and the LEPR polymorphism on BF and IMF. But when the candidate gene effect was included in a QTL regression analysis these associations were not observed, suggesting that they must not be the causal mutations responsible for the effects found. Differences in the results of both analyses showed the inadequacy of the animal model approach for the evaluation of positional candidate genes in populations with linkage disequilibrium, when the probabilities of the parental origin of the QTL alleles are not included in the model.

  18. Chromosomal Abnormalities and Putative Susceptibility Genes in Autism Spectrum Disorders

    DEFF Research Database (Denmark)

    Nielsen, Mette Gilling

    Autism spectrum disorders (ASDs) is a heterogeneous group of neurodevelopmental disorders with a significant genetic component as shown by family and twin studies. However, only a few genes have repeatedly been shown to be involved in the development of ASDs. The aim of this study has been...

  19. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    2017-09-01

    Full Text Available Autism spectrum disorder (ASD is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called “disease modules.” In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

  20. Autism Spectrum Disorder

    Science.gov (United States)

    ... Caregiver Education » Fact Sheets Autism Spectrum Disorder Fact Sheet What is autism spectrum disorder? What are some ... of mutations in individual genes but rather spontaneous coding mutations across many genes. De novo mutations may ...

  1. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions

    Science.gov (United States)

    Xiaoqing Yu; Guihua Bai; Shuwei Liu; Na Luo; Ying Wang; Douglas S. Richmond; Paula M. Pijut; Scott A. Jackson; Jianming Yu; Yiwei. Jiang

    2013-01-01

    Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse...

  2. Identification of candidate genes for dyslexia susceptibility on chromosome 18.

    Directory of Open Access Journals (Sweden)

    Thomas S Scerri

    2010-10-01

    Full Text Available Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s conferring susceptibility by a two stage strategy of linkage and association analysis.Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R, dymeclin (DYM and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L.Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.

  3. BEEF CATTLE MUSCULARITY CANDIDATE GENES

    Directory of Open Access Journals (Sweden)

    Irida Novianti

    2010-04-01

    Full Text Available Muscularity is a potential indicator for the selection of more productive cattle. Mapping quantitative trait loci (QTL for traits related to muscularity is useful to identify the genomic regions where the genes affecting muscularity reside. QTL analysis from a Limousin-Jersey double backcross herd was conducted using QTL Express software with cohort and breed as the fixed effects. Nine QTL suggested to have an association with muscularity were identified on cattle chromosomes BTA 1, 2, 3, 4, 5, 8, 12, 14 and 17. The myostatin gene is located at the centromeric end of chromosome 2 and not surprisingly, the Limousin myostatin F94L variant accounted for the QTL on BTA2. However, when the myostatin F94L genotype was included as an additional fixed effect, the QTL on BTA17 was also no longer significant. This result suggests that there may be gene(s that have epistatic effects with myostatin located on cattle chromosome 17. Based on the position of the QTL in base pairs, all the genes that reside in the region were determined using the Ensembl data base (www.ensembl.org. There were two potential candidate genes residing within these QTL regions were selected. They were Smad nuclear interacting protein 1 (SNIP1 and similar to follistatin-like 5 (FSTL5. (JIIPB 2010 Vol 20 No 1: 1-10

  4. Polymorphisms in leucine-rich repeat genes are associated with autism spectrum disorder susceptibility in populations of European ancestry

    Directory of Open Access Journals (Sweden)

    Sousa Inês

    2010-03-01

    Full Text Available Abstract Background Autism spectrum disorders (ASDs are a group of highly heritable neurodevelopmental disorders which are characteristically comprised of impairments in social interaction, communication and restricted interests/behaviours. Several cell adhesion transmembrane leucine-rich repeat (LRR proteins are highly expressed in the nervous system and are thought to be key regulators of its development. Here we present an association study analysing the roles of four promising candidate genes - LRRTM1 (2p, LRRTM3 (10q, LRRN1 (3p and LRRN3 (7q - in order to identify common genetic risk factors underlying ASDs. Methods In order to gain a better understanding of how the genetic variation within these four gene regions may influence susceptibility to ASDs, a family-based association study was undertaken in 661 families of European ancestry selected from four different ASD cohorts. In addition, a case-control study was undertaken across the four LRR genes, using logistic regression in probands with ASD of each population against 295 ECACC controls. Results Significant results were found for LRRN3 and LRRTM3 (P LRRTM3. Conclusions Overall, our findings implicate the neuronal leucine-rich genes LRRN3 and LRRTM3 in ASD susceptibility.

  5. Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies

    Institute of Scientific and Technical Information of China (English)

    Dongyun Li; Hans-Otto Karnath; Xiu Xu

    2017-01-01

    Searching for effective biomarkers is one of the most challenging tasks in the research field of Autism Spectrum Disorder (ASD).Magnetic resonance imaging (MRI) provides a non-invasive and powerful tool for investigating changes in the structure,function,maturation,connectivity,and metabolism of the brain of children with ASD.Here,we review the more recent MRI studies in young children with ASD,aiming to provide candidate biomarkers for the diagnosis of childhood ASD.The review covers structural imaging methods,diffusion tensor imaging,resting-state functional MRI,and magnetic reso nance spectroscopy.Future advances in neuroimaging techniques,as well as cross-disciplinary studies and largescale collaborations will be needed for an integrated approach linking neuroimaging,genetics,and phenotypic data to allow the discovery of new,effective biomarkers.

  6. Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development

    Directory of Open Access Journals (Sweden)

    Leah Y. Liu

    2013-09-01

    Genome-wide association studies (GWAS have revealed numerous associations between many phenotypes and gene candidates. Frequently, however, further elucidation of gene function has not been achieved. A recent GWAS identified 69 candidate genes associated with elevated liver enzyme concentrations, which are clinical markers of liver disease. To investigate the role of these genes in liver homeostasis, we narrowed down this list to 12 genes based on zebrafish orthology, zebrafish liver expression and disease correlation. To assess the function of gene candidates during liver development, we assayed hepatic progenitors at 48 hours post fertilization (hpf and hepatocytes at 72 hpf using in situ hybridization following morpholino knockdown in zebrafish embryos. Knockdown of three genes (pnpla3, pklr and mapk10 decreased expression of hepatic progenitor cells, whereas knockdown of eight genes (pnpla3, cpn1, trib1, fads2, slc2a2, pklr, mapk10 and samm50 decreased cell-specific hepatocyte expression. We then induced liver injury in zebrafish embryos using acetaminophen exposure and observed changes in liver toxicity incidence in morphants. Prioritization of GWAS candidates and morpholino knockdown expedites the study of newly identified genes impacting liver development and represents a feasible method for initial assessment of candidate genes to instruct further mechanistic analyses. Our analysis can be extended to GWAS for additional disease-associated phenotypes.

  7. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  8. Epidermal growth factor gene is a newly identified candidate gene for gout

    OpenAIRE

    Lin Han; Chunwei Cao; Zhaotong Jia; Shiguo Liu; Zhen Liu; Ruosai Xin; Can Wang; Xinde Li; Wei Ren; Xuefeng Wang; Changgui Li

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 re...

  9. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    Science.gov (United States)

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  10. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  11. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry.

    Science.gov (United States)

    Urzúa, Blanca; Ortega-Pinto, Ana; Morales-Bozo, Irene; Rojas-Alcayaga, Gonzalo; Cifuentes, Víctor

    2011-02-01

    Amelogenesis imperfecta is a group of genetic conditions that affect the structure and clinical appearance of tooth enamel. The types (hypoplastic, hypocalcified, and hypomature) are correlated with defects in different stages of the process of enamel synthesis. Autosomal dominant, recessive, and X-linked types have been previously described. These disorders are considered clinically and genetically heterogeneous in etiology, involving a variety of genes, such as AMELX, ENAM, DLX3, FAM83H, MMP-20, KLK4, and WDR72. The mutations identified within these causal genes explain less than half of all cases of amelogenesis imperfecta. Most of the candidate and causal genes currently identified encode proteins involved in enamel synthesis. We think it is necessary to refocus the search for candidate genes using biochemical processes. This review provides theoretical evidence that the human SLC4A4 gene (sodium bicarbonate cotransporter) may be a new candidate gene.

  12. dbMDEGA: a database for meta-analysis of differentially expressed genes in autism spectrum disorder.

    Science.gov (United States)

    Zhang, Shuyun; Deng, Libin; Jia, Qiyue; Huang, Shaoting; Gu, Junwang; Zhou, Fankun; Gao, Meng; Sun, Xinyi; Feng, Chang; Fan, Guangqin

    2017-11-16

    Autism spectrum disorders (ASD) are hereditary, heterogeneous and biologically complex neurodevelopmental disorders. Individual studies on gene expression in ASD cannot provide clear consensus conclusions. Therefore, a systematic review to synthesize the current findings from brain tissues and a search tool to share the meta-analysis results are urgently needed. Here, we conducted a meta-analysis of brain gene expression profiles in the current reported human ASD expression datasets (with 84 frozen male cortex samples, 17 female cortex samples, 32 cerebellum samples and 4 formalin fixed samples) and knock-out mouse ASD model expression datasets (with 80 collective brain samples). Then, we applied R language software and developed an interactive shared and updated database (dbMDEGA) displaying the results of meta-analysis of data from ASD studies regarding differentially expressed genes (DEGs) in the brain. This database, dbMDEGA ( https://dbmdega.shinyapps.io/dbMDEGA/ ), is a publicly available web-portal for manual annotation and visualization of DEGs in the brain from data from ASD studies. This database uniquely presents meta-analysis values and homologous forest plots of DEGs in brain tissues. Gene entries are annotated with meta-values, statistical values and forest plots of DEGs in brain samples. This database aims to provide searchable meta-analysis results based on the current reported brain gene expression datasets of ASD to help detect candidate genes underlying this disorder. This new analytical tool may provide valuable assistance in the discovery of DEGs and the elucidation of the molecular pathogenicity of ASD. This database model may be replicated to study other disorders.

  13. Computational analysis of candidate disease genes and variants for Salt-sensitive hypertension in indigenous Southern Africans

    KAUST Repository

    Tiffin, Nicki

    2010-09-27

    Multiple factors underlie susceptibility to essential hypertension, including a significant genetic and ethnic component, and environmental effects. Blood pressure response of hypertensive individuals to salt is heterogeneous, but salt sensitivity appears more prevalent in people of indigenous African origin. The underlying genetics of salt-sensitive hypertension, however, are poorly understood. In this study, computational methods including text- and data-mining have been used to select and prioritize candidate aetiological genes for salt-sensitive hypertension. Additionally, we have compared allele frequencies and copy number variation for single nucleotide polymorphisms in candidate genes between indigenous Southern African and Caucasian populations, with the aim of identifying candidate genes with significant variability between the population groups: identifying genetic variability between population groups can exploit ethnic differences in disease prevalence to aid with prioritisation of good candidate genes. Our top-ranking candidate genes include parathyroid hormone precursor (PTH) and type-1angiotensin II receptor (AGTR1). We propose that the candidate genes identified in this study warrant further investigation as potential aetiological genes for salt-sensitive hypertension. © 2010 Tiffin et al.

  14. Speeding disease gene discovery by sequence based candidate prioritization

    Directory of Open Access Journals (Sweden)

    Porteous David J

    2005-03-01

    Full Text Available Abstract Background Regions of interest identified through genetic linkage studies regularly exceed 30 centimorgans in size and can contain hundreds of genes. Traditionally this number is reduced by matching functional annotation to knowledge of the disease or phenotype in question. However, here we show that disease genes share patterns of sequence-based features that can provide a good basis for automatic prioritization of candidates by machine learning. Results We examined a variety of sequence-based features and found that for many of them there are significant differences between the sets of genes known to be involved in human hereditary disease and those not known to be involved in disease. We have created an automatic classifier called PROSPECTR based on those features using the alternating decision tree algorithm which ranks genes in the order of likelihood of involvement in disease. On average, PROSPECTR enriches lists for disease genes two-fold 77% of the time, five-fold 37% of the time and twenty-fold 11% of the time. Conclusion PROSPECTR is a simple and effective way to identify genes involved in Mendelian and oligogenic disorders. It performs markedly better than the single existing sequence-based classifier on novel data. PROSPECTR could save investigators looking at large regions of interest time and effort by prioritizing positional candidate genes for mutation detection and case-control association studies.

  15. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  16. Candidate innate immune system gene expression in the ecological model Daphnia.

    Science.gov (United States)

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J

    2011-10-01

    The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive

  17. [Epigenetics' implication in autism spectrum disorders: A review].

    Science.gov (United States)

    Hamza, M; Halayem, S; Mrad, R; Bourgou, S; Charfi, F; Belhadj, A

    2017-08-01

    The etiology of autism spectrum disorders (ASD) is complex and multifactorial, and the roles of genetic and environmental factors in its emergence have been well documented. Current research tends to indicate that these two factors act in a synergistic manner. The processes underlying this interaction are still poorly known, but epigenetic modifications could be the mediator in the gene/environment interface. The epigenetic mechanisms have been implicated in susceptibility to stress and also in the pathogenesis of psychiatric disorders including depression and schizophrenia. Currently, several studies focus on the consideration of the etiological role of epigenetic regulation in ASD. The object of this review is to present a summary of current knowledge of an epigenetic hypothesis in ASD, outlining the recent findings in this field. Using Pubmed, we did a systematic review of the literature researching words such as: autism spectrum disorders, epigenetics, DNA methylation and histone modification. Epigenetic refers to the molecular process modulating gene expression without changes in the DNA sequence. The most studied epigenetic mechanisms are those that alter the chromatin structure including DNA methylation of cytosine residues in CpG dinucleotides and post-translational histone modifications. In ASD several arguments support the epigenetic hypothesis. In fact, there is a frequent association between ASD and genetic diseases whose epigenetic etiologies are recognized. A disturbance in the expression of genes involved in the epigenetic regulation has also been described in this disorder. Some studies have demonstrated changes in the DNA methylation of several autism candidate genes including the gene encoding the oxytocin receptor (OXTR), the RELN and the SHANK3 genes. Beyond the analysis of candidate genes, recent epigenome-wide association studies have investigated the methylation level of several other genes and showed hypomethylation of the whole DNA in brain

  18. Survey of Candidate Genes for Maize Resistance to Infection by Aspergillus flavus and/or Aflatoxin Contamination

    Science.gov (United States)

    Hawkins, Leigh K.; Tang, Juliet D.; Tomashek, John; Alves Oliveira, Dafne; Ogunola, Oluwaseun F.; Smith, J. Spencer; Williams, W. Paul

    2018-01-01

    Many projects have identified candidate genes for resistance to aflatoxin accumulation or Aspergillus flavus infection and growth in maize using genetic mapping, genomics, transcriptomics and/or proteomics studies. However, only a small percentage of these candidates have been validated in field conditions, and their relative contribution to resistance, if any, is unknown. This study presents a consolidated list of candidate genes identified in past studies or in-house studies, with descriptive data including genetic location, gene annotation, known protein identifiers, and associated pathway information, if known. A candidate gene pipeline to test the phenotypic effect of any maize DNA sequence on aflatoxin accumulation resistance was used in this study to determine any measurable effect on polymorphisms within or linked to the candidate gene sequences, and the results are published here. PMID:29385107

  19. Survey of Candidate Genes for Maize Resistance to Infection by Aspergillus flavus and/or Aflatoxin Contamination

    Directory of Open Access Journals (Sweden)

    Leigh K. Hawkins

    2018-01-01

    Full Text Available Many projects have identified candidate genes for resistance to aflatoxin accumulation or Aspergillus flavus infection and growth in maize using genetic mapping, genomics, transcriptomics and/or proteomics studies. However, only a small percentage of these candidates have been validated in field conditions, and their relative contribution to resistance, if any, is unknown. This study presents a consolidated list of candidate genes identified in past studies or in-house studies, with descriptive data including genetic location, gene annotation, known protein identifiers, and associated pathway information, if known. A candidate gene pipeline to test the phenotypic effect of any maize DNA sequence on aflatoxin accumulation resistance was used in this study to determine any measurable effect on polymorphisms within or linked to the candidate gene sequences, and the results are published here.

  20. A genome-wide survey of transgenerational genetic effects in autism.

    Directory of Open Access Journals (Sweden)

    Kathryn M Tsang

    Full Text Available Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4 that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.

  1. A Generally Applicable Translational Strategy Identifies S100A4 as a Candidate Gene in Allergy

    DEFF Research Database (Denmark)

    Bruhn, Sören; Fang, Yu; Barrenäs, Fredrik

    2014-01-01

    The identification of diagnostic markers and therapeutic candidate genes in common diseases is complicated by the involvement of thousands of genes. We hypothesized that genes co-regulated with a key gene in allergy, IL13, would form a module that could help to identify candidate genes. We identi...

  2. Mapping autism risk loci using genetic linkage and chromosomal rearrangements

    Science.gov (United States)

    Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie

    2007-01-01

    Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880

  3. DIA1R is an X-linked gene related to Deleted In Autism-1.

    Directory of Open Access Journals (Sweden)

    Azhari Aziz

    Full Text Available BACKGROUND: Autism spectrum disorders (ASDS are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1 gene. METHODOLOGY/PRINCIPAL FINDINGS: Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related. While DIA1 is autosomal (chromosome 3, position 3q24, DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical, and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. CONCLUSIONS/SIGNIFICANCE: Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.

  4. Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism.

    Science.gov (United States)

    Cieślińska, Anna; Kostyra, Elżbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Małgorzata; Savelkoul, Huub F J

    2017-09-09

    Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D₃ has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D₃ concentration in serum of ASD children. Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D₃ metabolism, while vitamin D₃ levels were not significantly different between ASD and non-ASD children.

  5. Common DNA methylation alterations in multiple brain regions in autism.

    Science.gov (United States)

    Ladd-Acosta, C; Hansen, K D; Briem, E; Fallin, M D; Kaufmann, W E; Feinberg, A P

    2014-08-01

    Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485,000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes.

  6. from microarrays and quantitative trait loci to candidate genes

    Indian Academy of Sciences (India)

    Unknown

    2004-10-15

    Oct 15, 2004 ... to candidate genes – A research plan and preliminary results using Drosophila as a model organism and climatic ... Recent developments in molecular genetics ..... scientists in agriculture, medicine and psychology for test-.

  7. Major Vault Protein, a Candidate Gene in 16p11.2 Microdeletion Syndrome, Is Required for the Homeostatic Regulation of Visual Cortical Plasticity.

    Science.gov (United States)

    Ip, Jacque P K; Nagakura, Ikue; Petravicz, Jeremy; Li, Keji; Wiemer, Erik A C; Sur, Mriganka

    2018-04-18

    Microdeletion of a region in chromosome 16p11.2 increases susceptibility to autism. Although this region contains exons of 29 genes, disrupting only a small segment of the region, which spans five genes, is sufficient to cause autistic traits. One candidate gene in this critical segment is MVP , which encodes for the major vault protein (MVP) that has been implicated in regulation of cellular transport mechanisms. MVP expression levels in MVP +/- mice closely phenocopy those of 16p11.2 mutant mice, suggesting that MVP +/- mice may serve as a model of MVP function in 16p11.2 microdeletion. Here we show that MVP regulates the homeostatic component of ocular dominance (OD) plasticity in primary visual cortex. MVP +/- mice of both sexes show impairment in strengthening of open-eye responses after several days of monocular deprivation (MD), whereas closed-eye responses are weakened as normal, resulting in reduced overall OD plasticity. The frequency of miniature EPSCs (mEPSCs) in pyramidal neurons is decreased in MVP +/- mice after extended MD, suggesting a reduction of functional synapses. Correspondingly, upregulation of surface GluA1 AMPA receptors is reduced in MVP +/- mice after extended MD, and is accompanied by altered expression of STAT1 and phosphorylated ERK, which have been previously implicated in OD plasticity. Normalization of STAT1 levels by introducing STAT1 shRNA rescues surface GluA1 and open-eye responses, implicating STAT1 as a downstream effector of MVP. These findings demonstrate a specific role for MVP as a key molecule influencing the homeostatic component of activity-dependent synaptic plasticity, and potentially the corresponding phenotypes of 16p11.2 microdeletion syndrome. SIGNIFICANCE STATEMENT Major vault protein (MVP), a candidate gene in 16p11.2 microdeletion syndrome, has been implicated in the regulation of several cellular processes including transport mechanisms and scaffold signaling. However, its role in brain function and

  8. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    Improving drought tolerance and productivity is one of the most difficult tasks for ... Keywords. Candidate gene; mapping population; polymerase chain reaction; single marker analysis. .... ple and the mean value computed. 2.4 Isolation of DNA.

  9. Epigenetics and autism.

    Science.gov (United States)

    Mbadiwe, Tafari; Millis, Richard M

    2013-01-01

    This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C β 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs) associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.

  10. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.

    Science.gov (United States)

    Zhu, Jie; Qin, Yufang; Liu, Taigang; Wang, Jun; Zheng, Xiaoqi

    2013-01-01

    Identification of gene-phenotype relationships is a fundamental challenge in human health clinic. Based on the observation that genes causing the same or similar phenotypes tend to correlate with each other in the protein-protein interaction network, a lot of network-based approaches were proposed based on different underlying models. A recent comparative study showed that diffusion-based methods achieve the state-of-the-art predictive performance. In this paper, a new diffusion-based method was proposed to prioritize candidate disease genes. Diffusion profile of a disease was defined as the stationary distribution of candidate genes given a random walk with restart where similarities between phenotypes are incorporated. Then, candidate disease genes are prioritized by comparing their diffusion profiles with that of the disease. Finally, the effectiveness of our method was demonstrated through the leave-one-out cross-validation against control genes from artificial linkage intervals and randomly chosen genes. Comparative study showed that our method achieves improved performance compared to some classical diffusion-based methods. To further illustrate our method, we used our algorithm to predict new causing genes of 16 multifactorial diseases including Prostate cancer and Alzheimer's disease, and the top predictions were in good consistent with literature reports. Our study indicates that integration of multiple information sources, especially the phenotype similarity profile data, and introduction of global similarity measure between disease and gene diffusion profiles are helpful for prioritizing candidate disease genes. Programs and data are available upon request.

  11. Autism-Like Behavior and Epigenetic Changes Associated with Autism as Consequences of In Utero Exposure to Environmental Pollutants in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Denise S. Hill

    2015-01-01

    Full Text Available We tested the hypothesis that in utero exposure to heavy metals increases autism-like behavioral phenotypes in adult animals and induces epigenetic changes in genes that have roles in the etiology of autism. Mouse dams were treated with cadmium, lead, arsenate, manganese, and mercury via drinking water from gestational days (E 1–10. Valproic acid (VPA injected intraperitoneally once on (E 8.5 served as a positive control. Young male offspring were tested for behavioral deficits using four standardized behavioral assays. In this study, in utero exposure to heavy metals resulted in multiple behavioral abnormalities that persisted into adulthood. VPA and manganese induced changes in perseverative/impulsive behavior and social dominance behavior, arsenic caused changes only in perseverative/impulsive behavior, and lead induced abnormalities in social interaction in comparison to the control animals. Brain samples from Mn, Pb, and VPA treated and control animals were evaluated for changes in CpG island methylation in promoter regions and associated changes in gene expression. The Chd7 gene, essential for neural crest cell migration and patterning, was found to be hypomethylated in each experimental animal tested compared to water-treated controls. Furthermore, distinct patterns of CpG island methylation yielded novel candidate genes for further investigation.

  12. Association analysis of two single-nucleotide polymorphisms of the RELN gene with autism in the South African population

    KAUST Repository

    Sharma, Jyoti Rajan

    2013-02-01

    Background: Autism (MIM209850) is a neurodevelopmental disorder characterized by a triad of impairments, namely impairment in social interaction, impaired communication skills, and restrictive and repetitive behavior. A number of family and twin studies have demonstrated that genetic factors play a pivotal role in the etiology of autistic disorder. Various reports of reduced levels of reelin protein in the brain and plasma in autistic patients highlighted the role of the reelin gene (RELN) in autism. There is no such published study on the South African (SA) population. Aims: The aim of the present study was to find the genetic association of intronic rs736707 and exonic rs362691 (single-nucleotide polymorphisms [SNPs] of the RELN gene) with autism in a SA population. Methods: Genomic DNA was isolated from cheek cell swabs from autistic (136) as well as control (208) subjects. The TaqMan ® Real-Time polymerase chain reaction and genotyping assay was utilized to determine the genotypes. Results: A significant association of SNP rs736707, but not for SNP rs362691, with autism in the SA population is observed. Conclusion: There might be a possible role of RELN in autism, especially for SA populations. The present study represents the first report on genetic association studies on the RELN gene in the SA population. © 2013, Mary Ann Liebert, Inc.

  13. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  14. The Candidate Cancer Gene Database: a database of cancer driver genes from forward genetic screens in mice.

    Science.gov (United States)

    Abbott, Kenneth L; Nyre, Erik T; Abrahante, Juan; Ho, Yen-Yi; Isaksson Vogel, Rachel; Starr, Timothy K

    2015-01-01

    Identification of cancer driver gene mutations is crucial for advancing cancer therapeutics. Due to the overwhelming number of passenger mutations in the human tumor genome, it is difficult to pinpoint causative driver genes. Using transposon mutagenesis in mice many laboratories have conducted forward genetic screens and identified thousands of candidate driver genes that are highly relevant to human cancer. Unfortunately, this information is difficult to access and utilize because it is scattered across multiple publications using different mouse genome builds and strength metrics. To improve access to these findings and facilitate meta-analyses, we developed the Candidate Cancer Gene Database (CCGD, http://ccgd-starrlab.oit.umn.edu/). The CCGD is a manually curated database containing a unified description of all identified candidate driver genes and the genomic location of transposon common insertion sites (CISs) from all currently published transposon-based screens. To demonstrate relevance to human cancer, we performed a modified gene set enrichment analysis using KEGG pathways and show that human cancer pathways are highly enriched in the database. We also used hierarchical clustering to identify pathways enriched in blood cancers compared to solid cancers. The CCGD is a novel resource available to scientists interested in the identification of genetic drivers of cancer. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean.

    Science.gov (United States)

    Zhong, Chao; Sun, Suli; Li, Yinping; Duan, Canxing; Zhu, Zhendong

    2018-03-01

    A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F 2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.

  16. Brain Transcriptional and Epigenetic Associations with Autism

    Science.gov (United States)

    Ginsberg, Matthew R.; Rubin, Robert A.; Falcone, Tatiana; Ting, Angela H.; Natowicz, Marvin R.

    2012-01-01

    Background Autism is a common neurodevelopmental syndrome. Numerous rare genetic etiologies are reported; most cases are idiopathic. Methodology/Principal Findings To uncover important gene dysregulation in autism we analyzed carefully selected idiopathic autistic and control cerebellar and BA19 (occipital) brain tissues using high resolution whole genome gene expression and whole genome DNA methylation microarrays. No changes in DNA methylation were identified in autistic brain but gene expression abnormalities in two areas of metabolism were apparent: down-regulation of genes of mitochondrial oxidative phosphorylation and of protein translation. We also found associations between specific behavioral domains of autism and specific brain gene expression modules related to myelin/myelination, inflammation/immune response and purinergic signaling. Conclusions/Significance This work highlights two largely unrecognized molecular pathophysiological themes in autism and suggests differing molecular bases for autism behavioral endophenotypes. PMID:22984548

  17. Knowledge Discovery in Biological Databases for Revealing Candidate Genes Linked to Complex Phenotypes.

    Science.gov (United States)

    Hassani-Pak, Keywan; Rawlings, Christopher

    2017-06-13

    Genetics and "omics" studies designed to uncover genotype to phenotype relationships often identify large numbers of potential candidate genes, among which the causal genes are hidden. Scientists generally lack the time and technical expertise to review all relevant information available from the literature, from key model species and from a potentially wide range of related biological databases in a variety of data formats with variable quality and coverage. Computational tools are needed for the integration and evaluation of heterogeneous information in order to prioritise candidate genes and components of interaction networks that, if perturbed through potential interventions, have a positive impact on the biological outcome in the whole organism without producing negative side effects. Here we review several bioinformatics tools and databases that play an important role in biological knowledge discovery and candidate gene prioritization. We conclude with several key challenges that need to be addressed in order to facilitate biological knowledge discovery in the future.

  18. Epigenetics and Autism

    Directory of Open Access Journals (Sweden)

    Tafari Mbadiwe

    2013-01-01

    Full Text Available This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs can phosphorylate histone H3 at T6. Aided by protein kinase Cβ1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR- dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.

  19. Epigenetics and cerebral organoids: promising directions in autism spectrum disorders.

    Science.gov (United States)

    Forsberg, Sheena Louise; Ilieva, Mirolyuba; Maria Michel, Tanja

    2018-01-10

    Autism spectrum disorders (ASD) affect 1 in 68 children in the US according to the Centers for Disease Control and Prevention (CDC). It is characterized by impairments in social interactions and communication, restrictive and repetitive patterns of behaviors, and interests. Owing to disease complexity, only a limited number of treatment options are available mainly for children that alleviate but do not cure the debilitating symptoms. Studies confirm a genetic link, but environmental factors, such as medications, toxins, and maternal infection during pregnancy, as well as birth complications also play a role. Some studies indicate a set of candidate genes with different DNA methylation profiles in ASD compared to healthy individuals. Thus epigenetic alterations could help bridging the gene-environment gap in deciphering the underlying neurobiology of autism. However, epigenome-wide association studies (EWAS) have mainly included a very limited number of postmortem brain samples. Hence, cellular models mimicking brain development in vitro will be of great importance to study the critical epigenetic alterations and when they might happen. This review will give an overview of the state of the art concerning knowledge on epigenetic changes in autism and how new, cutting edge expertise based on three-dimensional (3D) stem cell technology models (brain organoids) can contribute in elucidating the multiple aspects of disease mechanisms.

  20. No association between a common single nucleotide polymorphism, rs4141463, in the MACROD2 gene and autism spectrum disorder.

    NARCIS (Netherlands)

    Curran, S.; Bolton, P.; Rozsnyai, K.; Chiocchetti, A.; Klauck, S.M.; Duketis, E.; Poustka, F.; Schlitt, S.; Freitag, C.M.; Lee, I. van der; Muglia, P.; Poot, M.; Staal, W.G.; Jonge, M.V. de; Ophoff, R.A.; Lewis, C.; Skuse, D.; Mandy, W.; Vassos, E.; Fossdal, R.; Magnusson, P.; Hreidarsson, S.; Saemundsen, E.; Stefansson, H.; Stefansson, K.; Collier, D.

    2011-01-01

    The Autism Genome Project (AGP) Consortium recently reported genome-wide significant association between autism and an intronic single nucleotide polymorphism marker, rs4141463, within the MACROD2 gene. In the present study we attempted to replicate this finding using an independent case-control

  1. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1e and literature review.

    Science.gov (United States)

    Duffney, Lara J; Valdez, Purnima; Tremblay, Martine W; Cao, Xinyu; Montgomery, Sarah; McConkie-Rosell, Allyn; Jiang, Yong-Hui

    2018-04-27

    Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3' end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development. © 2018 Wiley Periodicals, Inc.

  2. Grass cell wall feruloylation: distribution of bound ferulate and candidate gene expression in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Hugo Bruno Correa Molinari

    2013-03-01

    Full Text Available The cell walls of grasses such as wheat, maize, rice and sugar cane, contain large amounts of ferulate that is ester-linked to the cell wall polysaccharide glucuronoarabinoxylan (GAX. This ferulate is considered to limit the digestibility of polysaccharide in grass biomass as it forms covalent linkages between polysaccharide and lignin components. Candidate genes within a grass-specific clade of the BAHD acyl-coA transferase superfamily have been identified as being responsible for the ester linkage of ferulate to GAX. Manipulation of these BAHD genes may therefore be a biotechnological target for increasing efficiency of conversion of grass biomass into biofuel. Here, we describe the expression of these candidate genes and amounts of bound ferulate from various tissues and developmental stages of the model grass Brachypodium distachyon. BAHD candidate transcripts and significant amounts of bound ferulate were present in every tissue and developmental stage. We hypothesise that BAHD candidate genes similar to the recently described rice OsPMT gene (PMT sub-clade are principally responsible for the bound coumaric acid (pCA, and that other BAHD candidates (non-PMT sub-clade are responsible for bound ferulic acid (FA. There were some similarities with between the ratio of expression non-PMT / PMT genes and the ratio of bound FA / pCA between tissue types, compatible with this hypothesis. However, much further work to modify BAHD genes in grasses and to characterise the heterologously expressed proteins is required to demonstrate their function.

  3. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Science.gov (United States)

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Singh, Yoginder Pal; Kaul, Nabodita; Behura, Anita; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K; Chainy, Gagan B N; Bhanwer, Amarjit S; Sharma, Swarkar; Bamezai, Rameshwar N K

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, ppopulation. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  4. Looking into flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene approach.

    Science.gov (United States)

    Silva, C; Garcia-Mas, J; Sánchez, A M; Arús, P; Oliveira, M M

    2005-03-01

    Blooming time is one of the most important agronomic traits in almond. Biochemical and molecular events underlying flowering regulation must be understood before methods to stimulate late flowering can be developed. Attempts to elucidate the genetic control of this process have led to the identification of a major gene (Lb) and quantitative trait loci (QTLs) linked to observed phenotypic differences, but although this gene and these QTLs have been placed on the Prunus reference genetic map, their sequences and specific functions remain unknown. The aim of our investigation was to associate these loci with known genes using a candidate gene approach. Two almond cDNAs and eight Prunus expressed sequence tags were selected as candidate genes (CGs) since their sequences were highly identical to those of flowering regulatory genes characterized in other species. The CGs were amplified from both parental lines of the mapping population using specific primers. Sequence comparison revealed DNA polymorphisms between the parental lines, mainly of the single nucleotide type. Polymorphisms were used to develop co-dominant cleaved amplified polymorphic sequence markers or length polymorphisms based on insertion/deletion events for mapping the candidate genes on the Prunus reference map. Ten candidate genes were assigned to six linkage groups in the Prunus genome. The positions of two of these were compatible with the regions where two QTLs for blooming time were detected. One additional candidate was localized close to the position of the Evergrowing gene, which determines a non-deciduous behaviour in peach.

  5. The altered promoter methylation of oxytocin receptor gene in autism.

    Science.gov (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  6. Behavioral phenotypes of genetic mouse models of autism.

    Science.gov (United States)

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex.

    Science.gov (United States)

    Mor, Michal; Nardone, Stefano; Sams, Dev Sharan; Elliott, Evan

    2015-01-01

    MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). However, these technologies have not yet been employed to uncover changes in microRNAs in the brain of individuals diagnosed with asd. Small RNA next-generation sequencing was performed on RNA extracted from 12 human autism brain samples and 12 controls. Real-time PCR was used to validate a sample of the differentially expressed microRNAs, and bioinformatic analysis determined common pathways of gene targets. MicroRNA expression data was correlated to genome-wide DNA methylation data to determine if there is epigenetic regulation of dysregulated microRNAs in the autism brain. Luciferase assays, real-time PCR, and Western blot analysis were used to determine how dysregulated microRNAs may regulate the expression and translation of an autism-related gene transcript. We determined that miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and miR-21-5p are overexpressed in the asd brain. Furthermore, the promoter region of the miR-142 gene is hypomethylated in the same brain samples, suggesting that epigenetics plays a role in dysregulation of microRNAs in the brain. Bioinformatic analysis revealed that these microRNAs target genes that are involved in synaptic function. Further bioinformatic analysis, coupled with in vitro luciferase assays, determined that miR-451a and miR-21-5p can target the oxytocin receptor (OXTR) gene. OXTR gene expression is increased in these same brain samples, and there is a positive correlation between miR-21-5p and OXTR expression. However, miR-21-5p expression negatively correlates to production of OXTR protein from the OXTR transcript. Therefore, we suggest that miR-21-5p may attenuate OXTR expression in

  8. Defining the Sequence Elements and Candidate Genes for the Coloboma Mutation.

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Robb

    Full Text Available The chicken coloboma mutation exhibits features similar to human congenital developmental malformations such as ocular coloboma, cleft-palate, dwarfism, and polydactyly. The coloboma-associated region and encoded genes were investigated using advanced genomic, genetic, and gene expression technologies. Initially, the mutation was linked to a 990 kb region encoding 11 genes; the application of the genetic and genomic tools led to a reduction of the linked region to 176 kb and the elimination of 7 genes. Furthermore, bioinformatics analyses of capture array-next generation sequence data identified genetic elements including SNPs, insertions, deletions, gaps, chromosomal rearrangements, and miRNA binding sites within the introgressed causative region relative to the reference genome sequence. Coloboma-specific variants within exons, UTRs, and splice sites were studied for their contribution to the mutant phenotype. Our compiled results suggest three genes for future studies. The three candidate genes, SLC30A5 (a zinc transporter, CENPH (a centromere protein, and CDK7 (a cyclin-dependent kinase, are differentially expressed (compared to normal embryos at stages and in tissues affected by the coloboma mutation. Of these genes, two (SLC30A5 and CENPH are considered high-priority candidate based upon studies in other vertebrate model systems.

  9. [Genetics and epigenetics in autism].

    Science.gov (United States)

    Nakayama, Atsuo; Masaki, Shiego; Aoki, Eiko

    2006-11-01

    Autism is a behaviorally defined syndrome characterized by impaired social interaction and communication, and restricted, stereotyped interests and behaviors. Several lines of evidence support the contention that genetic factors are a large component to autism etiology. However, in spite of vigorous genetic studies, no single causative or susceptibility gene common in autism has been identified. Thus multiple susceptibility genes in interaction are considered to account for the disorder. Furthermore, environmental risk factors can accelerate the autism development of. Recent advances in understanding the epigenetic regulation may shed light on the interaction among multiple genetic factors and environmental factors.

  10. Polymorphisms of candidate genes associated with meat quality and ...

    African Journals Online (AJOL)

    Hung Nguyen

    Abstract. The objectives of this study were to analyse genotype distribution and sequence variations of candidate genes putatively associated with meat quality and disease resistance in exotic and indigenous. Vietnamese pig breeds. For this purpose, 340 pigs from four indigenous and two exotic breeds were included.

  11. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Directory of Open Access Journals (Sweden)

    Shafat Ali

    Full Text Available Type 2 diabetes (T2D is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E-04 with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08 in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59 when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  12. Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits

    NARCIS (Netherlands)

    Arbore, Roberto; Sekii, Kiyono; Beisel, Christian; Ladurner, Peter; Berezikov, Eugene; Schaerer, Lukas

    2015-01-01

    Introduction: RNA interference (RNAi) of trait-specific genes permits the manipulation of specific phenotypic traits ("phenotypic engineering") and thus represents a powerful tool to test trait function in evolutionary studies. The identification of suitable candidate genes, however, often relies on

  13. Candidate genes for drought tolerance and improved productivity in ...

    Indian Academy of Sciences (India)

    Madhu

    tropics. Improving drought tolerance and productivity is one of the most difficult tasks for cereal breeders. The diffi- culty arises from the diverse strategies adopted by plants themselves to combat drought stress depending on the timing,. Candidate genes for drought tolerance and improved productivity in rice (Oryza sativa L.).

  14. Polymorphisms of candidate genes associated with meat quality and ...

    African Journals Online (AJOL)

    The objectives of this study were to analyse genotype distribution and sequence variations of candidate genes putatively associated with meat quality and disease resistance in exotic and indigenous Vietnamese pig breeds. For this purpose, 340 pigs from four indigenous and two exotic breeds were included in the analysis ...

  15. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    Science.gov (United States)

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in

  16. No Evidence That Schizophrenia Candidate Genes Are More Associated With Schizophrenia Than Noncandidate Genes

    NARCIS (Netherlands)

    Johnson, Emma C; Border, Richard; Melroy-Greif, Whitney E; de Leeuw, Christiaan A; Ehringer, Marissa A; Keller, Matthew C

    2017-01-01

    BACKGROUND: A recent analysis of 25 historical candidate gene polymorphisms for schizophrenia in the largest genome-wide association study conducted to date suggested that these commonly studied variants were no more associated with the disorder than would be expected by chance. However, the same

  17. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L.) Using SLAF-seq.

    Science.gov (United States)

    Xie, Dongwei; Dai, Zhigang; Yang, Zemao; Sun, Jian; Zhao, Debao; Yang, Xue; Zhang, Liguo; Tang, Qing; Su, Jianguang

    2017-01-01

    Flax ( Linum usitatissimum L.) is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq) was employed to perform a genome-wide association study (GWAS) for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP) loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM) and a mixed linear model (MLM) as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  18. Genome-Wide Association Study Identifying Candidate Genes Influencing Important Agronomic Traits of Flax (Linum usitatissimum L. Using SLAF-seq

    Directory of Open Access Journals (Sweden)

    Dongwei Xie

    2018-01-01

    Full Text Available Flax (Linum usitatissimum L. is an important cash crop, and its agronomic traits directly affect yield and quality. Molecular studies on flax remain inadequate because relatively few flax genes have been associated with agronomic traits or have been identified as having potential applications. To identify markers and candidate genes that can potentially be used for genetic improvement of crucial agronomic traits, we examined 224 specimens of core flax germplasm; specifically, phenotypic data for key traits, including plant height, technical length, number of branches, number of fruits, and 1000-grain weight were investigated under three environmental conditions before specific-locus amplified fragment sequencing (SLAF-seq was employed to perform a genome-wide association study (GWAS for these five agronomic traits. Subsequently, the results were used to screen single nucleotide polymorphism (SNP loci and candidate genes that exhibited a significant correlation with the important agronomic traits. Our analyses identified a total of 42 SNP loci that showed significant correlations with the five important agronomic flax traits. Next, candidate genes were screened in the 10 kb zone of each of the 42 SNP loci. These SNP loci were then analyzed by a more stringent screening via co-identification using both a general linear model (GLM and a mixed linear model (MLM as well as co-occurrences in at least two of the three environments, whereby 15 final candidate genes were obtained. Based on these results, we determined that UGT and PL are candidate genes for plant height, GRAS and XTH are candidate genes for the number of branches, Contig1437 and LU0019C12 are candidate genes for the number of fruits, and PHO1 is a candidate gene for the 1000-seed weight. We propose that the identified SNP loci and corresponding candidate genes might serve as a biological basis for improving crucial agronomic flax traits.

  19. Selection in the dopamine receptor 2 gene: a candidate SNP study

    Directory of Open Access Journals (Sweden)

    Tobias Göllner

    2015-08-01

    Full Text Available Dopamine is a major neurotransmitter in the human brain and is associated with various diseases. Schizophrenia, for example, is treated by blocking the dopamine receptors type 2. Shaner, Miller & Mintz (2004 stated that schizophrenia was the low fitness variant of a highly variable mental trait. We therefore explore whether the dopamine receptor 2 gene (DRD2 underwent any selection processes. We acquired genotype data of the 1,000 Genomes project (phase I, which contains 1,093 individuals from 14 populations. We included single nucleotide polymorphisms (SNPs with two minor allele frequencies (MAFs in the analysis: MAF over 0.05 and over 0.01. This is equivalent to 151 SNPs (MAF > 0.05 and 246 SNPs (MAF > 0.01 for DRD2. We used two different approaches (an outlier approach and a Bayesian approach to detect loci under selection. The combined results of both approaches yielded nine (MAF > 0.05 and two candidate SNPs (MAF > 0.01, under balancing selection. We also found weak signs for directional selection on DRD2, but in our opinion these were too weak to draw any final conclusions on directional selection in DRD2. All candidates for balancing selection are in the intronic region of the gene and only one (rs12574471 has been mentioned in the literature. Two of our candidate SNPs are located in specific regions of the gene: rs80215768 lies within a promoter flanking region and rs74751335 lies within a transcription factor binding site. We strongly encourage research on our candidate SNPs and their possible effects.

  20. Mapping a candidate gene (MdMYB10 for red flesh and foliage colour in apple

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2007-07-01

    Full Text Available Abstract Background Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. Results We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs and Single Nucleotide Polymorphisms (SNPs in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG 09 of the apple genome. Conclusion We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.

  1. Function and regulation of AUTS2, a gene implicated in autism and human evolution.

    Directory of Open Access Journals (Sweden)

    Nir Oksenberg

    Full Text Available Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.

  2. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  3. Analysis of breast cancer metastasis candidate genes from next generation-sequencing via systematic functional genomics

    DEFF Research Database (Denmark)

    Blomstrøm, Monica Marie

    2016-01-01

    several growth modulators and invasion modulators were identified and independently validated. These candidates revealed a group of genes with metastasis-related functions in vitro that are involved in RNA-related processes, such as RNA-processing. Moreover, a general feature was that proliferation......) and non-CSCs. The main goal of this project was to functionally characterize a set of candidate genes recovered from next-generation sequencing analysis for their role in breast cancer metastasis formation. The starting gene set comprised 104 gene variants; i.e. 57 wildtype and 47 mutated variants. During...

  4. Autism.

    Science.gov (United States)

    Levy, Susan E; Mandell, David S; Schultz, Robert T

    2009-11-07

    Autism spectrum disorders are characterised by severe deficits in socialisation, communication, and repetitive or unusual behaviours. Increases over time in the frequency of these disorders (to present rates of about 60 cases per 10,000 children) might be attributable to factors such as new administrative classifications, policy and practice changes, and increased awareness. Surveillance and screening strategies for early identification could enable early treatment and improved outcomes. Autism spectrum disorders are highly genetic and multifactorial, with many risk factors acting together. Genes that affect synaptic maturation are implicated, resulting in neurobiological theories focusing on connectivity and neural effects of gene expression. Several treatments might address core and comorbid symptoms. However, not all treatments have been adequately studied. Improved strategies for early identification with phenotypic characteristics and biological markers (eg, electrophysiological changes) might hopefully improve effectiveness of treatment. Further knowledge about early identification, neurobiology of autism, effective treatments, and the effect of this disorder on families is needed.

  5. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  6. 'Omics' approaches in tomato aimed at identifying candidate genes ...

    African Journals Online (AJOL)

    adriana

    2013-12-04

    Dec 4, 2013 ... approaches could be combined in order to identify candidate genes for the genetic control of ascorbic ..... applied to other traits under the complex control of many ... Engineering increased vitamin C levels in ... Chem. Biol. 13:532–538. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002). A.

  7. Recent Advances in the Pathogenesis of Syndromic Autisms

    Directory of Open Access Journals (Sweden)

    A. Benvenuto

    2009-01-01

    Full Text Available Background. Current advances in genetic technology continue to expand the list of medical conditions associated with autism. Clinicians have to identify specific autistic-related syndromes, and to provide tailored counseling. The aim of this study is to elucidate recent advances in autism research that offer important clues into pathogenetic mechanisms of syndromic autism and relevant implications for clinical practice. Data Sources. The PubMed database was searched with the keywords “autism” and “chromosomal abnormalities,” “metabolic diseases,” “susceptibility loci.” Results. Defined mutations, genetic syndromes, and metabolic diseases account for up to 20% of autistic patients. Metabolic and mitochondrial defects may have toxic effects on the brain cells, causing neuronal loss and altered modulation of neurotransmission systems. Alterations of the neocortical excitatory/inhibitory balance and perturbations of interneurons' development represent the most probable pathogenetic mechanisms underlying the autistic phenotype in Fragile X-Syndrome and Tuberous Sclerosis Complex. Chromosomal abnormalities and potential candidate genes are strongly implicated in the disruption of neural connections, brain growth, and synaptic/dendritic morphology. Conclusion. Metabolic testing may be appropriate if specific symptoms are present. High-resolution chromosome analysis may be recommended if a specific diagnosis is suspected because of obvious dysmorphisms. Identifying cryptic chromosomal abnormalities by whole genome microarray analysis can increase the understanding of the neurobiological pathways to autism.

  8. Identification of Candidate B-Lymphoma Genes by Cross-Species Gene Expression Profiling

    Science.gov (United States)

    Tompkins, Van S.; Han, Seong-Su; Olivier, Alicia; Syrbu, Sergei; Bair, Thomas; Button, Anna; Jacobus, Laura; Wang, Zebin; Lifton, Samuel; Raychaudhuri, Pradip; Morse, Herbert C.; Weiner, George; Link, Brian; Smith, Brian J.; Janz, Siegfried

    2013-01-01

    Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the “mouse filter” for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists. PMID:24130802

  9. Candidate Genes Detected in Transcriptome Studies are Strongly Dependent on Genetic Background

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Jesper Givskov; Kristensen, Torsten Nygård

    2011-01-01

    identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same...

  10. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder.

    Science.gov (United States)

    Rommelse, Nanda N J; Franke, Barbara; Geurts, Hilde M; Hartman, Catharina A; Buitelaar, Jan K

    2010-03-01

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are both highly heritable neurodevelopmental disorders. Evidence indicates both disorders co-occur with a high frequency, in 20-50% of children with ADHD meeting criteria for ASD and in 30-80% of ASD children meeting criteria for ADHD. This review will provide an overview on all available studies [family based, twin, candidate gene, linkage, and genome wide association (GWA) studies] shedding light on the role of shared genetic underpinnings of ADHD and ASD. It is concluded that family and twin studies do provide support for the hypothesis that ADHD and ASD originate from partly similar familial/genetic factors. Only a few candidate gene studies, linkage studies and GWA studies have specifically addressed this co-occurrence, pinpointing to some promising pleiotropic genes, loci and single nucleotide polymorphisms (SNPs), but the research field is in urgent need for better designed and powered studies to tackle this complex issue. We propose that future studies examining shared familial etiological factors for ADHD and ASD use a family-based design in which the same phenotypic (ADHD and ASD), candidate endophenotypic, and environmental measurements are obtained from all family members. Multivariate multi-level models are probably best suited for the statistical analysis.

  11. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  12. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400 kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958 × ICC 17160)- and intra (ICC 12299 × ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea. Copyright © 2016 Elsevier

  13. The imprinted brain: how genes set the balance between autism and psychosis.

    Science.gov (United States)

    Badcock, Christopher

    2011-06-01

    The imprinted brain theory proposes that autism spectrum disorder (ASD) represents a paternal bias in the expression of imprinted genes. This is reflected in a preference for mechanistic cognition and in the corresponding mentalistic deficits symptomatic of ASD. Psychotic spectrum disorder (PSD) would correspondingly result from an imbalance in favor of maternal and/or X-chromosome gene expression. If differences in gene expression were reflected locally in the human brain as mouse models and other evidence suggests they are, ASD would represent not so much an 'extreme male brain' as an extreme paternal one, with PSD correspondingly representing an extreme maternal brain. To the extent that copy number variation resembles imprinting and aneuploidy in nullifying or multiplying the expression of particular genes, it has been found to conform to the diametric model of mental illness peculiar to the imprinted brain theory. The fact that nongenetic factors such as nutrition in pregnancy can mimic and/or interact with imprinted gene expression suggests that the theory might even be able to explain the notable effect of maternal starvation on the risk of PSD - not to mention the 'autism epidemic' of modern affluent societies. Finally, the theory suggests that normality represents balanced cognition, and that genius is an extraordinary extension of cognitive configuration in both mentalistic and mechanistic directions. Were it to be proven correct, the imprinted brain theory would represent one of the biggest single advances in our understanding of the mind and of mental illness that has ever taken place, and would revolutionize psychiatric diagnosis, prevention and treatment - not to mention our understanding of epigenomics.

  14. Analysis of a positional candidate gene for inflammatory bowel disease: NRAMP2

    NARCIS (Netherlands)

    Stokkers, P. C.; Huibregtse, K.; Leegwater, A. C.; Reitsma, P. H.; Tytgat, G. N.; van Deventer, S. J.

    2000-01-01

    Genome scans have identified a region spanning 40 cM on the long arm of chromosome 12 as a susceptibility locus for inflammatory bowel disease (IBD). This locus contains several candidate genes for IBD, one of which is the gene for the natural resistance associated macrophage protein 2 (NRAMP2).

  15. Identification of Candidate Genes Responsible for Stem Pith Production Using Expression Analysis in Solid-Stemmed Wheat.

    Science.gov (United States)

    Oiestad, A J; Martin, J M; Cook, J; Varella, A C; Giroux, M J

    2017-07-01

    The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SNP) makers derived from expressed sequence tags (ESTs) linked to contained within a 5.13 cM region. Allele specific expression of EST markers was examined in stem tissue for solid and hollow-stemmed pairs of two spring wheat near isogenic lines (NILs) differing for the QTL. Of the 28 ESTs, 13 were located within annotated genes and 10 had detectable stem expression. Annotated genes corresponding to four of the ESTs were differentially expressed between solid and hollow-stemmed NILs and represent possible stem solidness gene candidates. Further examination of the 5.13 cM region containing the 28 EST markers identified 260 annotated genes. Twenty of the 260 linked genes were up-regulated in hollow NIL stems, while only seven genes were up-regulated in solid NIL stems. An -methyltransferase within the region of interest was identified as a candidate based on differential expression between solid and hollow-stemmed NILs and putative function. Further study of these candidate genes may lead to the identification of the gene(s) controlling stem solidness and an increased ability to select for wheat stem solidness and manage WSS. Copyright © 2017 Crop Science Society of America.

  16. Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain

    Institute of Scientific and Technical Information of China (English)

    Samuel W.Hulbert; Yong-hui Jiang

    2017-01-01

    Transgenic mice carrying mutations that cause Autism Spectrum Disorders (ASDs) continue to be valuable for determining the molecular underpinnings of the disorders.Recently,researchers have taken advantage of such models combined with Cre-loxP and similar systems to manipulate gene expression over space and time.Thus,a clearer picture is starting to emerge of the cell types,circuits,brain regions,and developmental time periods underlying ASDs.ASD-causing mutations have been restricted to or rescued specifically in excitatory or inhibitory neurons,different neurotransmitter systems,and cells specific to the forebrain or cerebellum.In addition,mutations have been induced or corrected in adult mice,providing some evidence for the plasticity and reversibility of core ASD symptoms.The limited availability of Cre lines that are highly specific to certain cell types or time periods provides a challenge to determining the cellular and circuitry bases of autism,but other technological advances may eventually overcome this obstacle.

  17. Identification of Expanded Alleles of the "FMR1" Gene in the CHildhood Autism Risks from Genes and Environment (CHARGE) Study

    Science.gov (United States)

    Tassone, Flora; Choudhary, Nimrah S.; Tassone, Federica; Durbin-Johnson, Blythe; Hansen, Robin; Hertz-Picciotto, Irva; Pessah, Isaac

    2013-01-01

    Fragile X syndrome (FXS) is a neuro-developmental disorder characterized by intellectual disabilities and autism spectrum disorders (ASD). Expansion of a CGG trinucleotide repeat (greater than 200 repeats) in the 5'UTR of the fragile X mental retardation gene, is the single most prevalent cause of cognitive disabilities. Several screening studies…

  18. SNP analyses of growth factor genes EGF, TGFβ-1, and HGF reveal haplotypic association of EGF with autism

    International Nuclear Information System (INIS)

    Toyoda, Takao; Nakamura, Kazuhiko; Yamada, Kazuo; Thanseem, Ismail; Anitha, Ayyappan; Suda, Shiro; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio

    2007-01-01

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-β (TGFβ) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGFβ1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGFβ1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism

  19. Candidate genes for performance in horses, including monocarboxylate transporters

    Directory of Open Access Journals (Sweden)

    Inaê Cristina Regatieri

    Full Text Available ABSTRACT: Some horse breeds are highly selected for athletic activities. The athletic potential of each animal can be measured by its performance in sports. High athletic performance depends on the animal capacity to produce energy through aerobic and anaerobic metabolic pathways, among other factors. Transmembrane proteins called monocarboxylate transporters, mainly the isoform 1 (MCT1 and its ancillary protein CD147, can help the organism to adapt to physiological stress caused by physical exercise, transporting lactate and H+ ions. Horse breeds are selected for different purposes so we might expect differences in the amount of those proteins and in the genotypic frequencies for genes that play a significant role in the performance of the animals. The study of MCT1 and CD147 gene polymorphisms, which can affect the formation of the proteins and transport of lactate and H+, can provide enough information to be used for selection of athletic horses increasingly resistant to intense exercise. Two other candidate genes, the PDK4 and DMRT3, have been associated with athletic potential and indicated as possible markers for performance in horses. The oxidation of fatty acids is highly effective in generating ATP and is controlled by the expression of PDK4 (pyruvate dehydrogenase kinase, isozyme 4 in skeletal muscle during and after exercise. The doublesex and mab-3 related transcription factor 3 (DMRT3 gene encodes an important transcription factor in the setting of spinal cord circuits controlling movement in vertebrates and may be associated with gait performance in horses. This review describes how the monocarboxylate transporters work during physical exercise in athletic horses and the influence of polymorphisms in candidate genes for athletic performance in horses.

  20. Neuropilin-2 rs849563 gene variations and susceptibility to autism in Iranian population: A case-control study.

    Science.gov (United States)

    Hosseinpour, Marziyeh; Mashayekhi, Farhad; Bidabadi, Elham; Salehi, Zivar

    2017-10-01

    Autism spectrum disorders (ASD) are neurodevelopmental disruptions usually diagnosed in the first three years of child's life that characterized by some impairments in verbal and nonverbal communication, problems in social interactions and repetitive behaviors. The neuropilin-2 (NRP2) gene has been shown to both guide axons and control neuronal migration in the central nervous system (CNS). In this study the association between the NRP2 gene and autism using a cohort of 120 Iranian children (50 cases with autism and 70 control cases) was analyzed. Single nucleotide polymorphism (SNP) was genotyped by the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analyses. There was significant difference between the genotype and allele frequency between control and patient groups (P = 0.003 and P = 0.01, respectively). The prevalence of genotype frequencies of TT and TG in autistic children were 40% and 60%, respectively, while in controls were 68.5% and 31.5%, respectively. The heterozyote TG was associated with an increased risk of autism compared with TT genotype (OR = 3.72, 95%CI = 1.53-6.95, P = 0.02). The allele frequencies of T and G in autistic children were 78.5% and 21.4%, respectively and in controls were 84.2% and 15.7%, respectively. The NRP2 G allele conferred a 2.29-fold increased risk to autism relative to the T allele (OR = 2.29, 95%CI = 1.23-4.29, P = 0.009). The results of this study showed that there is a significant association between rs849563 polymorphism and autism in the studied population. However in order to obtain a definitive conclusion larger studies with more samples are required to confirm the results of this study.

  1. No Association between Personality and Candidate Gene Polymorphisms in a Wild Bird Population.

    Directory of Open Access Journals (Sweden)

    Hannah A Edwards

    Full Text Available Consistency of between-individual differences in behaviour or personality is a phenomenon in populations that can have ecological consequences and evolutionary potential. One way that behaviour can evolve is to have a genetic basis. Identifying the molecular genetic basis of personality could therefore provide insight into how and why such variation is maintained, particularly in natural populations. Previously identified candidate genes for personality in birds include the dopamine receptor D4 (DRD4, and serotonin transporter (SERT. Studies of wild bird populations have shown that exploratory and bold behaviours are associated with polymorphisms in both DRD4 and SERT. Here we tested for polymorphisms in DRD4 and SERT in the Seychelles warbler (Acrocephalus sechellensis population on Cousin Island, Seychelles, and then investigated correlations between personality and polymorphisms in these genes. We found no genetic variation in DRD4, but identified four polymorphisms in SERT that clustered into five haplotypes. There was no correlation between bold or exploratory behaviours and SERT polymorphisms/haplotypes. The null result was not due to lack of power, and indicates that there was no association between these behaviours and variation in the candidate genes tested in this population. These null findings provide important data to facilitate representative future meta-analyses on candidate personality genes.

  2. Association analysis of 94 candidate genes and schizophrenia-related endophenotypes.

    Directory of Open Access Journals (Sweden)

    Tiffany A Greenwood

    Full Text Available While it is clear that schizophrenia is highly heritable, the genetic basis of this heritability is complex. Human genetic, brain imaging, and model organism studies have met with only modest gains. A complementary research tactic is to evaluate the genetic substrates of quantitative endophenotypes with demonstrated deficits in schizophrenia patients. We used an Illumina custom 1,536-SNP array to interrogate 94 functionally relevant candidate genes for schizophrenia and evaluate association with both the qualitative diagnosis of schizophrenia and quantitative endophenotypes for schizophrenia. Subjects included 219 schizophrenia patients and normal comparison subjects of European ancestry and 76 schizophrenia patients and normal comparison subjects of African ancestry, all ascertained by the UCSD Schizophrenia Research Program. Six neurophysiological and neurocognitive endophenotype test paradigms were assessed: prepulse inhibition (PPI, P50 suppression, the antisaccade oculomotor task, the Letter-Number Span Test, the California Verbal Learning Test-II, and the Wisconsin Card Sorting Test-64 Card Version. These endophenotype test paradigms yielded six primary endophenotypes with prior evidence of heritability and demonstrated schizophrenia-related impairments, as well as eight secondary measures investigated as candidate endophenotypes. Schizophrenia patients showed significant deficits on ten of the endophenotypic measures, replicating prior studies and facilitating genetic analyses of these phenotypes. A total of 38 genes were found to be associated with at least one endophenotypic measure or schizophrenia with an empirical p-value<0.01. Many of these genes have been shown to interact on a molecular level, and eleven genes displayed evidence for pleiotropy, revealing associations with three or more endophenotypic measures. Among these genes were ERBB4 and NRG1, providing further support for a role of these genes in schizophrenia susceptibility

  3. Hotspots of missense mutation identify novel neurodevelopmental disorder genes and functional domains

    Science.gov (United States)

    Geisheker, Madeleine R.; Heymann, Gabriel; Wang, Tianyun; Coe, Bradley P.; Turner, Tychele N.; Stessman, Holly A.F.; Hoekzema, Kendra; Kvarnung, Malin; Shaw, Marie; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Thompson, Elizabeth M.; Haan, Eric; Guo, Hui; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Vandeweyer, Geert; Alberti, Antonino; Avola, Emanuela; Vinci, Mirella; Giusto, Stefania; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Michaelson, Jacob J.; Sedlacek, Zdenek; Santen, Gijs W.E.; Peeters, Hilde; Hakonarson, Hakon; Courchesne, Eric; Romano, Corrado; Kooy, R. Frank; Bernier, Raphael A.; Nordenskjöld, Magnus; Gecz, Jozef; Xia, Kun; Zweifel, Larry S.; Eichler, Evan E.

    2017-01-01

    Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,689 NDD patients identified 21 new patients with identical missense mutations. One recurrent site (p.Ala636Thr) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology. PMID:28628100

  4. Screening key candidate genes and pathways involved in insulinoma by microarray analysis.

    Science.gov (United States)

    Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin

    2018-06-01

    Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.

  5. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism.

    Science.gov (United States)

    James, S Jill; Melnyk, Stepan; Jernigan, Stefanie; Pavliv, Oleksandra; Trusty, Timothy; Lehman, Sara; Seidel, Lisa; Gaylor, David W; Cleves, Mario A

    2010-09-01

    The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism. (c) 2010 Wiley-Liss, Inc.

  6. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  7. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.

    Science.gov (United States)

    Liu, Bin; Jin, Min; Zeng, Pan

    2015-10-01

    The identification of gene-phenotype relationships is very important for the treatment of human diseases. Studies have shown that genes causing the same or similar phenotypes tend to interact with each other in a protein-protein interaction (PPI) network. Thus, many identification methods based on the PPI network model have achieved good results. However, in the PPI network, some interactions between the proteins encoded by candidate gene and the proteins encoded by known disease genes are very weak. Therefore, some studies have combined the PPI network with other genomic information and reported good predictive performances. However, we believe that the results could be further improved. In this paper, we propose a new method that uses the semantic similarity between the candidate gene and known disease genes to set the initial probability vector of a random walk with a restart algorithm in a human PPI network. The effectiveness of our method was demonstrated by leave-one-out cross-validation, and the experimental results indicated that our method outperformed other methods. Additionally, our method can predict new causative genes of multifactor diseases, including Parkinson's disease, breast cancer and obesity. The top predictions were good and consistent with the findings in the literature, which further illustrates the effectiveness of our method. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variations

    Directory of Open Access Journals (Sweden)

    David Jean-Philippe

    2009-11-01

    Full Text Available Abstract Background Genome scans are becoming an increasingly popular approach to study the genetic basis of adaptation and speciation, but on their own, they are often helpless at identifying the specific gene(s or mutation(s targeted by selection. This shortcoming is hopefully bound to disappear in the near future, thanks to the wealth of new genomic resources that are currently being developed for many species. In this article, we provide a foretaste of this exciting new era by conducting a genome scan in the mosquito Aedes aegypti with the aim to look for candidate genes involved in resistance to Bacillus thuringiensis subsp. israelensis (Bti insecticidal toxins. Results The genome of a Bti-resistant and a Bti-susceptible strains was surveyed using about 500 MITE-based molecular markers, and the loci showing the highest inter-strain genetic differentiation were sequenced and mapped on the Aedes aegypti genome sequence. Several good candidate genes for Bti-resistance were identified in the vicinity of these highly differentiated markers. Two of them, coding for a cadherin and a leucine aminopeptidase, were further examined at the sequence and gene expression levels. In the resistant strain, the cadherin gene displayed patterns of nucleotide polymorphisms consistent with the action of positive selection (e.g. an excess of high compared to intermediate frequency mutations, as well as a significant under-expression compared to the susceptible strain. Conclusion Both sequence and gene expression analyses agree to suggest a role for positive selection in the evolution of this cadherin gene in the resistant strain. However, it is unlikely that resistance to Bti is conferred by this gene alone, and further investigation will be needed to characterize other genes significantly associated with Bti resistance in Ae. aegypti. Beyond these results, this article illustrates how genome scans can build on the body of new genomic information (here, full

  9. Genomic dissection and prioritizing of candidate genes of QTL for ...

    Indian Academy of Sciences (India)

    Genomic dissection and prioritizing of candidate genes of QTL for regulating spontaneous arthritis on chromosome 1 in mice deficient for interleukin-1 receptor antagonist. Yanhong Cao, Jifei Zhang, Yan Jiao, Jian Yan, Feng Jiao, XiaoYun Liu, Robert W. Williams, Karen A. Hasty,. John M. Stuart and Weikuan Gu. J. Genet.

  10. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca).

    Science.gov (United States)

    Mariette, Stéphanie; Wong Jun Tai, Fabienne; Roch, Guillaume; Barre, Aurélien; Chague, Aurélie; Decroocq, Stéphane; Groppi, Alexis; Laizet, Yec'han; Lambert, Patrick; Tricon, David; Nikolski, Macha; Audergon, Jean-Marc; Abbott, Albert G; Decroocq, Véronique

    2016-01-01

    In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm. © 2015 INRA, UMR 1332 BFP New Phytologist © 2015 New Phytologist Trust.

  11. Duplication of 17(p11.2p11.2) in a male child with autism and severe language delay.

    Science.gov (United States)

    Nakamine, Alisa; Ouchanov, Leonid; Jiménez, Patricia; Manghi, Elina R; Esquivel, Marcela; Monge, Silvia; Fallas, Marietha; Burton, Barbara K; Szomju, Barbara; Elsea, Sarah H; Marshall, Christian R; Scherer, Stephen W; McInnes, L Alison

    2008-03-01

    Duplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay. We are conducting a genetic study of autism and are screening all cases for submicroscopic chromosomal abnormalities, in addition to standard karyotyping, and fragile X testing. Using array-based comparative genomic hybridization analysis of data from the Affymetrix GeneChip(R) Human Mapping Array set, we detected a duplication of approximately 3.3 Mb on chromosome 17p11.2 in a male child with autism and severe expressive language delay. The duplication was confirmed by measuring the copy number of genomic DNA using quantitative polymerase chain reaction. Gene expression analyses revealed increased expression of three candidate genes for the Smith-Magenis neurobehavioral phenotype, RAI1, DRG2, and RASD1, in transformed lymphocytes from Case 81A, suggesting gene dosage effects. Our results add to a growing body of evidence suggesting that duplications of 17(p11.2p11.2) result in language delay as well as autism and related phenotypes. As Smith-Magenis syndrome is also associated with language delay, a gene involved in acquisition of language may lie within this interval. Whether a parent of origin effect, gender of the case, the presence of allelic variation, or changes in expression of genes outside the breakpoints influence the resultant phenotype remains to be determined. (c) 2007 Wiley-Liss, Inc.

  12. QTL replication and targeted association highlight the nerve growth factor gene for nonverbal communication deficits in autism spectrum disorders.

    Science.gov (United States)

    Lu, A T-H; Yoon, J; Geschwind, D H; Cantor, R M

    2013-02-01

    Autism Spectrum Disorder (ASD) has a heterogeneous etiology that is genetically complex. It is defined by deficits in communication and social skills and the presence of restricted and repetitive behaviors. Genetic analyses of heritable quantitative traits that correlate with ASD may reduce heterogeneity. With this in mind, deficits in nonverbal communication (NVC) were quantified based on items from the Autism Diagnostic Interview Revised. Our previous analysis of 228 families from the Autism Genetics Research Exchange (AGRE) repository reported 5 potential quantitative trait loci (QTL). Here we report an NVC QTL replication study in an independent sample of 213 AGRE families. One QTL was replicated (Panalysis of 476 haplotype blocks with 708 AGRE families using the Family Based Association Test (FBAT). Blocks in two QTL genes were associated with NVC with a P-value of 0.001. Three associated haplotype blocks were intronic to the Nerve Growth Factor (NGF) gene (P=0.001, 0.001, 0.002), and one was intronic to KCND3 (P=0.001). Individual haplotypes within the associated blocks drove the associations (0.003, 0.0004 and 0.0002) for NGF and 0.0001 for KCND3. Using the same methods, these genes were tested for association with NVC in an independent sample of 1517 families from an Autism Genome Project (AGP). NVC was associated with a haplotype in an adjacent NGF block (P=0.0005) and one 46 kb away from the associated block in KCND3 (0.008). These analyses illustrate the value of QTL and targeted association studies for genetically complex disorders such as ASD. NGF is a promising risk gene for NVC deficits.

  13. Genome-Wide Association Study with Sequence Variants Identifies Candidate Genes for Mastitis Resistance in Dairy Cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Bendixen, Christian

    Six genomic regions affecting clinical mastitis were identified through a GWAS study with imputed BovineHD chip genotype data in the Nordic Holstein cattle population. The association analyses were carried out using a SNP-by-SNP analysis by fitting the regression of allele dosage and a polygenic...... Effect Predictor (VEP) vers. 2.6 using ENSEMBL vers. 67 databases. Candidate polymorphisms affecting clinical mastitis were selected based on their association with the traits and functional annotations. A strong positional candidate gene for mastitis resistance on chromosome-6 is the NPFFR2 which...... Factor Receptor Alpha (LIFR) emerged as a strong candidate gene for mastitis resistance. The LIFR gene is involved in acute phase response and is expressed in saliva and mammary gland....

  14. Utilization of gene mapping and candidate gene mutation screening for diagnosing clinically equivocal conditions: a Norrie disease case study.

    Science.gov (United States)

    Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem

    2014-06-01

    Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.

  15. Validation of candidate genes associated with cardiovascular risk factors in psychiatric patients

    Science.gov (United States)

    Windemuth, Andreas; de Leon, Jose; Goethe, John W.; Schwartz, Harold I.; Woolley, Stephen; Susce, Margaret; Kocherla, Mohan; Bogaard, Kali; Holford, Theodore R.; Seip, Richard L.; Ruaño, Gualberto

    2016-01-01

    The purpose of this study was to identify genetic variants predictive of cardiovascular risk factors in a psychiatric population treated with second generation antipsychotics (SGA). 924 patients undergoing treatment for severe mental illness at four US hospitals were genotyped at 1.2 million single nucleotide polymorphisms. Patients were assessed for fasting serum lipid (low density lipoprotein cholesterol [LDLc], high density lipoprotein cholesterol [HDLc], and triglycerides) and obesity phenotypes (body mass index, BMI). Thirteen candidate genes from previous studies of the same phenotypes in non-psychiatric populations were tested for association. We confirmed 8 of the 13 candidate genes at the 95% confidence level. An increased genetic effect size was observed for triglycerides in the psychiatric population compared to that in the cardiovascular population. PMID:21851846

  16. Autism Spectrum Disorder and Fragile X Syndrome

    Science.gov (United States)

    ... only after another family member has been diagnosed. Autism Spectrum Disorder and Fragile X Syndrome Fragile X syndrome is ... gene cause of ASD What Is Autism Spectrum Disorder? Autism spectrum disorder (ASD) is a behavioral diagnosis. The range ...

  17. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    OpenAIRE

    Arun, Alok; Bauml?, V?ronique; Amelot, Ga?l; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at ident...

  18. SNP analyses of growth factor genes EGF, TGF{beta}-1, and HGF reveal haplotypic association of EGF with autism

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Takao; Thanseem, Ismail; Kawai, Masayoshi; Sekine, Yoshimoto [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Nakamura, Kazuhiko; Anitha, Ayyappan; Suda, Shiro [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Yamada, Kazuo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Tsujii, Masatsugu [Faculty of Sociology, Chukyo University, Toyota, Aichi (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Yoshikawa, Takeo [Laboratory of Molecular Psychiatry, RIKEN Brain Science Institute, Saitama (Japan); Miyachi, Taishi; Tsuchiya, Kenji; Sugihara, Gen-ichi; Matsuzaki, Hideo [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); Iwata, Yasuhide; Suzuki, Katsuaki [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Mori, Norio [Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Graduate School of Medicine, Osaka University (Japan); Ouchi, Yasuomi [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan); [The Positron Medical Center, Hamamatsu Medical Center, Hamamatsu (Japan); Sugiyama, Toshiro [Aichi Children' s Health and Medical Center, Obu, Aichi (Japan); Takei, Nori [The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu (Japan)

    2007-09-07

    Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-{beta} (TGF{beta}) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGF{beta}1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGF{beta}1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.

  19. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  20. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  1. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvrå, Steen; Rattan, Suresh I S

    2007-01-01

    Human longevity is determined to a certain extent by genetic factors. Several candidate genes have been studied for their association with human longevity, but the data collected so far are inconclusive. One of the reasons is the choice of the candidate genes in addition to the choice...... of an appropriate study design and methodology. Since aging is characterized by a progressive accumulation of molecular damage and an attenuation of the cellular defense mechanisms, the focus of studies on human longevity association with genes has now shifted to the pathways of cellular maintenance and repair...... mechanisms. One such pathway includes the battery of stress response genes, especially the heat shock protein HSP70 genes. Three such genes, HSPA1A, HSPA1B and HSPA1L, are present within the MHC-III region on the short arm of chromosome 6. We and others have found alleles, genotypes and haplotypes which have...

  2. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes

    DEFF Research Database (Denmark)

    Storling, Joachim; Brorsson, Caroline Anna

    2013-01-01

    In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease......, but more than 40 additional loci are known to significantly affect T1D risk. Since most of the currently known genetic candidates have annotated immune cell functions, it is generally considered that most of the genetic susceptibility in T1D is caused by variation in genes affecting immune cell function....... Recent studies, however, indicate that most T1D candidate genes are expressed in human islets suggesting that the functions of the genes are not restricted to immune cells, but also play roles in the islets and possibly the β cells. Several candidates change expression levels within the islets following...

  3. Photoreceptor dysplasia (pd) in miniature schnauzer dogs: evaluation of candidate genes by molecular genetic analysis.

    Science.gov (United States)

    Zhang, Q; Baldwin, V J; Acland, G M; Parshall, C J; Haskel, J; Aguirre, G D; Ray, K

    1999-01-01

    Photoreceptor dysplasia (pd) is one of a group of at least six distinct autosomal and one X-linked retinal disorders identified in dogs which are collectively known as progressive retinal atrophy (PRA). It is an early onset retinal disease identified in miniature schnauzer dogs, and pedigree analysis and breeding studies have established autosomal recessive inheritance of the disease. Using a gene-based approach, a number of retina-expressed genes, including some members of the phototransduction pathway, have been causally implicated in retinal diseases of humans and other animals. Here we examined seven such potential candidate genes (opsin, RDS/peripherin, ROM1, rod cGMP-gated cation channel alpha-subunit, and three subunits of transducin) for their causal association with the pd locus by testing segregation of intragenic markers with the disease locus, or, in the absence of informative polymorphisms, sequencing of the coding regions of the genes. Based on these results, we have conclusively excluded four photoreceptor-specific genes as candidates for pd by linkage analysis. For three other photoreceptor-specific genes, we did not find any mutation in the coding sequences of the genes and have excluded them provisionally. Formal exclusion would require investigation of the levels of expression of the candidate genes in pd-affected dogs relative to age-matched controls. At present we are building suitable informative pedigrees for the disease locus with a sufficient number of meiosis to be useful for genomewide screening. This should identify markers linked to the disease locus and eventually permit progress toward the identification of the photoreceptor dysplasia gene and the disease-causing mutation.

  4. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    DEFF Research Database (Denmark)

    Hamilton, P J; Campbell, N G; Sharma, S

    2013-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution...

  5. Expression studies of the obesity candidate gene FTO in pig

    DEFF Research Database (Denmark)

    Madsen, Majbritt Busk; Birck, Malene Muusfeldt; Fredholm, Merete

    2010-01-01

    Obesity is an increasing problem worldwide and research on candidate genes in good animal models is highly needed. The pig is an excellent model as its metabolism, organ size, and eating habits resemble that of humans. The present study is focused on the characterization of the fat mass and obesity...... associated gene (FTO) in pig. This gene has recently been associated with increased body mass index in several human populations. To establish information on the expression profile of FTO in the pig we performed quantitative PCR in a panel of adult pig tissues and in tissues sampled at different...... and cerebellum). Additionally, in order to see the involvement of the FTO gene in obesity, the changes in expression level were investigated in a nutritional study in brain of Gottingen minipigs under a high cholesterol diet. Significantly higher (P

  6. Candidate gene association analyses for ketosis resistance in Holsteins.

    Science.gov (United States)

    Kroezen, V; Schenkel, F S; Miglior, F; Baes, C F; Squires, E J

    2018-06-01

    High-yielding dairy cattle are susceptible to ketosis, a metabolic disease that negatively affects the health, fertility, and milk production of the cow. Interest in breeding for more robust dairy cattle with improved resistance to disease is global; however, genetic evaluations for ketosis would benefit from the additional information provided by genetic markers. Candidate genes that are proposed to have a biological role in the pathogenesis of ketosis were investigated in silico and a custom panel of 998 putative single nucleotide polymorphism (SNP) markers was developed. The objective of this study was to test the associations of these new markers with deregressed estimated breeding values (EBV) for ketosis. A sample of 653 Canadian Holstein cows that had been previously genotyped with a medium-density SNP chip were regenotyped with the custom panel. The EBV for ketosis in first and later lactations were obtained for each animal and deregressed for use as pseudo-phenotypes for association analyses. Results of the mixed inheritance model for single SNP association analyses suggested 15 markers in 6 unique candidate genes were associated with the studied trait. Genes encoding proteins involved in metabolic processes, including the synthesis and degradation of fatty acids and ketone bodies, gluconeogenesis, lipid mobilization, and the citric acid cycle, were identified to contain SNP associated with ketosis resistance. This work confirmed the presence of previously described quantitative trait loci for dairy cattle, suggested novel markers for ketosis-resistance, and provided insight into the underlying biology of this disease. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Candidate Gene Associations with Withdrawn Behavior

    Science.gov (United States)

    Rubin, David H.; Althoff, Robert R.; Ehli, Erik A.; Davies, Gareth E.; Rettew, David C.; Crehan, Eileen T.; Walkup, John T.; Hudziak, James J.

    2013-01-01

    Background: Social withdrawal is a core neuropsychiatric phenomenon in developmental psychopathology. Its presence predicts psychopathology across many domains, including depression, psychosis, autism, anxiety, and suicide. Withdrawn behavior is highly heritable, persistent, and characteristically worsens without intervention. To date, few studies…

  8. Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism.

    Science.gov (United States)

    Patel, Sejal; Roncaglia, Paola; Lovering, Ruth C

    2015-06-06

    People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets.

  9. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  10. Characterization of Gene Candidates for Vacuolar Sodium Transport from Hordeum Vulgare

    KAUST Repository

    Scheu, Arne Hagen August

    2017-01-01

    Various potential causes are discussed, including inaccuracies in the genome resource used as reference for primer design and issues inherent to the model system. Finally, I make suggestions on how to proceed to further characterize the candidate genes and hopefully identify novel sodium transporters from barley.

  11. Phosphatase and tensin homolog (PTEN) gene mutations and autism: literature review and a case report of a patient with Cowden syndrome, autistic disorder, and epilepsy.

    Science.gov (United States)

    Conti, Sara; Condò, Maria; Posar, Annio; Mari, Francesca; Resta, Nicoletta; Renieri, Alessandra; Neri, Iria; Patrizi, Annalisa; Parmeggiani, Antonia

    2012-03-01

    Phosphatase and tensin homolog (PTEN) gene mutations are associated with a spectrum of clinical disorders characterized by skin lesions, macrocephaly, hamartomatous overgrowth of tissues, and an increased risk of cancers. Autism has rarely been described in association with these variable clinical features. At present, 24 patients with phosphatase and tensin homolog gene mutation, autism, macrocephaly, and some clinical findings described in phosphatase and tensin homolog syndromes have been reported in the literature. We describe a 14-year-old boy with autistic disorder, focal epilepsy, severe and progressive macrocephaly, and multiple papular skin lesions and palmoplantar punctate keratoses, characteristic of Cowden syndrome. The boy has a de novo phosphatase and tensin homolog gene mutation. Our patient is the first case described to present a typical Cowden syndrome and autism associated with epilepsy.

  12. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  13. Maternal exposure to prostaglandin E2 modifies expression of Wnt genes in mouse brain – An autism connection

    Directory of Open Access Journals (Sweden)

    Ravneet Rai-Bhogal

    2018-07-01

    Full Text Available Prostaglandin E2 (PGE2 is a lipid signaling molecule important for brain development and function. Various genetic and environmental factors can influence the level of PGE2 and increase the risk of developing Autism Spectrum Disorder (ASD. We have previously shown that in neuronal cell lines and mouse brain, PGE2 can interfere with the Wnt canonical pathway, which is essential during early brain development. Higher levels of PGE2 increased Wnt-dependent motility and proliferation of neuroectodermal stem cells, and modified the expression of Wnt genes previously linked to autism disorders. We also recently established a cross-talk between these two pathways in the prenatal mouse brain lacking PGE2 producing enzyme (COX-/-. The current study complements the published data and reveals that PGE2 signaling also converges with the Wnt canonical pathway in the developing mouse brain after maternal exposure to PGE2 at the onset of neurogenesis. We found significant changes in the expression level of Wnt-target genes, Mmp7, Wnt2, and Wnt3a, during prenatal and early postnatal stages. Interestingly, we observed variability in the expression level of these genes between genetically-identical pups within the same pregnancy. Furthermore, we found that all the affected genes have been previously associated with disorders of the central nervous system, including autism. We determined that prenatal exposure to PGE2 affects the Wnt pathway at the level of β-catenin, the major downstream regulator of Wnt-dependent gene transcription. We discuss how these results add new knowledge into the molecular mechanisms by which PGE2 may interfere with neuronal development during critical periods.

  14. Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Ramos Paula S

    2012-06-01

    Full Text Available Abstract Background A growing number of clinical and basic research studies have implicated immunological abnormalities as being associated with and potentially responsible for the cognitive and behavioral deficits seen in autism spectrum disorder (ASD children. Here we test the hypothesis that immune-related gene loci are associated with ASD. Findings We identified 2,012 genes of known immune-function via Ingenuity Pathway Analysis. Family-based tests of association were computed on the 22,904 single nucleotide polymorphisms (SNPs from the 2,012 immune-related genes on 1,510 trios available at the Autism Genetic Resource Exchange (AGRE repository. Several SNPs in immune-related genes remained statistically significantly associated with ASD after adjusting for multiple comparisons. Specifically, we observed significant associations in the CD99 molecule-like 2 region (CD99L2, rs11796490, P = 4.01 × 10-06, OR = 0.68 (0.58-0.80, in the jumonji AT rich interactive domain 2 (JARID2 gene (rs13193457, P = 2.71 × 10-06, OR = 0.61 (0.49-0.75, and in the thyroid peroxidase gene (TPO (rs1514687, P = 5.72 × 10-06, OR = 1.46 (1.24-1.72. Conclusions This study suggests that despite the lack of a general enrichment of SNPs in immune function genes in ASD children, several novel genes with known immune functions are associated with ASD.

  15. Molecular analysis and test of linkage between the FMR-I gene and infantile autism in multiplex families

    Energy Technology Data Exchange (ETDEWEB)

    Hallmayer, J.; Pintado, E.; Lotspeich, L.; Spiker, D.; Kraemer, H.C.; Lee Wong, D.; Lin, A.; Herbert, J.; Cavalli-Sforza, L.L.; Ciaranello, R.D. [Stanford Univ., CA (United States)] [and others

    1994-11-01

    Approximately 2%-5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings by Southern blot analysis. No examples of amplified repeats were seen in the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between -24 and -62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families. 35 refs., 2 figs., 5 tabs.

  16. Investigation of the molecular relationship between breast cancer and obesity by candidate gene prioritization methods

    Directory of Open Access Journals (Sweden)

    Saba Garshasbi

    2015-10-01

    Full Text Available Background: Cancer and obesity are two major public health concerns. More than 12 million cases of cancer are reported annually. Many reports confirmed obesity as a risk factor for cancer. The molecular relationship between obesity and breast cancer has not been clear yet. The purpose of this study was to investigate priorities of effective genes in the molecular relationship between obesity and breast cancer. Methods: In this study, computer simulation method was used for prioritizing the genes that involved in the molecular links between obesity and breast cancer in laboratory of systems biology and bioinformatics (LBB, Tehran University, Tehran, Iran, from March to July 2014. In this study, ENDEAVOUR software was used for prioritizing the genes and integrating multiple data sources was used for data analysis. Training genes were selected from effective genes in obesity and/or breast cancer. Two groups of candidate genes were selected. The first group was included the existential genes in 5 common region chromosomes (between obesity and breast cancer and the second group was included the results of genes microarray data analysis of research Creighton, et al (In 2012 on patients with breast cancer. The microarray data were analyzed with GER2 software (R online software on GEO website. Finally, both training and candidate genes were entered in ENDEAVOUR software package. Results: The candidate genes were prioritized to four style and five genes in ten of the first priorities were repeated twice. In other word, the outcome of prioritizing of 72 genes (Product of microarray data analysis and genes of 5 common chromosome regions (Between obesity and breast cancer showed, 5 genes (TNFRSF10B, F2, IGFALS, NTRK3 and HSP90B1 were the priorities in the molecular connection between obesity and breast cancer. Conclusion: There are some common genes between breast cancer and obesity. So, molecular relationship is confirmed. In this study the possible effect

  17. Candidate gene linkage approach to identify DNA variants that predispose to preterm birth

    DEFF Research Database (Denmark)

    Bream, Elise N A; Leppellere, Cara R; Cooper, Margaret E

    2013-01-01

    Background:The aim of this study was to identify genetic variants contributing to preterm birth (PTB) using a linkage candidate gene approach.Methods:We studied 99 single-nucleotide polymorphisms (SNPs) for 33 genes in 257 families with PTBs segregating. Nonparametric and parametric analyses were...... through the infant and/or the mother in the etiology of PTB....

  18. Gene Expression Analysis in Tubule Interstitial Compartments Reveals Candidate Agents for IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2014-09-01

    Full Text Available Background/Aims: Our aim was to explore the molecular mechanism underlying development of IgA nephropathy and discover candidate agents for IgA nephropathy. Methods: The differentially expressed genes (DEGs between patients with IgA nephropathy and normal controls were identified by the data of GSE35488 downloaded from GEO (Gene Expression Omnibus database. The co-expressed gene pairs among DEGs were screened to construct the gene-gene interaction network. Gene Ontology (GO enrichment analysis was performed to analyze the functions of DEGs. The biologically active small molecules capable of targeting IgA nephropathy were identified using the Connectivity Map (cMap database. Results: A total of 55 genes involved in response to organic substance, transcription factor activity and response to steroid hormone stimulus were identified to be differentially expressed in IgA nephropathy patients compared to healthy individuals. A network with 45 co-expressed gene pairs was constructed. DEGs in the network were significantly enriched in response to organic substance. Additionally, a group of small molecules were identified, such as doxorubicin and thapsigargin. Conclusion: Our work provided a systematic insight in understanding the mechanism of IgA nephropathy. Small molecules such as thapsigargin might be potential candidate agents for the treatment of IgA nephropathy.

  19. Case-control study of candidate gene methylation and adenomatous polyp formation.

    Science.gov (United States)

    Alexander, M; Burch, J B; Steck, S E; Chen, C-F; Hurley, T G; Cavicchia, P; Shivappa, N; Guess, J; Zhang, H; Youngstedt, S D; Creek, K E; Lloyd, S; Jones, K; Hébert, J R

    2017-02-01

    Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %). Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.

  20. Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior.

    Science.gov (United States)

    Yamasue, Hidenori

    2013-02-01

    Difficulties in appropriate social and communicative behaviors are the most prevalent and core symptoms of autism spectrum disorders (ASDs). Although recent intensive research has focused on the neurobiological background of these difficulties, many aspects of them were not yet elucidated. Recent studies have employed multimodal magnetic resonance imaging (MRI) indices as intermediate phenotypes of this behavioral phenotype to link candidate genes with the autistic social difficulty. As MRI indices, functional MRI (fMRI), structural MRI, and MR-spectroscopy have been examined in subjects with autism spectrum disorders. As candidate genes, this mini-review has much interest in oxytocin-receptor genes (OXTR), since recent studies have repeatedly reported their associations with normal variations in social cognition and behavior as well as with their extremes, autistic social dysfunction. Through previous increasing studies, medial prefrontal cortex, hypothalamus and amygdala have repeatedly been revealed as neural correlates of autistic social behavior by MRI multimodalities and their relationship to OXTR. For further development of this research area, this mini-review integrates recent accumulating evidence about human behavioral and neural correlates of OXTR. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Gene × Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms

    Science.gov (United States)

    Tordjman, Sylvie; Somogyi, Eszter; Coulon, Nathalie; Kermarrec, Solenn; Cohen, David; Bronsard, Guillaume; Bonnot, Olivier; Weismann-Arcache, Catherine; Botbol, Michel; Lauth, Bertrand; Ginchat, Vincent; Roubertoux, Pierre; Barburoth, Marianne; Kovess, Viviane; Geoffray, Marie-Maude; Xavier, Jean

    2014-01-01

    Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene × environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention, and early therapeutic intervention of ASD. PMID:25136320

  2. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Directory of Open Access Journals (Sweden)

    Alok Arun

    Full Text Available Real-time quantitative reverse transcription PCR (qRT-PCR is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae, two developmental stages (pupal and adult and two sexes (male and female, all of which were subjected to two food treatments (food stress and control feeding ad libitum. The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the

  3. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    Science.gov (United States)

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression

  4. Age-Dependent Brain Gene Expression and Copy Number Anomalies in Autism Suggest Distinct Pathological Processes at Young Versus Mature Ages

    OpenAIRE

    Chow, Maggie L.; Pramparo, Tiziano; Winn, Mary E.; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J.; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that disp...

  5. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

    Directory of Open Access Journals (Sweden)

    Worley Gordon

    2009-10-01

    Full Text Available Abstract Background Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders. Methods We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR. Results Our analysis revealed a genomic deletion containing the oxytocin receptor gene, OXTR (MIM accession no.: 167055, previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate OXTR expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that OXTR mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls. Conclusion Together, these data provide

  6. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes.

    Directory of Open Access Journals (Sweden)

    Nicholas M Morton

    Full Text Available Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L strain.To enrich for adipose tissue obesity genes a 'snap-shot' pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney was performed. Known obesity quantitative trait loci (QTL information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity.A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity.

  7. Identifying candidate driver genes by integrative ovarian cancer genomics data

    Science.gov (United States)

    Lu, Xinguo; Lu, Jibo

    2017-08-01

    Integrative analysis of molecular mechanics underlying cancer can distinguish interactions that cannot be revealed based on one kind of data for the appropriate diagnosis and treatment of cancer patients. Tumor samples exhibit heterogeneity in omics data, such as somatic mutations, Copy Number Variations CNVs), gene expression profiles and so on. In this paper we combined gene co-expression modules and mutation modulators separately in tumor patients to obtain the candidate driver genes for resistant and sensitive tumor from the heterogeneous data. The final list of modulators identified are well known in biological processes associated with ovarian cancer, such as CCL17, CACTIN, CCL16, CCL22, APOB, KDF1, CCL11, HNF1B, LRG1, MED1 and so on, which can help to facilitate the discovery of biomarkers, molecular diagnostics, and drug discovery.

  8. Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture.

    Science.gov (United States)

    González-Plaza, Juan J; Ortiz-Martín, Inmaculada; Muñoz-Mérida, Antonio; García-López, Carmen; Sánchez-Sevilla, José F; Luque, Francisco; Trelles, Oswaldo; Bejarano, Eduardo R; De La Rosa, Raúl; Valpuesta, Victoriano; Beuzón, Carmen R

    2016-01-01

    Plant architecture is a critical trait in fruit crops that can significantly influence yield, pruning, planting density and harvesting. Little is known about how plant architecture is genetically determined in olive, were most of the existing varieties are traditional with an architecture poorly suited for modern growing and harvesting systems. In the present study, we have carried out microarray analysis of meristematic tissue to compare expression profiles of olive varieties displaying differences in architecture, as well as seedlings from their cross pooled on the basis of their sharing architecture-related phenotypes. The microarray used, previously developed by our group has already been applied to identify candidates genes involved in regulating juvenile to adult transition in the shoot apex of seedlings. Varieties with distinct architecture phenotypes and individuals from segregating progenies displaying opposite architecture features were used to link phenotype to expression. Here, we identify 2252 differentially expressed genes (DEGs) associated to differences in plant architecture. Microarray results were validated by quantitative RT-PCR carried out on genes with functional annotation likely related to plant architecture. Twelve of these genes were further analyzed in individual seedlings of the corresponding pool. We also examined Arabidopsis mutants in putative orthologs of these targeted candidate genes, finding altered architecture for most of them. This supports a functional conservation between species and potential biological relevance of the candidate genes identified. This study is the first to identify genes associated to plant architecture in olive, and the results obtained could be of great help in future programs aimed at selecting phenotypes adapted to modern cultivation practices in this species.

  9. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    Science.gov (United States)

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  10. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  11. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  12. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism.

    Science.gov (United States)

    Eagleson, Kathie L; Xie, Zhihui; Levitt, Pat

    2017-03-01

    People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Network Based Integrated Analysis of Phenotype-Genotype Data for Prioritization of Candidate Symptom Genes

    Directory of Open Access Journals (Sweden)

    Xing Li

    2014-01-01

    Full Text Available Background. Symptoms and signs (symptoms in brief are the essential clinical manifestations for individualized diagnosis and treatment in traditional Chinese medicine (TCM. To gain insights into the molecular mechanism of symptoms, we develop a computational approach to identify the candidate genes of symptoms. Methods. This paper presents a network-based approach for the integrated analysis of multiple phenotype-genotype data sources and the prediction of the prioritizing genes for the associated symptoms. The method first calculates the similarities between symptoms and diseases based on the symptom-disease relationships retrieved from the PubMed bibliographic database. Then the disease-gene associations and protein-protein interactions are utilized to construct a phenotype-genotype network. The PRINCE algorithm is finally used to rank the potential genes for the associated symptoms. Results. The proposed method gets reliable gene rank list with AUC (area under curve 0.616 in classification. Some novel genes like CALCA, ESR1, and MTHFR were predicted to be associated with headache symptoms, which are not recorded in the benchmark data set, but have been reported in recent published literatures. Conclusions. Our study demonstrated that by integrating phenotype-genotype relationships into a complex network framework it provides an effective approach to identify candidate genes of symptoms.

  14. Association Study between BDNF Gene Polymorphisms and Autism by Three-Dimensional Gel-Based Microarray

    Directory of Open Access Journals (Sweden)

    Zuhong Lu

    2009-06-01

    Full Text Available Single nucleotide polymorphisms (SNPs are important markers which can be used in association studies searching for susceptible genes of complex diseases. High-throughput methods are needed for SNP genotyping in a large number of samples. In this study, we applied polyacrylamide gel-based microarray combined with dual-color hybridization for association study of four BDNF polymorphisms with autism. All the SNPs in both patients and controls could be analyzed quickly and correctly. Among four SNPs, only C270T polymorphism showed significant differences in the frequency of the allele (χ2 = 7.809, p = 0.005 and genotype (χ2 = 7.800, p = 0.020. In the haplotype association analysis, there was significant difference in global haplotype distribution between the groups (χ2 = 28.19,p = 3.44e-005. We suggest that BDNF has a possible role in the pathogenesis of autism. The study also show that the polyacrylamide gel-based microarray combined with dual-color hybridization is a rapid, simple and high-throughput method for SNPs genotyping, and can be used for association study of susceptible gene with disorders in large samples.

  15. Epidermal growth factor gene is a newly identified candidate gene for gout

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  16. Fine mapping and identification of a candidate gene for the barley Un8 true loose smut resistance gene.

    Science.gov (United States)

    Zang, Wen; Eckstein, Peter E; Colin, Mark; Voth, Doug; Himmelbach, Axel; Beier, Sebastian; Stein, Nils; Scoles, Graham J; Beattie, Aaron D

    2015-07-01

    The candidate gene for the barley Un8 true loose smut resistance gene encodes a deduced protein containing two tandem protein kinase domains. In North America, durable resistance against all known isolates of barley true loose smut, caused by the basidiomycete pathogen Ustilago nuda (Jens.) Rostr. (U. nuda), is under the control of the Un8 resistance gene. Previous genetic studies mapped Un8 to the long arm of chromosome 5 (1HL). Here, a population of 4625 lines segregating for Un8 was used to delimit the Un8 gene to a 0.108 cM interval on chromosome arm 1HL, and assign it to fingerprinted contig 546 of the barley physical map. The minimal tilling path was identified for the Un8 locus using two flanking markers and consisted of two overlapping bacterial artificial chromosomes. One gene located close to a marker co-segregating with Un8 showed high sequence identity to a disease resistance gene containing two kinase domains. Sequence of the candidate gene from the parents of the segregating population, and in an additional 19 barley lines representing a broader spectrum of diversity, showed there was no intron in alleles present in either resistant or susceptible lines, and fifteen amino acid variations unique to the deduced protein sequence in resistant lines differentiated it from the deduced protein sequences in susceptible lines. Some of these variations were present within putative functional domains which may cause a loss of function in the deduced protein sequences within susceptible lines.

  17. Candidate gene association studies in syndromic and non-syndromic cleft lip and palate

    Energy Technology Data Exchange (ETDEWEB)

    Daack-Hirsch, S.; Basart, A.; Frischmeyer, P. [Univ. of Iowa, IA (United States)] [and others

    1994-09-01

    Using ongoing case ascertainment through a birth defects registry, we have collected 219 nuclear families with non-syndromic cleft lip and/or palate and 111 families with a collection of syndromic forms. Syndromic cases include 24 with recognized forms and 72 with unrecognized syndromes. Candidate gene studies as well as genome-wide searches for evidence of microdeletions and isodisomy are currently being carried out. Candidate gene association studies, to date, have made use of PCR-based polymorphisms for TGFA, MSX1, CLPG13 (a CA repeat associated with a human homologue of a locus that results in craniofacial dysmorphogenesis in the mouse) and an STRP found in a Van der Woude syndrome microdeletion. Control tetranucleotide repeats, which insure that population-based differences are not responsible for any observed associations, are also tested. Studies of the syndromic cases have included the same list of candidate genes searching for evidence of microdeletions and a genome-wide search using tri- and tetranucleotide polymorphic markers to search for isodisomy or structural rearrangements. Significant associations have previously been identified for TGFA, and, in this report, identified for MSX1 and nonsyndromic cleft palate only (p = 0.04, uncorrected). Preliminary results of the genome-wide scan for isodisomy has returned no true positives and there has been no evidence for microdeletion cases.

  18. Active ribosomal genes, translational homeostasis and oxidative stress in the pathogenesis of schizophrenia and autism.

    Science.gov (United States)

    Porokhovnik, Lev N; Passekov, Vladimir P; Gorbachevskaya, Nataliya L; Sorokin, Alexander B; Veiko, Nataliya N; Lyapunova, Nataliya A

    2015-04-01

    Infantile autism and schizophrenia are severe multifactorial disorders with a pronounced genetic predisposition. Their pathogeneses are often associated with oxidative stress in the brain. Previously, we established that a cell's resistance to oxidative stress depended on the copy number of transcriptionally active genes for rRNA (ribosomal genes) in the cell's genome. The feature is measured cytogenetically in cultured lymphocytes derived from patients. It varies from 120 up to 190 copies per diploid genome, with an arithmetic mean of 150±4 (SE) copies in a healthy population (n=239), being considerably lower, according to our previous results, in a sample of patients with rheumatoid arthritis (n=49), another multifactorial disease with a proven significant role of oxidative stress in its pathogenesis: from 115 to 165 copies, with a mean of 140±4 (SE). Conversely, a sample of schizophrenic patients (n=42) previously showed a higher value of copy number of active rRNA genes compared with a healthy population: from 145 to 190 copies, with a mean of 170±4. This fact is of special interest in the context of the well-known, but still unexplained phenomenon of the reduced comorbidity rate of schizophrenia and rheumatoid arthritis. The copy number of active ribosomal genes was estimated in a sample of autistic children (n=51). In contrast with the schizophrenic patients studied previously, we found that the values were significantly lower than those in the healthy population: from 125 to 160 copies, with a mean of 142±5. In this work, we suggest a mathematical model of the oxidative stress dynamics on the basis of Lotka-Volterra's approach to predator-prey interactions. In our model, the 'prey' represents reactive oxygen species, whereas the 'predator' simulates molecules of the antioxidant enzymes. The rate of biosynthesis of the latter is limited by the number of ribosomes available, which, in turn, is determined by the copy number of active rRNA genes. Analysis of

  19. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.

    Science.gov (United States)

    Moon, Myungjin; Nakai, Kenta

    2018-04-01

    Currently, cancer biomarker discovery is one of the important research topics worldwide. In particular, detecting significant genes related to cancer is an important task for early diagnosis and treatment of cancer. Conventional studies mostly focus on genes that are differentially expressed in different states of cancer; however, noise in gene expression datasets and insufficient information in limited datasets impede precise analysis of novel candidate biomarkers. In this study, we propose an integrative analysis of gene expression and DNA methylation using normalization and unsupervised feature extractions to identify candidate biomarkers of cancer using renal cell carcinoma RNA-seq datasets. Gene expression and DNA methylation datasets are normalized by Box-Cox transformation and integrated into a one-dimensional dataset that retains the major characteristics of the original datasets by unsupervised feature extraction methods, and differentially expressed genes are selected from the integrated dataset. Use of the integrated dataset demonstrated improved performance as compared with conventional approaches that utilize gene expression or DNA methylation datasets alone. Validation based on the literature showed that a considerable number of top-ranked genes from the integrated dataset have known relationships with cancer, implying that novel candidate biomarkers can also be acquired from the proposed analysis method. Furthermore, we expect that the proposed method can be expanded for applications involving various types of multi-omics datasets.

  20. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores.

    Directory of Open Access Journals (Sweden)

    Madhan R Tirumalai

    Full Text Available The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T. This cluster of five genes is considered to be an especially promising target for future experimental

  1. Longevity Candidate Genes and Their Association With Personality Traits in the Elderly

    NARCIS (Netherlands)

    Luciano, M.; Lopez, L.M.; de Moor, M.H.M.; Harris, S.E.; Davies, G.; Nutile, T.; Krueger, R.F.; Esko, T.; Schlessinger, D.; Toshiko, T.; Derringer, J.; Realo, A.; Hansell, N.K.; Pergadia, M.L.; Pesonen, A.-K.; Sanna, S.; Terracciano, A.; Madden, P.A.F.; Penninx, B.W.J.H.; Spinhoven, Ph.D.; Hartman, C.A.; Oostra, B.A.; Janssens, A.C.J.W.; Eriksson, J.G.; Starr, J.M.; Cannas, A.; Ferrucci, L.; Metspalu, A.; Wright, M.J.; Heath, A.C.; van Duijn, C.M.; Bierut, L.J.; Raikkonen, K.; Martin, N.G.; Ciullo, M.; Rujescu, D.; Boomsma, D.I.; Deary, I.J.

    2012-01-01

    Human longevity and personality traits are both heritable and are consistently linked at the phenotypic level. We test the hypothesis that candidate genes influencing longevity in lower organisms are associated with variance in the five major dimensions of human personality (measured by the NEO-FFI

  2. Longevity candidate genes and their association with personality traits in the elderly

    NARCIS (Netherlands)

    Luciano, Michelle; Lopez, Lorna M.; de Moor, Marleen H. M.; Harris, Sarah E.; Davies, Gail; Nutile, Teresa; Krueger, Robert F.; Esko, Tonu; Schlessinger, David; Toshiko, Tanaka; Derringer, Jaime L.; Realo, Anu; Hansell, Narelle K.; Pergadia, Michele L.; Pesonen, Anu-Katriina; Sanna, Serena; Terracciano, Antonio; Madden, Pamela A. F.; Penninx, Brenda; Spinhoven, Philip; Hartman, Catherina A.; Oostra, Ben A.; Janssens, A. Cecile J. W.; Eriksson, Johan G.; Starr, John M.; Cannas, Alessandra; Ferrucci, Luigi; Metspalu, Andres; Wright, Margeret J.; Heath, Andrew C.; van Duijn, Cornelia M.; Bierut, Laura J.; Raikkonen, Katri; Martin, Nicholas G.; Ciullo, Marina; Rujescu, Dan; Boomsma, Dorret I.; Deary, Ian J.

    Human longevity and personality traits are both heritable and are consistently linked at the phenotypic level. We test the hypothesis that candidate genes influencing longevity in lower organisms are associated with variance in the five major dimensions of human personality (measured by the NEO-FFI

  3. Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life

    Directory of Open Access Journals (Sweden)

    Corinne Rancurel

    2017-09-01

    Full Text Available Horizontal gene transfer (HGT is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI protein library. The user defines recipient (e.g., Metazoa and donor (e.g., bacteria, fungi branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.

  4. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids.

    Science.gov (United States)

    Sedeek, Khalid E M; Qi, Weihong; Schauer, Monica A; Gupta, Alok K; Poveda, Lucy; Xu, Shuqing; Liu, Zhong-Jian; Grossniklaus, Ueli; Schiestl, Florian P; Schlüter, Philipp M

    2013-01-01

    Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of

  5. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  6. Linkage mapping of candidate genes for induce resistance and growth promotion by trichoderma koningiopsis (th003) in tomato solanum lycopersicum

    International Nuclear Information System (INIS)

    Simbaqueba, Jaime; Cotes, Alba Marina; Barrero, Luz Stella

    2011-01-01

    Induced systemic resistance (ISR) is a mechanism by which plants enhance defenses against any stress condition. ISR and growth promotion are enhanced when tomato (Solanum lycopersicum) is inoculated with several strains of Trichoderma ssp. this study aims to genetically map tomato candidate genes involved in ISR and growth promotion induced by the Colombian native isolate Trichoderma koningiopsis th003. Forty-nine candidate genes previously identified on tomato plants treated with th003 and T. hamatum T382 strains were evaluated for polymorphisms and 16 of them were integrated on the highly saturated genetic linkage map named TOMATO EXPEN 2000. The location of six unigenes was similar to the location of resistance gene analogs (RGAS), defense related ests and resistance QTLs previously reported, suggesting new possible candidates for these quantitative trait loci (QTL) regions. The candidate gene-markers may be used for future ISR or growth promotion assisted selection in tomato.

  7. Bioinformatics-driven identification and examination of candidate genes for non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Karina Banasik

    2011-01-01

    Full Text Available Candidate genes for non-alcoholic fatty liver disease (NAFLD identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.By integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D, central obesity, and WHO-defined metabolic syndrome (MetS.273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05 to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.Using a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

  8. Cortical enlargement in autism is associated with a functional VNTR in the monoamine oxidase A gene.

    Science.gov (United States)

    Davis, Lea K; Hazlett, Heather C; Librant, Amy L; Nopoulos, Peggy; Sheffield, Val C; Piven, Joesph; Wassink, Thomas H

    2008-10-05

    Monoamine oxidase A (MAOA) is an enzyme expressed in the brain that metabolizes dopamine, norepinephrine, epinephrine, and serotonin. Abnormalities of serotonin neurotransmission have long been implicated in the psychopathology of autism. A polymorphism exists within the promoter region of the MAOA gene that influences MAOA expression levels so that "low activity" alleles are associated with increased neurotransmitter levels in the brain. Individuals with autism often exhibit elevated serotonin levels. Additional studies indicate that the "low activity" allele may be associated with lower IQ and more severe autistic symptoms. In this study we genotyped the MAOA promoter polymorphism in a group of 29 males (age 2-3 years) with autism and a group of 39 healthy pediatric controls for whom brain MRI data was available. We found a consistent association between the "low activity" allele and larger brain volumes for regions of the cortex in children with autism but not in controls. We did not find evidence for over-transmission of the "low activity" allele in a separate sample of 114 affected sib pair families. Nor did we find any unknown SNPs in yet another sample of 96 probands. Future studies will determine if there is a more severe clinical phenotype associated with both the "low activity" genotype and the larger brain volumes in our sample.

  9. Association study of candidate genes for susceptibility to schizophrenia and bipolar disorder on chromosome 22Q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob; Binderup, Helle; Mors, Ole

    Chromosome 22q is suspected to harbor risk genes for schizophrenia as well as bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. In a recent study of distantly related patients from...... the Faroe Islands we have obtained evidence suggesting two regions on chromosome 22q13 to potentially harbor susceptibility genes for both schizophrenia and bipolar affective disorder. We have selected a number of candidate genes from these two regions for further analysis, including the neuro-gene WKL1...... and unrelated controls, and in a Scottish case-control sample comprising 200 schizophrenics, 200 bipolar patients and 200 controls. None of the investigated SNPs have so far showed strong evidence of association to either bipolar disorder or schizophrenia....

  10. Sequence-Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean

    Directory of Open Access Journals (Sweden)

    Sujan Mamidi

    2016-07-01

    Full Text Available White mold, caused by the necrotrophic fungus (Lib. de Bary, is a major disease of common bean ( L.. WM7.1 and WM8.3 are two quantitative trait loci (QTL with major effects on tolerance to the pathogen. Advanced backcross populations segregating individually for either of the two QTL, and a recombinant inbred (RI population segregating for both QTL were used to fine map and confirm the genetic location of the QTL. The QTL intervals were physically mapped using the reference common bean genome sequence, and the physical intervals for each QTL were further confirmed by sequence-based introgression mapping. Using whole-genome sequence data from susceptible and tolerant DNA pools, introgressed regions were identified as those with significantly higher numbers of single-nucleotide polymorphisms (SNPs relative to the whole genome. By combining the QTL and SNP data, WM7.1 was located to a 660-kb region that contained 41 gene models on the proximal end of chromosome Pv07, while the WM8.3 introgression was narrowed to a 1.36-Mb region containing 70 gene models. The most polymorphic candidate gene in the WM7.1 region encodes a BEACH-domain protein associated with apoptosis. Within the WM8.3 interval, a receptor-like protein with the potential to recognize pathogen effectors was the most polymorphic gene. The use of gene and sequence-based mapping identified two candidate genes whose putative functions are consistent with the current model of pathogenicity.

  11. Case of 7p22.1 Microduplication Detected by Whole Genome Microarray (REVEAL in Workup of Child Diagnosed with Autism

    Directory of Open Access Journals (Sweden)

    Veronica Goitia

    2015-01-01

    Full Text Available Introduction. More than 60 cases of 7p22 duplications and deletions have been reported with over 16 of them occurring without concomitant chromosomal abnormalities. Patient and Methods. We report a 29-month-old male diagnosed with autism. Whole genome chromosome SNP microarray (REVEAL demonstrated a 1.3 Mb interstitial duplication of 7p22.1 ->p22.1 arr 7p22.1 (5,436,367–6,762,394, the second smallest interstitial 7p duplication reported to date. This interval included 14 OMIM annotated genes (FBXL18, ACTB, FSCN1, RNF216, OCM, EIF2AK1, AIMP2, PMS2, CYTH3, RAC1, DAGLB, KDELR2, GRID2IP, and ZNF12. Results. Our patient presented features similar to previously reported cases with 7p22 duplication, including brachycephaly, prominent ears, cryptorchidism, speech delay, poor eye contact, and outburst of aggressive behavior with autism-like features. Among the genes located in the duplicated segment, ACTB gene has been proposed as a candidate gene for the alteration of craniofacial development. Overexpression of RNF216L has been linked to autism. FSCN1 may play a role in neurodevelopmental disease. Conclusion. Characterization of a possible 7p22.1 Duplication Syndrome has yet to be made. Recognition of the clinical spectrum in patients with a smaller duplication of 7p should prove valuable for determining the minimal critical region, helping delineate a better prediction of outcome and genetic counseling

  12. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    Science.gov (United States)

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. No association between a common single nucleotide polymorphism, rs4141463, in the MACROD2 gene and autism spectrum disorder.

    Science.gov (United States)

    Curran, Sarah; Bolton, Patrick; Rozsnyai, Kinga; Chiocchetti, Andreas; Klauck, Sabine M; Duketis, Eftichia; Poustka, Fritz; Schlitt, Sabine; Freitag, Christine M; Lee, Irene; Muglia, Pierandrea; Poot, Martin; Staal, Wouter; de Jonge, Maretha V; Ophoff, Roel A; Lewis, Cathryn; Skuse, David; Mandy, Will; Vassos, Evangelos; Fossdal, Ragnheidur; Magnusson, Páll; Hreidarsson, Stefan; Saemundsen, Evald; Stefansson, Hreinn; Stefansson, Kari; Collier, David

    2011-09-01

    The Autism Genome Project (AGP) Consortium recently reported genome-wide significant association between autism and an intronic single nucleotide polymorphism marker, rs4141463, within the MACROD2 gene. In the present study we attempted to replicate this finding using an independent case-control design of 1,170 cases with autism spectrum disorder (ASD) (874 of which fulfilled narrow criteria for Autism (A)) from five centers within Europe (UK, Germany, the Netherlands, Italy, and Iceland), and 35,307 controls. The combined sample size gave us a non-centrality parameter (NCP) of 11.9, with 93% power to detect allelic association of rs4141463 at an alpha of 0.05 with odds ratio of 0.84 (the best odds ratio estimate of the AGP Consortium data), and for the narrow diagnosis of autism, an NCP of 8.9 and power of 85%. Our case-control data were analyzed for association, stratified by each center, and the summary statistics were combined using the meta-analysis program, GWAMA. This resulted in an odds ratio (OR) of 1.03 (95% CI 0.944-1.133), with a P-value of 0.5 for ASD and OR of 0.99 (95% CI 0.88-1.11) with P-value = 0.85 for the Autism (A) sub-group. Therefore, this study does not provide support for the reported association between rs4141463 and autism. Copyright © 2011 Wiley-Liss, Inc.

  14. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  15. Autism in Phenylketonuria Patients: From Clinical Presentation to Molecular Defects.

    Science.gov (United States)

    Khemir, Sameh; Halayem, Soumeyya; Azzouz, Hatem; Siala, Hajer; Ferchichi, Maherzia; Guedria, Asma; Bedoui, Amel; Abdelhak, Sonia; Messaoud, Taieb; Tebib, Neji; Belhaj, Ahlem; Kaabachi, Naziha

    2016-06-01

    Autism has been reported in untreated patients with phenylketonuria. The authors aimed to explore autism in 15 Tunisian and 4 Algerian phenylketonuria patients, and report their clinical, biochemical and molecular peculiarities. The Childhood Autism Rating Scale and the Autism Diagnostic Interview-Revised were used for the diagnosis of autism. Five exons of phenylalanine hydroxylase gene (7, 6, 10, 11, and 5) were amplified by polymerase chain reaction and directly sequenced. Among these patients, 15 were suffering from autism at the time of evaluation. Six mutations were identified: p.E280K, p.G352Vfs, IVS10nt11, p.I224T, p.R261Q, and p.R252W. There was no correlation between autism and mutations affecting the phenylalanine hydroxylase gene, but the age of diet onset was the determining factor in autistic symptoms' evolution. © The Author(s) 2016.

  16. CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    International Nuclear Information System (INIS)

    Michels, Evi; Speleman, Frank; Hoebeeck, Jasmien; De Preter, Katleen; Schramm, Alexander; Brichard, Bénédicte; De Paepe, Anne; Eggert, Angelika; Laureys, Geneviève; Vandesompele, Jo

    2008-01-01

    Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes. To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing. Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed CADM1 as a compelling candidate gene. Meta-analysis indicated that CADM1 expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines. Our study puts CADM1 forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of CADM1 in neuroblastoma development and to investigate the possibility of CADM1 haploinsufficiency in neuroblastoma

  17. Aminoglycoside antibiotics and autism: a speculative hypothesis

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2001-10-01

    Full Text Available Abstract Background Recently, it has been suspected that there is a relationship between therapy with some antibiotics and the onset of autism; but even more curious, some children benefited transiently from a subsequent treatment with a different antibiotic. Here, we speculate how aminoglycoside antibiotics might be associated with autism. Presentation We hypothesize that aminoglycoside antibiotics could a trigger the autism syndrome in susceptible infants by causing the stop codon readthrough, i.e., a misreading of the genetic code of a hypothetical critical gene, and/or b improve autism symptoms by correcting the premature stop codon mutation in a hypothetical polymorphic gene linked to autism. Testing Investigate, retrospectively, whether a link exists between aminoglycoside use (which is not extensive in children and the onset of autism symptoms (hypothesis "a", or between amino glycoside use and improvement of these symptoms (hypothesis "b". Whereas a prospective study to test hypothesis "a" is not ethically justifiable, a study could be designed to test hypothesis "b". Implications It should be stressed that at this stage no direct evidence supports our speculative hypothesis and that its main purpose is to initiate development of new ideas that, eventually, would improve our understanding of the pathobiology of autism.

  18. Physical mapping of the major early-onset familial Alzheimer`s disease locus on chromosome 14 and analysis of candidate gene sequences

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, R.E.; Romano, D.M.; Crowley, A.C. [Harvard Medical School, Charlestown, MA (United States)] [and others

    1994-09-01

    Genetic studies of kindreds displaying evidence for familial AD (FAD) have led to the localization of gene defects responsible for this disorder on chromosomes 14, 19, and 21. A minor early-onset FAD gene on chromosome 21 has been identified to enode the amyloid precursor protein (APP), and the late-onset FAD susceptibility locus on chromosome 19 has been shown to be in linkage disequilibrium with the E4 allele of the APOE gene. Meanwhile, the locus responsible for the major form of early-onset FAD on chromosome 14q24 has not yet been identified. By recombinational analysis, we have refined the minimal candidate region containing the gene defect to approximately 3 megabases in 14q24. We will describe our laboratory`s progress on attempts to finely localize this locus, as well as test known candidate genes from this region for either inclusion in the minimal candidate region or the presence of pathogenic mutations. Candidate genes that have been tested so far include cFOS, heat shock protein 70 member (HSF2A), transforming growth factor beta (TGFB3), the trifunctional protein C1-THF synthase (MTHFD), bradykinin receptor (BR), and the E2k component of a-ketoglutarate dehydrogenase. HSP2A, E2k, MTHFD, and BR do not map to the current defined minimal candidate region; however, sequence analysis must be performed to confirm exclusion of these genes as true candidates. Meanwhile, no pathogenic mutations have yet been found in cFOS or TGFB3. We have also isolated a large number of novel transcribed sequences from the minimal candidate region in the form of {open_quotes}trapped exons{close_quotes} from cosmids identified by hybridization to select YAC clones; we are currently in the process of searching for pathogenic mutations in these exons in affected individuals from FAD families.

  19. Exome Sequencing and Linkage Analysis Identified Novel Candidate Genes in Recessive Intellectual Disability Associated with Ataxia.

    Science.gov (United States)

    Jazayeri, Roshanak; Hu, Hao; Fattahi, Zohreh; Musante, Luciana; Abedini, Seyedeh Sedigheh; Hosseini, Masoumeh; Wienker, Thomas F; Ropers, Hans Hilger; Najmabadi, Hossein; Kahrizi, Kimia

    2015-10-01

    Intellectual disability (ID) is a neuro-developmental disorder which causes considerable socio-economic problems. Some ID individuals are also affected by ataxia, and the condition includes different mutations affecting several genes. We used whole exome sequencing (WES) in combination with homozygosity mapping (HM) to identify the genetic defects in five consanguineous families among our cohort study, with two affected children with ID and ataxia as major clinical symptoms. We identified three novel candidate genes, RIPPLY1, MRPL10, SNX14, and a new mutation in known gene SURF1. All are autosomal genes, except RIPPLY1, which is located on the X chromosome. Two are housekeeping genes, implicated in transcription and translation regulation and intracellular trafficking, and two encode mitochondrial proteins. The pathogenesis of these variants was evaluated by mutation classification, bioinformatic methods, review of medical and biological relevance, co-segregation studies in the particular family, and a normal population study. Linkage analysis and exome sequencing of a small number of affected family members is a powerful new technique which can be used to decrease the number of candidate genes in heterogenic disorders such as ID, and may even identify the responsible gene(s).

  20. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Science.gov (United States)

    Roffler, Gretchen H.; Amish, Stephen J.; Smith, Seth; Cosart, Ted F.; Kardos, Marty; Schwartz, Michael K.; Luikart, Gordon

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.

  1. RNA-Seq analysis reveals candidate genes for ontogenic resistance in Malus-Venturia pathosystem.

    Directory of Open Access Journals (Sweden)

    Michele Gusberti

    Full Text Available Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible and old (ontogenic resistant leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3 were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result

  2. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Science.gov (United States)

    Gretchen H. Roffler; Stephen J. Amish; Seth Smith; Ted Cosart; Marty Kardos; Michael K. Schwartz; Gordon Luikart

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding...

  3. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

    Directory of Open Access Journals (Sweden)

    Cintia V. Acuña

    2014-12-01

    Full Text Available Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs located in candidate genes.Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.Main results: High cross-species transferability (92% to 100% was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR, cellulose synthase 3 (CesA3, the transcription factor LIM1, homocysteine S-methyltransferase (HMT, shikimate kinase (SK, xyloglucan endotransglycosylase 2 (XTH2, glutathione S-transferase (GST, glutamate decarboxylase (GAD and peroxidase (PER.Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB and for population genetic studies across different species within the subgenus Symphyomyrtus.Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.

  4. Lack of Association Between Polymorphisms in Dopa Decarboxylase and Dopamine Receptor-1 Genes With Childhood Autism in Chinese Han Population.

    Science.gov (United States)

    Yu, Hong; Liu, Jun; Yang, Aiping; Yang, Guohui; Yang, Wenjun; Lei, Heyue; Quan, Jianjun; Zhang, Zengyu

    2016-04-01

    Genetic factors play an important role in childhood autism. This study is to determine the association of single-nucleotide polymorphisms in dopa decarboxylase (DDC) and dopamine receptor-1 (DRD1) genes with childhood autism, in a Chinese Han population. A total of 211 autistic children and 250 age- and gender-matched healthy controls were recruited. The severity of disease was determined by Children Autism Rating Scale scores. TaqMan Probe by real-time polymerase chain reaction was used to determine genotypes and allele frequencies of single-nucleotide polymorphism rs6592961 in DDC and rs251937 in DRD1. Case-control and case-only studies were respectively performed, to determine the contribution of both single-nucleotide polymorphisms to the predisposition of disease and its severity. Our results showed that there was no significant association of the genotypes and allele frequencies of both single-nucleotide polymorphisms concerning childhood autism and its severity. More studies with larger samples are needed to corroborate their predicting roles. © The Author(s) 2015.

  5. Identification of microdeletions in candidate genes for cleft lip and/or palate

    DEFF Research Database (Denmark)

    Shi, Min; Mostowska, Adrianna; Jugessur, Astanand

    2009-01-01

    for deletion detection. Apparent Mendelian inconsistencies between parents and children suggested deletion events in 15 individuals in 11 genomic regions. We confirmed deletions involving CYP1B1, FGF10, SP8, SUMO1, TBX1, TFAP2A, and UGT7A1, including both de novo and familial cases. Deletions of SUMO1, TBX1......, and TFAP2A are likely to be etiologic. CONCLUSIONS: These deletions suggest the potential roles of genes or regulatory elements contained within deleted regions in the etiology of clefting. Our analysis took advantage of genotypes from a candidate-gene-based SNP survey and proved to be an efficient...... analytical approach to interrogate genes potentially involved in clefting. This can serve as a model to find genes playing a role in complex traits in general....

  6. Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array.

    Directory of Open Access Journals (Sweden)

    Siim Sõber

    2009-06-01

    Full Text Available The outcome of Genome-Wide Association Studies (GWAS has challenged the field of blood pressure (BP genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany to address (i SNP coverage in 160 BP candidate genes; (ii the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region+/-10 kb covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11 to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15 x 10(-5, the strength of some detected associations was close to this level: rs10889553 (LEPR and systolic BP (SBP (P = 4.5 x 10(-5 as well as rs10954174 (LEP and diastolic BP (DBP (P = 5.20 x 10(-5. In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1 revealed considerable association (P<10(-3 either with SBP, DBP, and/or hypertension (HYP. None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT. However, supportive evidence for the association of rs10889553 (LEPR and rs11195419 (ADRA2A with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.

  7. Priorities for autism spectrum disorder risk communication and ethics.

    Science.gov (United States)

    Yudell, Michael; Tabor, Holly K; Dawson, Geraldine; Rossi, John; Newschaffer, Craig

    2013-11-01

    Autism spectrum disorders are an issue of increasing public health significance. The incidence of autism spectrum disorders has been increasing in recent years, and they are associated with significant personal and financial impacts for affected persons and their families. In recent years, a large number of scientific studies have been undertaken, which investigate genetic and environmental risk factors for autism, with more studies underway. At present, much remains unknown regarding autism spectrum disorder risk factors, but the emerging picture of causation is in many cases complex, with multiple genes and gene-environment interactions being at play. The complexity and uncertainty surrounding autism spectrum disorder risk factors raise a number of questions regarding the ethical considerations that should be taken into account when undertaking autism spectrum disorder risk communication. At present, however, little has been written regarding autism spectrum disorder risk communication and ethics. This article summarizes the findings of a recent conference investigating ethical considerations and policy recommendations in autism spectrum disorder risk communication, which to the authors' knowledge is the first of its kind. Here, the authors discuss a number of issues, including uncertainty; comprehension; inadvertent harm; justice; and the appropriate roles of clinicians, scientists, and the media in autism spectrum disorder risk communication.

  8. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    Science.gov (United States)

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  9. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action.

    Directory of Open Access Journals (Sweden)

    Inês Barroso

    2003-10-01

    Full Text Available Type 2 diabetes is an increasingly common, serious metabolic disorder with a substantial inherited component. It is characterised by defects in both insulin secretion and action. Progress in identification of specific genetic variants predisposing to the disease has been limited. To complement ongoing positional cloning efforts, we have undertaken a large-scale candidate gene association study. We examined 152 SNPs in 71 candidate genes for association with diabetes status and related phenotypes in 2,134 Caucasians in a case-control study and an independent quantitative trait (QT cohort in the United Kingdom. Polymorphisms in five of 15 genes (33% encoding molecules known to primarily influence pancreatic beta-cell function-ABCC8 (sulphonylurea receptor, KCNJ11 (KIR6.2, SLC2A2 (GLUT2, HNF4A (HNF4alpha, and INS (insulin-significantly altered disease risk, and in three genes, the risk allele, haplotype, or both had a biologically consistent effect on a relevant physiological trait in the QT study. We examined 35 genes predicted to have their major influence on insulin action, and three (9%-INSR, PIK3R1, and SOS1-showed significant associations with diabetes. These results confirm the genetic complexity of Type 2 diabetes and provide evidence that common variants in genes influencing pancreatic beta-cell function may make a significant contribution to the inherited component of this disease. This study additionally demonstrates that the systematic examination of panels of biological candidate genes in large, well-characterised populations can be an effective complement to positional cloning approaches. The absence of large single-gene effects and the detection of multiple small effects accentuate the need for the study of larger populations in order to reliably identify the size of effect we now expect for complex diseases.

  10. Exploratory subsetting of autism families based on savant skills improves evidence of genetic linkage to 15q11-q13.

    Science.gov (United States)

    Nurmi, Erika L; Dowd, Michael; Tadevosyan-Leyfer, Ovsanna; Haines, Jonathan L; Folstein, Susan E; Sutcliffe, James S

    2003-07-01

    Autism displays a remarkably high heritability but a complex genetic etiology. One approach to identifying susceptibility loci under these conditions is to define more homogeneous subsets of families on the basis of genetically relevant phenotypic or biological characteristics that vary from case to case. The authors performed a principal components analysis, using items from the Autism Diagnostic Interview, which resulted in six clusters of variables, five of which showed significant sib-sib correlation. The utility of these phenotypic subsets was tested in an exploratory genetic analysis of the autism candidate region on chromosome 15q11-q13. When the Collaborative Linkage Study of Autism sample was divided, on the basis of mean proband score for the "savant skills" cluster, the heterogeneity logarithm of the odds under a recessive model at D15S511, within the GABRB3 gene, increased from 0.6 to 2.6 in the subset of families in which probands had greater savant skills. These data are consistent with the genetic contribution of a 15q locus to autism susceptibility in a subset of affected individuals exhibiting savant skills. Similar types of skills have been noted in individuals with Prader-Willi syndrome, which results from deletions of this chromosomal region.

  11. Association of Candidate Genes With Submergence Response in Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Xicheng Wang

    2017-05-01

    Full Text Available Perennial ryegrass is a popular cool-season grass species due to its high quality for forage and turf. The objective of this study was to identify associations of candidate genes with growth and physiological traits to submergence stress and recovery after de-submergence in a global collection of 94 perennial ryegrass accessions. Accessions varied largely in leaf color, plant height (HT, leaf fresh weight (LFW, leaf dry weight (LDW, and chlorophyll fluorescence (Fv/Fm at 7 days of submergence and in HT, LFW and LDW at 7 days of recovery in two experiments. Among 26 candidate genes tested by various models, single nucleotide polymorphisms (SNPs in 10 genes showed significant associations with traits including 16 associations for control, 10 for submergence, and 8 for recovery. Under submergence, Lp1-SST encoding sucrose:sucrose 1-fructosyltransferase and LpGA20ox encoding gibberellin 20-oxidase were associated with LFW and LDW, and LpACO1 encoding 1-aminocyclopropane-1-carboxylic acid oxidase was associated with LFW. Associations between Lp1-SST and HT, Lp6G-FFT encoding fructan:fructan 6G-fructosyltransferase and Fv/Fm, LpCAT encoding catalase and HT were also detected under submergence stress. Upon de-submergence, Lp1-SST, Lp6G-FFT, and LpPIP1 encoding plasma membrane intrinsic protein type 1 were associated with LFW or LDW, while LpCBF1b encoding C-repeat binding factor were associated with HT. Nine significant SNPs in Lp1-SST, Lp6G-FFT, LpCAT, and LpACO1 resulted in amino acid changes with five substitutions found in Lp1-SST under submergence or recovery. The results indicated that allelic diversity in genes involved in carbohydrate and antioxidant metabolism, ethylene and gibberellin biosynthesis, and transcript factor could contribute to growth variations in perennial ryegrass under submergence stress and recovery after de-submergence.

  12. Multidimensional Aptitude Battery-Second Edition Intelligence Testing of Remotely Piloted Aircraft Training Candidates Compared with Manned Airframe Training Candidates

    Science.gov (United States)

    2015-03-01

    assessing the general intelligence and neuropsychological aptitudes of USAF RPA pilot training candidates. Chappelle et al. obtained comprehensive...computer-based intelligence testing (Multidimensional Aptitude Battery-Second Edition [MAB-II]) and neuropsychological screening (MicroCog) on USAF MQ-1... schizophrenia , attention deficit hyperactivity disorder, and autism spectrum disorders) and not on very high functioning populations such as aviators

  13. Paternal sperm DNA methylation associated with early signs of autism risk in an autism-enriched cohort.

    Science.gov (United States)

    Feinberg, Jason I; Bakulski, Kelly M; Jaffe, Andrew E; Tryggvadottir, Rakel; Brown, Shannon C; Goldman, Lynn R; Croen, Lisa A; Hertz-Picciotto, Irva; Newschaffer, Craig J; Fallin, M Daniele; Feinberg, Andrew P

    2015-08-01

    Epigenetic mechanisms such as altered DNA methylation have been suggested to play a role in autism, beginning with the classical association of Prader-Willi syndrome, an imprinting disorder, with autistic features. Here we tested for the relationship of paternal sperm DNA methylation with autism risk in offspring, examining an enriched-risk cohort of fathers of autistic children. We examined genome-wide DNA methylation (DNAm) in paternal semen biosamples obtained from an autism spectrum disorder (ASD) enriched-risk pregnancy cohort, the Early Autism Risk Longitudinal Investigation (EARLI) cohort, to estimate associations between sperm DNAm and prospective ASD development, using a 12-month ASD symptoms assessment, the Autism Observation Scale for Infants (AOSI). We analysed methylation data from 44 sperm samples run on the CHARM 3.0 array, which contains over 4 million probes (over 7 million CpG sites), including 30 samples also run on the Illumina Infinium HumanMethylation450 (450K) BeadChip platform (∼485 000 CpG sites). We also examined associated regions in an independent sample of post-mortem human brain ASD and control samples for which Illumina 450K DNA methylation data were available. Using region-based statistical approaches, we identified 193 differentially methylated regions (DMRs) in paternal sperm with a family-wise empirical P-value [family-wise error rate (FWER)] Autism Observational Scale for Infants (AOSI) at 12 months of age in offspring. The DMRs clustered near genes involved in developmental processes, including many genes in the SNORD family, within the Prader-Willi syndrome gene cluster. These results were consistent among the 75 probes on the Illumina 450K array that cover AOSI-associated DMRs from CHARM. Further, 18 of 75 (24%) 450K array probes showed consistent differences in the cerebellums of autistic individuals compared with controls. These data suggest that epigenetic differences in paternal sperm may contribute to autism risk in

  14. Polymorphism’s assessment of children’s candidate genes associated with low-level long-term exposure to strontium in drinking water

    OpenAIRE

    N.V. Zaitseva; O.V. Dolgilh; A.V. Krivtsov; K.G. Starkova; V.A. Luchnikova; O.A. Bubnov; E.A. Otavina; N.V. Bezruchenko; N.A. Vdovina

    2015-01-01

    A sequencing of the candidate genes of the pupils, exposed to strontium by the method of targeted resequencing has been performed. It is shown, that under conditions of increased revenues of strontium in drinking water the number of polymorphonuclear altered portions of candidate genes increases. As a result of the targeted resequencing in conditions of strontium exposure, the maximum polymorph modifications of the following genes are defined: sulfotransferase 1A1 (SULT1A1) and methylenetetra...

  15. Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences

    Science.gov (United States)

    Butsch Kovacic, Melinda; Biagini Myers, Jocelyn M.; Wang, Ning; Martin, Lisa J.; Lindsey, Mark; Ericksen, Mark B.; He, Hua; Patterson, Tia L.; Baye, Tesfaye M.; Torgerson, Dara; Roth, Lindsey A.; Gupta, Jayanta; Sivaprasad, Umasundari; Gibson, Aaron M.; Tsoras, Anna M.; Hu, Donglei; Eng, Celeste; Chapela, Rocío; Rodríguez-Santana, José R.; Rodríguez-Cintrón, William; Avila, Pedro C.; Beckman, Kenneth; Seibold, Max A.; Gignoux, Chris; Musaad, Salma M.; Chen, Weiguo; Burchard, Esteban González; Khurana Hershey, Gurjit K.

    2011-01-01

    Background Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes. Methodology/Principal Findings Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (pasthma (OR = 2.3, pasthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach. Conclusions/Significance Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes. PMID:21912604

  16. Epigenetics and Autism

    OpenAIRE

    Mbadiwe, Tafari; Millis, Richard M.

    2013-01-01

    This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C ? 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overac...

  17. No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes

    DEFF Research Database (Denmark)

    Sørensen, Mette; Nygaard, Marianne; Debrabant, Birgit

    2016-01-01

    additional genes repeatedly considered as candidates for human longevity: APOE, APOA4, APOC3, ACE, CETP, HFE, IL6, IL6R, MTHFR, TGFB1, SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. Altogether, 1,049 single nucleotide polymorphisms (SNPs) were genotyped in 1,088 oldest-old (age 92-93 years) Danes and analysed......In this study we explored the association between aging-related phenotypes previously reported to predict survival in old age and variation in 77 genes from the DNA repair pathway, 32 genes from the growth hormone 1/ insulin-like growth factor 1/insulin (GH/IGF-1/INS) signalling pathway and 16...... in the relevant phenotype over time (7 years of follow-up) and none of the SNPs could be confirmed in a replication sample of 1,281 oldest-old Danes (age 94-100). Hence, our study does not support association between common variation in the investigated longevity candidate genes and aging-related phenotypes...

  18. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    Directory of Open Access Journals (Sweden)

    Seungbok Lee

    Full Text Available Alopecia areata (AA is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3. Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57 and rs28362679 of BTNL2 (p<0.001, OR 30.21. While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2 and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  19. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, L.S.; Bennett, P.R.; Moore, G.E. [Queen Charlotte`s and Chelsea Hospital, London (United Kingdom)

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  20. Polymorphism’s assessment of children’s candidate genes associated with low-level long-term exposure to strontium in drinking water

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2015-12-01

    Full Text Available A sequencing of the candidate genes of the pupils, exposed to strontium by the method of targeted resequencing has been performed. It is shown, that under conditions of increased revenues of strontium in drinking water the number of polymorphonuclear altered portions of candidate genes increases. As a result of the targeted resequencing in conditions of strontium exposure, the maximum polymorph modifications of the following genes are defined: sulfotransferase 1A1 (SULT1A1 and methylenetetrahydrofolate. It was shown that the structure of the mutations in conditions of the strontium exposure was characterized by the formation of defects in the gene mapping detoxification (38.5 % of all mutations and immunoregulation (22.5 %. Analysis of the cause-effect relationships in the system "factor - the number of mutations" revealed that candidate genes reflecting strontium exposure conditions (content of strontium in drinking water is 1.3 MAC, are genes: cytochrome P450, glutathione - transaminase (detoxification; dopamine (CNS, interleukin 17 and the major histocompatibility complex (immune system, methylene-tetra-hydro-folate-reductase (reproduction.

  1. VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams.

    Directory of Open Access Journals (Sweden)

    Guoliang Lin

    Full Text Available VennPainter is a program for depicting unique and shared sets of genes lists and generating Venn diagrams, by using the Qt C++ framework. The software produces Classic Venn, Edwards' Venn and Nested Venn diagrams and allows for eight sets in a graph mode and 31 sets in data processing mode only. In comparison, previous programs produce Classic Venn and Edwards' Venn diagrams and allow for a maximum of six sets. The software incorporates user-friendly features and works in Windows, Linux and Mac OS. Its graphical interface does not require a user to have programing skills. Users can modify diagram content for up to eight datasets because of the Scalable Vector Graphics output. VennPainter can provide output results in vertical, horizontal and matrix formats, which facilitates sharing datasets as required for further identification of candidate genes. Users can obtain gene lists from shared sets by clicking the numbers on the diagram. Thus, VennPainter is an easy-to-use, highly efficient, cross-platform and powerful program that provides a more comprehensive tool for identifying candidate genes and visualizing the relationships among genes or gene families in comparative analysis.

  2. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J.D.; Nelson, L.D.; Conner, B.J. [Univ. of Texas, Houston (United States)] [and others

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B, twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.

  3. The expanding genomic landscape of autism: discovering the 'forest' beyond the 'trees'

    Science.gov (United States)

    Hu, Valerie W

    2013-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by significant deficits in reciprocal social interactions, impaired communication and restricted, repetitive behaviors. As autism spectrum disorders are among the most heritable of neuropsychiatric disorders, much of autism research has focused on the search for genetic variants in protein-coding genes (i.e., the 'trees'). However, no single gene can account for more than 1% of the cases of autism spectrum disorders. Yet, genome-wide association studies have often identified statistically significant associations of genetic variations in regions of DNA that do not code for proteins (i.e., intergenic regions). There is increasing evidence that such noncoding regions are actively transcribed and may participate in the regulation of genes, including genes on different chromosomes. This article summarizes evidence that suggests that the research spotlight needs to be expanded to encompass far-reaching gene-regulatory mechanisms that include a variety of epigenetic modifications, as well as noncoding RNA (i.e., the 'forest'). Given that noncoding RNA represents over 90% of the transcripts in most cells, we may be observing just the 'tip of the iceberg' or the 'edge of the forest' in the genomic landscape of autism.

  4. MACROD2 gene associated with autistic-like traits in a general population sample.

    Science.gov (United States)

    Jones, Rachel M; Cadby, Gemma; Blangero, John; Abraham, Lawrence J; Whitehouse, Andrew J O; Moses, Eric K

    2014-12-01

    There is now substantial evidence that autistic-like traits in the general population lie on a continuum, with clinical autism spectrum disorders (ASD) representing the extreme end of this distribution. In this study, we sought to evaluate five independently identified genetic associations with ASD with autistic-like traits in the general population. In the study cohort, clinical phenotype and genomewide association genotype data were obtained from the Western Australian Pregnancy Cohort (Raine) Study. The outcome measure used was the Autism Spectrum Quotient (AQ), a quantitative measure of autistic-like traits of individuals in the cohort. Total AQ scores were calculated for each individual, as well as scores for three subscales. Five candidate single nucleotide polymorphism (SNP) associations with ASD, reported in previously published genomewide association studies, were selected using a nominal cutoff value of P less than 1.0×10. We tested whether these five SNPs were associated with total AQ and the subscales, after adjustment for possible confounders. SNP rs4141463 located in the macro domain containing 2 (MACROD2) gene was significantly associated with the Communication/Mindreading subscale. No other SNP was significantly associated with total AQ or the subscales. The MACROD2 gene is a strong positional candidate risk factor for autistic-like traits in the general population.

  5. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D...... susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes...

  6. Temperament and character as endophenotype in adults with autism spectrum disorders or attention deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Sizoo, Bram B.; van der Gaag, Rutger Jan; van den Brink, Wim

    2015-01-01

    Autism spectrum disorder and attention deficit/hyperactivity disorder overlap in several ways, raising questions about the nature of this comorbidity. Rommelse et al. published an innovative review of candidate endophenotypes for autism spectrum disorder and attention deficit/hyperactivity disorder

  7. Increased burden of deleterious variants in essential genes in autism spectrum disorder.

    Science.gov (United States)

    Ji, Xiao; Kember, Rachel L; Brown, Christopher D; Bućan, Maja

    2016-12-27

    Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease.

  8. Comparative Genomic Analysis of Neutrophilic Iron(II Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer

    Directory of Open Access Journals (Sweden)

    Shaomei He

    2017-08-01

    Full Text Available Extracellular electron transfer (EET is recognized as a key biochemical process in circumneutral pH Fe(II-oxidizing bacteria (FeOB. In this study, we searched for candidate EET genes in 73 neutrophilic FeOB genomes, among which 43 genomes are complete or close-to-complete and the rest have estimated genome completeness ranging from 5 to 91%. These neutrophilic FeOB span members of the microaerophilic, anaerobic phototrophic, and anaerobic nitrate-reducing FeOB groups. We found that many microaerophilic and several anaerobic FeOB possess homologs of Cyc2, an outer membrane cytochrome c originally identified in Acidithiobacillus ferrooxidans. The “porin-cytochrome c complex” (PCC gene clusters homologous to MtoAB/PioAB are present in eight FeOB, accounting for 19% of complete and close-to-complete genomes examined, whereas PCC genes homologous to OmbB-OmaB-OmcB in Geobacter sulfurreducens are absent. Further, we discovered gene clusters that may potentially encode two novel PCC types. First, a cluster (tentatively named “PCC3” encodes a porin, an extracellular and a periplasmic cytochrome c with remarkably large numbers of heme-binding motifs. Second, a cluster (tentatively named “PCC4” encodes a porin and three periplasmic multiheme cytochromes c. A conserved inner membrane protein (IMP encoded in PCC3 and PCC4 gene clusters might be responsible for translocating electrons across the inner membrane. Other bacteria possessing PCC3 and PCC4 are mostly Proteobacteria isolated from environments with a potential niche for Fe(II oxidation. In addition to cytochrome c, multicopper oxidase (MCO genes potentially involved in Fe(II oxidation were also identified. Notably, candidate EET genes were not found in some FeOB, especially the anaerobic ones, probably suggesting EET genes or Fe(II oxidation mechanisms are different from the searched models. Overall, based on current EET models, the search extends our understanding of bacterial EET and

  9. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  10. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma

    International Nuclear Information System (INIS)

    Mirabello, Lisa; Grotmol, Tom; Douglass, Chester; Hayes, Richard B; Hoover, Robert N; Savage, Sharon A; Yu, Kai; Berndt, Sonja I; Burdett, Laurie; Wang, Zhaoming; Chowdhury, Salma; Teshome, Kedest; Uzoka, Arinze; Hutchinson, Amy

    2011-01-01

    Osteosarcoma (OS) is a bone malignancy which occurs primarily in adolescents. Since it occurs during a period of rapid growth, genes important in bone formation and growth are plausible modifiers of risk. Genes involved in DNA repair and ribosomal function may contribute to OS pathogenesis, because they maintain the integrity of critical cellular processes. We evaluated these hypotheses in an OS association study of genes from growth/hormone, bone formation, DNA repair, and ribosomal pathways. We evaluated 4836 tag-SNPs across 255 candidate genes in 96 OS cases and 1426 controls. Logistic regression models were used to estimate the odds ratios (OR) and 95% confidence intervals (CI). Twelve SNPs in growth or DNA repair genes were significantly associated with OS after Bonferroni correction. Four SNPs in the DNA repair gene FANCM (ORs 1.9-2.0, P = 0.003-0.004) and 2 SNPs downstream of the growth hormone gene GH1 (OR 1.6, P = 0.002; OR 0.5, P = 0.0009) were significantly associated with OS. One SNP in the region of each of the following genes was significant: MDM2, MPG, FGF2, FGFR3, GNRH2, and IGF1. Our results suggest that several SNPs in biologically plausible pathways are associated with OS. Larger studies are required to confirm our findings

  11. Bioinformatics-Driven Identification and Examination of Candidate Genes for Non-Alcoholic Fatty Liver Disease

    DEFF Research Database (Denmark)

    Banasik, Karina; Justesen, Johanne M.; Hornbak, Malene

    2011-01-01

    Objective: Candidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes. Research Design and Methods: By integrating public database text mining, trans-organism protein...

  12. A meta-analysis based method for prioritizing candidate genes involved in a pre-specific function

    Directory of Open Access Journals (Sweden)

    Jingjing Zhai

    2016-12-01

    Full Text Available The identification of genes associated with a given biological function in plants remains a challenge, although network-based gene prioritization algorithms have been developed for Arabidopsis thaliana and many non-model plant species. Nevertheless, these network-based gene prioritization algorithms have encountered several problems; one in particular is that of unsatisfactory prediction accuracy due to limited network coverage, varying link quality, and/or uncertain network connectivity. Thus a model that integrates complementary biological data may be expected to increase the prediction accuracy of gene prioritization. Towards this goal, we developed a novel gene prioritization method named RafSee, to rank candidate genes using a random forest algorithm that integrates sequence, evolutionary, and epigenetic features of plants. Subsequently, we proposed an integrative approach named RAP (Rank Aggregation-based data fusion for gene Prioritization, in which an order statistics-based meta-analysis was used to aggregate the rank of the network-based gene prioritization method and RafSee, for accurately prioritizing candidate genes involved in a pre-specific biological function. Finally, we showcased the utility of RAP by prioritizing 380 flowering-time genes in Arabidopsis. The ‘leave-one-out’ cross-validation experiment showed that RafSee could work as a complement to a current state-of-art network-based gene prioritization system (AraNet v2. Moreover, RAP ranked 53.68% (204/380 flowering-time genes higher than AraNet v2, resulting in an 39.46% improvement in term of the first quartile rank. Further evaluations also showed that RAP was effective in prioritizing genes-related to different abiotic stresses. To enhance the usability of RAP for Arabidopsis and non-model plant species, an R package implementing the method is freely available at http://bioinfo.nwafu.edu.cn/software.

  13. The role of β3 integrin gene variants in Autism Spectrum Disorders--diagnosis and symptomatology.

    Science.gov (United States)

    Schuch, Jaqueline Bohrer; Muller, Diana; Endres, Renata Giuliani; Bosa, Cleonice Alves; Longo, Dânae; Schuler-Faccini, Lavinia; Ranzan, Josiane; Becker, Michele Michelin; dos Santos Riesgo, Rudimar; Roman, Tatiana

    2014-12-10

    Autism Spectrum Disorders (ASDs) represent a group of very complex early-onset neurodevelopmental diseases. In this study, we analyzed 5 SNPs (rs2317385, rs5918, rs15908, rs12603582, rs3809865) at the β3 integrin locus (ITGB3), which has been suggested as a possible susceptibility gene, both as single markers and as part of haplotypes in 209 ASD children and their biological parents. We tested for association with the following: a) DSM-IV ASD diagnosis; b) clinical symptoms common in ASD patients (repetitive behaviors, echolalia, seizures and epilepsy, mood instability, aggression, psychomotor agitation, sleep disorders); and c) dimensional scores obtained with the Autism Screening Questionnaire and the Childhood Autism Rating Scale. These hypotheses were investigated using family-based tests, logistic regression models and analysis of covariance. The family-based tests showed an association with the H5 haplotype (composed by GTCGA alleles, the order of SNPs as above), which was transmitted less often than expected by chance (P=0.006; Pcorr=0.036). The analyses of the clinical symptoms showed a trend for an association with rs12603582 (P=0.008; Pcorr=0.064) and positive results for the haplotype composed of rs15908 and rs12603582 (Pglcorr=0.048; Pindcorr=0.015), both in symptoms of echolalia. Other nominal associations with different variants were found and involved epilepsy/seizures, aggression symptoms and higher ASQ scores. Although our positive results are not definitive, they suggest small effect associations of the ITGB3 gene with both ASD diagnosis and symptoms of echolalia. Other studies are nonetheless needed to fully understand the involvement of this locus on the etiology of ASDs and its different clinical aspects. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  15. Targeted sequencing of established and candidate colorectal cancer genes in the Colon Cancer Family Registry Cohort.

    Science.gov (United States)

    Raskin, Leon; Guo, Yan; Du, Liping; Clendenning, Mark; Rosty, Christophe; Lindor, Noralane M; Gruber, Stephen B; Buchanan, Daniel D

    2017-11-07

    The underlying genetic cause of colorectal cancer (CRC) can be identified for 5-10% of all cases, while at least 20% of CRC cases are thought to be due to inherited genetic factors. Screening for highly penetrant mutations in genes associated with Mendelian cancer syndromes using next-generation sequencing (NGS) can be prohibitively expensive for studies requiring large samples sizes. The aim of the study was to identify rare single nucleotide variants and small indels in 40 established or candidate CRC susceptibility genes in 1,046 familial CRC cases (including both MSS and MSI-H tumor subtypes) and 1,006 unrelated controls from the Colon Cancer Family Registry Cohort using a robust and cost-effective DNA pooling NGS strategy. We identified 264 variants in 38 genes that were observed only in cases, comprising either very rare (minor allele frequency cancer susceptibility genes BAP1, CDH1, CHEK2, ENG, and MSH3 . For the candidate CRC genes, we identified likely pathogenic variants in the helicase domain of POLQ and in the LRIG1 , SH2B3 , and NOS1 genes and present their clinicopathological characteristics. Using a DNA pooling NGS strategy, we identified novel germline mutations in established CRC susceptibility genes in familial CRC cases. Further studies are required to support the role of POLQ , LRIG1 , SH2B3 and NOS1 as CRC susceptibility genes.

  16. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    DEFF Research Database (Denmark)

    Maestrini, E.; Lai, C.; Marlow, A.

    1999-01-01

    Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study on...

  17. Autism spectrum features in Smith-Magenis syndrome.

    Science.gov (United States)

    Laje, Gonzalo; Morse, Rebecca; Richter, William; Ball, Jonathan; Pao, Maryland; Smith, Ann C M

    2010-11-15

    Smith-Magenis syndrome (SMS; OMIM 182290) is a neurodevelopmental disorder characterized by a well-defined pattern of anomalies. The majority of cases are due to a common deletion in chromosome 17p11.2 that includes the RAI1 gene. In children with SMS, autistic-like behaviors and symptoms start to emerge around 18 months of age. This study included 26 individuals (15 females and 11 males), with a confirmed deletion (del 17p11.2). Parents/caregivers were asked to complete the Social Responsiveness Scale (SRS) and the Social Communication Questionnaire (SCQ) both current and lifetime versions. The results suggest that 90% of the sample had SRS scores consistent with autism spectrum disorders. Moreover, females showed more impairment in total T-scores (P = 0.02), in the social cognition (P = 0.01) and autistic mannerisms (P = 0.002) subscales. The SCQ scores are consistent to show that a majority of individuals may meet criteria for autism spectrum disorders at some point in their lifetime. These results suggest that SMS needs to be considered in the differential diagnosis of autism spectrum disorders but also that therapeutic interventions for autism are likely to benefit individuals with SMS. The mechanisms by which the deletion of RAI1 and contiguous genes cause psychopathology remain unknown but they provide a solid starting point for further studies of gene-brain-behavior interactions in SMS and autism spectrum disorders.

  18. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Naveen S. Khanzada

    2017-02-01

    Full Text Available Bipolar disorder (BPD and schizophrenia (SCH show similar neuropsychiatric behavioral disturbances, including impaired social interaction and communication, seen in autism spectrum disorder (ASD with multiple overlapping genetic and environmental influences implicated in risk and course of illness. GeneAnalytics software was used for pathway analysis and genetic profiling to characterize common susceptibility genes obtained from published lists for ASD (792 genes, BPD (290 genes and SCH (560 genes. Rank scores were derived from the number and nature of overlapping genes, gene-disease association, tissue specificity and gene functions subdivided into categories (e.g., diseases, tissues or functional pathways. Twenty-three genes were common to all three disorders and mapped to nine biological Superpathways including Circadian entrainment (10 genes, score = 37.0, Amphetamine addiction (five genes, score = 24.2, and Sudden infant death syndrome (six genes, score = 24.1. Brain tissues included the medulla oblongata (11 genes, score = 2.1, thalamus (10 genes, score = 2.0 and hypothalamus (nine genes, score = 2.0 with six common genes (BDNF, DRD2, CHRNA7, HTR2A, SLC6A3, and TPH2. Overlapping genes impacted dopamine and serotonin homeostasis and signal transduction pathways, impacting mood, behavior and physical activity level. Converging effects on pathways governing circadian rhythms support a core etiological relationship between neuropsychiatric illnesses and sleep disruption with hypoxia and central brain stem dysfunction.

  19. Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Directory of Open Access Journals (Sweden)

    Atkins John F

    2010-01-01

    Full Text Available Abstract Background Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community. Results Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families Astroviridae, Reoviridae, Rhabdoviridae and Coronaviridae, respectively.

  20. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    Directory of Open Access Journals (Sweden)

    Rajani Rai

    2015-11-01

    Full Text Available Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR and Classification and Regression Tree Analysis (CRT to investigate the gene–gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634; FAS (rs2234767; FASL (rs763110; DCC (rs2229080, rs4078288, rs7504990, rs714; PSCA (rs2294008, rs2978974; ADRA2A (rs1801253; ADRB1 (rs1800544; ADRB3 (rs4994; CYP17 (rs2486758 involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634, DCC (rs714, rs2229080, rs4078288 and ADRB3 (rs4994 polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994 to be crucial candidate in GBC susceptibility that may act either alone (p < 0.0001, CVC = 10/10 or in combination with DCC (rs714 and rs2229080, p < 0.0001, CVC = 9/10. Our CRT results are in agreement with the above findings. Further, in-silico results of studied SNPs advocated their role in splicing, transcriptional and/or protein coding regulation. Overall, our result suggested complex interactions amongst the studied SNPs and ADRB3 rs4994 as candidate influencing GBC susceptibility.

  1. Identification of single nucleotide polymorphisms (SNPs) at candidate genes involved in abiotic stress in two Prosopis species of hybrids

    OpenAIRE

    Maria F. Pomponio; Susana Marcucci Poltri; Diego Lopez Lauenstein; Susana Torales

    2014-01-01

    Aim of the study: Identify and compare SNPs on candidate genes related to abiotic stress in Prosopis chilensis, Prosopis flexuosa and interspecific hybridsArea of the study: Chaco árido, Argentina. Material and Methods: Fragments from 6 candidate genes were sequenced in 60 genotypes. DNA polymorphisms were analyzed.Main Results: The analysis revealed that the hybrids had the highest rate of polymorphism, followed by P. flexuosa and P. chilensis, the values found are comparable to other forest...

  2. Diversifying Selection in the Wheat Stem Rust Fungus Acts Predominantly on Pathogen-Associated Gene Families and Reveals Candidate Effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2014-09-01

    Full Text Available Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defence proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialised gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.

  3. Convergent synaptic and circuit substrates underlying autism genetic risks.

    Science.gov (United States)

    McGee, Aaron; Li, Guohui; Lu, Zhongming; Qiu, Shenfeng

    2014-02-01

    There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.

  4. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  5. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism.

    Directory of Open Access Journals (Sweden)

    Xiling Liu

    2016-09-01

    Full Text Available Cognitive defects in autism spectrum disorder (ASD include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans.

  6. Disruption of an Evolutionarily Novel Synaptic Expression Pattern in Autism

    Science.gov (United States)

    Jiang, Xi; Hu, Haiyang; Guijarro, Patricia; Mitchell, Amanda; Ely, John J.; Sherwood, Chet C.; Hof, Patrick R.; Qiu, Zilong; Pääbo, Svante; Akbarian, Schahram; Khaitovich, Philipp

    2016-01-01

    Cognitive defects in autism spectrum disorder (ASD) include socialization and communication: key behavioral capacities that separate humans from other species. Here, we analyze gene expression in the prefrontal cortex of 63 autism patients and control individuals, as well as 62 chimpanzees and macaques, from natal to adult age. We show that among all aberrant expression changes seen in ASD brains, a single aberrant expression pattern overrepresented in genes involved synaptic-related pathways is enriched in nucleotide variants linked to autism. Furthermore, only this pattern contains an excess of developmental expression features unique to humans, thus resulting in the disruption of human-specific developmental programs in autism. Several members of the early growth response (EGR) transcription factor family can be implicated in regulation of this aberrant developmental change. Our study draws a connection between the genetic risk architecture of autism and molecular features of cortical development unique to humans. PMID:27685936

  7. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders

    Science.gov (United States)

    Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Bárbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jiménez González, Patricia; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.

    2014-01-01

    Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. PMID:24768552

  8. Gene expression differences between Noccaea caerulescens ecotypes help to identify candidate genes for metal phytoremediation.

    Science.gov (United States)

    Halimaa, Pauliina; Lin, Ya-Fen; Ahonen, Viivi H; Blande, Daniel; Clemens, Stephan; Gyenesei, Attila; Häikiö, Elina; Kärenlampi, Sirpa O; Laiho, Asta; Aarts, Mark G M; Pursiheimo, Juha-Pekka; Schat, Henk; Schmidt, Holger; Tuomainen, Marjo H; Tervahauta, Arja I

    2014-03-18

    Populations of Noccaea caerulescens show tremendous differences in their capacity to hyperaccumulate and hypertolerate metals. To explore the differences that could contribute to these traits, we undertook SOLiD high-throughput sequencing of the root transcriptomes of three phenotypically well-characterized N. caerulescens accessions, i.e., Ganges, La Calamine, and Monte Prinzera. Genes with possible contribution to zinc, cadmium, and nickel hyperaccumulation and hypertolerance were predicted. The most significant differences between the accessions were related to metal ion (di-, trivalent inorganic cation) transmembrane transporter activity, iron and calcium ion binding, (inorganic) anion transmembrane transporter activity, and antioxidant activity. Analysis of correlation between the expression profile of each gene and the metal-related characteristics of the accessions disclosed both previously characterized (HMA4, HMA3) and new candidate genes (e.g., for nickel IRT1, ZIP10, and PDF2.3) as possible contributors to the hyperaccumulation/tolerance phenotype. A number of unknown Noccaea-specific transcripts also showed correlation with Zn(2+), Cd(2+), or Ni(2+) hyperaccumulation/tolerance. This study shows that N. caerulescens populations have evolved great diversity in the expression of metal-related genes, facilitating adaptation to various metalliferous soils. The information will be helpful in the development of improved plants for metal phytoremediation.

  9. Meta-analysis and candidate gene mining of low-phosphorus tolerance in maize.

    Science.gov (United States)

    Zhang, Hongwei; Uddin, Mohammed Shalim; Zou, Cheng; Xie, Chuanxiao; Xu, Yunbi; Li, Wen-Xue

    2014-03-01

    Plants with tolerance to low-phosphorus (P) can grow better under low-P conditions, and understanding of genetic mechanisms of low-P tolerance can not only facilitate identifying relevant genes but also help to develop low-P tolerant cultivars. QTL meta-analysis was conducted after a comprehensive review of the reports on QTL mapping for low-P tolerance-related traits in maize. Meta-analysis produced 23 consensus QTL (cQTL), 17 of which located in similar chromosome regions to those previously reported to influence root traits. Meanwhile, candidate gene mining yielded 215 genes, 22 of which located in the cQTL regions. These 22 genes are homologous to 14 functionally characterized genes that were found to participate in plant low-P tolerance, including genes encoding miR399s, Pi transporters and purple acid phosphatases. Four cQTL loci (cQTL2-1, cQTL5-3, cQTL6-2, and cQTL10-2) may play important roles for low-P tolerance because each contains more original QTL and has better consistency across previous reports. © 2014 Institute of Botany, Chinese Academy of Sciences.

  10. Temperament and Character as Endophenotype in Adults with Autism Spectrum Disorders or Attention Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Sizoo, Bram B.; van der Gaag, Rutger Jan; van den Brink, Wim

    2015-01-01

    Autism spectrum disorder and attention deficit/hyperactivity disorder overlap in several ways, raising questions about the nature of this comorbidity. Rommelse et al. published an innovative review of candidate endophenotypes for autism spectrum disorder and attention deficit/hyperactivity disorder in cognitive and brain domains. They found that…

  11. Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease.

    Science.gov (United States)

    Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H; Law, William D; Morton, A Jennifer; Goff, Loyal A; McCallion, Andrew S

    2018-03-01

    Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  12. Analysis of 60 reported glioma risk SNPs replicates published GWAS findings but fails to replicate associations from published candidate-gene studies.

    Science.gov (United States)

    Walsh, Kyle M; Anderson, Erik; Hansen, Helen M; Decker, Paul A; Kosel, Matt L; Kollmeyer, Thomas; Rice, Terri; Zheng, Shichun; Xiao, Yuanyuan; Chang, Jeffrey S; McCoy, Lucie S; Bracci, Paige M; Wiemels, Joe L; Pico, Alexander R; Smirnov, Ivan; Lachance, Daniel H; Sicotte, Hugues; Eckel-Passow, Jeanette E; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R

    2013-02-01

    Genomewide association studies (GWAS) and candidate-gene studies have implicated single-nucleotide polymorphisms (SNPs) in at least 45 different genes as putative glioma risk factors. Attempts to validate these associations have yielded variable results and few genetic risk factors have been consistently replicated. We conducted a case-control study of Caucasian glioma cases and controls from the University of California San Francisco (810 cases, 512 controls) and the Mayo Clinic (852 cases, 789 controls) in an attempt to replicate previously reported genetic risk factors for glioma. Sixty SNPs selected from the literature (eight from GWAS and 52 from candidate-gene studies) were successfully genotyped on an Illumina custom genotyping panel. Eight SNPs in/near seven different genes (TERT, EGFR, CCDC26, CDKN2A, PHLDB1, RTEL1, TP53) were significantly associated with glioma risk in the combined dataset (P 0.05). Although several confirmed associations are located near genes long known to be involved in gliomagenesis (e.g., EGFR, CDKN2A, TP53), these associations were first discovered by the GWAS approach and are in noncoding regions. These results highlight that the deficiencies of the candidate-gene approach lay in selecting both appropriate genes and relevant SNPs within these genes. © 2012 WILEY PERIODICALS, INC.

  13. The Development of Core Cognitive Skills in Autism: A 3-Year Prospective Study

    Science.gov (United States)

    Pellicano, Elizabeth

    2010-01-01

    This longitudinal study tested the veracity of one candidate multiple-deficits account of autism by assessing 37 children with autism (M age = 67.9 months) and 31 typical children (M age = 65.2 months) on tasks tapping components of theory of mind (ToM), executive function (EF), and central coherence (CC) at intake and again 3 years later. As a…

  14. Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD).

    Science.gov (United States)

    Nguyen, Michael; Roth, Andrew; Kyzar, Evan J; Poudel, Manoj K; Wong, Keith; Stewart, Adam Michael; Kalueff, Allan V

    2014-01-01

    Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Comparative Review of microRNA Expression Patterns in Autism Spectrum Disorder.

    Science.gov (United States)

    Hicks, Steven D; Middleton, Frank A

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by a wide spectrum of deficits in social interaction, communication, and behavior. There is a significant genetic component to ASD, yet no single gene variant accounts for >1% of incidence. Posttranscriptional mechanisms such as microRNAs (miRNAs) regulate gene expression without altering the genetic code. They are abundant in the developing brain and are dysregulated in children with ASD. Patterns of miRNA expression are altered in the brain, blood, saliva, and olfactory precursor cells of ASD subjects. The ability of miRNAs to regulate broad molecular pathways in response to environmental stimuli makes them an intriguing player in ASD, a disorder characterized by genetic predisposition with ill-defined environmental triggers. In addition, the availability and extracellular stability of miRNAs make them an ideal candidate for biomarker discovery. Here, we discuss 27 miRNAs with overlap across ASD studies, including 3 miRNAs identified in 3 or more studies (miR-23a, miR-146a, and miR-106b). Together, these 27 miRNAs have 1245 high-confidence mRNA targets, a significant number of which are expressed in the brain. Furthermore, these mRNA targets demonstrate over-representation of autism-related genes with enrichment of neurotrophic signaling molecules. Brain-derived neurotrophic factor, a molecule involved in hippocampal neurogenesis and altered in ASD, is targeted by 6 of the 27 miRNAs of interest. This neurotrophic pathway represents one intriguing mechanism by which perturbations in miRNA signaling might influence central nervous system development in children with ASD.

  16. Patterns of linkage disequilibrium and haplotype distribution in disease candidate genes.

    Science.gov (United States)

    Long, Ji-Rong; Zhao, Lan-Juan; Liu, Peng-Yuan; Lu, Yan; Dvornyk, Volodymyr; Shen, Hui; Liu, Yong-Jun; Zhang, Yuan-Yuan; Xiong, Dong-Hai; Xiao, Peng; Deng, Hong-Wen

    2004-05-24

    The adequacy of association studies for complex diseases depends critically on the existence of linkage disequilibrium (LD) between functional alleles and surrounding SNP markers. We examined the patterns of LD and haplotype distribution in eight candidate genes for osteoporosis and/or obesity using 31 SNPs in 1,873 subjects. These eight genes are apolipoprotein E (APOE), type I collagen alpha1 (COL1A1), estrogen receptor-alpha (ER-alpha), leptin receptor (LEPR), parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1), transforming growth factor-beta1 (TGF-beta1), uncoupling protein 3 (UCP3), and vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR). Yin yang haplotypes, two high-frequency haplotypes composed of completely mismatching SNP alleles, were examined. To quantify LD patterns, two common measures of LD, D' and r2, were calculated for the SNPs within the genes. The haplotype distribution varied in the different genes. Yin yang haplotypes were observed only in PTHR1 and UCP3. D' ranged from 0.020 to 1.000 with the average of 0.475, whereas the average r2 was 0.158 (ranging from 0.000 to 0.883). A decay of LD was observed as the intermarker distance increased, however, there was a great difference in LD characteristics of different genes or even in different regions within gene. The differences in haplotype distributions and LD patterns among the genes underscore the importance of characterizing genomic regions of interest prior to association studies.

  17. Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19

    Directory of Open Access Journals (Sweden)

    Ferrell Robert E

    2011-01-01

    Full Text Available Abstract Background Abdominal aortic aneurysm (AAA is a complex disorder with multiple genetic risk factors. Using affected relative pair linkage analysis, we previously identified an AAA susceptibility locus on chromosome 19q13. This locus has been designated as the AAA1 susceptibility locus in the Online Mendelian Inheritance in Man (OMIM database. Methods Nine candidate genes were selected from the AAA1 locus based on their function, as well as mRNA expression levels in the aorta. A sample of 394 cases and 419 controls was genotyped for 41 SNPs located in or around the selected nine candidate genes using the Illumina GoldenGate platform. Single marker and haplotype analyses were performed. Three genes (CEBPG, PEPD and CD22 were selected for DNA sequencing based on the association study results, and exonic regions were analyzed. Immunohistochemical staining of aortic tissue sections from AAA and control individuals was carried out for the CD22 and PEPD proteins with specific antibodies. Results Several SNPs were nominally associated with AAA (p CEBPG, peptidase D (PEPD, and CD22. Haplotype analysis found a nominally associated 5-SNP haplotype in the CEBPG/PEPD locus, as well as a nominally associated 2-SNP haplotype in the CD22 locus. DNA sequencing of the coding regions revealed no variation in CEBPG. Seven sequence variants were identified in PEPD, including three not present in the NCBI SNP (dbSNP database. Sequencing of all 14 exons of CD22 identified 20 sequence variants, five of which were in the coding region and six were in the 3'-untranslated region. Five variants were not present in dbSNP. Immunohistochemical staining for CD22 revealed protein expression in lymphocytes present in the aneurysmal aortic wall only and no detectable expression in control aorta. PEPD protein was expressed in fibroblasts and myofibroblasts in the media-adventitia border in both aneurysmal and non-aneurysmal tissue samples. Conclusions Association testing

  18. The valproic acid-induced rodent model of autism.

    Science.gov (United States)

    Nicolini, Chiara; Fahnestock, Margaret

    2018-01-01

    Autism is a lifelong neurodevelopmental disorder characterized by impairments in social communication and interaction and by repetitive patterns of behavior, interests and activities. While autism has a strong genetic component, environmental factors including toxins, pesticides, infection and drugs are known to confer autism susceptibility, likely by inducing epigenetic changes. In particular, exposure to valproic acid (VPA) during pregnancy has been demonstrated to increase the risk of autism in children. Furthermore, rodents prenatally exposed to this drug display behavioral phenotypes characteristics of the human condition. Indeed, in utero exposure of rodents to VPA represents a robust model of autism exhibiting face, construct and predictive validity. This model might better represent the many cases of idiopathic autism which are of environmental/epigenetic origins than do transgenic models carrying mutations in single autism-associated genes. The VPA model provides a valuable tool to investigate the neurobiology underlying autistic behavior and to screen for novel therapeutics. Here we review the VPA-induced rodent model of autism, highlighting its importance and reliability as an environmentally-induced animal model of autism. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Histone Acetylome-wide Association Study of Autism Spectrum Disorder.

    Science.gov (United States)

    Sun, Wenjie; Poschmann, Jeremie; Cruz-Herrera Del Rosario, Ricardo; Parikshak, Neelroop N; Hajan, Hajira Shreen; Kumar, Vibhor; Ramasamy, Ramalakshmi; Belgard, T Grant; Elanggovan, Bavani; Wong, Chloe Chung Yi; Mill, Jonathan; Geschwind, Daniel H; Prabhakar, Shyam

    2016-11-17

    The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Fine mapping and candidate gene analysis of the virescent gene v 1 in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Mao, Guangzhi; Ma, Qiang; Wei, Hengling; Su, Junji; Wang, Hantao; Ma, Qifeng; Fan, Shuli; Song, Meizhen; Zhang, Xianlong; Yu, Shuxun

    2018-02-01

    The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1 ) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v 1 mutant. The GhChlI mutation not only provides a tool for understanding the

  1. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    Full Text Available Abstract Background Real-time quantitative PCR (RQ-PCR forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1 was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4 was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the

  2. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L..

    Directory of Open Access Journals (Sweden)

    Sebastian Moschen

    Full Text Available Cultivated sunflower (Helianthus annuus L., an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2 previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1 and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could

  3. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Moschen, Sebastian; Bengoa Luoni, Sofia; Paniego, Norma B; Hopp, H Esteban; Dosio, Guillermo A A; Fernandez, Paula; Heinz, Ruth A

    2014-01-01

    Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important

  4. Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients

    DEFF Research Database (Denmark)

    de Kovel, Carolien G F; Brilstra, Eva H; van Kempen, Marjan J A

    2016-01-01

    BACKGROUND: Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. METHODS: To increase the number of validated EE...

  5. Elevated risks for amyotrophic lateral sclerosis and blood disorders in Ashkenazi schizophrenic pedigrees suggest new candidate genes in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A.B. [Columbia Univ. School of Public Health, New York, NY (United States)

    1994-09-15

    Among relatives of Ashkenazi schizophrenic probands the rate of amyotrophic lateral sclerosis was 3/1,000, compared to expected population rates of approximately 2/100,000. Relative risk of bleeding disorders, including hematologic cancers, was increased more than three-fold compared to controls. Co-occurrence of motor neuron disease and blood dyscrasias, accompanied by psychosis, has long been recognized. A virally-mediated autoimmune pathogenesis has been proposed. However, the familial co-occurrence of these three disease entities raises the possibility that the disease constellation be considered as a manifestation of a common underlying genetic defect. Such expansion of the spectrum of affectation might enhance the power of both candidate gene and linkage studies. Based on these findings, the loci suggested as candidate regions in schizophrenia include a potential hot spot on chromosome 21q21-q22, involving the superoxide dismutase and amyloid precursor protein genes. Alternatively, genes on other chromosomes involved in the expression, transcription, or regulation of these genes, or associated with the illnesses of high frequency in these pedigrees are suggested. Candidates include the choroid plexus transport protein, transthyretin at 18q11.2-q12.1; the t(14;18)(q22;21) characterizing B-cell lymphoma-2, the most common form of hematologic cancer; and the 14q24 locus of early onset Alzheimer`s disease, c-Fos, transforming growth factor beta 3, and heat shock protein A2. Expression of hematologic cancers and the suggested candidate genes are known to involve retinoid pathways, and retinoid disregulation has been proposed as a cause of schizophrenia. 67 refs., 2 figs., 1 tab.

  6. Deep Sequencing of 71 Candidate Genes to Characterize Variation Associated with Alcohol Dependence.

    Science.gov (United States)

    Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Kumar, Gaurav; Aberg, Karolina A; Nerella, Srilaxmi; Xie, Linying; Collins, Ann L; Crowley, James J; Quackenbush, Corey R; Hilliard, Christopher E; Shabalin, Andrey A; Vrieze, Scott I; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; McGue, Matt; Maes, Hermine; Iacono, William G; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J

    2017-04-01

    Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies. We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate. No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10 -5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10 -5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family. To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD. Copyright © 2017 by the Research Society on

  7. Selection on plant male function genes identifies candidates for reproductive isolation of yellow monkeyflowers.

    Directory of Open Access Journals (Sweden)

    Jan E Aagaard

    Full Text Available Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation, we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp. resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube proteins within maternal reproductive structures (styles of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens

  8. Consensus Paper: Pathological Role of the Cerebellum in Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Aldinger, Kimberly A.; Ashwood, Paul; Bauman, Margaret L.; Blaha, Charles D.; Blatt, Gene J.; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R.; Dickson, Price E.; Estes, Annette M.; Goldowitz, Dan; Heck, Detlef H.; Kemper, Thomas L.; King, Bryan H.; Martin, Loren A.; Millen, Kathleen J.; Mittleman, Guy; Mosconi, Matthew W.; Persico, Antonio M.; Sweeney, John A.; Webb, Sara J.; Welsh, John P.

    2013-01-01

    There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation. PMID:22370873

  9. Consensus paper: pathological role of the cerebellum in autism.

    Science.gov (United States)

    Fatemi, S Hossein; Aldinger, Kimberly A; Ashwood, Paul; Bauman, Margaret L; Blaha, Charles D; Blatt, Gene J; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R; Dickson, Price E; Estes, Annette M; Goldowitz, Dan; Heck, Detlef H; Kemper, Thomas L; King, Bryan H; Martin, Loren A; Millen, Kathleen J; Mittleman, Guy; Mosconi, Matthew W; Persico, Antonio M; Sweeney, John A; Webb, Sara J; Welsh, John P

    2012-09-01

    There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.

  10. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    Science.gov (United States)

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  11. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    Science.gov (United States)

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-09-02

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Mutation analysis of the candidate genes -, , and in patients with arrhythmogenic right ventricular cardiomyopathy

    DEFF Research Database (Denmark)

    Refsgaard, Lena; Olesen, Morten Salling; Møller, Daniel Vega

    2012-01-01

    INTRODUCTION: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart disease characterized by fibrofatty infiltrations in the myocardium, right and/or left ventricular involvement, and ventricular tachyarrhythmias. Although ten genes have been associated with ARVC......, only about 40% of the patients have an identifiable disease-causing mutation. In the present study we aimed at investigating the involvement of the genes SCN1B-SCN4B, FHL1, and LMNA in the pathogenesis of ARVC. METHODS: Sixty-five unrelated patients (55 fulfilling ARVC criteria and 10 borderline cases...... of the variants was non-synonymous. No disease-causing mutations were identified. CONCLUSIONS: In our limited sized cohort the six studied candidate genes were not associated with ARVC....

  13. Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes

    NARCIS (Netherlands)

    Aghnoum, R.; Marcel, T.C.; Johrde, A.; Pecchioni, N.; Schweizer, P.; Niks, R.E.

    2010-01-01

    The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of

  14. A Public Platform for the Verification of the Phenotypic Effect of Candidate Genes for Resistance to Aflatoxin Accumulation and Aspergillus flavus Infection in Maize

    Directory of Open Access Journals (Sweden)

    Xueyan Shan

    2011-06-01

    Full Text Available A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel and SNP genotyping in the population(s for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.

  15. Candidate gene association mapping of Sclerotinia stalk rot resistance in sunflower (Helianthus annuus L.) uncovers the importance of COI1 homologs.

    Science.gov (United States)

    Talukder, Zahirul I; Hulke, Brent S; Qi, Lili; Scheffler, Brian E; Pegadaraju, Venkatramana; McPhee, Kevin; Gulya, Thomas J

    2014-01-01

    Functional markers for Sclerotinia basal stalk rot resistance in sunflower were obtained using gene-level information from the model species Arabidopsis thaliana. Sclerotinia stalk rot, caused by Sclerotinia sclerotiorum, is one of the most destructive diseases of sunflower (Helianthus annuus L.) worldwide. Markers for genes controlling resistance to S. sclerotiorum will enable efficient marker-assisted selection (MAS). We sequenced eight candidate genes homologous to Arabidopsis thaliana defense genes known to be associated with Sclerotinia disease resistance in a sunflower association mapping population evaluated for Sclerotinia stalk rot resistance. The total candidate gene sequence regions covered a concatenated length of 3,791 bp per individual. A total of 187 polymorphic sites were detected for all candidate gene sequences, 149 of which were single nucleotide polymorphisms (SNPs) and 38 were insertions/deletions. Eight SNPs in the coding regions led to changes in amino acid codons. Linkage disequilibrium decay throughout the candidate gene regions declined on average to an r (2) = 0.2 for genetic intervals of 120 bp, but extended up to 350 bp with r (2) = 0.1. A general linear model with modification to account for population structure was found the best fitting model for this population and was used for association mapping. Both HaCOI1-1 and HaCOI1-2 were found to be strongly associated with Sclerotinia stalk rot resistance and explained 7.4 % of phenotypic variation in this population. These SNP markers associated with Sclerotinia stalk rot resistance can potentially be applied to the selection of favorable genotypes, which will significantly improve the efficiency of MAS during the development of stalk rot resistant cultivars.

  16. Candidate genes have sex-specific effects on timing of spring migration and moult speed in a long-distance migratory bird.

    Science.gov (United States)

    Bazzi, Gaia; Podofillini, Stefano; Gatti, Emanuele; Gianfranceschi, Luca; Cecere, Jacopo G; Spina, Fernando; Saino, Nicola; Rubolini, Diego

    2017-10-01

    The timing of major life-history events, such as migration and moult, is set by endogenous circadian and circannual clocks, that have been well characterized at the molecular level. Conversely, the genetic sources of variation in phenology and in other behavioral traits have been sparsely addressed. It has been proposed that inter-individual variability in the timing of seasonal events may arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow warbler Phylloscopus trochilus , we investigated whether allelic variation at 5 polymorphic loci of 4 candidate genes ( Adcyap1 , Clock , Creb1 , and Npas2 ), predicted 2 major components of the annual schedule, namely timing of spring migration across the central Mediterranean sea and moult speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African winter quarters. We identified a novel Clock gene locus ( Clock region 3) showing polyQ polymorphism, which was however not significantly associated with any phenotypic trait. Npas2 allele size predicted male (but not female) spring migration date, with males bearing longer alleles migrating significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male (but not female) moult speed, longer alleles being associated with faster moult. All other genotype-phenotype associations were statistically non-significant. These findings provide new evidence for a role of candidate genes in modulating the phenology of different circannual activities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.

  17. Candidate Genes for Aggressiveness in a Natural Fusarium culmorum Population Greatly Differ between Wheat and Rye Head Blight

    Directory of Open Access Journals (Sweden)

    Valheria Castiblanco

    2018-01-01

    Full Text Available Fusarium culmorum is one of the species causing Fusarium head blight (FHB in cereals in Europe. We aimed to investigate the association between the nucleotide diversity of ten F. culmorum candidate genes and field ratings of aggressiveness in winter rye. A total of 100 F. culmorum isolates collected from natural infections were phenotyped for FHB at two locations and two years. Variance components for aggressiveness showed significant isolate and isolate-by-environment variance, as expected for quantitative host-pathogen interactions. Further analysis of the isolate-by-environment interaction revealed the dominant role of the isolate-by-year over isolate-by-location interaction. One single-nucleotide polymorphism (SNP in the cutinase (CUT gene was found to be significantly (p < 0.001 associated with aggressiveness and explained 16.05% of the genotypic variance of this trait in rye. The SNP was located 60 base pairs before the start codon, which suggests a role in transcriptional regulation. Compared to a previous study in winter wheat with the same nucleotide sequences, a larger variation of pathogen aggressiveness on rye was found and a different candidate gene was associated with pathogen aggressiveness. This is the first report on the association of field aggressiveness and a host-specific candidate gene codifying for a protein that belongs to the secretome in F. culmorum.

  18. Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage.

    Directory of Open Access Journals (Sweden)

    Khalid A Osman

    Full Text Available Soil waterlogging is one of the major abiotic stresses adversely affecting maize growth and yield. To identify dynamic expression of genes or quantitative trait loci (QTL, QTL associated with plant height, root length, root dry weight, shoot dry weight and total dry weight were identified via conditional analysis in a mixed linear model and inclusive composite interval mapping method at three respective periods under waterlogging and control conditions. A total of 13, 19 and 23 QTL were detected at stages 3D|0D (the period during 0-3 d of waterlogging, 6D|3D and 9D|6D, respectively. The effects of each QTL were moderate and distributed over nine chromosomes, singly explaining 4.14-18.88% of the phenotypic variation. Six QTL (ph6-1, rl1-2, sdw4-1, sdw7-1, tdw4-1 and tdw7-1 were identified at two consistent stages of seedling development, which could reflect a continuous expression of genes; the remaining QTL were detected at only one stage. Thus, expression of most QTL was influenced by the developmental status. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags markers and microRNAs were conducted. Seven candidate genes were observed to co-localize with the identified QTL on chromosomes 1, 4, 6, 7 and 9, and may be important candidate genes for waterlogging tolerance. These results are a good starting point for understanding the genetic basis for selectively expressing of QTL in different stress periods and the common genetic control mechanism of the co-localized traits.

  19. Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in beta-Catenin-Active Cancers | Office of Cancer Genomics

    Science.gov (United States)

    Genome-scale expression studies and comprehensive loss-of-function genetic screens have focused almost exclusively on the highest confidence candidate genes. Here, we describe a strategy for characterizing the lower confidence candidates identified by such approaches.

  20. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder.

    Science.gov (United States)

    Cuscó, Ivon; Medrano, Andrés; Gener, Blanca; Vilardell, Mireia; Gallastegui, Fátima; Villa, Olaya; González, Eva; Rodríguez-Santiago, Benjamín; Vilella, Elisabet; Del Campo, Miguel; Pérez-Jurado, Luis A

    2009-05-15

    Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.

  1. Association Study of 60 Candidate Genes with Antipsychotic-induced Weight Gain in Schizophrenia Patients.

    Science.gov (United States)

    Ryu, S; Huh, I-S; Cho, E-Y; Cho, Y; Park, T; Yoon, S C; Joo, Y H; Hong, K S

    2016-03-01

    This study aimed to investigate the association of multiple candidate genes with weight gain and appetite change during antipsychotic treatment. A total of 233 single nucleotide polymorphisms (SNPs) within 60 candidate genes were genotyped. BMI changes for up to 8 weeks in 84 schizophrenia patients receiving antipsychotic medication were analyzed using a linear mixed model. In addition, we assessed appetite change during antipsychotic treatment in a different group of 46 schizophrenia patients using the Drug-Related Eating Behavior Questionnaire. No SNP showed a statistically significant association with BMI or appetite change after correction for multiple testing. We observed trends of association (PGHRL showed suggestive evidence of association with not only weight gain (P=0.001) but also appetite change (P=0.042). Patients carrying the GG genotype of rs696217 exhibited higher increase in both BMI and appetite compared to patients carrying the GT/TT genotype. Our findings suggested the involvement of a GHRL polymorphism in weight gain, which was specifically mediated by appetite change, during antipsychotic treatment in schizophrenia patients. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.).

    Science.gov (United States)

    Dou, Junling; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhang, Lei; Ali, Aslam; Kuang, Hanhui; Liu, Wenge

    2018-04-01

    A 159 bp deletion in ClFS1 gene encoding IQD protein is responsible for fruit shape in watermelon. Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is known for its rich diversity in fruit size and shape. Fruit shape has been one of the major objectives of watermelon breeding. However, the candidate genes and the underlying genetic mechanism for such an important trait in watermelon are unknown. In this study, we identified a locus on chromosome 3 of watermelon genome controlling fruit shape. Segregation analysis in F 2 and BC 1 populations derived from a cross between two inbred lines "Duan125" (elongate fruit) and "Zhengzhouzigua" (spherical fruit) suggests that fruit shape of watermelon is controlled by a single locus and elongate fruit (OO) is incompletely dominant to spherical fruit (oo) with the heterozygote (Oo) being oval fruit. GWAS profiles among 315 accessions identified a major locus designated on watermelon chromosome 3, which was confirmed by BSA-seq mapping in the F 2 population. The candidate gene was mapped to a region 46 kb on chromosome 3. There were only four genes present in the corresponding region in the reference genome. Four candidate genes were sequenced in this region, revealing that the CDS of Cla011257 had a 159 bp deletion which resulted in the omission of 53 amino acids in elongate watermelon. An indel marker was derived from the 159 bp deletion to test the F 2 population and 105 watermelon accessions. The results showed that Cla011257 cosegregated with watermelon fruit shape. In addition, the Cla011257 expression was the highest at ovary formation stage. The predicted protein of the Cla011257 gene fitted in IQD protein family which was reported to have association with cell arrays and Ca 2+ -CaM signaling modules. Clear understanding of the genes facilitating the fruit shape along with marker association selection will be an effective way to develop new cultivars.

  3. Genome-wide association studies and epistasis analyses of candidate genes related to age at menarche and age at natural menopause in a Korean population.

    Science.gov (United States)

    Pyun, Jung-A; Kim, Sunshin; Cho, Nam H; Koh, InSong; Lee, Jong-Young; Shin, Chol; Kwack, KyuBum

    2014-05-01

    The aim of this study was to identify polymorphisms and gene-gene interactions that are significantly associated with age at menarche and age at menopause in a Korean population. A total of 3,452 and 1,827 women participated in studies of age at menarche and age at natural menopause, respectively. Linear regression analyses adjusted for residence area were used to perform genome-wide association studies (GWAS), candidate gene association studies, and interactions between the candidate genes for age at menarche and age at natural menopause. In GWAS, four single nucleotide polymorphisms (SNPs; rs7528241, rs1324329, rs11597068, and rs6495785) were strongly associated with age at natural menopause (lowest P = 9.66 × 10). However, GWAS of age at menarche did not reveal any strong associations. In candidate gene association studies, SNPs with P menopause, there was a significant interaction between intronic SNPs on ADAM metallopeptidase with thrombospondin type I motif 9 (ADAMTS9) and SMAD family member 3 (SMAD3) genes (P = 9.52 × 10). For age at menarche, there were three significant interactions between three intronic SNPs on follicle-stimulating hormone receptor (FSHR) gene and one SNP located at the 3' flanking region of insulin-like growth factor 2 receptor (IGF2R) gene (lowest P = 1.95 × 10). Novel SNPs and synergistic interactions between candidate genes are significantly associated with age at menarche and age at natural menopause in a Korean population.

  4. Characterization of the canine desmin (DES) gene and evaluation as a candidate gene for dilated cardiomyopathy in the Dobermann.

    Science.gov (United States)

    Stabej, Polona; Imholz, Sandra; Versteeg, Serge A; Zijlstra, Carla; Stokhof, Arnold A; Domanjko-Petric, Aleksandra; Leegwater, Peter A J; van Oost, Bernard A

    2004-10-13

    Canine-dilated cardiomyopathy (DCM) in dogs is a disease of the myocardium associated with dilatation and impaired contraction of the ventricles and is suspected to have a genetic cause. A missense mutation in the desmin gene (DES) causes DCM in a human family. Human DCM closely resembles the canine disease. In the present study, we evaluated whether DES gene mutations are responsible for DCM in Dobermann dogs. We have isolated bacterial artificial chromosome clones (BACs) containing the canine DES gene and determined the chromosomal location by fluorescence in situ hybridization (FISH). Using data deposited in the NCBI trace archive and GenBank, the canine DES gene DNA sequence was assembled and seven single nucleotide polymorphisms (SNPs) were identified. From the canine DES gene BAC clones, a polymorphic microsatellite marker was isolated. The microsatellite marker and four informative desmin SNPs were typed in a Dobermann family with frequent DCM occurrence, but the disease phenotype did not associate with a desmin haplotype. We concluded that mutations in the DES gene do not play a role in Dobermann DCM. Availability of the microsatellite marker, SNPs and DNA sequence reported in this study enable fast evaluation of the DES gene as a DCM candidate gene in other dog breeds with DCM occurrence.

  5. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology

    Directory of Open Access Journals (Sweden)

    Rebecca A Barnard

    2015-12-01

    Full Text Available Autism Spectrum Disorder (ASD is a common neurodevelopmental disorder with a strong but complex genetic component. Recent family based exome-sequencing strategies have identified recurrent de novo mutations at specific genes, providing strong evidence for ASD risk, but also highlighting the extreme genetic heterogeneity of the disorder. However, disruptions in these genes converge on key molecular pathways early in development. In particular, functional enrichment analyses have found that there is a bias towards genes involved in transcriptional regulation, such as chromatin regulators. Here we review recent genetic, animal model, co-expression network, and functional genomics studies relating to the high confidence ASD risk gene, CHD8. CHD8 a chromatin remodeling factor, may serve as a master regulator of a common ASD etiology. Individuals with a CHD8 mutation show an ASD subtype that includes similar physical characteristics, such as macrocephaly and prolonged GI problems including recurrent constipation. Similarly, animal models of CHD8 disruption exhibit enlarged head circumference and reduced gut motility phenotypes. Systems biology approaches suggest CHD8 and other candidate ASD risk genes are enriched during mid-fetal development, which may represent a critical time window in ASD etiology. Transcription profiles from cell and primary tissue models of early development indicate that CHD8 may also positively regulate other candidate ASD risk genes through both direct and indirect means. However continued study is needed to elucidate the mechanism of regulation as well as identify which CHD8 targets are most relevant to ASD risk. Overall, these initial studies suggest the potential for common ASD etiologies and the development of personalized treatments in the future.

  6. Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis

    DEFF Research Database (Denmark)

    Grauers, Anna; Wang, Jingwen; Einarsdottir, Elisabet

    2015-01-01

    samples from 100 surgically treated idiopathic scoliosis patients. Novel or rare missense, nonsense, or splice site variants were selected for individual genotyping in the 1,739 cases and 1,812 controls. In addition, the 5'UTR, noncoding exon and promoter regions of LBX1, not covered by exome sequencing...... by exome sequencing after filtration and an initial genotyping validation. However, we could not verify any association to idiopathic scoliosis in the large cohort of 1,739 cases and 1,812 controls. We did not find any variants in the 5'UTR, noncoding exon and promoter regions of LBX1. CONCLUSIONS: Here...... that are significantly associated with idiopathic scoliosis in Asian and Caucasian populations, rs11190870 close to the LBX1 gene being the most replicated finding. PURPOSE: The aim of the present study was to investigate the genetics of idiopathic scoliosis in a Scandinavian cohort by performing a candidate gene study...

  7. TGIF1 is a potential candidate gene for high myopia in ethnic Kashmiri population.

    Science.gov (United States)

    Ahmed, Ishfaq; Rasool, Shabhat; Jan, Tariq; Qureshi, Tariq; Naykoo, Niyaz A; Andrabi, Khurshid I

    2014-03-01

    High myopia is a complex disorder that imposes serious consequences on ocular health. Linkage analysis has identified several genetic loci with a series of potential candidate genes that reveal an ambiguous pattern of association with high myopia due to population heterogeneity. We have accordingly chosen to examine the prospect of association of one such gene [transforming growth β-induced factor 1 (TGIF1)] in population that is purely ethnic (Kashmiri) and represents a homogeneous cohort from Northern India. Cases with high myopia with a spherical equivalent of ≥-6 diopters (D) and emmetropic controls with spherical equivalent within ±0.5 D in one or both eyes represented by a sample size of 212 ethnic Kashmiri subjects and 239 matched controls. Genomic DNA was genotyped for sequence variations in TGIF1 gene and allele frequencies tested for Hardy-Weinberg disequilibrium. Potential association was evaluated using χ(2) or Fisher's exact test. Two previously reported missense variations C > T, rs4468717 (first base of codon 143) changing proline to serine and rs2229333 (second base of codon 143) changing proline to leucine were identified in exon 10 of TGIF1. Both variations exhibited possibly significant (p population. In silico predictions show that substitutions are likely to have an impact on the structure and functional properties of the protein, making it imperative to understand their functional consequences in relation to high myopia. TGIF1 is a relevant candidate gene with potential to contribute in the genesis of high myopia.

  8. RNA deep sequencing reveals novel candidate genes and polymorphisms in boar testis and liver tissues with divergent androstenone levels.

    Directory of Open Access Journals (Sweden)

    Asep Gunawan

    Full Text Available Boar taint is an unpleasant smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone (5α-androst-16-en-3-one and skatole (3-methylindole. It is crucial to understand the genetic mechanism of boar taint to select pigs for lower androstenone levels and thus reduce boar taint. The aim of the present study was to investigate transcriptome differences in boar testis and liver tissues with divergent androstenone levels using RNA deep sequencing (RNA-Seq. The total number of reads produced for each testis and liver sample ranged from 13,221,550 to 33,206,723 and 12,755,487 to 46,050,468, respectively. In testis samples 46 genes were differentially regulated whereas 25 genes showed differential expression in the liver. The fold change values ranged from -4.68 to 2.90 in testis samples and -2.86 to 3.89 in liver samples. Differentially regulated genes in high androstenone testis and liver samples were enriched in metabolic processes such as lipid metabolism, small molecule biochemistry and molecular transport. This study provides evidence for transcriptome profile and gene polymorphisms of boars with divergent androstenone level using RNA-Seq technology. Digital gene expression analysis identified candidate genes in flavin monooxygenease family, cytochrome P450 family and hydroxysteroid dehydrogenase family. Moreover, polymorphism and association analysis revealed mutation in IRG6, MX1, IFIT2, CYP7A1, FMO5 and KRT18 genes could be potential candidate markers for androstenone levels in boars. Further studies are required for proving the role of candidate genes to be used in genomic selection against boar taint in pig breeding programs.

  9. Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton.

    Science.gov (United States)

    Su, Junji; Li, Libei; Zhang, Chi; Wang, Caixiang; Gu, Lijiao; Wang, Hantao; Wei, Hengling; Liu, Qibao; Huang, Long; Yu, Shuxun

    2018-06-01

    Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton. A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation

  10. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    LENUS (Irish Health Repository)

    Pangilinan, Faith

    2012-08-02

    AbstractBackgroundNeural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate\\/B12 pathway genes contribute to NTD risk.MethodsA tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate\\/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects.ResultsNearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing.ConclusionsTo our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  11. Testing candidate genes for attention-deficit/hyperactivity disorder in fruit flies using a high throughput assay for complex behavior

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Madsen, Lisbeth Strøm; Arvidson, Sandra Marie Neumann

    2016-01-01

    Fruit flies are important model organisms for functional testing of candidate genes in multiple disciplines, including the study of human diseases. Here we use a high-throughput locomotor activity assay to test the response on activity behavior of gene disruption in Drosophila melanogaster. The aim...

  12. A comparative review of microRNA expression patterns in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Frank A Middleton

    2016-11-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by a wide spectrum of deficits in social interaction, communication, and behavior. There is a significant genetic component to ASD, yet no single gene variant accounts for greater than one percent of incidence. Post-transcriptional mechanisms such as microRNAs (miRNAs regulate gene expression without altering the genetic code. They are abundant in the developing brain and are dysregulated in children with ASD. Patterns of miRNA expression are altered in the brain, blood, saliva, and olfactory precursor cells of ASD subjects. The ability of miRNAs to regulate broad molecular pathways in response to environmental stimuli makes them an intriguing player in ASD, a disorder characterized by genetic predisposition with ill-defined environmental triggers. In addition, the availability and extracellular stability of miRNAs make them an ideal candidate for biomarker discovery. Here we discuss 27 miRNAs with overlap across ASD studies, including three miRNAs identified in 3 or more studies (miR-23a, miR-146a, and miR-106b. Together these 27 miRNAs have 1245 high-confidence mRNA targets, a significant number of which are expressed in the brain. Furthermore, these mRNA targets demonstrate over-representation of autism-related genes with enrichment of neurotrophic signaling molecules. Brain-derived neurotrophic factor (BDNF, a molecule involved in hippocampal neurogenesis and altered in ASD, is targeted by 6 of the 27 miRNAs of interest. This neurotrophic pathway represents one intriguing mechanism by which perturbations in miRNA signaling might influence CNS development in children with ASD.

  13. Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer.

    Science.gov (United States)

    Lawrenson, Kate; Li, Qiyuan; Kar, Siddhartha; Seo, Ji-Heui; Tyrer, Jonathan; Spindler, Tassja J; Lee, Janet; Chen, Yibu; Karst, Alison; Drapkin, Ronny; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bandera, Elisa V; Bean, Yukie; Beckmann, Matthias W; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Chen, Anne; Chen, Zhihua; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; du Bois, Andreas; Dürst, Matthias; Eccles, Diana; Easton, Douglas T; Edwards, Robert P; Eilber, Ursula; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goode, Ellen L; Goodman, Marc T; Grownwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Estrid; Hogdall, Claus; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; James, Paul; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kruger Kjaer, Susanne; Kelemen, Linda E; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Krakstad, Camilla; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; Nevanlinna, Heli; McNeish, Ian; Menon, Usha; Modugno, Francesmary; Moysich, Kirsten B; Narod, Steven A; Nedergaard, Lotte; Ness, Roberta B; Azmi, Mat Adenan Noor; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Phelan, Catherine M; Pike, Malcolm C; Poole, Elizabeth M; Ramus, Susan J; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schildkraut, Joellen M; Schwaab, Ira; Sellers, Thomas A; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Sucheston, Lara; Tangen, Ingvild L; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; van Altena, Anne M; Van Nieuwenhuysen, Els; Vergote, Ignace; Vierkant, Robert A; Wang-Gohrke, Shan; Walsh, Christine; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Woo, Yin-Ling; Wu, Xifeng; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Monteiro, Alvaro; Pharoah, Paul D; Gayther, Simon A; Freedman, Matthew L

    2015-09-22

    Genome-wide association studies have reported 11 regions conferring risk of high-grade serous epithelial ovarian cancer (HGSOC). Expression quantitative trait locus (eQTL) analyses can identify candidate susceptibility genes at risk loci. Here we evaluate cis-eQTL associations at 47 regions associated with HGSOC risk (P≤10(-5)). For three cis-eQTL associations (P<1.4 × 10(-3), FDR<0.05) at 1p36 (CDC42), 1p34 (CDCA8) and 2q31 (HOXD9), we evaluate the functional role of each candidate by perturbing expression of each gene in HGSOC precursor cells. Overexpression of HOXD9 increases anchorage-independent growth, shortens population-doubling time and reduces contact inhibition. Chromosome conformation capture identifies an interaction between rs2857532 and the HOXD9 promoter, suggesting this SNP is a leading causal variant. Transcriptomic profiling after HOXD9 overexpression reveals enrichment of HGSOC risk variants within HOXD9 target genes (P=6 × 10(-10) for risk variants (P<10(-4)) within 10 kb of a HOXD9 target gene in ovarian cells), suggesting a broader role for this network in genetic susceptibility to HGSOC.

  14. Isolation and characterization of the human CDX1 gene: A candidate gene for diastrophic dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, C.; Loftus, S.; Wasmuth, J.J. [Univ. of California, Irvine, CA (United States)

    1994-09-01

    Diastrophic dysplasia is an autosomal recessive disorder characterized by short stature, dislocation of the joints, spinal deformities and malformation of the hands and feet. Multipoint linkage analysis places the diastrophic dysplasia (DTD) locus in 5q31-5q34. Linkage disequilibrium mapping places the DTD locus near CSFIR in the direction of PDGFRB (which is tandem to CSFIR). This same study tentatively placed PDGFRB and DTD proximal to CSFIR. Our results, as well as recently reported work from other laboratories, suggest that PDGFRB (and possibly DTD) is distal rather than proximal to CSFIR. We have constructed a cosmid contig covering approximately 200 kb of the region containing CSFIR. Several exons have been {open_quotes}trapped{close_quotes} from these cosmids using exon amplification. One of these exons was trapped from a cosmid isolated from a walk from PDGFRB, approximately 80 kb from CSFIR. This exon was sequenced and was determined to be 89% identical to the nucleotide sequence of exon two of the murine CDX1 gene (100% amino acid identity). The exon was used to isolate the human CDX gene. Sequence analysis of the human CDX1 gene indicates a very high degree of homology to the murine gene. CDX1 is a caudal type homeobox gene expressed during gastrulation. In the mouse, expression during gastrulation begins in the primitive streak and subsequently localizes to the ectodermal and mesodermal cells of the primitive streak, neural tube, somites, and limb buds. Later in gastrulation, CDX1 expression becomes most prominent in the mesoderm of the forelimbs, and, to a lesser extent, the hindlimbs. CDX1 is an intriguing candidate gene for diastrophic dysplasia. We are currently screening DNA from affected individuals and hope to shortly determine whether CDX1 is involved in this disorder.

  15. A Genome-Wide Association Study of Autism Incorporating Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, and Social Responsiveness Scale

    Science.gov (United States)

    Connolly, John J.; Glessner, Joseph T.; Hakonarson, Hakon

    2013-01-01

    Efforts to understand the causes of autism spectrum disorders (ASDs) have been hampered by genetic complexity and heterogeneity among individuals. One strategy for reducing complexity is to target endophenotypes, simpler biologically based measures that may involve fewer genes and constitute a more homogenous sample. A genome-wide association…

  16. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study

    Directory of Open Access Journals (Sweden)

    Close Eimear

    2010-05-01

    Full Text Available Abstract Background Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance. The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. Methods We have evaluated six candidate genes in one of these regions (11q23, namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. Results Promotor SNPs (-607, -137 in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P IL18-137/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C/-137C (P Conclusion Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine's role in maintaining inflammation in active CD.

  17. Autism

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Autism KidsHealth / For Teens / Autism What's in this article? ... With Autism? Print en español Autismo What Is Autism? Autism (also called "autism spectrum disorder") is a ...

  18. Brief Report: The Dopamine-3-Receptor Gene ("DRD3") Is Associated with Specific Repetitive Behavior in Autism Spectrum Disorder (ASD)

    Science.gov (United States)

    Staal, Wouter G.; de Krom, Mariken; de Jonge, Maretha V.

    2012-01-01

    Recently the "DRD3" gene has been associated with ASD in two independent samples. Follow up analysis of the risk allele of the SNP rs167771 in 91 subjects revealed a significant association with a specific type of repetitive behavior: the factor "insistence on sameness" (IS) derived from the Autism Diagnostic Interview. This risk allele was…

  19. Genetic basis of autism: is there a way forward?

    Science.gov (United States)

    Eapen, Valsamma

    2011-05-01

    This paper outlines some of the key findings from genetic research carried out in the last 12-18 months, which indicate that autism spectrum disorder (ASD) is a complex disorder involving interactions between genetic, epigenetic and environmental factors. The current literature highlights the presence of genetic and phenotypic heterogeneity in ASD with a number of underlying pathogenetic mechanisms. In this regard, there are at least three phenotypic presentations with distinct genetic underpinnings: autism plus phenotype characterized by syndromic ASD caused by rare, single-gene disorders; broad autism phenotype caused by genetic variations in single or multiple genes, each of these variations being common and distributed continually in the general population, but resulting in varying clinical phenotypes when it reaches a certain threshold through complex gene-gene and gene-environment interactions; and severe and specific phenotype caused by 'de-novo' mutations in the patient or transmitted through asymptomatic carriers of such mutation. Understanding the neurobiological processes by which genotypes become phenotypes, along with the advances in developmental neuroscience and neuronal networks at the cellular and molecular level, is paving the way for translational research involving targeted interventions of affected molecular pathways and early intervention programs that promote normal brain responses to stimuli and alter the developmental trajectory.

  20. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  1. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species.

    Directory of Open Access Journals (Sweden)

    Sarpras M

    Full Text Available Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions, C. frutescens (17 accessions and C. annuum (56 accessions. The pungency level, measured in Scoville Heat Unit (SHU and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher

  2. Comparative Analysis of Fruit Metabolites and Pungency Candidate Genes Expression between Bhut Jolokia and Other Capsicum Species.

    Science.gov (United States)

    M, Sarpras; Gaur, Rashmi; Sharma, Vineet; Chhapekar, Sushil Satish; Das, Jharna; Kumar, Ajay; Yadava, Satish Kumar; Nitin, Mukesh; Brahma, Vijaya; Abraham, Suresh K; Ramchiary, Nirala

    2016-01-01

    Bhut jolokia, commonly known as Ghost chili, a native Capsicum species found in North East India was recorded as the naturally occurring hottest chili in the world by the Guinness Book of World Records in 2006. Although few studies have reported variation in pungency content of this particular species, no study till date has reported detailed expression analysis of candidate genes involved in capsaicinoids (pungency) biosynthesis pathway and other fruit metabolites. Therefore, the present study was designed to evaluate the diversity of fruit morphology, fruiting habit, capsaicinoids and other metabolite contents in 136 different genotypes mainly collected from North East India. Significant intra and inter-specific variations for fruit morphological traits, fruiting habits and 65 fruit metabolites were observed in the collected Capsicum germplasm belonging to three Capsicum species i.e., Capsicum chinense (Bhut jolokia, 63 accessions), C. frutescens (17 accessions) and C. annuum (56 accessions). The pungency level, measured in Scoville Heat Unit (SHU) and antioxidant activity measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay showed maximum levels in C. chinense accessions followed by C. frutescens accessions, while C. annuum accessions showed the lowest value for both the traits. The number of different fruit metabolites detected did not vary significantly among the different species but the metabolite such as benzoic acid hydroxyl esters identified in large percentage in majority of C. annuum genotypes was totally absent in the C. chinense genotypes and sparingly present in few genotypes of C. frutescens. Significant correlations were observed between fruit metabolites capsaicin, dihydrocapsaicin, hexadecanoic acid, cyclopentane, α-tocopherol and antioxidant activity. Furthermore, comparative expression analysis (through qRT-PCR) of candidate genes involved in capsaicinoid biosynthesis pathway revealed many fold higher expression of

  3. Gene expression profiling reveals candidate genes related to residual feed intake in duodenum of laying ducks.

    Science.gov (United States)

    Zeng, T; Huang, L; Ren, J; Chen, L; Tian, Y; Huang, Y; Zhang, H; Du, J; Lu, L

    2017-12-01

    Feed represents two-thirds of the total costs of poultry production, especially in developing countries. Improvement in feed efficiency would reduce the amount of feed required for production (growth or laying), the production cost, and the amount of nitrogenous waste. The most commonly used measures for feed efficiency are feed conversion ratio (FCR) and residual feed intake (RFI). As a more suitable indicator assessing feed efficiency, RFI is defined as the difference between observed and expected feed intake based on maintenance and growth or laying. However, the genetic and biological mechanisms regulating RFI are largely unknown. Identifying molecular mechanisms explaining divergence in RFI in laying ducks would lead to the development of early detection methods for the selection of more efficient breeding poultry. The objective of this study was to identify duodenum genes and pathways through transcriptional profiling in 2 extreme RFI phenotypes (HRFI and LRFI) of the duck population. Phenotypic aspects of feed efficiency showed that RFI was strongly positive with FCR and feed intake (FI). Transcriptomic analysis identified 35 differentially expressed genes between LRFI and HRFI ducks. These genes play an important role in metabolism, digestibility, secretion, and innate immunity including (), (), (), β (), and (). These results improve our knowledge of the biological basis underlying RFI, which would be useful for further investigations of key candidate genes for RFI and for the development of biomarkers.

  4. Clinically relevant known and candidate genes for obesity and their overlap with human infertility and reproduction.

    Science.gov (United States)

    Butler, Merlin G; McGuire, Austen; Manzardo, Ann M

    2015-04-01

    Obesity is a growing public health concern now reaching epidemic status worldwide for children and adults due to multiple problems impacting on energy intake and expenditure with influences on human reproduction and infertility. A positive family history and genetic factors are known to play a role in obesity by influencing eating behavior, weight and level of physical activity and also contributing to human reproduction and infertility. Recent advances in genetic technology have led to discoveries of new susceptibility genes for obesity and causation of infertility. The goal of our study was to provide an update of clinically relevant candidate and known genes for obesity and infertility using high resolution chromosome ideograms with gene symbols and tabular form. We used computer-based internet websites including PubMed to search for combinations of key words such as obesity, body mass index, infertility, reproduction, azoospermia, endometriosis, diminished ovarian reserve, estrogen along with genetics, gene mutations or variants to identify evidence for development of a master list of recognized obesity genes in humans and those involved with infertility and reproduction. Gene symbols for known and candidate genes for obesity were plotted on high resolution chromosome ideograms at the 850 band level. Both infertility and obesity genes were listed separately in alphabetical order in tabular form and those highlighted when involved with both conditions. By searching the medical literature and computer generated websites for key words, we found documented evidence for 370 genes playing a role in obesity and 153 genes for human reproduction or infertility. The obesity genes primarily affected common pathways in lipid metabolism, deposition or transport, eating behavior and food selection, physical activity or energy expenditure. Twenty-one of the obesity genes were also associated with human infertility and reproduction. Gene symbols were plotted on high resolution

  5. Candidate genes involved in the biosynthesis of triterpenoid saponins in Platycodon grandiflorum identified by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Chunhua eMa

    2016-05-01

    Full Text Available Background: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable.Principal Findings:A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80% were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant.Conclusion:The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

  6. [Identification of candidate genes and expression profiles, as doping biomarkers].

    Science.gov (United States)

    Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V

    2007-01-01

    Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.

  7. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  8. Understanding and determining the etiology of autism.

    Science.gov (United States)

    Currenti, Salvatore A

    2010-03-01

    Worldwide, the rate of autism has been steadily rising. There are several environmental factors in concert with genetic susceptibilities that are contributing to this rise. Impaired methylation and mutations of mecp2 have been associated with autistic spectrum disorders, and related Rett syndrome. Genetic polymorphisms of cytochrome P450 enzymes have also been linked to autism, specifically CYP27B1 that is essential for proper vitamin D metabolism. Vitamin D is important for neuronal growth and neurodevelopment, and defects in metabolism or deficiency have been implicated in autistic individuals. Other factors that have been considered include: maternally derived antibodies, maternal infection, heavy metal exposure, folic acid supplementation, epigenetics, measles, mumps, rubella vaccination, and even electromagnetic radiation. In each case, the consequences, whether direct or indirect, negatively affect the nervous system, neurodevelopment, and environmental responsive genes. The etiology of autism is a topic of controversial debate, while researchers strive to achieve a common objective. The goal is to identify the cause(s) of autism to understand the complex interplay between environment and gene regulation. There is optimism that specific causes and risk factors will be identified. The results of future investigations will facilitate enhanced screening, prevention, and therapy for "at risk" and autistic patients.

  9. Tensor decomposition-based unsupervised feature extraction identifies candidate genes that induce post-traumatic stress disorder-mediated heart diseases.

    Science.gov (United States)

    Taguchi, Y-H

    2017-12-21

    Although post-traumatic stress disorder (PTSD) is primarily a mental disorder, it can cause additional symptoms that do not seem to be directly related to the central nervous system, which PTSD is assumed to directly affect. PTSD-mediated heart diseases are some of such secondary disorders. In spite of the significant correlations between PTSD and heart diseases, spatial separation between the heart and brain (where PTSD is primarily active) prevents researchers from elucidating the mechanisms that bridge the two disorders. Our purpose was to identify genes linking PTSD and heart diseases. In this study, gene expression profiles of various murine tissues observed under various types of stress or without stress were analyzed in an integrated manner using tensor decomposition (TD). Based upon the obtained features, ∼ 400 genes were identified as candidate genes that may mediate heart diseases associated with PTSD. Various gene enrichment analyses supported biological reliability of the identified genes. Ten genes encoding protein-, DNA-, or mRNA-interacting proteins-ILF2, ILF3, ESR1, ESR2, RAD21, HTT, ATF2, NR3C1, TP53, and TP63-were found to be likely to regulate expression of most of these ∼ 400 genes and therefore are candidate primary genes that cause PTSD-mediated heart diseases. Approximately 400 genes in the heart were also found to be strongly affected by various drugs whose known adverse effects are related to heart diseases and/or fear memory conditioning; these data support the reliability of our findings. TD-based unsupervised feature extraction turned out to be a useful method for gene selection and successfully identified possible genes causing PTSD-mediated heart diseases.

  10. Genetic determinants of facial clefting: analysis of 357 candidate genes using two national cleft studies from Scandinavia.

    Directory of Open Access Journals (Sweden)

    Astanand Jugessur

    Full Text Available Facial clefts are common birth defects with a strong genetic component. To identify fetal genetic risk factors for clefting, 1536 SNPs in 357 candidate genes were genotyped in two population-based samples from Scandinavia (Norway: 562 case-parent and 592 control-parent triads; Denmark: 235 case-parent triads.We used two complementary statistical methods, TRIMM and HAPLIN, to look for associations across these two national samples. TRIMM tests for association in each gene by using multi-SNP genotypes from case-parent triads directly without the need to infer haplotypes. HAPLIN on the other hand estimates the full haplotype distribution over a set of SNPs and estimates relative risks associated with each haplotype. For isolated cleft lip with or without cleft palate (I-CL/P, TRIMM and HAPLIN both identified significant associations with IRF6 and ADH1C in both populations, but only HAPLIN found an association with FGF12. For isolated cleft palate (I-CP, TRIMM found associations with ALX3, MKX, and PDGFC in both populations, but only the association with PDGFC was identified by HAPLIN. In addition, HAPLIN identified an association with ETV5 that was not detected by TRIMM.Strong associations with seven genes were replicated in the Scandinavian samples and our approach effectively replicated the strongest previously known association in clefting--with IRF6. Based on two national cleft cohorts of similar ancestry, two robust statistical methods and a large panel of SNPs in the most promising cleft candidate genes to date, this study identified a previously unknown association with clefting for ADH1C and provides additional candidates and analytic approaches to advance the field.

  11. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico

    Science.gov (United States)

    Maga, A. Murat; Navarro, Nicolas; Cunningham, Michael L.; Cox, Timothy C.

    2015-01-01

    We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest. PMID:25859222

  12. Resequencing three candidate genes discovers seven potentially deleterious variants susceptibility to major depressive disorder and suicide attempts in Chinese.

    Science.gov (United States)

    Rao, Shitao; Leung, Cherry She Ting; Lam, Macro Hb; Wing, Yun Kwok; Waye, Mary Miu Yee; Tsui, Stephen Kwok Wing

    2017-03-01

    To date almost 200 genes were found to be associated with major depressive disorder (MDD) or suicide attempts (SA), but very few genes were reported for their molecular mechanisms. This study aimed to find out whether there were common or rare variants in three candidate genes altering the risk for MDD and SA in Chinese. Three candidate genes (HOMER1, SLC6A4 and TEF) were chosen for resequencing analysis and association studies as they were reported to be involved in the etiology of MDD and SA. Following that, bioinformatics analyses were applied on those variants of interest. After resequencing analysis and alignment for the amplicons, a total of 34 common or rare variants were found in the randomly selected 36 Hong Kong Chinese patients with both MDD and SA. Among those, seven variants show potentially deleterious features. Rs60029191 and a rare variant located in regulatory region of the HOMER1 gene may affect the promoter activities through interacting with predicted transcription factors. Two missense mutations existed in the SLC6A4 coding regions were firstly reported in Hong Kong Chinese MDD and SA patients, and both of them could affect the transport efficiency of SLC6A4 to serotonin. Moreover, a common variant rs6354 located in the untranslated region of this gene may affect the expression level or exonic splicing of serotonin transporter. In addition, both of a most studied polymorphism rs738499 and a low-frequency variant in the promoter region of the TEF gene were found to be located in potential transcription factor binding sites, which may let the two variants be able to influence the promoter activities of the gene. This study elucidated the potentially molecular mechanisms of the three candidate genes altering the risk for MDD and SA. These findings implied that not only common variants but rare variants could make contributions to the genetic susceptibility to MDD and SA in Chinese. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  14. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ma Menggen

    2010-06-01

    Full Text Available Abstract Background Derived from our lignocellulosic conversion inhibitor-tolerant yeast, we generated an ethanol-tolerant strain Saccharomyces cerevisiae NRRL Y-50316 by enforced evolutionary adaptation. Using a newly developed robust mRNA reference and a master equation unifying gene expression data analyses, we investigated comparative quantitative transcription dynamics of 175 genes selected from previous studies for an ethanol-tolerant yeast and its closely related parental strain. Results A highly fitted master equation was established and applied for quantitative gene expression analyses using pathway-based qRT-PCR array assays. The ethanol-tolerant Y-50316 displayed significantly enriched background of mRNA abundance for at least 35 genes without ethanol challenge compared with its parental strain Y-50049. Under the ethanol challenge, the tolerant Y-50316 responded in consistent expressions over time for numerous genes belonging to groups of heat shock proteins, trehalose metabolism, glycolysis, pentose phosphate pathway, fatty acid metabolism, amino acid biosynthesis, pleiotropic drug resistance gene family and transcription factors. The parental strain showed repressed expressions for many genes and was unable to withstand the ethanol stress and establish a viable culture and fermentation. The distinct expression dynamics between the two strains and their close association with cell growth, viability and ethanol fermentation profiles distinguished the tolerance-response from the stress-response in yeast under the ethanol challenge. At least 82 genes were identified as candidate and key genes for ethanol-tolerance and subsequent fermentation under the stress. Among which, 36 genes were newly recognized by the present study. Most of the ethanol-tolerance candidate genes were found to share protein binding motifs of transcription factors Msn4p/Msn2p, Yap1p, Hsf1p and Pdr1p/Pdr3p. Conclusion Enriched background of transcription abundance

  15. Imitation, mirror neurons and autism

    OpenAIRE

    Williams, Justin H.G.; Whiten, Andrew; Suddendorf, Thomas; Perrett, David I.

    2001-01-01

    Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show ac...

  16. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder

    Directory of Open Access Journals (Sweden)

    Ubadah Sabbagh

    2016-01-01

    Full Text Available The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES. A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  17. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder.

    Science.gov (United States)

    Sabbagh, Ubadah; Mullegama, Saman; Wyckoff, Gerald J

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  18. "Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses".

    Science.gov (United States)

    Eveno, Emmanuelle; Collada, Carmen; Guevara, M Angeles; Léger, Valérie; Soto, Alvaro; Díaz, Luis; Léger, Patrick; González-Martínez, Santiago C; Cervera, M Teresa; Plomion, Christophe; Garnier-Géré, Pauline H

    2008-02-01

    The importance of natural selection for shaping adaptive trait differentiation among natural populations of allogamous tree species has long been recognized. Determining the molecular basis of local adaptation remains largely unresolved, and the respective roles of selection and demography in shaping population structure are actively debated. Using a multilocus scan that aims to detect outliers from simulated neutral expectations, we analyzed patterns of nucleotide diversity and genetic differentiation at 11 polymorphic candidate genes for drought stress tolerance in phenotypically contrasted Pinus pinaster Ait. populations across its geographical range. We compared 3 coalescent-based methods: 2 frequentist-like, including 1 approach specifically developed for biallelic single nucleotide polymorphisms (SNPs) here and 1 Bayesian. Five genes showed outlier patterns that were robust across methods at the haplotype level for 2 of them. Two genes presented higher F(ST) values than expected (PR-AGP4 and erd3), suggesting that they could have been affected by the action of diversifying selection among populations. In contrast, 3 genes presented lower F(ST) values than expected (dhn-1, dhn2, and lp3-1), which could represent signatures of homogenizing selection among populations. A smaller proportion of outliers were detected at the SNP level suggesting the potential functional significance of particular combinations of sites in drought-response candidate genes. The Bayesian method appeared robust to low sample sizes, flexible to assumptions regarding migration rates, and powerful for detecting selection at the haplotype level, but the frequentist-like method adapted to SNPs was more efficient for the identification of outlier SNPs showing low differentiation. Population-specific effects estimated in the Bayesian method also revealed populations with lower immigration rates, which could have led to favorable situations for local adaptation. Outlier patterns are discussed

  19. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

    Science.gov (United States)

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J

    2009-07-16

    Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.

  20. A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1

    DEFF Research Database (Denmark)

    Buonincontri, Roberta; Bache, Iben; Silahtaroglu, Asli

    2011-01-01

    Dyslexia is one of the most common neurodevelopmental disorders where likely many genes are involved in the pathogenesis. So far six candidate dyslexia genes have been proposed, and two of these were identified by rare chromosomal translocations in affected individuals. By systematic re......-examination of all translocation carriers in Denmark, we have identified 16 different translocations associated with dyslexia. In four families, where the translocation co-segregated with the phenotype, one of the breakpoints concurred (at the cytogenetic level) with either a known dyslexia linkage region--at 15q21...... (DYX1), 2p13 (DYX3) and 1p36 (DYX8)--or an unpublished linkage region at 19q13. As a first exploitation of this unique cohort, we identify three novel candidate dyslexia genes, ZNF280D and TCF12 at 15q21, and PDE7B at 6q23.3, by molecular mapping of the familial translocation with the 15q21 breakpoint....

  1. Channelopathy Pathogenesis in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Galina eSchmunk

    2013-11-01

    Full Text Available Autism spectrum disorder (ASD is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole- genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders, and animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects.

  2. Differential SPL gene expression patterns reveal candidate genes underlying flowering time and architectural differences in Mimulus and Arabidopsis.

    Science.gov (United States)

    Jorgensen, Stacy A; Preston, Jill C

    2014-04-01

    Evolutionary transitions in growth habit and flowering time responses to variable environmental signals have occurred multiple times independently across angiosperms and have major impacts on plant fitness. Proteins in the SPL family of transcription factors collectively regulate flowering time genes that have been implicated in interspecific shifts in annuality/perenniality. However, their potential importance in the evolution of angiosperm growth habit has not been extensively investigated. Here we identify orthologs representative of the major SPL gene clades in annual Arabidopsis thaliana and Mimulus guttatus IM767, and perennial A. lyrata and M. guttatus PR, and characterize their expression. Spatio-temporal expression patterns are complex across both diverse tissues of the same taxa and comparable tissues of different taxa, consistent with genic sub- or neo-functionalization. However, our data are consistent with a general role for several SPL genes in the promotion of juvenile to adult phase change and/or flowering time in Mimulus and Arabidopsis. Furthermore, several candidate genes were identified for future study whose differential expression correlates with growth habit and architectural variation in annual versus perennial taxa. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. SHANK3 as an autism spectrum disorder-associated gene.

    Science.gov (United States)

    Uchino, Shigeo; Waga, Chikako

    2013-02-01

    SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses, and plays important roles in the formation, maturation, and maintenance of synapses. Haploinsufficiency of the SHANK3 gene causes a developmental disorder, 22q13.3 deletion syndrome (known as Phelan-McDermid syndrome), that is characterized by severe expressive language and speech delay, hypotonia, global developmental delay, and autistic behavior. Since several SHANK3 mutations have been identified in a particular phenotypic group in patients with autism spectrum disorder (ASD), the SHANK3 is strongly suspected of being involved in the pathogenesis and neuropathology of ASD. Five CpG-islands have been identified in the SHANK3 gene, and tissue-specific expression of SHANK3 is regulated by DNA methylation in an epigenetic manner. Cumulative evidence has shown that several SHANK3 variants are expressed in the developing rodent brain and that their expression is regulated by DNA methylation of intragenic promoters. We identified novel SHANK3 transcripts whose transcription started at the vicinity of the CpG-island 2 in the mouse brain. Shank3 mutant mice exhibit autistic-like behaviors, including impaired social interaction and repetitive behaviors. In this article we review recent findings in regard to higher brain functions of SHANK3, epigenetic regulation of SHANK3 expression, and SHANK3-related ASD that were obtained from genetic analyses in ASD patients, molecular biological studies using developing mouse brains, and studies of Shank3 mutant mice. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Biomarkers in Autism

    Directory of Open Access Journals (Sweden)

    Robert eHendren

    2014-08-01

    Full Text Available Autism spectrum disorders (ASD are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression and measures of the body’s metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.

  5. Case-control approach application for finding a relationship between candidate genes and clinical mastitis in Holstein dairy cattle.

    Science.gov (United States)

    Bagheri, Masoumeh; Moradi-Sharhrbabak, M; Miraie-Ashtiani, R; Safdari-Shahroudi, M; Abdollahi-Arpanahi, R

    2016-02-01

    Mastitis is a major source of economic loss in dairy herds. The objective of this research was to evaluate the association between genotypes within SLC11A1 and CXCR1 candidate genes and clinical mastitis in Holstein dairy cattle using the selective genotyping method. The data set contained clinical mastitis records of 3,823 Holstein cows from two Holstein dairy herds located in two different regions in Iran. Data included the number of cases of clinical mastitis per lactation. Selective genotyping was based on extreme values for clinical mastitis residuals (CMR) from mixed model analyses. Two extreme groups consisting of 135 cows were formed (as cases and controls), and genotyped for the two candidate genes, namely, SLC11A1 and CXCR1, using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), respectively. Associations between single nucleotide polymorphism (SNP) genotypes with CMR and breeding values for milk and protein yield were carried out by applying logistic regression analyses, i.e. estimating the probability of the heterogeneous genotype in the dependency of values for CMR and breeding values (BVs). The sequencing results revealed a novel mutation in 1139 bp of exon 11 of the SLC11A1 gene and this SNP had a significant association with CMR (P G and these genotypes had significant relationships with CMR. Overall, the results showed that SLC11A1 and CXCR1 are valuable candidate genes for the improvement of mastitis resistance as well as production traits in dairy cattle populations.

  6. Executive functioning and local-global visual processing: candidate endophenotypes for autism spectrum disorder?

    Science.gov (United States)

    Van Eylen, Lien; Boets, Bart; Cosemans, Nele; Peeters, Hilde; Steyaert, Jean; Wagemans, Johan; Noens, Ilse

    2017-03-01

    Heterogeneity within autism spectrum disorder (ASD) hampers insight in the etiology and stimulates the search for endophenotypes. Endophenotypes should meet several criteria, the most important being the association with ASD and the higher occurrence rate in unaffected ASD relatives than in the general population. We evaluated these criteria for executive functioning (EF) and local-global (L-G) visual processing. By administering an extensive cognitive battery which increases the validity of the measures, we examined which of the cognitive anomalies shown by ASD probands also occur in their unaffected relatives (n = 113) compared to typically developing (TD) controls (n = 100). Microarrays were performed, so we could exclude relatives from probands with a de novo mutation in a known ASD susceptibility copy number variant, thus increasing the probability that genetic risk variants are shared by the ASD relatives. An overview of studies investigating EF and L-G processing in ASD relatives was also provided. For EF, ASD relatives - like ASD probands - showed impairments in response inhibition, cognitive flexibility and generativity (specifically, ideational fluency), and EF impairments in daily life. For L-G visual processing, the ASD relatives showed no anomalies on the tasks, but they reported more attention to detail in daily life. Group differences were similar for siblings and for parents of ASD probands, and yielded larger effect sizes in a multiplex subsample. The group effect sizes for the comparison between ASD probands and TD individuals were generally larger than those of the ASD relatives compared to TD individuals. Impaired cognitive flexibility, ideational fluency and response inhibition are strong candidate endophenotypes for ASD. They could help to delineate etiologically more homogeneous subgroups, which is clinically important to allow assigning ASD probands to different, more targeted, interventions. © 2016 Association for Child and Adolescent

  7. Identification of single nucleotide polymorphisms (SNPs at candidate genes involved in abiotic stress in two Prosopis species of hybrids

    Directory of Open Access Journals (Sweden)

    Maria F. Pomponio

    2014-12-01

    Full Text Available Aim of the study: Identify and compare SNPs on candidate genes related to abiotic stress in Prosopis chilensis, Prosopis flexuosa and interspecific hybridsArea of the study: Chaco árido, Argentina. Material and Methods: Fragments from 6 candidate genes were sequenced in 60 genotypes. DNA polymorphisms were analyzed.Main Results: The analysis revealed that the hybrids had the highest rate of polymorphism, followed by P. flexuosa and P. chilensis, the values found are comparable to other forest tree species.Research highlights: This approach will help to study genetic diversity variation on natural populations for assessing the effects of environmental changes.Keywords: SNPs; abiotic stress; interspecific variation; molecular markers. 

  8. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat.

    Science.gov (United States)

    Nazari-Ghadikolaei, Anahit; Mehrabani-Yeganeh, Hassan; Miarei-Aashtiani, Seyed R; Staiger, Elizabeth A; Rashidi, Amir; Huson, Heather J

    2018-01-01

    The Markhoz goat provides an opportunity to study the genetics underlying coat color and mohair traits of an Angora type goat using genome-wide association studies (GWAS). This indigenous Iranian breed is valued for its quality mohair used in ceremonial garments and has the distinction of exhibiting an array of coat colors including black, brown, and white. Here, we performed 16 GWAS for different fleece (mohair) traits and coat color in 228 Markhoz goats sampled from the Markhoz Goat Research Station in Sanandaj, Kurdistan province, located in western Iran using the Illumina Caprine 50K beadchip. The Efficient Mixed Model Linear analysis was used to identify genomic regions with potential candidate genes contributing to coat color and mohair characteristics while correcting for population structure. Significant associations to coat color were found within or near the ASIP, ITCH, AHCY , and RALY genes on chromosome 13 for black and brown coat color and the KIT and PDGFRA genes on chromosome 6 for white coat color. Individual mohair traits were analyzed for genetic association along with principal components that allowed for a broader perspective of combined traits reflecting overall mohair quality and volume. A multitude of markers demonstrated significant association to mohair traits highlighting potential candidate genes of POU1F1 on chromosome 1 for mohair quality, MREG on chromosome 2 for mohair volume, DUOX1 on chromosome 10 for yearling fleece weight, and ADGRV1 on chromosome 7 for grease percentage. Variation in allele frequencies and haplotypes were identified for coat color and differentiated common markers associated with both brown and black coat color. This demonstrates the potential for genetic markers to be used in future breeding programs to improve selection for coat color and mohair traits. Putative candidate genes, both novel and previously identified in other species or breeds, require further investigation to confirm phenotypic causality and

  9. Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs.

    Science.gov (United States)

    Ballester, Maria; Ramayo-Caldas, Yuliaxis; Revilla, Manuel; Corominas, Jordi; Castelló, Anna; Estellé, Jordi; Fernández, Ana I; Folch, Josep M

    2017-04-19

    In the present study, liver co-expression networks and expression Genome Wide Association Study (eGWAS) were performed to identify DNA variants and molecular pathways implicated in the functional regulatory mechanisms of meat quality traits in pigs. With this purpose, the liver mRNA expression of 44 candidates genes related with lipid metabolism was analysed in 111 Iberian x Landrace backcross animals. The eGWAS identified 92 eSNPs located in seven chromosomal regions and associated with eight genes: CROT, CYP2U1, DGAT1, EGF, FABP1, FABP5, PLA2G12A, and PPARA. Remarkably, cis-eSNPs associated with FABP1 gene expression which may be determining the C18:2(n-6)/C18:3(n-3) ratio in backfat through the multiple interaction of DNA variants and genes were identified. Furthermore, a hotspot on SSC8 associated with the gene expression of eight genes was identified and the TBCK gene was pointed out as candidate gene regulating it. Our results also suggested that the PI3K-Akt-mTOR pathway plays an important role in the control of the analysed genes highlighting nuclear receptors as the NR3C1 or PPARA. Finally, sex-dimorphism associated with hepatic lipid metabolism was identified with over-representation of female-biased genes. These results increase our knowledge of the genetic architecture underlying fat composition traits.

  10. Genetically determined low maternal serum dopamine beta-hydroxylase levels and the etiology of autism spectrum disorders.

    Science.gov (United States)

    Robinson, P D; Schutz, C K; Macciardi, F; White, B N; Holden, J J

    2001-04-15

    Autism, a neurodevelopmental disability characterized by repetitive stereopathies and deficits in reciprocal social interaction and communication, has a strong genetic basis. Since previous findings showed that some families with autistic children have a low level of serum dopamine beta-hydroxylase (DbetaH), which catalyzes the conversion of dopamine to norepinephrine, we examined the DBH gene as a candidate locus in families with two or more children with autism spectrum disorder using the affected sib-pair method. DBH alleles are defined by a polymorphic AC repeat and the presence/absence (DBH+/DBH-) of a 19-bp sequence 118 bp downstream in the 5' flanking region of the gene. There was no increased concordance for DBH alleles in affected siblings, but the mothers had a higher frequency of alleles containing the 19-bp deletion (DBH-), compared to an ethnically similar Canadian comparison group (chi(2) = 4.20, df = 1, P = 0.02 for all multiplex mothers; chi(2) = 4.71, df = 1, P autism. DBH genotypes also differed significantly among mothers and controls, with 37% of mothers with two affected sons having two DBH- alleles, compared to 19% of controls (chi(2) = 5.81, df = 2, P = 0.03). DbetaH enzyme activity was lower in mothers of autistic children than in controls (mean was 23.20 +/- 15.35 iU/liter for mothers vs. 33.14 +/- 21.39 iU/liter for controls; t = - 1.749, df = 46, P = 0.044). The DBH- allele was associated with lower mean serum DbetaH enzyme activity (nondeletion homozygotes: 41.02 +/- 24.34 iU/liter; heterozygotes: 32.07 +/- 18.10 iU/liter; and deletion homozygotes: 22.31 +/- 13.48 iU/liter; F = 5.217, df = 2, P = 0.007) in a pooled sample of mothers and controls. Taken together, these findings suggest that lowered maternal serum DbetaH activity results in a suboptimal uterine environment (decreased norepinephrine relative to dopamine), which, in conjunction with genotypic susceptibility of the fetus, results in autism spectrum disorder in some families

  11. Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer.

    Science.gov (United States)

    Wang, Yuzhi; Zhang, Yi; Huang, Qian; Li, Chengwen

    2018-04-19

    Breast cancer (BC) is the leading malignancy in women worldwide, yet relatively little is known about the genes and signaling pathways involved in BC tumorigenesis and progression. The present study aimed to elucidate potential key candidate genes and pathways in BC. Five gene expression profile data sets (GSE22035, GSE3744, GSE5764, GSE21422 and GSE26910) were downloaded from the Gene Expression Omnibus (GEO) database, which included data from 113 tumorous and 38 adjacent non‑tumorous tissue samples. Differentially expressed genes (DEGs) were identified using t‑tests in the limma R package. These DEGs were subsequently investigated by pathway enrichment analysis and a protein‑protein interaction (PPI) network was constructed. The most significant module from the PPI network was selected for pathway enrichment analysis. In total, 227 DEGs were identified, of which 82 were upregulated and 145 were downregulated. Pathway enrichment analysis results revealed that the upregulated DEGs were mainly enriched in 'cell division', the 'proteinaceous extracellular matrix (ECM)', 'ECM structural constituents' and 'ECM‑receptor interaction', whereas downregulated genes were mainly enriched in 'response to drugs', 'extracellular space', 'transcriptional activator activity' and the 'peroxisome proliferator‑activated receptor signaling pathway'. The PPI network contained 174 nodes and 1,257 edges. DNA topoisomerase 2‑a, baculoviral inhibitor of apoptosis repeat‑containing protein 5, cyclin‑dependent kinase 1, G2/mitotic‑specific cyclin‑B1 and kinetochore protein NDC80 homolog were identified as the top 5 hub genes. Furthermore, the genes in the most significant module were predominantly involved in 'mitotic nuclear division', 'mid‑body', 'protein binding' and 'cell cycle'. In conclusion, the DEGs, relative pathways and hub genes identified in the present study may aid in understanding of the molecular mechanisms underlying BC progression and provide

  12. Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad unstructured population.

    Directory of Open Access Journals (Sweden)

    Matthieu Jourdan

    Full Text Available Accumulated in large amounts in carrot, carotenoids are an important product quality attribute and therefore a major breeding trait. However, the knowledge of carotenoid accumulation genetic control in this root vegetable is still limited. In order to identify the genetic variants linked to this character, we performed an association mapping study with a candidate gene approach. We developed an original unstructured population with a broad genetic basis to avoid the pitfall of false positive detection due to population stratification. We genotyped 109 SNPs located in 17 candidate genes – mostly carotenoid biosynthesis genes – on 380 individuals, and tested the association with carotenoid contents and color components. Total carotenoids and β-carotene contents were significantly associated with genes zeaxanthin epoxydase (ZEP, phytoene desaturase (PDS and carotenoid isomerase (CRTISO while α-carotene was associated with CRTISO and plastid terminal oxidase (PTOX genes. Color components were associated most significantly with ZEP. Our results suggest the involvement of the couple PDS/PTOX and ZEP in carotenoid accumulation, as the result of the metabolic and catabolic activities respectively. This study brings new insights in the understanding of the carotenoid pathway in non-photosynthetic organs.

  13. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis

    Directory of Open Access Journals (Sweden)

    Paniego Norma

    2008-01-01

    Full Text Available Abstract Background Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. Results Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. Conclusion

  14. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  15. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico.

    Directory of Open Access Journals (Sweden)

    A. Murat eMaga

    2015-03-01

    Full Text Available We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl and 30 QTL responsible for the skull shape (SSH.qtl. Size, sex and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315MB and contained 2,476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest.

  16. Associations of candidate genes to age-related macular degeneration among racial/ethnic groups in the multi-ethnic study of atherosclerosis.

    Science.gov (United States)

    Klein, Ronald; Li, Xiaohui; Kuo, Jane Z; Klein, Barbara E K; Cotch, Mary Frances; Wong, Tien Y; Taylor, Kent D; Rotter, Jerome I

    2013-11-01

    To describe the relationships of selected candidate genes to the prevalence of early age-related macular degeneration (AMD) in a cohort of whites, blacks, Hispanics, and Chinese Americans. Cross-sectional study. setting: Multicenter study. study population: A total of 2456 persons aged 45-84 years with genotype information and fundus photographs. procedures: Twelve of 2862 single nucleotide polymorphisms (SNPs) from 11 of 233 candidate genes for cardiovascular disease were selected for analysis based on screening with marginal unadjusted P value ethnic groups. Logistic regression models tested for association in case-control samples. main outcome measure: Prevalence of early AMD. Early AMD was present in 4.0% of the cohort and varied from 2.4% in blacks to 6.0% in whites. The odds ratio increased from 2.3 for 1 to 10.0 for 4 risk alleles in a joint effect analysis of Age-Related Maculopathy Susceptibility 2 rs10490924 and Complement Factor H Y402H (P for trend = 4.2×10(-7)). Frequencies of each SNP varied among the racial/ethnic groups. Adjusting for age and other factors, few statistically significant associations of the 12 SNPs with AMD were consistent across all groups. In a multivariate model, most candidate genes did not attenuate the comparatively higher odds of AMD in whites. The higher frequency of risk alleles for several SNPs in Chinese Americans may partially explain their AMD frequency's approaching that of whites. The relationships of 11 candidate genes to early AMD varied among 4 racial/ethnic groups, and partially explained the observed variations in early AMD prevalence among them. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    Directory of Open Access Journals (Sweden)

    Pangilinan Faith

    2012-08-01

    Full Text Available Abstract Background Neural tube defects (NTDs are common birth defects (~1 in 1000 pregnancies in the US and Europe that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T and MTHFD1 rs2236225 (R653Q have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents, including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury and included the known NTD risk factor MTHFD1 R653Q (rs2236225. The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele. Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the stringency of correction are likely to have contributed to real associations failing to survive

  18. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Science.gov (United States)

    Burt, Andrew J; William, H Manilal; Perry, Gregory; Khanal, Raja; Pauls, K Peter; Kelly, James D; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  19. Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis: Exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance

    Directory of Open Access Journals (Sweden)

    Crespo Andre LB

    2009-06-01

    Full Text Available Abstract Background Lepidoptera represents more than 160,000 insect species which include some of the most devastating pests of crops, forests, and stored products. However, the genomic information on lepidopteran insects is very limited. Only a few studies have focused on developing expressed sequence tag (EST libraries from the guts of lepidopteran larvae. Knowledge of the genes that are expressed in the insect gut are crucial for understanding basic physiology of food digestion, their interactions with Bacillus thuringiensis (Bt toxins, and for discovering new targets for novel toxins for use in pest management. This study analyzed the ESTs generated from the larval gut of the European corn borer (ECB, Ostrinia nubilalis, one of the most destructive pests of corn in North America and the western world. Our goals were to establish an ECB larval gut-specific EST database as a genomic resource for future research and to explore candidate genes potentially involved in insect-Bt interactions and Bt resistance in ECB. Results We constructed two cDNA libraries from the guts of the fifth-instar larvae of ECB and sequenced a total of 15,000 ESTs from these libraries. A total of 12,519 ESTs (83.4% appeared to be high quality with an average length of 656 bp. These ESTs represented 2,895 unique sequences, including 1,738 singletons and 1,157 contigs. Among the unique sequences, 62.7% encoded putative proteins that shared significant sequence similarities (E-value ≤ 10-3with the sequences available in GenBank. Our EST analysis revealed 52 candidate genes that potentially have roles in Bt toxicity and resistance. These genes encode 18 trypsin-like proteases, 18 chymotrypsin-like proteases, 13 aminopeptidases, 2 alkaline phosphatases and 1 cadherin-like protein. Comparisons of expression profiles of 41 selected candidate genes between Cry1Ab-susceptible and resistant strains of ECB by RT-PCR showed apparently decreased expressions in 2 trypsin-like and 2

  20. Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis.

    Science.gov (United States)

    Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid

    2017-02-02

    Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.

  1. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2014-06-01

    Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder. © FASEB.

  2. Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle.

    Science.gov (United States)

    Mota, R R; Guimarães, S E F; Fortes, M R S; Hayes, B; Silva, F F; Verardo, L L; Kelly, M J; de Campos, C F; Guimarães, J D; Wenceslau, R R; Penitente-Filho, J M; Garcia, J F; Moore, S

    2017-12-01

    We performed a genome-wide mapping for the age at first calving (AFC) with the goal of annotating candidate genes that regulate fertility in Nellore cattle. Phenotypic data from 762 cows and 777k SNP genotypes from 2,992 bulls and cows were used. Single nucleotide polymorphism (SNP) effects based on the single-step GBLUP methodology were blocked into adjacent windows of 1 Megabase (Mb) to explain the genetic variance. SNP windows explaining more than 0.40% of the AFC genetic variance were identified on chromosomes 2, 8, 9, 14, 16 and 17. From these windows, we identified 123 coding protein genes that were used to build gene networks. From the association study and derived gene networks, putative candidate genes (e.g., PAPPA, PREP, FER1L6, TPR, NMNAT1, ACAD10, PCMTD1, CRH, OPKR1, NPBWR1 and NCOA2) and transcription factors (TF) (STAT1, STAT3, RELA, E2F1 and EGR1) were strongly associated with female fertility (e.g., negative regulation of luteinizing hormone secretion, folliculogenesis and establishment of uterine receptivity). Evidence suggests that AFC inheritance is complex and controlled by multiple loci across the genome. As several windows explaining higher proportion of the genetic variance were identified on chromosome 14, further studies investigating the interaction across haplotypes to better understand the molecular architecture behind AFC in Nellore cattle should be undertaken. © 2017 Blackwell Verlag GmbH.

  3. Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici.

    Science.gov (United States)

    Xia, Chongjing; Wang, Meinan; Cornejo, Omar E; Jiwan, Derick A; See, Deven R; Chen, Xianming

    2017-01-01

    Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici ( Pst ), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76 . We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst . The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst , which will enable us to understand molecular mechanisms

  4. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.

    Science.gov (United States)

    Jiang, Li; Edwards, Stefan M; Thomsen, Bo; Workman, Christopher T; Guldbrandtsen, Bernt; Sørensen, Peter

    2014-09-24

    Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based approach combined with phenotypic profiling would be useful for disease gene prioritization. We developed a random-set scoring model and implemented it to quantify phenotype relevance in a network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance. We have implemented and validated a network-based approach to prioritize genes for human diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data

  5. Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yasuda Yuka

    2011-05-01

    Full Text Available Abstract Background The autism spectrum disorders (ASDs are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN 3/4, neurexin (NRXN 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. Methods We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. Results The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Conclusions Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients.

  6. Identification of novel candidate target genes in amplicons of Glioblastoma multiforme tumors detected by expression and CGH microarray profiling

    Directory of Open Access Journals (Sweden)

    Hernández-Moneo Jose-Luis

    2006-09-01

    Full Text Available Abstract Background Conventional cytogenetic and comparative genomic hybridization (CGH studies in brain malignancies have shown that glioblastoma multiforme (GBM is characterized by complex structural and numerical alterations. However, the limited resolution of these techniques has precluded the precise identification of detailed specific gene copy number alterations. Results We performed a genome-wide survey of gene copy number changes in 20 primary GBMs by CGH on cDNA microarrays. A novel amplicon at 4p15, and previously uncharacterized amplicons at 13q32-34 and 1q32 were detected and are analyzed here. These amplicons contained amplified genes not previously reported. Other amplified regions containg well-known oncogenes in GBMs were also detected at 7p12 (EGFR, 7q21 (CDK6, 4q12 (PDGFRA, and 12q13-15 (MDM2 and CDK4. In order to identify the putative target genes of the amplifications, and to determine the changes in gene expression levels associated with copy number change events, we carried out parallel gene expression profiling analyses using the same cDNA microarrays. We detected overexpression of the novel amplified genes SLA/LP and STIM2 (4p15, and TNFSF13B and COL4A2 (13q32-34. Some of the candidate target genes of amplification (EGFR, CDK6, MDM2, CDK4, and TNFSF13B were tested in an independent set of 111 primary GBMs by using FISH and immunohistological assays. The novel candidate 13q-amplification target TNFSF13B was amplified in 8% of the tumors, and showed protein expression in 20% of the GBMs. Conclusion This high-resolution analysis allowed us to propose novel candidate target genes such as STIM2 at 4p15, and TNFSF13B or COL4A2 at 13q32-34 that could potentially contribute to the pathogenesis of these tumors and which would require futher investigations. We showed that overexpression of the amplified genes could be attributable to gene dosage and speculate that deregulation of those genes could be important in the development

  7. No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes.

    Science.gov (United States)

    Soerensen, Mette; Nygaard, Marianne; Debrabant, Birgit; Mengel-From, Jonas; Dato, Serena; Thinggaard, Mikael; Christensen, Kaare; Christiansen, Lene

    2016-06-01

    In this study we explored the association between aging-related phenotypes previously reported to predict survival in old age and variation in 77 genes from the DNA repair pathway, 32 genes from the growth hormone 1/ insulin-like growth factor 1/insulin (GH/IGF-1/INS) signalling pathway and 16 additional genes repeatedly considered as candidates for human longevity: APOE, APOA4, APOC3, ACE, CETP, HFE, IL6, IL6R, MTHFR, TGFB1, SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. Altogether, 1,049 single nucleotide polymorphisms (SNPs) were genotyped in 1,088 oldest-old (age 92-93 years) Danes and analysed with phenotype data on physical functioning (hand grip strength), cognitive functioning (mini mental state examination and a cognitive composite score), activity of daily living and self-rated health. Five SNPs showed association to one of the phenotypes; however, none of these SNPs were associated with a change in the relevant phenotype over time (7 years of follow-up) and none of the SNPs could be confirmed in a replication sample of 1,281 oldest-old Danes (age 94-100). Hence, our study does not support association between common variation in the investigated longevity candidate genes and aging-related phenotypes consistently shown to predict survival. It is possible that larger sample sizes are needed to robustly reveal associations with small effect sizes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Identifying the candidate genes involved in the calyx abscission process of 'Kuerlexiangli' (Pyrus sinkiangensis Yu) by digital transcript abundance measurements.

    Science.gov (United States)

    Qi, Xiaoxiao; Wu, Jun; Wang, Lifen; Li, Leiting; Cao, Yufen; Tian, Luming; Dong, Xingguang; Zhang, Shaoling

    2013-10-23

    'Kuerlexiangli' (Pyrus sinkiangensis Yu), a native pear of Xinjiang, China, is an important agricultural fruit and primary export to the international market. However, fruit with persistent calyxes affect fruit shape and quality. Although several studies have looked into the physiological aspects of the calyx abscission process, the underlying molecular mechanisms remain unknown. In order to better understand the molecular basis of the process of calyx abscission, materials at three critical stages of regulation, with 6000 × Flusilazole plus 300 × PBO treatment (calyx abscising treatment) and 50 mg.L-1GA3 treatment (calyx persisting treatment), were collected and cDNA fragments were sequenced using digital transcript abundance measurements to identify candidate genes. Digital transcript abundance measurements was performed using high-throughput Illumina GAII sequencing on seven samples that were collected at three important stages of the calyx abscission process with chemical agent treatments promoting calyx abscission and persistence. Altogether more than 251,123,845 high quality reads were obtained with approximately 8.0 M raw data for each library. The values of 69.85%-71.90% of clean data in the digital transcript abundance measurements could be mapped to the pear genome database. There were 12,054 differentially expressed genes having Gene Ontology (GO) terms and associating with 251 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. The differentially expressed genes correlated with calyx abscission were mainly involved in photosynthesis, plant hormone signal transduction, cell wall modification, transcriptional regulation, and carbohydrate metabolism. Furthermore, candidate calyx abscission-specific genes, e.g. Inflorescence deficient in abscission gene, were identified. Quantitative real-time PCR was used to confirm the digital transcript abundance measurements results. We identified candidate genes that showed highly dynamic changes in

  9. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae

    Directory of Open Access Journals (Sweden)

    Wanwipa Vongsangnak

    2016-10-01

    Full Text Available Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR. This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system.

  10. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce.

    Science.gov (United States)

    Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W

    1998-08-01

    The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.

  11. Epigenetic Findings in Autism: New Perspectives for Therapy

    Directory of Open Access Journals (Sweden)

    James Jeffrey Bradstreet

    2013-09-01

    Full Text Available Autism and autism spectrum disorders (ASDs are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, communications, restricted interests, and repetitive stereotypic behaviors. Despite extensive genetic and biological research, significant controversy surrounds our understanding of the specific mechanisms of their pathogenesis. However, accumulating evidence points to the involvement of epigenetic modifications as foundational in creating ASD pathophysiology. Epigenetic modifications or the alteration of DNA transcription via variations in DNA methylation and histone modifications but without alterations in the DNA sequence, affect gene regulation. These alterations in gene expression, obtained through DNA methylation and/or histone modifications, result from transcriptional regulatory influences of environmental factors, such as nutritional deficiencies, various toxicants, immunological effects, and pharmaceuticals. As such these effects are epigenetic regulators which determine the final biochemistry and physiology of the individual. In contrast to psychopharmacological interventions, bettering our understanding of how these gene-environmental interactions create autistic symptoms should facilitate the development of therapeutic targeting of gene expression for ASD biomedical care.

  12. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  13. Systematic genotype-phenotype analysis of autism susceptibility loci implicates additional symptoms to co-occur with autism

    NARCIS (Netherlands)

    Buizer-Voskamp, Jacobine E.; Franke, Lude; Staal, Wouter G.; van Daalen, Emma; Kemner, Chantal; Ophoff, Roel A.; Vorstman, Jacob A. S.; van Engeland, Herman; Wijmenga, Cisca

    2010-01-01

    Many genetic studies in autism have been performed, resulting in the identification of multiple linkage regions and cytogenetic aberrations, but little unequivocal evidence for the involvement of specific genes exists. By identifying novel symptoms in these patients, enhanced phenotyping of autistic

  14. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics

    Science.gov (United States)

    Kazdoba, Tatiana M.; Leach, Prescott T.; Yang, Mu; Silverman, Jill L.; Solomon, Marjorie

    2016-01-01

    Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism. PMID:27305922

  15. LOD score exclusion analyses for candidate QTLs using random population samples.

    Science.gov (United States)

    Deng, Hong-Wen

    2003-11-01

    While extensive analyses have been conducted to test for, no formal analyses have been conducted to test against, the importance of candidate genes as putative QTLs using random population samples. Previously, we developed an LOD score exclusion mapping approach for candidate genes for complex diseases. Here, we extend this LOD score approach for exclusion analyses of candidate genes for quantitative traits. Under this approach, specific genetic effects (as reflected by heritability) and inheritance models at candidate QTLs can be analyzed and if an LOD score is < or = -2.0, the locus can be excluded from having a heritability larger than that specified. Simulations show that this approach has high power to exclude a candidate gene from having moderate genetic effects if it is not a QTL and is robust to population admixture. Our exclusion analysis complements association analysis for candidate genes as putative QTLs in random population samples. The approach is applied to test the importance of Vitamin D receptor (VDR) gene as a potential QTL underlying the variation of bone mass, an important determinant of osteoporosis.

  16. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep.

    Science.gov (United States)

    Peñagaricano, Francisco; Zorrilla, Pilar; Naya, Hugo; Robello, Carlos; Urioste, Jorge I

    2012-02-01

    The white coat colour of sheep is an important economic trait. For unknown reasons, some animals are born with, and others develop with time, black skin spots that can also produce pigmented fibres. The presence of pigmented fibres in the white wool significantly decreases the fibre quality. The aim of this work was to study gene expression in black spots (with and without pigmented fibres) and white skin by microarray techniques, in order to identify the possible genes involved in the development of this trait. Five unrelated Corriedale sheep were used and, for each animal, the three possible comparisons (three different hybridisations) between the three samples of interest were performed. Differential gene expression patterns were analysed using different t-test approaches. Most of the major genes with well-known roles in skin pigmentation, e.g. ASIP, MC1R and C-KIT, showed no significant difference in the gene expression between white skin and black spots. On the other hand, many of the differentially expressed genes (raw P-value spots. The gene expression of C-FOS and KLF4, transcription factors involved in the cellular response to external factors such as ultraviolet light, was validated by quantitative polymerase chain reaction (PCR). This exploratory study provides a list of candidate genes that could be associated with the development of black skin spots that should be studied in more detail. Characterisation of these genes will enable us to discern the molecular mechanisms involved in the development of this feature and, hence, increase our understanding of melanocyte biology and skin pigmentation. In sheep, understanding this phenomenon is a first step towards developing molecular tools to assist in the selection against the presence of pigmented fibres in white wool.

  17. Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study.

    Science.gov (United States)

    Miao, Yuanxin; Soudy, Fathia; Xu, Zhong; Liao, Mingxing; Zhao, Shuhong; Li, Xinyun

    2017-01-01

    Feed efficiency (FE) is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57) × Kunming (KM) F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR) and feed intake (FI) traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.

  18. Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study

    Directory of Open Access Journals (Sweden)

    Yuanxin Miao

    2017-01-01

    Full Text Available Feed efficiency (FE is a very important trait in livestock industry. Identification of the candidate genes could be of benefit for the improvement of FE trait. Mouse is used as the model for many studies in mammals. In this study, the candidate genes related to FE and coat color were identified using C57BL/6J (C57 × Kunming (KM F2 mouse population. GWAS results showed that 61 and 2 SNPs were genome-wise suggestive significantly associated with feed conversion ratio (FCR and feed intake (FI traits, respectively. Moreover, the Erbin, Msrb2, Ptf1a, and Fgf10 were considered as the candidate genes of FE. The Lpl was considered as the candidate gene of FI. Further, the coat color trait was studied. KM mice are white and C57 ones are black. The GWAS results showed that the most significant SNP was located at chromosome 7, and the closely linked gene was Tyr. Therefore, our study offered useful target genes related to FE in mice; these genes may play similar roles in FE of livestock. Also, we identified the major gene of coat color in mice, which would be useful for better understanding of natural mutation of the coat color in mice.

  19. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  20. De novo unbalanced translocation (4p duplication/8p deletion) in a patient with autism, OCD, and overgrowth syndrome.

    Science.gov (United States)

    Sagar, Angela; Pinto, Dalila; Najjar, Fedra; Guter, Stephen J; Macmillan, Carol; Cook, Edwin H

    2017-06-01

    Chromosomal abnormalities, such as unbalanced translocations and copy number variants (CNVs), are found in autism spectrum disorders (ASDs) [Sanders et al. (2011) Neuron 70: 863-885]. Many chromosomal abnormalities, including sub microscopic genomic deletions and duplications, are missed by G-banded karyotyping or Fragile X screening alone and are picked up by chromosomal microarrays [Shen et al. (2010) Pediatrics 125: e727-735]. Translocations involving chromosomes 4 and 8 are possibly the second most frequent translocation in humans and are often undetected in routine cytogenetics [Giglio et al. (2002) Circulation 102: 432-437]. Deletions of 4p16 have been associated with Wolf-Hirschhorn syndrome while 4p16 duplications have been associated with an overgrowth syndrome and mild to moderate mental retardation [Partington et al. (1997) Journal of Medical Genetics 34: 719-728]. The 8p23.3 region contains the autism candidate gene DLGAP2, which can contribute to autism when disrupted [Marshall et al. (2008) The American Journal of Human Genetics 82: 477-488] . There has been a case report of a family with autism spectrum disorder (ASD), prominent obsessional behavior, and overgrowth in patients with der (8) t (4;8) p (16;23) [Partington et al. (1997)]. This is an independent report of a male patient with autism, obsessive compulsive disorder (OCD), attention-deficit hyperactivity disorder (ADHD), and an overgrowth syndrome, whose de novo unbalanced translocation der (8) t (4;8) p (16.1→ter; 23.1→ter) was initially missed by routine cytogenetics but detected with SNP microarray, allowing higher resolution of translocation breakpoints. © 2017 Wiley Periodicals, Inc.

  1. Organization and annotation of the Xcat critical region: elimination of seven positional candidate genes.

    Science.gov (United States)

    Huang, Kristen M; Geunes-Boyer, Scarlett; Wu, Sufen; Dutra, Amalia; Favor, Jack; Stambolian, Dwight

    2004-05-01

    Xcat mice display X-linked congenital cataracts and are a mouse model for the human X-linked cataract disease Nance Horan syndrome (NHS). The genetic defect in Xcat mice and NHS patients is not known. We isolated and sequenced a BAC contig representing a portion of the Xcat critical region. We combined our sequencing data with the most recent mouse sequence assemblies from both Celera and public databases. The sequence of the 2.2-Mb Xcat critical region was then analyzed for potential Xcat candidate genes. The coding regions of the seven known genes within this area (Rai2, Rbbp7, Ctps2, Calb3, Grpr, Reps2, and Syap1) were sequenced in Xcat mice and no mutations were detected. The expression of Rai2 was quantitatively identical in wild-type and Xcat mutant eyes. These results indicate that the Xcat mutation is within a novel, undiscovered gene.

  2. Drosophila Studies on Autism Spectrum Disorders

    Institute of Scientific and Technical Information of China (English)

    Yao Tian; Zi Chao Zhang; Junhai Han

    2017-01-01

    In the past decade,numerous genes associated with autism spectrum disorders (ASDs) have been identified.These genes encode key regulators of synaptogenesis,synaptic function,and synaptic plasticity.Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis,synaptic function,synaptic plasticity,and neural circuit assembly and consolidation.Here,we review Drosophila studies on ASD genes that regulate synaptogenesis,synaptic function,and synaptic plasticity through modulating chromatin remodeling,transcription,protein synthesis and degradation,cytoskeleton dynamics,and synaptic scaffolding.

  3. Transcriptomic Analysis Reveals Candidate Genes for Female Sterility in Pomegranate Flowers

    Directory of Open Access Journals (Sweden)

    Lina Chen

    2017-08-01

    Full Text Available Pomegranate has two types of flowers on the same plant: functional male flowers (FMF and bisexual flowers (BF. BF are female-fertile flowers that can set fruits. FMF are female-sterile flowers that fail to set fruit and that eventually drop. The putative cause of pomegranate FMF female sterility is abnormal ovule development. However, the key stage at which the FMF pomegranate ovules become abnormal and the mechanism of regulation of pomegranate female sterility remain unknown. Here, we studied ovule development in FMF and BF, using scanning electron microscopy to explore the key stage at which ovule development was terminated and then analyzed genes differentially expressed (differentially expressed genes – DEGs between FMF and BF to investigate the mechanism responsible for pomegranate female sterility. Ovule development in FMF ceased following the formation of the inner integument primordium. The key stage for the termination of FMF ovule development was when the bud vertical diameter was 5.0–13.0 mm. Candidate genes influencing ovule development may be crucial factors in pomegranate female sterility. INNER OUTER (INO/YABBY4 (Gglean016270 and AINTEGUMENTA (ANT homolog genes (Gglean003340 and Gglean011480, which regulate the development of the integument, showed down-regulation in FMF at the key stage of ovule development cessation (ATNSII. Their upstream regulator genes, such as AGAMOUS-like (AG-like (Gglean028014, Gglean026618, and Gglean028632 and SPOROCYTELESS (SPL homolog genes (Gglean005812, also showed differential expression pattern between BF and FMF at this key stage. The differential expression of the ethylene response signal genes, ETR (ethylene-resistant (Gglean022853 and ERF1/2 (ethylene-responsive factor (Gglean022880, between FMF and BF indicated that ethylene signaling may also be an important factor in the development of pomegranate female sterility. The increase in BF observed after spraying with ethephon supported this

  4. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development.

    Science.gov (United States)

    Schmouth, Jean-François; Arenillas, David; Corso-Díaz, Ximena; Xie, Yuan-Yun; Bohacec, Slavita; Banks, Kathleen G; Bonaguro, Russell J; Wong, Siaw H; Jones, Steven J M; Marra, Marco A; Simpson, Elizabeth M; Wasserman, Wyeth W

    2015-07-24

    Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development.

  5. Confirming candidate genes for longevity in Drosophila melanogaster using two different genetic backgrounds and selection methods

    DEFF Research Database (Denmark)

    Wit, Janneke; Frydenberg, Jane; Sarup, Pernille Merete

    2013-01-01

    usually focussed on one sex and on flies originating from one genetic background, and results from different studies often do not overlap. Using D. melanogaster selected for increased longevity we aimed to find robust longevity related genes by examining gene expression in both sexes of flies originating......Elucidating genes that affect life span or that can be used as biomarkers for ageing has received attention in diverse studies in recent years. Using model organisms and various approaches several genes have been linked to the longevity phenotype. For Drosophila melanogaster those studies have...... from different genetic backgrounds. Further, we compared expression changes across three ages, when flies were young, middle aged or old, to examine how candidate gene expression changes with the onset of ageing. We selected 10 genes based on their expression differences in prior microarray studies...

  6. Imitation, mirror neurons and autism.

    Science.gov (United States)

    Williams, J H; Whiten, A; Suddendorf, T; Perrett, D I

    2001-06-01

    Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others, providing a potential bridge between minds. MN systems exist in primates without imitative and 'theory of mind' abilities and we suggest that in order for them to have become utilized to perform social cognitive functions, sophisticated cortical neuronal systems have evolved in which MNs function as key elements. Early developmental failures of MN systems are likely to result in a consequent cascade of developmental impairments characterised by the clinical syndrome of autism.

  7. Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses

    Directory of Open Access Journals (Sweden)

    Lionikas Arimantas

    2012-11-01

    Full Text Available Abstract Background We have recently identified a number of Quantitative Trait Loci (QTL contributing to the 2-fold muscle weight difference between the LG/J and SM/J mouse strains and refined their confidence intervals. To facilitate nomination of the candidate genes responsible for these differences we examined the transcriptome of the tibialis anterior (TA muscle of each strain by RNA-Seq. Results 13,726 genes were expressed in mouse skeletal muscle. Intersection of a set of 1061 differentially expressed transcripts with a mouse muscle Bayesian Network identified a coherent set of differentially expressed genes that we term the LG/J and SM/J Regulatory Network (LSRN. The integration of the QTL, transcriptome and the network analyses identified eight key drivers of the LSRN (Kdr, Plbd1, Mgp, Fah, Prss23, 2310014F06Rik, Grtp1, Stk10 residing within five QTL regions, which were either polymorphic or differentially expressed between the two strains and are strong candidates for quantitative trait genes (QTGs underlying muscle mass. The insight gained from network analysis including the ability to make testable predictions is illustrated by annotating the LSRN with knowledge-based signatures and showing that the SM/J state of the network corresponds to a more oxidative state. We validated this prediction by NADH tetrazolium reductase staining in the TA muscle revealing higher oxidative potential of the SM/J compared to the LG/J strain (p Conclusion Thus, integration of fine resolution QTL mapping, RNA-Seq transcriptome information and mouse muscle Bayesian Network analysis provides a novel and unbiased strategy for nomination of muscle QTGs.

  8. Do candidate genes discriminate patients with an autism spectrum disorder from those with attention deficit/hyperactivity disorder and is there an effect of lifetime substance use disorders?

    NARCIS (Netherlands)

    Sizoo, B.B.; Brink, W. van den; Franke, B.; Arias Vasquez, A.; Wijngaarden-Cremers, P.J.M. van; Gaag, R.J. van der

    2010-01-01

    OBJECTIVE: Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are developmental disorders that overlap in a number of domains, sometimes complicating clinical distinction between both disorders. Although there is some evidence for a genetic overlap, there are no

  9. Do candidate genes discriminate patients with an autism spectrum disorder from those with attention deficit/hyperactivity disorder and is there an effect of lifetime substance use disorders?

    NARCIS (Netherlands)

    Sizoo, Bram; van den Brink, Wim; Franke, Barbara; Vasquez, Alejandro Arias; van Wijngaarden-Cremers, Patricia; van der Gaag, Rutger Jan

    2010-01-01

    Objective. Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are developmental disorders that overlap in a number of domains, sometimes complicating clinical distinction between both disorders. Although there is some evidence for a genetic overlap, there are no

  10. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Directory of Open Access Journals (Sweden)

    Andrew J Burt

    Full Text Available Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris. Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08 where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  11. Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes.

    Directory of Open Access Journals (Sweden)

    Michel Guipponi

    Full Text Available Schizophrenia (SCZ is a severe, debilitating mental illness which has a significant genetic component. The identification of genetic factors related to SCZ has been challenging and these factors remain largely unknown. To evaluate the contribution of de novo variants (DNVs to SCZ, we sequenced the exomes of 53 individuals with sporadic SCZ and of their non-affected parents. We identified 49 DNVs, 18 of which were predicted to alter gene function, including 13 damaging missense mutations, 2 conserved splice site mutations, 2 nonsense mutations, and 1 frameshift deletion. The average number of exonic DNV per proband was 0.88, which corresponds to an exonic point mutation rate of 1.7×10(-8 per nucleotide per generation. The non-synonymous-to-synonymous mutation ratio of 2.06 did not differ from neutral expectations. Overall, this study provides a list of 18 putative candidate genes for sporadic SCZ, and when combined with the results of similar reports, identifies a second proband carrying a non-synonymous DNV in the RGS12 gene.

  12. Assessment of PALB2 as a candidate melanoma susceptibility gene.

    Directory of Open Access Journals (Sweden)

    Lauren G Aoude

    Full Text Available Partner and localizer of BRCA2 (PALB2 interacts with BRCA2 to enable double strand break repair through homologous recombination. Similar to BRCA2, germline mutations in PALB2 have been shown to predispose to Fanconi anaemia as well as pancreatic and breast cancer. The PALB2/BRCA2 protein interaction, as well as the increased melanoma risk observed in families harbouring BRCA2 mutations, makes PALB2 a candidate for melanoma susceptibility. In order to assess PALB2 as a melanoma predisposition gene, we sequenced the entire protein-coding sequence of PALB2 in probands from 182 melanoma families lacking pathogenic mutations in known high penetrance melanoma susceptibility genes: CDKN2A, CDK4, and BAP1. In addition, we interrogated whole-genome and exome data from another 19 kindreds with a strong family history of melanoma for deleterious mutations in PALB2. Here we report a rare known deleterious PALB2 mutation (rs118203998 causing a premature truncation of the protein (p.Y1183X in an individual who had developed four different cancer types, including melanoma. Three other family members affected with melanoma did not carry the variant. Overall our data do not support a case for PALB2 being associated with melanoma predisposition.

  13. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity.

    Science.gov (United States)

    Ellegood, J; Anagnostou, E; Babineau, B A; Crawley, J N; Lin, L; Genestine, M; DiCicco-Bloom, E; Lai, J K Y; Foster, J A; Peñagarikano, O; Geschwind, D H; Pacey, L K; Hampson, D R; Laliberté, C L; Mills, A A; Tam, E; Osborne, L R; Kouser, M; Espinosa-Becerra, F; Xuan, Z; Powell, C M; Raznahan, A; Robins, D M; Nakai, N; Nakatani, J; Takumi, T; van Eede, M C; Kerr, T M; Muller, C; Blakely, R D; Veenstra-VanderWeele, J; Henkelman, R M; Lerch, J P

    2015-02-01

    Autism is a heritable disorder, with over 250 associated genes identified to date, yet no single gene accounts for >1-2% of cases. The clinical presentation, behavioural symptoms, imaging and histopathology findings are strikingly heterogeneous. A more complete understanding of autism can be obtained by examining multiple genetic or behavioural mouse models of autism using magnetic resonance imaging (MRI)-based neuroanatomical phenotyping. Twenty-six different mouse models were examined and the consistently found abnormal brain regions across models were parieto-temporal lobe, cerebellar cortex, frontal lobe, hypothalamus and striatum. These models separated into three distinct clusters, two of which can be linked to the under and over-connectivity found in autism. These clusters also identified previously unknown connections between Nrxn1α, En2 and Fmr1; Nlgn3, BTBR and Slc6A4; and also between X monosomy and Mecp2. With no single treatment for autism found, clustering autism using neuroanatomy and identifying these strong connections may prove to be a crucial step in predicting treatment response.

  14. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study

    International Nuclear Information System (INIS)

    Ji, Xinglai; Tang, Jie; Halberg, Richard; Busam, Dana; Ferriera, Steve; Peña, Maria Marjorette O; Venkataramu, Chinnambally; Yeatman, Timothy J; Zhao, Shaying

    2010-01-01

    We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J Apc Min/+ , focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from Apc Min/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates

  15. Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study.

    Science.gov (United States)

    Ji, Xinglai; Tang, Jie; Halberg, Richard; Busam, Dana; Ferriera, Steve; Peña, Maria Marjorette O; Venkataramu, Chinnambally; Yeatman, Timothy J; Zhao, Shaying

    2010-08-13

    We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2. We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors. These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors. These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates.

  16. Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean.

    Directory of Open Access Journals (Sweden)

    Shuhua Ma

    Full Text Available Due to its accuracy, sensitivity and high throughput, real time quantitative PCR (RT-qPCR has been widely used in analysing gene expression. The quality of data from such analyses is affected by the quality of reference genes used. Expression stabilities for nine candidate reference genes widely used in soybean were evaluated under different stresses in this study. Our results showed that EF1A and ACT11 were the best under salinity stress, TUB4, TUA5 and EF1A were the best under drought stress, ACT11 and UKN2 were the best under dark treatment, and EF1B and UKN2 were the best under virus infection. EF1B and UKN2 were the top two genes which can be reliably used in all of the stress conditions assessed.

  17. QTL Mapping by Whole Genome Re-sequencing and Analysis of Candidate Genes for Nitrogen Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Xinghai Yang

    2017-09-01

    Full Text Available Nitrogen is a major nutritional element in rice production. However, excessive application of nitrogen fertilizer has caused severe environmental pollution. Therefore, development of rice varieties with improved nitrogen use efficiency (NUE is urgent for sustainable agriculture. In this study, bulked segregant analysis (BSA combined with whole genome re-sequencing (WGS technology was applied to finely map quantitative trait loci (QTL for NUE. A key QTL, designated as qNUE6 was identified on chromosome 6 and further validated by Insertion/Deletion (InDel marker-based substitutional mapping in recombinants from F2 population (NIL-13B4 × GH998. Forty-four genes were identified in this 266.5-kb region. According to detection and annotation analysis of variation sites, 39 genes with large-effect single-nucleotide polymorphisms (SNPs and large-effect InDels were selected as candidates and their expression levels were analyzed by qRT-PCR. Significant differences in the expression levels of LOC_Os06g15370 (peptide transporter PTR2 and LOC_Os06g15420 (asparagine synthetase were observed between two parents (Y11 and GH998. Phylogenetic analysis in Arabidopsis thaliana identified two closely related homologs, AT1G68570 (AtNPF3.1 and AT5G65010 (ASN2, which share 72.3 and 87.5% amino acid similarity with LOC_Os06g15370 and LOC_Os06g15420, respectively. Taken together, our results suggested that qNUE6 is a possible candidate gene for NUE in rice. The fine mapping and candidate gene analysis of qNUE6 provide the basis of molecular breeding for genetic improvement of rice varieties with high NUE, and lay the foundation for further cloning and functional analysis.

  18. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study.

    LENUS (Irish Health Repository)

    Brophy, Karen

    2010-01-01

    BACKGROUND: Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance). The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. METHODS: We have evaluated six candidate genes in one of these regions (11q23), namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. RESULTS: Promotor SNPs (-607, -137) in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P < 0.05). Follow-up analyses of an extended sample supported the same, moderate effect (P < 0.05) for one of these. Haplotype analysis of IL18-137\\/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C\\/-137C (P < 0.0001), which was independently associated in two case-control comparisons. This same haplotype has been noted in rheumatoid arthritis. CONCLUSION: Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine\\'s role in maintaining inflammation in active CD.

  19. Evaluation of 6 candidate genes on chromosome 11q23 for coeliac disease susceptibility: a case control study

    LENUS (Irish Health Repository)

    Brophy, Karen

    2010-05-17

    Abstract Background Recent whole genome analysis and follow-up studies have identified many new risk variants for coeliac disease (CD, gluten intolerance). The majority of newly associated regions encode candidate genes with a clear functional role in T-cell regulation. Furthermore, the newly discovered risk loci, together with the well established HLA locus, account for less than 50% of the heritability of CD, suggesting that numerous additional loci remain undiscovered. Linkage studies have identified some well-replicated risk regions, most notably chromosome 5q31 and 11q23. Methods We have evaluated six candidate genes in one of these regions (11q23), namely CD3E, CD3D, CD3G, IL10RA, THY1 and IL18, as risk factors for CD using a 2-phase candidate gene approach directed at chromosome 11q. 377 CD cases and 349 ethnically matched controls were used in the initial screening, followed by an extended sample of 171 additional coeliac cases and 536 additional controls. Results Promotor SNPs (-607, -137) in the IL18 gene, which has shown association with several autoimmune diseases, initially suggested association with CD (P < 0.05). Follow-up analyses of an extended sample supported the same, moderate effect (P < 0.05) for one of these. Haplotype analysis of IL18-137\\/-607 also supported this effect, primarily due to one relatively rare haplotype IL18-607C\\/-137C (P < 0.0001), which was independently associated in two case-control comparisons. This same haplotype has been noted in rheumatoid arthritis. Conclusion Haplotypes of the IL18 promotor region may contribute to CD risk, consistent with this cytokine\\'s role in maintaining inflammation in active CD.

  20. [Autism and epigenetics. A model of explanation for the understanding of the genesis in autism spectrum disorders].

    Science.gov (United States)

    Arberas, Claudia; Ruggieri, Víctor

    2013-01-01

    Autism spectrum disorders are characterized by impairment of social integration and language development and restricted interests. Autism spectrum disorders manifest during childhood and may have a varying clinical expression over the years related to different therapeutic approaches, behavior-modifying drugs, and environmental factors, among others. So far, the genetic alterations identified are not sufficient to explain the genesis of all these processes, as many of the mutations found are also present in unaffected individuals. Findings on the underlying biological and pathophysiological mechanisms of entities strongly associated with autism spectrum disorders, such as Rett, fragile X, Angelman, and fetal alcohol syndromes, point to the role of epigenetic changes in disorders of neurodevelopment. Epigenetic phenomena are normal biological processes necessary for cell and thus human life, especially related to embryonic development. Different phenomena that affect epigenetic processes (changes that change operation or expression of a gene, without modifying the DNA structure) have also been shown to be important in the genesis of neurodevelopmental disorders. Alterations in the epigenetic mechanism may be reversible, which may explain the variation in the autism phenotype over time. Here we analyze the normal epigenetic mechanisms, autism spectrum disorders, their association with specific entities associated with altered epigenetic mechanisms, and possible therapeutic approaches targeting these alterations.

  1. Autism spectrum disorder profile in neurofibromatosis type I.

    Science.gov (United States)

    Garg, Shruti; Plasschaert, Ellen; Descheemaeker, Mie-Jef; Huson, Susan; Borghgraef, Martine; Vogels, Annick; Evans, D Gareth; Legius, Eric; Green, Jonathan

    2015-06-01

    Neurofibromatosis Type 1 (NF1) is a common autosomal dominant single-gene disorder, in which the co-occurrence of autism spectrum disorder (ASD) has attracted considerable research interest recently with prevalence estimates of 21-40%. However, detailed characterization of the ASD behavioral phenotype in NF1 is still lacking. This study characterized the phenotypic profile of ASD symptomatology presenting in 4-16 year old children with NF1 (n = 36) using evidence from parent-rated Social Responsiveness Scale and researcher autism diagnostic observation Scale-2. Compared to IQ-matched reference groups of children with autism and ASD, the NF1 profile shows overall similarity but improved eye contact, less repetitive behaviors and better language skills.

  2. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat

    Directory of Open Access Journals (Sweden)

    Anahit Nazari-Ghadikolaei

    2018-04-01

    Full Text Available The Markhoz goat provides an opportunity to study the genetics underlying coat color and mohair traits of an Angora type goat using genome-wide association studies (GWAS. This indigenous Iranian breed is valued for its quality mohair used in ceremonial garments and has the distinction of exhibiting an array of coat colors including black, brown, and white. Here, we performed 16 GWAS for different fleece (mohair traits and coat color in 228 Markhoz goats sampled from the Markhoz Goat Research Station in Sanandaj, Kurdistan province, located in western Iran using the Illumina Caprine 50K beadchip. The Efficient Mixed Model Linear analysis was used to identify genomic regions with potential candidate genes contributing to coat color and mohair characteristics while correcting for population structure. Significant associations to coat color were found within or near the ASIP, ITCH, AHCY, and RALY genes on chromosome 13 for black and brown coat color and the KIT and PDGFRA genes on chromosome 6 for white coat color. Individual mohair traits were analyzed for genetic association along with principal components that allowed for a broader perspective of combined traits reflecting overall mohair quality and volume. A multitude of markers demonstrated significant association to mohair traits highlighting potential candidate genes of POU1F1 on chromosome 1 for mohair quality, MREG on chromosome 2 for mohair volume, DUOX1 on chromosome 10 for yearling fleece weight, and ADGRV1 on chromosome 7 for grease percentage. Variation in allele frequencies and haplotypes were identified for coat color and differentiated common markers associated with both brown and black coat color. This demonstrates the potential for genetic markers to be used in future breeding programs to improve selection for coat color and mohair traits. Putative candidate genes, both novel and previously identified in other species or breeds, require further investigation to confirm phenotypic

  3. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    Science.gov (United States)

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  4. Fructan accumulation and transcription of candidate genes during cold acclimation in three varieties of Poa pratensis

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Andersen, Jeppe Reitan; Dionisio, Giuseppe

    2011-01-01

    Poa pratensis, a type species for the grass family (Poaceae), is an important cool season grass that accumulates fructans as a polysaccharide reserve. We studied fructan contents and expression of candidate fructan metabolism genes during cold acclimation in three varieties of P. pratensis adapted...... to different environments: Northern Norway, Denmark, and the Netherlands. Fructan content increased significantly during cold acclimation and varieties showed significant differences in the level of fructan accumulation. cDNA sequences of putative fructosyltransferase (FT), fructan exohydrolase (FEH), and cold...... acclimation protein (CAP) genes were identified and cloned. In agreement with a function in fructan biosynthesis, transcription of a putative sucrose:fructan 6-fructosyltransferase (Pp6-SFT) gene was induced during cold acclimation and fructan accumulation in all three P. pratensis varieties. Transcription...

  5. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Effect of some candidate genes on meat characteristics of three cattle breeds

    Directory of Open Access Journals (Sweden)

    Alessio Valentini

    2010-01-01

    Full Text Available With the aim to assess if some molecular markers can help to select animals for meat characteristics, we studied 84 individuals equally representing the Marchigiana, Maremmana, and Holstein Friesian cattle breeds genotyped at 288 SNPs located within candidate genes. Several SNPs were found associated with meat quality parameters but with P which was higher than the Bonferroni threshold. However, several SNPs had a low P at different times during meat maturation, suggesting their involvement in the meat quality variation. Of particular interest for the biological role and potential for selection were: cathepsin G affecting MFI, IGF1R affecting pH and collagen XVIII affecting colour.

  7. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    OpenAIRE

    Collins, Ann L.; Ma, Deqiong; Whitehead, Patrice L.; Martin, Eden R.; Wright, Harry H.; Abramson, Ruth K.; Hussman, John P.; Haines, Jonathan L.; Cuccaro, Michael L.; Gilbert, John R.; Pericak-Vance, Margaret A.

    2006-01-01

    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SN...

  8. The Association Study between Twenty One Polymorphisms in Seven Candidate Genes and Coronary Heart Diseases in Chinese Han Population.

    Directory of Open Access Journals (Sweden)

    Barrak F Alobeidy

    Full Text Available Previous genome-wide association studies (GWAS in multiple populations identified several genetic loci for coronary heart diseases (CHD. Here we utilized a 2-stage candidate gene association strategy in Chinese Han population to shed light on the putative association between several metabolic-related candidate genes and CHD. At the 1(st stage, 190 patients with CHD and 190 controls were genotyped through the MassARRAY platform. At the 2(nd stage, a larger sample including 400 patients and 392 controls was genotyped by the High Resolution Melt (HRM method to confirm or rule out the associations with CHD. MLXIP expression level was quantified by the real time PCR in 65 peripheral blood samples. From the 21 studied single nucleotide polymorphisms (SNPs of seven candidate genes: MLXIPL, MLXIP, MLX, ADIPOR1, VDR, SREBF1 and NR1H3, only one tag SNP rs4758685 (T→C was found to be statistically associated with CHD (P-value = 0.02, Odds ratio (OR of 0.83. After adjustment for the age, sex, lipid levels and diabetes, the association remained significant (P-value = 0.03. After adjustment for the hypertension, P-value became 0.20 although there was a significant difference in the allele distribution between the CHD patients with hypertension and the controls (P-value = 0.04, 406 vs 582. In conclusion, among the 21 tested SNPs, we identified a novel association between rs4758685 of MLXIP gene and CHD. The C allele of common variant rs4758685 interacted with hypertension, and was found to be protective against CHD in both allelic and genotypic models in Chinese Han population.

  9. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion.

    Science.gov (United States)

    Weaver, Cole A; Miller, Steven F; da Fontoura, Clarissa S G; Wehby, George L; Amendt, Brad A; Holton, Nathan E; Allareddy, Veeratrishul; Southard, Thomas E; Moreno Uribe, Lina M

    2017-03-01

    Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  10. Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk.

    Directory of Open Access Journals (Sweden)

    Montserrat García-Closas

    2007-02-01

    Full Text Available Common genetic variation could alter the risk for developing bladder cancer. We conducted a large-scale evaluation of single nucleotide polymorphisms (SNPs in candidate genes for cancer to identify common variants that influence bladder cancer risk. An Illumina GoldenGate assay was used to genotype 1,433 SNPs within or near 386 genes in 1,086 cases and 1,033 controls in Spain. The most significant finding was in the 5' UTR of VEGF (rs25648, p for likelihood ratio test, 2 degrees of freedom = 1 x 10(-5. To further investigate the region, we analyzed 29 additional SNPs in VEGF, selected to saturate the promoter and 5' UTR and to tag common genetic variation in this gene. Three additional SNPs in the promoter region (rs833052, rs1109324, and rs1547651 were associated with increased risk for bladder cancer: odds ratio (95% confidence interval: 2.52 (1.06-5.97, 2.74 (1.26-5.98, and 3.02 (1.36-6.63, respectively; and a polymorphism in intron 2 (rs3024994 was associated with reduced risk: 0.65 (0.46-0.91. Two of the promoter SNPs and the intron 2 SNP showed linkage disequilibrium with rs25648. Haplotype analyses revealed three blocks of linkage disequilibrium with significant associations for two blocks including the promoter and 5' UTR (global p = 0.02 and 0.009, respectively. These findings are biologically plausible since VEGF is critical in angiogenesis, which is important for tumor growth, its elevated expression in bladder tumors correlates with tumor progression, and specific 5' UTR haplotypes have been shown to influence promoter activity. Associations between bladder cancer risk and other genes in this report were not robust based on false discovery rate calculations. In conclusion, this large-scale evaluation of candidate cancer genes has identified common genetic variants in the regulatory regions of VEGF that could be associated with bladder cancer risk.

  11. Computational analysis of TRAPPC9: candidate gene for autosomal recessive non-syndromic mental retardation.

    Science.gov (United States)

    Khattak, Naureen Aslam; Mir, Asif

    2014-01-01

    Mental retardation (MR)/ intellectual disability (ID) is a neuro-developmental disorder characterized by a low intellectual quotient (IQ) and deficits in adaptive behavior related to everyday life tasks such as delayed language acquisition, social skills or self-help skills with onset before age 18. To date, a few genes (PRSS12, CRBN, CC2D1A, GRIK2, TUSC3, TRAPPC9, TECR, ST3GAL3, MED23, MAN1B1, NSUN1) for autosomal-recessive forms of non syndromic MR (NS-ARMR) have been identified and established in various families with ID. The recently reported candidate gene TRAPPC9 was selected for computational analysis to explore its potentially important role in pathology as it is the only gene for ID reported in more than five different familial cases worldwide. YASARA (12.4.1) was utilized to generate three dimensional structures of the candidate gene TRAPPC9. Hybrid structure prediction was employed. Crystal Structure of a Conserved Metalloprotein From Bacillus Cereus (3D19-C) was selected as best suitable template using position-specific iteration-BLAST. Template (3D19-C) parameters were based on E-value, Z-score and resolution and quality score of 0.32, -1.152, 2.30°A and 0.684 respectively. Model reliability showed 93.1% residues placed in the most favored region with 96.684 quality factor, and overall 0.20 G-factor (dihedrals 0.06 and covalent 0.39 respectively). Protein-Protein docking analysis demonstrated that TRAPPC9 showed strong interactions of the amino acid residues S(253), S(251), Y(256), G(243), D(131) with R(105), Q(425), W(226), N(255), S(233), its functional partner 1KBKB. Protein-protein interacting residues could facilitate the exploration of structural and functional outcomes of wild type and mutated TRAPCC9 protein. Actively involved residues can be used to elucidate the binding properties of the protein, and to develop drug therapy for NS-ARMR patients.

  12. Analysis of autism susceptibility gene loci on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q in Finnish multiplex families.

    Science.gov (United States)

    Auranen, M; Nieminen, T; Majuri, S; Vanhala, R; Peltonen, L; Järvelä, I

    2000-05-01

    The role of genetic factors in the etiology of the autistic spectrum of disorders has clearly been demonstrated. Ten chromosomal regions, on chromosomes 1p, 4p, 6q, 7q, 13q, 15q, 16p, 17q, 19q and 22q have potentially been linked to autism.1-8 We have analyzed these chromosomal regions in a total of 17 multiplex families with autism originating from the isolated Finnish population by pairwise linkage analysis and sib-pair analysis. Mild evidence for putative contribution was found only with the 1p chromosomal region in the susceptibility to autism. Our data suggest that additional gene loci exist for autism which will be detectable in and even restricted to the isolated Finnish population.

  13. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage.

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Zhang, Lili; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2018-04-01

    A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis. Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC 1 P1, BC 1 P2, F 2 , and F 2:3 populations derived from a cross between two inbred lines "195" (late-flowering) and "93219" (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F 2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F 2 and F 2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.

  14. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  15. Systematic reconstruction of autism biology from massive genetic mutation profiles.

    Science.gov (United States)

    Luo, Weijun; Zhang, Chaolin; Jiang, Yong-Hui; Brouwer, Cory R

    2018-04-01

    Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.

  16. Epigenetics in autism and other neurodevelopmental diseases.

    Science.gov (United States)

    Miyake, Kunio; Hirasawa, Takae; Koide, Tsuyoshi; Kubota, Takeo

    2012-01-01

    Autism was previously thought to be caused by environmental factors. However, genetic factors are now considered to be more contributory to the pathogenesis of autism, based on the recent findings of mutations in the genes which encode synaptic molecules associated with the communication between neurons. Epigenetic is a mechanism that controls gene expression without changing DNA sequence but by changing chromosomal histone modifications and its abnormality is associated with several neurodevelopmental diseases. Since epigenetic modifications are known to be affected by environmental factors such as nutrition, drugs and mental stress, autistic diseases are not only caused by congenital genetic defects, but may also be caused by environmental factors via epigenetic mechanism. In this chapter, we introduce autistic diseases caused by epigenetic failures and discuss epigenetic changes by environmental factors and discuss new treatments for neurodevelopmental diseases based on the recent epigenetic findings.

  17. A physical map of the heterozygous grapevine 'Cabernet Sauvignon' allows mapping candidate genes for disease resistance

    Directory of Open Access Journals (Sweden)

    Scalabrin Simone

    2008-06-01

    Full Text Available Abstract Background Whole-genome physical maps facilitate genome sequencing, sequence assembly, mapping of candidate genes, and the design of targeted genetic markers. An automated protocol was used to construct a Vitis vinifera 'Cabernet Sauvignon' physical map. The quality of the result was addressed with regard to the effect of high heterozygosity on the accuracy of contig assembly. Its usefulness for the genome-wide mapping of genes for disease resistance, which is an important trait for grapevine, was then assessed. Results The physical map included 29,727 BAC clones assembled into 1,770 contigs, spanning 715,684 kbp, and corresponding to 1.5-fold the genome size. Map inflation was due to high heterozygosity, which caused either the separation of allelic BACs in two different contigs, or local mis-assembly in contigs containing BACs from the two haplotypes. Genetic markers anchored 395 contigs or 255,476 kbp to chromosomes. The fully automated assembly and anchorage procedures were validated by BAC-by-BAC blast of the end sequences against the grape genome sequence, unveiling 7.3% of chimerical contigs. The distribution across the physical map of candidate genes for non-host and host resistance, and for defence signalling pathways was then studied. NBS-LRR and RLK genes for host resistance were found in 424 contigs, 133 of them (32% were assigned to chromosomes, on which they are mostly organised in clusters. Non-host and defence signalling genes were found in 99 contigs dispersed without a discernable pattern across the genome. Conclusion Despite some limitations that interfere with the correct assembly of heterozygous clones into contigs, the 'Cabernet Sauvignon' physical map is a useful and reliable intermediary step between a genetic map and the genome sequence. This tool was successfully exploited for a quick mapping of complex families of genes, and it strengthened previous clues of co-localisation of major NBS-LRR clusters and

  18. A part of patients with autism spectrum disorder has haploidy of HPC-1/syntaxin1A gene that possibly causes behavioral disturbance as in experimentally gene ablated mice.

    Science.gov (United States)

    Kofuji, Takefumi; Hayashi, Yuko; Fujiwara, Tomonori; Sanada, Masumi; Tamaru, Masao; Akagawa, Kimio

    2017-03-22

    Autism spectrum disorder (ASD) is highly heritable and encompasses a various set of neuropsychiatric disorders with a wide-ranging presentation. HPC-1/syntaxin1A (STX1A) encodes a neuronal plasma membrane protein that regulates the secretion of neurotransmitters and neuromodulators. STX1A gene ablated mice (null and heterozygote mutant) exhibit abnormal behavioral profiles similar to human autistic symptoms, accompanied by reduction of monoamine secretion. To determine whether copy number variation of STX1A gene and the change of its expression correlate with ASD as in STX1A gene ablated mice, we performed copy number assay and real-time quantitative RT-PCR using blood or saliva samples from ASD patients. We found that some ASD patients were haploid for the STX1A gene similar to STX1A heterozygote mutant mice. However, copy number of STX1A gene was normal in the parents and siblings of ASD patients with STX1A gene haploidy. In ASD patients with gene haploidy, STX1A mRNA expression was reduced to about half of their parents. Thus, a part of ASD patients had haploidy of STX1A gene and lower STX1A gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Small RNA and A-to-I Editing in Autism Spectrum Disorders

    Science.gov (United States)

    Eran, Alal

    One in every 88 children is diagnosed with Autism Spectrum Disorders (ASDs), a set of neurodevelopmental conditions characterized by social impairments, communication deficits, and repetitive behavior. ASDs have a substantial genetic component, but the specific cause of most cases remains unknown. Understanding gene-environment interactions underlying ASD is essential for improving early diagnosis and identifying critical targets for intervention and prevention. Towards this goal, we surveyed adenosine-to-inosine (A-to-I) RNA editing in autistic brains. A-to-I editing is an epigenetic mechanism that fine-tunes synaptic function in response to environmental stimuli, shown to modulate complex behavior in animals. We used ultradeep sequencing to quantify A-to-I receding of candidate synaptic genes in postmortem cerebella from individuals with ASD and neurotypical controls. We found unexpectedly wide distributions of human A-to-I editing levels, whose extremes were consistently populated by individuals with ASD. We correlated A-to-I editing with isoform usage, identified clusters of correlated sites, and examined differential editing patterns. Importantly, we found that individuals with ASD commonly use a dysfunctional form of the editing enzyme ADARB1. We next profiled small RNAs thought to regulate A-to-I editing, which originate from one of the most commonly altered loci in ASD, 15q11. Deep targeted sequencing of SNORD115 and SNORD116 transcripts enabled their high-resolution detection in human brains, and revealed a strong gender bias underlying their expression. The consistent 2-fold upregulation of 15q11 small RNAs in male vs. female cerebella could be important in delineating the role of this locus in ASD, a male dominant disorder. Overall, these studies provide an accurate population-level view of small RNA and A-to-I editing in human cerebella, and suggest that A-to-I editing of synaptic genes may be informative for assessing the epigenetic risk for autism

  20. Transcription status of vaccine candidate genes of Plasmodium falciparum during the hepatic phase of its life cycle.

    NARCIS (Netherlands)

    Bodescot, M.; Silvie, O.; Siau, A.; Refour, P.; Pino, P.; Franetich, J.F.; Hannoun, L.; Sauerwein, R.W.; Mazier, D.

    2004-01-01

    The CSP, EMP2/MESA, MSP2, MSP3, MSP5, RAP1, RAP2, RESA1, SERA1 and SSP2/TRAP genes of Plasmodium falciparum are vaccine candidates. The hepatic phase of the infection is of major interest due to the protection induced by immunization with radiation-attenuated sporozoites. We therefore performed

  1. Vitamin D receptor gene polymorphisms associated with childhood autism

    NARCIS (Netherlands)

    Ciéslińska, Anna; Kostyra, Elzbieta; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Fiedorowicz, Ewa; Teodorowicz, Gosia; Savelkoul, Huub F.J.

    2017-01-01

    Background: Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D3has an

  2. Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach.

    Science.gov (United States)

    Paal, Jürgen; Henselewski, Heike; Muth, Jost; Meksem, Khalid; Menéndez, Cristina M; Salamini, Francesco; Ballvora, Agim; Gebhardt, Christiane

    2004-04-01

    The endoparasitic root cyst nematode Globodera rostochiensis causes considerable damage in potato cultivation. In the past, major genes for nematode resistance have been introgressed from related potato species into cultivars. Elucidating the molecular basis of resistance will contribute to the understanding of nematode-plant interactions and assist in breeding nematode-resistant cultivars. The Gro1 resistance locus to G. rostochiensis on potato chromosome VII co-localized with a resistance-gene-like (RGL) DNA marker. This marker was used to isolate from genomic libraries 15 members of a closely related candidate gene family. Analysis of inheritance, linkage mapping, and sequencing reduced the number of candidate genes to three. Complementation analysis by stable potato transformation showed that the gene Gro1-4 conferred resistance to G. rostochiensis pathotype Ro1. Gro1-4 encodes a protein of 1136 amino acids that contains Toll-interleukin 1 receptor (TIR), nucleotide-binding (NB), leucine-rich repeat (LRR) homology domains and a C-terminal domain with unknown function. The deduced Gro1-4 protein differed by 29 amino acid changes from susceptible members of the Gro1 gene family. Sequence characterization of 13 members of the Gro1 gene family revealed putative regulatory elements and a variable microsatellite in the promoter region, insertion of a retrotransposon-like element in the first intron, and a stop codon in the NB coding region of some genes. Sequence analysis of RT-PCR products showed that Gro1-4 is expressed, among other members of the family including putative pseudogenes, in non-infected roots of nematode-resistant plants. RT-PCR also demonstrated that members of the Gro1 gene family are expressed in most potato tissues.

  3. Melatonin as a Novel Interventional Candidate for Fragile X Syndrome with Autism Spectrum Disorder in Humans

    Directory of Open Access Journals (Sweden)

    Jinyoung Won

    2017-06-01

    Full Text Available Fragile X syndrome (FXS is the most common monogenic form of autism spectrum disorder (ASD. FXS with ASD results from the loss of fragile X mental retardation (fmr gene products, including fragile X mental retardation protein (FMRP, which triggers a variety of physiological and behavioral abnormalities. This disorder is also correlated with clock components underlying behavioral circadian rhythms and, thus, a mutation of the fmr gene can result in disturbed sleep patterns and altered circadian rhythms. As a result, FXS with ASD individuals may experience dysregulation of melatonin synthesis and alterations in melatonin-dependent signaling pathways that can impair vigilance, learning, and memory abilities, and may be linked to autistic behaviors such as abnormal anxiety responses. Although a wide variety of possible causes, symptoms, and clinical features of ASD have been studied, the correlation between altered circadian rhythms and FXS with ASD has yet to be extensively investigated. Recent studies have highlighted the impact of melatonin on the nervous, immune, and metabolic systems and, even though the utilization of melatonin for sleep dysfunctions in ASD has been considered in clinical research, future studies should investigate its neuroprotective role during the developmental period in individuals with ASD. Thus, the present review focuses on the regulatory circuits involved in the dysregulation of melatonin and disruptions in the circadian system in individuals with FXS with ASD. Additionally, the neuroprotective effects of melatonin intervention therapies, including improvements in neuroplasticity and physical capabilities, are discussed and the molecular mechanisms underlying this disorder are reviewed. The authors suggest that melatonin may be a useful treatment for FXS with ASD in terms of alleviating the adverse effects of variations in the circadian rhythm.

  4. Melatonin as a Novel Interventional Candidate for Fragile X Syndrome with Autism Spectrum Disorder in Humans.

    Science.gov (United States)

    Won, Jinyoung; Jin, Yunho; Choi, Jeonghyun; Park, Sookyoung; Lee, Tae Ho; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2017-06-20

    Fragile X syndrome (FXS) is the most common monogenic form of autism spectrum disorder (ASD). FXS with ASD results from the loss of fragile X mental retardation ( fmr ) gene products, including fragile X mental retardation protein (FMRP), which triggers a variety of physiological and behavioral abnormalities. This disorder is also correlated with clock components underlying behavioral circadian rhythms and, thus, a mutation of the fmr gene can result in disturbed sleep patterns and altered circadian rhythms. As a result, FXS with ASD individuals may experience dysregulation of melatonin synthesis and alterations in melatonin-dependent signaling pathways that can impair vigilance, learning, and memory abilities, and may be linked to autistic behaviors such as abnormal anxiety responses. Although a wide variety of possible causes, symptoms, and clinical features of ASD have been studied, the correlation between altered circadian rhythms and FXS with ASD has yet to be extensively investigated. Recent studies have highlighted the impact of melatonin on the nervous, immune, and metabolic systems and, even though the utilization of melatonin for sleep dysfunctions in ASD has been considered in clinical research, future studies should investigate its neuroprotective role during the developmental period in individuals with ASD. Thus, the present review focuses on the regulatory circuits involved in the dysregulation of melatonin and disruptions in the circadian system in individuals with FXS with ASD. Additionally, the neuroprotective effects of melatonin intervention therapies, including improvements in neuroplasticity and physical capabilities, are discussed and the molecular mechanisms underlying this disorder are reviewed. The authors suggest that melatonin may be a useful treatment for FXS with ASD in terms of alleviating the adverse effects of variations in the circadian rhythm.

  5. Construction of an American mink Bacterial Artificial Chromosome (BAC library and sequencing candidate genes important for the fur industry

    Directory of Open Access Journals (Sweden)

    Christensen Knud

    2011-07-01

    Full Text Available Abstract Background Bacterial artificial chromosome (BAC libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. Results Here, we report the construction and characterization of the CHORI-231 BAC library constructed from a Danish-farmed, male American mink (Neovison vison. The library contains approximately 165,888 clones with an average insert size of 170 kb, representing approximately 10-fold coverage. High-density filters, each consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs, representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library. These included candidate genes for coat coloring, hair growth and length, coarseness, and some receptors potentially involved in viral diseases in mink. The extensive screening yielded positive results for 19 of these genes. Thirty-five clones corresponding to 19 genes were sequenced using 454 Roche, and large contigs (184 kb in average were assembled. Knowing the complete sequences of these candidate genes will enable confirmation of the association with a phenotype and the finding of causative mutations for the targeted phenotypes. Additionally, 1577 BAC clones were end sequenced; 2505 BAC end sequences (80% of BACs were obtained. An excess of 2 Mb has been analyzed, thus giving a snapshot of the mink genome. Conclusions The availability of the CHORI-321 American mink BAC library will aid in identification of genes and genomic regions of interest. We have demonstrated how the library can be used to identify specific genes of interest, develop genetic markers, and for BAC end sequencing and deep sequencing of selected clones. To our knowledge, this is the

  6. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    Science.gov (United States)

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  7. Association of dopamine gene variants, emotion dysregulation and ADHD in autism spectrum disorder.

    Science.gov (United States)

    Gadow, Kenneth D; Pinsonneault, Julia K; Perlman, Greg; Sadee, Wolfgang

    2014-07-01

    The aim of the present study was to evaluate the association of dopaminergic gene variants with emotion dysregulation (EMD) and attention-deficit/hyperactivity disorder (ADHD) symptoms in children with autism spectrum disorder (ASD). Three dopamine transporter gene (SLC6A3/DAT1) polymorphisms (intron8 5/6 VNTR, 3'-UTR 9/10 VNTR, rs27072 in the 3'-UTR) and one dopamine D2 receptor gene (DRD2) variant (rs2283265) were selected for genotyping based on à priori evidence of regulatory activity or, in the case of DAT1 9/10 VNTR, commonly reported associations with ADHD. A sample of 110 children with ASD was assessed with a rigorously validated DSM-IV-referenced rating scale. Global EMD severity (parents' ratings) was associated with DAT1 intron8 (ηp(2)=.063) and rs2283265 (ηp(2)=.044). Findings for DAT1 intron8 were also significant for two EMD subscales, generalized anxiety (ηp(2)=.065) and depression (ηp(2)=.059), and for DRD2 rs2283265, depression (ηp(2)=.053). DRD2 rs2283265 was associated with teachers' global ratings of ADHD (ηp(2)=.052). DAT1 intron8 was associated with parent-rated hyperactivity (ηp(2)=.045) and both DAT1 9/10 VNTR (ηp(2)=.105) and DRD2 rs2283265 (ηp(2)=.069) were associated with teacher-rated inattention. These findings suggest that dopaminergic gene polymorphisms may modulate EMD and ADHD symptoms in children with ASD but require replication with larger independent samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage

    2014-01-01

    Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biol...... revealed key genes and genetic variants that control feed efficiency that could potentially be useful for genetic selection of more feed efficient pigs....

  9. Autism, fever, epigenetics and the locus coeruleus.

    Science.gov (United States)

    Mehler, Mark F; Purpura, Dominick P

    2009-03-01

    Some children with autism spectrum disorders (ASD) exhibit improved behaviors and enhanced communication during febrile episodes. We hypothesize that febrigenesis and the behavioral-state changes associated with fever in autism depend upon selective normalization of key components of a functionally impaired locus coeruleus-noradrenergic (LC-NA) system. We posit that autistic behaviors result from developmental dysregulation of LC-NA system specification and neural network deployment and modulation linked to the core behavioral features of autism. Fever transiently restores the modulatory functions of the LC-NA system and ameliorates autistic behaviors. Fever-induced reversibility of autism suggests preserved functional integrity of widespread neural networks subserving the LC-NA system and specifically the subsystems involved in mediating the cognitive and behavioral repertoires compromised in ASD. Alterations of complex gene-environmental interactions and associated epigenetic mechanisms during seminal developmental critical periods are viewed as instrumental in LC-NA dysregulation as emphasized by the timing and severity of prenatal maternal stressors on autism prevalence. Our hypothesis has implications for a rational approach to further interrogate the interdisciplinary etiology of ASD and for designing novel biological detection systems and therapeutic agents that target the LC-NA system's diverse network of pre- and postsynaptic receptors, intracellular signaling pathways and dynamic epigenetic remodeling processes involved in their regulation and functional plasticity.

  10. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  11. [The neurobiology of autism].

    Science.gov (United States)

    Kotsopoulos, S

    2007-07-01

    The research effort on autism has for several years been intensive. Recent progress in this field is due mainly to the development of increasingly sophisticated visualizing assessment methods of the brain. Most of the evidence reported in this review requires further replication and elaboration by ongoing research. Evidence from volumetric studies indicates that the brain of the child with autism deviates from normal paths at the early stages of development showing excessive growth during the first year and a half involving the hemispheres and the cerebellum. Post mortem studies have shown neuron abnormalities in the frontal and temporal cortex and the cerebellum. Studies using diffusion tensor imaging, an fMRI based method, have shown disruptions between white and grey matter in several areas of the hemispheres. Other studies investigating activation of the cortex showed lack of synchrony and coordination between anterior and posterior areas of the hemispheres. It has been suggested that the deviation in brain development in autism consists of excessive numbers of neurons which cause the cytoarchitectural deviation. A theory suggesting that the basic deficit in autism is due to dysfunction of the "mirror neuron system" requires further substantiation. The aetiology of autism is not known although risk factors have been identified. Predominant among them are genetic influences. The search is currently intensive for an understanding of the pathogenesis of the pathological deviation in the development of the brain in autism. Neurotrophic factors which determine the developmental steps of the brain are examined such as serotonin, brain-derived neurotrophic factor (BDNF), the neuropeptide reelin, neuroligines and others. There is evidence of some involvement of these factors with autism but it is still far from clear how they do interact with one another and how they lead to the pathological deviations observed in autism. The neurotrophic factors are evidently coded by

  12. Refinement of the NHS locus on chromosome Xp22.13 and analysis of five candidate genes.

    Science.gov (United States)

    Toutain, Annick; Dessay, Benoît; Ronce, Nathalie; Ferrante, Maria-Immacolata; Tranchemontagne, Julie; Newbury-Ecob, Ruth; Wallgren-Pettersson, Carina; Burn, John; Kaplan, Josseline; Rossi, Annick; Russo, Silvia; Walpole, Ian; Hartsfield, James K; Oyen, Nina; Nemeth, Andrea; Bitoun, Pierre; Trump, Dorothy; Moraine, Claude; Franco, Brunella

    2002-09-01

    Nance-Horan syndrome (NHS) is an X-linked condition characterised by congenital cataracts, dental abnormalities, dysmorphic features, and mental retardation in some cases. Previous studies have mapped the disease gene to a 2 cM interval on Xp22.2 between DXS43 and DXS999. We report additional linkage data resulting from the analysis of eleven independent NHS families. A maximum lod score of 9.94 (theta=0.00) was obtained at the RS1 locus and a recombination with locus DXS1195 on the telomeric side was observed in two families, thus refining the location of the gene to an interval of around 1 Mb on Xp22.13. Direct sequencing or SSCP analysis of the coding exons of five genes (SCML1, SCML2, STK9, RS1 and PPEF1), considered as candidate genes on the basis of their location in the critical interval, failed to detect any mutation in 12 unrelated NHS patients, thus making it highly unlikely that these genes are implicated in NHS.

  13. Autism and genetics: Clinical approach and association study with two markers of HRAS gene

    Energy Technology Data Exchange (ETDEWEB)

    Herault, J.; Petit, E.; Cherpi, C. [Laboratoire de Biochimie Medicale, Tours (France)] [and others

    1995-08-14

    Twin studies and familial aggregation studies indicate that genetic factors could play a role in infantile autism. In an earlier study, we identified a possible positive association between autism and a c-Harvey-ras (HRAS) oncogene marker at the 3{prime} end of the coding region. In an attempt to confirm this finding, we studied a larger population, well-characterized clinically and genetically. We report a positive association between autism and two HRAS markers, the 3{prime} marker used in the initial study and an additional marker in exon 1. 46 refs., 1 fig., 2 tabs.

  14. Development of a versatile enrichment analysis tool reveals associations between the maternal brain and mental health disorders, including autism

    Science.gov (United States)

    2013-01-01

    Background A recent study of lateral septum (LS) suggested a large number of autism-related genes with altered expression in the postpartum state. However, formally testing the findings for enrichment of autism-associated genes proved to be problematic with existing software. Many gene-disease association databases have been curated which are not currently incorporated in popular, full-featured enrichment tools, and the use of custom gene lists in these programs can be difficult to perform and interpret. As a simple alternative, we have developed the Modular Single-set Enrichment Test (MSET), a minimal tool that enables one to easily evaluate expression data for enrichment of any conceivable gene list of interest. Results The MSET approach was validated by testing several publicly available expression data sets for expected enrichment in areas of autism, attention deficit hyperactivity disorder (ADHD), and arthritis. Using nine independent, unique autism gene lists extracted from association databases and two recent publications, a striking consensus of enrichment was detected within gene expression changes in LS of postpartum mice. A network of 160 autism-related genes was identified, representing developmental processes such as synaptic plasticity, neuronal morphogenesis, and differentiation. Additionally, maternal LS displayed enrichment for genes associated with bipolar disorder, schizophrenia, ADHD, and depression. Conclusions The transition to motherhood includes the most fundamental social bonding event in mammals and features naturally occurring changes in sociability. Some individuals with autism, schizophrenia, or other mental health disorders exhibit impaired social traits. Genes involved in these deficits may also contribute to elevated sociability in the maternal brain. To date, this is the first study to show a significant, quantitative link between the maternal brain and mental health disorders using large scale gene expression data. Thus, the

  15. The Gestalt of functioning in autism spectrum disorder: Results of the international conference to develop final consensus International Classification of Functioning, Disability and Health core sets.

    Science.gov (United States)

    Bölte, Sven; Mahdi, Soheil; de Vries, Petrus J; Granlund, Mats; Robison, John E; Shulman, Cory; Swedo, Susan; Tonge, Bruce; Wong, Virginia; Zwaigenbaum, Lonnie; Segerer, Wolfgang; Selb, Melissa

    2018-01-01

    Autism spectrum disorder is associated with diverse social, educational, and occupational challenges. To date, no standardized, internationally accepted tools exist to assess autism spectrum disorder-related functioning. World Health Organization's International Classification of Functioning, Disability and Health can serve as foundation for developing such tools. This study aimed to identify a comprehensive, a common brief, and three age-appropriate brief autism spectrum disorder Core Sets. Four international preparatory studies yielded in total 164 second-level International Classification of Functioning, Disability and Health candidate categories. Based on this evidence, 20 international autism spectrum disorder experts applied an established iterative decision-making consensus process to select from the candidate categories the most relevant ones to constitute the autism spectrum disorder Core Sets. The consensus process generated 111 second-level International Classification of Functioning, Disability and Health categories in the Comprehensive Core Set for autism spectrum disorder-one body structure, 20 body functions, 59 activities and participation categories, and 31 environmental factors. The Common Brief Core Set comprised 60 categories, while the age-appropriate core sets included 73 categories in the preschool version (0- to 5-year-old children), 81 in the school-age version (6- to 16-year-old children and adolescents), and 79 in the older adolescent and adult version (⩾17-year-old individuals). The autism spectrum disorder Core Sets mark a milestone toward the standardized assessment of autism spectrum disorder-related functioning in educational, administrative, clinical, and research settings.

  16. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.

    Directory of Open Access Journals (Sweden)

    Carole Bougault

    Full Text Available Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK pathways and Smad2/3 (members of the canonical transforming growth factor (TGF-β pathways. A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how

  17. Autism Society

    Science.gov (United States)

    ... Español Improving the lives of all affected by autism. The Autism Society is the nation's leading grassroots ... more Improving the lives of all affected by autism. The Autism Society is the nation's leading grassroots ...

  18. Association between SNPs within candidate genes and compounds related to boar taint and reproduction

    DEFF Research Database (Denmark)

    Moe, Maren; Lien, Sigbjørn; Aasmundstad, Torunn

    2009-01-01

    BACKGROUND: Boar taint is an unpleasant odour and flavour of the meat from some uncastrated male pigs primarily caused by elevated levels of androstenone and skatole in adipose tissue. Androstenone is produced in the same biochemical pathway as testosterone and estrogens, which represents...... of this study was to detect SNPs in boar taint candidate genes and to perform association studies for both single SNPs and haplotypes with levels of boar taint compounds and phenotypes related to reproduction. RESULTS: An association study involving 275 SNPs in 121 genes and compounds related to boar taint...... and reproduction were carried out in Duroc and Norwegian Landrace boars. Phenotypes investigated were levels of androstenone, skatole and indole in adipose tissue, levels of androstenone, testosterone, estrone sulphate and 17beta-estradiol in plasma, and length of bulbo urethralis gland. The SNPs were genotyped...

  19. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer.

    Directory of Open Access Journals (Sweden)

    Sofie Claerhout

    Full Text Available Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future.Using microarray technology, we generated a gene expression profile of human gastric cancer-specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institute's Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern.We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.

  20. Developing Potential Candidates of Preclinical Preeclampsia

    Directory of Open Access Journals (Sweden)

    Sandra Founds

    2015-11-01

    Full Text Available The potential for developing molecules of interest in preclinical preeclampsia from candidate genes that were discovered on gene expression microarray analysis has been challenged by limited access to additional first trimester trophoblast and decidual tissues. The question of whether these candidates encode secreted proteins that may be detected in maternal circulation early in pregnancy has been investigated using various proteomic methods. Pilot studies utilizing mass spectrometry based proteomic assays, along with enzyme linked immunosorbent assays (ELISAs, and Western immunoblotting in first trimester samples are reported. The novel targeted mass spectrometry methods led to robust multiple reaction monitoring assays. Despite detection of several candidates in early gestation, challenges persist. Future antibody-based studies may lead to a novel multiplex protein panel for screening or detection to prevent or mitigate preeclampsia.