WorldWideScience

Sample records for austenitic light water

  1. Mechanism of fatigue crack initiation in austenitic stainless steels in light water reactor environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.; Muscara, J.

    2003-01-01

    This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. The results indicate that the fatigue lives of these steels are decreased primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. The fracture morphology in the specimens has been characterized. Exploratory fatigue tests were conducted to study the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation. (author)

  2. Degradation of austenitic stainless steel (SS) light water ractor (LWR) core internals due to neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Appajosula S., E-mail: Appajosula.Rao@nrc.gov

    2014-04-01

    Austenitic stainless steels (SSs) are extensively being used in the fabrication of light water reactor (LWR) core internal components. It is because these steels have relatively high ductility, fracture toughness and moderate strength. However, the LWR internal components exposure to neutron irradiation over an extended period of plant operation degrades the materials mechanical properties such as the fracture toughness. This paper summarizes some of the results of the existing open literature data on irradiation assisted stress corrosion cracking (IASCC) of 316 CW steels that have been published by the United States Nuclear Regulatory Commission (USNRC), industry, academia, and other research agencies.

  3. Modeling of Microstructure Evolution in Austenitic Stainless Steels Irradiated Under Light Water Reactor Conditions

    International Nuclear Information System (INIS)

    Gan, J.; Stoller, R.E.; Was, G.S.

    1998-01-01

    A model for the development of microstructure during irradiation in fast reactors has been adapted for light water reactor (LWR) irradiation conditions (275 approximately 325 C, up to approximately10 dpa). The original model was based on the rate-theory, and included descriptions of the evolution of both dislocation loops and cavities. The model was modified by introducing in-cascade interstitial clustering, a term to account for the dose dependence of this clustering, and mobility of interstitial clusters. The purpose of this work was to understand microstructural development under LWR irradiation with a focus on loop nucleation and saturation of loop density. It was demonstrated that in-cascade interstitial clustering dominates loop nucleation in neutron irradiation in LWRS. Furthermore it was shown that the dose dependence of in-cascade interstitial clustering is needed to account for saturation behavior as commonly observed. Both quasi-steady-state (QSS) and non-steady-state (NSS) solutions to the rate equations were obtained. The difference between QSS and NSS treatments in the calculation of defect concentration is reduced at LWR temperature when in-cascade interstitial clustering dominates loop nucleation. The mobility of interstitial clusters was also investigated and its impact on loop density is to reduce the nucleation term. The ultimate goal of this study is to combine the evolution of microstructure and microchemistry together to account for the radiation damage in austenitic stainless steels

  4. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira; Giovedi, Claudia

    2015-01-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  5. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  6. Corrosion fatigue initiation and short crack growth behaviour of austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Leber, H.J.

    2012-01-01

    Highlights: ► Corrosion fatigue in austenitic stainless steels under light water reactor conditions. ► Identification of major parameters of influence on initiation and short crack growth. ► Critical system conditions for environmental reduction of fatigue initiation life. ► Comparison with the environmental factor (F env ) approach. - Abstract: The corrosion fatigue initiation and short crack growth behaviour of different wrought low-carbon and stabilised austenitic stainless steels was characterised under simulated boiling water reactor and pressurised water reactor primary water conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. The special emphasis was placed to the behaviour at low corrosion potentials and, in particular, to hydrogen water chemistry conditions. The major parameter effects and critical conjoint threshold conditions, which result in relevant environmental reduction and acceleration of fatigue initiation life and subsequent short crack growth, respectively, are discussed and summarised. The observed corrosion fatigue behaviour is compared with the fatigue evaluation procedures in codes and regulatory guidelines.

  7. Environmental-assisted fatigue in austenitic stainless steels under light water reactor conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.; Spaetig, P.

    2015-01-01

    The environmental-assisted fatigue (EAF) initiation and subsequent short crack growth behaviour of different austenitic stainless steels were characterised under simulated BWR/HWC and primary PWR conditions by cyclic fatigue tests with sharply notched fracture mechanics specimens. After a brief summary overview on the previous PSI observations, an update with new and preliminary results about the effect of pH, dissolved hydrogen, load ratio/mean stress, long static load hold times and load sequences is given in this paper. At low electrochemical corrosion potentials (ECP), the physical EAF initiation life moderately decreases with increasing dissolved hydrogen content and decreasing pH. Both parameters have little effect on the subsequent short EAF crack growth within the investigated range. Notch strain amplitude thresholds for environmental effects on physical EAF crack initiation decrease with increasing load ratio and mean stress. At small notch strain amplitudes, the effect of mean stress is more pronounced in BWR/HWC environment than in air and predicted by typical fatigue life mean stress corrections. Under certain loading conditions, long static load hold times result in an increase of the physical EAF initiation life, which saturates for very long hold times. On the other hand, little effect of hold times on subsequent stationary short EAF crack growth rates is observed. The physical EAF initiation life under load sequence loading in high-temperature water may be moderately shorter or significantly longer than predicted by a linear damage accumulation rule and corresponding constant load amplitude tests depending on the load history. (authors)

  8. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  9. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    International Nuclear Information System (INIS)

    Seifert, H.-P.; Ritter, S.

    2009-03-01

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  10. Applying Ultrasonic Phased Array Technology to Examine Austenitic Coarse-Grained Structures for Light Water Reactor Piping

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2003-01-01

    Pacific Northwest Laboratory is evaluating the capabilities and limitations of phased array (PA) technology to detect service-type flaws in coarse-grained austenitic piping structures. The work is being sponsored by the U.S. Nuclear Regulatory Commission, Office of Research. This paper presents initial work involving the use of PA technology to determine the effectiveness of detecting and accurately characterizing flaws on the far-side of austenitic piping welds

  11. Comparison of high temperature steam oxidation behavior of Zircaloy-4 versus austenitic and ferritic steels under light water reactor safety aspects

    International Nuclear Information System (INIS)

    Leistikow, S.; Schanz, G.; Zurek, Z.

    1985-12-01

    A comparative study of the oxidation behavior of Zy-4 versus steel No. 1.4914 and steel No. 1.4970 was performed in high temperature steam. Reactor typical tube sections of all three materials were exposed on both sides to superheated steam at temperatures ranging from 600 to 1300 0 C for up to 6 h. The specimens were evaluated by gravimetry, metallography, and other methods. The results are presented in terms of weight gain, corresponding metal (wall) penetration and consumption as function of time and temperature. Concerning the corrosion resistance the ranking position of Zy-4 was between the austenitic and the ferritic steel. Because of the chosen wall dimensions Zy-4 and the austenitic steel behaved similarly in that the faster oxidation of the thicker Zy-4 cladding consumed the total wall thickness in a time equivalent to the slower oxidation of the thinner austenitic steel cladding. The ferritic steel cladding however was faster consumed because of the lower oxidation resistance and the thinner wall thickness compared to the austenitic steel. So besides oxide scale formation, oxygen diffusion into the bulk of the metal forming various oxygen-containing phases were evaluated - also in respect to their influence on mechanical cladding properties and the dimensional changes. (orig./HP) [de

  12. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  13. Fatigue crack growth threshold of austenitic stainless steels in simulated PWR primary water

    International Nuclear Information System (INIS)

    Tsutsumi, Kazuya; Yamamoto, Kenji; Nitta, Yoshikazu

    2007-01-01

    Many studies have revealed that fatigue crack growth (FCG) rate of austenitic stainless steels is accelerated in light water reactor environment compared to that in air at room temperature. Major driving factors in the acceleration of FCG rate are stress ratio, temperature and stress rise time. Based on this knowledge, FCG curves have been developed considering these factors as parameters. However, there are few data of FCG threshold ΔK th in light water reactor environment. Hence it is necessary to clarify FCG rate under near-threshold condition for more accurate evaluation of fatigue crack growth behavior under cyclic stress with relatively low ΔK. In the present study, therefore, ΔK th was determined for austenitic stainless steels in simulated PWR primary water, and FCG behavior under near-threshold condition was revealed by collecting fatigue crack propagation data. The results are summarized as follows: No propagation of fatigue crack was found in high temperature water, and there was a definite ΔK th . Average ΔK eff,th was 4.3 MPa·m 0.5 at 325degC, 3.3 MPa·m 0.5 at 100degC, and there was no considerable reduction compared to currently known ΔK eff,th in air. Thus, it was revealed tha ambient conditions had minimal effect, on ΔK eff,th , ΔK th increases with increasing temperature and decreasing frequency. As a result of fracture surface observation, oxide-induced-crack-closure was considered to be a cause of the dependency described above. In addition, it was suggested that changes in material properties also had influence on ΔK th, since ΔK eff,th itself increased at elevated temperature. (author)

  14. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    International Nuclear Information System (INIS)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X.; Zheng, W.; Guzonas, D.A.

    2012-01-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500 o C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  15. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    International Nuclear Information System (INIS)

    Fix, D.; Estill, J.; Wong, L.; Rebak, R.

    2004-01-01

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water

  16. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions

    International Nuclear Information System (INIS)

    Novotny, R.; Haehner, P.; Ripplinger, S.; Siegl, J.; Penttilae, Sami; Toivonen, Aki

    2009-01-01

    Within the 6th Framework Program HPLWR-2 project (High Performance Light Water Reactor - Phase 2), stress corrosion cracking (SCC) susceptibilities of selected austenitic stainless steels, 316L and 316NG, were studied in supercritical water (SCW) with the aim to identify and describe the specific failure mechanisms prevailing during slow strain-rate tensile (SSRT) tests in ultra-pure demineralised SCW water solution. The SSRT tests were performed using a step-motor controlled loading device in an autoclave at 350 deg. C, 500 deg. C and 550 deg. C. Besides water temperature, the pressure, the oxygen content and the strain rate (resp. crosshead speed) were varied in the series of tests. The specimens SSRT tested to failure were subjected to fractographic analysis, in order to characterise the failure mechanisms. The fractography confirmed that failure was due to a combination of transgranular SCC and transgranular ductile fracture. The share of SCC and ductile fracture in the failure process of individual specimens was affected by the parameters of the SSRT tests, so that the environmental influence on SCC susceptibility could be assessed, in particular, the SCC sensitising effects of increasing oxygen content, decreasing strain rate and increasing test temperature. (author)

  17. Oxidization and stress corrosion cracking initiation of austenitic alloys in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Li, M.; Luo, J.L.; Chen, W.X. [Univ. of Alberta, Dept. of Chemical and Materials Engineering, Edmonton, Alberta (Canada); Zheng, W. [Materials Technology Laboratory, NRCan, Ottawa, Ontario (Canada); Guzonas, D.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    This study determined the stress corrosion cracking behaviour of austenitic alloys in pure supercritical water. Austenitic stainless steels 310S, 316L, and Inconel 625 were tested as static capsule samples at 500{sup o}C for up to 5000 h. After that period, crack initiations were readily observed in all samples, signifying susceptibility to stress corrosion cracking. The microcracks in 316L stainless steel and Inconel 625 were almost intergranular, whereas transgranular microcrack initiation was observed in 310S stainless steel. (author)

  18. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  19. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  20. Effect of light impurities on the early stage of swelling in austenitic stainless steel

    International Nuclear Information System (INIS)

    Igata, N.

    1998-01-01

    The objective of this study is to analyse the early stage of swelling and clarify the role of light impurities (nitrogen) in swelling of austenitic stainless steel. Recent results show that light impurities affect the swelling of 316 stainless steel under HVEM irradiation up to 10 dpa. At low concentration of light impurities the radiation swelling increases then decreases through the maximum as the concentration of light impurities increases. In the present paper the theoretical model is presented for the explanation of this effect. The model is based on the two factors: the influence of absorbed impurities on the voids caused by the production of an additional gas pressure in voids for their stabilization and the effect of impurities segregated around the surface of voids by the lowering of surface tension. These two affects are taken into account in the calculations of the critical size and the growth rate of cavities. The theoretical predictions on the radiation swelling rate dependent on the impurity concentration and temperature coincided with the experimental results on 316 stainless steel irradiated by HVEM. (orig.)

  1. Pitting corrosion in austenitic stainless steel water tanks of hotel trains

    International Nuclear Information System (INIS)

    Moreno, D. A.; Garcia, A. M.; Ranninger, C.; Molina, B.

    2011-01-01

    The water storage tanks of hotel trains suffered pitting corrosion. To identify the cause, the tanks were subjected to a detailed metallographic study and the chemical composition of the austenitic stainless steels used in their construction was determined. Both the tank water and the corrosion products were further examined by physicochemical and microbiological testing. Corrosion was shown to be related to an incompatibility between the chloride content of the water and the base and filler metals of the tanks. These findings formed the basis of recommendations aimed at the prevention and control of corrosion in such tanks. (Author) 18 refs.

  2. Environmentally assisted cracking in Light Water Reactors

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.; Ruther, W.E.; Kassner, T.F.; Michaud, W.F.; Park, J.Y.; Sanecki, J.E.; Shack, W.J.

    1993-09-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1992 to March 1993. Fatigue and EAC of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (1) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels. (2) EAC of cast stainless steels (SSs), (3) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence, and (4) EAC of low-alloy steels. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions and chromium-nickel-plated A533-Gr B steel in simulated boiling-water reactor (BWR) water at 289 degrees C. The data were compared with predictions based on crack growth correlations for ferritic steels in oxygenated water and correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy

  3. Light water lattices

    International Nuclear Information System (INIS)

    1962-01-01

    The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs

  4. Light water detritiation

    Energy Technology Data Exchange (ETDEWEB)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V. [B.P. Konstantinov Petersburg Nuclear Physics Institute of National Research Centre ' Kurchatov Institute' , Gatchina (Russian Federation)

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the

  5. Light water detritiation

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.; Vasyanina, T.V.

    2015-01-01

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWH process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m 3 /day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m 3 ), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot tower

  6. Influence of deformation on SCC susceptibility of austenitic stainless steel in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Kaneshima, Yoshiari; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Slow strain rate tests (SSRT) were carried out to evaluate the SCC susceptibility of four types of austenitic stainless steels (SUS304, SUS316, SUS304L and SUS316L) in PWR primary water. The influence of deformation on SCC susceptibility of SUS316 was studied. All types of stainless steel were susceptible to SCC, and the SCC susceptibility varied depending on the steel type. The comparison of the SSRT results and tensile test in air based on the reduction of area measurement showed that the SCC susceptibility increased with increasing the degree of deformation. For explaining the influence of deformation on SCC susceptibility, it is necessary to evaluate both intergranular and transgranular fractures. (author)

  7. Environment sensitive cracking in light water reactor pressure boundary materials

    International Nuclear Information System (INIS)

    Haenninen, H.; Aho-Mantila, I.

    1985-01-01

    The purpose of the paper is to review the available methods and the most promising future possibilities of preventive maintenance to counteract the various forms of environment sensitive cracking of pressure boundary materials in light water reactors. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strenght Ni-base alloys, as well as on corrosion fatigue of low alloy and stainless steels. Finally, some general ideas how to predict, reduce or eliminate environment sensitive cracking in service are presented

  8. Properties of light water reactor spent fuel cladding. Interim report

    International Nuclear Information System (INIS)

    Farwick, D.G.; Moen, R.A.

    1979-08-01

    The Commercial Waste and Spent Fuel Packaging Program will provide containment packages for the safe storage or disposal of spent Light Water Reactor (LWR) fuel. Maintaining containment of radionuclides during transportation, handling, processing and storage is essential, so the best understanding of the properties of the materials to be stored is necessary. This report provides data collection, assessment and recommendations for spent LWR fuel cladding materials properties. Major emphasis is placed on mechanical properties of the zircaloys and austenitic stainless steels. Limited information on elastic constants, physical properties, and anticipated corrosion behavior is also provided. Work is in progress to revise these evaluations as the program proceeds

  9. The corrosion of austenitic steel in flowing high-temperature water

    International Nuclear Information System (INIS)

    Asmundis, C. de; Weisgerber, P.; Mazzocchi, N.; Plog, C.

    1981-01-01

    This work represents an attempt to obtain data on the corrosion product formation, including corrosion products which are released to the water, of austenitic steel. AISI 316 or DIN Werkstoff No. 14401. The oxidation experiments were carried out in a small laboratory test loop, which was designed for this study. In the stainless water system considered during an oxidation time of 1800 h at 300 0 C, five zones of differing composition developed. 1. The base metal (for comparison) Fe/Cr/Ni = 67/20/13. 2. The metal at the metal/oxide interface nickel enriched, chromium and iron decreased Fe/Cr/Ni = 64/19/17. 3. The inner oxide chromium enriched and iron and nickel decreased Fe/Cr/Ni = 53/32/14. 4. The outer oxide iron enriched, chromium decreased Fe/Cr/Ni = 70/17/13. 5. The corrosion products released to the water, in total, i.e. particulate and dispersed matter, a Fe/Cr/Ni ratio rather close to that base metal: Fe/Cr/Ni = 68/19/13. (80% particulate: Fe/Cr/Ni = 72/23/5, 20% dispersed: Fe/Cr/Ni = 55/1/44)

  10. Stress corrosion cracking of austenitic stainless steel in high temperature and high pressure water

    International Nuclear Information System (INIS)

    Uragami, Ken

    1977-01-01

    Austenitic stainless steels used in for equipment in chemical plants have failed owing to stress corrosion cracking (SCC). These failures brought about great problems in some cases. The failures were caused by chloride, sulfide and alkali solution environment, in particular, by chloride solution environment. It was known that SCC was caused not only by high content chloride solution such as 42% MgCl 2 solution but also by high temperature water containing Cl - ions as NaCl. In order to estimate quantitatively the effects of some factors on SCC in high temperature water environment, the effects of Cl - ion contents, oxygen partial pressure (increasing in proportion to dissolved oxygen), pH and temperature were investigated. Moreover SCC sensitivity owing to the difference of materials and heat treatments was also investigated. The experimental results obtained are summarized as follows: (1) Regarding the effect of contaminant Cl - ions in proportion as Cl - ion contents increased, the material life extremely decreased owing to SCC. The tendency of decreasing was affected by the level of oxygen partial pressure. (2) Three regions of SCC sensitivity existed and they depended upon oxygen partial pressure. These were a region that did not show SCC sensitivity, a region of the highest SCC sensitivity and a region of somewhat lower SCC sensitivity. (3) In the case of SUS304 steel and 500 ppm Cl - ion contents SCC did not occur at 150 0 C, but it occurred and caused failures at 200 0 C and 250 0 C. (auth.)

  11. Initiation of stress corrosion cracking in pre-stained austenitic stainless steels exposed to primary water

    International Nuclear Information System (INIS)

    Huguenin, P.

    2012-01-01

    Austenitic stainless steels are widely used in primary circuits of Pressurized Water Reactors (PWR) plants. However, a limited number of cases of Intergranular Stress Corrosion Cracking (IGSCC) has been detected in cold-worked (CW) areas of non-sensitized austenitic stainless steel components in French PWRs. A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with a cyclic loading favoured SCC. The present study aims at better understanding the role of pre-straining on crack initiation and at developing an engineering model for IGSCC initiation of 304L and 316L stainless steels in primary water. Such model will be based on SCC initiation tests on notched (not pre-cracked) specimens under 'trapezoidal' cyclic loading. The effects of pre-straining (tensile versus cold rolling), cold-work level and strain path on the SCC mechanisms are investigated. Experimental results demonstrate the dominating effect of strain path on SCC susceptibility for all pre-straining levels. Initiation can be understood as crack density and crack depth. A global criterion has been proposed to integrate both aspects of initiation. Maps of SCC initiation susceptibility have been proposed. A critical crack depth between 10 and 20 μm has been demonstrated to define transition between slow propagation and fast propagation for rolled materials. For tensile pre-straining, the critical crack depth is in the range 20 - 50 μm. Experimental evidences support the notion of a KISCC threshold, whose value depends on materials, pre-straining ant load applied. The initiation time has been found to depend on the applied loading as a function of (σ max max/YV) 11,5 . The effect of both strain path and surface hardening is indirectly taken into account via the yield stress. In this study, material differences rely on strain path effect on mechanical properties. As a result, a stress

  12. Fatigue life evaluation method of austenitic stainless steel in PWR water

    International Nuclear Information System (INIS)

    Sakaguchi, Katsumi; Nomura, Yuichiro; Suzuki, Shigeki; Kanasaki, Hiroshi; Higuchi, Makoto

    2006-09-01

    It is known that the fatigue life in elevated temperature water is substantially reduced compared with that in the air. The fatigue life reduction has been investigated experimentally in EFT project of Japan Nuclear Energy Safety Organization (JNES) to evaluate the environmental effect on fatigue life. Many tests have been done for carbon, low alloy, stainless steels and nickel-based alloy under the various conditions. In this paper, the results of the stainless steel in simulated PWR water environments were reported. Fatigue life tests in simulated PWR environments were carried out and the effect of key parameters on fatigue life reduction was examined. The materials used in this study were base and weld metal of austenitic stainless steel SS316, weld metal of SS304 and the base and aged metal of the duplex stainless steel SCS14A. In order to evaluate the effects of stain amplitude, strain rate, strain ratio, temperature, aging, water flow rate and strain holding time, many fatigue tests were examined. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm the applicability of modified rate approach method together with cumulative usage factor, fatigue tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which strain rate changes in response to temperature in a simulated PWR water environment. Consequently, fatigue life could be evaluated with an accuracy of factor of 3

  13. Influence of Localized Plasticity on IASCC Sensitivity of Austenitic Stainless Steels under PWR Primary Water

    Science.gov (United States)

    Cissé, Sarata; Tanguy, Benoit; Laffont, Lydia; Lafont, Marie-Christine; Guerre, Catherine; Andrieu, Eric

    The sensibility of precipitation-strengthened A286 austenitic stainless steel to Stress Corrosion Cracking (SCC) is studied by means of Slow Strain Rate Tests (SSRT). First, alloy cold working by Low Cycle Fatigue (LCF) is investigated. Fatigue tests under plastic strain control are performed at different strain levels (Δ ɛp/2=0.2%, 0.5% and 0.8%) in order to establish correlation between stress softening and deformation microstructure resulting from LCF tests. Deformed microstructures have been identified through TEM investigations. Three states of cyclic behaviour for precipitation-strengthened A286 have been identified: hardening, cyclic softening and finally saturation of softening. It is shown that the A286 alloy cyclic softening is due to microstructural features such as defects — free deformation bands resulting from dislocations motion along family plans , that swept defects or γ' precipitates and lead to deformation localization. In order to quantify effects of plastic localized deformation on intergranular stress corrosion cracking (IGSCC) of the A286 alloy in PWR primary water, slow strain rate tests are conducted. For each cycling conditions, two specimens at a similar stress level are tested: the first containing free precipitate deformation bands, the other not significant of a localized deformation state. SSRT tests are still in progress.

  14. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  15. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  16. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water; Influence de la localisation de la deformation sur la corrosion sous contrainte de l'acier inoxydable austenitique A-286 en milieu primaire des REP

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, M

    2007-01-15

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels is known to be a critical issue for structural components of nuclear reactor cores. The deformation of irradiated austenitic stainless steels is extremely heterogeneous and localized in deformation bands that may play a significant role in IASCC. In this study, an original approach is proposed to determine the influence of localized deformation on austenitic stainless steels SCC in simulated PWR primary water. The approach consists in (i) performing low cycle fatigue tests on austenitic stainless steel A-286 strengthened by {gamma}' precipitates Ni{sub 3}(Ti,Al) in order to shear and dissolve the precipitates in intense slip bands, leading to a localization of the deformation within and in (ii) assessing the influence of these {gamma}'-free localized deformation bands on A-286 SCC by means of comparative CERT tests performed on specimens with similar yield strength, containing or not {gamma}'-free localized deformation bands. Results show that strain localization significantly promotes A-286 SCC in simulated PWR primary water at 320 and 360 C. Moreover, A-286 is a precipitation-hardening austenitic stainless steel used for applications in light water reactors. The second objective of this work is to gain insights into the influence of heat treatment and metallurgical structure on A-286 SCC susceptibility in PWR primary water. The results obtained demonstrate a strong correlation between yield strength and SCC susceptibility of A-286 in PWR primary water at 320 and 360 C. (author)

  17. Corrosion problems in light water nuclear reactors

    International Nuclear Information System (INIS)

    Berry, W.E.

    1984-01-01

    The corrosion problems encountered during the author's career are reviewed. Attention is given to the development of Zircaloys and attendant factors that affect corrosion; the caustic and chloride stress corrosion cracking (SCC) of austenitic stainless steel steam generator tubing; the qualification of Inconel Alloy 600 for steam generator tubing and the subsequent corrosion problem of secondary side wastage, caustic SCC, pitting, intergranular attack, denting, and primary side SCC; and SCC in weld and furnace sensitized stainless steel piping and internals in boiling water reactor primary coolants. Also mentioned are corrosion of metallic uranium alloy fuels; corrosion of aluminum and niobium candidate fuel element claddings; crevice corrosion and seizing of stainless steel journal-sleeve combinations; SCC of precipitation hardened and martensitic stainless steels; low temperature SCC of welded austenitic stainless steels by chloride, fluoride, and sulfur oxy-anions; and corrosion problems experienced by condensers

  18. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  19. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  20. SCC of cold-worked austenitic stainless steels exposed to PWR primary water conditions: susceptibility to initiation

    International Nuclear Information System (INIS)

    Herms, E.; Raquet, O.; Sejourne, L.; Vaillant, F.

    2009-01-01

    Heavily cold-worked austenitic stainless steels (AISI 304L and 316L types) could be significantly susceptible to Stress Corrosion Cracking (SCC) when exposed to PWR nominal primary water conditions even in absence of any pollutants. Susceptibility to SCC was shown to be related with some conditions such as initial hardness, procedure of cold-work or dynamic straining. A dedicated program devoted to better understand the initiation stage on CW austenitic stainless steels in PWR water is presented. Initiation is studied thanks to SCC test conditions leading to an intergranular cracking propagation mode on a CW austenitic stainless steel which is the mode generally reported after field experience. SCC tests are carried out in typical primary water conditions (composition 1000 ppm B and 2 ppm Li) and for temperature in the range 290 - 340 C. Material selected is 316L cold-worked essentially by rolling (reduction in thickness of 40%). Initiation tests are carried out under various stress levels with the aim to investigate the evolution of the initiation period versus the value of applied stress. SCC tests are performed on cylindrical notched specimens in order to increase the applied stress and allow accelerated testing without modify the exposure conditions to strictly nominal hydrogenated PWR water. Respective influences of cyclic/dynamic conditions on SCC initiation are presented and discussed. Dedicated interrupted tests help to investigate the behaviour of the crack initiation process. These SCC tests have shown that crack initiation could be obtained after a very short time under dynamic loading conditions on heavily pre-strained austenitic stainless steels. Actual results show that the most limiting stage of the cracking process on CW 316L seems to be the transition from slow transgranular propagation of surface initiated cracks to intergranular fast propagation through the thickness of the sample. The duration of this stage during crack initiation tests is

  1. Neutron thermalization in light water

    International Nuclear Information System (INIS)

    Abbate, M.J.; Lolich, J.V.

    1975-05-01

    Investigations related to neutron thermalization in light water have been made. Neutron spectra under quasi-infinite-medium conditions have been measured by the time-of-flight technique and calculations were performed with different codes. Through the use of improved experimental techniques and the best known calculational techniques available, the known discrepancies between experimentals and theoretical values were below from 40% to 16%. The present disagreement is believed to be due the scattering model used (ENDF-GASKET, based on the modified Haywood II frequency spectra), that shows to be very satisfactory for poisoned light water cases. Moreover, previous experiments were completed and differential, integral and pulse-source experimental techniques were improved. Also a second step of a neutron and reactor calculation system was completed. (author)

  2. LIGHT WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  3. Stress corrosion cracking and oxidation of austenitic stainless steel 316 L and model alloy in supercritical water reactor

    International Nuclear Information System (INIS)

    Saez-Maderuelo, A.; Gomez-Briceno, D.; Diego, G.

    2015-01-01

    In this work, an austenitic stainless steel type 316 L was tested in deaerated supercritical water at 400 deg. C and 500 deg. C and 25 MPa to determine how variations in water conditions influence its stress corrosion cracking behaviour and to make progress in the understanding of mechanisms involved in SCC processes in this environment. Moreover, the influence of plastic deformation in the resistance of the material to SCC was also studied at both temperatures. In addition to this, previous oxidation experiments at 400 deg. C and 500 deg. C and at 25 MPa were taken into account to gain some insight in this kind of processes. Furthermore, a cold worked model alloy based on the stainless steel 316 L with some variations in the chemical composition in order to simulate the composition of the grain boundary after irradiation was tested at 400 deg. C and 25 MPa in deaerated supercritical water. (authors)

  4. Advanced light water reactor plant

    International Nuclear Information System (INIS)

    Giedraityte, Zivile

    2008-01-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  5. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  6. Corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takeo; Abe, Hiroaki

    2009-01-01

    The supercritical water-cooled reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy. Supercritical Water (SCW) has never been used in nuclear power applications. There are numerous potential problems, particularly with materials. As the operating temperature of SCWR will be between 553 K and 893 K with a pressure of 25 MPa, the selection of materials is difficult and important. The PNC1520 austenitic stainless steel has been developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. Austenitic Fe-base steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel was selected for possible use in supercritical water systems. The corrosion data of PNC1520 in SCW is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in SCW. The SCW corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520T) by using a SCW autoclave. The 1520S and 1520T are the first trial production materials of SCWR cladding candidate material in our group. Corrosion and compatibility tests on the austenitic 1520S and 1520T steels in supercritical water were performed at 673, 773 and 600degC with exposures up to 1000 h. We have evaluated the amount of weight gain, weight loss and weight of scale after the corrosion test in SCW for 1520S and 1520T austenitic steels. After 1000 h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m 2 at 400degC and 500degC. But 1520T weight increases more and weight loss than 1520S at 600degC. The SEM observation result of the surface after 1000 h corrosion of an test

  7. Environmentally assisted cracking in light water reactors - annual report, January-December 2001

    International Nuclear Information System (INIS)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E; Hiller, R. W.; Shack, W. J.; Soppet, W. K.; Strain, R. V.

    2003-01-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2001. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (c) EAC of Alloy 600. The effects of key material and loading variables, such as strain amplitude, strain rate, temperature, dissolved oxygen (DO) level in water, and material heat treatment, on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The mechanism of fatigue crack initiation in austenitic SSs in LWR environments has also been examined. The results indicate that the presence of a surface oxide film or difference in the characteristics of the oxide film has no effect on fatigue crack initiation in austenitic SSs in LWR environments. Slow-strain-rate tensile tests and post-test fractographic analyses were conducted on several model SS alloys irradiated to ∼2 x 10 21 n · cm -2 (E > 1 MeV) (∼3 dpa) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. Corrosion fatigue tests were conducted on nonirradiated austenitic SSs in high-purity water at 289 C to establish the test procedure and conditions that will be used for the tests on irradiated materials. A comprehensive irradiation experiment was initiated to obtain many tensile and disk specimens irradiated under simulated pressurized water reactor conditions at ∼325 C to 5, 10, 20, and 40 dpa. Crack growth tests were completed on 30% cold-worked Alloy 600 in high-purity water under various environmental and loading conditions. The results are compared with data obtained earlier on several heats of Alloy 600 tested in high-DO water under several

  8. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  9. Fatigue and environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Shack, W.J.

    1991-12-01

    Fatigue and environmentally assisted cracking of piping, pressure vessels, and core components in light water reactors (LWRs) are important concerns as extended reactor lifetimes are envisaged. The degradation processes include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel (SS) piping in boiling water reactors (BWRs), and propagation of fatigue or SCC cracks (which initiate in sensitized SS cladding) into low-alloy ferritic steels in BWR pressure vessels. Similar cracking has also occurred in upper shell-to-transition cone girth welds in pressurized water reactor (PWR) steam generator vessels. Another concern is failure of reactor-core internal components after accumulation of relatively high fluence, which has occurred in both BWRs and PWRs. Research during the past year focused on (1) fatigue and SCC of ferritic steels used in piping and in steam generator and reactor pressure vessels, (2) role of chromate and sulfate in simulated BWR water in SCC of sensitized Type 304 SS, and (3) irradiation-assisted SCC in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs. Failure after accumulation of relatively high fluence has been attributed to radiation-induced segregation (RIS) of elements such as Si, P, Ni, and Cr. This document provides a summary of research progress in these areas

  10. Environmentally assisted cracking in light water reactors annual report January - December 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chen, Y.; Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.

    2007-08-31

    This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data

  11. Standards for heavy water concentration determinations in light water

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Pavelescu, M.

    1995-01-01

    The paper presents a method to prepare heavy water -light water standards within the range 144 ppm - 1%. A formula for computing standards concentration based on initial concentration of D 2 O and distilled water is given

  12. The resistance of austenitic stainless steels to pitting corrosion in simulated BFS/OPC pore waters containing thiosulphate ions

    International Nuclear Information System (INIS)

    Betts, A.J.; Newman, R.C.

    1989-06-01

    Current plans for the disposal of intermediate-level nuclear waste involve the use of austenitic stainless steel drums. The immediate environment seen by both the inner and outer surfaces of these drums will be alkaline, as a consequence of the encasement of both the drum and its contents in concrete. Normally there would be no risk of localized corrosion of the steel in this situation, but a possible complication is introduced by the use of blast-furnace slag (BFS) to decrease the permeability of the concrete. Metal sulphides in the BFS react with air and water to yield thiosulphate ions, which are known to be corrosive towards stainless steels in environments of near-neutral pH. This research was carried out to study the effects of thiosulphate at alkaline pH, simulating the concrete environment. Types 304L and 316L stainless steel have been tested for pitting corrosion resistance in simulated BFS/Ordinary Portland Cement pore waters of pH 10-13, at 20 o C and 50 o C. The results show that the 316L steel is essentially immune to pitting. The 304L steel shows some pitting at the higher temperature, especially at the higher chloride concentrations, but only at pH values of less than 12, which would require serious deterioration of the cement matrix. (author)

  13. Environment sensitive cracking in pressure boundary materials of light water reactors

    International Nuclear Information System (INIS)

    Hanninen, H.; Aho-Mantila, I.; Torronen, K.

    1987-08-01

    A review of the various forms of environment sensitive cracking in pressure boundary materials of light water reactors is presented. The available methods and the most promising future possibilities of preventive maintenance to counteract the environmental degradation are evaluated. Environment sensitive cracking is considered from the metallurgical, mechanical and environmental point of view. The main emphasis is on intergranular stress corrosion cracking of austenitic stainless steels and high strength Ni-base alloys as well as on corrosion fatigue of low alloy and stainless steels. Additionally, some general ideas on how to predict, reduce, monitor or eliminate environment sensitive cracking in service are presented

  14. The electrochemical corrosion behavior of austenitic alloys, cobalt or nickel based super alloys, structurally hardened martensitic, Inconel, zircaloy, super austenitic, duplex and of Ni-Cr or NTi deposits in tritiated water. 3 volumes

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-01-01

    The redox potential of 3 H 2 O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. The steels that are most resistant to this behavior are the super austenitic and super Duplex. To avoid corrosion, another solution is to decompose the radiolytic products by imposing a slight reducing potential. Corrosion inhibitors, which are stable in tritiated water, can be used. (author). 69 refs., 421 figs., tabs

  15. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  16. Environmentally assisted cracking in light water reactors. Semiannual report, October 1993--March 1994. Volume 18

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.; Erck, R.A.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K.

    1995-03-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1993 to March 1994. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns in operating plants and as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels, (b) EAC of wrought and cast austenitic stainless steels (SSs), and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS after accumulation of relatively high fluence. Fatigue tests have been conducted on A302-Gr B low-alloy steel to verify whether the current predictions of modest decreases of fatigue life in simulated pressurized water reactor water are valid for high-sulfur heats that show environmentally enhanced fatigue crack growth rates. Additional crack growth data were obtained on fracture-mechanics specimens of austenitic SSs to investigate threshold stress intensity factors for EAC in high-purity oxygenated water at 289 degrees C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating boiling water reactors were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements, which are not specified in the ASTM specifications, may contribute to IASCC of solution-annealed materials

  17. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongying [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Yang, Haijie [Modern Engineering Training Center, Anyang Institute of Technology, Anyang 455002 (China); Wang, Man [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Giron-Palomares, Benjamin [School of Mechanical Engineering, Anyang Institute of Technology, Anyang 455002 (China); Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Lefu [School of Nuclear Science and Engineering, Shanghai Jiaotong University, No 800 Dongchuan Road, Shanghai (China); Zhang, Guangming, E-mail: ustbzgm@163.com [School of Automobile & Transportation, Qingdao Technological University, Qingdao 266520 (China)

    2017-02-15

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  18. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    International Nuclear Information System (INIS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-01-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe 2 O 3 and Fe 3 O 4 ) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents. - Highlights: • The general corrosion and SCC in SCW of the AFA steel have been limited reported. • Fe-rich inner and Al-Cr-rich outer layers are formed in 650 °C/25 MPa/10 ppb SCW. • The SCC behavior exhibits a combination of high strength and good ductility. • Strength and elongation are lowered by increase of temperature and oxygen content. • The AFA steel shows low SCC susceptibility and a superior corrosion resistance.

  19. Grain boundary segregation and intergranular stress corrosion cracking susceptibility of austenitic stainless steels in high temperature water

    International Nuclear Information System (INIS)

    Shoji, T.; Yamaki, K.; Ballinger, R.G.; Hwang, I.S.

    1992-01-01

    The effects of grain boundary segregation on intergranular stress corrosion cracking of austenitic stainless steels in high temperature water have been examined as a function of heat treatment. The materials investigated were: (1) two commercial purity Type 304; (2) low sulfur Type 304; (3) nuclear grade Type 304; (4) ultra high purity Type 304L; and (5) Type 316L and Type 347L. Specimens were solution treated at 1050 degrees C for 0.5 hour and given a sensitization heat treatment at 650 degrees C for 50 hours. Some of the specimens were then subjected to an aging heat treatment at 850 degrees C for from one to ten hours to cause Cr recovery at the grain boundaries. The effects of heat treatments on degree of sensitization and grain boundary segregation were evaluated by Electrochemical Potentiokinetic Reactivation (EPR) and Coriou tests, respectively. The susceptibility to stress corrosion (SCC) was evaluated using slow strain rate tests technique (SSRT) in high temperature water. SSRT tests were performed in an aerated pure water (8 ppm dissolved oxygen) at 288 degrees C at a strain rate of 1.33 x 10 -6 /sec. Susceptibility to intergranular stress corrosion cracking was compared with degree of sensitization and grain boundary segregation. The results of the investigation indicate that EPR is not always an accurate indicator of SCC susceptibility. The Coriou test provides a more reliable measure of SCC susceptibility especially for 304L, 304NG, 316L, and 347L stainless steels. The results also indicate that grain boundary segregation as well as degree of sensitization must be considered in the determination of SCC susceptibility

  20. Environmentally assisted cracking in light water reactors. Semiannual progress report, January 1996--June 1996

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1997-05-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1996 to June 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated boiling water reactor (BWR) water at 288 degrees C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in air and high-purity, low-DO water. 83 refs., 60 figs., 14 tabs

  1. Environmentally assisted cracking in light water reactors. Semiannual report July 1996 - December 1996

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J.

    1997-10-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1996 to December 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, (c) EAC of Alloy 600, and (d) characterization of residual stresses in welds of boiling water reactor (BWR) core shrouds by numerical models. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated BWR water at 288 C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from a low-carbon content heat of Alloy 600 in high-purity oxygenated water at 289 C. Residual stresses and stress intensity factors were calculated for BWR core shroud welds

  2. Environmentally assisted cracking in Light Water Reactors: Semiannual report, April 1993--September 1993. Volume 17

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Karlsen, T.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K.

    1994-06-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRS) during the six months from April 1993 to September 1993. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels; (b) EAC of cast stainless steels (SSs); and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions in simulated boiling-water reactor (BWR) water at 289 degree C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section 11 of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy

  3. Environmentally assisted cracking in light water reactors. Semiannual progress report, January 1996--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1997-05-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1996 to June 1996. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Type 304 SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during various portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated boiling water reactor (BWR) water at 288{degrees}C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in air and high-purity, low-DO water. 83 refs., 60 figs., 14 tabs.

  4. Oxidation behavior of austenitic iron-base ODS alloy in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Dong, Z.; Zahiri, R.; Kohandehghan, A.; Mitlin, D., E-mail: behnamia@ualberta.ca, E-mail: zdong@ualberta.ca, E-mail: kohandeh@ualberta.ca, E-mail: rzahiris@ualberta.ca, E-mail: dave.mitlin@ualberta.ca [Univ. of Alberta, Edmondon, AB (Canada); Zhou, Z., E-mail: zhouzhj@mater.ustb.edu.cn [Univ. of Science and Tech. Beijing, Beijing (China); Chen, W.; Luo, J., E-mail: weixing.chen@ualberta.ca, E-mail: Jingli.luo@ualberta.ca [Univ. of Alberta, Edmonton, AB (Canada); Zheng, W., E-mail: wenyue@nrcan.gc.ca [Natural Resources Canada, Canmet MATERIALS, Hamilton, ON (Canada); Guzonas, D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    In this study, the effect of exposure time on the corrosion of the 304 stainless steel based oxide dispersion strengthened alloy, SS304ODS, in supercritical water was investigated at 650 {sup o}C with constant dissolved oxygen concentration. The results show that the oxidation of SS304ODS in supercritical water followed a parabolic law at 650 {sup o}C. Discontinuous oxide scale with two distinct layers has formed after 550 hours. The inner layer was chromium-rich while the outer layer was iron-rich (Magnetite). The oxide islands grow with increasing the exposure time. With increasing exposure time, the quantity of oxide islands increased in which major preferential growth along oxide-substrate interface was observed. The possible mechanism of SS304ODS oxidation in supercritical water was also discussed. (author)

  5. Oligo-cyclic damage and behaviour of a 304 L austenitic stainless steel according to environment (vacuum, air, PWR primary water) at 300 C

    International Nuclear Information System (INIS)

    De Baglion, L.

    2011-01-01

    Nowadays, for nuclear power plants licensing or operating life extensions, various safety authorities require the consideration of the primary water environment effect on the fatigue life of Pressurized Water Reactor (PWR) components. Thus, this work focused on the study of low cycle fatigue damage kinetics and mechanisms, of a type 304L austenitic stainless steel. Several parameters effects such as temperature, strain rate or strain amplitude were investigated in air as in PWR water. Thanks to targeted in-vacuum tests, the intrinsic influence of these parameters and environments on the fatigue behaviour of the material was studied. It appears that compared with vacuum, air is already an active environment which is responsible for a strong decrease in fatigue lifetime of this steel, especially at 300 C and low strain amplitude. The PWR water coolant environment is more active than air and leads to increased damage kinetics, without any modifications of the initiation sites or propagation modes. Moreover, the decreased fatigue life in PWR water is essentially attributed to an enhancement of both initiation and micropropagation of 'short cracks'. Finally, the deleterious influence of low strain rates on the 304L austenitic stainless steel fatigue lifetime was observed in PWR water environment, in air and also in vacuum without any environmental effects. This intrinsic strain rate effect is attributed to the occurrence of the Dynamic Strain Aging phenomenon which is responsible for a change in deformation modes and for an enhancement of cracks initiation. (author)

  6. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors

    International Nuclear Information System (INIS)

    Pokor, C.

    2003-01-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  7. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water

    Science.gov (United States)

    Terachi, T.; Yamada, T.; Miyamoto, T.; Arioka, K.

    2012-07-01

    The rates of SCC growth were measured under simulated PWR primary water conditions (500 ppm B + 2 ppm Li + 30 cm3/kg-H2O-STP DH2) using cold worked 316SS and 304SS. The direct current potential drop method was applied to measure the crack growth rates for 53 specimens. Dependence of the major engineering factors, such as yield strength, temperature and stress intensity was systematically examined. The rates of crack growth were proportional to the 2.9 power of yield strength, and directly proportional to the apparent yield strength. The estimated apparent activation energy was 84 kJ/mol. No significant differences in the SCC growth rates and behaviors were identified between 316SS and 304SS. Based on the measured results, an empirical equation for crack growth rate was proposed for engineering applications. Although there were deviations, 92.8% of the measured crack growth rates did not exceed twice the value calculated by the empirical equation.

  8. Simulation of radiation induced segregation and PWSCC susceptibility for austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto Koji; Yonezawa, Toshio; Iwamura, Toshihiko [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan). Takasago R and D Center; Ajiki, Kazuhide [Mitsubishi Heavy Industries Ltd., Kobe (Japan). Kobe Shipyard and Machinery Works; Urata, Sigeru [General Office of Nuclear and Fossil Power Production, Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-08-01

    Recently, irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internal components materials become a subject of discussion in light water reactors (LWRs). IASCC has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC of austenitic stainless steels for core internal materials so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, in order to verify the hypothetical that the IASCC in PWRs shall be caused by the primary water stress corrosion cracking (PWSCC) as a result of radiation induced segregation (RIS) at grain boundaries, the authors simulated RIS at grain boundaries of austenitic stainless steels based on previous study and estimated RIS tendency after long time operation. And the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated austenitic stainless steels and made clear chromium-nickel-silicon compositions for PWSCC susceptibility area in austenitic alloys by slow strain rate tensile (SSRT) test. (author)

  9. Simulation of radiation induced segregation and PWSCC susceptibility for austenitic stainless steels

    International Nuclear Information System (INIS)

    Fujimoto Koji; Yonezawa, Toshio; Iwamura, Toshihiko

    2000-01-01

    Recently, irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internal components materials become a subject of discussion in light water reactors (LWRs). IASCC has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC of austenitic stainless steels for core internal materials so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, in order to verify the hypothetical that the IASCC in PWRs shall be caused by the primary water stress corrosion cracking (PWSCC) as a result of radiation induced segregation (RIS) at grain boundaries, the authors simulated RIS at grain boundaries of austenitic stainless steels based on previous study and estimated RIS tendency after long time operation. And the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated austenitic stainless steels and made clear chromium-nickel-silicon compositions for PWSCC susceptibility area in austenitic alloys by slow strain rate tensile (SSRT) test. (author)

  10. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  11. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  12. Verification of an optimized condition for low residual stress employed water-shower cooling during welding in austenitic stainless steel plates

    International Nuclear Information System (INIS)

    Yanagida, N.; Enomoto, K.; Anzai, H.

    2004-01-01

    To reduce tensile residual stress in a welded region, we have developed a new cooling method that uses a water-shower behind the welding torch. When this method is applied to the welding of austenitic stainless steel, the welding and cooling conditions mainly determine how much the residual stress can be reduced. To optimize these conditions, we first used a robust design method to determine the effects of the preheating temperature, the heat input quantity, and the water-shower area on the residual stress, and found that, to decrease the tensile residual stress, the preheating temperature should be high, the heat input low, and the water-shower area large. To confirm the effectiveness of these optimized conditions, the residual stresses under optimized or non-optimized conditions were measured experimentally. It was found that the residual stresses were tensile under the non-optimized conditions, but compressive under the optimized ones. These measurements agree well with the 3D-FEM analyses. It can therefore be concluded that the optimized conditions are valid and appropriate for reducing residual stress in an austenitic stainless-steel weld. (orig.)

  13. Light energy dissipation under water stress conditions

    International Nuclear Information System (INIS)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P.

    1990-01-01

    Using 14 CO 2 gas exchange and metabolite analyses, stomatal as well as total internal CO 2 uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to -2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO 2 exchange was drastically reduced, whereas the total CO 2 uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO 2 . This CO 2 -recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO 2 recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations

  14. Light energy dissipation under water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlfauth, T.; Scheuermann, R.; Fock, H.P. (Universitaet Kaiserslautern (West Germany))

    1990-04-01

    Using {sup 14}CO{sub 2} gas exchange and metabolite analyses, stomatal as well as total internal CO{sub 2} uptake and evolution were estimated. Pulse modulated fluorescence was measured during induction and steady state of photosynthesis. Leaf water potential of Digitalis lanata EHRH. plants decreased to {minus}2.5 megapascals after withholding irrigation. By osmotic adjustment, leaves remained turgid and fully exposed to irradiance even at severe water stress. Due to the stress-induced reduction of stomatal conductance, the stomatal CO{sub 2} exchange was drastically reduced, whereas the total CO{sub 2} uptake and evolution were less affected. Stomatal closure induced an increase in the reassimilation of internally evolved CO{sub 2}. This CO{sub 2}-recycling consumes a significant amount of light energy in the form of ATP and reducing equivalents. As a consequence, the metabolic demand for light energy is only reduced by about 40%, whereas net photosynthesis is diminished by about 70% under severe stress conditions. By CO{sub 2} recycling, carbon flux, enzymatic substrate turnover and consumption of light energy were maintained at high levels, which enabled the plant to recover rapidly after rewatering. In stressed D. lanata plants a variable fluorescence quenching mechanism, termed coefficient of actinic light quenching, was observed. Besides water conservation, light energy dissipation is essential and involves regulated metabolic variations.

  15. Developmental Light-Water Reactor Program

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-12-01

    This report summarizes the progress of the Developmental Light-Water Reactor (DLWR) Program at Oak Ridge National Laboratory in FY 1989. It also includes (1) a brief description of the program, (2) definition of goals, (3) earlier achievements, and (4) proposed future activities

  16. Equations of state for light water

    International Nuclear Information System (INIS)

    Rubin, G.A.; Granziera, M.R.

    1983-01-01

    The equations of state for light water were developed, based on the tables of Keenan and Keyes. Equations are presented, describing the specific volume, internal energy, enthalpy and entropy of saturated steam, superheated vapor and subcooled liquid as a function of pressure and temperature. For each property, several equations are shown, with different precisions and different degress of complexity. (Author) [pt

  17. Light-water reactor accident classification

    International Nuclear Information System (INIS)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art

  18. Facilitation of decommissioning light water reactors

    International Nuclear Information System (INIS)

    Moore, E.B. Jr.

    1979-12-01

    Information on design features, special equipment, and construction methods useful in the facilitation of decommissioning light water reactors is presented. A wide range of facilitation methods - from improved documentation to special decommissioning tools and techniques - is discussed. In addition, estimates of capital costs, cost savings, and radiation dose reduction associated with these facilitation methods are given

  19. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  20. Utility requirements for advanced light water reactors

    International Nuclear Information System (INIS)

    Machiels, A.; Gray, S.; Mulford, T.; Rodwell, E.

    1996-01-01

    The nuclear energy industry is actively engaged in developing advanced light water reactor (ALWR) designs for the next century. The new designs take advantage of the thousands of reactor-years of experience that have been accumulated by operating over 400 plants worldwide. The EPRI effort began in the early 1980's, when a survey of utility executives was conducted to determine their prerequisites for ordering nuclear power plants. The results were clear: new plants had to be simpler and safer, and have greater design margins, i.e., be more forgiving. The utility executives also supported making improvements to the established light water reactor technology, rather than trying to develop new reactor concepts. Finally, they wanted the option to build mid-size plants (∼600 MWe) in addition to full-size plants of more than 1200 MWe. 4 refs

  1. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  2. Advanced light water reactors for the nineties

    International Nuclear Information System (INIS)

    Ross, F.A.; Sugnet, W.R.

    1987-01-01

    The EPRI/Industry advanced light water reactor (ALWR) program and the US Department of Energy ALWR program are closely coordinated to meet the common objective which is the availability of improved and simplified light water reactor plants that may be ordered in the next decade to meet new or replacement capacity requirements. The EPRI/Industry objectives, program participants, and foreign participants, utility requirements document, its organization and content, small plant conceptual design program, the DOE ALWR program, design verification program, General Electric ABWR design features, Combustion Engineering system design, mid-size plant development, General Electric SBWR objectives, Westinghouse/Burns and Roe design objectives, construction improvement, and improved instrumentation and control are discussed in the paper

  3. Steam explosions in light water reactors

    International Nuclear Information System (INIS)

    1981-01-01

    The report deals with a postulated accident caused by molten fuel falling into the lower plenum of the containment of a reactor. The analysis which is presented in the report shows that the thermal energy released in the resulting steam explosion is not enough to destroy the pressure vessel or the containment. The report was prepared for the Swedish Governmental Committee on steam explosion in light water reactors. It includes statements issued by internationally well-known specialists. (G.B.)

  4. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  5. The light water natural uranium reactor

    International Nuclear Information System (INIS)

    Radkowsky, A.

    A new type of light water seed blanket with the seed having 20% enrichment and the blanket a special combination of elements of natural uranium and thorium, relatively close packed, but sufficient spacing for heat transfer purpose is described. The blanket would deliver approximately half the total energy for about 10,000 MWDIT, so this type of core would be just as economical or better in uranium ore consumation as present cores. (author)

  6. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  7. Neutron disadvantage factors in heavy water and light water reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1966-01-01

    A number od heavy water and light water reactor cells are analyzed in this paper by applying analytical methods of neutron thermalization. Calculations done according to the one-group Amouyal-Benoist method are included in addition. Computer codes for ZUSE Z-23 computer were written by applying both methods. The obtained results of disadvantage factors are then compared to results obtained by one-group P 3 approximation and by multigroup K7-THERMOS code [sr

  8. New lineup of light water reactors

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi; Oshima, Koichiro; Kitsukawa, Keisuke

    2007-01-01

    Toshiba is promoting technical studies for upcoming nuclear power plants based on its large accumulation of experience in boiling water reactor (BWR) design, manufacturing, construction, and maintenance. Our goal is to achieve higher reliability, lower life-cycle costs, and better competitiveness for nuclear power plants compared with other energy sources. In addition, we are developing a new light water reactor (LWR) lineup featuring the safest and most economical LWRs in the world as next-generation reactors almost at new construction and replacement in the Japanese and international markets expected to start from the 2020s. We are committed not only to developing BWRs with the world's highest performance but also to participating in the pressurized water reactor (PWR) market, taking advantage of the synergistic effect of both Toshiba's and Westinghouse's experience. (author)

  9. Environmentally assisted cracking in light-water reactors: Semi-annual report, January - June 1997. Volume 24

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1998-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from January 1997 to June 1997. Topics that have been investigated include (a) fatigue of carbon, low-alloy, and austenitic stainless steels (SSs) used in reactor piping and pressure vessels, (b) irradiation-assisted stress corrosion cracking of Types 304 and 304L SS, and (c) EAC of Alloys 600 and 690. Fatigue tests were conducted on ferritic and austenitic SSs in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during various portions of a tensile-loading cycle is equally effective in decreasing fatigue life. Slow-strain-rate-tensile tests were conducted in simulated boiling water reactor (BWR) water at 288 C on SS specimens irradiated to a low fluence in the Halden reactor and the results were compared with similar data from a control-blade sheath and neutron-absorber tubes irradiated in BWRs to the same fluence level. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in low-DO, simulated pressurized water reactor environments

  10. Environmentally assisted cracking of light-water reactor materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1996-02-01

    Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used

  11. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  12. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  13. Trends in light water reactor dosimetry programs

    International Nuclear Information System (INIS)

    Rahn, F.J.; Serpan, C.Z.; Fabry, A.; McElroy, W.N.; Grundl, J.A.; Debrue, J.

    1977-01-01

    Dosimetry programs and techniques play an essential role in the continued assurance of the safety and reliability of components of light water reactors. Primary concern focuses on the neutron irradiation embrittlement of reactor pressure vessels and methods by which the integrity of a pressure vessel can be predicted and monitored throughout its service life. Research in these areas requires a closely coordinated program which integrates the elements of the calculational and material sciences, the development of advanced dosimetric techniques and the use of benchmarks and validation of these methods. The paper reviews the status of the various international efforts in the dosimetry area

  14. Light-water-reactor hydrogen manual

    International Nuclear Information System (INIS)

    Camp, A.L.; Cummings, J.C.; Sherman, M.P.; Kupiec, C.F.; Healy, R.J.; Caplan, J.S.; Sandhop, J.R.; Saunders, J.H.

    1983-06-01

    A manual concerning the behavior of hydrogen in light water reactors has been prepared. Both normal operations and accident situations are addressed. Topics considered include hydrogen generation, transport and mixing, detection, and combustion, and mitigation. Basic physical and chemical phenomena are described, and plant-specific examples are provided where appropriate. A wide variety of readers, including operators, designers, and NRC staff, will find parts of this manual useful. Different sections are written at different levels, according to the most likely audience. The manual is not intended to provide specific plant procedures, but rather, to provide general guidance that may assist in the development of such procedures

  15. Development trends in light water reactors

    International Nuclear Information System (INIS)

    Fogelstroem, L.; Simon, M.

    1988-01-01

    The present market for new nuclear power plants is weak, but is expected to pick up again, which is why great efforts are being made to further develop the light water reactor line for future applications. There is both a potential and a need for further improvement, for instance with respect to even higher cost efficiency, a simplified operating permit procedure, shorter construction periods, and increased operational flexibility to meet rising demands in load following behavior and in better cycle data of fuel elements. However, also public acceptance must not be forgotten when deciding about the line to be followed in the development of LWR technology. (orig.) [de

  16. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  17. Light-water reactor research and development

    International Nuclear Information System (INIS)

    1985-05-01

    This report on the national program of research and development on light water reactors is the second of two reports requested in 1982 by W. Kenneth Davis, Deputy Secretary of the Department of Energy. A first report, published in September 1983, treated the needs for safety-related R and D. In this second report, the Energy Research Advisory Board finds that, although many light water reactors are providing reliable and economic electricity, it appears unlikely that U.S. utilities will order additional reactors until the currently unacceptable economic risk, created by the regulatory climate and uncertain demand, is reduced. Thus it is unlikely that the private sector alone will fund major LWR design improvements. However, nuclear power will continue on its current course of expansion overseas. DOE participation is vitally needed to support the national interest in LWR technology. The report outlines R and D needs for a program to improve the safety, reliability, and economics of the present generation of plants; to develop evolutionary improved designs to be ready when needed; and to explore innovative longer-term concepts for deployment after the year 2000. The respective roles of government and the private sector are discussed

  18. Effect of decontamination on oxidation of austenitic stainless steel in reactor conditions

    International Nuclear Information System (INIS)

    Starkman, T.

    1984-07-01

    Austenitic stainless steels were oxidized in static autoclaves in light water reactor conditions. After the autoclave treatments the specimens were decontaminated with the aid of alkaline potassium permanganate (AP) and oxalic and citric acid (CITROX) as well as electrochemically in H 3 PO 4 . Alternating oxidation and decontamination tests were performed. An elemental analysis of the surfaces of the specimens was carried out by electron spectroscopy. Changes in structures and thicknesses of the oxide layers were observed. (author)

  19. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-02-01

    The reactor-safety issue is one of the principal problems threatening the future of the nuclear option, at least in participatory democracies. It has contributed to widespread public distrust and is the direct cause of the escalation in design complexity and quality assurance requirements that are rapidly eroding the competitive advantage of nuclear power. Redesign of the light-water reactor can eliminate those features that leave it open to public distrust and obstructive intervention. This redesign appears feasible within the realm of proven technology in those fields (fuels, materials, water chemistry, waste technology, etc.) in which extended operating experience is essential for confidence in system performance. A pressurized water reactor outline design developed to achieve the above goal is presented. The key feature is the design of the primary system extracting heat from the core so that the latter is protected from damage caused by any credible system failure or any destructive intervention from the outside by either violent means (up to and including nonnuclear warfare) or by mistaken or malicious use of the plant control systems. Such a design objective can be achieved by placing the entire primary circulation system in a large pressurized pool of cold water with a high boric acid content. Enough water is provided in the pool to allow core-decay-heat removal by evaporation for at least one week following any incident with no cooling systems operating. Subsequently it is assumed that a supply of further water (a few cubic meters per hour) from the outside can be arranged, even without the presence of the plant operating personnel

  20. Irradiation Assisted Stress Corrosion Cracking of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steels in oxygenated high temperature water was studied. The IASCC failure has been considered as a degradation phenomenon potential not only in the present light water reactors but rather common in systems where the materials are exposed simultaneously to radiation and water environments. In this study, effects of the material and environmental factors on the IASCC of austenitic stainless steels were investigated in order to understand the underlying mechanism. The following three types of materials were examined: a series of model alloys irradiated at normal water-cooled research reactors (JRR-3M and JMTR), the material irradiated at a spectrally tailored mixed-spectrum research reactor (ORR), and the material sampled from a duct tube of a fuel assembly used in the experimental LMFBR (JOYO). Post-irradiation stress corrosion cracking tests in a high-temperature water, electrochemical corrosion tests, etc., were performed at hot laboratories. Based on the results obtained, analyses were made on the effects of alloying/impurity elements, irradiation/testing temperatures and material processing, (i.e., post-irradiation annealing and cold working) on the cracking behavior. On the basis of the analyses, possible remedies against IASCC in the core internals were discussed from viewpoints of complex combined effects among materials, environment and processing factors. (author). 156 refs.

  1. Environmentally assisted cracking in light water reactors. Semiannual report, April 1994--September 1994, Volume 19

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J.

    1995-09-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors from April to September 1994. Topics that have been investigated include (a) fatigue of carbon and low-alloy steel used in piping and reactor pressure vessels, (b) EAC of austenitic stainless steels (SSs) and Alloy 600, and (c) irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests have been conducted on A106-Gr B and A533-Gr B steels in oxygenated water to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack growth data were obtained on fracture-mechanics specimens of SSs and Alloy 600 to investigate EAC in simulated boiling water reactor (BWR) and pressurized water reactor environments at 289 degrees C. The data were compared with predictions from crack growth correlations developed at ANL for SSs in water and from rates in air from Section XI of the ASME Code. Microchemical changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials

  2. Effects of cold working ratio and stress intensity factor on intergranular stress corrosion cracking susceptibility of non-sensitized austenitic stainless steels in simulated BWR and PWR primary water

    International Nuclear Information System (INIS)

    Yaguchi, Seiji; Yonezawa, Toshio

    2012-01-01

    To evaluate the effects of cold working ratio, stress intensity factor and water chemistry on an IGSCC susceptibility of non-sensitized austenitic stainless steel, constant displacement DCB specimens were applied to SCC tests in simulated BWR and PWR primary water for the three types of austenitic stainless steels, Types 316L, 347 and 321. IGSCC was observed on the test specimens in simulated BWR and PWR primary water. The observed IGSCC was categorized into the following two types. The one is that the IGSCC observed on the same plane of the pre-fatigue crack plane, and the other is that the IGSCC observed on a plane perpendicular to the pre-fatigue crack plane. The later IGSCC fractured plane is parallel to the rolling plane of a cold rolled material. Two types of IGSCC fractured planes were changed according to the combination of the testing conditions (cold working ratio, stress intensity factor and simulated water). It seems to suggest that the most susceptible plane due to fabrication process of materials might play a significant role of IGSCC for non-sensitized cold worked austenitic stainless steels, especially, in simulated PWR primary water. Based upon evaluating on the reference crack growth rate (R-CGR) of the test specimens, the R-CGR seems to be mainly affected by cold working ratio. In case of simulated PWR primary water, it seems that the effect of metallurgical aspects dominates IGSCC susceptibility. (author)

  3. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  4. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  5. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  6. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  7. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials

  8. Light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.

    1989-01-01

    Since the accident at Three Mile Island (TMI), Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During 1987 and 1988, the Department of Energy provided funds to the Nuclear Engineering Department at Penn State to investigate a plant reconfiguration originated by M.A. Schultz called ''The Light Water Ultra-Safe Plant Concept''. This report presents a final summary of the project with references to several masters' theses and addendum reports for further detail. The two year research effort included design verification with detailed computer simulation of: (a) normal operation characteristics of the unique pressurizing concept, (b) severe transients without loss of coolant, (c) combined primary and secondary system modeling, and (d) small break and large break loss of coolant accidents. Other studies included safety analysis, low power density core design, and control system design to greatly simplify the control room and required operator responses to plant upset conditions. The overall conclusion is that a reconfigured pressurized water reactor can achieve real and perceived safety improvements. Additionally, control system research to produce greatly simplified control rooms and operator requirements should be continued in future projects

  9. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  10. Nuclear fuel for light water reactors

    International Nuclear Information System (INIS)

    Etemad, A.

    1976-01-01

    The goal of the present speech is to point out some of the now-a-day existing problems related to the fuel cycle of light water reactors and to foresee their present and future solutions. Economical aspects of nuclear power generation have been considerably improving, partly through technological advancements and partly due to the enlargement of unit capacity. The fuel cycle, defined in the course of this talk, discusses the exploration, mining, ore concentration, purification, conversion, enrichment, manufacturing of fuel elements, their utilization in a reactor, their discharge and subsequent storage, reprocessing, and their re-use or disposal. Uranium market in the world and the general policy of several uranium owning countries are described. The western world requirement for uranium until the year 2000, uranium resources and the nuclear power programs in the United States, Australia, Canada, South Africa, France, India, Spain, and Argentina are discussed. The participation of Iran in a large uranium enrichment plant based on French diffusion technology is mentioned

  11. Hydrogen behavior in light-water reactors

    International Nuclear Information System (INIS)

    Berman, M.; Cummings, J.C.

    1984-01-01

    The Three Mile Island accident resulted in the generation of an estimated 150 to 600 kg of hydrogen, some of which burned inside the containment building, causing a transient pressure rise of roughly 200 kPa (2 atm). With this accident as the immediate impetus and the improved safety of reactors as the long-term goal, the nuclear industry and the Nuclear Regulatory Commission initiated research programs to study hydrogen behavior and control during accidents at nuclear plants. Several fundamental questions and issues arise when the hydrogen problem for light-water-reactor plants is examined. These relate to four aspects of the problem: hydrogen production; hydrogen transport, release, and mixing; hydrogen combustion; and prevention or mitigation of hydrogen combustion. Although much has been accomplished, some unknowns and uncertainties still remain, for example, the rate of hydrogen production during a degraded-core or molten-core accident, the rate of hydrogen mixing, the effect of geometrical structures and scale on combustion, flame speeds, combustion completeness, and mitigation-scheme effectiveness. This article discusses the nature and extent of the hydrogen problem, the progress that has been made, and the important unresolved questions

  12. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    NARCIS (Netherlands)

    Park, Sun-Young

    2015-01-01

    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  13. Welding of austenitic stainless steel with a high molybdenum content

    International Nuclear Information System (INIS)

    Liljas, A.; Holmberg, B.

    1984-01-01

    Welding of austenitic steel is discussed. Welding tests of AVESTA 250 SMO (six percent Mo) are reported. Welding without special additives can make the joints susceptible for corrosion in aggressive environments, e.g. sea water. (L.E.)

  14. Effects of austenitizing temperature in quenched niobium steels

    International Nuclear Information System (INIS)

    Mello, F.B.C. de; Assuncao, F.C.R.

    1980-01-01

    Three steel compositions with varying Nb content were austenitized at different temperatures and quenched in cold water. Metallographic examination and hardness measurements provided a basis for explaining the hardening mechanism and the role of Nb on the process. (Author) [pt

  15. Development of light water reactors and subjects for hereafter

    International Nuclear Information System (INIS)

    Murao, Yoshio

    1995-01-01

    As for light water reactors, the structure is relatively simple, and the power plants of large capacity can be realized easily, therefore, they have been used for long period as main nuclear reactors. During that period, the accumulation of experiences on the design, manufacture, operation, maintenance and regulation of light water has become enormous, and in Japan, the social base for maintaining and developing light water reactor technologies has been prepared sufficiently. If the nuclear power generation using seawater uranium is considered, the utilization of uranium for light water reactor technologies can become the method of producing the own energy for Japan. As the factors that threaten the social base of light water reactor technologies, there are a the lowering of the desire to promote light water reactors, the effect of secular deterioration, the price rise of uranium resources, the effect of plutonium accumulation, the effect of the circumstances in developing countries and the sure recruiting of engineers. The construction and the principle of working of light water reactors and the development of light water reactors hereafter, for example, the improvement on small scale and the addition of new technology resulting in cost reduction and the lowering of the quality requirement for engineers, the improvement of core design, the countermeasures by design to serious accidents and others are described. (K.I.)

  16. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  17. Light Water Reactor Sustainability Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  18. A contribution to the question of stress-corrosion cracking of austenitic stainless steel cladding in nuclear power plants

    International Nuclear Information System (INIS)

    Kupka, I.; Mrkous, P.

    1977-01-01

    A brief review is presented of the basic types of corrosion damage (uniform corrosion, intergranular corrosion, stress corrosion) and their influence on operational safety are estimated. Corrosion cracking is analyzed of austenitic stainless steel cladding taking into account the adverse impact of coolant and stress (both operational and residual) in a light water reactor primary circuit. Experimental data are given of residual stresses in the stainless steel clad material, as well as their magnitude and distribution after cladding and heat treatment. (author)

  19. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  20. Modeling Water Clarity and Light Quality in Oceans

    Science.gov (United States)

    Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of ade...

  1. Technical basis for the extension of ASME Code Case N-494 for assessment of austenitic piping

    International Nuclear Information System (INIS)

    Bloom, J.M.

    1995-01-01

    In 1990, the ASME Boiler and Pressure Vessel Code for Nuclear Components approved Code Case N-494 as an alternative procedure for evaluating laws in Light Water Reactor alterative procedure for evaluating flaws in Light Water Reactor (LWR) ferritic piping. The approach is an alternative to Appendix H of the ASME Code and alloys the user to remove some unnecessary conservatism in the existing procedure by allowing the use of pipe specific material properties. The Code Case is an implementation of the methodology of the Deformation Plasticity Failure Assessment diagram (DPFAD). The key ingredient in the application of DPFAD is that the material stress-strain curve must be in the format of a simple power law hardening stress-strain curve such as the Ramberg-Osgood (R-O) model. Ferritic materials can be accurately fit by the R-O model and, therefore, it was natural to use the DPFAD methodology for the assessment of LWR ferritic piping. An extension of Code Case N-494 to austenitic piping required a modification of the existing DPFAD methodology. The Code Case N-494 approach was revised using the PWFAD procedure in the same manner as in the development of the original N-494 approach for ferritic materials. A lower bound stress-strain curve was used to generate a PWFAD curve for the geometry of a part-through wall circumferential flaw in a cylinder under tension. Earlier work demonstrated that a cylinder under axial tension with a 50% flaw depth, 90 degrees in circumference, and radius to thickness of 10, produced a lower bound FAD curve. Validation of the new proposed Code Case procedure for austenitic piping was performed using actual pipe test data. Using the lower bound PWFAD curve, pipe test results were conservatively predicted. The resultant development of ht PWFAD curve for austenitic piping led to a revision of Code Case N-494 to include a procedure for assessment of flaws in austenitic piping

  2. Comparison of Austenite Decomposition Models During Finite Element Simulation of Water Quenching and Air Cooling of AISI 4140 Steel

    Science.gov (United States)

    Babu, K.; Prasanna Kumar, T. S.

    2014-08-01

    An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.

  3. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Soppet, W.K.; Shack, W.J.

    1992-03-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking in high water reactors during the six months from April 1991 through September 1991. Topics that have been investigated during this period include (1) fatigue and stress corrosion cracking (SCC) of low-alloy steel used in piping and in steam generator and reactor pressure vessels; (2) role of chromate and sulfate in simulated boiling water reactor (BWR) water on SCC of sensitized Type 304 SS; and (3) radiation-induced segregation (RIS) and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence. Fatigue data were obtained on medium-S-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor (PWR) water, and in air. Crack-growth-rates (CGRs) of composite specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B were determined under small- amplitude cyclic loading in HP water with ∼ 300 ppb dissolved oxygen. CGR tests on sensitized Type 304 SS indicate that low chromate concentrations in BWR water (25--35 ppb) may actually have a beneficial effect on SCC if the sulfate concentration is below a critical level. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain,rate- tensile tests were conducts on tubular specimens in air and in simulated BWR water at 289 degrees C

  4. Disinfection of drinking water by ultraviolet light

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It is no longer mandatory that a given residue of chlorine is present in drinking water and this has led to interest in the use of ultraviolet radiation for disinfection of water in large public waterworks. After a brief discussion of the effect of ultraviolet radiation related to wavelength, the most usual type of irradiation equipment is briefly described. Practioal considerations regarding the installation, such as attenuation of the radiation due to water quality and deposits are presented. The requirements as to dose and residence time are also discussed and finally it is pointed out that hydraulic imperfections can reduce the effectiveness drastically. (JIW)Ψ

  5. Modeling Water Clarity and Light Quality in Oceans

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdelrhman

    2016-11-01

    Full Text Available Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of adequate light intensity is a major factor in the health of algae and phytoplankton. There is a strong negative coupling between light intensity and phytoplankton concentration (e.g., through self-shading by the cells, which reduces available light and in return affects the growth rate of the cells. Proper modeling of this coupling is essential to understand primary productivity in the oceans. This paper provides the methodology to model light intensity in the water column, which can be included in relevant water quality models. The methodology implements relationships from bio-optical models, which use phytoplankton chlorophyll a (chl-a concentration as a surrogate for light attenuation, including absorption and scattering by other attenuators. The presented mathematical methodology estimates the reduction in light intensity due to absorption by pure seawater, chl-a pigment, non-algae particles (NAPs and colored dissolved organic matter (CDOM, as well as backscattering by pure seawater, phytoplankton particles and NAPs. The methods presented facilitate the prediction of the effects of various environmental and management scenarios (e.g., global warming, altered precipitation patterns, greenhouse gases on the wellbeing of phytoplankton communities in the oceans as temperature-driven chl-a changes take place.

  6. The safety of light water reactors

    International Nuclear Information System (INIS)

    Pershagen, B.

    1986-04-01

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  7. Contaminants in light water reactor coolants

    International Nuclear Information System (INIS)

    Michael, I.; Bechtold, G.

    1975-01-01

    At a lower oxygen content of the pressurized water a reduced metal loss by about 10% was detected. The state of oxidation for incoloy resulting from surface examination was 2,3 +- 0,3 which corresponds to Fe 3 O 4 and a smaller fraction of iron hydroxide. (orig.) [de

  8. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades

    International Nuclear Information System (INIS)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C.; Gallego, J.

    2010-01-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  9. Light induced degradation of testosterone in waters

    Energy Technology Data Exchange (ETDEWEB)

    Vulliet, Emmanuelle, E-mail: e.vulliet@sca.cnrs.fr [Service Central d' Analyse du CNRS - USR59, Chemin du Canal, F-69360 Solaize (France); Falletta, Marine; Marote, Pedro [Laboratoire des Sciences Analytiques - UMR 5180, Universite Claude Bernard, 43 bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France); Lomberget, Thierry [Laboratoire de Chimie Therapeutique, Universite de Lyon, Universite Lyon 1, Faculte de Pharmacie-ISPB, EA 4443 Biomolecules, Cancer et Chimioresistances, INSERM U863 Hormones steroides et proteines de liaison, IFR 62, 8 avenue Rockefeller, F-69373, Lyon Cedex 08 (France); Paisse, Jean-Olivier; Grenier-Loustalot, Marie-Florence [Service Central d' Analyse du CNRS - USR59, Chemin du Canal, F-69360 Solaize (France)

    2010-08-01

    The degradation of testosterone under simulated irradiations was studied in phosphate buffers and in natural waters at various excitation wavelengths. The quantum yield of photolysis was significantly lower at 313 nm (2.4 x 10{sup -3}) than at 254 nm (0.225). The formation of several photoproducts was observed, some of them being rapidly transformed in turn while others show higher stability towards subsequent irradiations. The nature of the main products was tentatively identified, both deduced from their spectral and spectrometric data and by comparison with synthesised standard compounds. Among the obtained photoproducts, the main one is possibly a spiro-compound, hydroxylated derivative of testosterone originating from the photohydratation of the enone group. The photodegradation pathway includes also photorearrangements. One of them leads to (1,5,10)-cyclopropyl-17{beta}-hydroxyandrostane-2-one. The pH of the water does not seem to affect the rate of phototransformation and the nature of the by-products.

  10. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  11. A light-water detritiation project at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Boniface, H.A.; Castillo, I.; Everatt, A.E.; Ryland, D.K.

    2010-01-01

    The NRU reactor rod bays is a large, open pool of water that receives hundreds of fuel rods annually, each carrying a small amount of residual tritiated heavy water. The tritium concentration of the rod bays water has risen over the years, to a level that is of concern to the operations staff and to the environment. The proposed long-term solution is to reduce the rod bays tritium concentration by direct detritiation of the water. The Combined Electrolytic-Catalytic Exchange (CECE) process is well suited to the light-water detritiation problem. With a tritium-protium separation factor greater than five, a CECE detritiation process can easily achieve the eight orders of magnitude separation required to split a tritiated light-water feed into an essentially tritium-free effluent stream and a tritiated heavy water product suitable for recycling through a heavy water upgrader. This paper describes a CECE light-water detritiation process specifically designed to reduce the tritium concentration in the NRU rod bays to an acceptable level. The conceptual design of a 600 Mg/a detritiation process has been developed and is now at the stage of project review and the beginning of detailed design. (author)

  12. Towards intrinsically safe light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hannerz, K

    1983-07-01

    Most of the present impediments to the rational use of the nuclear option have their roots in the reactor safety issue. The approach taken to satisfy the escalating safety concerns has resulted in excessively complex and expensive plant designs but has failed to create public confidence. This paper describes a new approach based on the principle of Process Inherent Ultimate Safety (PIUS). With the PIUS principle, ultimate safety is obtained by guaranteeing core integrity under all credible conditions. This is accomplished on the basis of the laws of gravity and thermohydraulics alone, interacting with the heat extraction process in an intact or damaged primary circuit, without recourse to engineered safety systems that may fail or dependence on error-prone human intervention. Application of the PIUS principle to the pressurized water reactor involves a substantial redesign of the reactor and primary system but builds on established PWR technology where long-term operation is needed for verification.

  13. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-07-01

    Most of the present impediments to the rational use of the nuclear option have their roots in the reactor safety issue. The approach taken to satisfy the escalating safety concerns has resulted in excessively complex and expensive plant designs but has failed to create public confidence. This paper describes a new approach based on the principle of Process Inherent Ultimate Safety (PIUS). With the PIUS principle, ultimate safety is obtained by guaranteeing core integrity under all credible conditions. This is accomplished on the basis of the laws of gravity and thermohydraulics alone, interacting with the heat extraction process in an intact or damaged primary circuit, without recourse to engineered safety systems that may fail or dependence on error-prone human intervention. Application of the PIUS principle to the pressurized water reactor involves a substantial redesign of the reactor and primary system but builds on established PWR technology where long-term operation is needed for verification

  14. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Park, J.Y.; Ruther, W.E.; Kassner, T.F.; Shack, W.J.

    1990-12-01

    Topics that have been investigated during this year include (1) SCC of A533-Gr B steel used in steam generator and reactor pressure vessels, (2) fatigue of Type 316NG SS, and (3) SCC of Type 347 and CF-3 cast duplex stainless steels in simulated BWR water. Crack-growth-rate (CGR) tests were performed on a composite A533-Gr B/Inconel-182 specimen in which the stress corrosion crack in the Inconel-182 weld metal penetrated and grew into the A533-Gr B steel. CGR tests were also conducted on conventional (unplated) and nickel- or gold-plated A533-Gr B specimens to provide insight into whether the nature of the surface layer on the low-alloy steel, either oxide corrosion products or a noble metal, influences the overall SCC process. CGR data on the A533-Gr B specimens were compared with the fatigue crack reference curves in the ASME Boiler and Pressure Vessel Code, Section XI, Appendix A. Fatigue tests were conducted on Type 316NG SS in air and simulated BWR water at low strain ranges and frequencies to better establish margins in the ASME Code Section III Fatigue Design Curves. CGR tests were also conducted on specimens of Type 347 SS with different heat-treatment conditions, and a specimen of CF-3 cast stainless steel with a ferrite content of 15.6%. The results were compared with previous data on another heat of Type 347 SS, which was very resistant to SCC, and a CF-3M steel with a ferrite content of 5%. 37 refs., 15 figs., 8 tabs

  15. Safety aspects of water chemistry in light water reactors

    International Nuclear Information System (INIS)

    1988-12-01

    The goals of the water chemistry control programmes are to maximize operational safety and the availability and operating life of primary system components, to maximize fuel integrity, and to control radiation buildup. To achieve these goals an effective corporate policy should be developed and implemented. Essential management responsibilities are: Recognizing of the long-term benefits of avoiding or minimizing: a) system corrosion; b) fuel failure; and c) radiation buildup. The following control or diagnostic parameters are suitable performance indicators: for PWR primary coolant circuits: pH of reactor water (by operating temperature); Concentration of chlorides in reactor water; Hydrogen (or oxygen) in reactor water. For PWR secondary coolant circuits: pH in feedwater; Cation productivity in steam generator blowdown; Iron concentration in feedwater; Oxygen concentration in condensate. And BWR coolant circuits: Conductivity of reactor water; Concentration of chlorides in reactor water; Iron concentration in feedwater; Copper concentration in feedwater. The present document represents a review of the developments in some Member States on how to implement a reasonable water chemistry programme and how to assess its effectiveness through numerical indicators. 12 figs, 20 tabs

  16. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  17. Neutron fluence determination for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Gold, R.

    1994-01-01

    A general description of limitations that exist in pressure vessel neutron fluence determinations for commercial light water reactors is presented. Complexity factors that arise in light water reactor pressure vessel neutron fluence calculations are identified and used to analyze calculational limitations. Two broad categories of calculational limitations are introduced, namely benchmark field limitations and deep penetration limitations. Explicit examples of limitations that can arise in each of these two broad categories are presented. These limitations are used to show that the recent draft regulatory guide for the determination of pressure vessel neutron fluence, developed by the Nuclear Regulatory Commission, is based upon procedures and assumptions that are not valid. To eliminate the complexity and limitations of calculational methods, it is recommended that the determination of light water reactor pressure vessel neutron fluence be based upon experiment. Recommendations for improved methods of pressure vessel surveillance neutron dosimetry are advanced

  18. Ultraviolet light: sterile water without chlorine smell and taste

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm 2 for all known bacteria. In practice a dose of 40 mWs/cm 2 and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly. (JIW)

  19. Ultraviolet light: sterile water without chlorine smell and taste

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-14

    The use of chlorine and hypochlorite is necessary in larger waterworks, but it is a disadvantage in smaller plants, where overtreatment easily leads to smell and taste of chlorine in the water. Ultraviolet light with a wavelength of 2535 Angstrom gives 100% disinfection with a dose of 10 mWs/cm/sup 2/ for all known bacteria. In practice a dose of 40 mWs/cm/sup 2/ and an irradiation time of 15 minutes is desireable. A standard unit utilising six UV light tubes arranged concentrically around a quartz tube, through which the water flows, is described briefly.

  20. Removal and recovery of tritium from light and heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1979-01-01

    A method and apparatus for removing tritium from light water are described, comprising contacting tritiated feed water in a catalyst column in countercurrent flow with hydrogen gas originating from an electrolysis cell so as to enrich this feed water with tritium from the electrolytic hydrogen gas and passing the tritium enriched water to an electrolysis cell wherein the electrolytic hydrogen gas is generated and then fed upwards through the catalyst column or recovered as product. The tritium content of the hydrogen gas leaving the top of the enricher catalyst column is further reduced in a stripper column containing catalyst which transfers the tritium to a countercurrent flow of liquid water. Anodic oxygen and water vapour from the anode compartment may be fed to a drier and condensed electrolyte recycled with a slip stream or recovered as a further tritium product stream. A similar method involving heavy water is also described. (author)

  1. Design features of the Light Water Breeder Reactor (LWBR) which improve fuel utilization in light water reactors (LWBR development program)

    International Nuclear Information System (INIS)

    Hecker, H.C.; Freeman, L.B.

    1981-08-01

    This report surveys reactor core design features of the Light Water Breeder Reactor which make possible improved fuel utilization in light water reactor systems and breeding with the uranium-thorium fuel cycle. The impact of developing the uranium-thorium fuel cycle on utilization of nuclear fuel resources is discussed. The specific core design features related to improved fuel utilization and breeding which have been implemented in the Shippingport LWBR core are presented. These design features include a seed-blanket module with movable fuel for reactivity control, radial and axial reflcetor regions, low hafnium Zircaloy for fuel element cladding and structurals, and a closely spaced fuel rod lattice. Also included is a discussion of several design modifications which could further improve fuel utilization in future light water reactor systems. These include further development of movable fuel control, use of Zircaloy fuel rod support grids, and fuel element design modifications

  2. INTERWELD - European project to determine irradiation induced material changes in the heat affected zones of austenitic stainless steel welds that influence the stress corrosion behaviour in high-temperature water

    International Nuclear Information System (INIS)

    Roth, A.; Schaaf, Bob van der; Castano, M.L.; Ohms, C.; Gavillet, D.; Dyck, S. van

    2003-01-01

    PWR and BWR RPV internals have experienced stress corrosion cracking in service. The objective of the INTERWELD project is to determine the radiation induced material changes that promote stress corrosion cracking in the heat affected zone of austenitic stainless steel welds. To achieve this goal, welds in austenitic stainless steel types AISI 304/347 have been fabricated, respectively. Stress-relief annealing was applied optionally. The pre-characterisation of both the as-welded and stress relieved material conditions comprises the examination of the weld residual stresses by the ring-core-technique and neutron diffraction, the degree of sensitisation by EPR, and the stress corrosion behaviour by SSRT testing in high-temperature water. The weldments will be irratiated to 2 neutron fluence levels and a postirradiation examination will determine micromechanical, microchemical and microstructural changes in the materials. In detail, the evolution of the residual stress levels and the stress corrosion behaviour after irradiation will be determined. Neutron diffraction will be utilized for the first time with respect to neutron irradiated material. In this paper, the current state of the project will be described and discussed. (orig.)

  3. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    Science.gov (United States)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  4. European community light water reactor safety research projects. Experimental issue

    International Nuclear Information System (INIS)

    1975-01-01

    Research programs on light water reactor safety currently carried out in the European Community are presented. They cover: accident conditions (LOCA, ECCS, core meltdown, external influences, etc...), fault and accident prevention and means of mitigation, normal operation conditions, on and off site implications and equipment under severe accident conditions, and miscellaneous subjects

  5. NEPTUNE: a modular system for light-water reactor calculation

    International Nuclear Information System (INIS)

    Bouchard, J.; Kanevoky, A.; Reuss, P.

    1975-01-01

    A complete modular system of light water reactor calculations has been designed. It includes basic nuclear data processing, the APOLLO phase: transport calculations for cells, multicells, fuel assemblies or reactors, the NEPTUNE phase: reactor calculations. A fuel management module, devoted to the automatic determination of the best shuffling strategy is included in NEPTUNE [fr

  6. Loose parts monitoring in light water reactor cooling systems

    International Nuclear Information System (INIS)

    Santos, A.; Alma, B.J.

    1982-01-01

    The work related to loose monitoring system for light water reactor, developed at GRS - Munique, are described. The basic problems due to the exact localization and detection of the loose part as well the research activities and development necessary aiming to obtain the best techniques in this field. (E.G.) [pt

  7. The manufacture of plutonium fuels for light water reactors

    International Nuclear Information System (INIS)

    Lebastard, G.

    1985-01-01

    This paper describes the agreement concluded between COGEMA and BELGONUCLEAIRE, reflected in the creation of the COMMOX group which has been made reponsible for promoting and marketing plutonium fuel rods for light water reactors. One then analyses the main aspects of manufacturing this type of fuel and the resources deployed. Finally one indicates the sales prospects scheduled to meet requirements (MELOX plant) [fr

  8. Safety of light water reactors. Risks of nuclear technology

    International Nuclear Information System (INIS)

    Veser, Anke; Schlueter, Franz-Hermann; Raskob, Wolfgang; Landman, Claudia; Paesler-Sauer, Juergen; Kessler, Guenter

    2012-01-01

    The book on the safety of light-water reactors includes the following chapters: Part I: Physical and technical safety concept of actual German and future European light-water reactors: (1) Worldwide operated nuclear power plants in 2011, (2) Some reactor physical fundamentals. (3) Nuclear power plants in Germany. (4) Radioactive exposure due to nuclear power plants. (5) Safety concept of light-water reactors. (6) Probabilistic analyses and risk studies. (7) Design of light-water reactors against external incidents. (8) Risk comparison of nuclear power plants and other energy systems. (9) Evaluation of risk studies using the improved (new) safety concept for LWR. (19) The severe reactor accidents of Three Mile Island, Chernobyl and Fukushima. Part II: Safety of German LWR in case of a postulated aircraft impact. (11) Literature. (12) Review of requirements and actual design. (13) Incident scenarios. (14) Load approach for aircraft impact. (15) Demonstration of the structural behavior in case of aircraft impact. (16) Special considerations. (17) Evaluation of the safety state of German and foreign nuclear power plants. Part III: ROSOS as example for a computer-based decision making support system for the severe accident management. (19) Literature. (20) Radiological fundamentals, accident management, modeling of the radiological situation. (21) The decision making support system RODOS. (22) RODOS and the Fukushima accident. (23) Recent developments in the radiological emergency management in the European frame.

  9. Overview of environmental materials degradation in light-water reactors

    International Nuclear Information System (INIS)

    Shaaban, H.I.; Wu, P.

    1986-08-01

    This report provides a brief overview of analyses and conclusions reported in published literature regarding environmentally induced degradation of materials in operating light-water reactors. It is intended to provide a synopsis of subjects of concern rather than to address a licensing basis for any newly discovered problems related to reactor materials

  10. Tritium formation and elimination in light-water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Briec, M.; Miquel, P.

    1976-01-01

    Light-water reactors have a tritium balance which should be considered from both the working constraint and environmental pollution aspects. The formation of tritium in the primary circuit and in the fuel, the elimination and enrichment processes are considered [fr

  11. Design features to facilitate IAEA safeguards at light water reactors

    International Nuclear Information System (INIS)

    Pasternak, T.; Glancy, J.; Goldman, L.; Swartz, J.

    1981-01-01

    Several studies have been performed recently to identify and analyze light water reactor (LWR) features that, if incorporated into the facility design, would facilitate the implementation of International Atomic Energy Agency (IAEA) safeguards. This paper presents results and conclusions of these studies. 2 refs

  12. RETRAN sensitivity studies of light water reactor transients. Final report

    International Nuclear Information System (INIS)

    Burrell, N.S.; Gose, G.C.; Harrison, J.F.; Sawtelle, G.R.

    1977-06-01

    This report presents the results of sensitivity studies performed using the RETRAN/RELAP4 transient analysis code to identify critical parameters and models which influence light water reactor transient predictions. Various plant transients for both boiling water reactors and pressurized water reactors are examined. These studies represent the first detailed evaluation of the RETRAN/RELAP4 transient code capability in predicting a variety of plant transient responses. The wide range of transients analyzed in conjunction with the parameter and modeling studies performed identify several sensitive areas as well as areas requiring future study and model development

  13. Hydrogen evolution from water using solid carbon and light energy

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, T; Sakata, T

    1979-11-15

    Hydrogen is produced from water vapour and solid carbon when mixed powders of TiO2, RuO2 and active carbon exposed to water vapor at room temperature, or up to 80 C, are illuminated. At 80 C, the rate of CO and COat2 formation increased. Therefore solar energy would be useful here as a combination of light energy and heat energy. Oxygen produced on the surface of the photocatalyst has a strong oxidising effect on the carbon. It is suggested that this process could be used for coal gasification and hydrogen production from water, accompanied by storage of solar energy.

  14. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  15. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...... case included X-ray diffraction analysis, reflected light microscopy and microhardness. The results demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  16. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    International Nuclear Information System (INIS)

    Kurepin, V. A.; Kulik, D. A.; Hitpold, A.; Nicolet, M.

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO 2 by incremental additions of O 2 in H 2 O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni phase, maintaining

  17. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  18. Light water breeder reactor using a uranium-plutonium cycle

    International Nuclear Information System (INIS)

    Radkowsky, A.; Chen, R.

    1990-01-01

    This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable for breeding fissile material from the enriched plutonium fuel. This patent describes a method of operating a light water nuclear reactor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: operating the prebreeder to produce enriched plutonium fuel having an increased Pu-241 component; fueling a breeder section with the enriched plutonium fuel to breed the fissile material

  19. US Advanced Light Water Reactor Program; overall objective

    International Nuclear Information System (INIS)

    Klug, N.

    1989-01-01

    The overall objective of the US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) program is to perform coordinated programs of the nuclear industry and DOE to insure the availability of licensed, improved, and simplified light water reactor standard plant designs that may be ordered in the 1990's to help meet the US electrical power demand. The discussion includes plans to meet program objectives and the design certification program. DOE is currently supporting the development of conceptual designs, configurations, arrangements, construction methods/plans, and proof test key design features for the General Electric ASBWR and the Westinghouse AP600. Key features of each are summarized. Principal milestones related to licensing of large standard plants, simplified mid-size plant development, and plant lifetime improvement are noted

  20. Analysis of an accelerator-driven subcritical light water reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Wakker, P.H.; Wetering, T.F.H. van de; Verkooijen, A.H.M.

    1997-01-01

    An analysis of the basic characteristics of an accelerator-driven light water reactor has been made. The waste in the nuclear fuel cycle is considerably less than in the light water reactor open fuel cycle. This is mainly caused by the use of equilibrium nuclear fuel in the reactor. The accelerator enables the use of a fuel composition with infinite multiplication factor k ∞ < 1. The main problem of the use of this type of fuel is the strongly peaked flux distribution in the reactor core. A simple analytical model shows that a large core is needed with a high peak power factor in order to generate net electric energy. The fuel in the outer regions of the reactor core is used very poorly. 7 refs., 4 figs., 1 tab

  1. Stress corrosion cracking of austenitic stainless steels in PWR primary water: an update of metallurgical investigations performed on French withdrawn components

    International Nuclear Information System (INIS)

    Boursier, J.M.; Gallet, S.; Rouillon, Y.; Bordes, P.

    2002-01-01

    Austenitic stainless steels (AISI 304, 304L, 316 and 316L) are largely used in Nuclear Power Plants because of their good resistance to corrosion and their satisfactory mechanical properties. Nevertheless, on various French PWR Nuclear Power Plants, several cases of corrosion have been encountered in auxiliary circuit portions where deleterious species and oxygen can be present. This paper focuses on the metallurgical investigations performed on pulled out components such as Canopy welds or 'dead legs' (auxiliary circuit portions connected to the main primary loops) in terms of cracking locations and degradation parameters. In addition, some comparisons between Nuclear Power Plant feedback and fundamental research and development studies are discussed, particularly in the scope of temperature, microstructure, stresses (applied and residual) and medium responsible for the degradation. (authors)

  2. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  3. Uranium utilization of light water cooled reactors and fast breeders

    International Nuclear Information System (INIS)

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  4. Coatings used in light-water nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The guide is intended to provide a common basis in the selection of test methods which may be required to evaluate and qualify protective coatings (paints) to be used in a light-water nuclear power plant. Standard test methods for the determination of fire resistance, chemical resistance, physical properties, effects of radiation, decontaminability, thermal conductivity, repairability, and for evaluation under accident conditions are included

  5. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  6. Controllability studies for an advanced CANDU boiling light water reactor

    International Nuclear Information System (INIS)

    Lepp, R.M.; Hinds, H.W.

    1976-12-01

    Bulk controllability studies carried out as part of a conceptual design study of a 1200 MWe CANDU boiling-light-water reactor fuelled with U 235 - or Pu-enriched uranium oxide are outlined. The concept, the various models developed for its simulation on a hybrid computer and the perturbations used to test system controllability, are described. The results show that this concept will have better bulk controllability than similar CANDU-BLW reactors fuelled with natural uranium. (author)

  7. Nuclear Data Libraries for Hydrogen in Light Water Ice

    International Nuclear Information System (INIS)

    Torres, L; Gillette, V.H

    2000-01-01

    Nuclear data libraries were produced for hydrogen (H) in light water ice at different temperatures, 20, 30, 50, 77, 112, 180, 230 K.These libraries were produced using the NJOY nuclear data processing system.With this code we produce pointwise cross sections and related quantities, in the ENDF format, and in the ACE format for MCNP.Experimental neutron spectra at such temperatures were compared with MCNP4B simulations, based on the locally produced libraries, leading to satisfactory results

  8. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    International Nuclear Information System (INIS)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-01-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The

  9. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  10. The materials concept in German light water reactors. A contribution to plant safety, economic performance and damage prevention

    International Nuclear Information System (INIS)

    Ilg, Ulf

    2008-01-01

    Major decisions taken as early as in the planning and construction phases of nuclear power plants may influence overall plant life. Component quality at the beginning of plant life is determined very much also by a balanced inclusion of the 'design, choice of materials, manufacturing and inspection' elements. One example of the holistic treatment of design, choice of material, and manufacture of important safety-related components in pressurized water reactors is the reactor pressure vessel (RPV) in which the ferritic compound tubes, with inside claddings, for the control rod drive nozzles are screwed into the vessel top. Also the choice of Incoloy 800 for the steam generator tubes, and the design of the main coolant pipes with inside claddings as seamless pipe bends / straight pipes with integrated nozzles connected to mixed welds with austenitic pipes are other special design features of the Siemens/KWU plants. A demonstrably high quality standard by international comparison to this day has been exhibited by the austenitic RPV internals of boiling water reactors, which were made of a low-carbon Nb-stabilized austenitic steel grade by optimum manufacturing technologies. The same material is used for backfitting austenitic pipes. Reliable and safe operation of German nuclear power plants has been demonstrated for more than 4 decades. One major element in this performance is the materials concept adopted in Germany also in the interest of damage prevention. (orig.)

  11. Laser cladding crack repair of austenitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-06-01

    Full Text Available Laser cladding crack repair of austenitic stainless steel vessels subjected to internal water pressure was evaluated. The purpose of this investigation was to develop process parameters for in-situ repair of through-wall cracks in components...

  12. Dual-purpose light water reactor supplying heat for desalination

    International Nuclear Information System (INIS)

    Waplington, G.; Fichtner, H.

    1978-01-01

    The technical as well as the economic aspects of using a large commercial light water reactor for the production of both electricity and potable water have been examined. For the basis of the study, the multistage flash distillation process was selected, in conjunction with a reactor rated at not less than 2100 MW (thermal). Combined use of a condensing and a back-pressure turbine (the latter matched to distillation plant steam requirements) represents a convenient method for supplying process heat. Overall costs can be fairly allocated to the two products using the ''power credit'' method. A sample economic evaluation indicates highly favorable water costs as compared with more conventional distillation schemes based on fossil fuel

  13. Analysis of thermal fatigue events in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Thermal fatigue events, which may cause shutdown of nuclear power stations by wall-through-crack of pipes of RCRB (Reactor Coolant Pressure Boundary), are reported by licensees in foreign countries as well as in Japan. In this paper, thermal fatigue events reported in anomalies reports of light water reactors inside and outside of Japan are investigated. As a result, it is clarified that the thermal fatigue events can be classified in seven patterns by their characteristics, and the trend of the occurrence of the events in PWRs (Pressurized Water Reactors) has stronger co-relation to operation hours than that in BWRs (Boiling Water Reactors). Also, it is concluded that precise identification of locations where thermal fatigue occurs and its monitoring are important to prevent the thermal fatigue events by aging or miss modification. (author)

  14. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    International Nuclear Information System (INIS)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  15. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    International Nuclear Information System (INIS)

    Ritter, S.; Seifert, H.P.; Devrient, B.; Roth, A.; Ehrnsten, U.; Ernestova, M.; Zamboch, M.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  16. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part I: BWR/NWC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWR) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It was focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of EAC crack growth behaviour/mechanism of LAS in high-temperature water under steady-state power operation (constant load) and transient operating conditions (e.g., start-up/shut-down, transients in water chemistry and load). Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurised water reactor (VVER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (VVER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarises the most important crack growth results obtained under simulated BWR/NWC conditions. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  17. Aging management of major light water reactor components

    International Nuclear Information System (INIS)

    Shah, V.N.; Sinha, U.P.; Ware, A.G.

    1992-01-01

    Review of technical literature and field experience has identified stress corrosion cracking as one of the major degradation mechanisms for the major light water reactor components. Three of the stress corrosion cracking mechanisms of current concern are (a) primary water stress corrosion cracking (PWSCC) in pressurized water reactors, and (b) intergranular stress corrosion cracking (IGSCC) and (c) irradiation-assisted stress corrosion cracking (IASCC) in boiling water reactors. Effective aging management of stress corrosion cracking mechanisms includes evaluation of interactions between design, materials, stressors, and environment; identification and ranking of susceptible sites; reliable inspection of any damage; assessment of damage rate; mitigation of damage; and repair and replacement using corrosion-resistant materials. Management of PWSCC includes use of lower operating temperatures, reduction in residual tensile stresses, development of reliable inspection techniques, and use of Alloy 690 as replacement material. Management of IGSCC of nozzle and attachment welds includes use of Alloy 82 as weld material, and potential use of hydrogen water chemistry. Management of IASCC also includes potential use of hydrogen water chemistry

  18. BWRVIP-140NP: BWR Vessel and Internals Project Fracture Toughness and Crack Growth Program on Irradiated Austenitic Stainless Steel

    International Nuclear Information System (INIS)

    Gilman, J.

    2005-01-01

    To prepare for this project, EPRI and BWRVIP conducted a workshop at Ponte Vedra Beach, Florida during February 19-21, 2003 (EPRI report 1007822). Attendees were invited to exchange relevant information on the effects of irradiation on austenitic materials in light water reactors and to produce recommendations for further work. EPRI reviewed the data, recommendations, and conclusions derived from the workshop and developed prioritized test matrices defining new data needs. Proposals were solicited, and selected proposals are the basis for the program described in this report. Results The planned test matrix for fracture toughness testing includes 21 tests on 5 materials

  19. Austenite strengthening and softening during hot deformation

    International Nuclear Information System (INIS)

    Tushinskij, L.I.; Vlasov, V.S.; Kazimirova, I.E.; Tokarev, A.O.

    1981-01-01

    Processes of formation of austenite structure of 20 and 12Kh18N10T steels during hot deformation and postdeformation isothermal holdings have been investigated by the methods of analysis of curves of hot deformation, high-temperature metallography and light microscopy. Deformation has been exercised by extention in vacuum with average 4x10 -2 s -1 rate. Deformation temperatures of steel 20 are 930 and 1000 deg C, of steel 12Kh18N10T - 1100 deg C. It is stated that dynamic recrystallization takes place in both investigated steels during hot deformation. In the carbonic steel it is developed by shifting sections of high-angular boundaries, flow stress in this case remains constant. Recrystallization is developed by subgrain coalescence in austenite steel, that brings about preservation of increased defect density in recrystallized volumes. As a result strengthening of steel is continued up to fracture during the increase of the deformation degree. Postdeformation weakening of 12Kh18N10T steel is slowed down as compared with weakening of carbonic steel [ru

  20. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    Science.gov (United States)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    2017-12-01

    Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials-CF3, CF3M, CF8, and CF8M-were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α‧, precipitation of G-phase in the δ-ferrite, segregation of solute to the austenite/ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. The low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.

  1. Hydrogen considerations in light-water power reactons

    International Nuclear Information System (INIS)

    Keilholtz, G.W.

    1976-02-01

    A critical review of the literature now available on hydrogen considerations in light-water power reactors (LWRs) and a bibliography of that literature are presented. The subject matter includes mechanisms for the generation of hydrogen-oxygen mixtures, a description of the fundamental properties of such mixtures, and their spontaneous ignition in both static and dynamic systems. The limits for hydrogen flammability and flame propagation are examined in terms of the effects of pressure, temperature, and additives; the emphasis is on the effects of steam and water vapor. The containment systems for pressurized-water reactors (PWRs) and boiling-water reactors (BWRs) are compared, and methods to control hydrogen and oxygen under the conditions of both normal operation and postulated accidents are reviewed. It is concluded that hydrogen can be controlled so that serious complications from the production of hydrogen will not occur. The bibliography contains abstracts from the computerized files of the Nuclear Safety Information Center. Key-word, author, and permuted-title indexes are provided. The bibliography includes responses to questions asked by the U. S. Nuclear Regulatory Commission (NRC) which relate to hydrogen, as well as information on normal operations and postulated accidents including generation of hydrogen from core sprays. Other topics included in the ten sections of the bibliography are metal-water reactions, containment atmosphere, radiolytic gas, and recombiners

  2. Navigation by light polarization in clear and turbid waters

    Science.gov (United States)

    Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav

    2011-01-01

    Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170

  3. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  4. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  5. The industry/EPRI advanced light water reactor program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Sugnet, W.R.; Bilan, W.J.

    1986-01-01

    For the United States nuclear power industry to remain viable, it must be prepared to meet the expected need for new generating capacity in the late 1990s with an improved reactor system. The best hope of meeting this requirement is with evolutionary changes in current LWR systems through system simplification and reevaluation of safety and operational design margins. The grid characteristics and the difficulty in raising capital for large projects indicate that smaller light water reactors (400 to 600 MWe) may play an important role the next generation

  6. Major outage trends in light water reactors. Interim report

    International Nuclear Information System (INIS)

    Burns, E.T.

    1978-04-01

    The report is a summary of the major outages which occurred in light water reactor plants during the period January 1971 through June 1977. Only those outages greater than 100 hours duration (exclusive of refueling outages) are included in the report. The trends in outages related to various reactor systems and components are presented as a function of plant age, and alternatively, calendar year. The principal contributors to major outages are ranked by their effect on the overall outage time for PWRs and BWRs. In addition, the outage history of each operating nuclear plant greater than 150 MWe is presented, along with a brief summary of those outages greater than two months duration

  7. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  8. Light-water reactor pressure vessel surveillance standards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The master matrix standard describes a series of standard practices, guides, and methods for the prediction of neutron-induced changes in light-water reactor (LWR) pressure vessel steels throughout a pressure vessel's service life. Some of these are existing American Society for Testing and Materials (ASTM) standards, some are ASTM standards that have been modified, and some are newly proposed ASTM standards. The current (1) scope, (2) areas of application, (3) interrelationships, and (4) status and time table of development, improvement, validation, and calibration for a series of 16 ASTM standards are defined. The standard also includes a discussion of LWR pressure vessel surveillance - justification, requirements, and status of work

  9. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  10. Enhancing proliferation resistance in advanced light water reactor fuel cycles

    International Nuclear Information System (INIS)

    Kazimi, M.S.; Pilat, E.E.; Driscoll, M.J.; Xu, Z.; Wang, D.; Zhao, X.

    2001-01-01

    Alternative once-through, light water reactor fuel designs are evaluated for capability to reduce the amount and quality of plutonium produced. Doubling the discharge burnup is quite effective, producing modest reductions in total plutonium and significant increases in 238 Pu whose heat generation and spontaneous neutrons complicate weapon usability. Reductions in the hydrogen to heavy metal ratio are counterproductive. Increases are helpful, but only small changes can be accommodated. Use of ThO 2 in a homogeneous mixture with UO 2 can reduce plutonium production to about 50% of that in a typical present day PWR, and in heterogeneous seed-blanket designs can reduce it to 30 to 45%. (author)

  11. Automated ultrasonic examination of light water reactor systems

    International Nuclear Information System (INIS)

    Walter, J.H.

    1975-01-01

    An automated ultrasonic examination system has been developed to meet the pre- and inservice inspection requirements of light water reactors. This system features remotely-controlled travelling instrument carriers, computerized collection and storage or inspection data in a manner providing real time comparison against code standards, and computer control over the positioning of the instrument carriers to provide precise location data. The system is currently being utilized in the field for a variety of reactor inspections. The principal features of the system and the recent inspection experience are discussed. (author)

  12. The economics of the fuel cycle (light water reactors)

    International Nuclear Information System (INIS)

    Lepine, J.

    1979-01-01

    The economical characteristics of the fuel cycle (of light water reactors) as well as the definition and calculation method for the average updated cost of the kWh are recalled. The evolution followed by the unit prices of the different operations of the cycle, their total cost and the part taken by this cost in the overall cost of nuclear kWh are described. The effects on the cost of fuel of certain hypotheses, operating requirements and additional cost factors are considered [fr

  13. Light water reactors fuel assembly mechanical design and evaluation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard establishes a procedure for performing an evaluation of the mechanical design of fuel assemblies for light water-cooled commercial power reactors. It does not address the various aspects of neutronic or thermalhydraulic performance except where these factors impose loads or constraints on the mechanical design of the fuel assemblies. This standard also includes a set of specific requirements for design, various potential performance problems and criteria aimed specifically at averting them. This standard replaces ANSI/ANS-57.5-1978

  14. Spent fuel data base: commercial light water reactors

    International Nuclear Information System (INIS)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel

  15. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  16. Nuclear powerplant standardization: light water reactors. Volume 2. Appendixes

    International Nuclear Information System (INIS)

    1981-06-01

    This volume contains working papers written for OTA to assist in preparation of the report, NUCLEAR POWERPLANT STANDARDIZATION: LIGHT WATER REACTORS. Included in the appendixes are the following: the current state of standardization, an application of the principles of the Naval Reactors Program to commercial reactors; the NRC and standardization, impacts of nuclear powerplant standardization on public health and safety, descriptions of current control room designs and Duke Power's letter, Admiral Rickover's testimony, a history of standardization in the NRC, and details on the impact of standardization on public health and safety

  17. Preliminary concepts: safeguards for spent light-water reactor fuels

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Dietz, R.J.

    1979-06-01

    The technology available for safeguarding spent nuclear fuels from light-water power reactors is reviewed, and preliminary concepts for a spent-fuel safeguards system are presented. Essential elements of a spent-fuel safeguards system are infrequent on-site inspections, containment and surveillance systems to assure the integrity of stored fuel between inspections, and nondestructive measurements of the fuel assemblies. Key safeguards research and development activities necessary to implement such a system are identified. These activities include the development of tamper-indicating fuel-assembly identification systems and the design and development of nondestructive spent-fuel measurement systems

  18. Comparative evaluation of recent water hammer events in light water reactors

    International Nuclear Information System (INIS)

    House, R.K.; Sursock, J.P.; Kim, J.H.

    1987-01-01

    Water hammer events that occurred in commercial U.S. light water reactors in the five-year period from 1981 to 1985 were surveyed, and a preliminary evaluation of the events was conducted. The information developed supplements a previous study which evaluated water hammer events in the twelve-year period from 1969 to 1981. The current study of water hammer events in the 1980's confirms that the rate of events remains relatively constant (less than 0.25 events per plant year) in both PWRs and BWRs. Although water hammer events are not normally considered a safety issue, the economic impact of the events on plant operations can be significant. One particular severe water hammer event is estimated to have cost the plant owner $10 million for repair and evaluation alone. A variety of key characteristics of the recent water hammer events are summarized to establish a basis for further study of preventative methods

  19. Development of next-generation light water reactor

    International Nuclear Information System (INIS)

    Ishibashi, Fumihiko; Yasuoka, Makoto

    2010-01-01

    The Next-Generation Light Water Reactor Development Program, a national project in Japan, was inaugurated in April 2008. The primary objective of this program is to meet the need for the replacement of existing nuclear power plants in Japan after 2030. With the aim of setting a global standard design, the reactor to be developed offers greatly improved safety, reliability, and economic efficiency through several innovative technologies, including a reactor core system with uranium enrichment of 5 to 10%, a seismic isolation system, long-life materials, advanced water chemistry, innovative construction techniques, optimized passive and active safety systems, innovative digital technologies, and so on. In the first three years, a plant design concept with these innovative features is to be established and the effectiveness of the program will be reevaluated. The major part of the program will be completed in 2015. Toshiba is actively engaged in both design studies and technology development as a founding member of this program. (author)

  20. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder-form photocatalysts directly produces a mixture of H 2 and O2 (chemical energy) in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. Development of highly efficient photocatalysts is desired. This review addresses why visible light responsive photocatalysts are essential to be developed. The state of the art for the photocatalysts for overall water splitting is briefly described. Moreover, various fundamental aspects for developing efficient photocatalysts, such as particle size of photocatalysts, cocatalysts, and reaction kinetics are discussed. Copyright © 2011 De Gruyter.

  1. Aerosol behavior and light water reactor source terms

    International Nuclear Information System (INIS)

    Abbey, F.; Schikarski, W.O.

    1988-01-01

    The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered

  2. Tritium formation and elimination in light-water electronuclear plants

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1977-01-01

    In light-water reactors, the tritium balance should be considered from both the working constraint and environmental pollution aspects. In light-water electronuclear stations with pressurized reactors using boric acid in solution for reactivity control, the amounts of tritium formed in the primary circuit are worthy of note. The estimations concerning the tritium production in a hypothetical 1000 MWe reactor are discussed. In the tritium build-up, the part which takes the tritium formed by fission in the fuel, owing to diffusion through cladding, is still difficult to estimate. The tritium balance in different working nuclear power stations are consequently of interest. But the tritium produced by ternary fission in the fuel is always much more abundant, and remains almost entirely confined in the uranium oxide if the fuel is clad with zircaloy. The annual quantity stored in the fuel elements is more than 20 times larger than that of the built up free tritium in the primary circuit water of a reactor. It reaches about 12,400 Ci in the hypothetical reactor. In the presently operated reprocessing plants, tritium is all going over in the effluents, and is almost entirely released in the environment. Taking into account the increasing quantities of high irradiated fuel to be reprocessed, it seems necessary to develop separation processes. Development work and tests have been achieved jointly by CEA and SAINT-GOBAIN TECHNIQUES NOUVELLES in order to: contain the tritium in the high activity part of the plant; and keep small the tritiated effluent volume, about 300 liters per ton of reprocessed uranium. It is then possible to envisage a storage for decay of isotopic separation processes. Such separation processes have been estimated by CEA assuming a daily output of 1500 liters of water containing 2,3 Ci.1 -1 of tritium, the desired decontamination factor being 100 [fr

  3. Corrosion of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M C.M. [Instituto Nacional de Tecnologia, Rio de Janeiro (Brazil)

    1977-01-01

    Types of corrosion observed in a heat exchanger pipe and on a support of still of molasses fermented wort, both in austenitic stainless steel, are focused. Not only are the causes which might have had any kind of influence on them examined, but also the measures adopted in order to avoid and lessen its occurence.

  4. Development of inspection and evaluation guidelines for light water reactor internals

    International Nuclear Information System (INIS)

    Aoki, T.; Yamashita, H.; Sakai, K.

    2002-01-01

    reasonable and clarify the technical reasons or rationale to obtain the public acceptance. This is essential not only to plant operation management but also to fulfilling the accountability for the standard rules. Based on the understanding described above, the Thermal and Nuclear Power Engineering Society (TENPES) has organized a committee named 'The Committee on Inspection and Evaluation Guidelines for Light Water Reactor Internals' to develop the guidelines necessary for the inspection, evaluation and repair of PWR and BWR reactor internals. The outline of the guidelines developed by the TENPES committee is presented herein. (author)

  5. Long term review of research on light water reactor types

    International Nuclear Information System (INIS)

    Sumiya, Yutaka

    1982-01-01

    In Japan, 24 nuclear power plants of 17.18 million kWe capacity are in operation, and their rate of operation has shown the good result of more than 60% since 1980. One of the research on the development of light water reactors is the electric power common research, which was started in 1976, and 272 researches were carried out till 1982. It contributed to the counter-measures to stress corrosion cracking, thermal fatigue and the thinning of steam generator tubes, to the reduction of crud generation and the remote control and automation of inspection and maintenance, and to the verification of safety. The important items for the future are the cost down of nuclear power plant construction, the development of robots for nuclear power plants, the improvement of the ability to follow load variation, and the development of light water reactors of new types. It is necessary to diversify the types of reactors to avoid the effect of a serious trouble which may occur in one type of reactors. Tokyo Electric Power Co., Inc., thinks that the Japanese type PWRs having the technical features of KWU type PWRs are desirable for the future development. The compatibility with the condition of installation permission in Japan, the required design change and the economy of the standard design PWRs of KWU (1.3 million kW) have been studied since October, 1981, by KWU and three Japanese manufacturers. (Kako, I.)

  6. Qualification issues for advanced light-water reactor protection systems

    International Nuclear Information System (INIS)

    Korsah, K.; Clark, R.L.; Antonescu, C.

    1993-01-01

    The instrumentation and control (I ampersand C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and fiber optic transmission. Elements of these advances in I ampersand C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying the I ampersand C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I ampersand C for present-day plants was compared to that proposed for advanced light-water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light-water reactor. The template was then used to suggest a methodology for the qualification of microprocessor-based protection systems. The methodology identifies standards/regulatory guides (or lack thereof) for the qualification of microprocessor-based safety I ampersand C systems. This approach addresses in part issues raised in NRC policy document SECY-91-292, which recognizes that advanced I ampersand C systems for the nuclear industry are ''being developed without consensus standards. as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.''

  7. Mechanical design of a light water breeder reactor

    International Nuclear Information System (INIS)

    Fauth, W.L. Jr.; Jones, D.S.; Kolsun, G.J.; Erbes, J.G.; Brennan, J.J.; Weissburg, J.A.; Sharbaugh, J.E.

    1976-01-01

    In a light water reactor system using the thorium-232--uranium-233 fuel system in a seed-blanket modular core configuration having the modules arranged in a symmetrical array surrounded by a reflector blanket region, the seed regions are disposed for a longitudinal movement between the fixed or stationary blanket region which surrounds each seed region. Control of the reactor is obtained by moving the inner seed region thus changing the geometry of the reactor, and thereby changing the leakage of neutrons from the relatively small seed region into the blanket region. The mechanical design of the Light Water Breeder Reactor (LWBR) core includes means for axially positioning of movable fuel assemblies to achieve the neutron economy required of a breeder reactor, a structure necessary to adequately support the fuel modules without imposing penalties on the breeding capability, a structure necessary to support fuel rods in a closely packed array and a structure necessary to direct and control the flow of coolant to regions in the core in accordance with the heat transfer requirements. 4 claims, 24 drawing figures

  8. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  9. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons Ultraviolet light and Ultraviolet compounded with chlorine (Ultraviolet/chlorine) has been brought to attention ed in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studies with 6000,16000 and 30000 μW.s/cm 2 Ultraviolet dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (Ultraviolet/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum Ultraviolet dose was 16000 μW.s/cm 2 attention to 50 percent Ultraviolet absorption ca sued to TSS,TDS and turbidity. In the Ultraviolet/chlorine system suitable rate was 16000μW.s/cm 2 Ultraviolet dose/0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600 CFU/100 ml for Pseudomonas aeroginosa. Most probable number (MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E. Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with Ultraviolet in microbial density about 840 CFU/100 ml for Total coliform and 12 CFU/100 ml for pseudomonas aeroginosa. Attention to lower

  10. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons UV light and UV compounded with chlorine (UV/chlorine) has been brought to attention in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studied with 6000,16000 and 30000 μW.s/cm 2 UV dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (UV/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum UV dose was 16000 μW.s/cm 2 attention to 50 percent UV absorption caused to TSS,TDS and turbidity. In the UV/chlorine system suitable rate was 16000μW.s/cm 2 UV dose /0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600CFU/100 ml for Pseudomonas aeroginosa. Most probable number(MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E.Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with UV in microbial density about 840 CFU/100 ml for Total coliform and 12CFU/100 ml for Pseudomonas aeroginosa. Attention to lower turbidity, TSS and TDS in tap water, higher flow rate about 560 cm 3 /s or 2 m 3 /h acessesed

  11. The electrochemical corrosion behavior of austenitic alloys, cobalt or nickel based super alloys, structurally hardened martensitic, Inconel, zircaloy, super austenitic, duplex and of Ni-Cr or NTi deposits in tritiated water. 3 volumes; Comportement electrochimique a la corrosion d`alliages austenitiques, superalliages base cobalt ou nickel, martensitiques a durcissement structural, inconel, zircaloy, superaustenitiques et duplex, de depots Ni-Cr et NTi en eau tritiee. 3 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G.

    1994-12-31

    The redox potential of {sup 3} H{sub 2}O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. The steels that are most resistant to this behavior are the super austenitic and super Duplex. To avoid corrosion, another solution is to decompose the radiolytic products by imposing a slight reducing potential. Corrosion inhibitors, which are stable in tritiated water, can be used. (author). 69 refs., 421 figs., tabs.

  12. High resolution conductometry for isotopic assay of deuterium in mixtures of heavy water and light water

    International Nuclear Information System (INIS)

    Ananthanarayanan, R.; Sahoo, P.; Murali, N.

    2014-01-01

    A PC based high resolution conductivity monitoring technique has been deployed for determination of isotopic purity of heavy water in samples containing heavy water and light water mixtures using pulsating sensor based conductivity monitoring instrument. The technique involves accurate determination of conductivities of a series of specially treated heavy water and light water mixtures of various compositions at a constant solution temperature. The shift in conductivity (Δκ), which is the difference between conductivities of composite mixture after and before the formation of a typical complex compound (boric acid–mannitol complex in this case), shows a smooth and reproducible decreasing trend with increase in percentage composition of heavy water. This relation, which is obtained by appropriate calibration, is used in the software program for direct display of isotopic purity of heavy water. The technique is examined for determination of percentage composition of heavy water in the entire range of concentration (0-100 %) with reasonable precision (relative standard deviation, RSD ≤1.5 %). About 1 mL of sample is required for each analysis and analysis is completed within a couple of minutes after pretreatment of sample. The accuracy in measurement is ≤1.75 %. (author)

  13. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  14. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    International Nuclear Information System (INIS)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749

  15. The Consortium for Advanced Simulation of Light Water Reactors

    International Nuclear Information System (INIS)

    Szilard, Ronaldo; Zhang, Hongbin; Kothe, Douglas; Turinsky, Paul

    2011-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  16. Light requirements of water lobelia (Lobelia dortmanna L.

    Directory of Open Access Journals (Sweden)

    Borowiak Dariusz

    2017-12-01

    Full Text Available Maximum depth of colonization (zC and total area covered by a population of Lobelia dortmanna, as well as underwater light regime were studied in 25 soft water lobelia lakes in north-western Poland. Variations in underwater light conditions among the lakes were described by Secchi disc depths (zSD, and by attenuation coefficients of irradiance within photosynthetically active radiation range (Kd,PAR, and euphotic zone depths (zEU derived from photometric measurements conducted twice a year (in midspring and midsummer during the period 2014–2015. Maximum depth of colonization of water lobelia ranged from 0.1 to 2.2 m (median zC = 0.8 m; mean zC = 1.0 m. Nine lakes showed the relative coverage of the littoral zone (RCLZ by L. dortmanna to be greater than the mean value, which was 4.8%. Studies showed that light requirements of water lobelia increase when the maximum depth of colonization also increases. This pattern could be partially related to the greater energy needs of deeper growing individuals due to enlarged seed production and their incubation, and for the creation of much heavier inflorescences. Assessment of the light requirements of L. dortmanna along the depth gradient indicates that relative irradiance (percentage of subsurface irradiance of PAR should be at the level of: (i 47–50% (annual total of quantum irradiance 3083–3280 mol m−2 yr−2 for plants growing within a depth range of 2.0–2.5 m; (ii 44–47% (2886–3083 mol m−2yr−1 for plants growing within a depth range of 1.5–2.0 m; (iii 41–44% (2690–2886 mol m−2yr−2 for plants growing within a depth range of 1.0–1.5 m; and (iv 34–41% (2230–2690 mol m−1 yr−1 for those growing in the littoral zone at a depth of between 0.5 and 1.0 m. In average conditions in the Pomeranian lakes, the maximum depth of colonization by L. dortmanna accounts for approximately a third of the Secchi disc depth and a fifth of the depth of the euphotic zone with irradiance

  17. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    OpenAIRE

    Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke

    2016-01-01

    The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...

  18. Multiangular hyperspectral investigation of polarized light in case 2 waters

    Science.gov (United States)

    Tonizzo, A.; Zhou, J.; Gilerson, A.; Chowdhary, J.; Gross, B.; Moshary, F.; Ahmed, S.

    2009-09-01

    The focus of this work is on the dependence of in situ hyperspectral and multiangular polarized data on the size distribution and refractive index of the suspended particles. Underwater polarization measurements were obtained using a polarimeter developed at the Optical Remote Sensing Laboratory of the City College of New York, NY. The degree of polarization (DOP) of the underwater light field in coastal environments was measured and the water-leaving polarized radiance was derived. In-water optical properties were also measured with an ac-9 (WET Labs). Absorption and attenuation spectra are then used to derive information on the dissolved and suspend components in the water medium which are used in a vector radiative transfer code which provides the upwelling radiance. The model was run for various values of the refractive index of mineral particles until the modeled DOP matched the measured one. The relationship between the intensity of the maximum of the DOP and both the refractive index of the mineral particles and the shapes of their size distributions is analyzed in detail.

  19. Status of advanced light water reactor designs 2004

    International Nuclear Information System (INIS)

    2004-05-01

    The report is intended to be a source of reference information for interested organizations and individuals. Among them are decision makers of countries considering implementation of nuclear power programmes. Further, the report is addressed to government officials with an appropriate technical background and to research institutes of countries with existing nuclear programmes that wish to be informed on the global status in order to plan their nuclear power programmes including both research and development efforts and means for meeting future. The future utilization of nuclear power worldwide depends primarily on the ability of the nuclear community to further improve the economic competitiveness of nuclear power plants while meeting stringent safety requirements. The IAEA's activities in nuclear power technology development include the preparation of status reports on advanced reactor designs to provide all interested IAEA Member States with balanced and objective information on advances in nuclear plant technology. In the field of light water reactors, the last status report published by the IAEA was 'Status of Advanced Light Water Cooled Reactor Designs: 1996' (IAEA-TECDOC-968). Since its publication, quite a lot has happened: some designs have been taken into commercial operation, others have achieved significant steps toward becoming commercial products, including certification from regulatory authorities, some are in a design optimization phase to reduce capital costs, development for other designs began after 1996, and a few designs are no longer pursued by their promoters. With this general progress in mind, on the advice and with the support of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for Light Water Reactors (LWRs), the IAEA has prepared this new status report on advanced LWR designs that updates IAEA-TECDOC-968, presenting the various advanced LWR designs in a balanced way according to a common outline

  20. Safety considerations concerning light water reactors in Sweden

    International Nuclear Information System (INIS)

    Nilsson, T.

    1977-01-01

    In 1975 the Swedish Nuclear Power Inspectorate was commissioned by the Government to perform a Reactor Safety Study concerning commercial light water reactors. The study will contain an account of: - rules and regulations for reactor designs; - operation experience of the Swedish nuclear power plants with international comparisons; - the development of reactor designs during the last 10 years; - demands and conditions for inspection and inspection methods; - nuclear power plant operation organization; - training of operators; and - the results of research into nuclear safety. The study is scheduled for completion by July 1st, 1977, however, this paper gives a summary of the results of the Reactor Safety Study already available. The paper contains detailed statistics concerning safety related occurrences and reactor scrams in Sweden from July 1st, 1974 until the beginning of 1977

  1. The United States advanced light water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, J.C. Jr.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear Power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind

  2. Historical perspective of thermal reactor safety in light water reactors

    International Nuclear Information System (INIS)

    Levy, S.

    1986-01-01

    A brief history of thermal reactor safety in U.S. light water reactors is provided in this paper. Important shortcomings in safety philosophy evolution versus time are identified and potential corrective actions are suggested. It should be recognized, that this analysis represents only one person's opinion and that most historical accountings reflect the author's biases and specific areas of knowledge. In that sense, many of the examples used in this paper are related to heat transfer and fluid flow safety issues, which explains why it has been included in a Thermal Hydraulics session. One additional note of caution: the value of hindsight and the selective nature of human memory when looking at the past cannot be overemphasized in any historical perspective

  3. German Light-Water-Reactor Safety-Research Program

    International Nuclear Information System (INIS)

    Seipel, H.G.; Lummerzheim, D.; Rittig, D.

    1977-01-01

    The Light-Water-Reactor Safety-Research Program, which is part of the energy program of the Federal Republic of Germany, is presented in this article. The program, for which the Federal Minister of Research and Technology of the Federal Republic of Germany is responsible, is subdivided into the following four main problem areas, which in turn are subdivided into projects: (1) improvement of the operational safety and reliability of systems and components (projects: quality assurance, component safety); (2) analysis of the consequences of accidents (projects: emergency core cooling, containment, external impacts, pressure-vessel failure, core meltdown); (3) analysis of radiation exposure during operation, accident, and decommissioning (project: fission-product transport and radiation exposure); and (4) analysis of the risk created by the operation of nuclear power plants (project: risk and reliability). Various problems, which are included in the above-mentioned projects, are concurrently studied within the Heiss-Dampf Reaktor experiments

  4. Aging management of light water reactor concrete containments

    International Nuclear Information System (INIS)

    Shah, V.N.; Hookhman, C.J.

    1994-01-01

    This paper evaluates aging of light water reactor concrete containments and identifies three degradation mechanisms that have potential to cause widespread aging damage after years of satisfactory experience: alkali-silica reaction, corrosion of reinforcing steel, and sulfate attack. The evaluation is based on a comprehensive review of the relevant technical literature. Low-alkali cement and slow-reacting aggregates selected according to ASTM requirements cause deleterious alkali-silica reactions. Low concentrations of chloride ions can initiate corrosion of the reinforcing steel if the hydroxyl ions are sufficiently reduced by carbonation, leaching, or magnesium sulfate attack. Magnesium sulfate attack on concrete can cause loss of strength and cementitious properties after long exposure. Techniques to detect and mitigate these long-term aging effects are discussed

  5. The United States Advanced Light Water reactor (USALWR) development program

    International Nuclear Information System (INIS)

    Stahlkopf, K.E.; Noble, D.M.; Devine, Jr.J.C.; Sugnet, W.R.

    1987-01-01

    For the United States Nuclear power industry to remain viable, it must be prepared to meet the expected need for a new generation capacity in the late 90s with an improved reactor system. The best hope of meeting this requirement is with revolutionary changes to current LWR systems through simplification and re-evaluation of safety and operational design margins. In addition, the grid characteristics and the difficulty in raising capital for large projects indicate the smaller light water reactors (600 MWe) may play an important role in the next generation. A cooperative and coordinated program between EPRI, U.S. DOE, the major architect engineers, nuclear steam supply vendors, and the NRC in the U.S. has been undertaken with four major goals in mind. (author)

  6. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  7. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    International Nuclear Information System (INIS)

    Lewis, M.R.

    2000-01-01

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork

  8. Power generation versus fuel production in light water hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1977-06-01

    The economic potentials of fissile-fuel-producing light-water hybrid reactors (FFP-LWHR) and of fuel-self-sufficient (FSS) LWHR's are compared. A simple economic model is constructed that gives the capital investment allowed for the hybrid reactor so that the cost of electricity generated in the hybrid based energy system equals the cost of electricity generated in LWR's. The power systems considered are LWR, FSS-LWHR, and FFP-LWHR plus LWR, both with and without plutonium recycling. The economic potential of FFP-LWHR's is found superior to that of FSS-LWHR's. Moreover, LWHR's may compete, economically, with LWR's. Criteria for determining the more economical approach to hybrid fuel or power production are derived for blankets having a linear dependence between F and M. The examples considered favor the power generation rather than fuel production

  9. Anticipated transients without scram for light water reactors

    International Nuclear Information System (INIS)

    1978-12-01

    In the first two volumes of this report, Anticipated Transients without Scram for Light Water Reactors NUREG-0460, dated April 1978, the NRC staff reviewed the information on this subject that had been developed in the past and evaluated the susceptibility of current nuclear plants to ATWS events using fault tree/event tree analysis techniques. Based on that evaluation, the staff concluded that some corrective measures were required to reduce the risk of severe consequences arising from possible ATWS events. Since the issuance of NUREG-0460, new safety and cost information has become available on ATWS. Also, new insights have been developed on the general subject of quantitative risk assessment. The purpose of this supplement to NUREG-0460 is to summarize the important additions to the information base and to propose a course of action from among a variety of alternatives for resolving the ATWS concern

  10. Conceptual design study of high conversion light water reactor

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Akie, Hiroshi; Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    1990-06-01

    Since 1984, R and D work has been made for high conversion light water reactors (HCLWRs), at JAERI, to improve the natural uranium saving and effective plutonium utilization by the use of conventional or extended LWR technology. This report summarizes the results of the feasibility study made mainly from the viewpoint of nuclear design in the Phase-I Program (1985∼1989). Until now, the following various types of HCLWR core concepts have been investigated; 1) homogeneous core with tight pitch lattice of fuel rods, 2) homogeneous core with semi-tight pitch lattice, 3) spectral shift core using fertile rod with semi-tight pitch lattice, 4) flat-core, 5) axial heterogeneous core. The core burnup and thermohydraulic analyses during normal operations have been performed to clear up the burnup performances and feasibility for each core. Based on the analysis results, the axial heterogeneous HCLWR core was selected as the JAERI reference core. (author)

  11. Comparative economics of the breeder and light water reactor

    International Nuclear Information System (INIS)

    Chow, B.G.

    1980-01-01

    The issue of breeder timing is studied in this article via a breakeven analysis in which the key driving variables are conveniently segregated into two groups, with uranium price providing the linkage. In one group, the technical and cost characteristics of reactors and fuel cycles determine the uranium breakeven price. In the other group, nuclear demand projections and the uranium supply schedule determine the time paths of uranium price for a given composition of reactor types. The author finds that, even if proliferation risk is ignored, the breeder is not economically competitive with a 30%-improved once-through light water reactor before the year 2030 in the USA and in the world outside communist areas as a whole in 90% of the cases examined. In the exceptional cases, the penalty of delaying commercial breeder introduction to 2030 is small and well within the noise level of long-term energy planning. (author)

  12. Nuclide inventories of spent fuels from light water reactors

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Okamoto, Tsutomu

    2012-02-01

    Accurate information on nuclide inventories of spent fuels from Light Water Reactors (LWRs) is important for evaluations of criticality, decay heat, radioactivity, toxicity, and so on, in the safety assessments of storage, transportation, reprocessing and waste disposal of the spent fuels. So, a lot of lattice burn-up calculations were carried out for the possible fuel specifications and irradiation conditions in Japanese commercial LWRs by using the latest nuclear data library JENDL-4.0 and a sophisticated lattice burn-up calculation code MOSRA-SRAC. As a result, burn-up changes of nuclide inventories and their possible ranges were clarified for 21 heavy nuclides and 118 fission products, which are important from the viewpoint of impacts to nuclear characteristics and nuclear fuel cycle and environment. (author)

  13. Non-linear analysis in Light Water Reactor design

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.

    1980-03-01

    The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation

  14. Cost analysis of light water reactor power plants

    International Nuclear Information System (INIS)

    Mooz, W.E.

    1978-06-01

    A statistical analysis is presented of the capital costs of light water reactor (LWR) electrical power plants. The objective is twofold: to determine what factors are statistically related to capital costs and to produce a methodology for estimating these costs. The analysis in the study is based on the time and cost data that are available on U.S. nuclear power plants. Out of a total of about 60 operating plants, useful capital-cost data were available on only 39 plants. In addition, construction-time data were available on about 65 plants, and data on completed construction permit applications were available for about 132 plants. The cost data were first systematically adjusted to constant dollars. Then multivariate regression analyses were performed by using independent variables consisting of various physical and locational characteristics of the plants. The dependent variables analyzed were the time required to obtain a construction permit, the construction time, and the capital cost

  15. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  16. Waste disposal from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Costello, J.M.; Hardy, C.J.

    1981-05-01

    Alternative nuclear fuel cycles for support of light water reactors are described and wastes containing naturally occurring or artificially produced radioactivity reviewed. General principles and objectives in radioactive waste management are outlined, and methods for their practical application to fuel cycle wastes discussed. The paper concentrates upon management of wastes from upgrading processes of uranium hexafluoride manufacture and uranium enrichment, and, to a lesser extent, nuclear power reactor wastes. Some estimates of radiological dose commitments and health effects from nuclear power and fuel cycle wastes have been made for US conditions. These indicate that the major part of the radiological dose arises from uranium mining and milling, operation of nuclear reactors, and spent fuel reprocessing. However, the total dose from the fuel cycle is estimated to be only a small fraction of that from natural background radiation

  17. Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurepin, V.A.; Kulik, D.A.; Hitpold, A.; Nicolet, M

    2002-03-01

    In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO{sub 2} by incremental additions of O{sub 2} in H{sub 2}O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni

  18. Ultraviolet light-emitting diodes in water disinfection.

    Science.gov (United States)

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  19. Study for improvement of light water reactor technology, (3)

    International Nuclear Information System (INIS)

    Suzuki, Hideaki; Morita, Terumichi; Igarashi, Hiroshi; Tabata, Hiroaki

    1991-01-01

    The Japan Atomic Power Company has performed some studies, which are referred to as 'some feasibility studies of LWR technology', in order to help improve and up-grade the light water reactor technology. We would like to show the key results of the above studies in an orderly fashion in this document. As the third issue, this paper describes the study of the feasibility of applying a suppression pool system in a 4-loop PWR plant in order to reduce containment volume and evaluates the merits of such a system. The results confirmed the feasibility of such a plant consisting of a 4-loop plant with a suppression pool system. The expected merits of a suppression pool type PWR are as follows: (1) The volume within the containment boundary is half of that for the conventional plant. This reduces the material quantity substantially. (2) A wider layout space is obtained since the operating floor is located outside the containment are. And this improves the maneuverability of plant outage. (3) Low center of gravity of the plant contributes to improving the ability to withstand seismic activity. Although there are some open items left that should be confirmed, we consider that PWR with small CV is an appealing plant in the light of further sales points such as relaxing siting conditions, extending the use of robotics and so on. (author)

  20. Utility Leadership in Defining Requirements for Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    Sugnet, William R.; Layman, William H.

    1990-01-01

    It is appropriate, based on twenty five years of operating experience, that utilities take a position of leadership in developing the technical design and performance requirements for the next generations of nuclear electric generating plants. The U. S. utilities, through the Electric Power Research Institute, began an initiative in 1985 to develop such Utility requirements. Many international Utility organizations, including Korea Electric Power Corporation, have joined as full participants in this important Utility industry initiative. In light of the closer linkage among countries of the world due to rapid travel and telecommunications, it is also appropriate that there be international dialogue and agreement on the principal standards for nuclear power plant acceptability and performance. The Utility/EPRI Advanced Light Water Reactor Program guided by the ALRR Utility Steering Committee has been very successful in developing these Utility requirements. This paper will summarize the state of development of the ALRR Utility Requirements for Evolutionary Plants, recent developments in their review by the U. S. Nuclear Regulatory Commission, resolution of open issues, and the extension of this effort to develop a companion set of ALRR Utility Requirements for plants employing passive safety features

  1. Transmutation of Americium in Light and Heavy Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada); Ellis, R.J.; Gehin, J.C. [Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee (United States); Maldonado, G.I. [University of Tennessee (Knoxville)/ORNL, Tennessee (United States)

    2009-06-15

    There is interest worldwide in reducing the burden on geological nuclear fuel disposal sites. In most disposal scenarios the decay heat loading of the surrounding rock limits the capacity of these sites. On the long term, this decay heat is generated primarily by actinides, and a major contributor 100 to 1000 years after discharge from the reactor is {sup 241}Am. One possible approach to reducing the decay-heat burden is to reprocess spent reactor fuel and use thermal spectrum reactors to 'burn' the Am nuclides. The viability of this approach is dependent upon the detailed changes in chemical and isotopic composition of actinide-bearing fuels after irradiation in thermal reactor spectra. The currently available thermal spectrum reactor options include light water-reactors (LWRs) and heavy-water reactors (HWRs) such as the CANDU{sup R} designs. In addition, as a result of the recycle of spent LWR fuel, there would be a considerable amount of potential recycled uranium (RU). One proposed solution for the recycled uranium is to use it as fuel in Candu reactors. This paper investigates the possibilities of transmuting americium in 'spiked' bundles in pressurized water reactors (PWRs) and in boiling water reactors (BWRs). Transmutation of Am in Candu reactors is also examined. One scenario studies a full core fuelled with homogeneous bundles of Am mixed with recycled uranium, while a second scenario places Am in an inert matrix in target channels in a Candu reactor, with the rest of the reactor fuelled with RU. A comparison of the transmutation in LWRs and HWRs is made, in terms of the fraction of Am that is transmuted and the impact on the decay heat of the spent nuclear fuel. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). (authors)

  2. Potential of light water reactors for future nuclear power plants

    International Nuclear Information System (INIS)

    Gueldner, R.

    2003-01-01

    Energy consumption worldwide is going to increase further in the next few decades. Reliable supplies of electricity can be achieved only by centralized power plant structures. In this scenario, nuclear power plants are going to play a leading role as reliable and competitive plants, also under deregulated market conditions. Today, light water reactors have achieved a leading position, both technically and economically, contributing 85% to worldwide electricity generation in nuclear plants. They will continue to be a proven technology in power generation. In many countries, activities therefore are concentrated on extending the service life of plants beyond a period of forty years. New nuclear generating capacities are expected to be created and added from the end of this decade onward. Most of this capacity will be in light water reactors. The concepts of third-generation reactors will meet all economic and technical safety requirements of the 21st century and will offer considerable potential for further development. Probably some thirty years from now, fourth-generation nuclear power plants will be ready for commercial application. These plants will penetrate especially new sectors of the energy markets. Public acceptance of new nuclear power plants is not a matter of reactor lines, provided that safety requirements are met. The important issue is the management of radioactive waste. The construction of new nuclear power plants in Western Europe and North America mainly hinges on the ability to explain to the public that there is a need for new plants and that nuclear power is fundamental to assuring sustainable development. (orig.)

  3. Materials Inventory Database for the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  4. Overview of microstructural evolution in neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1993-01-01

    Austenitic stainless steels are important structural materials common to several different reactor systems, including light water and fast breeder fission, and magnetic fusion reactors (LWR, FBR, and MFR, respectively). The microstructures that develop in 300 series austenitic stainless steels during neutron irradiation at 60-700 C include combinations of dislocation loops and networks, bubbles and voids, and various kinds of precipitate phases (radiation-induced, or -enhanced or -modified thermal phases). Many property changes in these steels during neutron irradiation are directly or indirectly related to radiation-induced microstructural evolution. Even more important is the fact that radiation-resistance of such steels during either FBR or MFR irradiation is directly related to control of the evolving microstructure during such irradiation. The purpose of this paper is to provide an overview of the large and complex body of data accumulated from various fission reactor irradiation experiments conducted over the many years of research on microstructural evolution in this family of steels. The data can be organized into several different temperature regimes which then define the nature of the dominant microstructural components and their sensitivities to irradiation parameters (dose, helium/dpa ratio, dose rate) or metallurgical variables (alloy composition, pretreatment). The emphasis in this paper will be on the underlying mechanisms driving the microstructure to evolve during irradiation or those enabling microstructural stability related to radiation resistance. (orig.)

  5. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.

    2012-01-01

    -carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...... austenite and Hägg carbide, Ξ-M5C2. EXAFS showed that the Cr atoms were mainly present in environments similar to the carbides Hägg Ξ-M5C2 and M23C6. The environments of the Fe and Ni atoms were concluded to be largely metallic austenite. Light optical micrograph of stainless steel AISI 316 gas...

  6. Ultrasonic inspection of austenitic welds

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J R; Wagg, A R; Whittle, M J [N.D.T. Applications Centre, CEGB, Manchester (United Kingdom)

    1980-11-01

    The metallurgical structure of austenitic welds is described and contrasted with that found in ferritic welds. It is shown that this structure imparts a marked elastic anisotropy in the ultrasonic propagation parameters. Measurements of variations in the apparent attenuation of sound and deviations in the beam direction are described. The measurements are interpreted in terms of the measured velocity anisotropy. Two applications of the fundamental work are described. In the first it is shown how, by using short pulse compression wave probes, and with major modification of the welding procedure, a stainless steel fillet weld in an AGR boiler can be inspected. In the second application, alternative designs of a transition butt weld have been compared for ease of ultrasonic inspection. The effects of two different welding processes on such an inspection are described. Finally, the paper examines the prospects for future development of inspection and defect-sizing techniques for austenitic welds. (author)

  7. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1979-10-01

    Use of bipolar electrolysis with countercurrent electrolyte flow to separate hydrogen isotopes was investigated for the removal of tritium from light water effluents or from heavy water moderator. Deuterium-tritium and protium-tritium separation factors occurring on a Pd-25% Ag bipolar electrode were measured to be 2.05 to 2.16 and 11.6 to 12.4 respectively, at current densities between 0.21 and 0.50 A cm -2 , and at 35 to 90 0 C. Current densities up to 0.3 A cm -2 have been achieved in continuous operation, at 80 to 90 0 C, without significant gas formation on the bipolar electrodes. From the measured overvoltage at the bipolar electrodes and the electrolyte conductivity the power consumption per stage was calculated to be 3.0 kwh/kg H 2 O at 0.2 A cm -2 and 5.0 kwh/kg H 2 O at 0.5 A cm -2 current density, compared to 6.4 and 8.0 kwh/kg H 2 O for normal electrolysis. A mathematical model derived for hydrogen isotope separation by bipolar electrolysis, i.e., for a square cascade, accurately describes the results for protium-tritium separation in two laboratory scale, multistage experiments with countercurrent electrolyte flow; the measured tiritum concentration gradient through the cascade agreed with the calculated values

  8. Development of pre-startup equipment for light water reactors

    International Nuclear Information System (INIS)

    Ram, Rajit; Borkar, S.P.; Dixit, M.Y.; Das, Debashis; Patil, R.K.

    2010-01-01

    Light water reactor (LWR) core typically has high excess reactivity as compared to Pressurized Heavy Water Reactor (PHWR). Unlike PHWR, where online refueling is done, LWR is operated for a long period to achieve maximum fuel burn-up before refueling. Since the reactivity is always reducing with burn-up of the core, the positions of control rods at criticality are always changing in a single direction, i.e. away from the core. Therefore it is possible to start the LWR even if the nuclear instrumentation is not online, provided the criticality position of control rods is known for previous operation. However, for the very first startup, the criticality position of control rods is required to be determined. A special nuclear instrumentation system, called Pre-startup equipment (PSE) is developed using two numbers of in-core detectors along with the processing electronics. The PSE enables operators to determine the criticality position of control rods for the first startup at zero power. The same equipment can also be used during loading of fuel assemblies. This paper discusses the features and architecture of PSE, its individual circuit blocks and specifications. (author)

  9. Water cooled metal optics for the Advanced Light Source

    International Nuclear Information System (INIS)

    McKinney, W.R.; Irick, S.C.; Lunt, D.L.J.

    1991-01-01

    The program for providing water cooled metal optics for the Advanced Light Source at Berkeley is reviewed with respect to fabrication and metrology of the surfaces. Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from prototype mirrors and grating blanks will be presented, which show exceptionally low microroughness and mid-period error. We will briefly describe out improved version of the Long Trace Profiler, and its importance to out metrology program. We have completely redesigned the mechanical, optical and computational parts of the profiler system with the cooperation of Peter Takacs of Brookhaven, Continental Optical, and Baker Manufacturing. Most important is that one of our profilers is in use at the vendor to allow testing during fabrication. Metrology from the first water cooled mirror for an ALS beamline is presented as an example. The preplating processing and grinding and polishing were done by Tucson Optical. We will show significantly better surface microroughness on electroless nickel, over large areas, than has been reported previously

  10. Clarification of dissolved irradiated light-water-reactor fuel

    International Nuclear Information System (INIS)

    Rodrigues, G.C.

    1983-02-01

    Bench-scale studies with actual dissolved irradiated light water reactor (LWR) fuels showed that continuous centrifugation is a practical clarification method for reprocessing. Dissolved irradiated LWR fuel was satisfactorily clarified in a bench-scale, continuous-flow bowl centrifuge. The solids separated were successfully reslurried in water. When the reslurried solids were mixed with clarified centrate, the resulting suspension behaved similar to the original dissolver solution during centrifugation. Settling rates for solids in actual irradiated fuel solutions were measured in a bottle centrifuge. The results indicate that dissolver solutions may be clarified under conditions achievable by available plant-scale centrifuge technology. The effective particle diameter of residual solids was calculated to be 0.064 microns for Oconee-1 fuel and 0.138 microns for Dresden-1 fuel. Filtration was shown unsuitable for clarification of LWR fuel solutions. Conventional filtration with filter aid would unacceptably complicate remote canyon operation and maintenance, might introduce dissolved silica from filter aids, and might irreversibly plug the filter with dissolver solids. Inertial filtration exhibited irreversible pluggage with nonradioactive stand-in suspensions under all conditions tested

  11. Light water ultra-safe plant concept: First annual report

    International Nuclear Information System (INIS)

    Klevans, E.

    1987-01-01

    Since the accident at Three Mile Island (TMI) Penn State Nuclear Engineering Department Faculty and Staff have considered various methods to improve already safe reactor designs and public perception of the safety of Nuclear Power. During the last year, the Department of Energy funded the study of a plant reconfiguration originally proposed by M.A. Shultz. This report presents the status of the project at the end of the first year. A broad set of specifications to improve safety and public perception were set forth and the realization of these goals is achieved in a plant design named, ''The Light Water Ultra-Safe Plant Concept.'' The most significant goals of the concept address the station black-out problem and simplification of required operator actions during abnormal situations. These goals are achieved in the Ultra-Safe Concept by addition of an in-containment atmospheric tank containing a large quantity of cool water, replacement of the conventional PWR pressurizer system with a pressurizing pump, internal emergency power generation, and arrangement of components to utilize natural circulation at shut-down. The first year effort included an evaluation of the normal operation characteristics of the primary system pressurizing concept, evaluating parameters and modeling for analysis of the shutdown scenario, design of a low power density core, design of a low-pressure waste handling system, arrangement of a drainage system for pipe break considerations, and failure modes and effects analysis

  12. A new book : 'light-water reactor materials'

    International Nuclear Information System (INIS)

    Olander, Donald R.; Motta, Arthur T.

    2005-01-01

    The contents of a new book currently in preparation are described. The dearth of books in the field of nuclear materials has left both students in nuclear materials classes and professionals in the same field without a resource for the broad fundamentals of this important sub-discipline of nuclear engineering. The new book is devoted entirely to materials problems in the core of light-water reactors, from the pressure vessel into the fuel. Key topics deal with the UO 2 fuel, zircaloy cladding, stainless steel, and of course, water. The restriction to LWR materials does not mean a short monograph; the enormous quantity of experimental and theoretical work over the past 50 years on these materials presents a challenge of culling the most important features and explaining them in the simplest quantitative fashion. Moreover, LWRs will probably be the sole instrument of the return of nuclear energy in electric power production for the next decade or so. By that time, a new book will be needed

  13. PARs for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Hosler, J.; Sliter, G.

    1997-01-01

    This paper discusses the progress being made in the United States to introduce passive autocatalytic recombiner (PAR) technology as a cost-effective alternative to electric recombiners for controlling combustible gas produced in postulated accidents in both future Advanced Light Water Reactors (ALWRs) and certain U. S. operating nuclear plants. PARs catalytically recombine hydrogen and oxygen, gradually producing heat and water vapor. They have no moving parts and are self-starting and self-feeding, even under relatively cold and wet containment conditions. Buoyancy of the hot gases they create sets up natural convective flow that promotes mixing of combustible gases in a containment. In a non-inerted ALWR containment, two approaches each employing a combination of PARs and igniters are being considered to control hydrogen in design basis and severe accidents. In pre-inerted ALWRs, PARs alone control radiolytic oxygen produced in either accident type. The paper also discusses regulatory feedback regarding these combustible gas control approaches and describes a test program being conducted by the Electric Power Research Institute (EPRI) and Electricite de France (EdF) to supplement the existing PAR test database with performance data under conditions of interest to U.S. plants. Preliminary findings from the EPRI/EdF PAR model test program are included. Successful completion of this test program and confirmatory tests being sponsored by the U. S. NRC are expected to pave the way for use of PARs in ALWRs and operating plants. (author)

  14. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  15. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  16. A collection of publications and articles for a light water ultra-safe plant concept

    International Nuclear Information System (INIS)

    Klevans, E.H.

    1988-01-01

    This collection contains reports titled: ''The Penn State Ultra-Safe Reactor Concept; '' ''Ultra Safe Nuclear Power; '' ''Use of the Modular Modeling System, in the Design of the Penn State Advanced Light Water Reactor; '' ''Use of the Modular Modeling System in Severe Transient Analysis of Penn State Advanced Light Water Reactor; '' ''PSU Engineers' Reactor Design May Stop a Future TMI; '' and ''The Penn State Advanced Light Water reactor Concept.''

  17. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  18. Temperature effects studies in light water reactor lattices

    International Nuclear Information System (INIS)

    Erradi, Lahoussine.

    1982-02-01

    The CREOLE experiments performed in the EOLE critical facility located in the Nuclear Center of CADARACHE - CEA (UO 2 and UO 2 -PuO 2 lattice reactivity temperature coefficient continuous measurements between 20 0 C and 300 0 C; integral measurements by boron equivalent effect in the moderator; water density effects measurements with the use of over cladding aluminium tubes to remove moderator) allow to get an interesting and complete information on the temperature effects in the light water reactor lattices. A very elaborated calcurated scheme using the transport theory and the APOLLO cross sections library, has been developed. The analysed results of the whole lot of experiments show that the discrepancy between theory and experiment strongly depends on the temperature range and on the type of lattices considered. The error is mainly linked with the thermal spectrum effects. A study on the temperature coefficient sensitivity to the different cell neutron parameters has shown that only the shapes of the 235 U and 238 U thermal cross sections have enough weight and uncertainty margins to explain the observed experimental/calculation bias. Instead of arbitrarily fitting the identified wrong data on the calculation of the reactivity temperature coefficient we have defined a procedure of modification of the cross sections based on the consideration of the basic nuclear data: resonance parameters and associated statistic laws. The implementation of this procedure has led to propose new thermal cross sections sets for 235 U and 238 U consistent with the uncertainty margins associated with the previously accepted values and with some experimental data [fr

  19. Summary of Research on Light Water Reactor Improvement Concepts

    International Nuclear Information System (INIS)

    Mowery, Alfred L.

    2002-01-01

    The Arms Control and Disarmament Agency of the U.S. Department of State instituted a study aimed at improving the light water reactor (LWR) fuel consumption efficiency as an alternative to fuel recycle in the late 1970s. Comparison of the neutron balance tables of an LWR (1982 design) and an 'advanced' Canada deuterium uranium (CANDU) reactor explained that the relatively low fuel efficiency of the LWR was not primarily a consequence of water moderator absorptions. Rather, the comparatively low LWR fuel efficiency resulted from its use of poison to hold down startup reactivity together with other neutron losses. The research showed that each neutron saved could reduce fuel consumption by about 5%. In a typical LWR some 5 neutrons (out of 100) were absorbed in control poisons over a cycle. There are even more parasitic and leakage neutron absorptions. The objective of the research was to find ways to minimize control, parasitic, and other neutron losses aimed at improved LWR fuel consumption. Further research developed the concept of 'putting neutrons in the bank' in 238 U early in life and 'drawing them out of the bank' late in life by burning the 239 Pu produced. Conceptual designs were explored that could both control the reactor and substantially improve fuel efficiency and minimize separative work requirements.The U.S. Department of Energy augmented its high burnup fuel program based on the research in the late 1970s. As a result of the success of this program, fuel burnup in U.S. LWRs has almost doubled in the intervening two decades

  20. Application of fully ceramic microencapsulated fuels in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  1. Application of fully ceramic microencapsulated fuels in light water reactors

    International Nuclear Information System (INIS)

    Gentry, C.; George, N.; Maldonado, I.; Godfrey, A.; Terrani, K.; Gehin, J.

    2012-01-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO 2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  2. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL

    2012-01-01

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  3. Effects of LWR coolant environments on fatigue lives of austenitic stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gavenda, D.J.

    1997-01-01

    The ASME Boiler and Pressure Vessel Code fatigue design curves for structural materials do not explicitly address the effects of reactor coolant environments on fatigue life. Recent test data indicate a significant decrease in fatigue life of pressure vessel and piping materials in light water reactor (LWR) environments. Fatigue tests have been conducted on Types 304 and 316NG stainless steel in air and LWR environments to evaluate the effects of various material and loading variables, e.g., steel type, strain rate, dissolved oxygen (DO) in water, and strain range, on fatigue lives of these steels. The results confirm the significant decrease in fatigue life in water. The environmentally assisted decrease in fatigue life depends both on strain rate and DO content in water. A decrease in strain rate from 0.4 to 0.004%/s decreases fatigue life by a factor of ∼ 8. However, unlike carbon and low-alloy steels, environmental effects are more pronounced in low-DO than in high-DO water. At ∼ 0.004%/s strain rate, reduction in fatigue life in water containing <10 ppb D is greater by a factor of ∼ 2 than in water containing ≥ 200 ppb DO. Experimental results have been compared with estimates of fatigue life based on the statistical model. The formation and growth of fatigue cracks in austenitic stainless steels in air and LWR environments are discussed

  4. Job-related doses in light water reactors

    International Nuclear Information System (INIS)

    Schnuer, K.

    1993-01-01

    The Treaty of 1957 establishing the European Atomic Energy Community, (EURATOM) was an essential prerequisite for the development of a strong nuclear industry in Europe. Among other things the Treaty provides that the Community shall lay down Basic Safety Standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation and ensure that they are applied. Following adoption of the Council Directive of 1980, the European Commission defined the basic principles of Justification, Optimization and Limitation to be applied in order to ensure the greatest possible protection of workers and the general public. Subsequently the Commission took initiatives in order to find ways of implementing these three basic principles in practical radiation protection. In 1980 the Commission in close collaboration with the leading nuclear power station operators, set up its own system of 'occupational radiation dose statistics from light water reactors operating in Western Europe'. This was designed for PWRs and BWRs, and the Commission benefited from the experience of neighbouring non-EC countries such as Sweden, Finland, Switzerland and Spain (not yet a member) operating nuclear power stations made by different manufacturers. The paper provides some general information on developments and trends in collective and individual doses to workers in nuclear power stations, based on a unique European databank of approximately 1000 operating reactor years. 9 figs

  5. Investigation of activity release during light water reactor core meltdown

    International Nuclear Information System (INIS)

    Albrecht, H.; Matschoss, V.; Wild, H.

    1978-01-01

    A test facility was developed for the determination of activity release and of aerosol characteristics under realistic light water reactor core melting conditions. It is composed of a high-frequency induction furnace, a ThO 2 crucible system, and a collection apparatus consisting of membrane and particulate filters. Thirty-gram samples of a representative core material mixture (corium) were melted under air, argon, or steam at 0.8 to 2.2 bar. In air at 2700 0 C, for example, the relative release was 0.4 to 0.7% for iron, chromium, and cobalt and 4 to 11% for tin, antimony, and manganese. Higher release values of 20 to 40% at lower temperatures (2150 0 C, air) were found for selenium, cadmium, tellurium, and cesium. The size distribution of the aerosol particles was trimodal with maxima at diameters of 0.17, 0.30, and 0.73 μm. The result of a qualitative x-ray microanalysis was that the main elements of the melt were contained in each aerosol particle. Further investigations will include larger melt masses and the additional influence of concrete on the release and aerosol behavior

  6. Reactor core of light water-cooled reactor

    International Nuclear Information System (INIS)

    Miwa, Jun-ichi; Aoyama, Motoo; Mochida, Takaaki.

    1996-01-01

    In a reactor core of a light water cooled reactor, the center of the fuel rods or moderating rods situated at the outermost circumference among control rods or moderating rods are connected to divide a lattice region into an inner fuel region and an outer moderator region. In this case, the area ratio of the moderating region to the fuel region is determined to greater than 0.81 for every cross section of the fuel region. The moderating region at the outer side is increased relative to the fuel rod region at the inner side while keeping the lattice pitch of the fuel assembly constant, thereby suppressing the increase of an absolute value of a void reactivity coefficient which tends to be caused when using MOX fuels as a fuel material, by utilizing neutron moderation due to a large quantity of coolants at the outer side of the fuel region. The void reactivity coefficient can be made substantially equal with that of uranium fuel assembly without greatly reducing a plutonium loading amount or without greatly increasing linear power density. (N.H.)

  7. Study on unstable fracture characteristics of light water reactor piping

    International Nuclear Information System (INIS)

    Kurihara, Ryoichi

    1998-08-01

    Many testing studies have been conducted to validate the applicability of the leak before break (LBB) concept for the light water reactor piping in the world. It is especially important among them to clarify the condition that an inside surface crack of the piping wall does not cause an unstable fracture but ends in a stable fracture propagating only in the pipe thickness direction, even if the excessive loading works to the pipe. Pipe unstable fracture tests performed in Japan Atomic Energy Research Institute had been planned under such background, and clarified the condition for the cracked pipe to cause the unstable fracture under monotonous increase loading or cyclic loading by using test pipes with the inside circumferential surface crack. This paper examines the pipe unstable fracture by dividing it into two parts. One is the static unstable fracture that breaks the pipe with the inside circumferential surface crack by increasing load monotonously. Another is the dynamic unstable fracture that breaks the pipe by the cyclic loading. (author). 79 refs

  8. Light water reactor pressure isolation valve performance testing

    International Nuclear Information System (INIS)

    Neely, H.H.; Jeanmougin, N.M.; Corugedo, J.J.

    1990-07-01

    The Light Water Reactor Valve Performance Testing Program was initiated by the NRC to evaluate leakage as an indication of valve condition, provide input to Section XI of the ASME Code, evaluate emission monitoring for condition and degradation and in-service inspection techniques. Six typical check and gate valves were purchased for testing at typical plant conditions (550F at 2250 psig) for an assumed number of cycles for a 40-year plant lifetime. Tests revealed that there were variances between the test results and the present statement of the Code; however, the testing was not conclusive. The life cycle tests showed that high tech acoustic emission can be utilized to trend small leaks, that specific motor signature measurement on gate valves can trend and indicate potential failure, and that in-service inspection techniques for check valves was shown to be both feasible and an excellent preventive maintenance indicator. Life cycle testing performed here did not cause large valve leakage typical of some plant operation. Other testing is required to fully understand the implication of these results and the required program to fully implement them. (author)

  9. Physics methods for calculating light water reactor increased performances

    International Nuclear Information System (INIS)

    Vandenberg, C.; Charlier, A.

    1988-01-01

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained

  10. Studies of severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    1987-01-01

    From 10 to 12 November 1986 some 80 delegates met under the auspices of the CEC working group on the safety of light-water reactors. The participants from EC Member States were joined by colleagues from Sweden, Finland and the USA and met to discuss the subject of severe accidents in LWRs. Although this seminar had been planned well before Chernobyl, the ''severe-accident-that-really-happened'' made its mark on the seminar. The four main seminar topics were: (i) high source-term accident sequences identified in PSAs, (ii) containment performance, (iii) mitigation of core melt consequences, (iv) severe accident management in LWRs. In addition to the final panel discussion there was also a separate panel discussion on lessons learned from the Chernobyl accident. These proceedings include the papers presented during the seminar and they are arranged following the seminar programme outline. The presentations and discussions of the two panels are not included in the proceedings. The general conclusions and directions following from these two panels were, however, considered in a seminar review paper which was published in the March 1987 issue of Nuclear Engineering International

  11. Radionuclide distribution in LWR [light-water reactor] spent fuel

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Thomas, L.E.; Baldwin, D.L.; Mendel, J.E.

    1990-09-01

    The Materials Characterization Center (MCC) at Pacific Northwest Laboratory (PNL) provides well-characterized spent fuel from light-water reactors (LWRs) for use in laboratory tests relevant to nuclear waste disposal in the proposed Yucca Mountain repository. Interpretation of results from tests on spent fuel oxidation, dissolution, and cladding degradation requires information on the inventory and distribution of radionuclides in the initial test materials. The MCC is obtaining this information from examinations of Approved Testing Materials (ATMs), which include spent fuel with burnups from 17 to 50 MWd/kgM and fission gas releases (FGR) from 0.2 to 18%. The concentration and distribution of activation products and the release of volatile fission products to the pellet-cladding gap and rod plenum are of particular interest because these characteristics are not well understood. This paper summarizes results that help define the 14 C inventory and distribution in cladding, the ''gap and grain boundary'' inventory of radionuclides in fuels with different FGRs, and the structure and radionuclide inventory of the fuel rim region within a few hundred micrometers from the fuel edge. 6 refs., 5 figs., 1 tab

  12. Neutron radiographic findings in light water reactor fuel

    International Nuclear Information System (INIS)

    Domanus, J.C.

    1979-06-01

    The assessment of neutron radiographs of nuclear fuel elements can be much easier, faster and simpler if reference can be made to typical defects, which can be revealed by neutron radiography. In other fields of industrial radiography collections of reference radiographs, showing typical defects in welding, or casting have been completed and published long ago. Since 1974 neutron radiography is routinely used at Risoe National Laboratory, Denmark, for the quality and performance control of nuclear fuel. About 2000 neutron radiographs were taken, mainly during the post irradiation examination of light water reactor fuel. During assessment of neutron radiographs some typical defects of the fuel were found and it was felt that a classification of such defects will help to speed up the assessment procedure. Therefore an attempt was made to establish such a classification, which is currently used at Risoe now. This classification is presented in this atlas, which contains 36 neutron radiographs reproduced on film (in original size) and on paper (twice enlarged). (author)

  13. Controlling radiation fields in siemans designed light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R.; Marchl, T. [Siemens Power Generation Group, Erlangen (Germany)

    1995-03-01

    An essential item for the control of radiation fields is the minimization of the use of satellites in the reactor systems of Light Water Reactors (LWRs). A short description of the qualification of Co-replacement materials will be followed by an illustration of the locations where these materials were implemented in Siemens designed LWRs. Especially experiences in PWRs show the immense influence of reduction of cobalt sources on dose rate buildup. The corrosion and the fatique and wear behavior of the replacement materials has not created concern up to now. A second tool to keep occupational radiation doses at a low level in PWRs is the use of the modified B/Li-chemistry. This is practized in Siemens designed plants by keeping the Li level at a max. value of 2 ppm until it reaches a pH (at 300{degrees}C) of {approximately}7.4. This pH is kept constant until the end of the cycle. The substitution of cobalt base alloys and thus the removal of the Co-59 sources from the system had the largest impact on the radiation levels. Nonetheless, the effectiveness of the coolant chemistry should not be neglected either. Several years of successful operation of PWRs with the replacement materials resulted in an occupational radiation exposure which is below 0.5 man-Sievert/plant and year.

  14. On the path to ordering standardized advanced light water reactors

    International Nuclear Information System (INIS)

    Sliter, G.E.

    1997-01-01

    The international Advanced Light Water Reactor (ALWR) program is specifying, designing, and certifying the next generation of nuclear power plants. Begun in the mid-1980's, the program is on track to permit ordering and construction of families of standardized plants at the start of the twenty-first century. ALWRs will be constructed only if they are economically competitive with alternative forms of electricity generation and are recognized as acceptable and favorable by the public, prospective owners, and investors. This paper first gives an overview of the major building blocks ensuring safe, reliable, and economic designs and the status of those designs. Next it lays out the path the industry has charted toward adopting the ALWR option and indicates the status of three key steps -- design certification, utility requirements, and first-of-a-kind engineering. Lastly, the paper focuses on one of the most important building blocks for ensuring economic viability -- life-cycle standardization. Among the topics are the definition and scope of standardization; its advantages and disadvantages; design team standardization plans that describe the desired or optimum degree of standardization and the processes used to achieve it; and the need for an agreement among all plant owners and operators for implementing and sustaining standardization in families of ALWRs. 10 refs., 5 figs

  15. Capital costs of light water reactors: the USA

    International Nuclear Information System (INIS)

    MacKerron, G.

    1979-10-01

    The cost of building a modern nuclear power plant is greater than that of almost any other single civilian project - costs of individual plants are reckoned in hundreds of millions of pounds in the UK, and up to a billion dollars or more in the USA. Hence, depending on the size of nuclear programmes and their funding, escalation of nuclear capital costs may have important economic and social consequences through its effects on overall resource allocation. It is therefore important to analyse the extent and, as far as possible, the sources of cost increases and escalation, in order to see if the experience yields implications for technology policy. The USA has much the greatest experience in nuclear construction: it also has by far the largest amount of published information on the subject of capital costs. As all other countries lack either sufficient experience and/or adequate published cost information, it is impossible to conduct a genuine international comparison, and this paper is confined to an examination of US experience. This paper therefore assembles and evaluates currently available data on light water reactor (PWR and BWR) capital costs in the USA. (author)

  16. Expanded austenite, crystallography and residual stress

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2010-01-01

    The identity of expanded austenite as developing during low temperature nitriding and/or carburising of austenitic stainless steel has been under debate since the very first observation of this phase. In the present article, recent results obtained with (a) homogeneous samples of various uniform ...

  17. Expanded austenite; crystallography and residual stress

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2009-01-01

    The identity of expanded austenite as developing during low temperature nitriding and/or carburizing of austenitic stainless steel has been under debate since the very first observation of this phase. In the present article recent results obtained with i) homogeneous samples of various uniform co...

  18. 14. Internal symposium on secular change of structural materials for nuclear energy. Secular change mechanism in light water reactor environment

    International Nuclear Information System (INIS)

    1993-01-01

    At this symposium, lectures were given on the embrittlement by neutron irradiation of LWR pressure vessel steel, the effect that neutron irradiation exerts to austenitic stainless steel becoming sensitive, the mechanism of the occurrence and development of stress corrosion cracking in the water environment of LWRs, the effect that the water environment of LWRs exerts to fatigue life, and the environment-promoted cracking in LWR environment and its forecast. Thereafter, panel discussion was held by the lecturers. In this book, the summaries of the lectures are collected. (K.I.)

  19. Microstructural characterization and model of hardening for the irradiated austenitic stainless steels of the internals of pressurized water reactors; Caracterisation microstructurale et modelisation du durcissement des aciers austenitiques irradies des structures internes des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Pokor, C

    2003-07-01

    The core internals of Pressurized Water Reactors (PWR) are composed of SA 304 stainless steel plates and CW 316 stainless steel bolts. These internals undergo a neutron flux at a temperature between 280 deg C and 380 deg C which modifies their mechanical properties. These modifications are due to the changes in the microstructure of these materials under irradiation which depend on flux, dose and irradiation temperature. We have studied, by Transmission Electron Microscopy, the microstructure of stainless steels SA 304, CW 316 and CW 316Ti irradiated in a mixed flux reactor (OSIRIS at 330 deg C between 0,8 dpa et 3,4 dpa) and in a fast breeder reactor at 330 deg C (BOR-60) up to doses of 40 dpa. Moreover, samples have been irradiated at 375 deg C in a fast breeder reactor (EBR-II) up to doses of 10 dpa. The microstructure of the irradiated stainless steels consists in faulted Frank dislocation loops in the [111] planes of austenitic, with a Burgers vector of [111]. It is possible to find some voids in the solution annealed samples irradiated at 375 deg C. The evolution of the dislocations loops and voids has been simulated with a 'cluster dynamic' model. The fit of the model parameters has allowed us to have a quantitative description of our experimental results. This description of the microstructure after irradiation was coupled together with a hardening model by Frank loops that has permitted us to make a quantitative description of the hardening of SA 304, CW 316 and CW 316Ti stainless steels after irradiation at a certain dose, flux and temperature. The irradiation doses studied grow up to 90 dpa, dose of the end of life of PWR internals. (author)

  20. Light Water Reactor Generic Safety Issues Database (LWRGSIDB). User's manual

    International Nuclear Information System (INIS)

    1999-01-01

    resolved in other plants and which can be used in reassessing the safety of individual operating plants. The IAEA-TECDOC-1044, Generic Safety Issues for Nuclear Power Plants with Light Water Reactors and Measures Taken for Their Resolution (September 1998), is a compilation of such safety issues which is based on broad international experience. This compilation is one element within the framework of IAEA activities to assist Member States in reassessing the safety of operating nuclear power plants. It is a compilation not only of the generic safety issues identified in nuclear power plants but also, in almost all cases, the measures taken to resolve these issues. The safety issues, which are generic in nature with regard to light water reactors (LWRs), and the measures taken for their resolution, are intended for use as a reference in the reassessment of the safety of operating plants.The information contained in the main body of the TECDOC has been used to establish a database. This database has search, query and report functions. This information is thus available in an electronic form which can be selectively queried and with which reports can be produced according to the requirements of the user. The database also enables the IAEA to update the data periodically on the basis of information made available by Member States

  1. Light water reactor safety. Past, present and future

    International Nuclear Information System (INIS)

    Sehgal, Bal Raj

    2009-01-01

    This paper presents a review of the past, present and possible future developments in light water reactor (LWR) safety. The paper divides the past into two periods: the distant past i.e., before the TMI-2 accident when the main concern was with the design basis, the general design criteria, the concept of the defense in depth, the thermal hydraulics of the large loss of coolant accident (LOCA) and the success of the emergency core cooling system (ECCS), and the near past, i.e., after the TMI-2 accident when the main concern was with the physics of the postulated severe accidents: their prevention and mitigation. The present period is chosen as the translation of the research on the design basis and severe accidents into practical designs of Gen III+ with their core catchers and severe accident management (SAM) strategies, which could, in fact, provide ample assurances of public safety even for very severe accidents. The paper attempts to describe the remaining safety issues for both the Gen II and Gen III+ nuclear plants. The more important safety challenges are being posed by the recent moves of (1) extension of the life of the presently installed Gen II LWRs to 60 years (and perhaps to 80 years) and (2) the large uprates in power that are being sought for the Gen II LWRs. Clearly, the safety margins will be tested by these moves of long extended operations with greater power ratings of the Gen II plants. A prognosis of the emerging development trends in the LWR safety has been attempted with some suggestions. (author)

  2. Radiological characterization for small type light water reactor

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi; Ichige, Hideaki; Tanabe, Hidenori

    2011-01-01

    In order to plan a decommissioning, amount investigation of waste materials and residual radioactivity inventory evaluation must be performed at the first stage of preparatory tasks. These tasks are called radiological characterization. Reliable information from radiological characterization is crucial for specification of decommissioning plan. With the information, we can perform radiological safety analysis and optimize decommissioning scenario. Japan Atomic Power Company (JAPC) has already started preparatory tasks for Tsuruga Nuclear Power Plant Unit 1 (TS-1) that is the first commercial Small Type Light Water Reactor in Japan. To obtain reliable information about residual radioactivity inventory, we improved radioactivity inventory evaluation procedure. The procedure consists of neutron flux distribution calculation and radioactivity distribution calculation. We need a better understanding about characteristics of neutron transport phenomena in order to obtain reliable neutron flux distribution. Neutron flux was measured in Primary Containment Vessel (PCV) at 30 locations using activation foils. We chose locations where characteristic phenomena can be observed. Three dimensional (3D) neutron flux calculation was also performed to simulate continuous changes of neutron flux distribution. By assessing both the measured values and 3D calculation results, we could perform the calculation that simulates the phenomena well. We got knowledge about how to perform an appropriate neutron flux distribution calculation and also became able to calculate a reliable neutron flux distribution. Using the neutron flux distribution, we can estimate a reliable radioactivity distribution. We applied network-parallel-computing method to the estimation. And further we developed 'flux level approximation method' which use linear or parabola fitting method to estimation. Using these new methods, radioactivity by neutron irradiation, which is radioisotope formation, was calculated at

  3. Light Water Reactor Sustainability Program Integrated Program Plan

    International Nuclear Information System (INIS)

    Griffith, George; Youngblood, Robert; Busby, Jeremy; Hallbert, Bruce; Barnard, Cathy; McCarthy, Kathryn

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  4. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  5. Reliability assurance programme guidebook for advanced light water reactors

    International Nuclear Information System (INIS)

    2001-12-01

    To facilitate the implementation of reliability assurance programmes (RAP) within future advanced reactor programmes and to ensure that the next generation of commercial nuclear reactors achieves the very high levels of safety, reliability and economy which are expected of them, in 1996, the International Atomic Energy Agency (IAEA) established a task to develop a guidebook for reliability assurance programmes. The draft RAP guidebook was prepared by an expert consultant and was reviewed/modified at an Advisory Group meeting (7-10 April 1997) and at a consults meeting (7-10 October 1997). The programme for the RAP guidebook was reported to and guided by the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR). This guidebook will demonstrate how the designers and operators of future commercial nuclear plants can exploit the risk, reliability and availability engineering methods and techniques developed over the past two decades to augment existing design and operational nuclear plant decision-making capabilities. This guidebook is intended to provide the necessary understanding, insights and examples of RAP management systems and processes from which a future user can derive his own plant specific reliability assurance programmes. The RAP guidebook is intended to augment, not replace, specific reliability assurance requirements defined by the utility requirements documents and by individual nuclear steam supply system (NSSS) designers. This guidebook draws from utility experience gained during implementation of reliability and availability improvement and risk based management programmes to provide both written and diagrammatic 'how to' guidance which can be followed to assure conformance with the specific requirements outlined by utility requirements documents and in the development of a practical and effective plant specific RAP in any IAEA Member State

  6. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Busby, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Barnard, Cathy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  7. Factors in the economic viability of advanced light water reactors

    International Nuclear Information System (INIS)

    Matzie, R.A.; Bagnal, C.W.; Rohde, K.R.

    1997-01-01

    Nuclear power currently produces over 20% of the electricity generated in the United States, and a similar number for the entire world. Electricity generated from these nuclear power plants is typically some of the most economical of all sources, and is becoming even more economical with time as utilities focus on reducing production costs. Nevertheless, with the exception of the Asia Pacific region, no new nuclear orders have been placed in many years, and none are planned for the forseeable future. Two reasons for this demise for nuclear power in the western world are usually put forward: the current price of alternative means of electric power generation and the political climate, which tends to be anti-nuclear. The first of these reasons is founded in the low price of natural gas, which has been the preferred fuel for recent power generation additions. These additions have principally been used as peaking units, which are required only at the highest demand periods and not as base load units. The second reason stems from some bad experiences in the post-TMI era, when projects experienced a rapidly changing regulatory environment, long schedule stretchouts, and huge cost overruns. In spite of this relatively poor environment for new nuclear power plants, major programs to develop advanced light water reactors are continuing to keep the nuclear option alive, both in the United States and Europe. These programs are aimed at capturing the lessons learned from past experience, to ensure the success of future nuclear projects. 6 refs., 8 figs., 1 tab

  8. Revised accident source terms for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Soffer, L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    This paper presents revised accident source terms for light-water reactors incorporating the severe accident research insights gained in this area over the last 15 years. Current LWR reactor accident source terms used for licensing date from 1962 and are contained in Regulatory Guides 1.3 and 1.4. These specify that 100% of the core inventory of noble gases and 25% of the iodine fission products are assumed to be instantaneously available for release from the containment. The chemical form of the iodine fission products is also assumed to be predominantly elemental iodine. These assumptions have strongly affected present nuclear air cleaning requirements by emphasizing rapid actuation of spray systems and filtration systems optimized to retain elemental iodine. A proposed revision of reactor accident source terms and some im implications for nuclear air cleaning requirements was presented at the 22nd DOE/NRC Nuclear Air Cleaning Conference. A draft report was issued by the NRC for comment in July 1992. Extensive comments were received, with the most significant comments involving (a) release fractions for both volatile and non-volatile species in the early in-vessel release phase, (b) gap release fractions of the noble gases, iodine and cesium, and (c) the timing and duration for the release phases. The final source term report is expected to be issued in late 1994. Although the revised source terms are intended primarily for future plants, current nuclear power plants may request use of revised accident source term insights as well in licensing. This paper emphasizes additional information obtained since the 22nd Conference, including studies on fission product removal mechanisms, results obtained from improved severe accident code calculations and resolution of major comments, and their impact upon the revised accident source terms. Revised accident source terms for both BWRS and PWRS are presented.

  9. Burnable poison management in light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D; Mueller, A

    1970-07-01

    For a better reactivity control and power flattening as well as for an increase in dynamic stability the use of burnable poisons in light water reactors has been considered. The main goals for a burnable poison management and its technological realisation are discussed. The poison is assumed to be in the form of separate poison rods or homogeneous or inhomogeneous poisoning in the fuel rods. A new concept with a central poison rod within the fuel rod is discussed. The balance-equation for the needed concentration of burnable poisons for reactivity central as well as the problems of optimization of lumped poisons are treated in connection with the fuel lattice burnup. A first approximation for the design is found. For the calculation of the microburnup of lumped poison and fuel the special code NEUTRA has been developed. The burnup-equation can be chosen either in a simplified burnup-version with 2 pseudo fission products for each fissionable isotope or with an extended system of burnup equations to be used at sophisticated calculations. These burnup equations are coupled to S{sub N}-routines optionally for cylindrical or x-y-geometry for the proper calculation of the microscopic isotope density-, flux-, and power distributions. The theoretical predictions have been checked by means of special experiments so as to determine the accuracy of the computations. Even for a relatively long burnup of the fuel the predicted values are found to be within the experimental error in the case of lumped rods containing a cadmium-alloy or boron carbide. (auth)

  10. Feasibility study of plutonium recycling in light water reactors

    International Nuclear Information System (INIS)

    Tabuchi, Hideoto

    1979-01-01

    The feasibility of plutonium recycling in light water reactors has been studied by the Agency of Natural Resources and Energy, MITI. As the first step of the feasibility study, it was planned to charge two fuel assemblies, containing uranium-plutonium mixed oxide (MO 2 ), in the core of the Tsuruga nuclear power plant (BWR) for testing. The design of fuel the safety of these fuel and the operating characteristics of these special fuel assemblies were evaluated. The specifications of MO 2 fuel pin and fuel assembly are compared to those of present uranium oxide (UO 2 ) fuel. The weight of fissile plutonium in one MO 2 fuel assembly is 2.22 kg. The characteristics of MO 2 fuel assemblies, such as reactivity, control rod worth and power distribution can be kept similar to UO 2 fuel. The plutonium isotope ratio of the MO 2 fuel is assumed as that obtained in the fuel taken out of the Tokai No. 1 gas cooled reactor. The temperature distribution in the fuel pellets is shown, compared to that of UO 2 fuel. The linear power density is 440 w/cm at the beginning of the fuel life and 360 w/cm after the burn-up of 44,000 Mwd/t. The stress in the cladding tubes of MO 2 fuel is not different from that of UO 2 fuel. The pellet-cladding interaction (PCM1) was analyzed, utilizing the FEM code, FEAST. Concerning the calculation of resonance absorption, the space dependence of thermal neutron spectra and the nuclear behavior of hollow pellets the methods of design calculation were checked up. It was recognized that regarding the nuclear characteristics of MO 2 fuel, no special technical question remains. (Nakai, Y.)

  11. Consideration of important technical issues for advanced light water reactors

    International Nuclear Information System (INIS)

    Thadani, A.C.; Perch, R.L.

    1993-01-01

    Early in the design and review process of the Advanced Light Water Reactors (ALWR), the US Nuclear Regulatory Commission (NRC) in recognition of the importance of defense-in-depth focused its attention on lessons learned from the operating experience, research and other studies as well as addressing the challenges from severe accidents. The Commission issued the Policy Statement on Safety Goals for the Operations of Nuclear Power Plants on August 4, 1986. This policy statement focused on the risks to the public from nuclear power plant operations with the objective of establishing goals that broadly define an acceptable level of radiological risk that might be imposed on the public as a result of nuclear power plant operation. The Commission recognizes the importance of mitigating the consequences of a core-melt accident and continues to emphasize features such as containment and siting in less populated areas as integral parts of the defense-in-depth concept associated with its accident prevention and mitigation philosophy. In its Severe Accident Policy statement, the Commission expressed its expectation that vendors engage in designing new standard plants should address severe accidents during the design stage to take full advantage of insights gained by providing design features to further reduce the likelihood of severe accidents from occurring and, in the unlikely occurrence of a severe accident, mitigating their consequences. Incorporating insights and design features during the design phase can be cost effective when compared to modifications to existing plants. The staff has used this guidance to apply defense-in-depth philosophy in focusing attention on severe accident considerations. This paper discusses some of the key prevention and mitigation issues the NRC has focused its efforts, including emerging technologies being applied to new reactor designs

  12. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  13. 77 FR 15812 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Science.gov (United States)

    2012-03-16

    ... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... Feedwater Systems for Light- Water Reactors.'' DG-1265 is proposed revision 2 of Regulatory Guide 1.68.1... Plants,'' dated January 1977. This regulatory guide is being revised to: (1) expand the scope of the...

  14. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-01-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  15. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  16. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    Science.gov (United States)

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  17. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  18. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  19. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ernestova, M.; Zamboch, M. [Nuclear Research Institute, NRI, Rez (Czech Republic); Devrient, B.; Roth, A. [Framatome ANP GmbH, Erlangen (Germany); Ehrnsten, U. [VTT Industrial Systems, Espoo (Finland); Foehl, J.; Weissenberg, T. [Staatliche Materialpruefungsanstalt, MPA, Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, CIEMAT, Madrid (Spain); Ritter, S.; Seifert, H.P. [Paul Scherrer Institute, PSI, Villigen (Switzerland)

    2004-07-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  20. Crack growth behaviour of low-alloy steels for pressure boundary components under transient light water reactor operating conditions - CASTOC, Part II: WWER conditions

    International Nuclear Information System (INIS)

    Ernestova, M.; Zamboch, M.; Devrient, B.; Roth, A.; Ehrnsten, U.; Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.; Ritter, S.; Seifert, H.P.

    2004-01-01

    One of the ageing phenomena of pressure boundary components of light water reactors (LWRs) is environmentally-assisted cracking (EAC). The project CASTOC (5. Framework Programme of the EU) was launched September 2000 with six European partners and terminated August 2003. It focused in particular on the EAC behaviour of low-alloy steels (LAS) and to some extent to weld metal, heat affected zone and the influence of an austenitic cladding. The main objective was directed to the clarification of crack growth behavior of LAS in high-temperature water due to EAC under constant load (steady-state power operation), to study the effect of transient conditions (during operation or start-up/shut-down of a plant) using their impact on time-based and cycle-based crack growth rates and to a more detailed understanding of the acting mechanisms. Autoclave tests were performed with Western and Russian type reactor pressure vessel steels under simulated boiling water reactor (BWR)/normal water chemistry (NWC) and pressurized water reactor (WWER) conditions. The investigations were performed with fracture mechanics specimens of different sizes and geometries. The applied loading comprised cyclic loads, static loads and load spectra where the static load was periodically interrupted by partial unloading. With regard to water chemistry, the oxygen content (WWER) and impurities of sulphate and chlorides (BWR) were varied beyond allowable limits for continuous operation. The current paper summarizes the most important crack growth results obtained under simulated WWER conditions. The influence of oxygen content and the effect of specimen size (C(T)25 versus C(T)50 specimens) on the crack growth rates are shown. The results are discussed in the context of the current crack growth rate curves in the corresponding nuclear codes. (authors)

  1. Multi-Application Small Light Water Reactor Final Report

    International Nuclear Information System (INIS)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-01-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO 2 , 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration

  2. Retained Austenite in SAE 52100 Steel Post Magnetic Processing and Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Nathaniel R [ORNL; Watkins, Thomas R [ORNL; Cavin, Odis Burl [ORNL; Jaramillo, Roger A [ORNL; Ludtka, Gerard Michael [ORNL

    2007-01-01

    Steel is an iron-carbon alloy that contains up to 2% carbon by weight. Understanding which phases of iron and carbon form as a function of temperature and percent carbon is important in order to process/manufacture steel with desired properties. Austenite is the face center cubic (fcc) phase of iron that exists between 912 and 1394 C. When hot steel is rapidly quenched in a medium (typically oil or water), austenite transforms into martensite. The goal of the study is to determine the effect of applying a magnetic field on the amount of retained austenite present at room temperature after quenching. Samples of SAE 52100 steel were heat treated then subjected to a magnetic field of varying strength and time, while samples of SAE 1045 steel were heat treated then subjected to a magnetic field of varying strength for a fixed time while being tempered. X-ray diffraction was used to collect quantitative data corresponding to the amount of each phase present post processing. The percentage of retained austenite was then calculated using the American Society of Testing and Materials standard for determining the amount of retained austenite for randomly oriented samples and was plotted as a function of magnetic field intensity, magnetic field apply time, and magnetic field wait time after quenching to determine what relationships exist with the amount of retained austenite present. In the SAE 52100 steel samples, stronger field strengths resulted in lower percentages of retained austenite for fixed apply times. The results were inconclusive when applying a fixed magnetic field strength for varying amounts of time. When applying a magnetic field after waiting a specific amount of time after quenching, the analyses indicate that shorter wait times result in less retained austenite. The SAE 1045 results were inconclusive. The samples showed no retained austenite regardless of magnetic field strength, indicating that tempering removed the retained austenite. It is apparent

  3. Calculation methods for advanced concept light water reactor lattices

    International Nuclear Information System (INIS)

    Carmona, S.

    1986-01-01

    In the last few years s several advanced concepts for fuel rod lattices have been studied. Improved fuel utilization is one of the major aims in the development of new fuel rod designs and lattice modifications. By these changes s better performance in fuel economics s fuel burnup and material endurance can be achieved in the frame of the well-known basic Light Water Reactor technology. Among the new concepts involved in these studies that have attracted serious attention are lattices consisting of arrays of annular rods duplex pellet rods or tight multicells. These new designs of fuel rods and lattices present several computational problems. The treatment of resonance shielded cross sections is a crucial point in the analyses of these advanced concepts . The purpose of this study was to assess adequate approximation methods for calculating as accurately as possible, resonance shielding for these new lattices. Although detailed and exact computational methods for the evaluation of the resonance shielding in these lattices are possible, they are quite inefficient when used in lattice codes. The computer time and memory required for this kind of computations are too large to be used in an acceptable routine manner. In order to over- come these limitations and to make the analyses possible with reasonable use of computer resources s approximation methods are necessary. Usual approximation methods, for the resonance energy regions used in routine lattice computer codes, can not adequately handle the evaluation of these new fuel rod lattices. The main contribution of the present work to advanced lattice concepts is the development of an equivalence principle for the calculation of resonance shielding in the annular fuel pellet zone of duplex pellets; the duplex pellet in this treatment consists of two fuel zones with the same absorber isotope in both regions. In the transition from a single duplex rod to an infinite array of this kind of fuel rods, the similarity of the

  4. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal

  5. Light Water Reactor Sustainability Program: Integrated Program Plan

    International Nuclear Information System (INIS)

    2016-02-01

    and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  6. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Pope, Michael A.; Youinou, Gilles J.

    2010-01-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  7. Light Water Reactor Sustainability Program: Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  8. Light Water Reactor Sustainability Program: Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-02-15

    proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  9. Fuel cycle options for light water reactors in Germany

    International Nuclear Information System (INIS)

    Broecking, D.; Mester, W.

    1999-01-01

    In Germany 19 nuclear power plants with an electrical output of 22 GWe are in operation. Annually about 450 t of spent fuel are unloaded from the reactors. Currently most of the spent fuel elements are shipped to France and the United Kingdom for reprocessing according to contracts which have been signed since the late 70es. By the amendment of the Atomic Energy Act in 1994 the previous priority for reprocessing of spent nuclear fuel was substituted by a legal equivalency of the reprocessing and direct disposal option. As a consequence some utilities take into consideration the direct disposal of their spent fuel for economical reasons. The separated plutonium will be recycled as MOX fuel in light water reactors. About 30 tons of fissile plutonium will be available to German utilities for recycling by the year 2000. Twelve German reactors are already licensed for the use of MOX fuel, five others have applied for MOX use. Eight reactors are currently using MOX fuel or used it in the past. The spent fuel elements which shall be disposed of without reprocessing will be stored in two interim dry storage facilities at Gorleben and Ahaus. The storage capacities are 3800 and 4200 tHM, respectively. The Gorleben salt dome is currently investigated to prove its suitability as a repository for high level radioactive waste, either in a vitrified form or as conditioned spent fuel. The future development of the nuclear fuel cycle and radioactive waste management depends on the future role of nuclear energy in Germany. According to estimations of the German utilities no additional nuclear power plants are needed in the near future. Around the middle of the next decade it will have to be decided whether existing plants should be substituted by new ones. For the foreseeable time German utilities are interested in a highly flexible approach to the nuclear fuel cycle and waste management keeping open both spent fuel management options: the closed fuel cycle and direct disposal of

  10. Visible Light Responsive Catalyst for Air Water Purification Project

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  11. Visible Light Responsive Catalyst for Air & Water Purification

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective for this project was to investigate and develop viable approaches to render the normally UV-activated titanium dioxide (TiO2) catalyst visible light...

  12. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  13. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  14. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    The ultrasonic examination of austenitic stainless steel weld metal has always been regarded as a difficult proposition because of the large and variable ultrasonic attenuations and back scattering obtained from apparently similar weld deposits. The work to be described shows how the existence of a fibre texture within each weld deposit (as a result of epitaxial growth through successive weld beads) produces a systematic variation in the ultrasonic attenuation coefficient and the velocity of sound, depending upon the angle between the ultrasonic beam and the fibre axis. Development work has shown that it is possible to adjust the welding parameters to ensure that the crystallographic texture within each weld is compatible with improved ultrasonic transmission. The application of the results to the inspection of a specific weld in type 316 weld metal is described

  15. Austenite Grain Growth Behavior of AISI 4140 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available AISI 4140 alloy steel is widely applied in the manufacture of various parts such as gears, rams, and spindles due to its good performance of strength, toughness, and wear resistance. The former researches most focused on its deformation and recrystallization behaviors under high temperature. However, the evolution laws of austenite grain growth were rarely studied. This behavior also plays an important role in the mechanical properties of parts made of this steel. In this study, samples are heated to a certain temperature of 1073 K, 1173 K, 1273 K, and 1373 K at a heating rate of 5 K per second and hold for different times of 0 s, 120 s, 240 s, 360 s, and 480 s before being quenched with water. The experimental results suggest that the austenite grains enlarge with increasing temperature and holding time. A mathematical model and an application developed in Matlab environment are established on the basis of previous works and experimental results to predict austenite grains size in hot deformation processes. The predicted results are in good agreement with experimental results which indicates that the model and the application are reliable.

  16. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  17. Parametrical limits of SCC-susceptibility of austenitic and austenitic-ferritic Cr-Ni steels

    International Nuclear Information System (INIS)

    Starosvetskij, D.I.; Baru, R.L.; Bondarenko, A.I.; Bogoyavlenskij, V.L.; Timonin, V.A.

    1990-01-01

    Comparative investigations into corrosion cracking (CC) of austenitic (12Kh18N10T) and austenitic-ferritic (08Kh22N6T) chromium-nickel steels are performed for various chloride media in a wide range of chloride concentrations and temperatures. It is shown that the ratio between steels in terms of their CC-susceptibility is not definite and can undergo a reversal depending on parameters of medium, level and conditions of loading. Differences in mechanisms of corrosion cracking of austenitic and austenitic-ferritic steels are established

  18. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  19. Seawater desalination using small and medium light water reactors

    International Nuclear Information System (INIS)

    Shimamura, Kazuo

    2000-01-01

    Water is an essential substance for sustaining human life. As Japan is an island country, surrounded by the sea and having abundant rainfall, there is no scarcity of water in daily life except during abnormally dry summers or after disasters such as earthquakes. Consequently, there is hardly any demand for seawater desalination plants except on remote islands, Okinawa and a part of Kyushu. However, the IAEA has forecast a scarcity of drinking water in developing countries at the beginning of the 21st century. Further, much more irrigation water will be required every year to prevent cultivated areas from being lost by desertification. If developing countries were to produce such water by seawater desalination using current fossil fuel energy technology, it would cause increased air pollution and global warming. This paper explains the concept of seawater desalination plants using small and medium water reactors (hereinafter called 'nuclear desalination'), as well as important matters regarding the export nuclear desalination plants to developing countries. (author)

  20. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  1. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  2. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  3. A waveshifter light collector for a water Cherenkov detector

    International Nuclear Information System (INIS)

    Claus, R.; Sulak, L.; Ciocio, A.; Stone, J.L.; Seidel, S.; Casper, D.; Bionta, R.M.; Park, H.S.; Wuest, C.; Blewitt, G.; Bratton, C.B.; Dye, S.T.; Learned, J.G.; Errede, S.; Foster, G.W.; Gajewski, W.; Matthews, J.; Sinclair, D.; Thornton, G.; Van Der Velde, J.C.; Ganezer, K.S.; Haines, T.J.; Kropp, W.R.; Price, L.; Reines, F.; Schultz, J.; Sobel, H.W.; Svoboda, R.; Goldhaber, M.; Jones, T.W.; Kielczewska, D.; Losecco, J.M.; Shumard, E.

    1987-01-01

    A device has been developed which is capable of doubling the light collection capability of a 5 inch hemispherical photomultiplier tube. Known as a 'waveshifter plate', its geometry is adaptable to various applications. Its marginal cost is small with respect to that of a phototube, it is readily removable, and it has minimum effect upon dark noise and timing resolution. (orig.)

  4. Report of analyses for light hydrocarbons in ground water

    International Nuclear Information System (INIS)

    Dromgoole, E.L.

    1982-04-01

    This report contains on microfiche the results of analyses for methane, ethane, propane, and butane in 11,659 ground water samples collected in 47 western and three eastern 1 0 x 2 0 quadrangles of the National Topographic Map Series (Figures 1 and 2), along with a brief description of the analytical technique used and some simple, descriptive statistics. The ground water samples were collected as part of the National Uranium Resource Evaluation (NURE) hydrogeochemical and stream sediment reconnaissance. Further information on the ground water samples can be obtained by consulting the NURE data reports for the individual quadrangles. This information includes (1) measurements characterizing water samples (pH, conductivity, and alkalinity), (2) physical measurements, where applicable (water temperature, well description, and other measurements), and (3) elemental analyses

  5. Electrolytic separation factors for oxygen isotopes in light and heavy water solutions

    International Nuclear Information System (INIS)

    Gulens, J.; Olmstead, W.J.; Longhurst, T.H.; Gale, K.L.; Rolston, J.H.

    1987-01-01

    The electrolytic separation factor, α, has been measured for /sup 17/O and /sup 18/O at Pt and Ni anodes in both light and heavy water solutions of 6M KOH as a function of current density. For oxygen-17, isotopic separation effects were not observed, within the experimental uncertainty of +-2%, under all conditions studied. For oxygen-18, there is a small difference of 2% in α values between Pt and Ni in both light and heavy water solutions, but there is no significant difference in α values between light and heavy water solutions. In light waters solutions, the separation factor at Pt is small, α(/sup 18/O) ≤ 1.02 for i ≥ 0.1 A/cm/sub 2/. This value agrees reasonably well with theoretical estimates

  6. Current status of light water reactor and Hitachi's technical improvements for BWR

    International Nuclear Information System (INIS)

    Miki, Minoru; Ohki, Arahiko.

    1984-01-01

    Gradual technical improvements in Japan over the years has improved the reliability of light water reactors, and has achieved the highest capacity factor level in the world. Commercial operation of Fukushima 2-2 (1,100 MW) of the Tokyo Electric Power Co. was started in February, 1984, as the first standardized BWR base plant, ushering in a new age of domestic light water reactor technology. The ABWR (1,300 MW class) has been developed as Japan's next generation light water reactor, with construction aimed at the latter half of the 1980's. Hitachi's extensive efforts range from key nuclear equipment to various related robots, directed at improving safety, reliability, and the capacity factor, while reducing radiation exposure. This paper presents an outline of Hitachi's participation in the light water reactor's improvement and standardization, and the current status of our role in the international cooperation plan for the ABWR. (author)

  7. More recent developments for the ultrasonic testing of light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Seiger, H.; Engl, G.

    1976-01-01

    The development of an ultrasonic testing method for the inspection from the outside of the areas close to the cladding of the spherical fields of holes of light water reactor pressure vessels is described

  8. Catalogue and classification of technical safety rules for light-water reactors and reprocessing plants

    International Nuclear Information System (INIS)

    Bloser, M.; Fichtner, N.; Neider, R.

    1975-08-01

    This report on the cataloguing and classification of technical rules for land-based light-water reactors and reprocessing plants contains a list of classified rules. The reasons for the classification system used are given and discussed

  9. Nuclear calculation methods for light water moderated reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1961-02-01

    This report is intended as an introductory review. After a brief discussion of problems encountered in the nuclear design of water moderated reactors a comprehensive scheme of calculations is described. This scheme is based largely on theoretical methods and computer codes developed in the U.S.A. but some previously unreported developments made in this country are also described. It is shown that the effective reproduction factor of simple water moderated lattices may be estimated to an accuracy of approximately 1%. Methods for treating water gap flux peaking and control absorbers are presented in some detail, together with a brief discussion of temperature coefficients, void coefficients and burn-up problems. (author)

  10. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  11. Light Refraction by Water as a Rationale for the Poggendorff Illusion

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    2017-01-01

    The Poggendorff illusion in its classical form of parallel lines interrupting a transversal is viewed from the perspective of being related to the everyday experience of observing the light refraction in water. It is argued that if one considers a transversal to be a light ray in air and the para...

  12. Toward visible light response: Overall water splitting using heterogeneous photocatalysts

    KAUST Repository

    Takanabe, Kazuhiro; Domen, Kazunari

    2011-01-01

    Extensive energy conversion of solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting by powder

  13. 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films

    KAUST Repository

    Shaheen, Basamat

    2016-03-26

    We demonstrate, for the first time, the synthesis of highly ordered niobium oxynitride microcones as an attractive class of materials for visible-light-driven water splitting. As revealed by the ultraviolet photoelectron spectroscopy (UPS), photoelectrochemical and transient photocurrent measurements, the microcones showed enhanced performance (~1000% compared to mesoporous niobium oxide) as photoanodes for water splitting with remarkable stability and visible light activity. © 2016 Elsevier B.V. All rights reserved.

  14. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  15. Effect of hardening on the crack growth rate of austenitic stainless steels in primary PWR conditions

    International Nuclear Information System (INIS)

    Castano, M.L.; Garcia, M.S.; Diego, G. de; Gomez-Briceno, D.; Francia, L.

    2002-01-01

    Intergranular cracking of non-sensitized materials, found in light water reactor (LWR) components exposed to neutron radiation, has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC). Cracking of baffle former bolts, fabricated of AISI-316L and AISI-347, have been reported in some Europeans and US PWR plants. Examinations of removed bolts indicate the intergranular cracking characteristics can be associated with IASCC phenomena. Neutron radiation produce critical modifications of the microstructure and microchemical of stainless steels such hardening due to irradiation and Radiation Induce Segregation (RIS) at grain boundaries, among others. Chromium depletion at grain boundary due to RIS seems to justify the intergranular cracking of irradiated materials, both in plant and in lab tests, at high electrochemical corrosion potential (BWR-NWC environments), but it is not enough to explain cracking at low corrosion potential (BWR-HWC and PWR environments). In these latter conditions, hardening is considered a possible additional mechanism to explain the behavior of irradiated material. Radiation Hardening can be simulated in non irradiated material by mechanical deformation. Although some differences exists in the types of defects produced by radiation and mechanical deformation, it is accepted that the study of the stress corrosion behavior of unirradiated austenitic steels with different hardening levels would contribute to the understanding of IASCC mechanism. In order to evaluate the influence of hardening on the stress corrosion susceptibility of austenitic steels, crack growth rate tests with 316L and 347 stainless steels with nominal yield strengths from 500 to 900 MPa, produced by cold work are being carried out at 340 deg C in PWR conditions. Preliminary results indicate that crack propagation was obtained in the 316Lss and 347ss cold worked, even with a yield strength of 550 MPa. (authors)

  16. Investigations into the fatigue behaviour of nuclear grades of austenitic stainless steel

    International Nuclear Information System (INIS)

    Mann, J.

    2015-01-01

    Full text of publication follows. Fatigue is an important problem within the nuclear industry due to the complex combination of thermal and mechanical loading that components experience during the operation of a nuclear reactor. Austenitic stainless steels are widely used within nuclear reactors for a number of applications including piping systems and pressure vessels. A number of studies have shown that austenitic stainless steel components operating within a light water reactor (LWR) environment may experience a significant reduction in fatigue life under certain circumstances, however the precise mechanisms responsible for the reduction are still not fully understood. The effects of environment are included in some fatigue assessment methods, however these are generally considered to be over-conservative and predicted fatigue lifetimes are not reflected well by service experience. This project aims to enhance the understanding of fatigue in both air and LWR environments through the synergistic use of a wide range of different microscopy techniques. It is expected that a better understanding of each of the different stages of fatigue will lead to more accurate fatigue predictions that ultimately result in better and safer lifetime predictions. This paper focuses on introducing the background behind the project, highlighting the current methods for assessing fatigue lifetimes and the motivations for the current research. The results of various initial microscopic investigations are presented, with a focus on a number of novel applications using laser scanning confocal microscopy to perform large scale analyses of fatigue fracture surfaces and test specimen gauge length surfaces. The use of surface replicas in conjunction with laser scanning confocal microscopy is discussed along with its potential applications for the assessment of fatigue damage in in-service components. Initial finite element modelling of crack growth within fatigue test specimens is discussed

  17. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  18. Irradiation Microstructure of Austenitic Steels and Cast Steels Irradiated in the BOR-60 Reactor at 320°C

    Science.gov (United States)

    Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula

    Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.

  19. Stress effects in cylindrical tubes of austenitic and ferritic/martensitic steels with oxide scales. Materials selection for a HPLWR

    International Nuclear Information System (INIS)

    Steiner, H.

    2002-11-01

    In the frame of the studies for a high performance concept of a light water reactor (LWR) different materials for the cladding are investigated, among them are austenitic and ferritic/martensitic (f/m) steels of different Cr content. Due to the envisaged very extended life times of the fuel elements in the reactor, corrosion problems may arise. Thus, cracking and/or spalling effects in oxide scales on metallic components may play an important role in the corrosion process as they lead, in general, to a drastic enhancement in the oxidation rates. Analytical models for different fundamental stress problems in the compound oxide scale/metallic substrate have been developed and implemented in the computer code OXSPA. These models concern the growth stresses in the cylindrical tubes, the stresses due to temperature changes and radial temperature gradients and the stresses due to inside and outside pressures. (orig.)

  20. Radiative transfer modeling of upwelling light field in coastal waters

    International Nuclear Information System (INIS)

    Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Manjusha, Sadasivan

    2013-01-01

    Numerical simulations of the radiance distribution in coastal waters are a complex problem, but playing a growingly important role in optical oceanography and remote sensing applications. The present study attempts to modify the Inherent Optical Properties (IOPs) to allow the phase function to vary with depth, and the bottom boundary to take into account a sloping/irregular surface and the effective reflectance of the bottom material. It then uses the Hydrolight numerical model to compute Apparent Optical Properties (AOPs) for modified IOPs and bottom boundary conditions compared to the default values available in the standard Hydrolight model. The comparison of the profiles of upwelling radiance simulated with depth-dependent IOPs as well as modified bottom boundary conditions for realistic cases of coastal waters off Point Calimere of southern India shows a good match between the simulated and measured upwelling radiance profile data, whereas there is a significant drift between the upwelling radiances simulated from the standard Hydrolight model (with default values) and measured data. Further comparison for different solar zenith conditions at a coastal station indicates that the upwelling radiances simulated with the depth-dependent IOPs and modified bottom boundary conditions are in good agreement with the measured radiance profile data. This simulation captures significant changes in the upwelling radiance field influenced by the bottom boundary layer as well. These results clearly emphasize the importance of using realistic depth-dependent IOPs as well as bottom boundary conditions as input to Hydrolight in order to obtain more accurate AOPs in coastal waters. -- Highlights: ► RT model with depth-dependent IOPs and modified bottom boundary conditions provides accurate L u profiles in coastal waters. ► The modified phase function model will be useful for coastal waters. ► An inter-comparison with measured upwelling radiance gives merits of the

  1. Ultrasonic inspection of austenitic welds

    International Nuclear Information System (INIS)

    Baikie, B.L.; Wagg, A.R.; Whittle, M.J.; Yapp, D.

    1976-01-01

    Optical and X-ray metallography combined with ultrasonic testing by compression waves was used for inspection of stainless steel weld metal produced by three different welding techniques. X-ray diffraction showed that each weld possessed a characteristic fibre textured structure which was shown by optical microscopy to be parallel to columnar grain boundaries. Metallographic evidence suggested that the development of fibre texture is due to the mechanism of competitive growth. From observations made as a result of optical metallographic examination the orientation of the fibre axis could be predicted if the weld geometry and welding procedure were known. Ultrasonic velocity and attenuation measurements as a continuous function of grain orientation, made on cylinders machined from weld samples, showed that attenuation was strongly orientation dependent. It was concluded that the sensitivity of ultrasonic inspection to small defects is unlikely to be as high for austenitic welds as for ferritic even when transmission is improved by modifying the welding procedure to improve the ultrasonic transmission. (U.K.)

  2. Water cooling of high power light emitting diode

    DEFF Research Database (Denmark)

    Sørensen, Henrik

    2012-01-01

    The development in light technologies for entertainment is moving towards LED based solutions. This progress is not without problems, when more than a single LED is used. The amount of generated heat is often in the same order as in a conventional discharge lamp, but the allowable operating...... temperature is much lower. In order to handle the higher specific power (W/m3) inside the LED based lamps cold plates were designed and manufactured. 6 different designs were analyzed through laboratory experiments and their performances were compared. 5 designs cover; traditional straight mini channel, S...

  3. Alkaline stress corrosion of iron-nickel-chromium austenitic alloys

    International Nuclear Information System (INIS)

    Hocquellet, Dominique

    1984-01-01

    This research thesis reports the study of the behaviour in stress corrosion of austenitic iron-nickel-chromium alloys by means of tensile tests at imposed strain rate, in a soda solution at 50 pc in water and 350 degrees C. The author shows that the mechanical-chemical model allows the experimental curves to be found again, provided the adjustment of characteristic parameters, on the one hand, of corrosion kinetics, and on the other hand, of deformation kinetics. A classification of the studied alloys is proposed [fr

  4. Failures of austenitic stainless steel components during storage: Case studies

    International Nuclear Information System (INIS)

    Shah, B.K.; Rastogi, P.K.; Sinha, A.K.; Kulkarni, P.G.

    1993-01-01

    Three studies of failures of austenitic stainless steel components during storage are described. In all cases, stress corrosion cracking was the failure mode by the action of residual stress alone. However, the source of residual stress was different for each case. Case 1 was the failure of a sample tube header for a pressurized heavy water reactor (PHWR). In Case 2, a heat exchanger shell failed during a hydrotest in a fertilizer plant. Cases concerned the cracking of type 304L plates used for spent fuel pool lining of a nuclear power station

  5. Methodology of fuel rod design for pressurized light water reactors

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  6. Light penetration in the coastal waters off Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Varadachari, V.V.R.

    February to April, and by May, just before the onset of the SW monsoon rains, the waters are once again highly turbid, this time apparently due to churning action of wind-waves and strong currents. It has been found that the average irradiance attenuation...

  7. Conclusions drawn of tritium balance in light water reactors

    International Nuclear Information System (INIS)

    Dolle, L.; Bazin, J.

    1978-01-01

    In the tritium balance of pressurized water reactors, using boric acid and lithium in the cooling water, contribution of the tritium produced by fission, diffusing through the zircalloy of the fuel cladding estimated to 0.1%, was not in agreement with quantities measured in reactors. It is still difficult to estimate what percentage is represented by the tritium formed by fission in the fuel, owing to diffusion through cladding. The tritium balance in different working nuclear power stations is consequently of interest. The tritium balance method in the water of the cooling circuit of PWR is fast and experimentally simple. It is less sensitive to errors originating from fission yields than balance of tritium produced by fission in the fuel. A tritium balance in the water of the cooling circuit of Biblis-A, with a specific burn-up of 18000 MWd/t gives a better precision. Diffusion rate of tritium produced by fission was less than 0.2%. So low a contribution is a justification to the use of lithium with an isotopic purity of 99.9% of lithium 7 to limit at a low value the residual lithium 6 [fr

  8. Study of the light emitted in the moderation of a heavy-water pile

    International Nuclear Information System (INIS)

    Breton, D.

    1958-06-01

    During the running of a reactor which uses water as a neutron moderator, a bluish light is seen to appear inside the liquid. A detailed study of this radiation, undertaken on the Fontenay-aux-Roses pile, has shown that the spectrum is identical with that which characterises the light produced by the Cerenkov effect. The light intensity as a function of the pile power grows exponentially as a function of time when the pile diverges, with a lifetime equal to that of the rise in power. An examination of the various particles present in the pile has led to the conclusion that only electrons with an energy greater than 260 keV con produce the Cerenkov light. The light source thus produced is about 2.10 6 photons/cm 2 of water, when the pile power equals 1 watt. (author) [fr

  9. [Effects of light on submerged macrophytes in eutrophic water: research progress].

    Science.gov (United States)

    Li-Sha, Zou; Ze-Yu, Nie; Xiao-Yan, Yao; Ji-Yan, Shi

    2013-07-01

    The restoration of submerged macrophytes is the key to remediate eutrophic water and maintain the health of aquatic ecosystem, while light is the main limiting factor. This paper summarized the factors affecting the light extinction in water and the mechanisms of light intensity affecting the physiology of submerged macrophytes, with the focuses on the metabolic mechanisms of carbon, nitrogen, and phosphorus, the responses of antioxidant enzyme system, and the feedbacks of pigment composition and concentration in the common submerged macrophytes under low light stress. Several engineering techniques applied in the ecological restoration of submerged macrophytes were presented, and the framework of the restoration of submerged macrophytes in eutrophic water was proposed. Some problems in current research and several suggestions on future research were addressed, which could help the related research and engineering practices.

  10. Separation setup for the light water detritiation process in the water-hydrogen system based on the membrane contact devices

    International Nuclear Information System (INIS)

    Rozenkevich, M. B.; Rastunova, I. L.; Prokunin, S. V.

    2008-01-01

    Detritiation of light water wastes down to a level permissible to discharge into the environment while simultaneously concentrating tritium to decrease amount of waste being buried is a constant problem. The laboratory setup for the light water detritiation process is presented. The separation column consists of 10 horizontally arranged perfluorosulphonic acid Nafion-type membrane contact devises and platinum catalyst (RCTU-3SM). Each contact device has 42.3 cm 2 of the membrane and 10 cm 3 of the catalyst. The column is washed by tritium free light water (L H2O ) and the tritium-containing flow (F HTO ) feeds the electrolyser at λ = G H2 /L H2O = 2. A separation factor of 66 is noted with the device at 336 K and 0.145 MPa. (authors)

  11. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    Science.gov (United States)

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  12. Petal abscission in rose flowers: effects of water potential, light intensity and light quality

    NARCIS (Netherlands)

    Doorn, van W.G.; Vojinovic, A.

    1996-01-01

    Petal abscission was studied in roses (Rosa hybrida L.), cvs. Korflapei (trade name Frisco), Sweet Promise (Sonia) and Cara Mia (trade name as officially registered cultivar name). Unlike flowers on plants in greenhouses, cut flowers placed in water in the greenhouse produced visible symptoms of

  13. Dual pressurized light water reactor producing 2000 M We

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    The dual unit optimizer 2000 M We (Duo2000) is proposed as a new design concept for large nuclear power plant. Duo is being designed to meet economic and safety challenges facing the 21 century green and sustainable energy industry. Duo2000 has two nuclear steam supply systems (NSSS) of the unit nuclear optimizer (Uno) pressurized water reactor (PWR) in a single containment so as to double the capacity of the plant. Uno is anchored to the optimized power reactor 1000 M We (OPR1000) of the Korea Hydro and Nuclear Power Co., Ltd. The concept of Duo can be extended to any number of PWRs or pressurized heavy water reactors (PHWR s), or even boiling water reactor (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. In particular, since it is required that the small and medium sized reactors (SMRs) be built as units, the concept of Duo2000 will apply to SMRs as well. With its in-vessel retention as severe accident management strategy, Duo can not only put the single most querulous PWR safety issue to end, but also pave ways to most promising large power capacity dispensing with huge redesigning cost for generation III + nuclear systems. The strengths of Duo2000 include reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting NSSS. The technology can further be extended to coupling modular reactors as dual, triple, or quadruple units to increase their economics, thus accelerating the commercialization as well as the customization of SMRs. (Author)

  14. Operational limitations of light water reactors relating to fuel performance

    International Nuclear Information System (INIS)

    Cheng, H.S.

    1976-07-01

    General aspects of fuel performance for typical Boiling and Pressurized Water Reactors are presented. Emphasis is placed on fuel failures in order to make clear important operational limitations. A discussion of fuel element designs is first given to provide the background information for the subsequent discussion of several fuel failure modes that have been identified. Fuel failure experiences through December 31, 1974, are summarized. The operational limitations that are required to mitigate the effects of fuel failures are discussed

  15. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  16. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  17. Constitutive modeling of metastable austenitic stainless steel (CD-rom)

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Boisse, P.

    2008-01-01

    A stress-update algorithm is developed for austenitic metastable steels which undergo phase evolution during deformation. The material initially comprises only the soft and ductile austenite phase which due to the phenomenon of mechanically induced martensitic transformation, transforms completely

  18. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  19. Characterization of 14C in Swedish light water reactors.

    Science.gov (United States)

    Magnusson, Asa; Aronsson, Per-Olof; Lundgren, Klas; Stenström, Kristina

    2008-08-01

    This paper presents the results of a 4-y investigation of 14C in different waste streams of both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Due to the potential impact of 14C on human health, minimizing waste and releases from the nuclear power industry is of considerable interest. The experimental data and conclusions may be implemented to select appropriate waste management strategies and practices at reactor units and disposal facilities. Organic and inorganic 14C in spent ion exchange resins, process water systems, ejector off-gas and replaced steam generator tubes were analyzed using a recently developed extraction method. Separate analysis of the chemical species is of importance in order to model and predict the fate of 14C within process systems as well as in dose calculations for disposal facilities. By combining the results of this investigation with newly calculated production rates, mass balance assessments were made of the 14C originating from production in the coolant. Of the 14C formed in the coolant of BWRs, 0.6-0.8% was found to be accumulated in the ion exchange resins (core-specific production rate in the coolant of a 2,500 MWth BWR calculated to be 580 GBq GW(e)(-1) y(-1)). The corresponding value for PWRs was 6-10% (production rate in a 2,775 MWth PWR calculated to be 350 GBq GW(e)(-1) y(-1)). The 14C released with liquid discharges was found to be insignificant, constituting less than 0.5% of the production in the coolant. The stack releases, routinely measured at the power plants, were found to correspond to 60-155% of the calculated coolant production, with large variations between the BWR units.

  20. Aging and life extension of major light water reactor components

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.

    1993-01-01

    An understanding of the aging degradation of the major pressurized and boiling water reactor structures and components is given. The design and fabrication of each structure or component is briefly described followed by information on the associated stressors. Interactions between the design, materials and various stressors that cause aging degradation are reviewed. In many cases, aging degradation problems have occurred, and the plant experience to date is analyzed. The discussion summarize the available aging-related information and are supported with extensive references, including references to US Nuclear Regulatory Commission (USNRC) documents, Electric Power Research Institute reports, US and international conference proceedings and other publications

  1. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  2. Impact of different moderator ratios with light and heavy water cooled reactors in equilibrium states

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2006-01-01

    As an issue of sustainable development in the world, energy sustainability using nuclear energy may be possible using several different ways such as increasing breeding capability of the reactors and optimizing the fuel utilization using spent fuel after reprocessing as well as exploring additional nuclear resources from sea water. In this present study the characteristics of light and heavy water cooled reactors for different moderator ratios in equilibrium states have been investigated. The moderator to fuel ratio (MFR) is varied from 0.1 to 4.0. Four fuel cycle schemes are evaluated in order to investigate the effect of heavy metal (HM) recycling. A calculation method for determining the required uranium enrichment for criticality of the systems has been developed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of SRAC 2000 code using nuclear data library from the JENDL 3.2. The results show a thermal spectrum peak appears for light water coolant and no thermal peak for heavy water coolant along the MFR (0.1 ≤ MFR ≤ 4.0). The plutonium quality can be reduced effectively by increasing the MFR and number of recycled HM. Considering the effect of increasing number of recycled HM; it is also effective to reduce the uranium utilization and to increase the conversion ratio. trans-Plutonium production such as americium (Am) and curium (Cm) productions are smaller for heavy water coolant than light water coolant. The light water coolant shows the feasibility of breeding when HM is recycled with reducing the MFR. Wider feasible area of breeding has been obtained when light water coolant is replaced by heavy water coolant

  3. Transformation in austenitic stainless steel sheet under different loading directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  4. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  5. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  6. COMSORS: A light water reactor chemical core catcher

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W.

    1997-01-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate lightwater reactor (LWR) core-melt accidents and ensure containment integrity. A special dissolution glass made of lead oxide (PbO) and boron oxide (B 2 O 3 ) is placed under the reactor vessel. If molten core debris is released onto the glass, the following sequence happens: (1) the glass absorbs decay heat as its temperature increases and the glass softens; (2) the core debris dissolves into the molten glass; (3) molten glass convective currents create a homogeneous high-level waste (HLW) glass; (4) the molten glass spreads into a wider pool, distributing the heat for removal by radiation to the reactor cavity above or transfer to water on top of the molten glass; and (5) the glass solidifies as increased surface cooling area and decreasing radioactive decay heat generation allows heat removal to exceed heat generation

  7. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  8. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  9. Needs of nuclear data for advanced light water reactor

    International Nuclear Information System (INIS)

    Chaki, Masao

    2008-01-01

    Hitachi has been developing medium sized ABWRs as a power source that features flexibility to meet various market needs, such as minimizing capital risks, providing a timely return on capital investments, etc. Basic design concepts of the medium sized ABWRs are 1) using the current ABWR design which has accumulated favorable construction and operation histories as a starting point; 2) utilizing standard BWR fuels which have been fabricated by proven technology; 3) achieving a rationalized design by suitably utilizing key components developed for large sized reactors. Development of the medium sized ABWRs has proceeded in a systematic, stepwise manner. The first step was to design an output scale for the 600MWe class reactor (ABWR-600), and the next step was to develop an uprating concept to extend this output scale to the 900MWe class reactor (ABWR-900) based on the rationalized technology of the ABWR-600 for further cost savings. In addition, Hitachi and MHI developed an ultra small reactor, 'Package-Reactor'. About the nuclear data, for the purpose of verification of the nuclear analysis method of BWR for mixed oxide (MOX) cores, UO 2 and MOX fuel critical experiments EPICURE and MISTRAL were analyzed using nuclear design codes HINES and CERES with ENDF/B nuclear data file. The critical keffs of the absorber worth experiments, the water hole worth experiments and the 2D void worth experiments agreed with those of the reference experiments within about 0.1%Δk. The root mean square differences of radial power distributions between calculation and measurement were almost less than 2.0%. The calculated reactivity worth values of the absorbers, the water hole and the 2D void agreed with the measured values within nearly experimental uncertainties. These results indicate that the nuclear analysis method of BWR in the present paper give the same accuracy for the UO 2 cores and the MOX cores. (author)

  10. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-10-13

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute – carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, and fatigue life), corrosion resistance, resistance to stress–corrosion cracking (hydrogen-induced embrittlement), and – potentially – radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non–treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.

  11. Improved Accident Tolerance of Austenitic Stainless Steel Cladding through Colossal Supersaturation with Interstitial Solutes

    International Nuclear Information System (INIS)

    Ernst, Frank

    2016-01-01

    We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute - carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, and fatigue life), corrosion resistance, resistance to stress-corrosion cracking (hydrogen-induced embrittlement), and - potentially - radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non-treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.

  12. Longitudinal wave ultrasonic inspection of austenitic weldments

    International Nuclear Information System (INIS)

    Gray, B.S.; Hudgell, R.J.; Seed, H.

    1980-01-01

    Successful volumetric inspection of LMFBR primary circuits, and also much of the secondary circuit, is dependent on the availability of satisfactory examination procedures for austenitic welds. Application of conventional ultrasonic techniques is hampered by the anisotropic, textured structure of the weld metal and this paper describes development work on the use of longitudinal wave techniques. In addition to confirming the dominant effects of the weld structure on ultrasound propagation some results are given of studies utilising deliberately induced defects in Manual Metal Arc Welds in 50 mm plate together with preliminary work on the inspection of narrow austenitic welds fabricated by automatic processes. (author)

  13. Recrystallization induced plasticity in austenite and ferrite

    International Nuclear Information System (INIS)

    Huang Mingxin; Pineau, André; Bouaziz, Olivier; Vu, Trong-Dai

    2012-01-01

    Highlights: ► Plasticity can be induced by recrystallization in austenite and ferrite. ► Strain rate is proportional to recrystallization kinetics. ► Overall atomic flux selects a preferential direction may be the origin. - Abstract: New experimental evidences are provided to demonstrate that plastic strain can be induced by recrystallization in austenite and ferrite under an applied stress much smaller than their yield stresses. Such Recrystallization Induced Plasticity (RIP) phenomenon occurs because the overall atomic flux during recrystallization follows a preferential direction imposed by the applied stress.

  14. The lantern shark's light switch: turning shallow water crypsis into midwater camouflage

    Science.gov (United States)

    Claes, Julien M.; Mallefet, Jérôme

    2010-01-01

    Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment. PMID:20410033

  15. Investigation into the use of water based brake fluid for light loads ...

    African Journals Online (AJOL)

    The actual test of the formulated brake fluid was carried out with a Nissan Sunny vehicle model 1.5 within the speed range of 20km/hr to 80km/hr at the permanent campus· of University of Uyo and the· braking effiqiency obtained at test to its suitability for light loads. Keywords·: Water-based, Brake fluid properties, Light loads ...

  16. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Science.gov (United States)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  17. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Energy Technology Data Exchange (ETDEWEB)

    Sun Bing [Dalian Maritime University, College of Environment, 1st Linghai Road, Dalian (China); Kunitomo, Shinta [Ebara Corporation, 1-6-27, Konan, Minato-ku 108-8480 (Japan); Igarashi, Chiaki [Ebara Research Co. Ltd, 2-1, Honfujisawa 4-chome, Fujisawa 251-8502 (Japan)

    2006-09-07

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  18. Programme of research and development on plutonium recycling in light-water reactors

    International Nuclear Information System (INIS)

    1979-01-01

    This is the third annual progress report concerning the programme on plutonium recycling in light-water reactors (indirect action) of the Commission of the European Communities. It covers the year 1978 and follows the annual reports for 1977 (EUR 6002 EN) and 1976 (EUR 5780). The preliminary results obtained under the 1975-79 programme indicate that: (a) assuming that plutonium recycling in light-water reactors is industrially developed by the end of the century, the foreseeable radiological impact on both workers and the general public can be maintained within the limits of current radiation protection standards; (b) on the whole, there is a good knowledge and mastery of the specific aspects involved in the plutonium recycling in light-water reactors and in particular they indicate that plutonium fuels have a similar behaviour to uranium fuels

  19. Study of plutonium recycling physics in light water reactors

    International Nuclear Information System (INIS)

    Reuss, Paul

    1979-10-01

    A stock of plutonium from the reprocessing of thermal neutron reactor fuel is likely to appear in the next few years. The use of this plutonium as fuel replacing 235 U in thermal reactors is probably more interesting than simple stock-piling storage: immobilization of a capital which moreover would deteriorate by radioactive decay of isotope 241 also fissile and present to an appreciable extend in plutonium from reprocessing (half-life 15 years); recycling, on the other hand, will supply energy without complete degradation of the stock for fast neutron reactor loads, the burned matter having been partially renewed by conversion; furthermore the use of plutonium will meet the needs created by a temporary pressure on the naturel and/or enriched uranium market. For these two reasons the recycling of plutonium in thermal neutron reactors is being considered seriously today. The present work is confined to neutronic aspects and centres mainly on pressurized water-moderated reactors, the most highly developed at present in France. Four aspects of the problem are examined: 1. the physics of a plutonium-recycling reactor special features of neutronic phenomena with respect to the 'conventional' scheme of the 235 U burning reactor; 2. calculation of a plutonium-recycling reactor: adaptation of standard methods; 3. qualification of these calculations from the viewpoint of both data and inevitable approximations; 4. the fuel cycle and particularly the equivalence of fissile matters [fr

  20. Safety reviews of next-generation light-water reactors

    International Nuclear Information System (INIS)

    Kudrick, J.A.; Wilson, J.N.

    1997-01-01

    The Nuclear Regulatory Commission (NRC) is reviewing three applications for design certification under its new licensing process. The U.S. Advanced Boiling Water Reactor (ABWR) and System 80+ designs have received final design approvals. The AP600 design review is continuing. The goals of design certification are to achieve early resolution of safety issues and to provide a more stable and predictable licensing process. NRC also reviewed the Utility Requirements Document (URD) of the Electric Power Research Institute (EPRI) and determined that its guidance does not conflict with NRC requirements. This review led to the identification and resolution of many generic safety issues. The NRC determined that next-generation reactor designs should achieve a higher level of safety for selected technical and severe accident issues. Accordingly, NRC developed new review standards for these designs based on (1) operating experience, including the accident at Three Mile Island, Unit 2; (2) the results of probabilistic risk assessments of current and next-generation reactor designs; (3) early efforts on severe accident rulemaking; and (4) research conducted to address previously identified generic safety issues. The additional standards were used during the individual design reviews and the resolutions are documented in the design certification rules. 12 refs

  1. Thermohydraulics of emergency core cooling in light water reactors

    International Nuclear Information System (INIS)

    1989-10-01

    This report, by a group of experts of the OECD-NEA Committee on the Safety of Nuclear Installations, reviews the current state-of-knowledge in the field of emergency core cooling (ECC) for design-basis, loss-of-coolant accidents (LOCA) and core uncover transients in pressurized- and boiling-water reactors. An overview of the LOCA scenarios and ECC phenomenology is provided for each type of reactor, together with a brief description of their ECC systems. Separate-effects and integral-test facilities, which contribute to understanding and assessing the phenomenology, are reviewed together with similarity and scaling compromises. All relevant LOCA phenomena are then brought together in the form of tables. Each phenomenon is weighted in terms of its importance to the course of a LOCA, and appraised for the adequacy of its data base and analytical modelling. This qualitative procedure focusses attention on the modelling requirements of dominant LOCA phenomena and the current capabilities of the two-fluid models in two-phase flows. This leads into the key issue with ECC: quantitative code assessment and the application of system codes to predict with a well defined uncertainty the behaviour of a nuclear power plant. This issue, the methodologies being developed for code assessment and the question of how good is good enough are discussed in detail. Some general conclusions and recommendations for future research activities are provided

  2. Coastdown in light water reactors as a fuel management strategy

    International Nuclear Information System (INIS)

    Lobo, L.G.

    1980-12-01

    Improved uranium utilization by means of extended burnup via routine end-of-cycle coastdown has been analyzed, with a specific focus on pressurided water reactors. Both computer and simple analytic models have been developed to determine the optimal coastdown length. Coastdown has been compared with the use of higher fuel-enrichment to achieve comparable burnup values. Temperature and Power coastdown modes were analyzed and changes in the plant thermodynamic efficiency determined. Effects on fuel integrity due to coastdown were examined using a fuel reliability code (SPEAR). Finally the effects on coastdown duration of major parameters involved in charaterizing reactor operation and the economic enviroment were examined. It was found that natural uranium savings up to 7% could be achieved in a typical application by the use of routine pre-planned coast down up to the economic optimun. If coastdown is carried out all the way up to the economic breakeven point yellowcake savings sum up to 16%. Coastdown is substantially more effective than increasing enrichment to extend cycle length without coastdown. Thermodynamic efficiency does not change appreciably during coastdown, a circumstance which greatly simplifies modeling. Coastdown was found to have no statistically significant effect on predicted fuel failure rates. Finally, simple back-of-the evenlope analytic models were found to give an excellent estimate of coastdown duration to both the optimum and breakeven points, and to correctly track the functional behavior induced by all major variables

  3. Improvement of failed fuel detection system of light water reactor

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Cho, S.W.; Lee, K.W.

    1981-01-01

    Multi-task DAAS system by utilizing PDP-11/23 computer was assembled and tested for its performances. By connecting four Ge(Li) detectors to this DAAS, test experiments were done to prove system capability for detection and analysis of any fission gases resolved in four independently sampled primary cooling water from a power reactor. Appropriate computer programs were also introduced for this application and satisfactory results were obtained. Further application of this DAAS to the quality test of fuel pins (uniform distribution of enriched uranium in fresh fuel pellets), a prototype fuel scanner system was designed, constructed and tested. Operational principle of this system is based on the determination of 235 U/ 238 U abundance ratio in pellets by precision spectrometry or gamma-rays which are emitted from a portion of fuel pellets. For the uniform scanning, rotational and traverse motions at pre-selected speeds were applied to a fuel pin under tests. A long lens magnetic beta-spectrometer of Argonne National Laboratory was transferred to KAERI and re-installed for future precision beta-gamma spectroscopic research works on short-lived fission products nuclei

  4. Study of Pu consumption in Advanced Light Water Reactors

    International Nuclear Information System (INIS)

    1993-01-01

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE's 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology

  5. Utilization of light water reactors for plutonium incineration

    International Nuclear Information System (INIS)

    Galperin, A.

    1995-01-01

    In this work a potential of incineration of excess Pu in LWR's is investigated. In order to maintain the economic viability of the Pu incineration option it should be carried out by the existing power plants without additional investment for plant modifications. Design variations are reduced to the fuel cycle optimization, i.e. fuel composition may be varied to achieve optimal Pu destruction. Fuel mixtures considered in this work were based either on uranium or thorium fertile materials and Pu as a fissile component. The slightly enriched U fuel cycle for a typical pressurized water reactor was considered as a reference case. The Pu content of all fuels was adjusted to assure the identical cycle length and discharged burnup values. An equilibrium cycle was simulated by performing cluster burnup calculations. The material composition data for the whole core was estimated based on the core, fuel and cycle parameters. The annual production of Pu of a standard PWR with 1100 MWe output is about 298 kg. The same core completely loaded with the MOX fuel is estimated to consume 474 kg of Pu, mainly fissile isotopes. The MOX-239 fuel type (pure Pu-239) shows a potential toreduce the initial total Pu inventory by 220 kg/year and fissile Pu inventory by 420 kg/year. TMOX and TMOX-239 are based on Th-232 as a fertile component of the fuel, instead of U-238. The amount of Pu destroyed per year for both cases is significantly higher than that of U-based fuels. Especially impressive is the reduction in fissile Pu inventory: more than 900 kg/year. (author)

  6. Practical considerations in the use of UV light for drinking water disinfection

    International Nuclear Information System (INIS)

    Jeyanayagam, S.; Cotton, C.

    2002-01-01

    Ultraviolet (UV) light was discovered approximately 150 years ago. The first commercial UV lamp was made in the early 1900s soon followed by the manufacture of the quartz sleeve. These technological advances allowed the first application of UV light for water disinfection in 1907 in France. In the mid 1980s, UV disinfection was named as a Best available technology (BAT) for wastewater disinfection in the United States. Fueled by the recent findings that UV disinfection can inactivate key pathogens at cost effective UV doses, the drinking water industry in North America is closely investigating its application in large installations. (author)

  7. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  8. Flow-induced vibration for light-water reactors. Progress report, April 1978-December 1979

    International Nuclear Information System (INIS)

    Schardt, J.F.

    1980-03-01

    Flow-Induced vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. This progress report summarizes the accomplishments achieved during the period from April 1978 to December 1979

  9. Investigation into the Use of Water Based Brake Fluid for Light Loads

    Directory of Open Access Journals (Sweden)

    W. A. Akpan

    2012-12-01

    Full Text Available This paper addresses the possibility of using water based fluid as a brake fluid for light loads. Characterization of both standard and water based braked fluids formulated was carried out. The properties of the latter were compared with that of a standard commercial brake fluid. The actual test of the formulated brake fluid was carried out with a Nissan Sunny vehicle model 1.5 within the speed range of 20km/hr to 80km/hr at the permanent campus of University of Uyo and the braking efficiency obtained attest to its suitability for light loads.

  10. Filtered atmospheric venting of light water reactor containments

    International Nuclear Information System (INIS)

    Hedgran, A.; Ahlstroem, P.E.; Nilsson, L.; Persson, Aa.

    1982-11-01

    The aim of filtered venting is to improve the function of the reactor containment in connection with very severe accidents. By equipping the containment with a safety valve for pressure relief and allowing the released gases to pass through an effective filter, it should be possible to achieve a considerable protective effect. The work has involved detailed studies of the core meltdown sequence, how the molten core material runs out of the reactor vessel, what effect it has on concrete and other structures and how final cooling of the molten core material takes place. On the basis of previous Swedish studies, the project has chosen to study a filter concept that consists of a gravel bed of large volume. This filter plant shall not only retain the radioactive particles that escape from the containment through the vent line, but shall also condense the accompanying steam. After the government decided in 1981 that Barsebaeck was to be equipped with filtered venting and issued specifications regarding its performance, the project aimed at obtaining results that could be used to design and verify a plant for filtered venting at the Barsebaeck nuclear power station. As far as the other Swedish nuclear power plants at Oskarshamn, Ringhals and Forsmark are concerned, the results are only applicable to a limited extent. Additional studies are required for these nuclear power plants before the value of filtered venting can be assessed. Based on the results of experiments and analyses, the project has made a safety analysis with Barsebaeck as a reference plant in order to study how the introduction of filtered venting affects the safety level at a station. In summary, the venting function appears to entail a not insignificant reduction of risks for boiling water reactors of the Barsebaeck type. For a number of types of such very severe core accident cases, the filter design studied ensures a substantial reduction of the releases. However it has not been possible within the

  11. Flooding of a large, passive, pressure-tube light water reactor

    International Nuclear Information System (INIS)

    Hejzlar, P.; Todreas, N.E.; Driscoll, M.J.

    1997-01-01

    A reactor concept has been developed which can survive loss of coolant accidents without scram and without replenishing primary coolant inventory, while maintaining safe temperature limits on the fuel and pressure tubes. The proposed concept is a pressure tube type reactor of similar design to CANDU reactors, but differing in three key aspects. First, a solid SiC-coated graphite fuel matrix is used in place of fuel pin bundles to enable the dissipation of decay heat from the fuel in the absence of primary coolant. Second, the heavy water coolant in the pressure tubes is replaced by light water, which also serves as the moderator. Finally, the calandria tank, surrounded by a graphite reflector, contains a low pressure gas instead of heavy water moderator, and this normally-voided calandria is connected to a light water heat sink. The cover gas displaces the light water from the calandria during normal operation, while during loss of coolant or loss of heat sink accidents it allows passive calandria flooding. Calandria flooding also provides redundant and diverse reactor shutdown. This paper describes the thermal hydraulic characteristics of the passively initiated, gravity driven calandria flooding process. Flooding the calandria space with light water is a unique and very important feature of the proposed pressure-tube light water reactor (PTLWR) concept. The flooding of the top row of fuel channels must be accomplished fast enough so that in the total loss of coolant, none of the critical components of the fuel channel, i.e. the pressure tube, the calandria tube, the matrix and the fuel, exceed their design limits. The flooding process has been modeled and shown to be rapid enough to maintain all components within their design limits. (orig.)

  12. Rapid water disinfection using vertically aligned MoS_2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS_2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS_2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.

  13. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    International Nuclear Information System (INIS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook

    2016-01-01

    In most climates, solar energy is readily available and can be used for water purification. But, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS_2 (FLV-MoS_2) films can be used to harvest the whole spectrum of visible light (~50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS_2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS_2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS_2 showed a ~15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS_2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO_2. Moreover, by using a 5 nm copper film on top of the FLV-MoS_2 as a catalyst to facilitate electron–hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. Here, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l–1) under simulated visible light.

  14. Boreal Tree Light- and Water-Use: Asynchronous, Diverging, yet Complementary

    Science.gov (United States)

    Pappas, C.; Baltzer, J. L.; Barr, A.; Black, T. A.; Bohrer, G.; Detto, M.; Maillet, J.; Matheny, A. M.; Roy, A.; Sonnentag, O.; Stephens, J.

    2017-12-01

    Water stress has been suggested as a key mechanism behind the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree light- and water-use strategies as well as their interspecific differences are still lacking. Here, we examine the tree hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js) and concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree light- and water-use strategies. Our analysis reveals an asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring two hours earlier in larch than in black spruce. Structural differences in the crown architecture of larch and black spruce lead to interspecific differences in light harvesting that can explain the observed asynchrony in their hydraulic function. Furthermore, the two species exhibit diverging stomatal regulation strategies with larch employing relatively isohydric whereas black spruce anisohydric behaviour. Such asynchronous and diverging tree-level light- and water-use strategies provide new insights into the ecosystem-level complementarity of tree form and function, with implications for understanding boreal forests' water and carbon dynamics and resilience to environmental stress.

  15. Materials Degradation in Light Water Reactors: Life After 60,

    International Nuclear Information System (INIS)

    Busby, Jeremy T; Nanstad, Randy K; Stoller, Roger E; Feng, Zhili; Naus, Dan J

    2008-01-01

    Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the key issue with materials aging and cable/piping as the top concerns for plant reliability. Materials degradation within a nuclear power plant is very complex. There are many different types of materials within the reactor itself: over 25 different metal alloys can be found with can be found within the primary and secondary systems, not to mention the concrete containment vessel, instrumentation and control, and other support facilities. When this diverse set of materials is placed in the complex and harsh environment coupled with load, degradation over an extended life is indeed quite complicated. To address this issue, the USNRC has developed a Progressive Materials Degradation Approach (NUREG/CR-6923). This approach is intended to develop a foundation for appropriate actions to keep materials degradation from adversely impacting component integrity and safety and identify materials and locations where degradation can reasonably be expected in the future. Clearly, materials degradation will impact reactor reliability, availability, and potentially, safe operation. Routine surveillance and component replacement can mitigate these factors, although failures still occur. With reactor life extensions to 60 years or beyond or power uprates, many components must tolerate the reactor environment for even longer times. This may increase

  16. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  17. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    395–398. c Indian Academy of Sciences. Modeling of austenite to ferrite transformation. MOHSEN KAZEMINEZHAD. ∗. Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran. MS received 17 January 2011; revised 9 July 2011. Abstract. In this research, an algorithm ...

  18. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  19. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Juhas, M.C.

    1985-01-01

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  20. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  1. Electrochemistry in light water reactors reference electrodes, measurement, corrosion and tribocorrosion issues

    CERN Document Server

    Bosch, R -W; Celis, Jean-Pierre

    2007-01-01

    There has long been a need for effective methods of measuring corrosion within light water nuclear reactors. This important volume discusses key issues surrounding the development of high temperature reference electrodes and other electrochemical techniques. The book is divided into three parts with part one reviewing the latest developments in the use of reference electrode technology in both pressurised water and boiling water reactors. Parts two and three cover different types of corrosion and tribocorrosion and ways they can be measured using such techniques as electrochemical impedance spectroscopy. Topics covered across the book include in-pile testing, modelling techniques and the tribocorrosion behaviour of stainless steel under reactor conditions. Electrochemistry in light water reactors is a valuable reference for all those concerned with corrosion problems in this key technology for the power industry. Discusses key issues surrounding the development of high temperature reference eletrodes A valuab...

  2. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  3. Water hammer caused by rapid gas production in a severe accident in a light water reactor

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Adachi, Masaki; Aya, Izuo; Nariai, Hideki; Shiozaki, Kohki

    2005-01-01

    We investigated the water hammer caused by striking of water mass pushed up by a rapidly growing bubble and its scale effects using two cylindrical model containment vessels of 1.0 and 0.428 m diameters. We also closely observed the movement of water mass and the growing bubble in the vessels. In these experiments, rapid bubble growth was simulated by injecting high-pressure air into a water pool. It was clarified that the water mass was pushed up without any air penetration until the water level reached a certain elevation. On the basis of all data, experimental correlations for estimating the height and striking velocity of the water mass with coherency were proposed, and the water hammer pressure for exerting large forces on the structures was quantitatively evaluated. (author)

  4. Self-propagating solar light reduction of graphite oxide in water

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece); Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece)

    2017-01-01

    Highlights: • Graphite oxide was partially reduced by solar light irradiation in water media. • No addition of catalysts nor reductive agent were used for the reduction. • Specific capacitance increased stepwise with increase of irradiation time. • Self-propagating reduction of graphene oxide by solar light is suggested. - Abstract: Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp{sup 2} domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.

  5. Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints

    Directory of Open Access Journals (Sweden)

    Topolska S.

    2017-12-01

    Full Text Available The paper describes structure and properties of dissimilar stainless steels welded joints between duplex 2205 and austenitic 316L steels. Investigations were focused on environmentally assisted cracking of welded joints. The susceptibility to stress corrosion cracking (SCC and hydrogen embrittlement was determined in slow strain rate tests (SSRT with the strain rate of 2.2 × 10−6 s−1. Chloride-inducted SCC was determined in the 35% boiling water solution of MgCl2 environment at 125°C. Hydrogen assisted SCC tests were performed in synthetic sea water under cathodic polarization condition. It was shown that place of the lowest resistance to chloride stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of HAZ comprising of large fractions of ferrite grains with acicular austenite phase. Hydrogen assisted SCC tests showed significant reduction in ductility of duplex 2205 steel while austenitic 316L steel remains almost immune to degradation processes. SSR tests of dissimilar welded joints revealed a fracture in the area of austenitic steel.

  6. A new device for acquiring ground truth on the absorption of light by turbid waters

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.

    1974-01-01

    The author has identified the following significant results. A new device, called a Spectral Attenuation Board, has been designed and tested, which enables ERTS-1 sea truth collection teams to monitor the attenuation depths of three colors continuously, as the board is being towed behind a boat. The device consists of a 1.2 x 1.2 meter flat board held below the surface of the water at a fixed angle to the surface of the water. A camera mounted above the water takes photographs of the board. The resulting film image is analyzed by a micro-densitometer trace along the descending portion of the board. This yields information on the rate of attenuation of light penetrating the water column and the Secchi depth. Red and green stripes were painted on the white board to approximate band 4 and band 5 of the ERTS MSS so that information on the rate of light absorption by the water column of light in these regions of the visible spectrum could be concurrently measured. It was found that information from a red, green, and white stripe may serve to fingerprint the composition of the water mass. A number of these devices, when automated, could also be distributed over a large region to provide a cheap method of obtaining valuable satellite ground truth data at present time intervals.

  7. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  8. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades; Analise da austenita expandida em camadas nitretadas em acos inoxidaveis austeniticos e superaustenitico

    Energy Technology Data Exchange (ETDEWEB)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica; Oliveira, A.M. [Instituto de Educacao, Ciencia e Tecnologia do Maranhao (IFMA), Sao Luis, MA (Brazil); Gallego, J., E-mail: gallego@dem.feis.unesp.b [UNESP, Ilha Solteira, SP (Brazil). Dept. Engenharia Mecanica

    2010-07-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  9. Water hammer caused by rapid steam production in a severe accident in a light water reactor

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Adachi, Masaki; Murata, Hiroyuki; Aya, Izuo

    2007-01-01

    We conducted the experimental studies on the water hammer caused by striking of a water mass pushed up by a rapidly growing steam bubble, using a cylindrical model containment vessel of 0.4286 m in diameter. In the experiments, a rapid gas growth was simulated by injecting high-pressure steam into a water pool. It was clarified that coherency of the water mass movement and its water hammer caused by the condensable gas production considerably decreased in comparison with the case of the non-condensable gas production because the rising velocity of the water mass was suppressed due to the steam bubble condensation. On the basis of the data, experimental correlations for estimating the water hammer on the structures in the containment vessel were proposed. (author)

  10. Study of irradiation effects in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Material Department, University of California, Santa Barbara (United States); Pareige, P.; Radiguet, B. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Cunningham, N.J.; Odette, G.O. [Material Department, University of California, Santa Barbara (United States); Pokor, C. [EDF RD, departement MMC, site des Renardieres, Moret-sur-Loing (France)

    2011-07-01

    Chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after seventeen years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A very high number density (6.10{sup 23} m{sup -3}) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. In order to bring complementary experimental results and to determine the mechanism of formation of these Ni-Si nano-clusters, Fe{sup 5+} ion irradiations have been performed on a 316 austenitic stainless steel. As after neutron irradiation, the formation of solute enriched features is observed. Linear features and two kinds of clusters, rounded and torus shaped, are present. Considering that solute enriched features are probably formed by radiation induced segregation on point defect sinks, these different shapes are due to the nature of the sinks where segregation occurs. (authors)

  11. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-10-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule duration, and to simplify design. This document discusses construction approaches. 77 refs., 5 figs., 6 tabs

  12. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1987-12-01

    Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses successes and problems in construction. 49 refs., 16 figs., 8 tabs

  13. Inland Waters Night Lighting Configurations: A Navigation Rules Course for Coast Guard Auxiliarists.

    Science.gov (United States)

    Griffiths, Gregory Peter

    A project developed a training program to teach boaters to recognize and interpret properly the lights of other vessels in nighttime or other reduced visibility conditions in the inland waters of the United States. The project followed the Instructional Systems Design model in the development of the course. The target population were members of…

  14. CLUMPED LIGHT WATER MODERATED UO$sub 2$ SUPERHEAT CRITICALS. PART I. EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Warzek, F. G.; Johnston, H. F.

    1963-11-15

    The following critical and subcritical measurements were made in the EVESR core: reactivity with no control rods; full core reactivity with control rods; and power distribution in the full core with control rods. The fuel was UO/ sub 2/, and the elements were of the superheating type. The reactor was light- water-cooled and -moderated. (T.F.H.)

  15. Technology programs in support of advanced light water reactor plants: Construction

    International Nuclear Information System (INIS)

    Eichen, E.P.

    1989-01-01

    Under Contract No. AC03-86SF16565, Stone ampersand Webster Engineering Corporation (SWEC) is conducting several independent, yet interrelated, studies of light water reactor plants to improve constructibility and quality, to reduce costs and schedule durations, and to simplify design. This document discusses design requirements. 36 refs., 57 figs., 56 tabs

  16. Light Water Reactor Sustainability Constellation Pilot Project FY11 Summary Report

    International Nuclear Information System (INIS)

    Johansen, R.

    2011-01-01

    Summary report for Fiscal Year 2011 activities associated with the Constellation Pilot Project. The project is a joint effor between Constellation Nuclear Energy Group (CENG), EPRI, and the DOE Light Water Reactor Sustainability Program. The project utilizes two CENG reactor stations: R.E. Ginna and Nine Point Unit 1. Included in the report are activities associate with reactor internals and concrete containments.

  17. Generic environmental impact statement on handling and storage of spent light water power reactor fuel. Appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Detailed appendices are included with the following titles: light water reactor fuel cycle, present practice, model 1000MW(e) coal-fired power plant, increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data (1976-2000), characteristics of nuclear fuel, and ''away-from-reactor'' storage concept

  18. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation

    NARCIS (Netherlands)

    Ludwig, F.; Kroon, de H.; Berendse, F.; Prins, H.H.T.

    2004-01-01

    In an East African savanna herbaceous layer productivity and species composition were studied around Acacia tortilis trees of three different age classes, as well as around dead trees and in open grassland patches. The effects of trees on nutrient, light and water availability were measured to

  19. LWR-WIMS, a computer code for light water reactor lattice calculations

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1982-06-01

    LMR-WIMS is a comprehensive scheme of computation for studying the reactor physics aspects and burnup behaviour of typical lattices of light water reactors. This report describes the physics methods that have been incorporated in the code, and the modifications that have been made since the code was issued in 1972. (U.K.)

  20. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  1. GENERIC, COMPONENT FAILURE DATA BASE FOR LIGHT WATER AND LIQUID SODIUM REACTOR PRAs

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Eide; S. V. Chmielewski; T. D. Swantz

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs) . The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates . Using this approach, most of the failure rates are based on actual plant data rather than existing estimates .

  2. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  3. Radiological control aspects of the fabrication of the Light Water Breeder Reactor core (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schultz, B.G.

    1979-05-01

    A description is presented of the radiological control aspects of the fabrication of the Light Water Breeder Reactor (LWBR) core. Included are the radiological control criteria applied for the design and use of fabrication facilities, the controls and limits imposed to minimize radiaion exposure to personnel, and an evaluation of the applied radiological program in meeting the program objectives. The goal of the LWBR program is to develop the technology to breed in light water reactors so that nuclear fuel may be used significantly more efficiently in these reactors. This technology is being developed by designing and fabricating a breeder reactor core, utilizing thoria (ThO 2 ) and binary thoria--urania (ThO 2 - 233 UO 2 ) fuel, to be operated in the existing pressurized water reactor plant owned by the Department of Energy at Shippingport, Pennsylvania

  4. A method and algorithm for correlating scattered light and suspended particles in polluted water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    An optical model has been developed for measuring total suspended solids TSS concentrations in water. This approach is based on the characteristics of scattered light from the suspended particles in water samples. An optical sensor system (an active spectrometer) has been developed to correlate pollutant (total suspended solids TSS) concentration and the scattered radiation. Scattered light was measured in terms of the output voltage of the phototransistor of the sensor system. The developed algorithm was used to calculate and estimate the concentrations of the polluted water samples. The proposed algorithm was calibrated using the observed readings. The results display a strong correlation between the radiation values and the total suspended solids concentrations. The proposed system yields a high degree of accuracy with the correlation coefficient (R) of 0.99 and the root mean square error (RMS) of 63.57 mg/l. (Author)

  5. Aging assessment and mitigation for major LWR [light water reactor] components

    International Nuclear Information System (INIS)

    Shah, Y.N.; Ware, A.G.; Conley, D.A.; MacDonald, P.E.; Burns, J.J. Jr.

    1989-01-01

    This paper summarizes some of the results of the Aging Assessment and Mitigation Project sponsored by the US Nuclear Regulatory Commission (USNRC), Office of Nuclear Regulatory Research. The objective of the project is to develop an understanding of the aging degradation of the major light water reactor (LWR) structures and components and to develop methods for predicting the useful life of these components so that the impact of aging on the safe operation of nuclear power plants can be evaluated and addressed. The research effort consists of integrating, evaluating, and updating the available aging-related information. This paper discusses current accomplishments and summarizes the significant degradation processes active in two major components: pressurized water reactor pressurizer surge and spray lines and nozzles, and light water reactor primary coolant pumps. This paper also evaluates the effectiveness of the current inservice inspection programs and presents conclusions and recommendations related to aging of these two major components. 37 refs., 7 figs., 3 tabs

  6. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  7. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water

    Energy Technology Data Exchange (ETDEWEB)

    Sapkota, Ajaya; Anceno, Alfredo J; Dutta, Joydeep [Center of Excellence in Nanotechnology, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand); Baruah, Sunandan; Shipin, Oleg V, E-mail: alfredo.anceno@cemagref.fr, E-mail: joy@ait.ac.th [Environmental Engineering and Management, Asian Institute of Technology, Klong Luang, Pathumthani 12120 (Thailand)

    2011-05-27

    The inactivation of model microbes in aqueous matrix by visible light photocatalysis as mediated by ZnO nanorods was investigated. ZnO nanorods were grown on glass substrate following a hydrothermal route and employed in the inactivation of gram-negative Escherichia coli and gram-positive Bacillus subtilis in MilliQ water. The concentration of Zn{sup 2+} ions in the aqueous matrix, bacterial cell membrane damage, and DNA degradation at post-exposure were also studied. The inactivation efficiencies for both organisms under light conditions were about two times higher than under dark conditions across the cell concentrations assayed. Anomalies in supernatant Zn{sup 2+} concentration were observed under both conditions as compared to control treatments, while cell membrane damage and DNA degradation were observed only under light conditions. Inactivation under dark conditions was hence attributed to the bactericidal effect of Zn{sup 2+} ions, while inactivation under light conditions was due to the combined effects of Zn{sup 2+} ions and photocatalytically mediated electron injection. The reduction of pathogenic bacterial densities by the photocatalytically active ZnO nanorods in the presence of visible light implies potential ex situ application in water decontamination at ambient conditions under sunlight.

  8. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters

    Science.gov (United States)

    Ges, Xavier; Bará, Salvador; García-Gil, Manuel; Zamorano, Jaime; Ribas, Salvador J.; Masana, Eduard

    2018-05-01

    Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the

  9. Model Predictive Control of the Exit Part Temperature for an Austenitization Furnace

    Directory of Open Access Journals (Sweden)

    Hari S. Ganesh

    2016-12-01

    Full Text Available Quench hardening is the process of strengthening and hardening ferrous metals and alloys by heating the material to a specific temperature to form austenite (austenitization, followed by rapid cooling (quenching in water, brine or oil to introduce a hardened phase called martensite. The material is then often tempered to increase toughness, as it may decrease from the quench hardening process. The austenitization process is highly energy-intensive and many of the industrial austenitization furnaces were built and equipped prior to the advent of advanced control strategies and thus use large, sub-optimal amounts of energy. The model computes the energy usage of the furnace and the part temperature profile as a function of time and position within the furnace under temperature feedback control. In this paper, the aforementioned model is used to simulate the furnace for a batch of forty parts under heuristic temperature set points suggested by the operators of the plant. A model predictive control (MPC system is then developed and deployed to control the the part temperature at the furnace exit thereby preventing the parts from overheating. An energy efficiency gain of 5.3 % was obtained under model predictive control compared to operation under heuristic temperature set points tracked by a regulatory control layer.

  10. The Investigation on Strain Strengthening Induced Martensitic Phase Transformation of Austenitic Stainless Steel: A Fundamental Research for the Quality Evaluation of Strain Strengthened Pressure Vessel

    Science.gov (United States)

    Li, Bo; Cai Ren, Fa; Tang, Xiao Ying

    2018-03-01

    The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.

  11. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  12. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  13. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  14. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  15. The nucleation of austenite in ferritic ductile cast iron

    International Nuclear Information System (INIS)

    Chou, J.M.; Hon, M.H.; Lee, J.L.

    1992-01-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated

  16. Diffractometry of expanded austenite using synchrotron radiation

    International Nuclear Information System (INIS)

    Fewell, M.P.; Priest, J.M.; Collins, G.A.; Short, K.T.

    2000-01-01

    Full text: The question of the structure of the nitrogen-rich surface layer produced in the nitriding of austenitic stainless steel has been controversial for some time. Diffractometry using conventional x-ray sources is routinely carried out on this material. The result universally seen shows an ostensibly f.c.c. lattice with a larger lattice parameter than that of the underlying austenite. The difficulty with this interpretation lies in the 200 reflection, which lies at slightly lower Bragg angle than expected on the basis of the 111, 220 and 311 reflections. This behaviour is seen in all work known to us, regardless of the grade of austenitic stainless steel or the details of the nitriding technique. It has been explained as due to a mixed f.c.c. phase with different grains having different lattice constants, or as due to a tetragonal distortion of the lattice or an f.c.c lattice with a high frequency of stacking faults, or as indicating a triclinic lattice with a unit cell having all sides equal and two angles equal

  17. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Science.gov (United States)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  18. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, Kale J., E-mail: kalejs@umich.edu; Was, Gary S.

    2015-01-15

    Highlights: • Dislocation loops were the prominent defect, but neutron irradiation caused higher loop density. • Grain boundaries had similar amounts of radiation-induced segregation. • The increment in hardness and yield stress due to irradiation were very similar. • Relative IASCC susceptibility was nearly identical. • The effect of dislocation channel step height on IASCC was similar. - Abstract: The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni–Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed

  19. Transmission of light in deep sea water at the site of the ANTARES neutrino telescope

    Science.gov (United States)

    ANTARES Collaboration; Aguilar, J. A.; Albert, A.; Amram, P.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Billault, M.; Blaes, R.; Blanc, F.; Bland, R. W.; de Botton, N.; Boulesteix, J.; Bouwhuis, M. C.; Brooks, C. B.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Bugeon, F.; Burgio, G. F.; Cafagna, F.; Calzas, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Charvis, P.; Circella, M.; Colnard, C.; Compère, C.; Croquette, J.; Cooper, S.; Coyle, P.; Cuneo, S.; Damy, G.; van Dantzig, R.; Deschamps, A.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dinkelspiler, B.; Dispau, G.; Drougou, J.-F.; Druillole, F.; Engelen, J.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fopma, J.; Fuda, J.-L.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Hartmann, B.; Heijboer, A.; Hello, Y.; Hernández-Rey, J. J.; Herrouin, G.; Hößl, J.; Hoffmann, C.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Jouvenot, F.; Kappes, A.; Karg, T.; Karkar, S.; Karolak, M.; Katz, U.; Keller, P.; Kooijman, P.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Legou, T.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Maron, C.; Massol, A.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Michel, J.-L.; Millot, C.; Milovanovic, A.; Montanet, F.; Montaruli, T.; Morel, J.-P.; Moscoso, L.; Nezri, E.; Niess, V.; Nooren, G. J.; Ogden, P.; Olivetto, C.; Palanque-Delabrouille, N.; Payre, P.; Petta, C.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Potheau, R.; Pradier, T.; Racca, C.; Randazzo, N.; Real, D.; van Rens, B. A. P.; Réthoré, F.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rollin, J.-F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Ruppi, M.; Russo, G. V.; Sacquin, Y.; Saouter, S.; Schuller, J.-P.; Schuster, W.; Sokalski, I.; Suvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Thompson, L. F.; Tilav, S.; Usik, A.; Valdy, P.; Vallage, B.; Vaudaine, G.; Vernin, P.; Virieux, J.; Vladimirsky, E.; de Vries, G.; de Witt Huberts, P.; de Wolf, E.; Zaborov, D.; Zaccone, H.; Zakharov, V.; Zavatarelli, S.; de Zornoza, J. D.; Zúñiga, J.

    2005-02-01

    The ANTARES neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the ANTARES site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length λscteff. The values for blue (UV) light are found to be λabs ≃ 60(26) m, λscteff≃265(122)m, with significant (˜15%) time variability. Finally, the results of ANTARES simulations showing the effect of these water properties on the anticipated performance of the detector are presented.

  20. Biofouling on austenitic stainless steels in spent nuclear fuel pools

    Energy Technology Data Exchange (ETDEWEB)

    Sarro, M I; Moreno, D A; Chicote, E; Lorenzo, P I; Garcia, A M [Universidad Politecnica de Madrid, Departamento de Ingenieria y Ciencia de los Materiales, Escuela Tecnica Superior de Ingenieros Industriales, Jose Gutierrez Abascal, 2, E-28006 Madrid (Spain); Montero, F [Iberdrola Generacion, S.A., y C.M.D.S., Centro de Tecnologia de Materiales, Paseo de la Virgen del Puerto, 53, E-28005 Madrid (Spain)

    2003-07-01

    The objective of this study was to investigate the biofilm formation on three different types of austenitic stainless steel (UNS S30400, S30466 and S31600) submerged in a spent nuclear fuel pool. The presence of microorganisms in coupons was characterised using standard culture microbiological methods, microscopic techniques (epifluorescence microscopy and scanning electron microscopy), and molecular biology techniques (denaturing gradient gel electrophoresis and sequencing fragments of 16S rDNA). The microscopy techniques showed signs of colonisation of stainless steels in spite of these extreme conditions. Based on sequencing of cultured microorganisms, different bacteria belonging to {alpha}, {beta}, {gamma}-Proteobacteria, Bacilli, and Actinobacteria classes have been identified. The biofilm radioactivity was measured using gamma-ray spectrometry and, according to the data gathered, the radionuclides present in the water pool were entrapped in the biofilm increasing the amount of radiation at the surface of the different materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Biofouling on austenitic stainless steels in spent nuclear fuel pools

    International Nuclear Information System (INIS)

    Sarro, M.I.; Moreno, D.A.; Chicote, E.; Lorenzo, P.I.; Garcia, A.M.; Montero, F.

    2003-01-01

    The objective of this study was to investigate the biofilm formation on three different types of austenitic stainless steel (UNS S30400, S30466 and S31600) submerged in a spent nuclear fuel pool. The presence of microorganisms in coupons was characterised using standard culture microbiological methods, microscopic techniques (epifluorescence microscopy and scanning electron microscopy), and molecular biology techniques (denaturing gradient gel electrophoresis and sequencing fragments of 16S rDNA). The microscopy techniques showed signs of colonisation of stainless steels in spite of these extreme conditions. Based on sequencing of cultured microorganisms, different bacteria belonging to α, β, γ-Proteobacteria, Bacilli, and Actinobacteria classes have been identified. The biofilm radioactivity was measured using gamma-ray spectrometry and, according to the data gathered, the radionuclides present in the water pool were entrapped in the biofilm increasing the amount of radiation at the surface of the different materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  2. Thermal fatigue cracking of austenitic stainless steels

    International Nuclear Information System (INIS)

    Fissolo, A.

    2001-01-01

    This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N i is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> N i , with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that

  3. Modeling the electrochemistry of the primary circuits of light water reactors

    International Nuclear Information System (INIS)

    Bertuch, A.; Macdonald, D.D.; Pang, J.; Kriksunov, L.; Arioka, K.

    1994-01-01

    To model the corrosion behaviors of the heat transport circuits of light water reactors, a mixed potential model (NTM) has been developed and applied to both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Using the data generated by the GE/UKEA-Harwell radiolysis model, electrochemical potentials (ECPs) have been calculated for the heat transport circuits of eight BWRs operating under hydrogen water chemistry (HWC). By modeling the corrosion behaviors of these reactors, the effectiveness of HWC at limiting IGSCC and IASCC can be determined. For simulating PWR primary circuits, a chemical-radiolysis model (developed by the authors) was used to generate input parameters for the MPM. Corrosion potentials of Type 304 and 316 SSs in PWR primary environments were calculated using the NTM and were found to be in good agreement with the corrosion potentials measured in the laboratory for simulated PWR primary environments

  4. Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test

    International Nuclear Information System (INIS)

    Cowell, B.S.

    1997-06-01

    This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy

  5. Nondestructive examination (NDE) Reliability for Inservice Inspection of Light Water Reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties

  6. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactor (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987

  7. Evaluation and improvement in nondestructive examination (NDE) reliability for inservice inspection of light water reactors

    International Nuclear Information System (INIS)

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.

    1988-01-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) program at the Pacific Northwest Laboratory was established by the NRC to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from October 1986 through September 1987. (author)

  8. Radioactivity, radiation protection and monitoring during dismantling of light-water reactors

    International Nuclear Information System (INIS)

    Hummel, L.; Zech, J.B.

    2005-01-01

    Based on the radioactivity inventory in the systems and components of light-water reactors observed during operation, the impact of actions during plant emptying after the conclusion of power operation and possible subsequent long-term safe enclosure concerning the composition of the nuclide inventory of the plant to be dismantled will be described. Derived from this will be the effects on radioactivity monitoring in the plant, physical radiation protection monitoring, and the measured characterization of the residual materials resulting from the dismantling. The impact of long-term interim storage will also be addressed in the discussion. The talk should provide an overview of the interrelationships between source terms, decay times and the radioactivity monitoring requirements of the various dismantling concepts for commercial light-water reactors. (orig.)

  9. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    International Nuclear Information System (INIS)

    Geraskin, N I; Glebov, V B

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network. (paper)

  10. Study on the behavior of irradiated light water reactor fuel during out-of-pile annealing

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kanazawa, Hiroyuki; Uno, Hisao; Sasajima, Hideo

    1988-11-01

    Using the pre-irradiated light water reactor fuel (burnup: 35 MWd/kgU) and the slightly irradiated NSRR fuel (burnup: 5.6 x 10 -6 MWd/kgU), FP gas release rate up to the temperature of 2273 K was measured through out-of-pile annealing test. Results of this experiment were compared with those of ORNL annealing test (SFD/HI-test series) performed in USA. Obtained conclusions are: (1) Maximum release rate of Kr gas in light water reactor fuel was 6.4 % min -1 at temperature of 2273 K. This was in good agreement with ORNL data. FP gas release rate during annealing test was increased greatly with increasing fuel burnup and annealing temperature. (2) No FP was detected in NSRR slightly irradiated fuel up to the temperature of 1913 K. (author)

  11. Development status and application prospect of supercritical-pressure light water cooled reactor

    International Nuclear Information System (INIS)

    Li Manchang; Wang Mingli

    2006-01-01

    The Supercritical-pressure Light Water Cooled Reactor (SCWR) is selected by the Generation IV International Forum (GIF) as one of the six Generation IV nuclear systems that will be developed in the future, and it is an innovative design based on the existing technologies used in LWR and supercritical coal-fired plants. Technically, SCWR may be based on the design, construction and operation experiences in existing PWR and supercritical coal-fired plants, which means that there is no insolvable technology difficulties. Since PWR technology will be adopted in the near term and medium term projects in China, and considering the sustainable development of the technology, it is an inevitable choice to research and develop the nuclear system of supercritical light water cooled reactor. (authors)

  12. Development of the fuel-cycle costs in nuclear power stations with light-water reactors

    International Nuclear Information System (INIS)

    Brosch, R.; Moraw, G.; Musil, G.; Schneeberger, M.

    1976-01-01

    The authors investigate the fuel-cycle costs in nuclear power stations with light-water reactors in the Federal Republic of Germany in the years 1966 to 1976. They determine the effect of the price development for the individual components of the nuclear fuel cycle on the fuel-cycle costs averaged over the whole power station life. Here account is taken also of inflation rates and the change in the DM/US $ parity. In addition they give the percentage apportionment of the fuel-cycle costs. The authors show that real fuel-cycle costs for nuclear power stations with light-water reactors in the Federal Republic of Germany have risen by 11% between 1966 and 1976. This contradicts the often repeated reproach that fuel costs in nuclear power stations are rising very steeply and are no longer competitive. (orig.) [de

  13. Crystallography of lath martensite and stabilization of retained austenite

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya. M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200/sup 0/C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different (111) variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample.

  14. Crystallography of lath martensite and stabilization of retained austenite

    International Nuclear Information System (INIS)

    Sarikaya, M.

    1982-10-01

    TEM was used to study the morphology and crystallography of lath martensite in low and medium carbon steels in the as-quenched and 200 0 C tempered conditions. The steels have microduplex structures of dislocated lath martensite and continuous thin films of retained austenite at the lath interfaces. Stacks of laths form the packets which are derived from different [111] variants of the same austenite grain. The residual parent austenite enables microdiffraction experiments with small electron beam spot sizes for the orientation relationships (OR) between austenite and martensite. All three most commonly observed ORs, namely Kurdjumov-Sachs, Nishiyama-Wassermann, and Greninger-Troiano, operate within the same sample

  15. Study on light water reactor fuel behavior under reactivity initiated accident condition in TREAT

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Ishijima, Kiyomi; Ochiai, Masaaki; Tanzawa, Sadamitsu; Uemura, Mutsumi

    1981-05-01

    This report reviews the results of the fuel failure experiments performed in TREAT in the U.S.A. simulating Reactivity Initiated Accidents. One of the main purposes of the TREAT experiments is the study of the fuel failure behavior, and the other is the study of the molten fuel-water coolant interaction and the consequent hydrogen behavior. This report mainly shows the results of the TREAT experiments studying the fuel failure behavior in Light Water Reactor, and then it describes the fuel failure threshold and the fuel failure mechanism, considering the results of the photographic experiments of the fuel failure behavior with transparent capsules. (author)

  16. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    International Nuclear Information System (INIS)

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-01-01

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr 2 O 3 co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450 nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ∼43% at 375–450 nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts

  17. Contribution to the interpretation of explosive phenomena in research light-water reactors

    International Nuclear Information System (INIS)

    Le Berre, Francois.

    1975-08-01

    The study allows the prediction of the transient behavior of a light-water reactor that undergoes a power excursion due to a step reactivity insertion. In particular, a film-model for boiling is developed, which takes into account fast heat transfers, and permits the description of the water-hammer phenomena. The latter is due to the sudden contact between the liquid coolant and the fuel plates, which results from the vanishing of the vapor film. It is shown in which conditions this phenomena may initiate a reactor explosion [fr

  18. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  19. Research on physical and chemical parameters of coolant in Light-Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Isabela C.; Mesquita, Amir Z., E-mail: icr@cdtn.br, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The coolant radiochemical monitoring of light-water reactors, both power reactor as research reactors is one most important tasks of the system safe operation. The last years have increased the interest in the coolant chemical studying to optimize the process, to minimize the corrosion, to ensure the primary system materials integrity, and to reduce the workers exposure radiation. This paper has the objective to present the development project in Nuclear Technology Development Center (CDTN), which aims to simulate the primary water physical-chemical parameters of light-water-reactors (LWR). Among these parameters may be cited: the temperature, the pressure, the pH, the electric conductivity, and the boron concentration. It is also being studied the adverse effects that these parameters can result in the reactor integrity. The project also aims the mounting of a system to control and monitoring of temperature, electric conductivity, and pH of water in the Installation of Test in Accident Conditions (ITCA), located in the Thermal-Hydraulic Laboratory at CDTN. This facility was widely used in the years 80/90 for commissioning of several components that were installed in Angra 2 containment. In the test, the coolant must reproduce the physical and chemical conditions of the primary. It is therefore fundamental knowledge of the main control parameters of the primary cooling water from PWR reactors. Therefore, this work is contributing, with the knowledge and the reproduction with larger faithfulness of the reactors coolant in the experimental circuits. (author)

  20. Review of the American Physical Society light water reactor safety study

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1975-11-01

    The issue of light-water reactor (LWR) safety has been the subject of a part-time, year-long study sponsored by the American Physical Society and supported by the National Science Foundation and the former Atomic Energy Commission. The 1974-1975 study produced a Report by the Study Group to the Society. The Report's ''Summary of Conclusions and Major Recommendations'' section is presented

  1. Elements of vilnius' infrastructure (lighting and water supply system): aspects of cultural heritage conservation

    OpenAIRE

    Kecoriūtė, Eglė

    2008-01-01

    In 2009 Vilnius is publicized as European Cultural capital. It means that our country lives an active cultural life. It’s like a present to us symbolizing that Lithuanians understand their history, culture and heritage; that they know how to save and use it for esthetical, financial, cultural or other purposes. Object of this work – technical heritage, specifically street lighting and water supply equipment in Vilnius. This is a range of small technical heritage directly related with domestic...

  2. Application of the regulations on pressurized components or light water reactor primary coolant circuits

    International Nuclear Information System (INIS)

    Barthelemy, F.; Menjon, G.

    1977-01-01

    This paper describes the philosophy and the provisions of the Order of 26 February 1974 concerning application of the regulations on pressurized components for light water reactor steam supply systems. The aim is to show how these regulations which differ from other regulations on pressurized components and is more detailed on many points, is applied in practice in France in the various stages of the design, construction and operation of PWRs. (NEA) [fr

  3. Wastes and waste management in the uranium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Costello, J.M.

    1975-08-01

    The manufacturing processes in the uranium fuel cycle for light water reactors have been described with particular reference to the chemical and radiological wastes produced and the waste management procedures employed. The problems and possible solutions of ultimate disposal of high activity fission products and transuranium elements from reprocessing of irradiated fuel have been reviewed. Quantities of wastes arising in each stage of the fuel cycle have been summarised. Wastes arising from reactor operation have been described briefly. (author)

  4. Benefit of the use of rare earths for the control of light water power reactors

    International Nuclear Information System (INIS)

    Mathelot, P.

    1959-01-01

    After having given an overview of the various technical or economic drawbacks of different materials used to control the operation of light water nuclear reactors, the author indicates the benefit of using rare earths for this purpose: high capture cross sections, high and large resonances, and longer lifetime. After a table indicating nuclear characteristics of control materials and of recommended materials, the authors describe how the values for the recommended materials issues are theoretically obtained

  5. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    International Nuclear Information System (INIS)

    Lybeck, Nancy J.; Tawfik, Magdy S.; Pham, Binh T.

    2011-01-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  6. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    International Nuclear Information System (INIS)

    Sample, C.R.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL

  7. Modeling relations between the composition and properties of French light water reactor waste containment glass

    International Nuclear Information System (INIS)

    Ghaleb, D.; Dussossoy, J.L.; Fillet, C.; Pacaud, F.; Jacquet-Francillon, N.

    1994-01-01

    Models have been developed to calculate the density, molten-state viscosity and initial corrosion rate according to the chemical composition of glass formulations used to vitrify high-level fission product solutions from reprocessed light water reactor fuel. Developed from other published work, these models have been adapted to allow for the effects of platinoid (Ru, Pd, Rh) inclusions on the molten glass rheology. (authors). 15 refs., 10 figs., 1 tab

  8. Advanced Light Water Reactor Program: Program management and staff review methodology

    International Nuclear Information System (INIS)

    Moran, D.H.

    1986-12-01

    This report summarizes the NRC/EPRI coordinated effort to develop design requirements for a standardized advanced light water reactor (ALWR) and the procedures for screening and applying new generic safety issues to this program. The end-product will be an NRC-approved ALWR Requirements Document for use by the nuclear industry in generating designs of LWRs to be constructed for operation in the 1990s and beyond

  9. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  10. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  11. Process for superheating the steam generated by a light water nuclear reactor

    International Nuclear Information System (INIS)

    Vakil, H.B.; Brown, D.H.

    1976-01-01

    A process is submitted for superheating the pressurised steam generated in a light water nuclear reactor in which the steam is brought to 340 0 C at least. This superheated steam is used to operate a turbo-generator unit. The characteristic of the process is that an exothermal chemical reaction is used to generate the heat utilised during the superheating stage. The chemical reaction is a mechanisation, oxidation-reduction or hydrogenation reaction [fr

  12. Evaluation of actinide partitioning and transmutation in light-water reactors

    International Nuclear Information System (INIS)

    Collins, Emory D.; Renier, John-Paul

    2004-01-01

    Advanced Fuel Cycle Initiative (AFCI) studies were made to evaluate the feasibility of multicycle transmutation of plutonium and the minor actinides (MAs) in light-water reactors (LWRs). Results showed that significant repository benefits, cost reductions, proliferation resistance, and effective use of facilities can be obtained. Key advantages are shown to be made possible by processing 30-year-decayed spent fuel rather than the more traditional 5-year-decayed fuel. (authors)

  13. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  14. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Williams, D.L.; Reister, R.

    2012-01-01

    The US Department of Energy Light Water Reactor Sustainability (LWRS) Program is focused on enabling the long-term operation of US commercial power plants. Decisions on life extension will be made by commercial power plant owners - the information provided by the research and development activities in the LWRS Program will reduce the uncertainty (and therefore the risk) associated with making those decisions. The LWRS Program encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper provides an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables. (author)

  15. Nuclear piping criteria for Advanced Light-Water Reactors, Volume 1--Failure mechanisms and corrective actions

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This WRC Bulletin concentrates on the major failure mechanisms observed in nuclear power plant piping during the past three decades and on corrective actions taken to minimize or eliminate such failures. These corrective actions are applicable to both replacement piping and the next generation of light-water reactors. This WRC Bulletin was written with the objective of meeting a need for piping criteria in Advanced Light-Water Reactors, but there is application well beyond the LWR industry. This Volume, in particular, is equally applicable to current nuclear power plants, fossil-fueled power plants, and chemical plants including petrochemical. Implementation of the recommendations for mitigation of specific problems should minimize severe failures or cracking and provide substantial economic benefit. This volume uses a case history approach to high-light various failure mechanisms and the corrective actions used to resolve such failures. Particular attention is given to those mechanisms leading to severe piping failures, where severe denotes complete severance, large ''fishmouth'' failures, or long throughwall cracks releasing a minimum of 50 gpm. The major failure mechanisms causing severe failure are erosion-corrosion and vibrational fatigue. Stress corrosion cracking also has been a common problem in nuclear piping systems. In addition thermal fatigue due to mixing-tee and to thermal stratification also is discussed as is microbiologically-induced corrosion. Finally, water hammer, which represents the ultimate in internally-generated dynamic high-energy loads, is discussed

  16. End-of-life destructive examination of light water breeder reactor fuel rods (LWBR Development Program)

    International Nuclear Information System (INIS)

    Richardson, K.D.

    1987-10-01

    Destructive examination of 12 representative Light Water Breeder Reactor fuel rods was performed following successful operation in the Shippingport Atomic Power Station for 29,047 effective full power hours, about five years. Light Water Breeder Reactor fuel rods were unique in that the thorium oxide and uranium-233 oxide fuel was contained within Zircaloy-4 cladding. Destructive examinations included analysis of released fission gas; chemical analysis of the fuel to determine depletion, iodine, and cesium levels; chemical analysis of the cladding to determine hydrogen, iodine, and cesium levels; metallographic examination of the cladding, fuel, and other rod components to determine microstructural features and cladding corrosion features; and tensile testing of the irradiated cladding to determine mechanical strength. The examinations confirmed that Light Water Breeder Reactor fuel rod performance was excellent. No evidence of fuel rod failure was observed, and the fuel operating temperature was low (below 2580 0 F at which an increased percentage of fission gas is released). 21 refs., 80 figs., 20 tabs

  17. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    International Nuclear Information System (INIS)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core

  18. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  19. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  20. Influence of Type of Electric Bright Light on the Attraction of the African Giant Water Bug, Lethocerus indicus (Hemiptera: Belostomatidae

    Directory of Open Access Journals (Sweden)

    Luke Chinaru Nwosu

    2012-01-01

    Full Text Available This study investigated the influence of type of electric bright light (produced by fluorescent light tube and incandescent light bulb on the attraction of the African giant water bug, Lethocerus indicus (Hemiptera: Belostomatidae. Four fluorescent light tubes of 15 watts each, producing white-coloured light and four incandescent light bulbs of 60 watts each, producing yellow-coloured light, but both producing the same amount of light, were varied and used for the experiments. Collections of bugs at experimental house were done at night between the hours of 8.30 pm and 12 mid-night on daily basis for a period of four months per experiment in the years 2008 and 2009. Lethocerus indicus whose presence in any environment has certain implications was the predominant belostomatid bug in the area. Use of incandescent light bulbs in 2009 significantly attracted more Lethocerus indicus 103 (74.6% than use of fluorescent light tubes 35 (25.41% in 2008 [4.92=0.0001]. However, bug’s attraction to light source was not found sex dependent [>0.05; (>0.18=0.4286 and >0.28=0.3897]. Therefore, this study recommends the use of fluorescent light by households, campgrounds, and other recreational centres that are potentially exposed to the nuisance of the giant water bugs. Otherwise, incandescent light bulbs should be used when it is desired to attract the presence of these aquatic bugs either for food or scientific studies.

  1. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    Science.gov (United States)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  2. A review of compatibility of IFR fuel and austenitic stainless steel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.

    1996-01-01

    Interdiffusion experiments have been conducted to investigate the compatibility of various austenitic stainless steels with U-Pu-Zr alloys, which are alloys to be employed as fuel for the Integral Fast Reactor being developed by Argonne National Laboratory. These tests have also studied the compatibility of austenitic stainless steels with fission products, like the minor actinides (Np and Am) and lanthanides (Ce and Nd), that are generated during the fission process in an IFR. This paper compares the results of these investigations in the context of fuel-cladding compatibility in IFR fuel elements, specifically focusing on the relative Interdiffusion behavior of the components and the types of phases that develop based on binary phase diagrams. Results of Interdiffusion tests are assessed in the light of observations derived from post-test examinations of actual irradiated fuel elements

  3. Competition for light and water in a coupled soil-plant system

    Science.gov (United States)

    Manoli, Gabriele; Huang, Cheng-Wei; Bonetti, Sara; Domec, Jean-Christophe; Marani, Marco; Katul, Gabriel

    2017-10-01

    It is generally accepted that resource availability shapes the structure and function of many ecosystems. Within the soil-plant-atmosphere (SPA) system, resource availability fluctuates in space and time whereas access to resources by individuals is further impacted by plant-to-plant competition. Likewise, transport and transformation of resources within an individual plant is governed by numerous interacting biotic and abiotic processes. The work here explores the co-limitations on water losses and carbon uptake within the SPA arising from fluctuating resource availability and competition. In particular, the goal is to unfold the interplay between plant access and competition for water and light, as well as the impact of transport/redistribution processes on leaf-level carbon assimilation and water fluxes within forest stands. A framework is proposed that couples a three-dimensional representation of soil-root exchanges with a one-dimensional description of stem water flow and storage, canopy photosynthesis, and transpiration. The model links soil moisture redistribution, root water uptake, xylem water flow and storage, leaf potential and stomatal conductance as driven by supply and demand for water and carbon. The model is then used to investigate plant drought resilience of overstory-understory trees simultaneously competing for water and light. Simulation results reveal that understory-overstory interactions increase ecosystem resilience to drought (i.e. stand-level carbon assimilation rates and water fluxes can be sustained at lower root-zone soil water potentials). This resilience enhancement originates from reduced transpiration (due to shading) and hydraulic redistribution in soil supporting photosynthesis over prolonged periods of drought. In particular, the presence of different rooting systems generates localized hydraulic redistribution fluxes that sustain understory transpiration through overstory-understory interactions. Such complex SPA dynamics

  4. Dynamic Response of Plant Chlorophyll Fluorescence to Light, Water and Nutrient Availability

    Science.gov (United States)

    Cendrero Mateo, M. D. P.; Moran, S. M.; Porcar-Castell, A.; Carmo-Silva, A. E.; Papuga, S. A.; Matveeva, M.; Wieneke, S.; Rascher, U.

    2014-12-01

    Photosynthesis is the most important exchange process of CO2 between the atmosphere and the land-surface. Spatial and temporal patterns of photosynthesis depend on dynamic plant-specific adaptation strategies to highly variable environmental conditions e.g. light, water, and nutrient availability. Chlorophyll fluorescence (ChF) has been proposed as a direct indicator of photosynthesis, and several studies have demonstrated its relationship with vegetation functioning at leaf and canopy level. In this study, two overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF?; Q2) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? The results of this study indicated that when the differences between treatments (water or nitrogen) drive the relationship between photosynthesis and ChF, ChF has a direct relationship with photosynthesis. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a simple linear function due to the complex physiological relation between photosynthesis and ChF. Our study showed that at times in the season when nitrogen was sufficient and photosynthesis was highest, ChF decreased because these two processes compete for available energy. The results from this study demonstrated that ChF is a reliable indicator of plant stress and has great potential as a tool for better understand where, when, and how CO2 is exchanged between the land and atmosphere.

  5. Potential high fluence response of pressure vessel internals constructed from austenitic stainless steels

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.; Harrod, D.L.

    1993-08-01

    Many of the in-core components in pressurized water reactors are constructed of austenitic stainless steels. The potential behavior of these components can be predicted using data on similar steels irradiated at much higher displacement rates in liquid-metal reactors or water-cooled mixed-spectrum reactors. Consideration of the differences between the pressurized water environment and that of the other reactors leads to the conclusion that significant amounts of void swelling, irradiation creep, and embrittlement will occur in some components, and that the level of damage per atomic displacement may be larger in the pressurized water environment

  6. Analysis on Radioactive Waste Transmutation in Light Water cooled Hyb-WT

    International Nuclear Information System (INIS)

    Hong, Seonghee; Kim, Myung Hyun

    2014-01-01

    A feasibility of realization is much higher in FFHR compared with pure fusion. A combination of plasma fusion source for neutrons with a subcritical reactor at the blanket side has much higher capability in transmutation of waste as well as reactor safety compared with fission reactor options. Fusion-Fission Hybrid Reactor (FFHR) uses various coolants depending on the purpose. It is important that coolant being used should be suitable to reactor purpose, because reactor performance and the design constraints may change depending on the coolant. There are basically two major groups of coolants for FFHR. One group of coolant does not contain Li. They are Na, Pb-Bi, H 2 O and D 2 O. The other group contains Li for tritium breeding. They are Li, LiPb, LiSN, FLIBE and FLiNaBe. Currently, the issue in FFHR is its implication for radioactive waste transmutation (FFHR for WT). Because radioactive wastes of spent nuclear fuel (SNF) are transmuted using fusion neutron source. Therefore a suitable coolant should be used for effective waste transmutation. . In FFHR for WT, LiPb coolant is being used mainly because of tritium production in Li and high neutron economic through reaction in Pb. However different coolants use such as Na, Pb-Bi are used in fast reactors and accelerator driven systems (ADS) having same purpose. In this study, radioactive waste transmutation performance of various coolants mentioned above will be compared and analyzed. Through this study, the coolants are judged primarily for their support to waste transmutation disregarding their limitation to reactor design and tritium breeding capability. First, performance of the light water coolant regarding radioactive waste transmutation was analyzed among various coolants mentioned above. In this paper, performance of radioactive waste transmutation can be known depending on different volume fractions (54.53, 60.27, 97.94vol.%) of the light water. Light water dose required fusion power lower than LiPb due to

  7. Material Issues of Blanket Systems for Fusion Reactors - Compatibility with Cooling Water -

    Science.gov (United States)

    Miwa, Yukio; Tsukada, Takashi; Jitsukawa, Shiro

    Environmental assisted cracking (EAC) is one of the material issues for the reactor core components of light water power reactors(LWRs). Much experience and knowledge have been obtained about the EAC in the LWR field. They will be useful to prevent the EAC of water-cooled blanket systems of fusion reactors. For the austenitic stainless steels and the reduced-activation ferritic/martensitic steels, they clarifies that the EAC in a water-cooled blanket does not seem to be acritical issue. However, some uncertainties about influences on water temperatures, water chemistries and stress conditions may affect on the EAC. Considerations and further investigations elucidating the uncertainties are discussed.

  8. Regularities of ferritic-pearlitic structure formation during subcooled austenite decomposition

    International Nuclear Information System (INIS)

    Shkatov, V.V.; Frantsenyuk, L.I.; Bogomolov, I.V.

    1997-01-01

    Relationships of ferrite-pearlite structure parameters to austenite grain size and cooling conditions during γ -> α transformation are studied for steel 3 sp. A mathematical description has been proposed for grain evolution in carbon and low alloy steel cooling after hot rolling. It is shown that ferrite grain size can be controlled by changing temperature range of water spraying when the temperatures of rolling completion and strip coiling are the same

  9. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  10. Effect of cold water and inverse lighting on growth performance of broiler chickens under extreme heat stress.

    Science.gov (United States)

    Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong

    2015-07-01

    The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (pstress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.

  11. Mechanism for migration of light nonaqueous phase liquids beneath the water table

    International Nuclear Information System (INIS)

    Krueger, J.P.; Portman, M.E.

    1991-01-01

    This paper reports on an interesting transport mechanism may account for the presence of light nonaqueous phase liquid (LNAPL) found beneath the water table in fine-grained aquifers. During the course of two separate site investigations related to suspected releases from underground petroleum storage tanks, LNAPL was found 7 to 10 feet below the regional water table. In both cases, the petroleum was present within a sand seam which was encompassed within a deposit of finer-grained sediments. The presence of LNAPL below the water table is uncommon; typically, LNAPL is found floating on the water table or on the capillary fringe. The occurrence of LNAPL below the water table could have resulted from fluctuating regional water levels which allowed the petroleum to enter the sand when the water table was a lower stage or, alternately, could have occurred as a result of the petroleum depressing the water table beneath the level of the sand. In fine-grained soils where the lateral migration rate is low, the infiltrating LNAPL may depress the water table to significant depth. The LNAPL may float on the phreatic surface with the bulk of its volume beneath the phreatic surface. Once present in the sand and surrounded by water-saturated fine-grained sediments, capillary forces prevent the free movement of the petroleum back across the boundary from the coarse-grained sediments to the fine-grained sediments. Tapping these deposits with a coarser grained filter packed monitoring well releases the LNAPL, which may accumulate to considerable thickness in the monitoring well

  12. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    International Nuclear Information System (INIS)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 ∼ 10 -V at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  13. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  14. Secondary flows in the cooling channels of the high-performance light-water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E.; Wintterle, Th. [Stuttgart Univ., Institute for Nuclear Technolgy and Energy Systems (IKE) (Germany)

    2007-07-01

    The new design of a High-Performance Light-Water Reactor (HPLWR) involves a three-pass core with an evaporator region, where the compressed water is heated above the pseudo-critical temperature, and two superheater regions. Due to the strong dependency of the supercritical water density on the temperature significant mass transfer between neighboring cooling channels is expected if the temperature is unevenly distributed across the fuel element. An inter-channel flow is then superimposed to the secondary flow vortices induced by the non-isotropy of turbulence. In order to gain insight into the resulting flow patterns as well as into temperature and density distributions within the various subchannels of the fuel element CFD (Computational Fluid Dynamics) calculations for the 1/8 fuel element are performed. For simplicity adiabatic boundary conditions at the moderator box and the fuel element box are assumed. Our investigation confirms earlier results obtained by subchannel analysis that the axial mass flux is significantly reduced in the corner subchannel of this fuel element resulting in a net mass flux towards the neighboring subchannels. Our results provide a first estimation of the magnitude of the secondary flows in the pseudo-critical region of a supercritical light-water reactor. Furthermore, it is demonstrated that CFD is an efficient tool for investigations of flow patterns within nuclear reactor fuel elements. (authors)

  15. Neutron absorption profile in a reactor moderated by different mixtures of light and heavy waters

    International Nuclear Information System (INIS)

    Nagy, Mohamed E.; Aly, Mohamed N.; Gaber, Fatma A.; Dorrah, Mahmoud E.

    2014-01-01

    Highlights: • We studied neutron absorption spectra in a mixed water moderated reactor. • Changing D 2 O% in moderator induced neutron energy spectral shift. • Most of the neutrons absorbed in control rods were epithermal. • Control rods worth changes were not proportional to changes of D 2 O% in moderator. • Control rod arrangement influenced the neutronic behavior of the reactor. - Abstract: A Monte-Carlo parametric study was carried out to investigate the neutron absorption profile in a model of LR-0 reactor when it is moderated by different mixtures of heavy/light waters at molecular ratios ranging from 0% up to 100% D 2 O at increments of 10% in D 2 O. The tallies included; neutron absorption profiles in control rods and moderator, and neutron capture profile in 238 U. The work focused on neutron absorption in control rods entailing; total mass of control rods needed to attain criticality, neutron absorption density and total neutron absorption in control rods at each of the studied mixed water moderators. The aim was to explore whether thermal neutron poisons are the most suitable poisons to be used in control rods of nuclear reactors moderated by mixed heavy/light water moderators

  16. Guidebook on quality control of mixed oxides and gadolinium bearing fuels for light water reactors

    International Nuclear Information System (INIS)

    1991-02-01

    Under the coverage of an efficient quality assurance system, quality control in nuclear fuel fabrication is an essential element to assure the reliable performance of all its components in service. Incentives to increase fuel performance, by extending reactor cycles or achieving higher burnups and, in some countries to use recycled plutonium in light water reactors (LWRs) necessitated the development of new types of fuels. In the first case, due to higher uranium enrichments, a burnable neutron absorber was integrated to the fuel pellets. Gadolinia was found to form a solid solution with Uranium dioxide and, to present a burnup rate which matches fissile uranium depletion. (U,Gd)O 2 fuels which have been successfully used since the seventies, in boiling water reactors have more recently found an increased utilization, in pressurized water reactors. This amply justifies the publication of this TECDOC to encourage authorities, designers and manufacturers of these types of fuel to establish a more uniform, adapted and effective system of control, thus promoting improved materials reliability and good performance in advanced fuel for light water reactors. The Guidebook is subdivided into four chapters written by different authors. A separate abstract was prepared for each of these chapters. Refs, figs and tabs

  17. Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.

    Science.gov (United States)

    Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia

    2018-02-14

    On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.

  18. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-01-01

    The use of supercritical temperature and pressure light water as the coolant in a direct-cycle nuclear reactor offers potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to 46%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type recirculation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If a tight fuel rod lattice is adopted, it is possible to significantly reduce the neutron moderation and attain fast neutron energy spectrum conditions. In this project a supercritical water reactor concept with a simple, blanket-free, pancake-shaped core will be developed. This type of core can make use of either fertile or fertile-free fuel and retain the hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity.

  19. Automated procedure for selection of optimal refueling policies for light water reactors

    International Nuclear Information System (INIS)

    Lin, B.I.; Zolotar, B.; Weisman, J.

    1979-01-01

    An automated procedure determining a minimum cost refueling policy has been developed for light water reactors. The procedure is an extension of the equilibrium core approach previously devised for pressurized water reactors (PWRs). Use of 1 1/2-group theory has improved the accuracy of the nuclear model and eliminated tedious fitting of albedos. A simple heuristic algorithm for locating a good starting policy has materially reduced PWR computing time. Inclusion of void effects and use of the Haling principle for axial flux calculations extended the nuclear model to boiling water reactors (BWRs). A good initial estimate of the refueling policy is obtained by recognizing that a nearly uniform distribution of reactivity provides low-power peaking. The initial estimate is improved upon by interchanging groups of four assemblies and is subsequently refined by interchanging individual assemblies. The method yields very favorable results, is simpler than previously proposed BWR fuel optimization schemes, and retains power cost as the objective function

  20. Disinfection of deionised water inoculated with enterobacter using ultra violet light

    International Nuclear Information System (INIS)

    Mathrani, M.

    2001-01-01

    For the first time the enterobacter, not the escherichia coli,was used as a model bacteria to asses the disinfection of microorganisms in water by UV (Ultra Violet) irradiation. The cell density of the liquid culture was followed by optical density of 1.837 at 600 nm on spectrometer. For the disinfection purpose, a laboratory scale batch reactor (10 cm wide, 20 cm long, and 10 cm height), containing 250 ml sterilised deionized water inoculated with enterobacter,was run under supra-band gap light (wavelength < 400 nm, peaking between 340 and 365 nm with a maximum of 350 nm). After carrying out seven batch experiments it is concluded that the complete inactivation of Enterobacter ( approx. equal to x 10/sup 6/ CFU/ml) in the water can be achieved by UV irradiation for 2 hours. (author)