WorldWideScience

Sample records for austenitic cast steels

  1. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  2. Response of cast austenitic stainless steel to low temperature plasma carburizing.

    OpenAIRE

    Sun, Yong

    2008-01-01

    The response of a cast 316 type austenitic stainless steel to the novel low temperature plasma carburizing process has been investigated in this work. The cast steel has a dendritic structure with a mix of austenite, ferrite and carbide phases. The results show that such a complex structure responds well to the carburizing process, and the inter-dendrite regions containing ferrite and carbides can be transformed to expanded austenite to form a continuous and uniform layer supersat...

  3. Impact Strength of Austenitic and Ferritic-Austenitic Cr-Ni Stainless Cast Steel in -40 and +20°C Temperature

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2014-10-01

    Full Text Available Studies described in this paper relate to common grades of cast corrosion resistant Cr-Ni steel with different matrix. The test materials were subjected to heat treatment, which consisted in the solution annealing at 1060°C followed by cooling in water. The conducted investigations, besides the microstructural characteristics of selected cast steel grades, included the evaluation of hardness, toughness (at a temperature of -40 and +20oC and type of fracture obtained after breaking the specimens on a Charpy impact testing machine. Based on the results of the measured volume fraction of ferrite, it has been found that the content of this phase in cast austenitic steel is 1.9%, while in the two-phase ferritic-austenitic grades it ranges from 50 to 58%. It has been demonstrated that within the scope of conducted studies, the cast steel of an austenitic structure is characterised by higher impact strength than the two-phase ferritic-austenitic (F-A grade. The changing appearance of the fractures of the specimens reflected the impact strength values obtained in the tested materials. Fractures of the cast austenitic Cr-Ni steel obtained in these studies were of a ductile character, while fractures of the cast ferritic-austenitic grade were mostly of a mixed character with the predominance of brittle phase and well visible cleavage planes.

  4. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  5. Fracture toughness of irradiated wrought and cast austenitic stainless steels in BWR environment

    International Nuclear Information System (INIS)

    Chopra, O.K.; Gruber, E.E.; Shack, W.J.

    2007-01-01

    Experimental data are presented on the fracture toughness of wrought and cast austenitic stainless steels (SSs) that were irradiated to a fluence of ∼ 1.5 x 10 21 n/cm 2 (E > 1 MeV) * (∼ 2.3 dpa) at 296-305 o C. To evaluate the possible effects of test environment and crack morphology on the fracture toughness of these steels, all tests were conducted in normal-water-chemistry boiling water reactor (BWR) environments at ∼ 289 o C. Companion tests were also conducted in air on the same material for comparison. The fracture toughness J-R curves for SS weld heat-affected-zone materials in BWR water were found to be comparable to those in air. However, the results of tests on sensitized Type 304 SS and thermally aged cast CF-8M steel suggested a possible effect of water environment. The available fracture toughness data on irradiated austenitic SSs were reviewed to assess the potential for radiation embrittlement of reactor-core internal components. The synergistic effects of thermal and radiation embrittlement of cast austenitic SS internal components are also discussed. (author)

  6. Effect of electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting

    Directory of Open Access Journals (Sweden)

    ZHOU Shu-cai

    2007-08-01

    Full Text Available An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.

  7. Fracture analysis procedure for cast austenitic stainless steel pipe with an axial crack

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2012-01-01

    Since the ductility of cast austenitic stainless steel pipes decreases due to thermal aging embrittlement after long term operation, not only plastic collapse failure but also unstable ductile crack propagation (elastic-plastic failure) should be taken into account for the structural integrity assessment of cracked pipes. In the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME), Z-factor is used to incorporate the reduction in failure load due to elastic-plastic failure. However, the JSME code does not provide the Z-factor for axial cracks. In this study, Z-factor for axial cracks in aged cast austenitic stainless steel pipes was derived. Then, a comparison was made for the elastic-plastic failure load obtained from different analysis procedures. It was shown that the obtained Z-factor could derive reasonable elastic-plastic failure loads, although the failure loads were more conservative than those obtained by the two-parameter method. (author)

  8. Progress in EPRI-programs on the inspection of cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Dau, G; Behravesh, M; Amirato, P; Stone, R [Electric Power Research Inst., Charlotte, NC (United States). Nondestructive Evaluation Center

    1988-12-31

    This document presents the progress in EPRI programs on in-service inspection of Cast austenitic Stainless Steel (CSS). The CSS examination strategy is presented, together with results concerning thermal fatigue cracks and mechanical fatigue cracks. A statistical analysis method is provided, in order to estimate the crack detectability and the false call (a non-crack called crack). (TEC).

  9. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    Science.gov (United States)

    Anton, Donald L.; Lemkey, Franklin D.

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  10. Microstructural evolution in austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during long-term service

    International Nuclear Information System (INIS)

    Liu Jiangwen; Jiao Dongling; Luo Chengping

    2010-01-01

    The microstructural evolution of austenitic heat-resistant cast steel 35Cr25Ni12NNbRE during aging and long-term service was investigated using optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructure of the as cast steel consists of the dendritic austenite, the block-like eutectic carbide M 7 C 3 spreaded among austenitic dendrite, and a small quantity of M 23 C 6 carbide. The microstructure of the steel aged at 600 deg. C consists of eutectic carbide M 23 C 6 transformed from eutectic carbide M 7 C 3 and dendritic austenite in which fine secondary carbide particles M 23 C 6 precipitated. The precipitated carbide M 23 C 6 kept a cubic-cubic orientation relationship (OR) with austenite matrix. There existed a carbide precipitation free zone (PFZ) around the eutectic carbide. For the long-term serviced samples, the secondary carbide precipitated in the austenite strikingly increased and the PFZ disappeared. Part of the M 23 C 6 transformed into M 6 C, which always kept a twin OR, [114] M 6 C //[110] A //[110] M 23 C 6 , with the austenite and the M 23 C 6 secondary carbide. In addition, a small quantity of σ phase FeCr and ε-Cr 2 N were also identified. The effects of alloy composition and service condition on the microstructural evolution of the steel were discussed.

  11. A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel

    International Nuclear Information System (INIS)

    Felfer, Peter J.; Killmore, Chris R.; Williams, Jim G.; Carpenter, Kristin R.; Ringer, Simon P.; Cairney, Julie M.

    2012-01-01

    Most modern HSLA steels rely on the effect of Nb in steels to achieve the properties desired for a specific application. While the role of Nb in forming precipitates has been well characterized, its role in a solid solution is less well understood due to the difficulty of obtaining quantitative experimental data. In the current work, site-specific atom probe tomography was used to quantify the amount of Nb present at prior austenite grain boundaries in a commercial strip-cast steel, produced via the Castrip ® process. This was compared to the amount of Nb found at ferrite–ferrite grain boundaries that had formed during the transformation from austenite to ferrite. With the interfacial excess Nb measured, thermodynamic calculations were carried out and compared to the change in transformation temperature obtained by dilatometry, with reference to a comparable Nb free, strip-cast steel.

  12. Effect of vacuum arc melting/casting parameters on shrinkage cavity/piping of austenitic stainless steel ingot

    International Nuclear Information System (INIS)

    Kamran, J.; Feroz, M.; Sarwar, M.

    2009-01-01

    Shrinkage cavity/piping at the end of the solidified ingot of steels is one of the most common casting problem in 316L austenitic stainless steel ingot, when consumable electrode is melted and cast in a water-cooled copper mould by vacuum arc re-melting furnace. In present study an effort has been made to reduce the size of shrinkage cavity/ piping by establishing the optimum value of hot topping process parameters at the end of the melting process. It is concluded that the shrinkage cavity/piping at the top of the solidified ingot can be reduced to minimum by adjusting the process parameters particularly the melting current density. (author)

  13. Thermal aging evaluation of cast austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Song, T. H.; Jung, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Kori Unit 2 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by utility company. In this paper, the methodologies and results of cast austenitic stainless steel pipe thermal aging evaluations of both units have been presented in association with aging time of 10, 20, and 30 years and operating temperature, respectively. Life extension cases respectively. As a result of this, at the operating temperature of 280 .deg. C, thermal aging was not a problem as long as Charpy V-notch room temperature minimum impact energy is concerned. However, more than 300 .deg. C and 30 years of operating condition, we should perform detailed fracture mechanics analysis with CMTR of NPP pipe

  14. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pankiw, Roman I; Muralidharan, G. (Murali); Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  15. Structural inheritance in cast 30KhGNM-type steel

    International Nuclear Information System (INIS)

    Sadovskij, V.D.; Bershtejn, L.I.; Mel'nikova, A.A.; Polyakova, A.M.; Schastlivtsev, V.M.

    1980-01-01

    Structural inheritance in the cast 30KhGNM-type steel depending on the heating rate and the temperature of preliminary tempering is investigated. When eating the cast steel with a beinite structure at the rate of 1-150 deg/min, the restoration of austenite grain and the following recrystallization due to the phase cold work, are observed. Slow heating from room temperature or preliminary tempering hinder grain restoration during heating. A non-monotonous effect of tempering temperature on the structural inheritance is established which can be connected with the kinetics of decomposition of residual austenite in steel

  16. Precipitation kinetics in austenitic 18Cr-30Ni-Nb cast steel

    Directory of Open Access Journals (Sweden)

    M. Garbiak

    2008-08-01

    Full Text Available The study presents the results of investigations on the precipitation kinetics in austenitic 18%Cr-30%Ni cast steel stabilised with an addition of 1.84 wt% niobium. Phase analysis of isolates extracted from the alloy subjected to annealing within the temperature range of 600–1000oC during 10–1000 h was made. The phase constitution of the isolates mainly comprised niobium carbides of the NbC type and complex chromium carbides of the Cr23C6 type. In specimens annealed within the temperature range of 700–900oC, a high-silicon G phase was additionally identified. The highest kinetics of the precipitation process was recorded after annealing at the temperatures of 800 and 900oC.

  17. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Dalder, E.N.C.; Juhas, M.C.

    1985-01-01

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  18. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  19. Heat treatment of long term serviced Cr – Mo cast steel

    Directory of Open Access Journals (Sweden)

    G. Golanski

    2010-01-01

    Full Text Available The paper presents results of research on the influence of heat treatment on the structure and properties of L20HM cast steel after long term operation at elevated temperature. Investigated cast steel was taken out from an outer frame of a steam turbine serviced for 167 424 hours at the temp. of 535 oC and pressure 12.75 MPa. In post-operating condition the investigated cast steel was characterized by mechanical properties below the required minimum and by high brittleness. Performed research on the influence of austenitizing parameters has revealed that the range of austenitizing temperatures for the examined cast steel: Ac3 + 30 ÷ 60 oC ensures obtaining of a fine austenite grain, homogeneous in size. It has been proved that tempering of bainititc – ferritic structure above 680 ÷ 690 oC causes an increase of impact energy along with a decrease of mechanical properties below the required minimum. Moreover, it has been noticed that applying of under-annealing instead of tempering, after full-annealing, guarantees the required impact energy of KV > 27J, with the mechanical properties similar to those after service.

  20. Selected properties of new „duplex” cast steel

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2011-10-01

    Full Text Available In this paper selected properties of new „duplex” cast steel are presented. The new cast steel was devised in HYDRO-VACUUM company in Grudziądz, where “duplex” cast steel for pump elements is smelted. The goal was to devise a new grade of “duplex” cast steel of better physicochemical properties and cheaper than now applied. It was demonstrated, that there is the possibility of devising the new grade of “duplex” cast steel. It is characterized by higher mechanical properties, similar wear resistance and greater corrosion resistance in 15% water solution of H2SO4 in comparison to now applied “duplex” cast steel. The chemical composition was selected to obtain in microstructure about of 50% ferrite and 50% austenite. It guarantee the highest properties and the lowest costs of its smelting.In the paper results of: the microstructure, Rm, Rp0,2, A5, HB, wear resistance and corrosion resistance in water solution of 15% HCl and H2SO4 acids of new cast steel was presented. They were compared with now applied in HYDRO-VACUUM company “duplex” cast steel.

  1. Irradiation Microstructure of Austenitic Steels and Cast Steels Irradiated in the BOR-60 Reactor at 320°C

    Science.gov (United States)

    Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula

    Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.

  2. Spinodal decomposition of austenite in long-term-aged duplex stainless steel

    International Nuclear Information System (INIS)

    Chung, H.M.

    1989-02-01

    Spinodal decomposition of austenite phase in the cast duplex stainless steels CF-8 and -8M grades has been observed after long- term thermal aging at 400 and 350/degree/C for 30,000 h (3.4 yr). At 320/degree/C, the reaction was observed only at the limited region near the austenite grain boundaries. Ni segregation and ''worm-holes'' corresponding to the spatial microchemical fluctuations have been confirmed. The decomposition was observed only for heats containing relatively high overall Ni content (9.6--12.0 wt %) but not in low-Ni (8.0--9.4 wt %) heats. In some specimens showing a relatively advanced stage of decomposition, localized regions of austenite with a Vickers hardness of 340--430 were observed. However, the effect of austenite decomposition on the overall material toughness appears secondary for aging up to 3--5 yr in comparison with the effect of the faster spinodal decomposition in ferrite phase. The observation of the thermally driven spinodal decomposition of the austenite phase in cast duplex stainless steels validates the proposition that a miscibility gap occurs in Fe-Ni and ancillary systems. 16 refs., 7 figs., 1 tab

  3. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450 0 C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450 0 C. 18 refs., 13 figs

  4. The nucleation of austenite in ferritic ductile cast iron

    International Nuclear Information System (INIS)

    Chou, J.M.; Hon, M.H.; Lee, J.L.

    1992-01-01

    Austempered ductile cast iron has recently been receiving increasing attention because of its excellent combination of strength and ductility. Since the austenitization process has a significant influence on the mechanical properties of austempered ductile cast iron, several investigations on the nucleation sites of austenite and diffusion paths of carbon from spheroidal graphite have been reported in ferritic ductile cast iron. However, agreement on this subject has not ben reached. The purpose of this paper is to study the preferential nucleation sites of austenite during austenitization at two austenitizing temperatures in ferritic ductile cast iron. An attempt was made to understand the reasons which give rise to preferential austenite nucleation sites. The carbon diffusion paths from spheroidal graphite were also investigated

  5. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel was the first partner company that installed the radiant burner tube assembly in their heat-treating furnace. Other steel companies participated in project review meetings and are currently working with Duraloy Technologies to obtain components of the new alloys. EIO is promoting the enhanced performance of the newly designed alloys to Ohio-based companies. The Timken Company is one of the Ohio companies being promoted by EIO. The project management and coordination plan is shown in Fig. 1.1. A related project at University of Texas-Arlington (UT-A) is described in Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired

  6. Mechanical property degradation and microstructural evolution of cast austenitic stainless steels under short-term thermal aging

    Science.gov (United States)

    Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.

    2017-12-01

    Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials-CF3, CF3M, CF8, and CF8M-were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α‧, precipitation of G-phase in the δ-ferrite, segregation of solute to the austenite/ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. The low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.

  7. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  8. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  9. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    International Nuclear Information System (INIS)

    Gamble, R.M.; Wichman, K.R.

    1997-01-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials

  10. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  11. The Influence of Vanadium Microalloying on the Production of Thin Slab Casting and Direct Rolled Steel Strip

    Science.gov (United States)

    Li, Yu; Milbourn, David

    Vanadium microalloying is highly effective in high strength strip steels produced by thin slab casting and direct rolled process. Because of the high solubility of V(C,N) in austenite, vanadium is likely to remain in solution during casting, equalisation and rolling. Vanadium microalloyed steels have better hot ductility and are less prone to transverse cracking than niobium containing steels. Despite a coarse as-cast austenite grain size before rolling, significant grain refinement can be achieved in vanadium microalloyed steels by repeated recrystallization during rolling, resulting in a fine uniform ferrite microstructure in final strip. Almost all vanadium present in microalloyed steels is available to precipitate in ferrite as very fine particles, contributing to precipitation strengthening. Vanadium microalloyed steels show less sensitivity to rolling process variables and exhibit excellent combination of strength and toughness.

  12. Influence of Ti on the Hot Ductility of High-manganese Austenitic Steels

    Science.gov (United States)

    Liu, Hongbo; Liu, Jianhua; Wu, Bowei; Su, Xiaofeng; Li, Shiqi; Ding, Hao

    2017-07-01

    The influence of Ti addition ( 0.10 wt%) on hot ductility of as-cast high-manganese austenitic steels has been examined over the temperature range 650-1,250 °C under a constant strain rate of 10-3 s-1 using Gleeble3500 thermal simulation testing machine. The fracture surfaces and particles precipitated at different tensile temperatures were characterized by means of scanning electron microscope and X-ray energy dispersive spectrometry (SEM-EDS). Hot ductility as a function of reduction curves shows that adding 0.10 wt% Ti made the ductility worse in the almost entire range of testing temperatures. The phases' equilibrium diagrams of precipitates in Ti-bearing high-Mn austenitic steel were calculated by the Thermo-Calc software. The calculation result shows that 0.1 wt% Ti addition would cause Ti(C,N) precipitated at 1,499 °C, which is higher than the liquidus temperature of high-Mn austenitic steel. It indicated that Ti(C,N) particles start forming in the liquid high-Mn austenitic steel. The SEM-EDS results show that Ti(C,N) and TiC particles could be found along the austenite grain boundaries or at triple junction, and they would accelerate the extension of the cracks along the grain boundaries.

  13. A simplified leak-before-break evaluation procedure for austenitic and ferritic steel piping

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, R.M.; Zahoor, A.; Ghassemi, B. [NOVETECH Corp., Rockville, MD (United States)

    1994-10-01

    A simplified procedure has been defined for computing the allowable circumferential throughwall crack length as a function of applied loads in piping. This procedure has been defined to enable leak-before-break (LBB) evaluations to be performed without complex and time consuming analyses. The development of the LBB evaluation procedure is similar to that now used in Section 11 of the ASME Code for evaluation of part-throughwall flaws found in piping. The LBB evaluation procedure was bench marked using experimental data obtained from pipes having circumferential throughwall flaws. Comparisons of the experimental and predicted load carrying capacities indicate that the method has a conservative bias, such that for at least 97% of the experiments the experimental load is equal to or greater than 90% of the predicted load. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austenitic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  14. Development of Creep-Resistant and Oxidation-Resistant Austenitic Stainless Steels for High Temperature Applications

    Science.gov (United States)

    Maziasz, Philip J.

    2018-01-01

    Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.

  15. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  16. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  17. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Science.gov (United States)

    Chen, Wei-Ying; Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-09-01

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 1019 ions/m2 (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350 °C and 400 °C.

  18. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  19. Transformation of austenite to duplex austenite-ferrite assembly in annealed stainless steel 316L consolidated by laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, K.; Gao, X. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden); Lofaj, F. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 916 24 Trnava (Slovakia); Kvetková, L. [Institute of Materials Research of the Slovak Academy of Sciences, Watsonova 47, Košice (Slovakia); Shen, Z.J. [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2015-06-05

    Highlights: • Mechanical properties, phase and microstructure stability of laser melted steel was studied. • Duplex austenite-ferrite assembly with improved mechanical properties was formed. • Dissolution of Mo in the steel matrix resulted in ferrite stabilization and stress relief. • Enhanced mechanical properties were achieved compared to conventionally casted and annealed steel. - Abstract: Laser melting (LM), with a focused Nd:YAG laser beam, was used to form solid bodies from 316L austenite stainless steel powder and the laser melted samples were heat treated at various temperatures. The phase changes in heat treated samples were characterized using X-ray diffraction (XRD). Samples heat treated at 800 °C and 900 °C remained single austenite while in samples heat treated at 1100 °C and 1400 °C a dual austenite-ferrite phase assembly was formed. The ferrite formation was further verified by electron back scattering diffraction (EBSD) and selective area diffraction (SAD). Microstructural changes were studied by scanning and transmission electron microscopy (SEM, TEM). In samples heat treated up to 900 °C, coalescence of the cellular-sub grains was noticed, whereas in sample heat treated at and above 1100 °C the formation of ferrite phase was observed. The correlation between the microstructure/phase assembly and the measured strength/microhardness were investigated, which indicated that the tensile strength of the laser melted material was significantly higher than that of the conventional 316L steel even after heat treatment whereas caution has to be taken when laser melted material will be exposed to an application temperature above 900 °C.

  20. The thermal fatigue behaviour of creep-resistant Ni-Cr cast steel

    Directory of Open Access Journals (Sweden)

    B. Piekarski

    2007-12-01

    Full Text Available The study gives a summary of the results of industrial and laboratory investigations regarding an assessment of the thermal fatigue behaviour of creep-resistant austenitic cast steel. The first part of the study was devoted to the problem of textural stresses forming in castings during service, indicating them as a cause of crack formation and propagation. Stresses are forming in carbides and in matrix surrounding these carbides due to considerable differences in the values of the coefficients of thermal expansion of these phases. The second part of the study shows the results of investigations carried out to assess the effect of carbon, chromium and nickel on crack resistance of austenitic cast steel. As a criterion of assessment the amount and propagation rate of cracks forming in the specimens as a result of rapid heating followed by cooling in running water was adopted. Tests were carried out on specimens made from 11 alloys. The chemical composition of these alloys was comprised in a range of the following values: (wt-%: 18-40 %Ni, 17-30 %Cr, 1.2-1.6%Si and 0.05-0.6 %C. The specimens were subjected to 75 cycles of heating to a temperature of 900oC followed by cooling in running water. After every 15 cycles the number of the cracks was counted and their length was measured. The results of the measurements were mathematically processed. It has been proved that the main factor responsible for an increase in the number of cracks is carbon content in the alloy. In general assessment of the results of investigations, the predominant role of carbon and of chromium in the next place in shaping the crack behaviour of creep-resistant austenitic cast steel should be stressed. Attention was also drawn to the effect of high-temperature corrosion as a factor definitely deteriorating the cast steel resistance to thermal fatigue.

  1. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ying [Argonne National Laboratory, Argonne, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Lian, Tiangan [Electric Power Research Institute, Palo Alto, CA 94304 (United States)

    2015-09-15

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 10{sup 19} ions/m{sup 2} (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite–austenite phase boundary and presence of M{sub 23}C{sub 6} carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M{sub 23}C{sub 6} carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M{sub 23}C{sub 6} carbides at 350 °C and 400 °C.

  2. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  3. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1986-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 450 0 C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  4. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    Science.gov (United States)

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  5. Parametrical limits of SCC-susceptibility of austenitic and austenitic-ferritic Cr-Ni steels

    International Nuclear Information System (INIS)

    Starosvetskij, D.I.; Baru, R.L.; Bondarenko, A.I.; Bogoyavlenskij, V.L.; Timonin, V.A.

    1990-01-01

    Comparative investigations into corrosion cracking (CC) of austenitic (12Kh18N10T) and austenitic-ferritic (08Kh22N6T) chromium-nickel steels are performed for various chloride media in a wide range of chloride concentrations and temperatures. It is shown that the ratio between steels in terms of their CC-susceptibility is not definite and can undergo a reversal depending on parameters of medium, level and conditions of loading. Differences in mechanisms of corrosion cracking of austenitic and austenitic-ferritic steels are established

  6. Thermodynamic stability of austenitic Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2014-07-01

    Full Text Available The performed research was aimed at determining thermodynamic stability of structures of Ni-Mn-Cu cast iron castings. Examined were 35 alloys. The castings were tempered at 900 °C for 2 hours. Two cooling speeds were used: furnace-cooling and water-cooling. In the alloys with the nickel equivalent value less than 20,0 %, partial transition of austenite to martensite took place. The austenite decomposition ratio and the related growth of hardness was higher for smaller nickel equivalent value and was clearly larger in annealed castings than in hardened ones. Obtaining thermodynamically stable structure of castings requires larger than 20,0 % value of the nickel equivalent.

  7. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Kochmańska

    2018-01-01

    Full Text Available This paper presents the results of microstructural examinations on slurry aluminide coatings using scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. Aluminide coatings were produced in air atmosphere on austenitic high-temperature creep resisting cast steel. The function of aluminide coatings is the protection of the equipment components against the high-temperature corrosion in a carburising atmosphere under thermal shock conditions. The obtained coatings had a multilayered structure composed of intermetallic compounds. The composition of newly developed slurry was powders of aluminium and silicon; NaCl, KCl, and NaF halide salts; and a water solution of a soluble glass as an inorganic binder. The application of the inorganic binder in the slurry allowed to produce the coatings in one single step without additional annealing at an intermediate temperature as it is when applied organic binder. The coatings were formed on both: the ground surface and on the raw cast surface. The main technological parameters were temperature (732–1068°C and time of annealing (3.3–11.7 h and the Al/Si ratio (4–14 in the slurry. The rotatable design was used to evaluate the effect of the production parameters on the coatings thickness. The correlation between the technological parameters and the coating structure was determined.

  8. Evaluation of the mechanical properties of Niobium modified cast AISI H 13 hot work tool steel

    International Nuclear Information System (INIS)

    Noorian, A.; Kheirandish, Sh.; Saghafian, H.

    2010-01-01

    In this research, the effects of partially replacing of vanadium and molybdenum with niobium on the mechanical properties of AISIH 13 hot-work tool steel have been studied. Cast samples made of the modified new steel were homogenized and austenitized at different conditions, followed by tempering at the specified temperature ranges. Hardness, red hardness, three point bending test and Charpy impact test were carried out to evaluate the mechanical properties together with characterizing the microstructure of the modified steel using scanning electron microscope. The results show that niobium addition modifies the cast structure of Nb-alloyed steel, and increases its maximum hardness. It was found that bending strength; bending strain, impact strength, and red hardness of the modified cast steel are also higher than those of the cast H13 steel, and lower than those of the wrought H13 steel.

  9. Tem study of thermal ageing of ferrite in cast duplex stainless steel

    International Nuclear Information System (INIS)

    Nenonen, P.; Massoud, J.P.; Timofeev, B.T.

    2002-01-01

    The changes in the microstructure and composition of ferrite in two types of cast duplex stainless steels and in an austenitic-ferritic weld metal after long term thermal ageing has been studied using analytical transmission electron microscope (FEGTEM). A cast test steel containing Mo was investigated first as a reference material in three different conditions: as solution annealed, aged at 300 C and aged at 400 C. This investigation was carried out to gain experience of how EDS (X-ray analyser) analyser and TEM (transmission electron microscope) can be used to study elemental inhomogeneity, which is usually investigated with an atom probe (APFIM). The two other materials, an austenitic-ferritic weld metal and a cast duplex Ti-stabilised stainless steel used for long time at NPP operation temperature were investigated using the experience obtained with the test steel. The results showed that analytical TEM can be used to investigate elemental inhomogeneity of ferrite, but there are several important things to be taken into account when the spectra for this purpose are collected. These things are, such as the thickness of the specimen, probe size, contamination rate, 'elemental background' of the spectrum and possible enrichment of certain alloying elements in the surface oxide layer of the TEM-specimens. If minor elements are also analysed, it may increase the scattering of the results. (authors)

  10. Microstructural characterization of second phase regions in cast stainless steels

    International Nuclear Information System (INIS)

    Hoelzer, D.; Kenik, E.A.; Rowcliffe, A.F.; Busby, J.; Vitek, J.M.

    2007-01-01

    Full text of publication follows: Cast austenitic stainless steels offer the possibility of directly producing large and/or relatively complex structures, such as the first wall shield modules or the divertor cassette for the International Tokamak Experimental Reactor (ITER). Unfortunately, one of the inherent problems associated with casting stainless steel, especially large castings, is the formation of coarse dendrites with possibly inhomogeneously distributed second phases separated by up to several hundred microns in the microstructure. These microstructural features result from temperature and composition gradients that develop during solidification and subsequent cooling. However, detailed characterization of the second phase regions in the cast microstructures can be quite challenging to techniques such as transmission electron microscopy (TEM), which is useful for phase identification. furthermore, the information about the phases that may be present in the cast microstructures, both equilibrium and nonequilibrium, is important as input as well as for confirming predictions made by computational thermodynamics and solidification modeling. In this study, the investigation of second phase regions that formed in a large cast of a 316 stainless steel (equivalent to CF3M) will be presented and compared to simulations of the phases predicted by computational thermodynamic modeling of the solidification process. The preliminary TEM investigation of the cast microstructure was performed with specimens that were prepared by jet-polishing of 3 mm diameter discs. Although this approach allowed for the identification of the sigma and chi phases, which was consistent with the simulations, it was not suitable for detailed analysis of the second phase regions since these specimens often contained only grains of the gamma austenite phase. A better approach for preparing TEM specimens consisted of strategically lifting small sections of material from second phase regions

  11. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1984-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 400 0 C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 300 0 C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  12. Nanostructured Bainite-Austenite Steel for Armours Construction

    Directory of Open Access Journals (Sweden)

    Burian W.

    2014-10-01

    Full Text Available Nanostructured bainite-austenite steels are applied in the armours construction due to their excellent combination of strength and ductility which enables to lower the armour weight and to improve the protection efficiency. Mechanical properties of the bainite-austenite steels can be controlled in the wide range by chemical composition and heat treatment. In the paper the results of investigation comprising measuring of quasi - static mechanical properties, dynamic yield stress and firing tests of bainite-austenite steel NANOS-BA® are presented. Reported results show that the investigated bainite-austenite steel can be used for constructing add-on armour and that the armour fulfils requirements of protection level 2 of STANAG 4569. Obtained reduction in weight of the tested NANOS-BA® plates in comparison with the present solutions is about 30%.

  13. The Kinetics of Phase Transformations During Tempering in Laser Melted High Chromium Cast Steel

    Science.gov (United States)

    Li, M. Y.; Wang, Y.; Han, B.

    2012-06-01

    The precipitation of secondary carbides in the laser melted high chromium cast steels during tempering at 300-650 °C for 2 h in air furnace was characterized and the present phases was identified, by using transmission electron microscopy. Laser melted high chromium cast steel consists of austenitic dendrites and interdendritic M23C6 carbides. The austenite has such a strong tempering stability that it remains unchanged at temperature below 400 °C and the secondary hardening phenomenon starts from 450 °C to the maximum value of 672 HV at 560 °C. After tempering at 450 °C fine M23C6 carbides precipitate from the supersaturated austenite preferentially. In addition, the dislocation lines and slip bands still exist inside the austenite. While tempering at temperature below 560 °C, the secondary hardening simultaneously results from the martensite phase transformation and the precipitation of carbides as well as dislocation strengthening within a refined microstructure. Moreover, the formation of the ferrite matrix and large quality of coarse lamellar M3C carbides when the samples were tempered at 650 °C contributes to the decrease of hardness.

  14. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M., E-mail: mohammad@alu.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Depto. de Engenharia Metalurgica e de Materiais; Ferreira, W.M. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Curso de Engenharia Mecanica

    2016-07-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  15. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    International Nuclear Information System (INIS)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M.; Ferreira, W.M.

    2016-01-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  16. Alloying effect on the structure and properties of austenitic heat-resistant steels

    International Nuclear Information System (INIS)

    Levitin, V.V.; Grabovskij, V.Ya.; Korostelev, V.F.; Ryvkin, Yu.A.

    1978-01-01

    Investigated have been mechanical properties at test temperatures of 20-95O deg C, wear resistance, softening at thermomechanical cycling and microstructure of cast austenitic chromium-nickel steels (13%Cr + 35%Ni), produced by electroslag remelting with variations in Ti, Mo, Nb and W contents. Regression equations for relationship of the investigated characteristics to alloying element content have been obtained. Titanium, molybdenum and niobium increasing hardness and strength limit at room and high temperatures promote a decrease in ductility. Tungsten increases strength properties, wear resistance and thermal stability of the steels without negative effect on the impact strength. The impact strength decrease with an increase in alloying is due to brittle precipitations along the boundaries of as-cast grains, containing Ti, Mo, Nb and Si

  17. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  18. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Oda, Akira; Miyagawa, Hideaki

    1985-01-01

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  19. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  20. Evaluation of the degradation characteristics of CF-8A cast stainless steel using EDS and nano-indentation

    International Nuclear Information System (INIS)

    Baek, Seung; Koo, Jae Mean; Seok, Chang Sung

    2004-01-01

    Cast austenitic stainless steel piping pump, valve casings, and elbows are susceptible to reductions in toughness and ductility because of long term exposure at the operating temperatures in LWR(Light Water Reactor). In this paper, we have measured the material properties of long term aged CF-8A cast stainless steel, accelerated aging at 400 .deg. C. These studies have been carried out using indentation tests(automated ball indentation and nano-indentation) and EDS(Energy Dispersive Spectroscopy). The fracture toughness of Cf-8A cast stainless steel was also determined by using standard fracture toughness and automated ball indentation

  1. Study of Ferrite During Refinement of Prior Austenite Grains in Microalloyed Steel Continuous Casting

    Science.gov (United States)

    Liu, Jiang; Wen, Guanghua; Tang, Ping

    2017-12-01

    The formation of coarse prior austenite grain is a key factor to promote transverse crack, and the susceptibility to the transverse crack can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate two types of double phase-transformation technologies. The distribution and morphology of ferrites under different cooling conditions were analyzed, and the effects of ferrite distribution and morphology on the double phase-transformation technologies were explored to obtain the suitable double phase-change technology for the continuous casting process. The results indicate that, under the thermal cycle TH0 [the specimens were cooled down to 913 K (640 °C) at a cooling rate of 5.0 K/s (5.0 °C/s)], the width of prior austenite grain boundaries was thick, and the dislocation density at grain boundaries was high. It had strong inhibition effect on crack propagation; under the thermal cycle TH1 [the specimens were cooled down to 1073 K (800 °C) at a cooling rate of 5.0 K/s (5.0 °C/s) and then to 913 K (640 °C) at a cooling rate of 1.0 K/s (1.0 °C/s)], the width of prior austenite grain boundary was thin, and the dislocation density at grain boundaries was low. It was beneficial to crack propagation. After the first phase change, the developed film-like ferrite along the austenite grain boundaries improved the nucleation conditions of new austenitic grains and removed the inhibition effect of the prior austenite grain boundaries on the austenite grain size.

  2. Nondestructive characterization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Jayakumar, T.; Kumar, Anish

    2010-01-01

    The paper presents an overview of the non-destructive methodologies developed at the authors' laboratory for characterization of various microstructural features, residual stresses and corrosion in austenitic stainless steels. Various non-destructive evaluation (NDE) parameters such as ultrasonic velocity, ultrasonic attenuation, spectral analysis of the ultrasonic signals, magnetic hysteresis parameters and eddy current amplitude have been used for characterization of grain size, precipitation behaviour, texture, recrystallization, thermomechanical processing, degree of sensitization, formation of martensite from metastable austenite, assessment of residual stresses, degree of sensitization and propensity for intergranular corrosion in different austenitic steels. (author)

  3. Effect of both sulphur content and deoxidation degree on the hot ductility of resulphurized austenitic stainless steels in the solidified state

    International Nuclear Information System (INIS)

    Botella, J.; Sanchez, R.

    1998-01-01

    The manufacture of free machining austenitic stainless steels features a specific drawback derived from their high sulphur content, which is needed for generating, into the austenitic matrix inclusions to optimize the different machining operations. However, sulphur has ahamfull effect on hot workability. This paper deals with assessing the effect of sulphur content and deoxidation level on the hot ductility of resulphurized austenitic stainless steels in as cast condition. Hot tensile tests were conducted on a Gleeble machine, at temperatures between 1,150 and 1,250 degree celsius, studying a suctility factor as a function of sulphur content, deoxidation degree, as well as type, size and distribution of sulfides. Results point out the harmful effect of increasing sulphur and oxygen contents on the hot workability of resulphurized austenitic stainless steels, and the need to control carefully the level of oxides of these steels. (Author) 5 refs

  4. SCC growth behavior of cast stainless steels in high-temperature water. Influences of corrosion potential, steel type, thermal aging and cold-work

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2011-01-01

    Recent studies on crack growth rate (CGR) measurement in oxygenated high-temperature pure water conditions, such as normal water chemistry (NWC) in BWRs, using compact tension (CT) type specimens have shown that stainless steel weld metal are susceptible to stress corrosion cracking (SCC). On the other hand, the authors reported that no significant SCC growth was observed on stainless steel weld metals in PWR primary water at temperatures from 250degC to 340degC. Cast austenitic stainless steels are widely used in light water reactors, and there is a similarity between welded and cast stainless steels in terms of the microstructure of the ferrite/austenite duplex structure. However, there are a few reports giving CGR data on cast stainless steels in the BWRs and PWRs. The principal purpose of this study was to examine the SCC growth behavior of cast stainless steels in simulated PWR primary water. A second objective was to examine the effects on SCC growth in hydrogenated and oxygenated water environments at 320degC of: (1) corrosion potential; (2) steels type (Mo in alloy); (3) thermal-aging (up to 400degC x 40 kh); and (4) cold-working (10%). The results were as follows: (1) No significant SCC growth was observed on all types of cast stainless steels: aged (400degC x 40 kh) of SCS14A and SCS13A and 10% cold-working, in hydrogenated (low-potential) water at 320degC. (2) Aging at 400degC x 40 kh SCS14A (10%CW) markedly accelerated the SCC growth of cast material in high-potential water at 320degC, but no significant SCC growth was observed in the hydrogenated water, even after long-term thermal aging (400degC x 40 kh). (3) Thus, cast stainless steels have excellent SCC resistance in PWR primary water. (4) On the other hand, significant SCC growth was observed on all types of cast stainless steels: 10%CW SCS14A and SCS13A, in 8 ppm-oxygenated (high-potential) water at 320degC. (5) No large difference in SCC growth was observed between SCS14A (Mo) and SCS13A. (6) No

  5. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  6. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  7. Direct strip casting of steel - historical perspective and future direction

    International Nuclear Information System (INIS)

    Manohar, P.A.; Hunter, A.; Ferry, M.

    2000-01-01

    The commercialisation of direct strip casting (DSC) of steel represents the realisation of a dream cherished by engineers for over one hundred and fifty years. The story of the global competition for DSC of steel, that has ingredients of romanticism of chasing of a dream, adventure and intrigue, is being played out across continents over dozens of decades with an interplay of setbacks and successes. At this stage, DSC is set to make a profound impact on the steelmaking landscape. This paper reviews the important milestones in this compelling story, presents the current status and then gazes into the crystal ball in an attempt to predict which turn the story may take in the near future. The constraints and critical challenges for the successful commercialisation of DSC are highlighted. Recent results are discussed relating the production process to quality control and properties of unalloyed, low carbon strip-cast steels. future metallurgical challenges include a better understanding of solidification mechanism during high-speed casting and secondary processing variables affecting the final microstructure of austenitic grains

  8. Long-term aging of cast stainless steels: Mechanisms and resulting properties

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1988-01-01

    Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320 and 290 deg. C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J IC , and tearing modules of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The ferrite content and concentration of carbon in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and the molybdenum-containing high-carbon CF-8M steels are the most susceptible to low-temperature embrittlement. Microstructural data indicate that three processes contribute to embrittlement of cast stainless steels, viz., Cr-rich α' and G-phase precipitation in the ferrite, and carbide precipitation on the austenite/ferrite phase boundary. The influence of nitrogen content and ferrite distribution on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280-450 deg. C, i.e., extrapolation of high temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel. (author)

  9. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades

    International Nuclear Information System (INIS)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C.; Gallego, J.

    2010-01-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  10. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  11. Z phase stability in AISI 316LN + Nb austenitic steels during creep at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Vodarek, Vlastimil [Technical Univ. Ostrava (Czech Republic)

    2010-07-01

    The creep resistance of austenitic CrNi(Mo) steels strongly depends on microstructural stability during creep exposure. Nitrogen additions to CrNi(Mo) austenitic steels can significantly improve the creep strength. One of the most successful methods of improving the long-term creep resistance of austenitic steels is based on increasing the extent of precipitation strengthening during creep exposure. The role of precipitates in the achievements of good creep properties has been extensively studied for a long time. Although many minor phases are now well documented there are still contractions and missing thermodynamic data about some minor phases. This contribution deals with results of microstructural studies on the minor phase evolution in wrought AISI 316LN niobium stabilised steels during long-term creep exposure at 650 C. Microstructural investigations were carried out on specimens taken from both heads and gauge lengths of ruptured test-pieces by means of optical metallography, transmission and scanning electron microscopy. The attention has been paid to evaluation of thermodynamic and dimensional stability of Z phase and other nitrogen bearing minor phases. Only two nitrogen-bearing minor phases formed in the casts investigated: Z phase and M{sub 6}X. The dimensional stability of Z phase particles was very high. (orig.)

  12. Mechanism of fatigue crack initiation in austenitic stainless steels in light water reactor environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.; Muscara, J.

    2003-01-01

    This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. The results indicate that the fatigue lives of these steels are decreased primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. The fracture morphology in the specimens has been characterized. Exploratory fatigue tests were conducted to study the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation. (author)

  13. Mechanical properties of as-cast microalloyed steels produced via investment casting

    International Nuclear Information System (INIS)

    Najafi, H.; Rassizadehghani, J.; Norouzi, S.

    2011-01-01

    Tensile and room temperature Charpy V-notch impact tests were used to evaluate the variations in the as-cast mechanical properties of a low-carbon steel produced via shell mould investment casting and containing combinations of vanadium, niobium and titanium. Tensile results indicate that the yield strength and ultimate tensile strength (UTS) have increased up to respectively 615 MPa and 770 MPa due to the fine-scale microalloy precipitates in the microalloyed samples. Room temperature impact test results show that while addition of vanadium individually has not changed the impact energy, Nb has decreased it considerably. However, examination of fracture surfaces reveals that all microalloyed samples have failed by transgranular cleavage. Based on the transmission electron microscope (TEM) studies, it seems that carbonitrides being greater than 50 nm in size and formed along prior austenite grain boundaries before γ transformation are responsible for the observed reduction in impact energies and brittle fracture. In comparison to sand mould casting, the yield and UTS obtained from investment casting are superior. Furthermore, although the impact energies of Nb-containing alloys are approximately the same as those obtained from sand moulds, the impact energy of the alloy containing only vanadium has improved considerably.

  14. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhangbo; Lo, Wei-Yang [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States); Chen, Yiren [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Pakarinen, Janne [Belgian Nuclear Research Center (SCK-CEN), Boeretang 200, B-2400 Mol (Belgium); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, ID 83715 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Allen, Todd [Engineering Physics Department, University of Wisconsin, Madison, WI 53706 (United States); Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Yang, Yong, E-mail: yongyang@ufl.edu [Department of Materials Science and Engineering, Nuclear Engineering Program, University of Florida, Gainesville, FL 32611 (United States)

    2015-11-15

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 10{sup 19} n/cm{sup 2}, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10{sup −9} dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  15. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    International Nuclear Information System (INIS)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; Yang, Yong

    2015-01-01

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ∼315 °C to 0.08 dpa (5.6 × 10"1"9 n/cm"2, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10"−"9 dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.

  16. Fracture mechanics evaluation of cast duplex stainless steel after thermal aging

    International Nuclear Information System (INIS)

    Tujikura, Y.; Urata, S.

    1999-01-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)

  17. Fracture mechanics evaluation of cast duplex stainless steel after thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Tujikura, Y.; Urata, S. [Kansai Electr. Power Co., Inc., Osaka (Japan). General Office of Nucl. and Fossil Power Production

    1999-07-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel, which is excellent in terms of strength, corrosion resistance and weldability, has conventionally been used. Cast duplex stainless steel contains the ferrite phase in the austenite matrix, and thermal aging after long-term service is known to decrease fracture toughness. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secure, even when such through-wall crack length is assumed to be as large as the fatigue crack length grown for a service period of up to 60 years. (orig.)

  18. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  19. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  20. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  1. Microstructures of cast-duplex stainless steel after long-term aging

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.

    1985-10-01

    Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or during in-reactor service have been characterized and compared by TEM, SEM, and optical microscopy. The microstructural characteristics have been correlated with the impact failure behavior of the material. G-phase, α', and an unidentified Type X precipitate were responsible for the ferrite-phase embrittlement. Precipitation of M 23 C 6 carbides on austenite-ferrite boundaries further degraded the reactor-aged material

  2. Cracking behavior of thermally aged and irradiated CF-8 cast austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: Yiren_Chen@anl.gov [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Alexandreanu, B.; Chen, W.-Y.; Natesan, K. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Li, Z.; Yang, Y. [University of Florida, Gainesville, FL 32611 (United States); Rao, A.S. [US Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2015-11-15

    To assess the combined effect of thermal aging and neutron irradiation on the cracking behavior of CF-8 cast austenitic stainless steel, crack growth rate (CGR) and fracture toughness J-R curve tests were carried out on compact-tension specimens in high-purity water with low dissolved oxygen. Both unaged and thermally aged specimens were irradiated at ∼320 °C to 0.08 dpa. Thermal aging at 400 °C for 10,000 h apparently had no effect on the corrosion fatigue and stress corrosion cracking behavior in the test environment. The cracking susceptibility of CF-8 was not elevated significantly by neutron irradiation at 0.08 dpa. Transgranular cleavage-like cracking was the main fracture mode during the CGR tests, and a brittle morphology of delta ferrite was often seen on the fracture surfaces at the end of CGR tests. The fracture toughness J-R curve tests showed that both thermal aging and neutron irradiation can induce significant embrittlement. The loss of fracture toughness due to neutron irradiation was more pronounced in the unaged than aged specimens. After neutron irradiation, the fracture toughness values of the unaged and aged specimens were reduced to a similar level. G-phase precipitates were observed in the aged and irradiated specimens with or without prior aging. The similar microstructural changes resulting from thermal aging and irradiation suggest a common microstructural mechanism of inducing embrittlement in CF-8.

  3. Significance of dislocations in the mechanism of Hadfield cast steel strengthening

    International Nuclear Information System (INIS)

    Stradomski, Z.; Morgiel, J.; Olszewski, J.

    1999-01-01

    The paper presents the results of microstructural examination of the adfield cast steel (L120G13 according to Polish Standards) strengthened by explosion method, which is an attractive alternative of the surface treatment of metal materials regarding its technological, economical and organizational aspects. The presented results have been obtained by means of qualitative and quantitative analysis of thin foils taken at different distances from the material surface being strengthened by single, double or triple detonation of 3 mm thick charges of explosive. The high pressure, order of 18 GPa, causes significant changes in dislocation structure of the austenite matrix. The strengthening of Hadfield cast steel during explosion is based on the increase of the dislocation density by several times as related to the supersaturated state and on the creation of dislocation bands consisting of short, densely tangled dislocations. Plastic deformation mechanisms i. e., slip lines and micro-twins, are definitively of minor importance. It has been also proved by means of the nuclear resonance method that the explosion do not cause changes in distribution of carbon atoms in the nearest neighbourhood of Fe atoms and that austenite is not transformed into the α-martensite or the hexagonal ε-phase. (author)

  4. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    International Nuclear Information System (INIS)

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-01-01

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  5. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  6. Phase transformation by fatigue in austenitic stainless steel

    International Nuclear Information System (INIS)

    Jo, Y.S.; Kwun, S.I.

    1988-01-01

    The effect of strain induced martensite on the fatigue behavior of AISI 304 austenitic stainless steel was investigated. During low cycle fatigue, the austenitic stainless steel showed a continuous cyclic hardening until fracture. The extent of cyclic hardening increased with decreasing austenite stability. The austenite stability was controlled by different aging time and temperature, which resulted in different carbide morphologies. The fatigue crack propagation rate near ΔK th varied also with the austenite stability inside the plastic zone at the crack up. Especially, the near-threshold fatigue crack propagation rate of the grain boundary carbide precipitated condition was the lowest. This was considered to be due to the roughness induced closure caused by intergranular facet. A new model for the intergranular facet formation and the fatigue crack propagation of grain boundary carbide precipitated condition was proposed. (Author)

  7. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  8. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel

    International Nuclear Information System (INIS)

    Mun, Dong Jun; Shin, Eun Joo; Choi, Young Won; Lee, Jae Sang; Koo, Yang Mo

    2012-01-01

    Highlights: ► Non-equilibrium segregation of B in steel depends strongly on the cooling rate. ► A higher austenitization temperature reduced the B hardenability effect. ► An increase in B concentration at γ grain boundaries accelerates the B precipitation. ► The loss of B hardenability effect is due to intragranular borocarbide precipitation. ► The controlled cooling after hot deformation increased the B hardenability effect. - Abstract: The phase transformation behavior of high-strength boron steel was studied considering the segregation and precipitation behavior of boron (B). The effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of B-bearing steel as compared with B-free steel were investigated by using dilatometry, microstructural observations and analysis of B distribution. The effects of these variables on hardenability were discussed in terms of non-equilibrium segregation mechanism and precipitation behavior of B. The retardation of austenite-to-ferrite transformation by B addition depends strongly on cooling rate (CR); this is mainly due to the phenomenon of non-equilibrium grain boundary segregation of B. The hardenability effect of B-bearing steel decreased at higher austenitizing temperature due to the precipitation of borocarbide along austenite grain boundaries. Analysis of B distribution by second ion mass spectroscopy confirmed that the grain boundary segregation of B occurred at low austenitizing temperature of 900 °C, whereas B precipitates were observed along austenite grain boundaries at high austenitizing temperature of 1200 °C. The significant increase in B concentration at austenite grain boundaries due to grain coarsening and a non-equilibrium segregation mechanism may lead to the B precipitation. In contrast, solute B segregated to austenite grain boundaries during cooling after heavy deformation became more stable because the increase in boundary area by grain

  9. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    Energy Technology Data Exchange (ETDEWEB)

    Meric de Bellefon, G., E-mail: mericdebelle@wisc.edu [University of Wisconsin-Madison (United States); Duysen, J.C. van [EDF R& D (France); University of Tennessee-Knoxville (United States); Unité Matériaux et Transformation (UMET) CNRS, Université de Lille (France)

    2016-07-15

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details. - Highlights: • This article is part of an effort to tailor the plasticity of 304L and 316L steels for nuclear applications. • It reviews mechanisms controlling plasticity of austenitic steels during tensile tests. • Formation of twins, extended stacking faults, and martensite, grain rotation, and irradiation effects are discussed.

  10. Effect of nitrogen and boron on weldability of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Albert, S.K.; Srinivasan, G.; Divya, M.; Das, C.R.

    2012-01-01

    Hot cracking is a major problem in the welding of austenitic stainless steels, particularly the fully austenitic grades. A group of alloys of enhanced-nitrogen 316LN austenitic stainless steel is being developed for structural components of the Indian Fast Reactor programme. Studying the hot cracking behaviour of this nitrogen-enhanced austenitic stainless steel is an important consideration during welding, as this material solidifies without any residual delta ferrite in the primary austenitic mode. Nitrogen has potent effects on the solidification microstructure, and hence has a strong influence on the hot cracking behaviour. Different heats of this material were investigated, which included fully austenitic stainless steels containing 0.070.22 wt% nitrogen. Also, borated austenitic stainless steels, such as type 304B4, have been widely used in the nuclear applications primarily due to its higher neutron absorption efficiency. Weldability is a major concern for this alloy due to the formation of low melting eutectic phase that is enriched with iron, chromium, molybdenum and boron. Fully austenitic stainless steels are prone to hot cracking during welding in the absence of a small amount of delta ferrite, especially for compositions rich in elements like boron that increases the tendency to form low melting eutectics. Detailed weldability investigations were carried out on a grade 304B4 stainless steel containing 1.3 wt% boron. Among the many approaches that have been used to determine the hot cracking susceptibility of different alloys, Variable-Restraint (Varestraint) weld test and Hot Ductility (Gleeble) tests are commonly used to evaluate the weldability of austenitic alloys. Hence, investigations on these materials consisted of detailed metallurgical characterization and weldability studies that included studying both the fusion zone and liquation cracking susceptibility, using Varestraint tests at 0.254.0%, strain levels and Gleeble (thermo

  11. Characterization of the austenitic stability of metastable austenitic stainless steel with regard to its formability

    Science.gov (United States)

    Schneider, Matthias; Liewald, Mathias

    2018-05-01

    During the last decade, the stainless steel market showed a growing volume of 3-5% p.a.. The austenitic grades are losing market shares to ferritic or 200-series grades due to the high nickel price, but still playing the most important role within the stainless steel market. Austenitic stainless steel is characterized by the strain-induced martensite formation, causing the TRIP-effect (Transformation Induced Plasticity) which is responsible for good formability and high strength. The TRIP-effect itself is highly dependent on the forming temperature, the strain as well as the chemical composition which has a direct influence on the stability of the austenite. Today the austenitic stability is usually characterized by the so called Md30-temperature, which was introduced by Angel and enhanced by several researches, particularly Nohara. It is an empirical formula based on the chemical composition and the grain size of a given material, calculating the temperature which is necessary to gain a 50 % martensite formation after 30 % of elongation in a tensile test. A higher Md30-temperature indicates a lower stability and therefore a higher tendency towards martensite formation. The main disadvantage of Md30 -temperature is the fact that it is not based on forming parameters and only describes a single point instead of the whole forming process. In this paper, an experimental set up for measuring martensite and temperature evolution in a non-isothermal tensile test is presented, which is based on works of Hänsel and Schmid. With this set up, the martensite formation rate for different steels of the steel grade EN 1.4301 and EN 1.4310 is measured. Based on these results a new austenitic stability criterion is defined. This criterion and the determined Md30-temperatures are related to the stretch formability of the materials. The results show that the new IFU criterion is with regard to the formability a much more useful characteristic number for metastable austenitic steels

  12. Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed- and Columnar-Grain Material – An Interim Study

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep; Good, Morris S.; Diaz, Aaron A.; Anderson, Michael T.; Watson, Bruce E.; Peters, Timothy J.; Dixit, Mukul; Bond, Leonard J.

    2009-10-27

    Ultrasonic nondestructive evaluation (NDE) and inspection of cast austenitic stainless steel (CASS) components used in the nuclear power industry is neither as effective nor reliable as is needed due to detrimental effects upon the interrogating ultrasonic beam and interference from ultrasonic backscatter. The root cause is the coarse-grain microstructure inherent to this class of materials. Some ultrasonic techniques perform better for particular microstructural classifications and this has led to the hypothesis that an ultrasonic inspection can be optimized for a particular microstructural class, if a technique exists to reliably classify the microstructure for feedback to the inspection. This document summarizes scoping experiments of in-situ ultrasonic methods for classification and/or characterization of the material microstructures in CASS components from the outside surface of a pipe. The focus of this study was to evaluate ultrasonic methods and provide an interim report that documents results and technical progress. An initial set of experiments were performed to test the hypothesis that in-service characterization of cast austenitic stainless steel (CASS) is feasible, and that, if reliably performed, such data would provide real-time feedback to optimize in-service inspections in the field. With this objective in mind, measurements for the experiment were restricted to techniques that should be robust if carried forward to eventual field implementation. Two parameters were investigated for their ability to discriminate between different microstructures in CASS components. The first parameter was a time-of-flight ratio of a normal incidence shear wave to that of a normal incidence longitudinal wave (TOFRSL). The ratio removed dependency on component thickness which may not be accurately reported in the field. The second parameter was longitudinal wave attenuation. The selected CASS specimens provided five equiaxed-grain material samples and five columnar

  13. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  14. Residual stress studies of austenitic and ferritic steels

    International Nuclear Information System (INIS)

    Chrenko, R.M.

    1978-01-01

    Residual studies have been made on austenitic and ferritic steels of the types used as structural materials. The residual stress results presented here will include residual stress measurements in the heat-affected zone on butt welded Type 304 stainless steel pipes, and the stresses induced in Type 304 austenitic stainless steel and Type A508 ferritic steel by several surface preparations. Such surface preparation procedures as machining and grinding can induce large directionality effects in the residual stresses determined by X-ray techniques and some typical data will be presented. A brief description is given of the mobile X-ray residual stress apparatus used to obtain most of the data in these studies. (author)

  15. Contribution to the assessment of thermal ageing of stainless steel castings and welds

    International Nuclear Information System (INIS)

    Zdarek, J.; Novak, J.

    1992-01-01

    Indentation tests are considered for measuring and verifying of thermal ageing of stainless steel castings and welds in service. Therefore, relations between indentation- and tensile diagrams were analyzed. Conventional tensile characteristics, deduced from the indentation diagram, should be used for fracture toughness prediction. Form of correlation of yield stress and tensile strength on one side and of fracture toughness on the other side was proposed, which is specific for austenitic-ferritic two-phase materials. Properties of castings and welds were compared and analyzed within the framework of a mesomechanical homogenization model with micromechanical effect of geometric slip distance. (author)

  16. Microstructure analysis of AISI 304 stainless steel produced by twin-roll thin strip casting process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The microstructure of AISI 304 austenite stainless steel fabricated by the thin strip casting process were investigated using optical microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD).The microstructures of the casting strips show a duplex structure consisting of delta ferrite and austenite. The volume fraction of the delta ferrite is about 9.74vol% at the center and 6.77vol% at the surface of the casting thin strip, in vermicular and band shapes. On account of rapid cooling and solidification in the continuous casting process, many kinds of inclusions and precipitates have been found. Most of the inclusions and precipitates are spherical complex compounds consisting of oxides, such as, SiO2, MnO, Al2O3,Cr2O3,and FeO or their multiplicity oxides of MnO·Al2O3,2FeO·SiO2, and 2MnO·SiO2. Many defects including dislocations and stacking faults have also formed during the rapid cooling and solidification process, which is helpful to improve the mechanical properties of the casting strips.

  17. Development of advanced austenitic stainless steels resistant to void swelling under irradiation

    International Nuclear Information System (INIS)

    Rouxel, Baptiste

    2016-01-01

    In the framework of studies about Sodium Fast Reactors (SFR) of generation IV, the CEA is developing new austenitic steel grades for the fuel cladding. These steels demonstrate very good mechanical properties but their use is limited because of the void swelling under irradiation. Beyond a high irradiation dose, cavities appear in the alloys and weaken the material. The reference material in France is a 15Cr/15Ni steel, named AIM1, stabilized with titanium. This study try to understand the role played by various chemical elements and microstructural parameters on the formation of the cavities under irradiation, and contribute to the development of a new grade AIM2 more resistant to swelling. In an analytical approach, model materials were elaborated with various chemical compositions and microstructures. Ten grades were cast with chemical variations in Ti, Nb, Ni and P. Four specific microstructures for each alloy highlighted the effect of dislocations, solutes or nano-precipitates on the void swelling. These materials were characterized using TEM and SANS, before irradiation with Fe"2"+ (2 MeV) ions in the order to simulate the damages caused by neutrons. Comparing the irradiated microstructures, it is demonstrated that the solutes have a dominating effect on the formation of cavities. Specifically titanium in solid solution reduces the swelling whereas niobium does not show this effect. Finally, a matrix enriched by 15% to 25% of nickel is still favorable to limit swelling in these advanced austenitic stainless steels. (author) [fr

  18. Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel

    International Nuclear Information System (INIS)

    Xiong, Z.P.; Saleh, A.A.; Marceau, R.K.W.; Taylor, A.S.; Stanford, N.E.; Kostryzhev, A.G.; Pereloma, E.V.

    2017-01-01

    Knowledge of carbon content in retained austenite (RA) with different neighbouring phases is essential to understand the chemical stability of RA, which is useful for microstructure tuning of transformation-induced plasticity (TRIP) steels. The present study investigates different morphologies and chemical compositions of RA by correlating electron backscattering diffraction, transmission electron microscopy and atom probe tomography. The effect of neighbouring phases, such as polygonal ferrite, bainitic ferrite lath, ferrite in granular bainite and carbides, on the carbon content in the RA is investigated. The results reveal that the film RA morphology does not always have a higher carbon content than the blocky RA; as coarse RA sometimes displays a higher carbon content than the fine RA films or islands depending on the neighbouring phases. The diffusion of carbon and manganese between austenite and ferrite in bainitic ferrite/granular bainite has been explained according to either diffusionless and/or diffusional mechanism of bainitic ferrite formation followed by tempering. -- Highlights: •The effect of neighbouring phases on retained austenite (RA) features was investigated. •A lower carbon content in fine/film RA compared to coarse/blocky RA was experimentally demonstrated. •At least locally controlled diffusion of substitutional solutes across the RA/bainitic ferrite lath interface was suggested.

  19. Reverted austenite in PH 13-8 Mo maraging steels

    International Nuclear Information System (INIS)

    Schnitzer, Ronald; Radis, Rene; Noehrer, Matthias; Schober, Michael; Hochfellner, Rainer; Zinner, Silvia; Povoden-Karadeniz, E.; Kozeschnik, Ernst; Leitner, Harald

    2010-01-01

    The mechanical properties of maraging steels are strongly influenced by the presence of reverted austenite. In this study, the morphology and chemical composition of reverted austenite in a corrosion resistant maraging steel was characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Two types of austenite, i.e. granular and elongated, are present after aging at 575 o C, whereby the content of the latter increases during aging. The investigations revealed that the austenite phase is enriched in Ni, which prevents the transformation to martensite during cooling. Inside and next to the austenitc areas, Mo and Cr-rich carbides, which form during the aging treatment, were found. Various aging treatments were performed to obtain the activation energy for the formation of reverted austenite. Additionally, the experimental data are compared with thermodynamic and kinetic simulations. Based on these results and the chemical composition changes of the phases, a model for the formation of reverted austenite is presented. It is concluded that precipitation of B2-ordered NiAl and formation of reverted austenite take place simultaneously during aging and that dissolution of precipitates is not essential for the initial formation of reverted austenite.

  20. Modeling of Non-isothermal Austenite Formation in Spring Steel

    Science.gov (United States)

    Huang, He; Wang, Baoyu; Tang, Xuefeng; Li, Junling

    2017-12-01

    The austenitization kinetics description of spring steel 60Si2CrA plays an important role in providing guidelines for industrial production. The dilatometric curves of 60Si2CrA steel were measured using a dilatometer DIL805A at heating rates of 0.3 K to 50 K/s (0.3 °C/s to 50 °C/s). Based on the dilatometric curves, a unified kinetics model using the internal state variable (ISV) method was derived to describe the non-isothermal austenitization kinetics of 60Si2CrA, and the abovementioned model models the incubation and transition periods. The material constants in the model were determined using a genetic algorithm-based optimization technique. Additionally, good agreement between predicted and experimental volume fractions of transformed austenite was obtained, indicating that the model is effective for describing the austenitization kinetics of 60Si2CrA steel. Compared with other modeling methods of austenitization kinetics, this model, which uses the ISV method, has some advantages, such as a simple formula and explicit physics meaning, and can be probably used in engineering practice.

  1. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo,Carlos Eduardo; Tschiptschin,André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% c...

  2. Low temperature plasma carburizing of AISI 316L austenitic stainless steel and AISI F51 duplex stainless steel

    OpenAIRE

    Pinedo, Carlos Eduardo; Tschiptschin, André Paulo

    2013-01-01

    In this work an austenitic AISI 316L and a duplex AISI F51 (EN 1.4462) stainless steel were DC-Plasma carburized at 480ºC, using CH4 as carbon carrier gas. For the austenitic AISI 316L stainless steel, low temperature plasma carburizing induced a strong carbon supersaturation in the austenitic lattice and the formation of carbon expanded austenite (γC) without any precipitation of carbides. The hardness of the carburized AISI 316L steel reached a maximum of 1000 HV due to ∼13 at% carbon super...

  3. The characteristics of precipitates in 18% Cr/30% Ni cast steel with additions of Nb and Ti

    International Nuclear Information System (INIS)

    Piekarski, B.

    1995-01-01

    The microstructure of austenitic cast steel with approx. 0.3%C, 4.37%Si, 0.69%Mn, 17.8%Cr, 29.3%Ni, 1.47%Nb and 1.07%Ti have been examined after ageing at 900 C for 300 h. There was found five precipitates: M 23 C 6 , MnS, Ni 3 Fe, (Ti,Nb)C and an intermetallic Ni-Nb-S phase. Ni, Nb, Si-rich precipitate could have been formed in as cast condition. (author)

  4. Cryogenic properties of austenitic stainless steels for superconducting magnet

    International Nuclear Information System (INIS)

    Nohara, K.; Kato, T.; Ono, Y.; Sasaki, T.; Suzuki, S.

    1983-01-01

    The present study examines the magnetic and mechanical properties of a variety of austenitic stainless steels and high maganese steel which are candidate materials for the superconducting magnet attached to high energy particle accelerators. The effect of a specified heat treatment for the precipitation of intermetallic compound Nb3Sn to be used as superconductor on ductility and toughness are especially examined. It is found that nitrogen-strengthened austenitic stainless steels have high strength and good ductility and toughness, but that these are destroyed by precipitation treatment. The poor ductility and toughness after precipitation are caused by a weakening of the grain boundaries due to the agglomerated chromium carbide percipitates. The addition of vanadium suppresses this effect by refining the grain. Austenitic steels are found to have low magnetic permeabilities and Neel temperatures, and show serrated flow in traction test due to strained martensitic transformation. High manganese steel has extremely low permeability, a Neel temperature about room temperature, and has a serrated flow in traction test due to adiabatic deformation at liquid helium temperature

  5. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  6. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ying; Zhang Ke; Guo Zhenghong; Chen Nailu [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Rong Yonghua, E-mail: yhrong@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer A new DARA effect in the bainitic steel is proposed. Black-Right-Pointing-Pointer The conditions of DARA effect are proposed. Black-Right-Pointing-Pointer The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  7. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C

    Science.gov (United States)

    Meric de Bellefon, G.; van Duysen, J. C.

    2016-07-01

    AISI 304 and 316 austenitic stainless steels were invented in the early 1900s and are still trusted by materials and mechanical engineers in numerous sectors because of their good combination of strength, ductility, and corrosion resistance, and thanks to decades of experience and data. This article is part of an effort focusing on tailoring the plasticity of both types of steels to nuclear applications. It provides a synthetic and comprehensive review of the plasticity mechanisms in austenitic steels during tensile tests below 400 °C. In particular, formation of twins, extended stacking faults, and martensite, as well as irradiation effects and grain rotation are discussed in details.

  8. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  9. Strain hardening of cold-rolled lean-alloyed metastable ferritic-austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Papula, Suvi [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland); Anttila, Severi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland); Talonen, Juho [Outokumpu Oyj, P.O. Box 245, FI-00181 Helsinki (Finland); Sarikka, Teemu; Virkkunen, Iikka; Hänninen, Hannu [Aalto University School of Engineering, Department of Mechanical Engineering, P.O. Box 14200, FI-00076 Aalto (Finland)

    2016-11-20

    Mechanical properties and strain hardening of two pilot-scale lean-alloyed ferritic-austenitic stainless steels having metastable austenite phase, present at 0.50 and 0.30 volume fractions, have been studied by means of tensile testing and nanoindentation. These ferritic-austenitic stainless steels have high strain-hardening capacity, due to the metastable austenite phase, which leads to an improved uniform elongation and higher tensile strength in comparison with most commercial lean duplex stainless steels. According to the results, even as low as 0.30 volume fraction of austenite seems efficient for achieving nearly 40% elongation. The austenite phase is initially the harder phase, and exhibits more strain hardening than the ferrite phase. The rate of strain hardening and the evolution of the martensite phase were found to depend on the loading direction: both are higher when strained in the rolling direction as compared to the transverse direction. Based on the mechanical testing, characterization of the microstructure by optical/electron microscopy, magnetic balance measurements and EBSD texture analysis, this anisotropy in mechanical properties of the cold-rolled metastable ferritic-austenitic stainless steels can be explained by the elongated dual-phase microstructure, fiber reinforcement effect of the harder austenite phase and the presence and interplay of rolling textures in the two phases.

  10. Transformation in austenitic stainless steel sheet under different loading directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  11. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress

  12. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  13. Phase transformation system of austenitic stainless steels obtained by permanent compressive strain

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Tomida, Sai

    2017-01-27

    In order to understand more completely the formation of strain-induced martensite, phase structures were investigated both before and after plastic deformation, using austenitic stainless steels of various chemical compositions (carbon C=0.007–0.04 mass% and molybdenum Mo=0–2.10 mass%) and varying pre-strain levels (0–30%). Although the stainless steels consisted mainly of γ austenite, two martensite structures were generated following plastic deformation, comprising ε and α′ martensite. The martensitic structures were obtained in the twin deformation and slip bands. The severity of martensite formation (ε and α′) increased with increasing C content. It was found that α′ martensite was formed mainly in austenitic stainless steel lacking Mo, whereas a high Mo content led to a strong ε martensite structure, i.e. a weak α′ martensite. The formation of α′ martensite occurred from γ austenite via ε martensite, and was related to the slip deformation. Molybdenum in austenitic stainless steel had high slip resistance (or weak stress-induced martensite transformation), because of the stacking fault energy of the stainless steel affecting the austenite stability. This resulted in the creation of weak α′ martensite. Models of the martensitic transformations γ (fcc)→ε (hcp)→α′ (bcc) were proposed on both the microscopic and nanoscopic scales. The α′ martensite content of austenitic stainless steel led to high tensile strength; conversely, ε martensite had a weak effect on the mechanical strength. The influence of martensitic formation on the mechanical properties was evaluated quantitatively by statistical analysis.

  14. Residual-stresses in austenitic stainless-steel primary coolant pipes and welds of pressurized-water reactors

    International Nuclear Information System (INIS)

    Faure, F.; Leggatt, R.H.

    1996-01-01

    Surface and through thickness residual stress measurements were performed on an aged cast austenitic-ferritic stainless steel pipe and on an orbital TIG weld representative of those of primary coolant pipes in pressurized water reactors. An abrasive-jet hole drilling method and a block removal and layering method were used. Surface stresses and through thickness stress profiles are strongly dependent upon heat treatments, machining and welding operations. In the aged cast stainless steel pipe, stresses ranged between -250 and +175 MPa. On and near the orbital TIG weld, the outside surface of the weld was in tension both in the axial and hoop directions, with maximum values reaching 420 MPa in the weld. On the inside surface, the hoop stresses were compressive, reaching -300 MPa. However, the stresses in the axial direction at the root of the weld were tensile within 4 mm depth from the inside surface, locally reaching 280 MPa. (author)

  15. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  16. Constitutive modeling of metastable austenitic stainless steel (CD-rom)

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Boisse, P.

    2008-01-01

    A stress-update algorithm is developed for austenitic metastable steels which undergo phase evolution during deformation. The material initially comprises only the soft and ductile austenite phase which due to the phenomenon of mechanically induced martensitic transformation, transforms completely

  17. Fracture mechanics evaluation for the cast duplex stainless steel after thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Shigeru [Kansai Electric Power Co., Inc., Osaka (Japan)

    1998-12-31

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore, we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years. (author)

  18. Retained Austenite in SAE 52100 Steel Post Magnetic Processing and Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Nathaniel R [ORNL; Watkins, Thomas R [ORNL; Cavin, Odis Burl [ORNL; Jaramillo, Roger A [ORNL; Ludtka, Gerard Michael [ORNL

    2007-01-01

    Steel is an iron-carbon alloy that contains up to 2% carbon by weight. Understanding which phases of iron and carbon form as a function of temperature and percent carbon is important in order to process/manufacture steel with desired properties. Austenite is the face center cubic (fcc) phase of iron that exists between 912 and 1394 C. When hot steel is rapidly quenched in a medium (typically oil or water), austenite transforms into martensite. The goal of the study is to determine the effect of applying a magnetic field on the amount of retained austenite present at room temperature after quenching. Samples of SAE 52100 steel were heat treated then subjected to a magnetic field of varying strength and time, while samples of SAE 1045 steel were heat treated then subjected to a magnetic field of varying strength for a fixed time while being tempered. X-ray diffraction was used to collect quantitative data corresponding to the amount of each phase present post processing. The percentage of retained austenite was then calculated using the American Society of Testing and Materials standard for determining the amount of retained austenite for randomly oriented samples and was plotted as a function of magnetic field intensity, magnetic field apply time, and magnetic field wait time after quenching to determine what relationships exist with the amount of retained austenite present. In the SAE 52100 steel samples, stronger field strengths resulted in lower percentages of retained austenite for fixed apply times. The results were inconclusive when applying a fixed magnetic field strength for varying amounts of time. When applying a magnetic field after waiting a specific amount of time after quenching, the analyses indicate that shorter wait times result in less retained austenite. The SAE 1045 results were inconclusive. The samples showed no retained austenite regardless of magnetic field strength, indicating that tempering removed the retained austenite. It is apparent

  19. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  20. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  1. Anelastic mechanical loss spectrometry of hydrogen in austenitic stainless steels

    International Nuclear Information System (INIS)

    Yagodzinskyy, Y.; Andronova, E.; Ivanchenko, M.; Haenninen, H.

    2009-01-01

    Atomic distribution of hydrogen, its elemental diffusion jumps and its interaction with dislocations in a number of austenitic stainless steels are studied with anelastic mechanical loss (AML) spectrometry in combination with the hydrogen thermal desorption method. Austenitic stainless steels of different chemical composition, namely, AISI 310, AISI 201, and AISI 301LN, as well as LDX 2101 duplex stainless steel are studied to clarify the role of different alloying elements on the hydrogen behavior. Activation analyses of the hydrogen Snoek-like peaks are performed with their decomposition to sets of Gaussian components. Fine structure of the composite hydrogen peaks is analyzed under the assumption that each component corresponds to diffusion transfer of hydrogen between octahedral positions with certain atomic compositions of the nearest neighbouring lattice sites. An additional component originating from hydrogen-dislocation interaction is considered. Binding energies for hydrogen-dislocation interaction are also estimated for the studied austenitic stainless steels.

  2. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels.

  3. Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels

    Science.gov (United States)

    Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika

    2018-04-01

    As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.

  4. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Science.gov (United States)

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effect of small addition of Cr on stability of retained austenite in high carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Rumana; Pahlevani, Farshid, E-mail: f.pahlevani@unsw.edu.au; Sahajwalla, Veena

    2017-03-15

    High carbon steels with dual phase structures of martensite and austenite have considerable potential for industrial application in high abrasion environments due to their hardness, strength and relatively low cost. To design cost effective high carbon steels with superior properties, it is crucial to identify the effect of Chromium (Cr) on the stability of retained austenite (RA) and to fully understand its effect on solid-state phase transition. This study addresses this important knowledge gap. Using standard compression tests on bulk material, quantitative X-ray diffraction analysis, nano-indentation on individual austenitic grains, transmission electron microscopy and electron backscatter diffraction–based orientation microscopy techniques, the authors investigated the effect of Cr on the microstructure, transformation behaviour and mechanical stability of retained austenite in high carbon steel, with varying Cr contents. The results revealed that increasing the Cr %, altered the morphology of the RA and increased its stability, consequently, increasing the critical pressure for martensitic transformation. This study has critically addressed the elastoplastic behaviour of retained austenite – and provides a deep understanding of the effect of small additions of Cr on the metastable austenite of high carbon steel from the macro- to nano-level. Consequently, it paves the way for new applications for high carbon low alloy steels. - Highlights: • Effect of small addition of Cr on metastable austenite of high carbon steel from the macro- to nano-level • A multi-scale study of elastoplastic behaviour of retained austenite in high carbon steel • The mechanical stability of retained austenite during plastic deformation increased with increasing Cr content • Effect of grain boundary misorientation angle on hardness of individual retained austenite grains in high carbon steel.

  6. Simulation of radiation induced segregation and PWSCC susceptibility for austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto Koji; Yonezawa, Toshio; Iwamura, Toshihiko [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan). Takasago R and D Center; Ajiki, Kazuhide [Mitsubishi Heavy Industries Ltd., Kobe (Japan). Kobe Shipyard and Machinery Works; Urata, Sigeru [General Office of Nuclear and Fossil Power Production, Kansai Electric Power Co., Inc., Osaka (Japan)

    2000-08-01

    Recently, irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internal components materials become a subject of discussion in light water reactors (LWRs). IASCC has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC of austenitic stainless steels for core internal materials so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, in order to verify the hypothetical that the IASCC in PWRs shall be caused by the primary water stress corrosion cracking (PWSCC) as a result of radiation induced segregation (RIS) at grain boundaries, the authors simulated RIS at grain boundaries of austenitic stainless steels based on previous study and estimated RIS tendency after long time operation. And the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated austenitic stainless steels and made clear chromium-nickel-silicon compositions for PWSCC susceptibility area in austenitic alloys by slow strain rate tensile (SSRT) test. (author)

  7. Simulation of radiation induced segregation and PWSCC susceptibility for austenitic stainless steels

    International Nuclear Information System (INIS)

    Fujimoto Koji; Yonezawa, Toshio; Iwamura, Toshihiko

    2000-01-01

    Recently, irradiation assisted stress corrosion cracking (IASCC) of austenitic stainless steels for core internal components materials become a subject of discussion in light water reactors (LWRs). IASCC has not been found in Pressurized Water Reactors (PWRs). However, the authors have investigated on the possibility of IASCC of austenitic stainless steels for core internal materials so as to be able to estimate the degradation of PWR plants up to the end of their lifetime. In this study, in order to verify the hypothetical that the IASCC in PWRs shall be caused by the primary water stress corrosion cracking (PWSCC) as a result of radiation induced segregation (RIS) at grain boundaries, the authors simulated RIS at grain boundaries of austenitic stainless steels based on previous study and estimated RIS tendency after long time operation. And the authors melted the test alloys whose bulk compositions simulated the grain boundary compositions of irradiated austenitic stainless steels and made clear chromium-nickel-silicon compositions for PWSCC susceptibility area in austenitic alloys by slow strain rate tensile (SSRT) test. (author)

  8. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  9. Corrosion of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M C.M. [Instituto Nacional de Tecnologia, Rio de Janeiro (Brazil)

    1977-01-01

    Types of corrosion observed in a heat exchanger pipe and on a support of still of molasses fermented wort, both in austenitic stainless steel, are focused. Not only are the causes which might have had any kind of influence on them examined, but also the measures adopted in order to avoid and lessen its occurence.

  10. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    Science.gov (United States)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  11. Influence of mechanical and thermal treatments on microstructure and mechanical properties of titanium stabilized austenitic stainless steels

    International Nuclear Information System (INIS)

    Sidhom, H.

    1983-12-01

    Thermal and mechanical treatments for microstructure optimization in titanium stabilized austenitic stainless steels used in nuclear industry are examined. The steels studied Z10CNDT15-15B and Z6CNDT17-13 are of the type 15-15 Ti and 316 Ti. These treatments allow the elimination of casting heterogeneity produced by dendritic solidification, improve mechanical properties particularly creep and the best compromise between grain size solid solution of metal additions is obtained. Secondary precipitation of (TiMo)C on dislocations is improved by a previous strain hardening. The precipitation reinforce the good effect of strain hardening by stabilization of the microstructure producing a better resistance to recrystallization [fr

  12. Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360-500 C

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Koji [Institute of Nuclear Safety Systems, Inc., Mihama (Japan); Iijima, Yoshiaki [Tohoku Univ., Sendai (Japan). Dept. of Materials Science; Miyamoto, Tomoki [Kobe Material Testing Laboratory Co. Ltd., Harima (Japan)

    2017-10-15

    The diffusion coefficient of nickel in cold-worked Type 316 austenitic steel was determined by the diffusion couple method in the temperature range between 360 and 500 C. A diffusion couple was prepared by electroless nickel plating on the surface of a 20 % cold-worked Type 316 austenitic steel specimen. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time until 14 055 h. The diffusion coefficient of nickel (D{sub Ni}) in cold-worked Type 316 austenitic steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 11 at.% of nickel. The value of D{sub Ni} at 360 C was about 5 000 times higher than the lattice diffusion coefficient of nickel in Type 316 austenitic steel. The determined activation energy 117 kJ mol{sup -1} was 46.6 % of the activation energy 251 kJ mol{sup -1} for the lattice diffusion of nickel in Type 316 austenitic steel.

  13. Modification of the Strength Anisotropy in an Austenitic ODS Steel

    International Nuclear Information System (INIS)

    Kim, T. K.; Jang, J.; Kim, S. H.; Lee, C. B.; Bae, C. S.; Kim, D. H.

    2007-01-01

    Among many candidate alloys for Gen IV reactors, the oxide dispersion strengthened (ODS) alloy is widely considered as a good candidate material for the in-reactor component, like cladding tube. The ODS alloy is well known due to its good high temperature strength, and excellent irradiation resistance. For the previous two decades in the nuclear community, the ODS alloy developments have been mostly focused on the ferritic martensitic (F-M) steel-based ones. On the other hand, the austenitic stainless steels (e.g. 316L or 316LN) have been used as a structural material due to its good high temperature strength and a good compatibility with a media. However, the austenitic stainless steel showed unfavorable characteristics in the dimensional stability under neutron irradiation and cracking behavior with the media. It is thus expected that the austenitic ODS steels restrain the dimension stability under neutron irradiation. However, the ODS alloys usually reveal the anisotropic characteristic in mechanical strength in the hoop and longitudinal directions, which is attributed to the grain morphology strongly developed parallel to the rolling direction with a high aspect ratio. This study focuses on a modification of the strength anisotropy of an austenitic ODS alloy by a recrystallization heat treatment

  14. Influence of Thermal Aging on Primary Water Stress Corrosion Cracking of Cast Duplex Stainless Steels

    International Nuclear Information System (INIS)

    Yamada, T.; Totsuka, N.; Nakajima, N.; Arioka, K.; Negishi, K.

    2002-01-01

    In order to evaluate the SCC (stress corrosion cracking) susceptibility of cast duplex stainless steels which are used for the main coolant piping material of pressurized water reactors (PWRs), the slow strain rate test (SSRT) and the constant load test (CLT) were performed in simulated PWR primary water at 360 C. The main coolant piping materials contain ferrite phase with ranging from 8 to 23 % and its mechanical properties are affected by long time thermal aging. The 23% ferrite material was prepared for test as the maximum ferrite content of main coolant pipes in Japanese PWRs. The brittle fracture in the non-aged materials after SSRT is mainly caused by quasi-cleavage fracture in austenitic phase. On the other hand, a mixture of quasi-cleavage fracture in austenite and ferrite phases was observed on long time aged material. Also on CLT, (2 times σ y ), after 3,000 hours exposure, microcracks were observed on the surface of non-aged and aged for 10,000 hours at 400 C materials. The crack initiation site of CLT is similar to that of SSRT. The SCC susceptibility of the materials increases with aging time. It is suggested that the ferrite hardening with aging affect SCC susceptibility of cast duplex stainless steels. (authors)

  15. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    Science.gov (United States)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  16. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  17. Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing

    Directory of Open Access Journals (Sweden)

    Szajnara J.

    2013-12-01

    Full Text Available In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.

  18. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  19. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    Science.gov (United States)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  20. Influence of cooling rate on the structure and mechanical properties of G17CrMoV5 – 10 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2009-07-01

    Full Text Available The paper presents results of research on the influence of cooling rate on the structure and properties of G17CrMoV5 – 10 (L17HMF cast steel. The material for research was a section taken out from an outer cylinder of a steam turbine body after about 250 000 hours of operation at the temperature of 535°C and pressure 9 MPa. The investigated cast steel was subjected to heat treatment which consisted in cooling at the rates corresponding to the processes, such as: bainitic hardening, normalizing and full annealing. Tempering after the process of cooling from austenitizing temperature was carried out at the temperatures of: 700, 720 and 740°C. Performed research has proved that structures obtained after bainitic hardening and normalizing are characterized by a large strength margin which allows to apply high temperatures of tempering. It has been shown that the cast steel of bainitic structure, with similar mechanical properties as the cast steel of bainitic – ferritic structure, is characterized by almost twice as high impact energy. Full annealing and tempering of the examined cast steel ensures only the required impact strength, with mechanical properties comparable to those after service.

  1. Numerical and experimental study of long term creep damage in austenitic stainless steels

    International Nuclear Information System (INIS)

    Cui, Yiting

    2015-01-01

    The creep fracture of 316L(N) austenitic stainless steels has been studied both experimentally and theoretically for temperatures from 525 C up to 700 C and lifetimes up to nineteen years. For short term creep, failure is due to necking. Experimental lifetimes are bounded by the lower and upper bound predictions provided by a necking model and taking into account scatter in input parameters. This model leads to fair predictions of lifetimes up to a few thousand hours at very high temperature. Based on FEG-SEM observations, the transition observed in the failure curves is due to intergranular cavitation. The Riedel modeling of cavity growth by vacancy diffusion along grain boundaries coupled with continuous nucleation is carried out. Lifetimes are predicted fairly well using this model for long term creep failure whatever the considered austenitic stainless steel (316L(N), 304H, 316H, 321H) and the applied temperature (525 C - 700 C). Taking into account low and high stress regimes of Norton-power law, the Riedel model allows us to predict the creep lifetimes up to 25 years which differ from experimental data by less than a factor 3. The effect of the heterogeneity of the microstructure on grain boundary stress concentrations and cavity nucleation is simulated by the finite element method (Cast3M software). It aims to determine the distribution of grain boundary normal stress fields around precipitates depending on time and temperature. The features of the precipitates and the creep behavior of the austenitic matrix are both taking into account. (author) [fr

  2. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  3. Low-temperature nitriding of austenitic steel in a vibrofluidized bed

    Science.gov (United States)

    Baraz, V. R.; Grachev, S. V.

    1999-11-01

    The prospects for use of a vibrofluidized bed (VFB) for low-temperature nitrogen saturation of high-strength austenitic steel based on Cr-Ni-Mn (12Kh17N8G2S2MF) are considered. The positive effect of preliminary plastic deformation on the intensity of nitriding is described. The temperature and time parameters of nitriding in a VFB for strain-aging austenitic steel 12Kh17N8G2S2MF are shown to be adequate for the regimes of the final heat-treatment operation of aging. This creates the possibility of combining the operations of surface alloying and strain aging into a single cycle. This combined treatment increases substantially the resistance of the steel to cyclic loads while preserving the strength parameters. It is shown that the presented method of low-temperature nitriding in a VFB is expedient for improving the service characteristics of austenitic steel 12Kh17N8G2S2MF used for production of force springs of automobile brake systems.

  4. Optimizing the Gating System for Steel Castings

    Directory of Open Access Journals (Sweden)

    Jan Jezierski

    2018-04-01

    Full Text Available The article presents the attempt to optimize a gating system to produce cast steel castings. It is based on John Campbell’s theory and presents the original results of computer modelling of typical and optimized gating systems for cast steel castings. The current state-of-the-art in cast steel casting foundry was compared with several proposals of optimization. The aim was to find a compromise between the best, theoretically proven gating system version, and a version that would be affordable in industrial conditions. The results show that it is possible to achieve a uniform and slow pouring process even for heavy castings to preserve their internal quality.

  5. STRUCTURAL STABILITY OF HIGH NITROGEN AUSTENITIC STAINLESS STEELS

    Directory of Open Access Journals (Sweden)

    Jana Bakajová

    2011-05-01

    Full Text Available This paper deals with the structural stability of an austenitic stainless steel with high nitrogen content. The investigated steel was heat treated at 800°C using different annealing times. Investigation was carried out using light microscopy, transmission electron microscopy and thermodynamic calculations. Three phases were identified by electron diffraction: Cr2N, sigma – phase and M23C6. The thermodynamic prediction is in good agreement with the experimental result. The only is the M23C6 carbide phase which is not thermodynamically predicted. Cr2N is the majority secondary phase and occurs in the form of discrete particles or cells (lamellas of Cr2N and austenite.

  6. Effect of cast steel production metallurgy on the emergence of casting defects

    Directory of Open Access Journals (Sweden)

    L. Čamek

    2016-10-01

    Full Text Available The paper documents metallurgical possibilities of high alloy cast steel production in open induction medium frequency furnaces and an electric arc furnace in a gravity die casting foundry. The observation was focused on the emergence of gas defects in steel castings. The content of gases achieved during the metallurgical processes was evaluated for every unit of the production equipment and the casting ladle before casting into disposable sand moulds. The sand mould area was considered to be constant. The aim was to evaluate the current metallurgical possibilities of affecting the content of gases in high alloy cast steel in the current technical conditions of the foundry.

  7. Diffraction study of the retained austenite content in TRIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Gnaeupel-Herold, T., E-mail: tg-h@nist.gov [NIST Center for Neuron Research, 100 Bureau Dr., Gaithersburg MD 20899-6102 (United States); University of Maryland, Department of Material Science and Engineering., College Park MD 20742-2142 (United States); Creuziger, A., E-mail: adam.creuziger@nist.gov [NIST Metallurgy Division, 100 Bureau Dr., Gaithersburg MD 20899-8553 (United States); Kent State University, Kent, OH 44242 (United States)

    2011-04-25

    Research highlights: {yields} Novel orientation averaging scheme for retained austenite content measurement. {yields} assumption of random grain orientation generally not justified. {yields} Averaging scheme allows to disregard texture. {yields} unlike Rietveld method, averaging method does not orientation density function. {yields} Two independent (hkl) are necessary for retained austenite content. - Abstract: The results of a study of using neutron diffraction for determining the retained austenite content of TRIP steels are presented. The study covers a wide area of materials, deformation modes (uniaxial, biaxial and plane strain), strains, and the retained austenite content as a result of these variables. It was determined using basic principles of statistics that a minimum of two reflections (hkl) for each phase is necessary to calculate a phase mass fraction and the associated standard deviation. Texture from processing the steel is the largest source of uncertainty. Through the method of complete orientation averaging described in this paper, the texture effect and with it the standard deviation of the austenite mass fraction can be substantially reduced, regardless of the type or severity of the texture.

  8. Nondestructive testing of austenitic casting and dissimilar metal welds

    International Nuclear Information System (INIS)

    Lahdenperae, K.

    1995-01-01

    The publication is a literature study of nondestructive testing of dissimilar metal welds and cast austenitic components in PWR and BWR plants. A major key to the successful testing is a realistic mockup made of the materials to be tested. The inspectors must also be trained and validated using suitable mockups. (42 refs., 27 figs., 10 tabs.)

  9. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  10. Image based EFIT simulation for nondestructive ultrasonic testing of austenitic steel

    International Nuclear Information System (INIS)

    Nakahata, Kazuyuki; Hirose, Sohichi; Schubert, Frank; Koehler, Bernd

    2009-01-01

    The ultrasonic testing (UT) of an austenitic steel with welds is difficult due to the acoustic anisotropy and local heterogeneity. The ultrasonic wave in the austenitic steel is skewed along crystallographic directions and scattered by weld boundaries. For reliable UT, a straightforward simulation tool to predict the wave propagation is desired. Here a combined method of elastodynamic finite integration technique (EFIT) and digital image processing is developed as a wave simulation tool for UT. The EFIT is a grid-based explicit numerical method and easily treats different boundary conditions which are essential to model wave propagation in heterogeneous materials. In this study, the EFIT formulation in anisotropic and heterogeneous materials is briefly described and an example of a two dimensional simulation of a phased array UT in an austenitic steel bar is demonstrated. In our simulation, a picture of the surface of the steel bar with a V-groove weld is scanned and fed into the image based EFIT modeling. (author)

  11. A Review on the Potential Use of Austenitic Stainless Steels in Nuclear Fusion Reactors

    Science.gov (United States)

    Şahin, Sümer; Übeyli, Mustafa

    2008-12-01

    Various engineering materials; austenitic stainless steels, ferritic/martensitic steels, vanadium alloys, refractory metals and composites have been suggested as candidate structural materials for nuclear fusion reactors. Among these structural materials, austenitic steels have an advantage of extensive technological database and lower cost compared to other non-ferrous candidates. Furthermore, they have also advantages of very good mechanical properties and fission operation experience. Moreover, modified austenitic stainless (Ni and Mo free) have relatively low residual radioactivity. Nevertheless, they can't withstand high neutron wall load which is required to get high power density in fusion reactors. On the other hand, a protective flowing liquid wall between plasma and solid first wall in these reactors can eliminate this restriction. This study presents an overview of austenitic stainless steels considered to be used in fusion reactors.

  12. Diagnostic experimental results on the hydrogen embrittlement of austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V.G.; Shivanyuk, V.N.; Foct, J

    2003-03-14

    Three main available hypotheses of hydrogen embrittlement are analysed in relation to austenitic steels based on the studies of the hydrogen effect on the interatomic bonds, phase transformations and microplastic behaviour. It is shown that hydrogen increases the concentration of free electrons, i.e. enhances the metallic character of atomic interactions, although such a decrease in the interatomic bonding cannot be a reason for brittleness and rather assists an increased plasticity. The hypothesis of the critical role of the hydrogen-induced {epsilon} martensite was tested in the experiment with the hydrogen-charged Si-containing austenitic steel. Both the fraction of the {epsilon} martensite and resistance to hydrogen embrittlement were increased due to Si alloying, which is at variance with the pseudo-hydride hypothesis. The hydrogen-caused early start of the microplastic deformation and an increased mobility of dislocations, which are usually not observed in the common mechanical tests, are revealed by the measurements of the strain-dependent internal friction, which is consistent with the hypothesis of the hydrogen-enhanced localised plasticity. An influence of alloying elements on the enthalpy E{sub H} of hydrogen migration in austenitic steels is studied using the temperature-dependent internal friction and a correlation is found between the values of E{sub H} and hydrogen-caused decrease in plasticity. A mechanism for the transition from the hydrogen-caused microplasticity to the apparent macrobrittle fracture is proposed based on the similarity of the fracture of hydrogenated austenitic steels to that of high nitrogen steels.

  13. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  14. Effect of austenitization conditions on kinetics of isothermal transformation of austenite of structural steels

    International Nuclear Information System (INIS)

    Konopleva, E.V.; Bayazitov, V.M.; Abramov, O.V.; Kozlova, A.G.

    1987-01-01

    Effect of austenization of kinetics of pearlite and bainite transformations for steels with different carbon content differing by alloying character and degree has been investigated. Austenization temperature increase is shown to leads to retardation of ferrite-pearlite transformation in low- and medium-carbon alloyed steels. Step-like holding in the region of austenite stable state (850, 950 deg) after high-temperature heating (1100 deg C) increases the rate of transformation partially recovering its kinetics and decomposition velocity after low-temperature heating in steels alloyed advantageously with carbide-forming elements (08Kh2G2F, 30Kh3) and does not affect kinetics in the 35Kh, 30KhGSN2A, 45N5 steels. Increase of heating temperature and growth of an austenite grain cause considerable acceleration of bainite transformation, increase of the temperaure of bainite transformation beginning and increase of the transformation amplitude in the 08Kh2G2F, 30Kh3 steels and affect weakly kinetics in steels with mixed alloying (30KhGSN2A) or low-alloy one (35Kh). The bainite transformation rate in the 45N5 steelite does not depend on austenization. The effect of additional acceleration of bainite transformation as a result holding after high-temperature heating in those steels, where activation of transformation occurs with increase of heating temperature

  15. Ultrahigh strength martensite–austenite dual-phase steels with ultrafine structure: The response to indentation experiments

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Venkatsurya, P.; Wu, K.M.; Karjalainen, L.P.

    2013-01-01

    In medium to high carbon steels, characterized by martensite–austenite microstructure processed by quenching and partitioning process, martensite potentially provides high strength, while austenite provides work hardening [Fu, Wu, and Misra, DOI: 10.1179/1743284712/068]. Given the significant interest in these steels in the steel community, the paper reports for the first time the nanoscale deformation experiments and accompanying microstructural evolution to obtain micromechanical insights into the deformation behavior of ultrahigh strength-high ductility dual-phase steels with significant retained austenite fraction of ∼0.35. During deformation experiments with nanoindenter, dislocations were distributed on several slip systems, whereas strain-induced twinned martensite and twinning were the deformation mechanisms in carbon-enriched and thermally stabilized retained austenite. Furthermore, ultrafine dual-phase steels exhibited high strain rate sensitivity.

  16. Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: The response to indentation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Venkatsurya, P. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States); Wu, K.M. [International Research Institute for Steel Technolgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Karjalainen, L.P. [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, 90014 Oulu (Finland)

    2013-01-10

    In medium to high carbon steels, characterized by martensite-austenite microstructure processed by quenching and partitioning process, martensite potentially provides high strength, while austenite provides work hardening [Fu, Wu, and Misra, DOI: 10.1179/1743284712/068]. Given the significant interest in these steels in the steel community, the paper reports for the first time the nanoscale deformation experiments and accompanying microstructural evolution to obtain micromechanical insights into the deformation behavior of ultrahigh strength-high ductility dual-phase steels with significant retained austenite fraction of {approx}0.35. During deformation experiments with nanoindenter, dislocations were distributed on several slip systems, whereas strain-induced twinned martensite and twinning were the deformation mechanisms in carbon-enriched and thermally stabilized retained austenite. Furthermore, ultrafine dual-phase steels exhibited high strain rate sensitivity.

  17. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  18. The influence of temperature on the tribological properties of the metastable austenite in Hadfield cast steel hardened by explosion

    International Nuclear Information System (INIS)

    Stradomski, Z.

    1999-01-01

    The paper presents the tribological tests of Hadfield cast steel subjected to the explosion pre-strengthening and then to aging at temperatures of 150 o C or 410 o C. The examined material has been in the form of cast steel plates 30 mm thick, pre-strengthened with flat charges of the Hardex-70 explosive of the detonation rate of 7200 m/s. The strengthening has been done by the single, double or tipple detonation of the 3 mm thick charges of the explosive placed directly on the cast steel surfaces. The hardness change exhibits 72-78% increase of its value as compared with the supersaturated state. The assessment of the abrasive wear resistance has been performed by means of the T-05 device operating in the 'roller-block'system under the load of 50 N. The test results confirm the very high effectiveness of the strengthening operation, the values of the investigated properties being 7-15 times higher as compared with the initial (supersaturated) state, depending on the multiplicity of the explosion repeating. Because of the dislocational character of the strengthening mechanism, the aging process performed at 150 o C for 794 hours, and at 410 o C for 286 hours, results in rapid decreasing of the tribological properties of the cast steel, their values being now by 4 and 12 times lower, respectively, than for the explosion-strengthened state of the material. (author)

  19. Neutron depolarisation study of the austenite grain size in TRIP steels

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Zhao, L.; Rekveldt, M.Th.; Fredrikze, H.; Tegus, O.; Brueck, E.; Sietsma, J.; Zwaag, S. van der

    2004-01-01

    We have performed combined neutron depolarisation and magnetisation measurements in order to obtain an in situ determination of the average grain size and volume fraction of the retained austenite phase in TRIP steels. The average grain size of the retained austenite was found to decrease for an increase in austenite volume fraction at two different annealing temperatures

  20. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    Science.gov (United States)

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  1. Environmental Degradation of Dissimilar Austenitic 316L and Duplex 2205 Stainless Steels Welded Joints

    Directory of Open Access Journals (Sweden)

    Topolska S.

    2017-12-01

    Full Text Available The paper describes structure and properties of dissimilar stainless steels welded joints between duplex 2205 and austenitic 316L steels. Investigations were focused on environmentally assisted cracking of welded joints. The susceptibility to stress corrosion cracking (SCC and hydrogen embrittlement was determined in slow strain rate tests (SSRT with the strain rate of 2.2 × 10−6 s−1. Chloride-inducted SCC was determined in the 35% boiling water solution of MgCl2 environment at 125°C. Hydrogen assisted SCC tests were performed in synthetic sea water under cathodic polarization condition. It was shown that place of the lowest resistance to chloride stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of HAZ comprising of large fractions of ferrite grains with acicular austenite phase. Hydrogen assisted SCC tests showed significant reduction in ductility of duplex 2205 steel while austenitic 316L steel remains almost immune to degradation processes. SSR tests of dissimilar welded joints revealed a fracture in the area of austenitic steel.

  2. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    International Nuclear Information System (INIS)

    Schwarm, Samuel C.; Mburu, Sarah; Ankem, Sreeramamurthy

    2016-01-01

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in the γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).

  3. An alternative to the crystallographic reconstruction of austenite in steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Bracke, Lieven; Malet, Loïc; Godet, Stéphane

    2014-01-01

    An alternative crystallographic austenite reconstruction programme written in Matlab is developed by combining the best features of the existing models: the orientation relationship refinement, the local pixel-by-pixel analysis and the nuclei identification and spreading strategy. This programme can be directly applied to experimental electron backscatter diffraction mappings. Its applicability is demonstrated on both quenching and partitioning and as-quenched lath-martensite steels. - Highlights: • An alternative crystallographic austenite reconstruction program is developed. • The method combines a local analysis and a nuclei identification/spreading strategy. • The validity of the calculated orientation relationship is verified on a Q and P steel. • The accuracy of the reconstructed microtexture is investigated on a martensite steel

  4. Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Wang Songtao; Yang Ke; Shan Yiyin; Li Laifeng

    2008-01-01

    The plastic deformation and fracture behaviors of two nitrogen-alloyed austenitic stainless steels, 316LN and a high nitrogen steel (Fe-Cr-Mn-0.66% N), were investigated by tensile test and Charpy impact test in a temperature range from 77 to 293 K. The Fe-Cr-Mn-N steel showed ductile-to-brittle transition (DBT) behavior, but not for the 316LN steel. X-ray diffraction (XRD) confirmed that the strain-induced martensite occurred in the 316LN steel, but no such transformation in the Fe-Cr-Mn-N steel. Tensile tests showed that the temperature dependences of the yield strength for the two steels were almost the same. The ultimate tensile strength of the Fe-Cr-Mn-N steel displayed less significant temperature dependence than that of the 316LN steel. The strain-hardening exponent increased for the 316LN steel, but decreased for the Fe-Cr-Mn-N steel, with decreasing temperature. Based on the experimental results and the analyses, a modified scheme was proposed to explain the fracture behaviors of austenitic stainless steels

  5. On abnormal decomposition of supercooled austenite in carbon and alloy steels

    International Nuclear Information System (INIS)

    Parusov, V.V.; Dolzhenkov, I.I.; Podobedov, L.V.; Vakulenko, I.A.

    1980-01-01

    Residual stresses which appear as a result of thermal cycling in the temperature range of 300-700 deg C are investigated in an austenitic class steel (03Kh18N11) to ground the assumption on the effect of plastic deformation, appearing due to thermal stresses, on the mechanism of supercooled austenite decomposition. The determination of residual stresses is carried out with the help of X-ray diffraction analysis. It is established that the deformation brings about an increase in density of dislocation the interaction of which leads to the formation of a typical austenite substructure which conditions the proceeding of the eutectoid transformation according to an abnormal mechanism. It is noted, that the grain pearlite formation due to plastic and microplastic deformation of supercooled austenite induced by thermal stresses should be taken into account when developing steel heat treatment shedules [ru

  6. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  7. Influence of Silicon on Swelling and Microstructure in Russian Austenitic Stainless Steels Irradiated to High Neutron Doses

    International Nuclear Information System (INIS)

    Porollo, S.I.; Shulepin, S.V.; Konobeev, Y.V.; Garner, F.

    2007-01-01

    Full text of publication follows: For some applications in fusion devices austenitic stainless steels are still considered to be candidates for use as structural components, but high neutron exposures must be endured by the steels. Operational experience of fast reactors in Western Europe, USA and Japan provides evidence of the possible use of austenitic steels up to ∼ 150 dpa. Studies aimed at improvement of existing Russian austenitic steels are being carried out in Russia. For improvement of irradiation resistance of Russian steels it is necessary to understand the basic mechanisms responsible for deterioration of steel properties. This understanding can be achieved by continuing detailed investigations of the microstructure of cladding steels after irradiation to high doses. By investigating the evolution of radiation-induced microstructure in neutron irradiated steels of different chemical composition one can study the effect of chemical variations on steel properties. Silicon is one of the most important chemical elements that strongly influence the behavior of austenitic steel properties under irradiation. In this paper results are presented of investigations of the effect of silicon additions on void swelling and microstructure of base austenitic stainless steel EI-847 (0.06C-16Cr-15Ni- 3Mo-Nb) irradiated as fuel pin cladding of both regular and experimental assemblies in the BOR-60, BN-350 and BN-600 fast reactors to neutron doses up to 49 dpa. The possible mechanisms of silicon's effect on void swelling in austenitic stainless steels are presented and analyzed. (authors)

  8. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John

    2017-01-01

    The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min−1 applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated...... that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate....

  9. Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: ymiao@anl.gov [Argonne National Laboratory, Lemont, IL 60439 (United States); University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Argonne National Laboratory, Lemont, IL 60439 (United States); Zhou, Zhangjian [University of Science and Technology Beijing, Beijing 100082 (China); Liu, Xiang; Lan, Kuan-Che [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Zhang, Guangming [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); University of Science and Technology Beijing, Beijing 100082 (China); Miller, Michael K.; Powers, Kathy A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Stubbins, James F. [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395 (Japan)

    2016-11-15

    Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high-resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y{sub 2}Ti{sub 2−x}O{sub 7−2x} stoichiometry were found to have a pyrochlore structure, whereas smaller Y{sub x}Ti{sub y}O{sub z} nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODS steels. - Highlights: • The structural and chemical characteristics of nanoparticles are revealed. • Nanoparticles' crystal structure and elemental composition are size-dependent. • Characteristics of austenitic ODS steels are compared to that of an F/M ODS steel. • Hypothesis about the formation mechanism of nanoparticles is proposed accordingly.

  10. Case histories of microbiologically influenced corrosion of austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Borenstein, S.W.; Buchanan, R.A.; Dowling, N.J.E.

    1990-01-01

    Microbiologically influenced corrosion (MIC) is initiated or accelerated by microorganisms and is currently recognized as a serious problem affecting the construction and operation of many industrial facilities, including nuclear power plants. The purpose of this paper is to review how biofouling and MIC can occur and discuss current mechanistic theories. A case history of MIC attack in power plants is examined with emphasis on the role of welding and heat treatment variables using laboratory electrochemical analyses. Although MIC can occur on a variety of alloys, pitting corrosion failures of austenitic stainless steels are often associated with weldments. MIC occurs as the result of a consortium of microorganisms colonizing on the metal surface and their variety (fungi, bacteria, algae, mold, and slimes) enables them to form support systems for cross feeding to enhance survival. The metabolic processes influence corrosion behaviour of materials by destroying protective coatings, producing a localized acid environment, creating corrosive deposits, or altering anodic and cathodic reactions. On stainless steels, biofilms destroy the passive oxide film on the surface of the steels and subject them to localized forms of corrosion. Many of the MIC failures in industry result in pitting to austenitic stainless steel weldments. Pitting primarily occurs in the weld metal, heat affected zones, and adjacent to the weld in the base metal. Depending on the conditions of the concentration cell created by the biofilm, either phase of the two-phase duplex stainless steel, austenite or delta ferrite, may be selectively attacked. Theories have been proposed about the mechanism of MIC on austenitic stainless steel and and a general understanding is that some function associated with the biofilm formation directly affects the electrochemical process

  11. Depositing Nickel-based Hardfacing to Join Carbon Steel and Cast Iron

    Directory of Open Access Journals (Sweden)

    Tomás Fernández-Columbié

    2016-10-01

    Full Text Available The objective of this investigation is to determine the micro-structural behavior of a joint between cast iron and carbon steel by depositing a nickel-based substrate in the carbon steel. The filler was added through Shielded Metal Arc Welding using Castec 3099 (UTP 8 electrodes while the base materials were joined through Gas Tungsten Arc Welding with ER 70S – A1 bare electrodes. The Schaeffler diagram was used to analyze the chemical composition of the resulting weld beads. The results of the analysis performed on the welded area and the heat influence zone indicated the formation of acicular structures near the welded line when Castec 3099 electrodes are used and the formation of skeletal ferrite on the heat influence zone during the application of this welding process. An austenitic mixture is formed when ER 70S – A1 electrodes are used.

  12. Phase Equilibrium and Austenite Decomposition in Advanced High-Strength Medium-Mn Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2016-10-01

    Full Text Available The work addresses the phase equilibrium analysis and austenite decomposition of two Nb-microalloyed medium-Mn steels containing 3% and 5% Mn. The pseudobinary Fe-C diagrams of the steels were calculated using Thermo-Calc. Thermodynamic calculations of the volume fraction evolution of microstructural constituents vs. temperature were carried out. The study comprised the determination of the time-temperature-transformation (TTT diagrams and continuous cooling transformation (CCT diagrams of the investigated steels. The diagrams were used to determine continuous and isothermal cooling paths suitable for production of bainite-based steels. It was found that the various Mn content strongly influences the hardenability of the steels and hence the austenite decomposition during cooling. The knowledge of CCT diagrams and the analysis of experimental dilatometric curves enabled to produce bainite-austenite mixtures in the thermomechanical simulator. Light microscopy (LM, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to assess the effect of heat treatment on morphological details of produced multiphase microstructures.

  13. Tensile-property characterization of thermally aged cast stainless steels

    International Nuclear Information System (INIS)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components

  14. The effects of retained austenite on dry sliding wear behavior of carburized steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Jun [Research Inst. of Industrial Science and Technology, Steel Products Dept., Pohang (Korea, Republic of); Kweon, Young-Gak [Research Inst. of Industrial Science and Technology, Steel Products Dept., Pohang (Korea, Republic of)

    1996-04-01

    Ring-on-square tests on two kinds of low-alloy carburized steel which were AISI 8620 and 4140 were carried out to study the dry sliding wear behavior. The influence of different retained austenite level of 6% to 40% was evaluated while trying to eliminate other factors. Test results show that the effects of grain size and carburized steel species are negligible in dry sliding wear behavior. While the influence of retained austenite is negligible at 20 kg load condition, wear resistance is decreased at 40 kg load condition as the retained austenite level is increased from 6% to 30%. However, wear resistance is again increased above about 30% of retained austenite level at 40 kg load condition. (orig.)

  15. Austin: austenitic steel irradiation E 145-02 Irradiation Report

    International Nuclear Information System (INIS)

    Genet, F.; Konrad, J.

    1987-01-01

    Safety measures for nuclear reactors require that the energy which might be liberated in a reactor core during an accident should be contained within the reactor pressure vessel, even after very long irradiation periods. Hence the need to know the mechanical properties at high deformation velocity of structure materials that have received irradiation damage due to their utilization. The stainless steels used in the structures of reactors undergo damage by both thermal and fast neutrons, causing important changes in the mechanical properties of these materials. Various austenitic steels available as structural materials were irradiated or are under irradiation in various reactors in order to study the evolution of the mechanical properties at high deformation velocity as a function of the irradiation damage rate. The experiment called AUSTIN (AUstenitic STeel IrradiatioN) 02 was performed by the JRC Petten Establishment on behalf of Ispra in support of the reactor safety programme

  16. Microstructural investigations of fast reactor irradiated austenitic and ferritic-martensitic stainless steel fuel cladding

    International Nuclear Information System (INIS)

    Agueev, V.S.; Medvedeva, E.A.; Mitrofanova, N.M.; Romanueev, V.V.; Tselishev, A.V.

    1992-01-01

    Electron microscopy has been used to characterize the microstructural changes induced in advanced fast reactor fuel claddings fabricated from Cr16Ni15Mo3NbB and Cr16Ni15Mo2Mn2TiVB austenitic stainless steels in the cold worked condition and Cr13Mo2NbVB ferritic -martensitic steel following irradiation in the BOR-60, BN-350 and BN-600 fast reactors. The data are compared with the results obtained from a typical austenitic commercial cladding material, Cr16Ni15Mo3Nb, in the cold worked condition. The results reveal a beneficial effect of boron and other alloying elements in reducing void swelling in 16Cr-15Ni type austenitic steels. The high resistance of ferritic-martensitic steels to void swelling has been confirmed in the Cr13Mo2NbVB steel. (author)

  17. Damage on 316LN stainless steel transformed by powder metallurgy

    International Nuclear Information System (INIS)

    Couturier, R.; Burlet, H.

    1998-01-01

    This study deals with the 316 LN stainless steel elaboration by powder metallurgy. This method allows the realization of structures in austenitic steel less affected by the thermal aging than the cast austenitic-ferritic components. The components are performed by the method of HIP (Hot Isostatic Pressing). Mechanical tests are provided to control mechanical properties

  18. Monitoring of Fatigue Degradation in Austenitic Stainless Steels

    International Nuclear Information System (INIS)

    Kalkhof, D.; Niffenegger, M.; Leber, H.J.

    2004-01-01

    During cyclic loading of austenitic stainless steel, it was observed that microstructural changes occurred; these affect both the mechanical and physical properties of the material. For certain steels, a strain-induced martensite phase transformation was seen. The investigations showed that, for the given material and loading conditions, the volume fraction of martensite depends on the cycle number, temperature and initial material state. It was also found that the martensite content continuously increased with the cycle number. Therefore, the volume fraction of martensite was used as an indication of fatigue usage. It was noted that the temperature dependence of the martensite formation could be described by a Boltzmann function, and that the martensite content decreased with increasing temperature. Two different heats of the austenitic stainless steel X6CrNiTi18-10 (AISI 321, DIN 1.4541) were investigated. It was found that the martensite formation rate was much higher for the cold-worked than for the solution-annealed material. All applied techniques - neutron diffraction and advanced magnetic methods - were successful in detecting the presence of martensite in the differently fatigued specimens. (author)

  19. High quality steel casting for energy technics

    International Nuclear Information System (INIS)

    Schuster, F.; Koefler, G.

    1982-01-01

    The casting of several chromium-molybdenum steels for steam and hydraulic turbines is discussed. Non-destructive testing of the castings is performed demonstrating the safety for use in nuclear technology. The effect of metallurgical parameters on steel casting quality, the heat treatment, and the effect of construction design on costs for fettling and repair weldings are considered. (Auth.)

  20. Effect of Prior Austenite Grain Size on the Morphology of Nano-Bainitic Steels

    Science.gov (United States)

    Singh, Kritika; Kumar, Avanish; Singh, Aparna

    2018-04-01

    The strength in nanostructured bainitic steels primarily arises from the fine platelets of bainitic ferrite embedded in carbon-enriched austenite. However, the toughness is dictated by the shape and volume fraction of the retained austenite. Therefore, the exact determination of processing-morphology relationships is necessary to design stronger and tougher bainite. In the current study, the morphology of bainitic ferrite in Fe-0.89C-1.59Si-1.65Mn-0.37Mo-1Co-0.56Al-0.19Cr (wt pct) bainitic steel has been investigated as a function of the prior austenite grain size (AGS). Specimens were austenitized at different temperatures ranging from 900 °C to 1150 °C followed by isothermal transformation at 300 °C. Detailed microstructural characterization has been carried out using scanning electron microscopy and X-ray diffraction. The results showed that the bainitic laths transformed in coarse austenite grains are finer resulting in higher hardness, whereas smaller austenite grains lead to the formation of thicker bainitic laths with a large fraction of blocky type retained austenite resulting in lower hardness.

  1. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  2. On superplasticity of corrosion resistant ferritic-austenitic chromium-nickel steels

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, A P; Sukhanov, V E

    1988-01-01

    The deformability of corrosion resistant chromium-nickel ferritic austenitic steel type O8Kh22N6T under tension, upsetting and torsion in the 600-1200 deg C temperature range is studied. For the deformation rate of the order of 10/sup -3/ s/sup -1/ the effect of superelasticity reveals itself at 850 deg C in the process of ferrite dynamic polymerization, in the 925-950 deg C range, at initial stages of dynamic recrystallization - the dynamic polygonization controlled by chromium carbide dissolving in steel and maximum at 1050 deg C in the process of development of austenite dynamic recrystallization with grain refinement with F/A ratio equalling 1. After upsetting in the elasticity mode at 1050 deg C the impact strength of the above steel is maximum.

  3. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Azou, P.

    1988-01-01

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail [fr

  4. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  5. Studies of microstructure-property relationships in austenitic stainless steels. Final report

    International Nuclear Information System (INIS)

    Spruiell, J.E.

    1977-01-01

    A final review is presented of the research carried out to provide better understanding of elevated temperature service of austenitic stainless steels, and especially the microstructural stability of both wrought-annealed steels and welded joints

  6. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  7. Laser cladding crack repair of austenitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-06-01

    Full Text Available Laser cladding crack repair of austenitic stainless steel vessels subjected to internal water pressure was evaluated. The purpose of this investigation was to develop process parameters for in-situ repair of through-wall cracks in components...

  8. Performance Steel Castings

    Science.gov (United States)

    2012-09-30

    system components to be built. Figure la shows the machine design . PSC-2012 Page 94 Glue Application Sheet Transfer Feed Elevator Figure la...Department of Defense such as cleats, ejection chutes , control arms, muzzle brakes, mortar components, clevises, tow bar clamps, ammo conveyor elements...Foundry and the members of Steel Founders’ Society of America. Abstract Weapon system designers and builders need advanced steel casting technology

  9. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  10. austenitic steel corrosion by oxygen-containing liquid sodium

    International Nuclear Information System (INIS)

    Rivollier, Matthieu

    2017-01-01

    France is planning to construct the 4. generation of nuclear reactors. They will use liquid sodium as heat transfer fluid and will be made of 316L(N) austenitic steel as structural materials. To guarantee optimal operation on the long term, the behavior of this steel must be verified. This is why corrosion phenomena of 316L(N) steel by liquid sodium have to be well-understood. Literature points out that several corrosion phenomena are possible. Dissolved oxygen in sodium definitely influences each of the corrosion phenomenon. Therefore, the austenitic steel corrosion in oxygen-containing sodium is proposed in this study. Thermodynamics data point out that sodium chromite formation on 316L(N) steel is possible in sodium containing roughly 10 μg.g -1 of oxygen for temperature lower than 650 C (reactor operating conditions).The experimental study shows that sodium chromite is formed at 650 C in the sodium containing 200 μg.g -1 of oxygen. At the same concentration and at 550 C, sodium chromite is clearly observed only for long immersion time (≥ 5000 h). Results at 450 C are more difficult to interpret. Furthermore, the steel is depleted in chromium in all cases.The results suggest the sodium chromite is dissolved in the sodium at the same time it is formed. Modelling of sodium chromite formation - approached by chromium diffusion in steel (in grain and grain boundaries -, and dissolution - assessed by transport in liquid metal - show that simultaneous formation and dissolution of sodium chromite is a possible mechanism able to explain our results. (author) [fr

  11. Standard practice for X-Ray determination of retained austenite in steel with near random crystallographic orientation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This practice covers the determination of retained austenite phase in steel using integrated intensities (area under peak above background) of X-ray diffraction peaks using chromium Kα or molybdenum Kα X-radiation. 1.2 The method applies to carbon and alloy steels with near random crystallographic orientations of both ferrite and austenite phases. 1.3 This practice is valid for retained austenite contents from 1 % by volume and above. 1.4 If possible, X-ray diffraction peak interference from other crystalline phases such as carbides should be eliminated from the ferrite and austenite peak intensities. 1.5 Substantial alloy contents in steel cause some change in peak intensities which have not been considered in this method. Application of this method to steels with total alloy contents exceeding 15 weight % should be done with care. If necessary, the users can calculate the theoretical correction factors to account for changes in volume of the unit cells for austenite and ferrite resulting from vari...

  12. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  13. Effects of austenitizing temperature in quenched niobium steels

    International Nuclear Information System (INIS)

    Mello, F.B.C. de; Assuncao, F.C.R.

    1980-01-01

    Three steel compositions with varying Nb content were austenitized at different temperatures and quenched in cold water. Metallographic examination and hardness measurements provided a basis for explaining the hardening mechanism and the role of Nb on the process. (Author) [pt

  14. Ageing and life prediction of cast duplex stainless steel components

    International Nuclear Information System (INIS)

    Chung, H.M.

    1992-01-01

    Cast duplex stainless steels, used extensively in nuclear, chemical and petroleum industries because of higher strength, better weldability, higher resistance to stress corrosion cracking, and soundness of casting, are susceptible to thermal aging embrittlement during service at temperatures as low as ∼250 o C. Recent advances in understanding the aging mechanisms, kinetics, and mechanical properties are presented, with emphasis on application of the material in safety-significant components in a nuclear reactor. Aging embrittlement is primarily due to spinodal decomposition of ferrite involving segregation of Fe, Cr, and Ni, and precipitation of M 23 C 6 on ferrite-austenite boundaries or in ferrite. Aging kinetics are strongly influenced by synergistic effects of other metallurgical reactions that occur in parallel with the spinodal decomposition, i.e. clustering of Ni, Mo, and Si and G-phase precipitation in ferrite. A number of methods are outlined for estimating end-of-life aging, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. (Author)

  15. Solidification control in continuous casting of steel

    Indian Academy of Sciences (India)

    Unknown

    Solidification in continuous casting (CC) technology is initiated in a water- ..... to fully austenitic solidification, and FP between 0 and 1 indicates mixed mode. ... the temperature interval (LIT – TSA) corresponding to fs = 0⋅9 → 1, is in reality the.

  16. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Masumura, Takuro; Nakada, Nobuo; Tsuchiyama, Toshihiro; Takaki, Setsuo; Koyano, Tamotsu; Adachi, Kazuhiko

    2015-01-01

    In order to evaluate the effects of carbon and nitrogen addition on the stability of austenite, athermal and deformation-induced α′-martensitic transformation behaviors were investigated using type 304-metastable austenitic stainless steels containing 0.1 mass% carbon or nitrogen. The difference in the development of the deformation microstructure in particular is discussed in terms of the stacking-fault energy (SFE). Since carbon-added steel has a lower SFE than that of nitrogen-added steel, deformation twins and ε-martensite were preferentially formed in the carbon-added steel, whereas a dislocation cell structure developed in the nitrogen-added steel. Crystallographic analysis using the electron backscatter diffraction method revealed that the difference in the deformation microstructure has a significant influence on the growth behavior of deformation-induced α′-martensite, that is, the interface of the deformation twins and ε-martensite suppresses the growth of α′-martensite, whereas dislocation cell boundaries are not effective. As a result, the mechanical stability of carbon-added steel is slightly higher than that of nitrogen-added steel, although the thermal stabilization effect of carbon is much lower than that of nitrogen

  17. Influence of delta ferrite on corrosion susceptibility of AISI 304 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Lawrence O. Osoba

    2016-12-01

    Full Text Available In the current study, the influence of delta (δ ferrite on the corrosion susceptibility of AISI 304 austenitic stainless steel was evaluated in 1Molar concentration of sulphuric acid (H2SO4 and 1Molar concentration of sodium chloride (NaCl. The study was performed at ambient temperature using electrochemical technique—Tafel plots to evaluate the corrosive tendencies of the austenitic stainless steel sample. The as-received (stainless steel specimen and 60% cold-worked (stainless steel specimens were isothermally annealed at 1,100°C for 2 h and 1 h, respectively, and quenched in water. The results obtained show that the heat-treated specimen and the 60% cold-worked plus heat-treated specimen exhibited higher corrosion susceptibility than the as-received specimen, which invariably contained the highest fraction of δ ferrite particles. The finding shows that the presence of δ ferrite, in which chromium (Cr, the main corrosion inhibitor segregates, does not degrade and or reduces the resistance to aqueous corrosion of the austenitic stainless steel material.

  18. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints

    International Nuclear Information System (INIS)

    Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V.

    2011-01-01

    Research highlights: → Fusion welding of dissimilar metals is a problem due to difference in properties. → Solid state welding process such as friction welding is a solution for the above problem. → Fatigue life of friction welded carbon steel and stainless steel joints are evaluated. → Effect of notch on the fatigue life of friction welded dissimilar joints is reported. → Formation of intermetallic is responsible for reduction in fatigue life of dissimilar joints. -- Abstract: This paper reports the fatigue behaviour of friction welded medium carbon steel-austenitic stainless steel (MCS-ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = -1). Applied stress vs. number of cycles to failure (S-N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.

  19. Numerical simulation of hydrogen-assisted crack initiation in austenitic-ferritic duplex steels

    International Nuclear Information System (INIS)

    Mente, Tobias

    2015-01-01

    Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern X-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen diffusion strongly depends on the alignment of austenite and δ-ferrite in the duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is

  20. On qualification of TOFD technique for austenitic stainless steel welds inspection

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ona, R. [Tecnatom, San Sebastian de los Reyes (Spain); Viggianiello, S.; Bleuze, A. [Metalscan, Saint-Remy (France)

    2006-07-01

    Time of Flight Diffraction (TOFD) technique is gaining ground as a solid method for detection and sizing of defects. It has been reported that TOFD technique provides good results on the inspection of fine grain steels. However, there are few results regarding the application and performance of this technique on austenitic stainless steels. A big challenge of these inspections is the coarse grain structure that produces low signal to noise ratio and may mask the diffraction signals. Appropriate transducer design, selection of technique parameters and analysis tools could overcome the actual difficulties. In this paper, the main design aspects and parameters of the TOFD technique for austenitic steels are presented. It follows the description of qualification tests carried out to validate the technique for inspecting stainless steels welds. To conclude, discussion of results from actual inspections is shown. (orig.)

  1. Expanded austenite in nitrided layers deposited on austenitic and super austenitic stainless steel grades; Analise da austenita expandida em camadas nitretadas em acos inoxidaveis austeniticos e superaustenitico

    Energy Technology Data Exchange (ETDEWEB)

    Casteletti, L.C.; Fernandes, F.A.P.; Heck, S.C. [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica; Oliveira, A.M. [Instituto de Educacao, Ciencia e Tecnologia do Maranhao (IFMA), Sao Luis, MA (Brazil); Gallego, J., E-mail: gallego@dem.feis.unesp.b [UNESP, Ilha Solteira, SP (Brazil). Dept. Engenharia Mecanica

    2010-07-01

    In this work nitrided layers deposited on austenitic and super austenitic stainless steels were analyzed through optical microscopy and X-rays diffraction analysis (XRD). It was observed that the formation of N supersaturated phase, called expanded austenite, has promoted significant increment of hardness (> 1000HV). XRD results have indicated the anomalous displacement of the diffracted peaks, in comparison with the normal austenite. This behavior, combined with peaks broadening, it was analyzed in different nitriding temperatures which results showed good agreement with the literature. (author)

  2. Precipitation of Second Phases in High-Interstitial-Alloyed Austenitic Steel

    Science.gov (United States)

    Lee, Tae-Ho; Ha, Heon-Young; Kim, Sung-Joon

    2011-12-01

    The precipitation reaction of an austenitic stainless steel containing N + C was investigated using transmission electron microscopy. The main precipitate formed during isothermal aging at 1123 K (850 °C) was M23C6 carbide, and its morphology gradually changed in a sequence of intergranular (along grain boundary) → cellular (or discontinuous) → intragranular (within grain interior) form with aging time. Irrespective of different morphologies, the M23C6 was consistently related to austenite matrix in accordance with the cube-on-cube orientation relationship. Based on the analysis of electron diffraction, two variants of intragranular M23C6 were identified, and they were related to each other by twin relation. Prolonged aging produced other types of precipitates—the rod-shaped Cr2N and the coarse irregular intermetallic sigma phase. The similarities and differences in precipitation behavior between N only and N + C alloyed austenitic stainless steels are briefly discussed.

  3. Hot working effect on austenite transformations in structural steel in continuous cooling

    International Nuclear Information System (INIS)

    Zajmovskij, V.A.; Kisteh, N.V.; Samedov, O.V.

    1979-01-01

    Austenite transformations in 40, 40Kh, 40KhN and 40KhNMA steels under hot working at 900 deg C with 20% reduction degree and continuous cooling with 1,7-16 0 /s are investigated. Changing of cooling rate in various ways affects the temperature range of austenite transformation in pearlite and bainite regions. Regulating the cooling rate after hot working one can essentially change the impact strength and steel ductility as a result of high temperature thermomechanical treatment effect

  4. Sandblasting induced stress release and enhanced adhesion strength of diamond films deposited on austenite stainless steel

    Science.gov (United States)

    Li, Xiao; Ye, Jiansong; Zhang, Hangcheng; Feng, Tao; Chen, Jianqing; Hu, Xiaojun

    2017-08-01

    We firstly used sandblasting to treat austenite stainless steel and then deposited a Cr/CrN interlayer by close field unbalanced magnetron sputtering on it. After that, diamond films were prepared on the interlayer. It is found that the sandblasting process induces phase transition from austenite to martensite in the surface region of the stainless steel, which decreases thermal stress in diamond films due to lower thermal expansion coefficient of martensite phase compared with that of austenite phase. The sandblasting also makes stainless steel's surface rough and the Cr/CrN interlayer film inherits the rough surface. This decreases the carburization extent of the interlayer, increases nucleation density and modifies the stress distribution. Due to lower residual stress and small extent of the interlayer's carburization, the diamond film on sandblast treated austenite stainless steel shows enhanced adhesion strength.

  5. Niobium effects on the austenitic grain growth and hardenability of steels for mechanical construction

    International Nuclear Information System (INIS)

    Vieira, R.R.; Arruda Camargo, L.M. de; Oliveira Junior, G.G. de; Dias Filho, A.G.C.

    1983-01-01

    The austenitic grain growth and hardenability of SAE 86XX and 5120 steels modified with 0,001 to 0,20 per-cent niobium content were studied when submitted to case hardening and quenching heat treatments. The results show that niobium controlS the austenite grain size better than molybdenum up to 950 0 C austenitization temperature. The hardenability, evaluated by the Jominy test which the modified SAE 8640 steels, is more strongly inflencied by the grain refining resulting from niobium addition than by any other supposed effect. (Author) [pt

  6. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing

    Science.gov (United States)

    Cheng, Wei-Chun

    2014-09-01

    Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.

  7. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    Science.gov (United States)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  8. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  9. Physical metallurgy of BATMAN II Ti-bearing martensitic steels

    International Nuclear Information System (INIS)

    Pilloni, L.; Attura, F.; Calza-Bini, A.; Santis, G. de; Filacchioni, G.

    1998-01-01

    Seven laboratory experimental casts of 7-9% Cr Ti-bearing martensitic steels were obtained via VIM process. Plates of 25 mm thickness were produced by hot rolling. On each cast CCT diagrams and critical temperatures were determined. Several austenitizing treatments were performed to study the grain size evolution. The effect of microstructure on impact properties were finally investigated. This paper discusses the role of chemical composition on microstructural and physical properties and shows the beneficial effect either of low-temperature austenitizing or double-austenitizing steps on impact properties. (orig.)

  10. Morphology and Precipitation Kinetics of MnS in Low-Carbon Steel During Thin Slab Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    YU Hao; KANG Yong-lin; ZHAO Zheng-zhi; SUN Hao

    2006-01-01

    The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.

  11. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures

    Science.gov (United States)

    Han, Wentuo; Liu, Yuchen; Wan, Farong; Liu, Pingping; Yi, Xiaoou; Zhan, Qian; Morrall, Daniel; Ohnuki, Somei

    2018-06-01

    The nonmagnetic austenite steels are the jacket materials for low-temperature superconductors of fusion reactors. The present work provides evidences that austenites transform to magnetic martensite when deformation with a high-strain is imposed at 77 K and 4.2 K. The 4.2 K test is characterized by serrated yielding that is related to the specific motion of dislocations and phase transformations. The in-situ transmission electron microscope (TEM) observations in nanoscale reveal that austenites achieve deformation by twinning under low-strain conditions at deep cryogenic temperatures. The generations of twins, martensitic transformations, and serrated yielding are in order of increasing difficulty.

  12. Austenitic stainless steel-to-ferritic steel transition joint welding for elevated temperature service

    International Nuclear Information System (INIS)

    King, J.F.; Goodwin, G.M.; Slaughter, G.M.

    1978-01-01

    Transition weld joints between ferritic steels and austenitic stainless steels are required for fossil-fired power plants and proposed nuclear plants. The experience with these dissimilar-metal transition joints has been generally satisfactory, but an increasing number of failures of these joints is occurring prematurely in service. These concerns with transition joint service history prompted a program to develop more reliable joints for application in proposed nuclear power plants

  13. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef.hamada@suezuniv.edu.eg [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Box 43721, Suez (Egypt); Kisko, A.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Sahu, P. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Karjalainen, L.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland)

    2015-03-25

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing.

  14. Requirements on cast steel for the primary coolant circuit of water cooled reactors

    International Nuclear Information System (INIS)

    The most important requirements placed on the structural components of water cooled nuclear reactors include corrosion resistance and mechanical materials properties. Intercrystalline corrosion resistance was tested using the Strauss Test in compliance with the DIN 50914 Standard. Following sensitization between 600 to 700 degC with a dwell time between 15 minutes and 100 hours, a specimen homogeneously annealed with the casting and rapidly water cooled showed no intercrystalline corrosion. Specimens cooled from 1050 degC at a rate of 100 degC per hour showed no unambiguous tendency for intercrystalline corrosion after sensitization; in some cases, however, an initial attack of intercrystalline corrosion was found. It was found that austenitic Cr-Ni cast steel containing 2.5% Mo and about 15% ferrite showed the sensitive intercrystalline corrosion range at higher temperatures and longer dwell times than rolled Cr-Ni steels. In plating the ferritic cast steel with a corrosion resistant plating material, annealing temperature after welding must not exceed 600 to 620 degC otherwise the resistance of the plated layer against intercrystalline corrosion would not be safeguarded, and following annealing for stress removal at a temperature of 600 to 620 degC all requirements must be satisfied by the weld metal and weld transition placed on the initial material. Martensite materials are used for the manufacture of components which are not used under pressure, such as alloys with 13% Cr and 1% to 6% Ni and alloys with 17% Cr and 4% Ni. Carbon content is maintained below 0.10% to guarantee good weldability and the highest corrosion resistance. Cast steels with 13% Cr and 4% Ni after a dwell of 2500 hours in fully desalinated water without oxygen and with 3600 ppm of boron at a test temperature of 95 to 300 degC showed a surface reduction of 0.005 mm annually. In identical conditions except for the water containing oxygen the reduction in surface was 0.05 mm per year. (J.B.)

  15. Clean Cast Steel Technology - Machinability and Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    C. E. Bates; J. A. Griffin

    2000-05-01

    There were two main tasks in the Clean Cast Steel Technology - Machinability and Technology Transfer Project. These were (1) determine the processing facts that control the machinability of cast steel and (2) determine the ability of ladle stirring to homogenize ladle temperature, reduce the tap and pouring temperatures, and reduce casting scrap.

  16. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels

    Science.gov (United States)

    Liu, Jiabin; Jin, Yongbin; Fang, Xiaoyang; Chen, Chenxu; Feng, Qiong; Liu, Xiaowei; Chen, Yuzeng; Suo, Tao; Zhao, Feng; Huang, Tianlin; Wang, Hongtao; Wang, Xi; Fang, Youtong; Wei, Yujie; Meng, Liang; Lu, Jian; Yang, Wei

    2016-10-01

    Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectively enhance the yielding strength of the metastable austenitic steel from 322 ± 18 MPa to 675 ± 15 MPa, while retaining both the formability and hardenability. It is noted that no boundaries are introduced in the optimized TMT process and all strengthening effect originates from dislocations with inherited thermal stability. The success of this method relies on the decoupled strengthening and toughening mechanisms in metastable austenitic steels, in which yield strength is controlled by initial dislocation density while ductility is retained by the capability to nucleate new dislocations to carry plastic deformation. Especially, the simplicity in processing enables scaling and industrial applications to meet the challenging requirements of emissions reduction. On the other hand, the complexity in the underlying mechanism of dislocation strengthening in this case may shed light on a different route of material strengthening by stimulating dislocation activities, rather than impeding motion of dislocations.

  17. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NARCIS (Netherlands)

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two

  18. Cyclic deformation behaviour of austenitic steels at ambient and ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Fatigue; cyclic deformation behaviour; metastable austenitic steel; .... Figure 4 shows a sequence of the basic diagrams which can be used to assess the fatigue .... well as the change of temperature and the development of the magnetic ...

  19. Austenite Grain Growth Behavior of AISI 4140 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2013-01-01

    Full Text Available AISI 4140 alloy steel is widely applied in the manufacture of various parts such as gears, rams, and spindles due to its good performance of strength, toughness, and wear resistance. The former researches most focused on its deformation and recrystallization behaviors under high temperature. However, the evolution laws of austenite grain growth were rarely studied. This behavior also plays an important role in the mechanical properties of parts made of this steel. In this study, samples are heated to a certain temperature of 1073 K, 1173 K, 1273 K, and 1373 K at a heating rate of 5 K per second and hold for different times of 0 s, 120 s, 240 s, 360 s, and 480 s before being quenched with water. The experimental results suggest that the austenite grains enlarge with increasing temperature and holding time. A mathematical model and an application developed in Matlab environment are established on the basis of previous works and experimental results to predict austenite grains size in hot deformation processes. The predicted results are in good agreement with experimental results which indicates that the model and the application are reliable.

  20. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  1. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  2. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Denis, E-mail: thibault.denis@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Bocher, Philippe, E-mail: philippe.bocher@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Thomas, Marc, E-mail: marc.thomas@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Lanteigne, Jacques, E-mail: lanteigne.jacques@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Hovington, Pierre, E-mail: hovington.pierre@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Robichaud, Patrice, E-mail: patrice.robichaud@riotinto.com [Centre de recherche et de developpement Arvida (CRDA), 1955, boul. Mellon, Jonquiere, Quebec, G7S 4K8 (Canada)

    2011-08-15

    Highlights: {yields} Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. {yields} Low cycle fatigue tests showed that this transformation to martensite is gradual. {yields} XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  3. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    International Nuclear Information System (INIS)

    Thibault, Denis; Bocher, Philippe; Thomas, Marc; Lanteigne, Jacques; Hovington, Pierre; Robichaud, Patrice

    2011-01-01

    Highlights: → Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. → Low cycle fatigue tests showed that this transformation to martensite is gradual. → XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  4. Austenitic Reversion of Cryo-rolled Ti-Stabilized Austenitic Stainless Steel: High-Resolution EBSD Investigation

    Science.gov (United States)

    Tiamiyu, A. A.; Odeshi, A. G.; Szpunar, J. A.

    2018-02-01

    In this study, AISI 321 austenitic stainless steel (ASS) was cryo-rolled and subsequently annealed at 650 and 800 °C to reverse BCC α'-martensite to FCC γ-austenite. The texture evolution associated with the reversion at the selected temperatures was investigated using high-resolution EBSD. After the reversion, TiC precipitates were observed to be more stable in 650 °C-annealed specimens than those reversed at 800 °C. {110} texture was mainly developed in specimens subjected to both annealing temperatures. However, specimens reversed at 650 °C have stronger texture than those annealed at 800 °C, even at the higher annealing time. The strong intensity of {110} texture component is attributed to the ability of AISI 321 ASS to memorize the crystallographic orientation of the deformed austenite, a phenomenon termed texture memory. The development of weaker texture in 800 °C-annealed specimens is attributed to the residual strain relief in grains, dissolution of grain boundary precipitates, and an increase in atomic migration along the grain boundaries. Based on the observed features of the reversed austenite grains and estimation from an existing model, it is suspected that the austenite reversion at 650 and 800 °C undergone diffusional and martensitic shear reversion, respectively.

  5. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Nitrogen-Alloyed High-Mn Austenitic Hot Work Die Steel

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-03-01

    Full Text Available In view of the requirements for mechanical properties and service life above 650 °C, a high-Mn austenitic hot work die steel, instead of traditional martensitic hot work die steel such as H13, was developed in the present study. The effect of heat treatment on the microstructure and mechanical properties of the newly developed work die steel was studied. The results show that the microstructure of the high-Mn as-cast electroslag remelting (ESR ingot is composed of γ-Fe, V(C,N, and Mo2C. V(C,N is an irregular multilateral strip or slice shape with severe angles. Most eutectic Mo2C carbides are lamellar fish-skeleton-like, except for a few that are rod-shaped. With increasing solid solution time and temperature, the increased hardness caused by solid solution strengthening exceeds the effect of decreased hardness caused by grain size growth, but this trend is reversed later. As a result, the hardness of specimens after various solid solution heat treatments increases first and then decreases. The optimal combination of hardness and austenitic grain size can be obtained by soaking for 2 h at 1170 °C. The maximum Rockwell hardness (HRC is 47.24 HRC, and the corresponding austenite average grain size is 58.4 μm. When the solid solution time is 3 h at 1230 °C, bimodality presented in the histogram of the austenite grain size as a result of further progress in secondary recrystallization. Compared with the single-stage aging, the maximum impact energy of the specimen after two-stage aging heat treatment was reached at 16.2 J and increased by 29.6%, while the hardness decreased by 1–2 HRC. After two-stage aging heat treatment, the hardness of steel reached the requirements of superior grade H13, and the maximum impact energy was 19.6% higher than that of superior grade H13, as specified in NADCA#207-2003.

  6. Studies on analytical method and nondestructive measuring method on the sensitization of austenitic stainless steels

    International Nuclear Information System (INIS)

    Onimura, Kichiro; Arioka, Koji; Horai, Manabu; Noguchi, Shigeru.

    1982-03-01

    Austenitic stainless steels are widely used as structural materials for the machine and equipment of various kinds of plants, such as thermal power, nuclear power, and chemical plants. The machines and equipment using this kind of material, however, have the possibility of suffering corrosion damage while in service, and these damages are considered to be largely due to the sensitization of the material in sometimes. So, it is necessary to develop an analytical method for grasping the sensitization of the material more in detail and a quantitative nondestructive measuring method which is applicable to various kinds of structures in order to prevent the corrosion damage. From the above viewpoint, studies have been made on the analytical method based on the theory of diffusion of chromium in austenitic stainless steels and on Electro-Potentiokinetics Reactivation Method (EPR Method) as a nondestructive measuring method, using 304 and 316 austenitic stainless steels having different carbon contents in base metals. This paper introduces the results of EPR test on the sensitization of austenitic stainless steels and the correlation between analytical and experimental results. (author)

  7. On Necking, Fracture and Localization of Plastic Flow in Austenitic Stainless Steel Sheets

    International Nuclear Information System (INIS)

    Korhonen, A. S.; Manninen, T.; Kanervo, K.

    2007-01-01

    The forming limits of austenitic stainless steel sheets were studied in this work. It was found that the observed limit of straining in stretch forming, when both of the principal stresses are positive, is not set by localized necking, but instead by inclined shearing fracture in the through thickness direction. It appears that the forming limits of austenitic stainless steels may be predicted fairly well by using the classical localized and diffuse necking criteria developed by Hill. The strain path-dependence may be accounted for by integrating the effective strain along the strain path. The fracture criteria of Rice and Tracey and Cockcroft, Latham and Oh were also studied. The results were in qualitative agreement with the experimental observations. Recent experiments with high-velocity electrohydraulic forming of austenitic stainless steels revealed localized necks in stretch formed parts, which are not commonly observed in conventionally formed sheet metal parts

  8. The Influence of Porosity on Corrosion Attack of Austenitic Stainless Steel

    Science.gov (United States)

    Abdullah, Z.; Ismail, A.; Ahmad, S.

    2017-10-01

    Porous metals also known as metal foams is a metallic body having spaces orpores through which liquid or air may pass. Porous metals get an attention from researchers nowadays due to their unique combination of properties includes excellent mechanical and electrical, high energy absorption, good thermal and sound insulation and water and gas permeability. Porous metals have been applied in numerous applications such as in automotive, aerospace and also in biomedical applications. This research reveals the influence of corrosion attack in porous austenitic stainless steel 316L. The cyclic polarization potential analysis was performed on the porous austenitic stainless steel 316L in 3.5% NaCl solution. The morphology and the element presence on the samples before and after corrosion attack was examined using scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) respectively to determine the corrosion mechanism structure. The cyclic polarization potential analysis showed the result of (E corr ) for porous austenitic stainless steel type 316L in the range of -0.40v to -0.60v and breakdown potential (E b ) is -0.3v to -0.4v in NaCl solution.

  9. Influence of Short Austenitization Treatments on the Mechanical Properties of Low-Alloy Steels for Hot Forming Applications

    Science.gov (United States)

    Holzweissig, Martin Joachim; Lackmann, Jan; Konrad, Stefan; Schaper, Mirko; Niendorf, Thomas

    2015-07-01

    The current work elucidates an improvement of the mechanical properties of tool-quenched low-alloy steel by employing extremely short austenitization durations utilizing a press heating arrangement. Specifically, the influence of different austenitization treatments—involving austenitization durations ranging from three to 15 seconds—on the mechanical properties of low-alloy steel in comparison to an industrial standard furnace process was examined. A thorough set of experiments was conducted to investigate the role of different austenitization durations and temperatures on the resulting mechanical properties such as hardness, bending angle, tensile strength, and strain at fracture. The most important finding is that the hardness, the bending angle as well as the tensile strength increase with shortened austenitization durations. Furthermore, the ductility of the steels exhibits almost no difference following the short austenitization durations and the standard furnace process. The enhancement of the mechanical properties imposed by the short heat treatments investigated, is related to a refinement of microstructural features as compared to the standard furnace process.

  10. On the measurement of austenite in supermartensitic stainless steel by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tolchard, Julian Richard, E-mail: tolchard@material.ntnu.no [Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim (Norway); Sømme, Astri; Solberg, Jan Ketil [Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim (Norway); Solheim, Karl Gunnar [Statoil, Stavanger (Norway)

    2015-01-15

    Sections of a 13Cr supermartensitic stainless steel were investigated to determine the optimum sample preparation for measurement of the austenite content by X-ray diffraction. The surface of several samples was mechanically ground or polished using media of grit sizes in the range 1–120 μm. The strained surface layer was afterwards removed stepwise by electropolishing, and the austenite content measured at each step. It was found that any level of mechanical grinding or polishing results in a reduction of the measured austenite fraction relative to the true bulk value, and that coarser grinding media impart greater damage and greater reduction in the measured austenite content. The results thus highlight the importance of the electropolishing step in preparation of such samples, but suggest that the American Society for Testing and Materials standard E975-03 substantially overestimates the amount of material which needs to be removed to recover the true “bulk” content. - Highlights: • Quantitative Rietveld analysis of austenite/martensite ratio in supermartensitic stainless steels • Critical evaluation of sample preparation for residual austenite measurements by X-ray diffraction • Highlighting of the importance of electropolishing as a final preparation step.

  11. Additional grain refinement in recrystallization controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology

    International Nuclear Information System (INIS)

    Arribas, M.; Lopez, B.; Rodriguez-Ibabe, J.M.

    2008-01-01

    This paper analyzes the recrystallization kinetics in Ti-microalloyed steels processed using 'beam blank' casting technology. The faster solidification rates associated with this technology brings a finer precipitation of TiN particles which are very effective in controlling austenite grain growth during hot working. Furthermore, these small precipitates have been shown to delay static and dynamic recrystallization. The finer the precipitates the higher the delay in recrystallization. Nevertheless, beyond particle size and distribution, the level of delay is very dependent on microstructure (above all austenite grain size) and deformation conditions (strain and temperature). This paper studies the effects of this recrystallization delay on the microstructure evolution during hot rolling. Special attention was paid to the study of the occurrence of partial recrystallization during the final stages of rolling, which could lead to the presence of mixed microstructures before transformation. The possibility of achieving an additional austenite grain size refinement prior to transformation was evaluated

  12. Zinc Addition Effects on General Corrosion of Austenitic Stainless Steels in PWR Primary Conditions

    International Nuclear Information System (INIS)

    Qiao Peipeng; Zhang Lefu; Liu Ruiqin; Jiang Suqing; Zhu Fawen

    2010-01-01

    Zinc addition effects on general corrosion of austenitic stainless steel 316 and 304 were investigated in simulated PWR primary coolant without zinc or with 50 ppb zinc addition at 315 degree C for 500 h. The results show that with the addition of zinc, the corrosion rate of austenitic stainless steel is effectively reduced, the surface oxide film is thinner, the morphology and chemical composition of surface oxide scales are evidently different from those without zinc. There are needle-like corrosion products on the surface of stainless steel 304. (authors)

  13. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling

    International Nuclear Information System (INIS)

    Dijk, N.H. van; Butt, A.M.; Zhao, L.; Sietsma, J.; Offerman, S.E.; Wright, J.P.; Zwaag, S. van der

    2005-01-01

    We have performed in situ X-ray diffraction measurements at a synchrotron source in order to study the thermal stability of the retained austenite phase in transformation induced plasticity steels during cooling from room temperature to 100 K. A powder analysis of the diffraction data reveals a martensitic transformation of part of the retained austenite during cooling. The fraction of austenite that transforms during cooling is found to depend strongly on the bainitic holding time and the composition of the steel. It is shown that that austenite grains with a lower average carbon concentration have a lower stability during cooling

  14. Effect of ferrite on the precipitation of σ phase in cast austenitic stainless steel used for primary coolant pipes of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqiang; Li, Na, E-mail: wangyongqiang1124@163.com [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing (China)

    2017-11-15

    The effect of ferrite phase on the precipitation of σ phase in a Z3CN20.09M cast austenitic stainless steel (CASS) used for primary coolant pipes of pressurized water reactor (PWR) nuclear power plants was investigated by using isothermal heat-treatment, optical microscopy (OM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) techniques. The influence of different morphologies and volume fractions of ferrite in the σ phase formation mechanism was discussed. The amount of σ phase precipitated in all specimens with different microstructures increased with increasing of aging time, however, the precipitation rate is significant different. The formation of σ phase in specimens with the coarsest ferrite and the dispersively smallest ferrite is slowest. The lowest level Cr content in ferrite and fewest α/γ interfaces in specimen are the main reasons for the slowest σ precipitation due to they are unfavorable for the kinetics and thermodynamics of phase transformation respectively. By contraries, the fastest formation of σ phase takes place in specimens with narrow and long ferrite due to the most α/γ interfaces and higher Cr content in ferrite which are beneficial for preferential nucleation and formation thermodynamics of σ phase. (author)

  15. Effect of reversion annealing on the formation of nano/ultrafine grained structure in 201 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Moallemi, Mohammad; Najafizadeh, Abbas; Kermanpur, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Rezaee, Ahad, E-mail: a.rezaee@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The secondary increase in the martensite content after reversion annealing. Black-Right-Pointing-Pointer Formation of thermally induced martensite due to carbide precipitation. Black-Right-Pointing-Pointer The smallest average grain size of 70 nm is achieved by annealing at 850 Degree-Sign C for 15 s. Black-Right-Pointing-Pointer A fully austenitic structure with grain size of 100 nm and 1370 MPa yield strength. - Abstract: The formation of nano/ultrafine grain structure in a 201 austenitic stainless steel was investigated by the martensite thermomechanical treatment. Cast ingots were first homogenized, then hot-forged and solution-annealed to reduce the initial grain size. Cold rolling was then conducted down to 90% reduction in thickness, followed by reversion annealing at a temperature in the range of 1023-1173 K for 15-1800 s. The effect of reversion parameters on grain refinement was investigated. The resulting microstructures were characterized by a scanning electron microscopy equipped with X-ray energy-dispersive spectrometer, an X-ray diffractometer and a Feritscope. The hardness was measured by the Vickers method. The results show that a nano/ultrafine-grained structure formed in the initial stages of the reversion, but significant grain growth took place during the entire course of reversion. Initially lowered, the volume fraction of martensite increased again during the reversion treatment due to carbide precipitation. A fully austenitic nano grained 201 stainless steel with the average grain size of 100 nm was produced, possessing a yield strength of about 1370 MPa.

  16. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  17. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  18. Phase stability of high manganese austenitic steels for cryogenic applications

    CERN Document Server

    Couturier, K

    2000-01-01

    The aim of this work is to study the austenitic stability against a' martensitic transformation of three non-magnetic austenitic steels : a new stainless steel X2CrMnNiMoN 19-12-11-1 grade, a traditional X8CrMnNiN 19-11-6 grade and a high manganese X8MnCrNi 28-7-1 grade. Measurements of relative magnetic susceptibility at room temperature are performed on strained tensile specimens at 4.2 K. A special extensometer for high precision strain measurements at low temperature has been developed at CERN to test specimens up to various levels of plastic strain. Moreover, the high precision strain recording of the extensometer enables a detailed study of the serrated yield phenomena associated with 4.2 K tensile testing and their influence on the evolution of magnetic susceptibility. The results show that high Mn contents increase the stability of the austenitic structure against a' martensitic transformation, while keeping high strength at cryogenic temperature. Moreover, proper elaboration through primary and possi...

  19. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  20. Damage evolution in TWIP and standard austenitic steel by means of 3D X ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fabrègue, D., E-mail: damien.fabregue@insa-lyon.fr [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Landron, C. [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France); Bouaziz, O. [ArcelorMittal Research, Voie Romaine-BP30320, F-57283 Maizières les Metz (France); Maire, E. [Université de Lyon, CNRS, F-69621 Villeurbanne (France); INSA-Lyon, MATEIS UMR5510, F-69621 Villeurbanne (France)

    2013-09-01

    The evolution of ductile damage of Fe–22Mn–0.6C austenitic TWIP steel by means of 3D X ray tomography in-situ tensile tests is reported for the first time. The comparison with another fully austenitic steel (316 stainless steel) is also carried out. The damage process of TWIP steel involves intense nucleation of small voids combined with the significant growth of the biggest cavities whereas macroscopical triaxiality remains constant. Due to this high nucleation rate, the average cavity diameter remains constant unlike the 316 stainless steel.

  1. Influence of laser shock peening on irradiation defects in austenitic stainless steels

    Science.gov (United States)

    Lu, Qiaofeng; Su, Qing; Wang, Fei; Zhang, Chenfei; Lu, Yongfeng; Nastasi, Michael; Cui, Bai

    2017-06-01

    The laser shock peening process can generate a dislocation network, stacking faults, and deformation twins in the near surface of austenitic stainless steels by the interaction of laser-driven shock waves with metals. In-situ transmission electron microscopy (TEM) irradiation studies suggest that these dislocations and incoherent twin boundaries can serve as effective sinks for the annihilation of irradiation defects. As a result, the irradiation resistance is improved as the density of irradiation defects in laser-peened stainless steels is much lower than that in untreated steels. After heating to 300 °C, a portion of the dislocations and stacking faults are annealed out while the deformation twins remain stable, which still provides improved irradiation resistance. These findings have important implications on the role of laser shock peening on the lifetime extension of austenitic stainless steel components in nuclear reactor environments.

  2. The sub-zero Celsius treatment of precipitation hardenable semi-austenitic stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Somers, Marcel A. J.

    2015-01-01

    A precipitation hardenable semi-austenitic stainless steel AISI 632 grade was austenitized according to industrial specifications and thereafter subjected to isothermal treatment at sub-zero Celsius temperatures. During treatment, austenite transformed to martensite. The isothermal austenite-to-martensite...... treatment. Magnetometry showed that the additional thermal step in boiling nitrogen yields a minor increment of the fraction of martensite, but has a noteworthy accelerating effect on the transformation kinetics, which more pronounced when the isothermal holding is performed at a higher temperature. Data...... is interpreted in terms of instantaneous nucleation of martensite during cooling followed by time dependent growth during isothermal holding....

  3. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  4. Effect of Cr Contents and Heat Treating on Reverted Austenite in Maraging Steel Weldments

    Science.gov (United States)

    Kim, S. W.; Lee, H. W.

    2018-05-01

    By conducting flux cored arc welding (FCAW) on maraging steels with Cr contents of 1.4 and 5.2 wt%, this study observed the effects of Cr content and heat treating on reverted austenite formation in welded maraging steel. Aging treatment was carried out at the temperatures of 450, 480 and 530 °C for 3 h in each condition. As the aging temperature increased, reverted austenite was formed along the interdendritic and intercellular grain boundaries, and the proportion of reverted austenite increased with increasing Cr addition. The aging process led to the segregation of Ti and Mo along the interdendritic and intercellular grain boundaries. Some of the welded specimens were subjected to solution heat treatment at 820 and 1250 °C for 1 h after welding, resulting in a decrease in reverted austenite fraction.

  5. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading

    Energy Technology Data Exchange (ETDEWEB)

    Blondé, R., E-mail: r.j.p.blonde@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Jimenez-Melero, E., E-mail: enrique.jimenez-melero@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Zhao, L., E-mail: lie.zhao@tudelft.nl [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Schell, N., E-mail: norbert.schell@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502 Geesthacht (Germany); Brück, E., E-mail: e.h.bruck@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der, E-mail: s.vanderzwaag@tudelft.nl [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van, E-mail: n.h.vandijk@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-31

    The microstructure evolution during shear loading of a low-alloyed TRIP steel with different amounts of the metastable austenite phase and its equivalent DP grade has been studied by in-situ high-energy X-ray diffraction. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing simultaneously the evolution of the austenite phase fraction and its carbon concentration, the load partitioning between the austenite and the ferritic matrix and the texture evolution of the constituent phases. Our results show that for shear deformation the TRIP effect extends over a significantly wider deformation range than for simple uniaxial loading. A clear increase in average carbon content during the mechanically-induced transformation indicates that austenite grains with a low carbon concentration are least stable during shear loading. The observed texture evolution indicates that under shear loading the orientation dependence of the austenite stability is relatively weak, while it has previously been found that under tensile load the {110}〈001〉 component transforms preferentially. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between the interstitial carbon concentration in the austenite, the grain orientation and the load partitioning.

  6. Controlling DC permeability in cast steels

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, Aaran, E-mail: aaran.sumner@nottingham.ac.uk [University of Nottingham, Nottingham University Park Campus, Nottingham NG7 2RD, England (United Kingdom); Gerada, Chris, E-mail: chris.gerada@nottingham.ac.uk [Electrical Machines, University of Nottingham, Tower Building, Nottingham NG7 2RD, England (United Kingdom); Brown, Neil, E-mail: neil.brown@cummins.com [Advanced Electrical Machines Research and Technology at Cummins Power Generation, Peterborough PE2 6FZ, England (United Kingdom); Clare, Adam, E-mail: adam.clare@nottingham.ac.uk [Advanced Manufacturing, University of Nottingham, University Park Campus, Nottingham NG7 2RD, England (United Kingdom)

    2017-05-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  7. Controlling DC permeability in cast steels

    International Nuclear Information System (INIS)

    Sumner, Aaran; Gerada, Chris; Brown, Neil; Clare, Adam

    2017-01-01

    Annealing (at multiple cooling rates) and quenching (with tempering) was performed on specimens of cast steel of varying composition. The aim was to devise a method for selecting the steel with the highest permeability, from any given range of steels, and then increasing the permeability by heat treatment. Metallographic samples were imaged using optical microscopy to show the effect of the applied heat treatments on the microstructure. Commonly cast steels can have DC permeability altered by the careful selection of a heat treatment. Increases of up to 381% were achieved by annealing using a cooling rate of 6.0 °C/min. Annealing was found to cause the carbon present in the steel to migrate from grain boundaries and from within ferrite crystals into adjacent pearlite crystals. The migration of the carbon resulted in less carbon at grain boundaries and within ferrite crystals reducing the number of pinning sites between magnetic domains. This gives rise to a higher permeability. Quenching then tempering was found to cause the formation of small ferrite crystals with the carbon content of the steel predominately held in the martensitic crystal structures. The results show that with any given range of steel compositions the highest baseline DC permeability will be found with the steel that has the highest iron content and the lowest carbon content. For the samples tested in this paper a cooling rate of 4.5 °C/min resulted in the relative permeability of the sample with the highest baseline permeability, AS4, increasing from 783 to 1479 at 0.5 T. This paper shows how heat treatments commonly applied to hypoeutectoid cast steels, to improve their mechanical performance, can be used to also enhance electromagnetic properties of these alloys. The use of cast steels allows the creation of DC components for electrical machines not possible by the widely used method of stacking of electrical grade sheet steels. - Highlights: • A range of structural steels had their

  8. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  9. The ageing kinetics of CF3 cast stainless steel in the temperature range 3000C to 400OC

    International Nuclear Information System (INIS)

    Akhurst, K.N.; Pumphrey, P.H.

    1988-11-01

    The primary coolant pump casings for Sizewell 'B' are made from castings of ASME SA351 CF3 steel which, although predominantly austenitic, is required to contain a small proportion of ferrite. Previous studies have shown that such steels are susceptible to hardening of the ferrite, and associated losses in toughness, as a result of thermal ageing for long times at the service temperature (∼ 300 0 C). For this reason, toughness tests are to be carried out on representative castings made by the Sizewell 'B' pump casing manufacturer. The purpose of these tests is to demonstrate adequate end-of-life fracture resistance, using material which has been given an accelerated ageing treatment. The identification and validation of a suitable ageing treatment is the subject of this Report. Ageing kinetics have been measured for ageing temperatures in the range 300 to 400 0 C, from the results of Charpy impact tests on material from the castings procured for the main fracture programme. Castings with ferrite levels of 15, 25 and 35% have been studied. The losses in impact toughness have been related to the kinetics of ferrite strengthening using microhardness measurements, and to microstructural changes using Field Ion Atom Probe analysis. (author)

  10. The irradiation performance of austenitic stainless steel clade PWR fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Esteves, A.M.

    1988-01-01

    The steady state irradiation performance of austenitic stainless steel clad pressurized water reactor fuel rods is modeled with fuel performance codes of the FRAP series. These codes, originally developed to model the thermal-mechanical behavior of zircaloy clad fuel rods, are modified to model stainless steel clad fuel rods. The irradiation thermal-mechanical behavior of type 348 stainless steel and zircaloy fuel rods is compared. (author) [pt

  11. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  12. Improved corrosion resistance of cast carbon steel in sulphur oxides by Alonizing

    International Nuclear Information System (INIS)

    Holtzer, M.; Dzioba, Z.

    1992-01-01

    The results of studies on the Alonizing of cast steel and of testing the corrosion resistance of this cast steel in an atmosphere containing 5 to 6% SO 2 + 50% SO 3 at 853 K are described and compared with the results obtained with unalonized cast carbon steel and high-alloy 23Cr-8Ni-2Mo cast steel. The duration of the corrosion tests was 336 hours. The aluminium diffusion layer on cast carbon steel was obtained by holding the specimens in a mixture containing 99% of powered Fe-Al and 1% of NH 4 Cl at 1323 ± 20 K. The holding time was 10 and 20 hours, respectively. The aluminium layer formed on the cast carbon steel was examined by optical microscopy and an X-ray microanalysis. After Alonizing for 10 h the layer had reached a thickness of 950 μm, and contained up to 35% Al. In a mixture of sulphur oxides corrosion rate of the alonized cast carbon steel was by about 600 times lower than of the unalonized cast carbon steel, and by about 50 times lower than that of the 23Cr-8Ni-2Mo cast steel. (orig.) [de

  13. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    Science.gov (United States)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron

  14. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  15. Formation and stabilization of reversed austenite in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Grumsen, Flemming Bjerg; Hald, John

    2017-01-01

    of the reversed austenite phase fraction. Annealing at higher temperatures led to a gradual increase in hardness which was caused by formation of fresh martensite from reversed austenite. It was demonstrated that stabilization of reversed austenite is primarily based on chemical stabilization by partitioning......The formation and stabilization of reversed austenite upon inter-critical annealing was investigated in a X4CrNiMo16-5-1 (EN 1.4418) supermartensitic stainless steel by means of scanning electron microscopy, electron backscatter-diffraction, transmission electron microscopy, energy-dispersive X......-ray spectroscopy and dilatometry. The results were supported by thermodynamics and kinetics models, and hardness measurements. Isothermal annealing for 2 h in the temperature range of 475 to 650 °C led to gradual softening of the material which was related to tempering of martensite and the steady increase...

  16. Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Saida, T.; Hirai, S. [Mitsubishi Heavy Ind. Ltd., Yokohama (Japan); Kusuhashi, M.; Sato, I.; Hatakeyama, T. [The Japan Steel Works Ltd., Chatsu-machi 4, Muroran 051-8505 (Japan)

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels. (orig.) 22 refs.

  17. Low-activation Mn Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Science.gov (United States)

    Onozuka, Masanori; Saida, Tomikane; Hirai, Shouzou; Kusuhashi, Mikio; Sato, Ikuo; Hatakeyama, Tsuyoshi

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels.

  18. Austenitic steels of the new generation used for power plant installations with supercritical parameters and their welding

    International Nuclear Information System (INIS)

    Brozda, J.

    2006-01-01

    Combustion of bituminous coal and lignite in power boilers brings into the atmosphere a lot of contaminations. The emission of pollutants can be reduced by the application of supercritical steam parameters, which also improves the efficiency of power units, but in that case constructional materials of the new generation are needed, among them austenitic steels. The development of power units with supercritical and ultra supercritical steam parameters is presented as well as applied structural materials. Austenitic steels used in power boiler constructions are listed. Basic characteristics of austenitic steels of the new generation are given and principles of their forming and welding. (author)

  19. Laser borided composite layer produced on austenitic 316L steel

    Directory of Open Access Journals (Sweden)

    Mikołajczak Daria

    2016-12-01

    Full Text Available Abstract Austenitic 316L steel is well-known for its good resistance to corrosion and oxidation. Therefore, this material is often used wherever corrosive media or high temperatures are to be expected. The main drawback of this material is very low hardness and low resistance to mechanical wear. In this study, the laser boriding was used in order to improve the wear behavior of this material. As a consequence, a composite surface layer was produced. The microstructure of laser-borided steel was characterized by only two zones: re-melted zone and base material. In the re-melted zone, a composite microstructure, consisting of hard ceramic phases (borides and a soft austenitic matrix, was observed. A significant increase in hardness and wear resistance of such a layer was obtained.

  20. Reversed austenite for enhancing ductility of martensitic stainless steel

    Science.gov (United States)

    Dieck, S.; Rosemann, P.; Kromm, A.; Halle, T.

    2017-03-01

    The novel heat treatment concept, “quenching and partitioning” (Q&P) has been developed for high strength steels with enhanced formability. This heat treatment involves quenching of austenite to a temperature between martensite start and finish, to receive a several amount of retained austenite. During the subsequent annealing treatment, the so called partitioning, the retained austenite is stabilized due to carbon diffusion, which results in enhanced formability and strength regarding strain induced austenite to martensite transformation. In this study a Q&P heat treatment was applied to a Fe-0.45C-0.65Mn-0.34Si-13.95Cr stainless martensite. Thereby the initial quench end temperature and the partitioning time were varied to characterize their influence on microstructural evolution. The microstructural changes were analysed by dilatometer measurements, X-ray diffraction and scanning electron microscopy, including electron back-scatter diffraction. Compression testing was made to examine the mechanical behaviour. It was found that an increasing partitioning time up to 30 min leads to an enhanced formability without loss in strength due to a higher amount of stabilized retained and reversed austenite as well as precipitation hardening.

  1. Forgings made of austenitic chromium-nickel steels for the low temperature range

    International Nuclear Information System (INIS)

    Gruendler, O.; Schwarz, W.; Koren, M.

    1981-01-01

    The authors discuss the low temperature application of austenitic chromium-nickel steels for energy production and process techniques. Material requirements are presented, and the behaviour, mechanical and physical properties of such steels are discussed. The manufacture of forgings is considered and test results presented. (Auth.)

  2. Forgings made of austenitic chromium-nickel steels for the low temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Gruendler, O.; Schwarz, W.; Koren, M. (Vereinigte Edelstahlwerke A.G. (VEW), Kapfenberg (Austria))

    1981-09-01

    The authors discuss the low temperature application of austenitic chromium-nickel steels for energy production and process techniques. Material requirements are presented, and the behaviour, mechanical and physical properties of such steels are discussed. The manufacture of forgings is considered and test results presented.

  3. Resistance to pitting corrosion in ferritic and austenitic/ferritic steels

    International Nuclear Information System (INIS)

    De Bouvier, O.

    1995-01-01

    Stainless steel tubes carrying raw water are potentially vulnerable to pitting corrosion. With a view to minimizing the corrosion risk in the river-water-cooled condensers at PWR power plant, a study was conducted to determine initiation conditions and incubation durations for pitting corrosion in stagnant water. As a result, condenser tubes in Z2 CI 18 (439) or Z2 CT 18-10 (304L) steels were phased out in favour of Z2 CND 16-32 (316L) stainless steel. The same question can be yield for other applications and especially for all types of exchangers for use in electrical applications. This study sought to assess alternative methods for estimating pitting corrosion, and to check the results of these methods against the actual behaviour of studied steels. The study covered ferritic steels (439, 444, 290Mo), austenitic steel (316L) and austenitic/ferritic steels (Uranus 35N, 45N, 47N, 52N). Two approaches were adopted: laboratory tests to compare pitting corrosion risks on different materials, and tests for characterizing the behaviour of steels exposed to river water. The study begins with a laboratory tests that yield an arbitrary parameter for quantifying pitting corrosion resistance. One method involves measuring the pitting temperature in an aggressive ferric chloride solution. Other methods measure the pitting potential, either statistically (Multipit method) or deterministically (polarization curve). We then go on to discuss tests under simulated life-like conditions, involving repeated immersions in water from the Seine. (author). 9 refs., 13 figs, 9 tabs

  4. Shot-peening effect on the structure, microhardness, and compressive stresses of the austenitic steel 1.4539

    Directory of Open Access Journals (Sweden)

    Barbara Nasiłowska

    2015-06-01

    Full Text Available This article presents shot-peening effect on the structure, microhardness, and compressive stresses of the austenitic steel 1.4539. The research shows strengthening of the top layer and the formation of compressive stresses in the subsurface layers of the shot-peening elements.[b]Keyword[/b]: austenitic steel 1.4539, residual stresses, Waisman-Phillips’a method

  5. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  6. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    Science.gov (United States)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.

    2017-10-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.

  7. Welding of austenitic stainless steel with a high molybdenum content

    International Nuclear Information System (INIS)

    Liljas, A.; Holmberg, B.

    1984-01-01

    Welding of austenitic steel is discussed. Welding tests of AVESTA 250 SMO (six percent Mo) are reported. Welding without special additives can make the joints susceptible for corrosion in aggressive environments, e.g. sea water. (L.E.)

  8. Influence of helium embrittlement on post-irradiation creep rupture behaviour of austenitic and martensitic stainless steels

    International Nuclear Information System (INIS)

    Wassilew, C.

    1982-01-01

    The author has investigated the influence of helium embrittlement on the creep rupture properties of the austenitic stainless steels 1.4970 and 1.4962 and the martensitic stainless steel 1.4914 after irradiation in the BR-2 reactor in Mol, Belgium. The results show that austenitic steels react much more strongly to the embrittlement effect of the helium than do martensitic steels. The causes of the lower embrittlement tendency of the martensitic than of both austenitic stainless steels were analysed carefully. A new embrittlement model was developed on the basis of data derived from the creep rupture experiments, and reinforced by a simple metallographic investigation of the fracture zone and its immediate environment. This model pays specific attention to the role of the twin planes as the most efficient area of increased vacancy production, and takes into account the ability of the twin boundaries to transport these vacancies with reduced energy and low loss into the high-angle grain boundaries. (author)

  9. General and Localized corrosion of Austenitic and Borated Stainless Steels in Simulated Concentrated Ground Waters

    International Nuclear Information System (INIS)

    Fix, D.; Estill, J.; Wong, L.; Rebak, R.

    2004-01-01

    Boron containing stainless steels are used in the nuclear industry for applications such as spent fuel storage, control rods and shielding. It was of interest to compare the corrosion resistance of three borated stainless steels with standard austenitic alloy materials such as type 304 and 316 stainless steels. Tests were conducted in three simulated concentrated ground waters at 90 C. Results show that the borated stainless were less resistant to corrosion than the witness austenitic materials. An acidic concentrated ground water was more aggressive than an alkaline concentrated ground water

  10. Influence of titanium on the tempering structure of austenitic steels

    International Nuclear Information System (INIS)

    Ghuezaiel, M.J.

    1985-10-01

    The microstructure of titanium-stabilized and initially deformed (approximately 20%) austenitic stainless steels used in structures of fast neutrons reactors has been studied after one hour duration annealings (500 0 C) by X-ray diffraction, optical microscopy, microhardness and transmission electron microscopy. The studied alloys were either of industrial type CND 17-13 (0.23 to 0.45 wt% Ti) or pure steels (18% Cr, 14% Ni, 0 or 0.3 wt% Ti). During tempering, the pure steels presented some restauration before recristallization. In the industrial steels, only recristallization occurred, and this only in the most deformed steel. Precipitation does not occur in the titanium-free pure steel. In industrial steels, many intermetallic phases are formed when recristallization starts [fr

  11. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  12. Effect of multiple austenitizing treatments on HT-9 steels

    International Nuclear Information System (INIS)

    Emigh, R.A.

    1985-12-01

    The effect of multiple austenitizing treatments on the toughness of an Fe-12Cr-1.0Mo-0.5W-0.3V (HT-9) steel was studied. The resulting microstructures were characterized by their mechanical properties, precipitated carbide distribution, and fracture surface appearance. It was proposed that multiple transformations would refine the martensite structure and improve toughness. Optical and scanning electron microscopic observations revealed that the martensite packet structure was somewhat refined by a second austenite transformation. Transmission electron microscopy studies of carbon extraction replicas showed that this multiple step treatment had eliminated grain boundary carbide films seen in single treated specimens on prior austenite grain boundaries. The 0.2% yield strength, tensile strength, and elongation were relatively unchanged, but the toughness measured by fatigue pre-cracked Charpy impact tests increased for the multiple step specimens

  13. Ion irradiation-induced precipitation of Cr23C6 at dislocation loops in austenitic steel

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Guo, Liping; Luo, Fengfeng; Yao, Zhongwen; Ma, Shuli; Tang, Rui

    2013-01-01

    The irradiation-induced precipitates in argon ion-irradiated austenitic stainless steel at 550 °C were examined via transmission electron microscopy. The selected-area electron diffraction patterns of precipitates indicated unambiguously that the precipitates were Cr 23 C 6 carbides. It was observed directly for the first time that irradiation-induced Cr 23 C 6 precipitates formed at dislocation loops in austenitic stainless steel, and coarsened with increasing irradiation dose.

  14. Microstructure of super-austenitic steels after long-term annealing

    Czech Academy of Sciences Publication Activity Database

    Kraus, M.; Kroupa, Aleš; Miodownik, P.; Svoboda, Milan; Vřešťál, J.

    2010-01-01

    Roč. 101, č. 6 (2010), s. 729-735 ISSN 1862-5282 R&D Projects: GA ČR(CZ) GA106/07/1078 Institutional research plan: CEZ:AV0Z20410507 Keywords : phase equilibria * microstructure * super-austenitic steel Subject RIV: BJ - Thermodynamics Impact factor: 0.860, year: 2010

  15. Study of interactions between liquid lead-lithium alloy and austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Simon, N.

    1992-06-01

    In the framework of Fusion Technology, the behaviour of structural materials in presence of liquid alloy Pb17Li is investigated. First, the diffusion coefficients of Fe and Cr have been determined at 500 deg C. Then mass transfer experiments in Pb17Li have been conducted in an anisothermal container with pure metals (Fe, Cr, Ni), Fe-Cr steels and austenitic steels. These experiments showed a very high loss of Nickel, which is an accordance with its high solubility, and Cr showed mass-losses one order of magnitude higher than for pure iron, as the diffusion coefficient of Cr is three orders of magnitude higher than for pure Fe. The corrosion rate of binary Fe-Cr and pure Fe are identical. In austenitic steels, the gamma lattice allows a higher mass-transfer of Cr than the alpha lattice, the presence of Cr slows downs the dissolution of Ni, and the porosity of corrosion layers results of losses of Cr and Ni. Finally, a review of our results and those of other laboratories allowed an identification of the corrosion limiting step. In the case of 1.4914 martensitic steel it is the diffusion of Fe in Pb17Li, while in the case of 316L austenitic steel it is the diffusion of Cr in Pb17Li

  16. Morphology change of retained austenite during austempering of carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Christina, E-mail: christina.hofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Winkelhofer, Florian [Research and Development - Business Unit Coil, voestalpine Stahl GmbH, voestalpine‐Straße 3, A-4020 Linz (Austria); Clemens, Helmut; Primig, Sophie [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2016-05-10

    A change in the mechanical properties of a carbide-free bainitic steel was observed during prolonged holding at austempering temperature after termination of the bainitic transformation. To determine the origin of the property change, the microstructure was investigated by correlative electron microscopy. Although the retained austenite content remains the same during prolonged holding, its morphology changes from thin films separating the individual bainitic sub-units to a more globular structure. Since films of austenite contain a higher C concentration, the blocky austenite becomes gradually enriched in C during this morphology change. The more homogeneous distribution of the C after prolonged austempering leads to higher deformability as a result of a more pronounced TRIP effect. - Highlights: • Higher deformability after prolonged austempering of carbide-free bainite. • Microstructure-property relationship revealed by correlative electron microscopy. • Change in austenite morphology. • Spherodization of film austenite; C enrichment & homogenization of blocky austenite.

  17. Fracture of Fe--Cr--Mn austenitic steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1979-01-01

    Tensile tests of Tenelon (U.S. Steel), a nitrogen-strengthened iron-base alloy containing 18% chromium and 15% manganese, demonsterated that cleavage fracture can occur in some austenitic steels and is promoted by the presence of hydrogen. Tensile failure of Tenelon at 78 0 K occurred with no detectable necking at low strain levels. The fracture surface contained cleavage facets that lay along coherent twin boundaries oriented transversely to the tensile axis. Charging gaseous hydrogen at 679 MPa pressure and 650 0 K had no significant effect on the mechanical behavior or fracture mode at 78 0 K, but raised the ductile-to-brittle transition temperature from less than 200 0 K to about 250 0 K

  18. Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review

    DEFF Research Database (Denmark)

    Niessen, Frank

    2018-01-01

    Low-carbon martensitic stainless steels with 11.5–16 wt-% Cr and martensite upon inter-critical annealing. The review treats...... the mechanisms governing the formation and stabilisation of reverted austenite and is assisted by the computation of phase equilibria. Literature data on Cr and Ni concentrations of the reverted austenite/martensite dual-phase microstructure are assessed with respect to predicted concentrations. Reasonable...... agreement was found for concentrations in martensite. Systematic excess of Cr in austenite of approx. 2 wt-% relative to calculations was suspected to originate from the growth of M23C6 with a coherent interface to austenite. Within large scatter, measured values of Ni in austenite were on average 2 wt...

  19. Overview of microstructural evolution in neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1993-01-01

    Austenitic stainless steels are important structural materials common to several different reactor systems, including light water and fast breeder fission, and magnetic fusion reactors (LWR, FBR, and MFR, respectively). The microstructures that develop in 300 series austenitic stainless steels during neutron irradiation at 60-700 C include combinations of dislocation loops and networks, bubbles and voids, and various kinds of precipitate phases (radiation-induced, or -enhanced or -modified thermal phases). Many property changes in these steels during neutron irradiation are directly or indirectly related to radiation-induced microstructural evolution. Even more important is the fact that radiation-resistance of such steels during either FBR or MFR irradiation is directly related to control of the evolving microstructure during such irradiation. The purpose of this paper is to provide an overview of the large and complex body of data accumulated from various fission reactor irradiation experiments conducted over the many years of research on microstructural evolution in this family of steels. The data can be organized into several different temperature regimes which then define the nature of the dominant microstructural components and their sensitivities to irradiation parameters (dose, helium/dpa ratio, dose rate) or metallurgical variables (alloy composition, pretreatment). The emphasis in this paper will be on the underlying mechanisms driving the microstructure to evolve during irradiation or those enabling microstructural stability related to radiation resistance. (orig.)

  20. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, Soheil; Rashtchi, Hamed; Eslami, Abdoulmajid; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Raeissi, Keyvan; Imani, Reihane Faghih [Isfahan Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Materials Engineering; Ngan, Alfonso Hing Wan [The Univ. of Hong Kong (China). Dept. of Mechanical Engineering

    2017-07-15

    The corrosion resistance of austenitic stainless steels is known to be hampered by the loss of chromium available for passive surface layer formation as a result of chromium carbide precipitation at austenite grain boundaries during annealing treatments. Although high-temperature annealing can promote carbide dissolution leading to better corrosion resistance, grain coarsening also results, which would lead to poorer mechanical properties. Processing methods to achieve both good corrosion resistance and mechanical properties are thus highly desirable for austenitic stainless steels. In the present study, we show that the corrosion resistance of AISI 304L stainless steel can be improved by grain refinement into the ultrafine-grained regime. Specifically, samples with different austenite grain sizes in the range of 0.65-12 μm were studied by potentiodynamic polarization and electrochemical impedance spectroscopy tests in a 3.5 wt.% NaCl solution. All samples showed a typical passive behavior with similar corrosion potential, but the corrosion current density decreased significantly with decreasing grain size. The results show that the sample with the finest grain size had the best corrosion resistance due to a higher resistance of the passive layer to pitting attacks. This study indicates that grain refinement which improves mechanical properties can also significantly improve the corrosion resistance of AISI 304L stainless steel.

  1. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    Shankar, V.; Gill, T.P.S.; Mannan, S.L.; Rodriguez, P.

    1991-01-01

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  2. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    International Nuclear Information System (INIS)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI

  3. Dome style heavy wall steel casting manufactured by metallic core mould system

    International Nuclear Information System (INIS)

    Yamamoto, Shiro; Saeki, Keiji; Hirose, Yutaka; Takebayashi, Kazunari; Kawasaki, Masatoshi

    1986-01-01

    Semi-spherical thick walled steel castings are one of the main products of Nippon Chutanko K.K., but there have been the problems of internal defects peculiar to large thick walled steel castings, and the various improvements have been carried out so far for the manufacturing method, but still some of those remains. Based on the anxiety about the reliability of large steel castings, the conversion to forging has been studied. For the purpose of thoroughly improving the internal quality of thick walled steel castings to compete with forgings, on the basis of the operating experience of chills, the development of the casting techniques changing cores completely to metallic cores has been advanced. After the preliminary experiment using models, a semi-spherical thick walled steel casting mentioned before was manufactured by this metallic core casting method for trial, and the detailed investigation was carried out. As the result, the excellent internal quality was confirmed, accordingly at present, the production is made by this method. The form, dimensions and specification of the semi-spherical thick walled steel castings, the conventional casting plan, the metallic core casting plan, the design of metallic cores, molding and casting, and the examination of the castings made for trial are reported. (Kako, I.)

  4. Evaluation of aging of cast stainless steel components

    International Nuclear Information System (INIS)

    Chung, H.M.

    1991-02-01

    Cast stainless steel is used extensively in nuclear reactors for primary-pressure-boundary components such as primary coolant pipes, elbows, valves, pumps, and safe ends. These components are, however, susceptible to thermal aging embrittlement in light water reactors because of the segregation of Cr atoms from Fe and Ni by spinodal decomposition in ferrite and the precipitation of Cr-rich carbides on ferrite/austenite boundaries. A recent advance in understanding the aging kinetics is presented. Aging kinetics are strongly influenced by the synergistic effects of other metallurgical reactions that occur in parallel with spinodal decomposition, i.e., clustering of Ni, Mo, and Si solute atoms and the nucleation and growth of G-phase precipitates in the ferrite phase. A number of methods are outlined for estimating aging embrittlement under end-of-life of life-extension conditions, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. 33 refs., 6 figs., 3 tabs

  5. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  6. The compatibility of various austenitic steels with molten sodium (1963)

    International Nuclear Information System (INIS)

    Champeix, L.; Sannier, J.; Darras, R.; Graff, W.; Juste, P.

    1963-01-01

    Various techniques for studying corrosion by molten sodium have been developed and applied to the case of 18/10 austenitic steels. The results obtained are discussed as a function of various parameters: type of steel, temperature, oxygen content of the sodium, surface treatment, welds, mechanical strain. In general, these steels have an excellent resistance to sodium when the oxygen content is limited by a simple purification system of the 'cold trap' type, and when an attempt is made to avoid cavitation phenomena which are particularly dangerous, as is shown by the example given. (authors) [fr

  7. The thermal expansion of austenitic manganese and manganese-chromium steels

    International Nuclear Information System (INIS)

    Richter, F.

    1977-01-01

    The linear coefficient of thermal expansion was determined by dilatometer for 5 Mn steels and 6 Mn-Cr steels between -196 and +500 0 C. Because of the antiferromagnetic properties, the thermal expansion of austenitic Mn and Mn-Cr steels is determined by the position of the magnetic changeover temperature (Neel temperature), which depends on the chemical composition of the steel. Below the Neel temperature, the thermal coefficient of expansion is greatly reduced by volumetric magnetostriction (Invar effect). For this reason, one can only give approximate values for thermal expansion for all Mn and Mn-Cr steels in the temperature range of -100 0 C to about +100 0 C. (GSC) [de

  8. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

    International Nuclear Information System (INIS)

    Sireesha, M.; Sundaresan, S.

    2000-01-01

    For joining type 316LN austenitic stainless steel to modified 9Cr-1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316,16Cr-8Ni-2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16-8-2(16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service. (orig.)

  9. Evaluation of welds on a ferritic-austenitic stainless steel

    International Nuclear Information System (INIS)

    Pleva, J.; Johansson, B.

    1984-01-01

    Five different welding methods for the ferritic-austenitic steel 22Cr6Ni3MoN have been evaluated on mill welded heavy wall pipes. The corrosion resistance of the weld joints has been tested both in standard tests and in special environments, related to certain oil and gas wells. The tests were conclusive in that a welding procedure with the addition of sufficient amounts of filler metal should be employed. TIG welds without or with marginal filler addition showed poor resistance to pitting, and to boiling nitric acid. Contents of main alloying elements in ferrite and austenite phases have been measured and causes of corrosion attack in welds are discussed

  10. Phase transformations of under-cooled austenite of new bainitic materials for scissors crossovers

    Directory of Open Access Journals (Sweden)

    J. Pacyna

    2008-07-01

    Full Text Available The paper contains CCT diagrams presenting a transformation kinetics of under-cooled austenite from two new bainitic cast steels which the scissors crossovers for heavy-duty railway tracks (min. 230kN/axle at the speed up to 200 km/h are made of. The cooling ranges of UIC60 type railway tracks plot on the CCT diagrams indicate that there is a 100% bainitic structure in the scissors crossovers made of these cast steels as well, but mainly it would be a favourable for cracking resistance lower bainite. The achievable hardness of scissors crossovers made of new materials make it possible to use high–temperature tempering resulting in obtaining of good crack resistance. However one should provide a good quality of castings made.

  11. Effect of Ti additions on the swelling of electron irradiated austenitic steels and Ni alloys

    International Nuclear Information System (INIS)

    Gilbon, D.; Didout, G.; Le Naour, L.; Levy, V.

    1979-01-01

    It has been shown that titanium is a beneficial additive for the swelling of austenitic steels. The amplitude of the effects observed depends much on the nature and concentration of the other additives in the austenitic matrix [fr

  12. Effect of smelting method on the austenite grain size and properties of heat-resisting pearlitic steel

    International Nuclear Information System (INIS)

    Balakhovskaya, M.B.; Khusainova, N.A.; Davlyatova, L.N.

    1975-01-01

    Influence of smelting method on austenite grain size and properties of refractory perlite steel were studied. An opportunity was found to increase the steel refractoriness without deteriorating its other properties. The steel 12Kh1MF of electric or common open-hearth smelting was used. The dependence of kinetics of austenite grain growth on the smelting method was studied in the temperature range 950 deg - 1200 deg C with 1 hour exposure. The grain size of austenite in steel is supposedly determined by aluminium nitrides and vanadium carbides. In tests of normalized (kept for 20 minutes at 950-980 deg C) and tempered (kept for 3 hours at 730 deg C) transverse (tangential) pipe cross-section samples the electric steel had higher impact viscosity than the open-hearth metal. At working temperatures (540 deg -580 deg C) the difference in viscosity has its minimum. Viscosity of both steels 12Kh1MF begins to sharply decrease from 20 deg C. However, electric steel has rather high viscosity even at - 40 deg C, while the open-hearth one becomes brittle as early as at - 20 deg C. Long-term strength tests at 580 deg C under stresses 10-14 kG/mm 2 show that the coarse-grain steel is more refractory, i.e. time till fracture of open-hearth steel samples is twice as long as that of electric steel samples

  13. Development of Ultra-Fine-Grained Structure in AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Tiamiyu, A. A.; Szpunar, J. A.; Odeshi, A. G.; Oguocha, I.; Eskandari, M.

    2017-12-01

    Ultra-fine-grained (UFG) structure was developed in AISI 321 austenitic stainless steel (ASS) using cryogenic rolling followed by annealing treatments at 923 K, 973 K, 1023 K, and 1073 K (650 °C, 700 °C, 750 °C, and 800 °C) for different lengths of time. The α'-martensite to γ-austenite reversion behavior and the associated texture development were analyzed in the cryo-rolled specimens after annealing. The activation energy, Q, required for the reversion of α'-martensite to γ-austenite in the steel was estimated to be 80 kJ mol-1. TiC precipitates and unreversed triple junction α'-martensite played major roles in the development of UFG structure through the Zener pinning of grain boundaries. The optimum annealing temperature and time for the development of UFG structure in the cryo-rolled AISI 321 steel are (a) 923 K (650 °C) for approximately 28800 seconds and (b) 1023 K (750 °C) for 600 seconds, with average grain sizes of 0.22 and 0.31 µm, respectively. Annealing at 1023 K (750 °C) is considered a better alternative since the volume fraction of precipitated carbides in specimens annealed at 1023 K (750 °C) are less than those annealed at 923 K (650 °C). More so, the energy consumption during prolonged annealing time to achieve an UFG structure at 923 K (650 °C) is higher due to low phase reversion rate. The hardness of the UFG specimens is 195 pct greater than that of the as-received steel. The higher volume fraction of TiC precipitates in the UFG structure may be an additional source of hardening. Micro and macrotexture analysis indicated {110}〈uvw〉 as the major texture component of the austenite grains in the UFG structure. Its intensity is stronger in the specimen annealed at low temperatures.

  14. Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.Y., E-mail: songyuanyuan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Li, X.Y.; Rong, L.J.; Li, Y.Y. [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Nagai, T. [National Institute for Materials Science, Sengen 1-2-1, Tsukuba 305-0047 (Japan)

    2014-01-15

    The austenite reversion process and the distribution of carbon and other alloying elements during tempering in 0Cr13Ni4Mo martensitic stainless steel have been investigated by in-situ high temperature X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The microstructure of the reversed austenite was characterized using transmission electron microscopy (TEM). The results revealed that the amount of the reversed austenite formed at high temperature increased with the holding time. Direct experimental evidence supported carbon partitioning to carbides and Ni to the reversed austenite. The reversed austenite almost always nucleated in contact with lath boundary M{sub 23}C{sub 6} carbides during tempering and the diffusion of Ni promoted its growth. The Ni enrichment and the ultrafine size of the reversed austenite were considered to be the main factors that accounted for the stability of the reversed austenite. - Highlights: • The amount of the reversed austenite formed at high temperature increases with the holding time. • STEM results directly show that carbon is mainly partitioned into the carbides and Ni into the reversed austenite. • The Ni enrichment and the ultrafine size are the main factors leading to the stabilization of the reversed austenite.

  15. Study of irradiation effects in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Material Department, University of California, Santa Barbara (United States); Pareige, P.; Radiguet, B. [GPM UMR CNRS 6634, Universite et INSA de Rouen (France); Cunningham, N.J.; Odette, G.O. [Material Department, University of California, Santa Barbara (United States); Pokor, C. [EDF RD, departement MMC, site des Renardieres, Moret-sur-Loing (France)

    2011-07-01

    Chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after seventeen years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A very high number density (6.10{sup 23} m{sup -3}) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. In order to bring complementary experimental results and to determine the mechanism of formation of these Ni-Si nano-clusters, Fe{sup 5+} ion irradiations have been performed on a 316 austenitic stainless steel. As after neutron irradiation, the formation of solute enriched features is observed. Linear features and two kinds of clusters, rounded and torus shaped, are present. Considering that solute enriched features are probably formed by radiation induced segregation on point defect sinks, these different shapes are due to the nature of the sinks where segregation occurs. (authors)

  16. Reaction of uranium and plutonium carbides with austenitic steels

    International Nuclear Information System (INIS)

    Mouchnino, M.

    1967-01-01

    The reaction of uranium and plutonium carbides with austenitic steels has been studied between 650 and 1050 deg. C using UC, steel and (UPu)C, steel diffusion couples. The steels are of the type CN 18.10 with or without addition of molybdenum. The carbides used are hyper-stoichiometric. Tests were also carried out with UCTi, UCMo, UPuCTi and UPuCMo. Up to 800 deg. C no marked diffusion of carbon into stainless steel is observed. Between 800 and 900 deg. C the carbon produced by the decomposition of the higher carbides diffuses into the steel. Above 900 deg. C, decomposition of the monocarbide occurs according to a reaction which can be written schematically as: (U,PuC) + (Fe,Ni,Cr) → (U,Pu) Fe 2 + Cr 23 C 6 . Above 950 deg. C the behaviour of UPuCMo and that of the titanium (CN 18.12) and nickel (NC 38. 18) steels is observed to be very satisfactory. (author) [fr

  17. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  18. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  19. Dissolution of grain boundary carbides by the effect of solution annealing heat treatment and aging treatment on heat-resistant cast steel HK30

    OpenAIRE

    Silva, Francisco J. G.; Santos, Jorge; Gouveia, Ronny

    2017-01-01

    Decreasing the weight of heavy-duty vehicles is an ongoing concern. However, the need to deal with high temperatures in components such as manifolds imposes, by itself, some restrictions regarding material selection, being further limited when other required properties (e.g., functional, manufacturing or cost requirements) are taken into account. Cast austenitic stainless steels may represent a good choice in this context but the existence of concentrated chromium carbides can generate undesi...

  20. Microstructural evolution of a 2.25Cr - 1 Mo steel during austenitization and temper: austenite grain growth, carbide precipitation sequence and effects on mechanical properties

    International Nuclear Information System (INIS)

    Depinoy, Sylvain

    2015-01-01

    This work aims at optimizing tensile and toughness properties of a 2.25Cr - 1Mo steel by controlling its microstructure through heat treatments. To this aim, phase transformations during austenitization, quenching and tempering have to be understood. Quantitative microstructural analyses were performed by means of SEM, TEM and XRD to characterize and model metallurgical evolution of the steel at each step of the heat treatment. The evolution of austenite during the austenitization stage, and its influence on the resulting as-quenched microstructure were thoroughly investigated. Austenite grain growth was modelled in order to understand its mechanisms, including the limited growth phenomenon observed at lower temperatures. The effect of austenitization conditions on further decomposition of austenite and on mechanical properties after quenching + tempering was experimentally determined. An optimal austenitization condition was selected and applied to study the tempering stage. Carbide precipitation was studied for various tempering temperatures and amounts of time. M3C carbides precipitate first, followed by M2C and M7C3; M23C6 are the equilibrium carbides. The influence of carbide precipitation on mechanical properties was studied. Tensile properties are closely linked to the tempering conditions in the range investigated, while impact toughness remains stable. (author) [fr

  1. Strategy of Cooling Parameters Selection in the Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Falkus J.

    2016-03-01

    Full Text Available This paper presents a strategy of the cooling parameters selection in the process of continuous steel casting. Industrial tests were performed at a slab casting machine at the Arcelor Mittal Poland Unit in Krakow. The tests covered 55 heats for 7 various steel grades. Based on the existing casting technology a numerical model of the continuous steel casting process was formulated. The numerical calculations were performed for three casting speeds - 0.6, 0.8 and 1 m min-1. An algorithm was presented that allows us to compute the values of the heat transfer coefficients for the secondary cooling zone. The correctness of the cooling parameter strategy was evaluated by inspecting the shell thickness, the length of the liquid core and the strand surface temperature. The ProCAST software package was used to construct the numerical model of continuous casting of steel.

  2. Effect of aging on the tribological and mechanical properties of a high-nitrogen stainless austenitic steel

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Tereshchenko, N.A.; Uvarov, A.I.

    2005-01-01

    The effect of aging, associated with predominant precipitation of vanadium nitrides (VN), on tribological and mechanical properties of austenitic steel 10Kh18AG18N5MF hardened from 1100 Deg C is studied. Metallographic, X-ray diffraction and electron microscopical methods are used to study structural transformations proceeding in the steel on aging as well as on friction loading under conditions of dry slipping friction in steel-abrasive and steel-steel pairs. It is shown that the aging at temperatures of 600-700 Deg C resulting in a considerable increase of strength properties of the steel demonstrates a relatively weak positive effect on steel resistance to abrasive and adhesive wear. It is stated that the use of aging by continuous mechanism permits attaining favourable mechanical and tribological properties in vanadium-alloying nitrogen-bearing austenitic steels [ru

  3. V and Nb Influence on the Austenitic Stainless Steel Corrosion in 0.1 M HCl

    Directory of Open Access Journals (Sweden)

    Amel GHARBI

    2014-05-01

    Full Text Available Vanadium and niobium were added in AISI309 austenitic stainless steel composition to modify their structure and pitting corrosion resistance in 0.1 M HCl. The structural characterization was carried out by X-rays diffraction and optical microscopy. Corrosion behavior was investigated using potentiodynamic tests and electrochemical impedance measurements (EIS .Results showed that vanadium and niobium addition precipitated stable carbides (VC, NbC to chromium carbides’ detriment and improved austenitic stainless steel corrosion resistance.

  4. Application Feasibility of PRE 50 grade Super Austenitic Stainless Steel as a Steam Generator Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo [Yonsei University, Seoul (Korea, Republic of); Kim, Young sik [Andong National University, Andong (Korea, Republic of); Kim, Taek Jun; Kim, Sun Tae; Park, Hui Sang [Yonsei University, Seoul (Korea, Republic of)

    1997-07-01

    The aim of this study is to evaluate the properties of the super austenitic stainless steel, SR-50A for application as steam generator tubing material. The microstructure, mechanical properties, corrosion properties, were analyzed and the results were compared between super austenitic stainless steel and Alloy 600 and Alloy 690. Super austenitic stainless steel, SR-50A is superior to Alloy 600, Alloy 690 and Alloy 800 in the mechanical properties(tensile strength, yield strength, and elongation). It was investigated that thermal conductivity of SR-50A was higher than Alloy 600. As a result of thermal treatment on super stainless steel, SR-50A, caustic SCC resistance was increased and its resistance was as much as Alloy 600TT and Alloy 690TT. In this study, optimum thermal treatment condition to improve the caustic corrosion properties was considered as 650 deg C or 550 deg C 15 hours. However, it is necessary to verify the corrosion mechanism and to prove the above results in the various corrosive environments. 27 refs., 6 tabs., 59 figs. (author)

  5. Evolution behavior of nanohardness after thermal-aging and hydrogen-charging on austenite and strain-induced martensite in pre-strained austenitic stainless steel

    Science.gov (United States)

    Zheng, Yuanyuan; Zhou, Chengshuang; Hong, Yuanjian; Zheng, Jinyang; Zhang, Lin

    2018-05-01

    Nanoindentation has been used to study the effects of thermal-aging and hydrogen on the mechanical property of the metastable austenitic stainless steel. Thermal-aging at 473 K decreases the nanohardness of austenite, while it increases the nanohardness of strain-induced ɑ‧ martensite. Hydrogen-charging at 473 K increases the nanohardness of austenite, while it decreases the nanohardness of strain-induced ɑ‧ martensite. The opposite effect on austenite and ɑ‧ martensite is first found in the same pre-strained sample. This abnormal evolution behavior of hardness can be attributed to the interaction between dislocation and solute atoms (carbon and hydrogen). Carbon atoms are difficult to move and redistribute in austenite compared with ɑ‧ martensite. Therefore, the difference in the diffusivity of solute atoms between austenite and ɑ‧ martensite may result in the change of hardness.

  6. Investigation of the applicability of some pre expressions for austenitic stainless steels

    International Nuclear Information System (INIS)

    Alfonsson, E.; Qvarfort, R.

    1992-01-01

    The alloying elements known to be most important for the pitting resistance of austenitic stainless steels are chromium, molybdenum and nitrogen. Several authors have tried to quantify the influence of these elements by expressions giving the relative influence of each element. By such an expression a ''pitting resistance equivalent, PRE'', can be calculated for a certain alloy. Recently it has become rather common among both producers and users of stainless steels to discuss pitting resistance in terms of PRE. In the present work, critical pitting temperatures, CPT, was determined in 1 M NaCl for a wide spectrum of austenitic stainless steels. With a newly developed electrochemical cell, the CPT can be determined with high accuracy as crevice corrosion in the specimen mount can be completely eliminated during test. The correlation between the experimental results and some PRE expressions from the literature is discussed

  7. Improving composition of protective coatings for steel casting

    International Nuclear Information System (INIS)

    Kuz'kina, N.N.; Pegov, V.G.; Bogatenkov, V.F.; Shub, L.G.; Raspopova, N.A.

    1983-01-01

    A radically new fuel-free slag-forming mixture used as protective coating for steel casting is introduced. The lack of combustible powders precludes explosion and fire Lazard in mixture preparation. Usage of the new mixture in stainless steel casting of Kh18N10T type permitted to improve the ingot surface quality and reduce spoilage from 1.16 to 0.66%

  8. Influence of laser shock peening on irradiation defects in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qiaofeng [Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588 (United States); Su, Qing [Nebraska Center for Energy Sciences Research, University of Nebraska–Lincoln, Lincoln, NE 68588 (United States); Wang, Fei [Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588 (United States); Zhang, Chenfei; Lu, Yongfeng [Department of Electrical Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588 (United States); Nastasi, Michael [Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588 (United States); Nebraska Center for Energy Sciences Research, University of Nebraska–Lincoln, Lincoln, NE 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Cui, Bai, E-mail: bcui3@unl.edu [Department of Mechanical & Materials Engineering, University of Nebraska–Lincoln, Lincoln, NE 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2017-06-15

    The laser shock peening process can generate a dislocation network, stacking faults, and deformation twins in the near surface of austenitic stainless steels by the interaction of laser-driven shock waves with metals. In-situ transmission electron microscopy (TEM) irradiation studies suggest that these dislocations and incoherent twin boundaries can serve as effective sinks for the annihilation of irradiation defects. As a result, the irradiation resistance is improved as the density of irradiation defects in laser-peened stainless steels is much lower than that in untreated steels. After heating to 300 °C, a portion of the dislocations and stacking faults are annealed out while the deformation twins remain stable, which still provides improved irradiation resistance. These findings have important implications on the role of laser shock peening on the lifetime extension of austenitic stainless steel components in nuclear reactor environments. - Highlights: •Laser shock peening generates a dislocation network, stacking faults and deformation twins in stainless steels. •Dislocations and incoherent twin boundaries serve as effective sinks for the annihilation of irradiation defects. •Incoherent twin boundaries remain as stable and effective defect sinks at 300 °C.

  9. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe–22.7Cr–2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...... precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic...

  10. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied in carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.

  11. Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel

    International Nuclear Information System (INIS)

    Pereloma, E.V.; Kostryzhev, A.G.; AlShahrani, A.; Zhu, C.; Cairney, J.M.; Killmore, C.R.; Ringer, S.P.

    2014-01-01

    The effect of thermomechanical processing conditions on Nb clustering and precipitation in both austenite and ferrite in a Nb–Ti microalloyed steel was studied using electron microscopy and atom probe tomography. A decrease in the deformation temperature increased the Nb-rich precipitation in austenite and decreased the extent of precipitation in ferrite. Microstructural mechanisms that explain this variation are discussed

  12. Retained austenite thermal stability in a nanostructured bainitic steel

    International Nuclear Information System (INIS)

    Avishan, Behzad; Garcia-Mateo, Carlos; Yazdani, Sasan; Caballero, Francisca G.

    2013-01-01

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T 0 criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization

  13. Retained austenite thermal stability in a nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Avishan, Behzad, E-mail: b_avishan@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Garcia-Mateo, Carlos, E-mail: cgm@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain); Yazdani, Sasan, E-mail: yazdani@sut.ac.ir [Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Caballero, Francisca G., E-mail: fgc@cenim.csic.es [Department of Physical Metallurgy, National Centre for Metallurgical Research (CENIM-CSIC), MATERALIA Research Group, Avda. Gregorio del Amo, 8, 28040, Madrid (Spain)

    2013-07-15

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T{sub 0} criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization.

  14. Laser cutting of high manganese cast steel; Komangan chuko no laser setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Tokunaga, T. [University of Industrial Technology, Kanagawa (Japan); Miyazaki, T. [Chiba Institute of Technology, Chiba (Japan)

    1994-08-25

    This paper discusses applicability of CO2 laser to cut high manganese cast steel, and investigates the cutting conditions and characteristics. The tested material is made of steel scrap, ferro Mn and ferro Cr of 50 kg in total, which was deoxidized by using pure aluminum and injected into CO2 die by means of the ordinary casting method to make a circular rod with a diameter of 28 mm. The rod was given a heating and water toughening treatment in a muffle furnace maintaining N2 atmosphere. The base structure is an austenite system of Mn 12.4% by mass with hardness of MHV 220 to 230. The paper describes discussions on test pieces (with a thickness of 2 mm) fabricated under a laser beam frequency of 150 Hz, power outputs of 250, 350 and 500 W, and cutting speeds of 100, 300 and 500 mm/min. The cutting width increases as the laser power is increased, but is not governed by the cutting speed. Increased cutting speed roughens the surface of a cut face. The laser cutting has caused no change in hardness of the base material, and no processing deterioration has been recognized. As described, the laser cutting can be applied to finish-cutting if the cutting condition is selected properly. Simplification of the cutting process and improvement of working environment can be expected from the laser cutting. 14 refs., 12 figs., 2 tabs.

  15. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  16. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    Science.gov (United States)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  17. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 deg. C

    International Nuclear Information System (INIS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-01-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 deg. C and 550 deg. C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 deg. C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 deg. C. Corrosion depth of ferritic/martensitic steels also decreases at 550 deg. C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 deg. C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 deg. C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr

  18. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    Science.gov (United States)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-03-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  19. SIMS analysis of deuterium absorption and diffusion in austenitic Fe-Mn-C steels

    International Nuclear Information System (INIS)

    Dieudonne, T.; Chene, J.; Marchetti, L.; Jomard, F.; Wery, M.; Allely, C.; Cugy, P.; Scott, C.P.

    2012-01-01

    Austenitic Fe-Mn-C steels are Ultra High Strength Steels which may be used for the production of deep drawn automotive parts containing extremely high residual stress and strain levels. In consequence, hydrogen absorption occurring during the corrosion process in aqueous environments may enhance the sensitivity of these steels to different kinds of hydrogen-induced damage, in particular Stress Corrosion Cracking (SCC). In order to predict and prevent SCC, it is important to study the behaviour of hydrogen in these austenitic steels exposed to aqueous environments and in particular the dependence on the alloy chemistry and microstructure. SIMS profiles of deuterium introduced by cathodic charging in selected specimens were used to characterize the diffusion of hydrogen in these steels. This allowed to be studied the role of chemical composition and microstructure on the kinetics of H absorption at room temperature. The competition between bulk matrix diffusion and short-circuit diffusion phenomena along grain boundaries was investigated. The results show a strong dependence of H diffusion and distribution on the alloy chemistry and grain size. (authors)

  20. Enhancing the capabilities of eddy current techniques for non-destructive evaluation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Rao, B.P.C.; Thirunavukkarasu, S.; Sasi, B.; Jayakumar, T.; Baldev Raj

    2010-01-01

    Eddy current non-destructive evaluation (NDE) techniques find many applications during fabrication and in-service inspection of components made of stainless steel. In recent years, concurrent developments in electromagnetic field detection sensors such as giant magneto-resistive (GMR), giant-magneto impedance (GMI) and SQUIDs sensors, computers, microelectronics, and incorporating advanced signal and image processing techniques, have paved the way for enhancing the capabilities of existing eddy current (EC) techniques for examination of austenitic stainless steel (SS) plates, tubes and other geometries and several innovative methodologies have been developed. This paper highlights a few such applications in EC testing to austenitic stainless steel components used in fast reactors. (author)

  1. Effect of nitrogen on the stabilization of austenite in a tungsten-molybdenum high-speed steel

    International Nuclear Information System (INIS)

    Popandopulo, A.N.; Zhukova, L.T.

    1986-01-01

    A study was made of the tendency of steels R6M5 and R6Am5 to austenite stabilization after subzero treatment and high-temperature tempering in hot-rolled bars. Data indicate that in steel R6AM5 during quenching there is almost instantaneous austenite stabilization. The data was derived from a study of phase composition (exposure from a microsection in DRON-2.0 equipment in iron K /SUB alpha/ radiation), microstructure, and hardness. The authors conclude that in view of serious difficulties in metallurgical and tool production, steel R6AM5 should be supplied only at the request of the customer

  2. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure.

    Science.gov (United States)

    Izquierdo, Paula P; de Biasi, Ronaldo S; Elias, Carlos N; Nojima, Lincoln I

    2010-12-01

    Our purpose was to study the mechanical properties and phase transformations of orthodontic wires submitted to in-vivo exposure in the mouth for different periods of time. Stainless steel wires were tied to fixed orthodontic appliances of 30 patients from the orthodontics clinic of Universidade Federal do Rio de Janeiro School of Dentistry in Brazil. According to the duration of the clinical treatment, the patients were divided into 3 groups. After in-vivo exposure, the samples were studied by mechanical testing (torsion) and ferromagnetic resonance. Statistical analyses were carried out to evaluate the correlation between time of exposure, mechanical properties, and austenite-to-martensite transformation among the groups. The results were compared with as-received control samples. The torque values increased as time in the mouth increased. The increase in torque resistance showed high correlations with time of exposure (P = 0.005) and austenite-martensite phase transformation. The resistance of stainless steel orthodontic wires increases as the time in the mouth increases; this effect is attributed to the austenite-to-martensite transformation. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Effect of smelting method on the austenite grain size and properties of heat-resisting pearlitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Balakhovskaya, M B; Khusainova, N A; Davlyatova, L N [Vsesoyuznyj Nauchno-Issledovatel' skij Teplotekhnicheskij Inst., Moscow (USSR)

    1975-12-01

    Influence of smelting method on austenite grain size and properties of refractory perlite steel were studied. An opportunity was found to increase the steel refractoriness without deteriorating its other properties. The steel 12Kh1MF of electric or common open-hearth smelting was used. The dependence of kinetics of austenite grain growth on the smelting method was studied in the temperature range 950 deg - 1200 deg C with 1 hour exposure. The grain size of austenite in steel is supposedly determined by aluminium nitrides and vanadium carbides. In tests of normalized (kept for 20 minutes at 950-980 deg C) and tempered (kept for 3 hours at 730 deg C) transverse (tangential) pipe cross-section samples the electric steel had higher impact viscosity than the open-hearth metal. At working temperatures (540 deg -580 deg C) the difference in viscosity has its minimum. Viscosity of both steels 12Kh1MF begins to sharply decrease from 20 deg C. However, electric steel has rather high viscosity even at /sup -/40 deg C, while the open-hearth one becomes brittle as early as at /sup -/20 deg C. Long-term strength tests at 580 deg C under stresses 10-14 kG/mm/sup 2/ show that the coarse-grain steel is more refractory, i.e. time till fracture of open-hearth steel samples is twice as long as that of electric steel samples.

  4. To the corrosion of austenitic steels in sodium loops

    International Nuclear Information System (INIS)

    Schad, M.

    1978-03-01

    This report describes the comparison between experimental corrosion and calculated corrosion effects on austenitic steels exposed to liquid sodium. As basis for the calculations served a diffusion model. The comparison showed that the model is able to predict the corrosion effects. In addition the model was used to calculate the corrosion effect along an actual fuel rod. (orig.) [de

  5. Review of the continuous casting of steel by strip casting technology. Twin roll method system

    International Nuclear Information System (INIS)

    Ibarrondo, I.

    2008-01-01

    In order to compete in the future steel market and to maintain market share, the steel makers will need to use new efficient technologies capable of supplying steel strip products of high quality at low cost. In this way, the strip casting technology by twin rol method is one of the most important research are in the iron and steel industry today. This review makes a general description of the strip casting technology as well as its different steps, such us; metal delivery and casting, solidification process, hot rolling reduction step, etc. Through mathematical and physical models, the influence on microstructure texture surface quality and mechanical properties of the materials obtained by this method are described as a function of processing parameters, specially the roughness of the rolls. the manufacturing of carbon, stainless and electrical steels involves smaller capital and operating cost, lower gas emissions, and an opportunity to create new grades due to a faster solidification rate that leads to a different solidification structures. In sight of all this it is likely that Strip Casting technology will make a profound impact on the manufacturing landscape of the 21 s t century. (Author) 177 refs

  6. Effect of Nickel Equivalent on Austenite Transition Ratio in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-06-01

    Full Text Available Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS, microscopic observations (optical and scanning microscopy, image analyser, as well as Brinell hardness and HV microhardness measurements of structural components.

  7. Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture

    NARCIS (Netherlands)

    Hilkhuijsen, P.; Geijselaers, Hubertus J.M.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Akkerman, Remko

    2013-01-01

    Uniaxial tensile tests on both a non-textured and a highly textured, fully austenitic stainless steel were performed in both the rolling and the transverse directions. Both materials show mechanically induced phase transformation from the austenitic FCC to the martensitic BCC phase. Differences in

  8. Optimization of Sigma Phase Precipitates with Respect to the Functional Properties of Duplex Cast Steel

    Directory of Open Access Journals (Sweden)

    Z. Stradomski

    2012-04-01

    Full Text Available The paper presents the results of examination concerning optimization of the σ phase precipitates with respect to the functional properties of ferritic-austenitic cast steel. The examined material comprised two grades of corrosion-resistant cast steel, namely GX2CrNiMoN25-6-3 and GX2CrNiMoCuN25-6-3-3, used for example in elements of systems of wet flue gas desulphurisation in power industry. The operating conditions in media heated up to 70°C and containing Cl- and SO4 ions and solid particles produce high erosive and corrosive wear. The work proposes an application of the σ phase as a component of precipitation strengthening mechanism in order to increase the functional properties of the material. Morphology and quantities of σ phase precipitates were determined, as well as its influence on the erosion and corrosion wear resistance. It was shown that annealing at 800°C or 900°C significantly improves tribological properties as compared with the supersaturated state, and the best erosion and corrosion wear resistance achieved due to the ferrite decomposition δ → γ’ + σ was exhibited in the case of annealing at the temperature of 800°C for 3 hours.

  9. Capability of austenitic steel to withstand cyclic deformations during service at elevated temperatures

    International Nuclear Information System (INIS)

    Etienne, C.F.; Dortland, W.; Zeedijk, H.B.

    1975-01-01

    Safe design for structures with steels for elevated temperatures necessitates screening these materials on the basis of objective criteria for ductility, besides screening them on elevated temperature strength. Because creep and fatigue damage may occur during operation, the ductility of a steel after a long operation time is more important than the ductility in the as delivered condition. Results of an investigation into the ductility of austenitic Cr--Ni-steels are described. In order to determine the capability of the steels to withstand cyclic plastic deformations in the aged condition, various aging treatments were applied before determining the ductility in low-cycle fatigue testing. Correlating the ductility with the sizes of the carbide precipitates made it possible to predict the ductility behavior during long service times. This led to the conclusion that for an austenitic steel with a high thermal stability (17.5 percent Cr--11 percent Ni) the ductility can decrease considerably during service at elevated temperature. Nevertheless it is expected that the remaining ductility of such steels in aged condition will be amply sufficient to withstand the cyclic deformations that occur during normal service

  10. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  11. The improvement of ultrasonic characteristics in weld metal of austenitic stainless steel using magnetic stirring method

    International Nuclear Information System (INIS)

    Arakawa, T.; Tomisawa, Y.

    1988-01-01

    The magnetic stirring welding process was tested to save the difficulty of ultrasonic testing of austenitic stainless steel overlayed welds, due to grain refinement of weld solidification structure. The testing involved stirring the molten pool with Lorenz force induced by the interaction of welding current and alternative magnetic field applied from the outside magnetic coil. This report summarizes improvement of ultrasonic characteristic in austenitic stainless steel overlayed welds caused by magnetic stirring welding process

  12. Study of effect of austenite prehistory of 03Ch20N16AG6 steel on it structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Demchuk, I S; Krakhmalev, V I; Manninen, A I [Leningradskij Politekhnicheskij Inst. (USSR)

    1981-01-01

    Effect of preliminary cold working and different procedures of thermal treatment on structure and mechanical properties of stable austenite of 03Kh20N16AG6 steel is found out. It is shown that the degree of defectability of initial austenite structure predetermines the further deformation behaviour of the steel (level of strength characteristics, plasticity storage, hardening degree etc.) in the wide temperature range. Close connection of structural changes with properties should determine the choice of preliminary treatment of stable austenitic steel as applied to concrete condition of operation.

  13. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  14. A review of compatibility of IFR fuel and austenitic stainless steel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.

    1996-01-01

    Interdiffusion experiments have been conducted to investigate the compatibility of various austenitic stainless steels with U-Pu-Zr alloys, which are alloys to be employed as fuel for the Integral Fast Reactor being developed by Argonne National Laboratory. These tests have also studied the compatibility of austenitic stainless steels with fission products, like the minor actinides (Np and Am) and lanthanides (Ce and Nd), that are generated during the fission process in an IFR. This paper compares the results of these investigations in the context of fuel-cladding compatibility in IFR fuel elements, specifically focusing on the relative Interdiffusion behavior of the components and the types of phases that develop based on binary phase diagrams. Results of Interdiffusion tests are assessed in the light of observations derived from post-test examinations of actual irradiated fuel elements

  15. Degradation of superheater tubes made of austenitic T321H steel after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Hernas, Adam [Silesian Technical Univ., Katowice (Poland). Faculty of Material Science; Augustyniak, Boleslaw; Chmielewski, Marek [Gdansk Univ. of Technology (Poland). Mechanical Dept.; Sablik, M.J. [Applied Magnetic and Physical Modeling, LLC, San Antonio, TX (United States)

    2010-07-01

    There are presented results of complementary tests performed for the evaluation of creep damage in austenitic steel grade T321H exploited over 200,000 hours in the secondary superheater part of a power plant boiler. The following techniques have been applied: SEM microscopy, X-ray diffraction, tensile tests, hardness measurements and novel eddy current inspection. The novel eddy current inspection is proposed as a non-destructive method of estimating the creep damage stage of austenite steel boiler tubes after long-term service in power plants. We compare the results provided by the different techniques and discuss the correlations and also point out the problems which need to be addressed in order to elaborate the remaining life assessment of austenitic boiler tubes. (orig.)

  16. Role of Austenite in Brittle Fracture of Bond Region of Super Duplex Stainless Steel

    Science.gov (United States)

    Kitagawa, Yoshihiko; Ikeuchi, Kenji; Kuroda, Toshio

    Weld simulation of heat-affected zone (HAZ) was performed to investigate the mechanism by which austenite affects the toughness of super duplex stainless steel. Thermal cycles of various peak temperatures in the range from 1373 K to 1673 K corresponding to the HAZ were applied to SAF2507 super duplex stainless steel specimens. Charpy impact test was carried out using the specimens after the weld simulation, and the fracture surfaces were observed by SEM using three-dimensionally reconstruction technique. Austenite content decreased with increasing the peak temperature when the peak temperature exceeded 1473 K and the impact value decreased with increasing the peak temperature and decreasing the austenite content. The thermal cycle of the peak temperature of 1673 K corresponding to weld bond region caused decreasing of austenite content which was 22% lower than that of the base metal. The ductile-brittle transition temperature was measured. As a result the temperature increased rapidly in the weld bond region, the peak temperature of which exceeded 1623 K by the grain growth of ferrite matrix occurring subsequently to the completely dissolution of austenite. The morphology of the fracture surfaces after impact testing at 77 K showed cleavage fracture of ferrite. The {100} orientations of cleavage fracture facets were measured using three-dimensional images of the fracture surfaces and the results were visualized as the orientation color maps. The results showed that there were cleavage fractures consisting of a few facets parallel to each other. It was considered that a few facets existed in one ferrite grain. It was concluded that Widmanstätten austenite divided the large fracture into smaller cleavage facets in a ferrite grain and then suppressed the degradation of bond toughness of duplex stainless steel.

  17. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  18. Effects of irradiation on the fracture behavior of austenitic stainless steels

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Stiegler, J.O.; Holmes, J.J.

    1977-01-01

    Fracture in irradiated materials occurs by mechanisms which occur in unirradiated materials in addition to mechanisms related to irradiation phenomena. The paper examines radiation effects in austenitic stainless steels for use as core structural materials in fast breeder reactors

  19. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  20. Estimation of fracture toughness of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1990-01-01

    A program is being conducted to investigate the low-temperature embrittlement of cast duplex stainless steels under light water reactor (LWR) operating conditions and to evaluate possible remedies for the embrittlement problem in existing and future plants. The scope of the investigation includes the following goals: develop a methodology and correlations for predicting the toughness loss suffered by cast stainless steel components during normal and extended life of LWRs, validate the simulation of in-reactor degradation by accelerated aging, and establish the effects of key compositional and metallurgical variables on the kinetics and extent of embrittlement. Microstructural and mechanical property data are being obtained on 25 experimental heats (static-cast keel blocks and slabs) and 6 commercial heats (centrifugally cast pipes and a static-cast pump impeller and pump casing ring), as well as on reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The ferrite content of the cast materials ranges from 3 to 30%. Charpy-impact, tensile, and J-R curve tests have been conducted on several experimental and commercial heats of cast stainless steel that were aged up to 30,000 h at temperatures of 290 to 400 degrees C. The results indicate that thermal aging at these temperatures increases the tensile strength and decreases the impact energy and fracture toughness of the steels. In general, the low-carbon CF-3 steels are the most resistant to embrittlement, and the molybdenum-containing high-carbon CF-8M steels are the least resistant. Ferrite morphology has a strong effect on the degree or extent of embrittlement, and the kinetics of embrittlement can vary significantly with small changes in the constituent elements of the cast material

  1. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    Science.gov (United States)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  2. Steel castings of valves for nuclear power station

    International Nuclear Information System (INIS)

    Yamasaki, Yutaka

    1975-01-01

    The manufacturing of the steel castings of valves for nuclear power plants is reported. The report is divided in six parts. The first part describes the reliability of the steel castings of valves for nuclear power plants. Particular attention must be paid to larger diameter and lower pressure rating for the valves in nuclear power plants than those in thermal power plants. The second part describes the characteristics of steel casting quality, defects and their cause. The defects that may be produced in steel castings are as follows: (a) cavities caused by the insufficient supply of molten steel, (b) sand bites caused by the mold destruction due to thermal shock, and (c) pinholes caused by the gas absorption of molten steel. The third part describes the clarification of quality level and the measures quality project. Gaseous defects and the indications detected by magnetic powder test are attributed to electric furnace steel making. In particular, the method to minimize gas content is important. The fourth part describes the quality control of manufacturing processes. In practice, thirteen semi-automatic testers using gamma radiation are employed. A full automatic inspection plant having capacity of 20,000 radiographs per month is under design. The fifth part describes a quality warrant system. A check sheet system concerning quality and safety is employed in all work shops. The reliability of all testers and measuring instruments as well as the skill of workmen are examined periodically. The seventh part deals with future problems. The manufacturing plan must be controlled so that non-destructive inspection becomes the main means for quality control. (Iwakiri, K.)

  3. The effect of variations in carbon activity on the carburization of austenitic steels in sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Hobdell, M.R.; Hooper, A.J.

    1978-07-01

    Experience has shown that the liquid sodium coolant of fast breeder reactors is an effective carbon-transport medium; the resulting carburization of thin austenitic stainless steel components (eg IHX and fuel cladding) could adversely affect their mechanical integrity. The degree and nature of steel carburization depend, inter alia, on the carbon activity of the sodium environment. Exploratory tests are described in which specimens of austenitic stainless steel were carburized in sodium, the carbon activity of which was continuously monitored by a BNL electrochemical carbon meter. The sodium carbon activity was initially high, but decreased with time, simulating conditions equivalent to plant start-up or coolant clean-up following accidental oil ingress. The extent and nature of steel carburization was identified by metallography, electron microscopy, X-ray crystallography and chemical analysis. (author)

  4. Austenite stability in reversion-treated structures of a 301LN steel under tensile loading

    Czech Academy of Sciences Publication Activity Database

    Järvenpää, A.; Jaskari, M.; Man, Jiří; Karjalainen, L. P.

    2017-01-01

    Roč. 127, MAY (2017), s. 12-26 ISSN 1044-5803 R&D Projects: GA ČR GA13-32665S Institutional support: RVO:68081723 Keywords : austenitic stainless steel * austenite stability * grain size * reversion annealing * tensile straining * deformation induced martensite Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.714, year: 2016

  5. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Devendranath Ramkumar, K., E-mail: ramdevendranath@gmail.com; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-06-25

    This research work articulated the effect of SiO{sub 2} flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO{sub 2} flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels.

  6. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-01-01

    This research work articulated the effect of SiO 2 flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO 2 flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels

  7. Investigation of corrosion of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.

  8. The Effect of Si and Mn on Microstructure and Selected Properties of Cr-Ni Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2017-03-01

    Full Text Available Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and water and resistance to electrochemical corrosion in a 3% NaCl-H2O solution of selected cast steel grades, i.e. typical duplex cast steel, high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L. The study shows that the best abrasion wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N. This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best resistance to electrochemical corrosion in 3% NaCl-H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

  9. Microstructural evolution and strain hardening behavior of the cold-drawn austenitic stainless steels

    International Nuclear Information System (INIS)

    Choi, Jeom Yong; Jin, Won

    1998-01-01

    The strain induced α ' -martensite formation and the strain hardening behavior of metastable austenitic stainless steel during cold drawing have been investigated. The strain induced α ' -martensite nucleates mainly at the intersection of the mechanical twins rather than ε-martensite. It could be explained by the increase of stacking fault energy which arises from the heat generated during high speed drawing and, for AISI 304/Cu, the additional effect of Cu additions. The strain hardening behavior of austenitic stainless steel is strongly related to the microstructural evolution accompanied by strain induced α ' -martensite. The work hardening rates of cold-drawn 304 increased with increasing interstitial element(C,N) contents which affect the strength of the strain induced α ' -martensite

  10. Damage mechanism of piping welded joints made from austenitic Steel for the type RBMK reactor

    International Nuclear Information System (INIS)

    Karzov, G.; Timofeev, B.; Gorbakony, A.; Petrov, V.; Chernaenko, T.

    1999-01-01

    In the process of operation of RBMK reactors the damages were taking place on welded piping, produced from austenitic stainless steel of the type 08X18H10T. The inspection of damaged sections in piping has shown that in most cases crack-like defects are of corrosion and mechanical character. The paper considers in details the reasons of damages appearance and their development for this type of welded joints of downcomers 325xl6 mm, which were fabricated from austenitic stainless steel using TlG and MAW welding methods. (author)

  11. Effect of cerium addition on microstructure and mechanical properties of high-strength Fe85Cr4Mo8V2C1 cast steel

    Energy Technology Data Exchange (ETDEWEB)

    Hufenbach, J., E-mail: j.k.hufenbach@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Helth, A. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Lee, M.-H. [Korea Institute of Industrial Technology, Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Wendrock, H.; Giebeler, L. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Choe, C.-Y.; Kim, K.-H. [Korea Institute of Industrial Technology, Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Kühn, U. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Kim, T.-S. [Korea Institute of Industrial Technology, Gaetbeol-ro 156, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Eckert, J. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); TU Dresden, Institute of Materials Science, D-01062 Dresden (Germany)

    2016-09-30

    This work presents an investigation on the influence of rare earth additions (Ce) on the microstructure and mechanical properties of a cast Fe85Cr4Mo8V2C1 (element contents in wt%) tool steel. The applied relatively high solidification rate during the casting process promotes the formation of non-equilibrium phases such as martensite, retained austenite as well as a fine network-like structure of complex carbides. This combination of phases and their morphology results in excellent mechanical properties already in the as-cast state. Cerium additions induce a change in phase formation and resulting mechanical properties. Besides morphological and quantitative changes of the main constituent phases, novel carbo-oxide and carbide phases are formed. To investigate this microstructural phenomenon, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDX) were applied. Altogether, the addition of small amounts of the rare earth element cerium together with a tailored casting process results in enhanced mechanical properties compared to the Fe85Cr4Mo8V2C1 alloy and offers new possibilities to obtain high-strength and simultaneously adequate ductile cast steels for advanced tool design.

  12. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  13. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2016-01-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process....... As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite...... investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low...

  14. Production of Austenitic Steel for the LHC Superconducting Dipole Magnets

    CERN Document Server

    Bertinelli, F; Komori, T; Peiro, G; Rossi, L

    2006-01-01

    The austenitic-steel collars are an important component of the LHC dipole magnets, operating at cryogenic temperature under high mechanical stress. The required steel, known as YUS 130S, has been specifically developed for this application by Nippon Steel Corporation (NSC), who was awarded a CERN contract in 1999 for the supply of 11 500 tonnes. In 2005 - after six years of work - the contract is being successfully completed, with final production being ensured since October 2003 by Nippon Steel & Sumikin Stainless Steel Corporation (NSSC). The paper describes the steel properties, its manufacturing and quality control process, organization of production, logistics and contract follow-up. Extensive statistics have been collected relating to mechanical, physical and technological parameters. Specific attention is dedicated to measurements of magnetic permeability performed at cryogenic temperatures by CERN, the equipment used and statistical results. Reference is also made to the resulting precision of the...

  15. Comparison of material property specifications of austenitic steels in fast breeder reactor technology

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Van Mulders, E.

    1985-01-01

    Austenitic stainless steels are very widely used in components for European Fast Breeder Reactors. The Activity Group Nr.3 ''Materials'', within Working Group ''Codes and Standards'' of the Fast Reactor Co-Ordination Committee of the European Communities, has decided to initiate a study to compare the material property specifications of the austenitic stainless steel used in the European Fast Breeder Technology. Hence, this study would allow one to view rapidly the designation of a particular steel grade in different European countries and to compare given property values for a same grade. There were dissimilarities, differences or voids appear, it could lead to an attempt to complete and/or to uniformize the nationally given values, so that on a practical level interchangeability, availability and use ease design and construction work. A selection of the materials and of their properties has been made by the Working Group. Materials examined are Stainless Steel AISI 304, 304 L, 304 LN, 316, 316 L, 316 LN, 316''Ti stab.'', 316''Nb stab''., 321, 347

  16. Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steels

    NARCIS (Netherlands)

    Geijselaers, Hubertus J.M.; Hilkhuijsen, P.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Zhang, S.-H.; Liu, X.-H.; Gheng, M.; Li, J.

    2013-01-01

    The transformation of austenite to martensite is a dominant factor in the description of the constitutive behavior during forming of TRIP assisted steels. To predict this transformation different models are currently available. In this paper the transformation is regarded as a stress induced process

  17. Corrosion of silicon-containing austenitic stainless steels under trans-passive conditions

    International Nuclear Information System (INIS)

    Stolarz, Jacek

    1989-01-01

    This research thesis addresses austenitic stainless steels which are used in installations for the chemical treatment of nuclear fuels, and are there in contact with nitric acid solutions the oxidising character of which generally promotes metal passivity. However, if this nitric environment becomes too oxidising, these steels may face severe corrosion problems. More particularly, this thesis addresses the study of intergranular corrosion, and aims at analysing various aspects of the corrosion of these austenitic stainless steels in trans-passive conditions. The author aims at determining and distinguishing the contributions due to silicon and those related to the presence of other impurities and addition elements by comparing the behaviours of industrial grade steels and high purity alloys in rigorously controlled electrochemical conditions. Another objective is to study the influence of the intergranular structure on silicon segregation by means of an attack technique in trans-passive conditions. After a report of a bibliographical study on the addressed topics and a presentation of the studied materials and implemented experimental techniques, the author reports the study of steel behaviour with respect to generalised dissolution in trans-passive conditions, as well in the nitric environment as in a sulphuric acid solution at imposed potential. Localised intragranular corrosion phenomena are discussed. A trans-passive intragranular corrosion model is proposed, and its possibilities in the analysis of intergranular segregation analysis are discussed. Experimental results of trans-passive intergranular corrosion of stainless steels are presented and interpreted by using the McLean segregation model. The influence of steel composition and of experimental conditions is discussed, as well as the role of grain boundary structure in the corrosion process [fr

  18. Probing the Evolution of Retained Austenite in TRIP Steel During Strain-Induced Transformation: A Multitechnique Investigation

    Science.gov (United States)

    Haidemenopoulos, G. N.; Constantinou, M.; Kamoutsi, H.; Krizan, D.; Bellas, I.; Koutsokeras, L.; Constantinides, G.

    2018-06-01

    X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0-22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.

  19. Quality of austenite chrome-nickel steel made by gas-oxygen refining

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Levin, F.L.; Moshkevich, E.A.; Shifrin, Eh.V.; Movshovich, V.S.; Pargamonov, E.A.

    1991-01-01

    Properties and structure were investigated of austenitic 03Kh18N11 and 08KhN10T steels melted at gas oxygen refining aggregates. It was established that mechanical and corrosion properties of rolling of such steels were in agreement with standard properties of metal of open melting. Sheet 08Kh18N10T steel has the level of strength and plasticity regulated for 12Kh18N10T steel. As steel of 08Kh18N10T holds the complex of high mechanical and corrosion properties, 08Kh18N10T is recommended to be replace by 12Kh18N10T with the aim of decrease of titanium usage and increase of process efficiency

  20. Quality improvement of steel cast-welded constructions

    Directory of Open Access Journals (Sweden)

    Аркадій Васильович Лоза

    2017-06-01

    Full Text Available Among the various types of metallurgical equipment there are structures which are welded compounds of a cast base and additional elements produced by casting or any other means. Such structures are called cast-welded constructions. Besides new working properties such constructions appear to be more efficient and provide better durability as compared to the similar structures produced by other industrial means. Meanwhile the advantages of the technology are not used in full. One reason is low quality of the compound products caused by lack of proper preparation of the elements to be welded and poor quality of the welds themselves. In the article the methods of quality production and the maintenance of steel cast-welded constructions have been considered. A ladle of a blast-furnace slag car is used as the subject of investigation and further testing of the mentioned above technologies. The ladle is a cast product. Under operating conditions, the ladle undergoes mechanical and thermal load, which results in deformation of its sides that deflect inside. To prevent the deflection stiffening ribs are welded onto the outer surface of the ladle. However, there may be casting defects in the base metal that could reduce the durability of the welds. It has been proved that welds on the unprepared cast base of the steel product cannot guarantee the combination’s durability and reliability. To prevent the influence of the casting defects it has been recommended to cover the base metal with one more metal layer before welding the elements on. Two-layer surfacing provides best result as the first layer serves for the weld penetration of the casting defects since this layer has a significant share of base metal therefore it is less malleable; the second layer is necessary for making the layer viscous enough. The viscous layer ensures the absence of sharp transition from the deposited metal to the base metal and increases the crack resistance of the weld. In

  1. Strengthening of stable Cr-Ni austenitic stainless steel under thermomechanical treatments

    Science.gov (United States)

    Akkuzin, S. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.

    2017-12-01

    The features of microstructure and mechanical properties of stable austenitic steel after thermomechanical treatment consisted of low-temperature deformation, deformation in the temperature range T = 273-873 K, and subsequent annealing were investigated. It is shown that under such treatment direct (γ → α')- and reverse (α'→γ)-martensitic transformations occur in the steel. As a result of the thermomechanical treatment submicrocrystalline structural states with high density of micro- and nanotwins and localized deformation bands are formed. The strength of the steel in these structural states is several times higher than that in the initial state.

  2. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    Science.gov (United States)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  3. Influence of thermal aging on primary water stress corrosion cracking of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Negishi, Kazuo; Totsuka, Nobuo; Nakajima, Nobuo

    2001-01-01

    In order to evaluate the SCC susceptibility of cast duplex stainless steels which are often used for the main coolant piping of pressurized water reactors (PWRs), the slow strain rate test (SSRT) and the constant load test (CLT) of the materials were performed in simulated primary water at 360degC. The stainless steel contains ferritic phase with ranging from 8 to 23% and its mechanical properties are affected by long time thermal aging. Therefore, we paid attention to the influence of its ferrite content and thermal aging on the SCC susceptibility of this stainless steel and prepared three kinds of specimen with different ferrite contents (23%, 15% and 8%). The reduction in area observed by the SSRT in simulated primary water at 360degC was smaller than that obtained by the tensile test in air at the same temperature. Microcracks were observed on the unaged specimen surfaces and aged ones at 400degC for 10,000 hours after 3,000 hours of the CLT with the load condition of two times of yield strength. The SCC susceptibility was evaluated by reduction ratio defined by the ratio of the reduction in area by the SSRT to that by the tensile test. The reduction ratio was not clear for low ferrite specimens, but apparently decreased with increasing aging time for the specimen with 23% ferrite. This change by aging time can be explained as follows: (1) the brittle fracture in the unaged specimens is mainly caused by quasi-cleavage fracture in austenitic phase. (2) After aging, it becomes a mixture of quasi-cleavage fracture in both austenitic and ferritic phases and phase boundary fracture of both phases. (author)

  4. Influence of thermal aging on primary water stress corrosion cracking of cast duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takuyo; Negishi, Kazuo; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to evaluate the SCC susceptibility of cast duplex stainless steels which are often used for the main coolant piping of pressurized water reactors (PWRs), the slow strain rate test (SSRT) and the constant load test (CLT) of the materials were performed in simulated primary water at 360degC. The stainless steel contains ferritic phase with ranging from 8 to 23% and its mechanical properties are affected by long time thermal aging. Therefore, we paid attention to the influence of its ferrite content and thermal aging on the SCC susceptibility of this stainless steel and prepared three kinds of specimen with different ferrite contents (23%, 15% and 8%). The reduction in area observed by the SSRT in simulated primary water at 360degC was smaller than that obtained by the tensile test in air at the same temperature. Microcracks were observed on the unaged specimen surfaces and aged ones at 400degC for 10,000 hours after 3,000 hours of the CLT with the load condition of two times of yield strength. The SCC susceptibility was evaluated by reduction ratio defined by the ratio of the reduction in area by the SSRT to that by the tensile test. The reduction ratio was not clear for low ferrite specimens, but apparently decreased with increasing aging time for the specimen with 23% ferrite. This change by aging time can be explained as follows: (1) the brittle fracture in the unaged specimens is mainly caused by quasi-cleavage fracture in austenitic phase. (2) After aging, it becomes a mixture of quasi-cleavage fracture in both austenitic and ferritic phases and phase boundary fracture of both phases. (author)

  5. Aluminide protective coatings on high–temperature creep resistant cast steel

    OpenAIRE

    J. Kubicki; A. Kochmańska

    2009-01-01

    This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were...

  6. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-01-01

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  7. Determination of local carbon content in austenite during intercritical annealing of dual phase steels by PEELS analysis

    International Nuclear Information System (INIS)

    Garcia-Junceda, A.; Caballero, F.G.; Capdevila, C.; Garcia de Andres, C.

    2007-01-01

    Parallel electron energy loss spectroscopy has allowed to analyse and quantify local variations in the carbon concentration of austenite islands transformed during the intercritical annealing treatment of commercial dual-phase steels. These changes in the carbon content of different austenite regions are responsible for the different volume fractions of tempered martensite, martensite and retained austenite obtained after intercritical annealing and overaging treatment. This technique reveals how carbon distribution in austenite evolves as the transformation process advances

  8. Resistance Element Welding of Magnesium Alloy/austenitic Stainless Steel

    Science.gov (United States)

    Manladan, S. M.; Yusof, F.; Ramesh, S.; Zhang, Y.; Luo, Z.; Ling, Z.

    2017-09-01

    Multi-material design is increasingly applied in the automotive and aerospace industries to reduce weight, improve crash-worthiness, and reduce environmental pollution. In the present study, a novel variant of resistance spot welding technique, known as resistance element welding was used to join AZ31 Mg alloy to 316 L austenitic stainless steel. The microstructure and mechanical properties of the joints were evaluated. It was found that the nugget consisted of two zones, including a peripheral fusion zone on the stainless steel side and the main fusion zone. The tensile shear properties of the joints are superior to those obtained by traditional resistance spot welding.

  9. Ultrasonic velocity measurements- a potential sensor for intelligent processing of austenitic stainless steels

    International Nuclear Information System (INIS)

    Venkadesan, S.; Palanichamy, P.; Vasudevan, M.; Baldev Raj

    1996-01-01

    Development of sensors based on Non-Destructive Evaluation (NDE) techniques for on-line sensing of microstructure and properties requires a thorough knowledge on the relation between the sensing mechanism/measurement of an NDE technique and the microstructure. As a first step towards developing an on-line sensor for studying the dynamic microstructural changes during processing of austenitic stainless steels, ultrasonic velocity measurements have been carried out to study the microstructural changes after processing. Velocity measurements could follow the progress of annealing starting from recovery, onset and completion of recrystallization, sense the differences in the microstructure obtained after hot deformation and estimate the grain size. This paper brings out the relation between the sensing method based on ultrasonic velocity measurements and the microstructure in austenitic stainless steel. (author)

  10. OPTIMIZATION OF SURFACE ROUGHNESS OF AISI 304 AUSTENITIC STAINLESS STEEL IN DRY TURNING OPERATION USING TAGUCHI DESIGN METHOD

    Directory of Open Access Journals (Sweden)

    D. PHILIP SELVARAJ

    2010-09-01

    Full Text Available The present work is concentrated with the dry turning of AISI 304 Austenitic Stainless Steel (ASS. This paper presents the influence of cutting parameters like cutting speed, feed rate and depth of cut on the surface roughness of austenitic stainless steel during dry turning. A plan of experiments based on Taguchi’s technique has been used to acquire the data. An orthogonal array, the signal to noise (S/N ratio and the analysis of variance (ANOVA are employed to investigate the cutting characteristics of AISI 304 austenitic stainless steel bars using TiC and TiCN coated tungsten carbide cutting tool. Finally the confirmation tests that have been carried out to compare the predicted values with the experimental values confirm its effectiveness in the analysis of surface roughness.

  11. The role of nitrogen in improving pitting corrosion resistance of high-alloy austenitic and duplex stainless steel welds

    International Nuclear Information System (INIS)

    Vilpas, M.; Haenninen, H.

    1999-01-01

    The effects of nitrogen alloyed shielding gas on weld nitrogen content and pitting corrosion resistance of super austenitic (6%Mo) and super duplex stainless steels have been studied with special emphasis on microsegregation behaviour of Cr, Mo and N. The measurements performed with the 6%Mo steel indicate that all these elements segregate interdendritically in the fully austenitic weld metal. With nitrogen addition to the shielding gas the enrichment of nitrogen to the interdendritic regions is more pronounced than to the dendrite cores due to which the pitting corrosion resistance of the dendrite cores increases only marginally. In the super duplex steel welds nitrogen enriches in austenite increasing its pitting corrosion resistance more effectively. In these welds the pitting corrosion resistance of the ferrite phase remains lower. (orig.)

  12. Experimental determination of the constitutive behaviour of a metastable austenitic stainless steel

    NARCIS (Netherlands)

    Post, J.; Nolles, H.; Datta, K.; Datta, K.; Geijselaers, Hubertus J.M.

    2008-01-01

    This article presents measurements to describe the constitutive behaviour of a semi-austenitic precipitation hardenable stainless steel called Sandvik Nanoflex™, during metal forming and hardening. The material is metastable, which causes strain-induced transformation during forming. Depending on

  13. Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels

    CERN Document Server

    Zwaag, S; Kruijver, S O; Sietsma, J

    2002-01-01

    Stability of retained austenite is the key issue to understand transformation-induced plasticity (TRIP) effect. In this work, both thermal stability and mechanical stability are investigated by thermo-magnetic as well as in situ conventional X-ray diffraction and micro synchrotron radiation diffraction measurements. The thermal stability in a 0.20C-1.52Mn-0.25Si-0.96Al (wt%) TRIP steel is studied in the temperature range between 5 and 300 K under a constant magnetic field of 5T. It is found that almost all austenite transforms thermally to martensite upon cooling to 5K and M sub s and M sub f temperatures are analyzed to be 355 and 115 K. Transformation kinetics on the fraction versus temperature relation are well described by a model based on thermodynamics. From the in situ conventional X-ray and synchrotron diffraction measurements in a 0.17C-1.46Mn-0.26Si-1.81Al (wt%) steel, the volume fraction of retained austenite is found to decrease as the strain increases according to Ludwigson and Berger relation. T...

  14. Study of problems associated with the ultrasonic examination of repeatedly repaired austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Subbaratnam, R.; Palaniappan, M.; Baskaran, A.; Chandramohan, R.

    1994-01-01

    In recent years the ultrasonic examination of austenitic stainless steel weldments has gained increased importance as an NDE technique for the volumetric examination in the nuclear power plant construction and other industries. A study has been undertaken to evaluate the effects of multiple repairs on austenitic stainless steel weldments, for the successful ultrasonic examination. The test welds have been subjected to repeated welding cycles and the ultrasonic parameters including the defect characterization have been evaluated for analysis. The paper discusses the approach followed, analysis, results obtained and the recommendations based on the above. 1 fig., 2 tabs

  15. The effect of grain size on the mechanical response of a metastable austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Sinclair C.W.

    2013-11-01

    Full Text Available The combination of high environmental resistance and excellent strength, elongation and energy absorption make austenitic stainless steels potentially attractive for transportation applications. In the case of metastable grades that undergo a strain induced martensitic transformation it is possible to significantly change the mechanical properties simply by changing the austenite grain size. Predicting such behaviour using physically based models is, however, extremely challenging. Here, some recent work on the coupling between grain size and mechanical response will be presented for a metastable AISI 301 LN stainless steel. Successes and continuing challenges will be highlighted.

  16. Effect of cold working on nitriding process of AISI 304 and 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Pereira, Silvio Andre de Lima

    2012-01-01

    The nitriding behavior of AISI 304 and 316 austenitic stainless steel was studied by different cold work degree before nitriding processes. The microstructure, thickness, microhardness and chemical micro-composition were evaluated through optical microscopy, microhardness, scanner electronic microscopy and x ray diffraction techniques. Through them, it was observed that previous plastic deformations do not have influence on layer thickness. However, a nitrided layer thicker can be noticed in the AISI 304 steel. In addition, two different layers can be identified as resulted of the nitriding, composed for austenitic matrix expanded by nitrogen atoms and another thinner immediately below expanded by Carbon atoms. (author)

  17. Characteristics of centrifugally cast GX25CrNiSi18-9 steel

    Directory of Open Access Journals (Sweden)

    R. Zapała

    2011-07-01

    Full Text Available The paper presents the results of microstructural examinations of the industrial heat-resistant centrifugally cast GX25CrNiSi18-9 steel characterised by increased content of Cu. The study included changes in the microstructure of base cast steel respective of the steel held at a temperature of 900 and 950°C for 48 hours. Based on the results obtained, an increase in microhardness of the examined cast steel matrix with increasing temperature was stated, which was probably caused by fine precipitates enriched in Cr, Mo, and C forming inside the matrix grains.The layer of scale formed on the tested cast steel oxidised in the atmosphere of air at 900 and 950°C was characterised by an increased tendency to degradation with increasing temperature of the conducted tests.

  18. Electron microscopy and plastic deformation of industrial austenitic stainless steels

    International Nuclear Information System (INIS)

    Thomas, Barry

    1976-01-01

    The different mechanisms of plastic deformation observed in austenitic stainless steels are described and the role of transmission electron microscopy in the elucidation of the mechanisms is presented. At temperatures below 0,5Tm, different variants of dislocation glide are competitive: slip of perfect and partial dislocations, mechanical twinning and strain-induced phase transformations. The predominance of one or other of these mechanisms can be rationalized in terms of the temperature and composition dependence of the stacking fault energy and the thermodynamic stability of the austenite. At temperatures above 0,5Tm dislocation climb and diffusion of point defects become increasingly important and at these temperatures recovery, recrystallization and precipitation can also occur during deformation [fr

  19. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Maziasz, P.J.; Stoller, R.E.

    1993-01-01

    Microstructural data on the evolution of the dislocation loop, cavity, and precipitate populations in neutron-irradiated austenitic stainless steels are reviewed in order to estimate the displacement damage levels needed to achieve the 'steady state' condition. The microstructural data can be conveniently divided into two temperature regimes. In the low temperature regime (below about 200 degrees C) the microstructure of austenitic stainless steel is dominated by 'black spot' defect clusters and faulted interstitial dislocation loops. The dose needed to approach saturation of the loop and defect cluster densities is generally on the order of 1 displacement per atom (dpa) in this regime. In the high temperature regime (∼300 to 700 degrees C), cavities, precipitates, loops and network dislocations are all produced during irradiation; doses in excess of 10 dpa are generally required to approach a 'steady state' microstructural condition. Due to complex interactions between the various microstructural components that form during irradiation, a secondary transient regime is typically observed in commercial stainless steels during irradiation at elevated temperatures. This slowly evolving secondary transient may extend to damage levels in excess of 50 dpa in typical 300-series stainless steels, and to >100 dpa in radiation-resistant developmental steels. The detailed evolution of any given microstructural component in the high-temperature regime is sensitive to slight variations in numerous experimental variables, including heat-to-heat composition changes and neutron spectrum

  20. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Von L. Richards

    2011-09-30

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspection procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at

  1. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9 (Canada)

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  2. Crystallization, the cast structure and the formation of gas blowholes in high-nitrogen steels and alloy steels

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Prokoshkina, V.; Kaputkina, L.M.; Siwka, J.; Skuza, Z.

    2001-01-01

    In the paper, the results of experimental research concerning the precipitation of nitrogen in the form of gas blowholes during the crystallization of supersaturated Fe-N, Fe-O-S-N alloys and 1Cr13 and Cr18Ni10 steels have been described. It has been found that the precipitation of nitrogen gas blowholes is more intensive and the pressure p N 2 is higher at low contents of surface active elements, i.e. oxygen and sulfur. At the concentration ([%O] +0.5%[%S]) ≥ 300 ppm, microingots exhibited a compact microstructure without gas blowholes. The result of kinetic analysis of the process of desorption of nitrogen and the thermodynamics of the investigated solution (including surface tension) confirm that the surface reaction plays a decisive role in the formation of gas blowholes. For this reason, it is possible to eliminate the formation of blowholes in ingots of ferritic and ferritic-austenitic steels by introducing such SAE admixtures, as Sb, Te or Se. Analytical expression have been obtained, which define the amount of nitrogen releasing into gas blowholes and describe the conditions of producing ingots or castings of an compact structure at cooling rates of approximately 10 3 K/s. (author)

  3. Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies

    International Nuclear Information System (INIS)

    Hatano, M.; Fujinami, M.; Arai, K.; Fujii, H.; Nagumo, M.

    2014-01-01

    Hydrogen embrittlement of austenitic stainless steels has been examined with respect to deformation microstructures and lattice defects created during plastic deformation. Two types of austenitic stainless steels, SUS 304 and SUS 316L, uniformly hydrogen-precharged to 30 mass ppm in a high-pressure hydrogen environment, are subjected to tensile straining at room temperature. A substantial reduction of tensile ductility appears in hydrogen-charged SUS 304 and the onset of fracture is likely due to plastic instability. Fractographic features show involvement of plasticity throughout the crack path, implying the degradation of the austenitic phase. Electron backscatter diffraction analyses revealed prominent strain localization enhanced by hydrogen in SUS 304. Deformation microstructures of hydrogen-charged SUS 304 were characterized by the formation of high densities of fine stacking faults and ε-martensite, while tangled dislocations prevailed in SUS 316L. Positron lifetime measurements have revealed for the first time hydrogen-enhanced creation of strain-induced vacancies rather than dislocations in the austenitic phase and more clustering of vacancies in SUS 304 than in SUS 316L. Embrittlement and its mechanism are ascribed to the decrease in stacking fault energies resulting in strain localization and hydrogen-enhanced creation of strain-induced vacancies, leading to premature fracture in a similar way to that proposed for ferritic steels

  4. Resonant creep enhancement in austenitic stainless steels due to pulsed irradiation at low doses

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Saito, T.

    1994-01-01

    Steady-state irradiation creep of austenitic stainless steels has been extensively studied as one of the most important design parameters in fusion reactors. The steady-state irradiation creep has been evaluated using in-pile and light-ion experiments. Those creep compliances of various austenitic steels range in the vicinity of ε/Gσ = 10 -6 ∼10 -5 (dpa sm-bullet MPa) -1 , depending on chemical composition etc. The mechanism of steady-state irradiation creep has been elucidated, essentially in terms of stress-induced preferential absorption of point defects into dislocations, and their climb motion. From this standpoint, low doses such as 10 -3 ∼10 -1 dpa would not give rise to any serious creep, and the irradiation creep may not be a critical issue for the low-dose fusion devices including ITER. It is, however, possible that pulsed irradiation causes different creep behaviors from the steady-state one due to dynamic unbalance of interstitials and vacancies. The authors have actually observed anomalous creep enhancement due to pulsed irradiation in austenitic stainless steels. The resonant behavior of creep indicates that pulsed irradiation may cause significant deformation in austenitic steels even at such low doses and slow pulsing rates, especially for the SA-materials. The first-wall materials in plasma operation of ∼10 2 s may suffer from unexpected transient creep, even in the near-term fusion deices, such as ITER. Though this effect might be a transient effect for a relatively short period, it should be taken into account that the pulsed irradiation makes influences on stress relaxation of the fusion components and on the irradiation fatigue. The mechanism and the relevant behaviors of pulse-induced creep will be discussed in terms of a point-defect model based on the resonant interstitial enrichment

  5. Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading

    Science.gov (United States)

    Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.

    2018-04-01

    The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.

  6. The CCT diagram of the austenite transformations of the 45 steel during isothermal cooling. Dilatometric and microscopic analysis

    International Nuclear Information System (INIS)

    Wierszyllowski, I.; Wieczorek, S.

    2003-01-01

    The CCT diagram of the austenite transformations of the 45 steel during isochronal cooling makes possible to develop equations that enables prediction of structure and properties after conventional heat treatment. Dilatometric method was applied in order to work out such diagram for 45 steel austenitized at 1050 o C. Structures appeared during applied cooling rates were presented. Shapes of dilatometric diagrams described austenite transformations and microstructures are mutually related. During austenite to ferrite transformations separation for equiaxial and coniferous ferrite was possible. The border cooling rate at which coniferous ferrite starts to precipitate was determined as well as M s and M f temperatures. Shape of CCT diagram developed with use of isochronal cooling is different from conventional one. Obtained results were discussed on the literature basis. (author)

  7. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    International Nuclear Information System (INIS)

    1976-01-01

    A specification is provided for an austenitic stainless steel consisting of Fe, Cr and Ni, with small amounts of Mo, Mn, Si and Ti. The specification includes a fuel element and a method for cladding a reactor fuel. (U.K.)

  8. Comparison of high temperature steam oxidation behavior of Zircaloy-4 versus austenitic and ferritic steels under light water reactor safety aspects

    International Nuclear Information System (INIS)

    Leistikow, S.; Schanz, G.; Zurek, Z.

    1985-12-01

    A comparative study of the oxidation behavior of Zy-4 versus steel No. 1.4914 and steel No. 1.4970 was performed in high temperature steam. Reactor typical tube sections of all three materials were exposed on both sides to superheated steam at temperatures ranging from 600 to 1300 0 C for up to 6 h. The specimens were evaluated by gravimetry, metallography, and other methods. The results are presented in terms of weight gain, corresponding metal (wall) penetration and consumption as function of time and temperature. Concerning the corrosion resistance the ranking position of Zy-4 was between the austenitic and the ferritic steel. Because of the chosen wall dimensions Zy-4 and the austenitic steel behaved similarly in that the faster oxidation of the thicker Zy-4 cladding consumed the total wall thickness in a time equivalent to the slower oxidation of the thinner austenitic steel cladding. The ferritic steel cladding however was faster consumed because of the lower oxidation resistance and the thinner wall thickness compared to the austenitic steel. So besides oxide scale formation, oxygen diffusion into the bulk of the metal forming various oxygen-containing phases were evaluated - also in respect to their influence on mechanical cladding properties and the dimensional changes. (orig./HP) [de

  9. Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel

    Science.gov (United States)

    Jain, Divya; Isheim, Dieter; Zhang, Xian J.; Ghosh, Gautam; Seidman, David N.

    2017-08-01

    Austenite reversion and its thermal stability attained during the transformation is key to enhanced toughness and blast resistance in transformation-induced-plasticity martensitic steels. We demonstrate that the thermal stability of Ni-stabilized austenite and kinetics of the transformation can be controlled by forming Ni-rich regions in proximity of pre-existing (retained) austenite. Atom probe tomography (APT) in conjunction with thermodynamic and kinetic modeling elucidates the role of Ni-rich regions in enhancing growth kinetics of thermally stable austenite, formed utilizing a multistep intercritical ( Quench- Lamellarization- Tempering (QLT)-type) heat treatment for a low-carbon 10 wt pct Ni steel. Direct evidence of austenite formation is provided by dilatometry, and the volume fraction is quantified by synchrotron X-ray diffraction. The results indicate the growth of nm-thick austenite layers during the second intercritical tempering treatment (T-step) at 863 K (590 °C), with austenite retained from first intercritical treatment (L-step) at 923 K (650 °C) acting as a nucleation template. For the first time, the thermal stability of austenite is quantified with respect to its compositional evolution during the multistep intercritical treatment of these steels. Austenite compositions measured by APT are used in combination with the thermodynamic and kinetic approach formulated by Ghosh and Olson to assess thermal stability and predict the martensite-start temperature. This approach is particularly useful as empirical relations cannot be extrapolated for the highly Ni-enriched austenite investigated in the present study.

  10. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    Science.gov (United States)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  11. Combined Synchrotron X-ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-assisted Steels

    Energy Technology Data Exchange (ETDEWEB)

    Poling, Whitney A.; Savic, Vesna; Hector, Louis G.; Sachdev, Anil K.; Hu, Xiaohua; Devaraj, Arun; Abu-Farha, Fadi

    2016-04-05

    The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.

  12. Influence of thermal aging on primary water stress corrosion cracking of cast duplex stainless steel (second report). Consideration on fractography after slow strain rate technique

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Chiba, Goro; Totsuka, Nobuo; Arioka, Koji

    2003-01-01

    In order to evaluate the stress corrosion cracking (SCC) susceptibility of cast duplex stainless steel which is used for the main coolant pipe of pressurized water reactors (PWRs), the slow strain rate technique (SSRT) and the constant load test (CLT) of the materials were performed in simulated primary water at 360degC. The cast duplex stainless steel contains ferrite phase with ranging from 8 to 23% and its mechanical properties are affected by long time thermal aging. Therefore, we paid attention to the influence of its ferrite content and thermal aging on the SCC susceptibility of this unaged and aged stainless steel and prepared three kinds of specimen with different ferrite contents (23%, 15% and 8%). The brittle fracture of the unaged specimens after SSRT mainly consists of quasi-cleavage fracture in austenitic phase. After aging, it changes to a mixture of quasi-cleavage fracture in both austenitic and ferritic phases. Microcracks were observed on the unaged specimen surfaces and aged ones for 10,000 hours at 400degC after about 10,000 hours of the CLT under the load condition of 1.2∼2.0 times of yield strength. The crack initiation sites of CLT specimens are similar to SSRT fracture surfaces. The SCC susceptibility of this 23% ferrite material increases with aging time at 400degC. The SCC susceptibility of 15% and 23% ferrite materials are higher than that of 8% ferrite material with aging condition for 30,000h at 400degC. (author)

  13. Influence of tempering temperature on mechanical properties of cast steels

    Directory of Open Access Journals (Sweden)

    G. Golański

    2008-12-01

    Full Text Available The paper presents results of research on the influence of tempering temperature on structure and mechanical properties of bainite hardened cast steel: G21CrMoV4 – 6 (L21HMF and G17CrMoV5 – 10 (L17HMF. Investigated cast steels were taken out from internal frames of steam turbines serviced for long time at elevated temperatures. Tempering of the investigated cast steel was carried out within the temperature range of 690 ÷ 730 C (G21CrMoV4 – 6 and 700 ÷ 740 C (G17CrMoV5 – 10. After tempering the cast steels were characterized by a structure of tempered lower bainite with numerous precipitations of carbides. Performed research of mechanical properties has shown that high temperatures of tempering of bainitic structure do not cause decrease of mechanical properties beneath the required minimum.oo It has also been proved that high-temperature tempering (>720 oC ensures high impact energy at the 20% decrease of mechanical properties.

  14. Some data of second sequence non standard austenitic ingot, A2

    International Nuclear Information System (INIS)

    Nurdin Effendi; Aziz K Jahja; Bandriana; Wisnu Ari Adi

    2012-01-01

    Synthesis of second sequence austenite stainless steel named A2 using extracted minerals from Indonesian mines has been carried out. The starting materials for austenite alloy consist of granular ferro scrap, nickel, ferro-chrome, ferro-manganese, and ferro-silicon. The second sequence composition differs from the former first sequence. This A2 sequence contained more nickel, meanwhile titanium element had not been added explicitly to it, and just been found from raw materials contents or impurities, as well as carbon content in the alloy. However before the actual alloying work started, the first important step was to carry out the determination of the fractional amount of each starting material necessary to form an austenite stainless steel alloy as specified. Once the component fraction of each base alloy-element was determined, the raw materials are weighed on the mini-balance. After the fractional quantities of each constituent have been computed, an appropriate amount of these base materials are weighed separately on the micro scale. The raw materials were then placed in the induction foundry furnace, which was operated by an electromagnetic inductive-thermal system. The foundry furnace system performs the stirring of the molten materials automatically. The homogenized molten metals were poured down into sand casting prepared in advance. Some of the austenite stainless steel were normalized at 600°C for 6 hours. The average density is 7.8 g cm -1 and the average hardness value of 'normalized' austenite stainless-steels is in the range of 460 on the Vickers scale. The microstructure observation concludes that an extensive portion of the sample's structure is dendritic and the surface turns out to be homogenous. X-ray diffraction analysis shows that the material belongs to the fcc crystallographic system, which fits in with the austenite class of the alloy. The experimental fractional elemental composition data acquired by OES method turn out to

  15. Casting AISI 316 steel by gel cast

    International Nuclear Information System (INIS)

    Ozols, A; Thern, G; Rozenberg, S; Barreiro, M; Marajofsky, A

    2004-01-01

    The feasibility of producing AISI 316 steel components from their powders and avoiding their compaction is analyzed. A casting technique is tested that is similar to gel casting, used for ceramic materials. In the initial stage, the process consists of the formulation of a concentrated barbotine of powdered metal in a solution of water soluble organic monomers, which is cast in a mold and polymerized in situ to form a raw piece in the shape of the cavity. The process can be performed under controlled conditions using barbotines with a high monomer content from the acrylimide family. Then, the molded piece is slowly heated until the polymer is eliminated, and it is sintered at temperatures of 1160 o C to 1300 o C under a dry hydrogen atmosphere, until the desired densities are attained. The density and micro structure of the materials obtained are compared with those for the materials compacted and synthesized by the conventional processes. The preliminary results show the feasibility of the process for the production of certain kinds of structural components (CW)

  16. Nondestructive testing of austenitic casting and dissimilar metal welds; Kaksimetalliliitosten ja austeniittisten valujen testaustekniikoiden vertailu

    Energy Technology Data Exchange (ETDEWEB)

    Lahdenperae, K [VTT Manufacturing Technology, Espoo (Finland)

    1995-01-01

    The publication is a literature study of nondestructive testing of dissimilar metal welds and cast austenitic components in PWR and BWR plants. A major key to the successful testing is a realistic mockup made of the materials to be tested. The inspectors must also be trained and validated using suitable mockups. (42 refs., 27 figs., 10 tabs.).

  17. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  18. Development of nuclear grade stainless steels at KCSSL

    International Nuclear Information System (INIS)

    Balachandran, G.; Dhere, M.; Mahadik, A.; Hinge, N.M.; Balasubramanian, V.

    2011-01-01

    Kalyani Carpenter Special Steels Ltd is an alloy steel plant, where a variety of alloy steel grades are produced for automotive, defence, nuclear and aerospace applications. The plant has developed expertise in processing of several alloy steel grades of superior quality that meets stringent specifications. Primary steel is processed through a combination of electric arc furnace, ladle furnace and vacuum degassing where stringent control over dephosphorisation, desulphurization, deoxidation is effected to get a refined high quality steel. The molten steel is cast through continuous casting of slabs or ingot casting. In grades specific to nuclear application, the primary cast products are further subjected to electroslag remelting to achieve further freedom from inclusions and to achieve a favourable solidification grain structure, which ultimately improve the hot workability of the alloy steel. Appropriate choice of slag and operating parameters are needed for realising the required ingot quality. The present study would examine the processing and quality aspects of some important grades of steels used in nuclear industry namely ferritic 9Cr-1Mo steel, martensitic stainless steels 403, 410, precipitation hardenable 17-4 PH stainless steel and austenitic 321, 316LN stainless steel, which were made and supplied for applications to Indian nuclear industry. The expertise developed in processing the steels in terms of melting, heat treatment and their relationship to structural features and mechanical properties would be highlighted. (author)

  19. Diffusion of nitrogen in austenitic phase: Application to nitriding of stainless steels

    Directory of Open Access Journals (Sweden)

    Torchane Lazhar

    2014-04-01

    Full Text Available The nitriding treatment of the martensitic stainless steels aims to harden and to introduce compressive stresses on the surface of steel. Hardening is resulting of the martensitic transformation of the austenitic matrix enriched into nitrogen during cooling and of the germination and the nitride growth. In order to preserve the stainless character of the nitrided layer, it is imperative to control precipitation within the zone affected by the treatment. Our task consists in showing that is possible to control the composition of the gas atmosphere containing ammonia and argon and to carry out on the surface of nitrided samples at 1050°C two types of configuration of layers : a single phase layer made up by martensite enriched in nitrogen α’N and or a two phase layer made up by austenite γN and martensite α’N enriched in nitrogen.

  20. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    Science.gov (United States)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-09-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  1. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    International Nuclear Information System (INIS)

    Ahn, Taehong; Lee, Sung Bo; Han, Heung Nam; Park, Kyungtae

    2013-01-01

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite

  2. Phase Transformation of Metastable Austenite in Steel during Nano indentation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Taehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Sung Bo; Han, Heung Nam [Seoul National Univ., Seoul (Korea, Republic of); Park, Kyungtae [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    These can produce geometrical softening accompanied by a sudden displacement excursion during load-controlled nanoindentation, which referred to in the literature as a pop-in. In this study, phase transformation of metastable austenite to stress-induced ε martensite which causes pop-ins during nanoindentation of steel will be reported and discussed. This study investigated the relationship between pop-in behavior of austenite in the early stage of nanoindentation and formation of ε martensite based on microstructural analyses. The load-displacement curve obtained from nanoindentation revealed stepwise pop-ins in the early stage of plastic deformation. From analyses of high resolution TEM images, a cluster of banded structure under the indent turned out a juxtaposition of (111) planes of γ austenite and (0001) planes of ε martensite. The calculation of displacement along indentation axis for (111) slip system by formation of ε martensite showed that geometrical softening can also occur by ε martensite formation when considering that the stress-induced ε martensite transformation is the predominant deformation mode in the early stage of plastic deformation and its monopartial nature as well. These microstructural investigations strongly suggest that the pop-in behavior in the early stage of plastic deformation of austenite is closely related to the formation of ε martensite.

  3. Assessment of precipitates of isothermal aged austenitic stainless steel using measurement techniques of ultrasonic attenuation

    International Nuclear Information System (INIS)

    Kim, Hun Hee; Kim, Hak Joon; Song, Sung Jin; Lim, Byeong Soo; Kim, Kyung Cho

    2014-01-01

    AISI 316L stainless steel is widely used as a structural material of high temperature thermoelectric power plants, since austenitic stainless steel has excellent mechanical properties. However, creep damage is generated in these components, which are operated under a high temperature and high pressure environment. Several researches have been done on how microstructural changes of precipitates affect to the macroscopic mechanical properties. And they investigate the relation between ultrasonic parameters and metallurgical results. But, these studies are limited by experiment results only. In this paper, attenuations of ultrasonic with isothermal damaged AISI 316L stainless steel were measured. Also, simulation of ultrasonic attenuation with variation of area fraction and size of precipitates were performed. And, from the measured attenuations, metallographic data and simulation results, we investigate the relations between the ultrasonic attenuations and the material properties which is area fraction of precipitates for the isothermal damaged austenitic stainless steel specimens. And, we studied parametric study for investigation of the relation between ultrasonic parameters and metallurgical results of the isothermal damaged AISI 316L stainless steel specimens using numerical methods.

  4. Boron content effect on the high-temperature plasticity of corrosion resistant low-carbon austenite type steels

    International Nuclear Information System (INIS)

    Gol'dshtejn, Ya.E.; Shmatko, M.N.; Chuvatina, S.N.

    1976-01-01

    With the concept that the state of grain and subgrain boundaries influences the hot plasticity of corrosion resistant steel as a starting point, the study was undertaken of the effect of boron microalloying up on the intergranular strength and of the action boron exerts upon the distribution (redistribution) of other phases present in austenitic 03Kh16N14M3 steels. An electron microscope study of the composition of redundant phases and that of the fine structure of steel have shown the effect of small additions of boron upon the hot plasticity of steel to be linked directly to its influence upon austenite disintegration and the precipitation along the boundaries of crystals of redundant phases in the course of hot plastic deformation. The action of boron upon the process plasticity of steel depends on the temperature and the rate of deformation which govern the kinetics of the precipitation of the redundant phases

  5. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  6. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    OpenAIRE

    Maria Domankova; Katarína Bártová; Ivan Slatkovský; Peter Pinke

    2016-01-01

    The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with ...

  7. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  8. Microstructural evolution of aged heat-resistant cast steel following strain controlled fatigue

    International Nuclear Information System (INIS)

    Golański, Grzegorz; Zielińska-Lipiec, Anna; Mroziński, Stanisław; Kolan, Cezary

    2015-01-01

    The paper presents the results of research on the microstructure of high-chromium martensitic GX12CrMoVNbN9-1 (GP91) cast steel after the isothermal ageing process and fatigue process. The fatigue process was performed at room temperature and elevated temperature (600 °C), with the value of total strain amplitude ε ac amounting to 0.25% and 0.60%. Microstructural tests of GP91 cast steel were carried out by means of high-resolution transmission electron microscope. Quantitative study performed by means of TEM included the characteristics of changes in the dislocation substructure and morphology of M 23 C 6 carbides. Performed research has shown that the microstructure of the examined cast steel after ageing is characterized by partly remaining lath microstructure with numerous precipitations of the MX and M 23 C 6 type, as well as the Laves phase. It has been shown that the fatigue test at room temperature contributes to the process of dislocation strengthening of the examined cast steel. The increase of fatigue test temperature influences the degree of increase in the matrix softening. The degree of softening of the cast steel microstructure at elevated temperature depends also on the value of strain amplitude ε ac . The softening process of the examined cast steel was connected with the decrease of dislocation density and increase of subgrains

  9. Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion

    International Nuclear Information System (INIS)

    Cao, Y.; Wang, Y.B.; An, X.H.; Liao, X.Z.; Kawasaki, M.; Ringer, S.P.; Langdon, T.G.; Zhu, Y.T.

    2014-01-01

    A duplex stainless steel with approximately equal volume fractions of ferrite and austenite was processed by high-pressure torsion. Nano-indentation, electron backscatter diffraction and transmission electron microscopy were used to investigate the hardness and microstructure evolutions of the steel. Despite the different strain-hardening rates of individual ferrite and austenite, the microstructures of the two phases evolved concurrently in such a way that the neighbouring two phases always maintained similar hardness. While the plastic deformation and grain refinement of ferrite occurred mainly via dislocation activities, the plastic deformation and grain refinement process of austenite were more complicated and included deformation twinning and de-twinning in coarse grains, grain refinement by twinning and dislocation–twin interactions, de-twinning in ultrafine grains and twin boundary subdivision

  10. Modelling the evolution of composition-and stress-depth profiles in austenitic stainless steels during low-temperature nitriding

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2016-01-01

    . In the present paper solid mechanics was combined with thermodynamics and diffusion kinetics to simulate the evolution of composition-depth and stress-depth profiles resulting from nitriding. The model takes into account a composition-dependent diffusion coefficient of nitrogen in expanded austenite, short range......Nitriding of stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behaviour. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume expansion...... that accompanies the dissolution of high nitrogen contents in expanded austenite. An intriguing phenomenon during low-temperature nitriding is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen dissolution...

  11. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel

    International Nuclear Information System (INIS)

    Cheng, Wei-Chun; Cheng, Chih-Yao; Hsu, Chia-Wei; Laughlin, David E.

    2015-01-01

    Fe–C–Mn–Al steels have the potential to substitute for commercial Ni–Cr stainless steels. For the development of Fe–C–Mn–Al stainless steels, phase transformations play an important role. Our methods of studying the phase transformations of the steel include heating, cooling, and/or annealing. The results of our study show that spinodal decomposition, an atomic ordering reaction and the transformation of the L1 2 phase to kappa-carbide occur in the Fe–C–Mn–Al steel. After cooling, the austenite decomposes by the spinodal mechanism into solute-lean and solute-rich austenite phases. The solute-rich austenite phase also transforms into the L1 2 phase via the ordering reaction upon cooling to lower temperatures. After quenching and prolonged annealing, the L1 2 phase grows in the austenite and finally transforms into kappa-carbide. This L1 2 phase to kappa-carbide transformation has not been observed previously

  12. Influence of thermal treatments on the microstructure and mechanical properties of a HC cast refractory steel

    International Nuclear Information System (INIS)

    Gatica, D; Garin, J; Mannheim, R

    2008-01-01

    The effect of thermal treatments at 750 ( o C) on the microstructure and hardness of a HC cast refractory steel was studied. Samples were extracted from blocks obtained from the melting of this steel, which were heated to 750 ( o C) for 1, 2, 3, 6, 12, 24, 48 and 96 hours and cooled in water. The microstructural analysis was performed using X-ray diffraction, optic and scanning electron microscopy. The phases in each of the samples were quantified using X-ray diffraction, by the direct comparison method, using the DIFRACC-AT, PROFILE FITTING, LATTICE and LAZY-PULVERIX programs. Ferrite was also measured with a magnetic inductor. The phases that were present were ferrite, austenite and Cr 23 C 6 chrome carbides, with a small percentage of molybdenum carbides, slag and non metallic inclusions. As a result of the thermal treatment, the ferrite increased, the austenite decreased and the chrome carbides increased, although their presence varied during the first hours of treatment, displaying a sustained increase only after the 24 hours of heating. Brittle phases, like the sigma phase, did not occur, corroborated by other authors who have noted that for this phase to form there must be preexisting Cr 7 C 3 chrome carbide, as well as Cr 23 C 6 . Temperature impact tests were held in order to determine the temperature of ductile-brittle transition. Unnotched test pieces were submitted to impact trials in a temperature range of 20 to 200 ( o C). This steel does not have a clear transition temperature, but ranges from 50 ( o C) to 80 ( o C )

  13. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  14. Effect of silicon on the structure, tribological behaviour, and mechanical properties of nitrogen-containing chromium-manganese austenitic steels

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Gojkhenberg, Yu.N.

    2003-01-01

    The effect of silicon in quantity of 3.5-4.5 mass. % on tribological behaviour is studied for nitrogen-bearing (0.20-0.52 mass. % of nitrogen) chromium-manganese austenitic steels (10Kh15G23S4A0.20, 10Kh16G17N3S4A0.30, 10Kh19G20NS4A0.50, 12Kh19G19NS2A0.50, 10Kh18G19A0.50, 08Kh16G8N10S4A0.18). Mechanical properties and corrosion resistance of the steels are determined. Using metallographic, x-ray diffraction and electron microscopical methods a study is made into structural transformations running in the steels considered under friction and static tension. It is shown that additional silicon alloying of nitrogen-bearing chromium-manganese austenitic steels results in an essential increase of adhesion wear resistance of the materials on retention of low friction coefficient (f=0.25-0.33). A strong silicon effect on steel tribological behaviour is related with planar slip activation and with an increase of austenite strength and heat resistance [ru

  15. Cryogenic properties of V-bearing austenitic stainless steel

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    1985-01-01

    A new type austenitic stainless steel which is expected as the cryogenic structural material for superconducting magnets has been developed. This steel is that vanadium was added to SUS 316 stainless steel of low carbon and high nitrogen, which has the sufficient strength and toughness at 4 K, and maintains the stable nonmagnetic state. This is applicable both to the solution state and the state of carrying out age hardening heat treatment for precipitating Nb 3 Sn subsequent to it. Accordingly, this material can be applied to the sheath material for nuclear fusion and the manufacture of superconducting magnets by Wind and React process besides the candidate material of superconducting magnets for nuclear fusion. This phenomenon is due to the fact that vanadium carbide precipitates in crystal grains before chrome carbide precipitates at grain boundaries, thus the precipitation of chrome carbide is suppressed. In this experiment, the effect of vanadium addition on the cryogenic properties of SUS 316 stainless steel was examined. The experimental method and the results of the effects of vanadium and nitrogen, solution treatment and precipitation aging, and the measurement of magnetism are reported. (Kako, I.)

  16. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel

    International Nuclear Information System (INIS)

    Ren, Ling; Nan, Li; Yang, Ke

    2011-01-01

    Copper (Cu) precipitation behavior in a type 304 Cu-bearing austenitic antibacterial stainless steel was studied by analyses of variations in micro-hardness, electrical resistivity, electrochemical impedance and lattice constant of the steel, complemented with transmission electron microscopy (TEM) observation, showing more or less changes on these properties of the steel with different aging time. It was found that both micro-hardness and electrical resistivity measurements were relatively sensitive and accurate to reflect the Cu precipitation behavior in the experimental steel, indicating the beginning and finishing points of the precipitation, which are more simple and effective to be used for development of the new type of antibacterial stainless steels.

  17. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    Science.gov (United States)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  18. On the capability of austenitic steel to withstand cyclic deformations during service at elevated temperatures

    International Nuclear Information System (INIS)

    Etienne, C.F.; Dortland, W.; Zeedijk, H.B.

    1975-01-01

    Safe design for structures with steels for elevated temperatures necessitates screening these materials on the basis of objective criteria for ductility, besides screening them on elevated temperature strength. Because creep and fatigue damage may occur during operation, the ductility of a steel after a long operation time is more important than the ductility in the as delivered condition. This paper describes results of an investigation into the ductility of some austenitic Cr-Ni-steels. In order to determine the capability of the steels to withstand cyclic plastic deformation in the aged condition, various ageing treatments were applied before determining the ductility in low-cycle fatigue testing. Correlating the ductility with the sizes of the carbide precipitates made it possible to predict the ductility behaviour during long service times. This led to the conclusion that for an austenitic steel with a high thermal stability (17.5 per cent Cr-11 per cent Ni) the ductility can decrease considerably during service at elevated temperature. Nevertheless it is expected that the remaining ductility of such steels in aged condition will be amply sufficient to withstand the cyclic deformations that occur during normal service. (author)

  19. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    Science.gov (United States)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-05-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  20. A study on corrosion resistance of dissimilar welds between Monel 400 and 316L austenitic stainless steel

    Science.gov (United States)

    Mani, Cherish; Karthikeyan, R.; Vincent, S.

    2018-04-01

    An attempt has been made to study the corrosion resistance of bi-metal weld joints of Monel 400 tube to stainless steel 316 tube by GTAW process. The present research paper contributes to the ongoing research work on the use of Monel400 and 316L austenitic stainless steel in industrial environments. Potentiodynamic method is used to investigate the corrosion behavior of Monel 400 and 316L austenitic stainless steel welded joints. The analysis has been performed on the base metal, heat affected zone and weld zone after post weld heat treatment. Optical microscopy was also performed to correlate the results. The heat affected zone of Monel 400 alloy seems to have the lowest corrosion resistance whereas 316L stainless steel base metal has the highest corrosion resistance.

  1. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention

    International Nuclear Information System (INIS)

    Jacques, P.; Catlin, T.; Geerlofs, N.; Kop, T.; Zwaag, S. van der; Delannay, F.

    1999-01-01

    Studies dealing with TRIP-assisted multiphase steels have emphasized the crucial role of the bainite transformation of silicon-rich intercritical austenite in the achievement of a good combination of strength and ductility. The present work deals with the bainite transformation in two steels differing in their silicon content. It is shown that both carbon enrichment of residual austenite and cementite precipitation influences the kinetics of the bainite transformation. A minimum silicon content is found to be necessary in order to prevent cementite precipitation from austenite during the formation of bainitic ferrite in such a way as to allow stabilisation of austenite by carbon enrichment. (orig.)

  2. Methods of improvement in hardness of composite surface layer on cast steel

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-08-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in founding process a composite surface layer on the basis of Fe-Cr-C alloy and next its remelting with use of welding technology TIG – Tungsten Inert Gas. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel castings on machine elements. This technology can be competition for generally applied welding technology (surfacing by welding and thermal spraying. However the results of studies show, that is possible to connection of both methods founding and welding of surface hardening of cast steel castings. In range of experimental plan was made test castings with composite surface layer, which next were remelted with energy 0,8 and 1,6 kJ/cm. Usability for industrial applications of test castings was estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  3. On the cryogenic magnetic transition and martensitic transformation of the austenite phase of 7MoPLUS duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.H., E-mail: KHLO@umac.m [Department of Electromechanical Engineering, University of Macau, Macau (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2010-08-15

    The magnetic behaviour and martensitic transformation at cryogenic temperatures (down to 4 K) of the austenite phase of the duplex stainless steel (DSS), 7MoPLUS, were studied. As regards the prediction of Neel temperature, the empirical expressions for austenitic stainless steels are not applicable to the austenite phase of 7MoPLUS, although the composition of the austenite phase falls within the composition ranges within which the expressions were developed. Regarding the prediction of martensitic point Ms, the applicability of 'old' and recently developed expressions has been examined. The recently developed expressions, which take into account more alloying elements and their interactions, are not suitable for the austenite phase of 7MoPLUS. But for the 'old', simpler expressions, they seem to be valid in the sense that they all predict high stability of the austenite phase. Results obtained from 7MoPLUS were qualitatively the same as those obtained from another DSS, designated as 2205. Reasons for the applicability and inapplicability of these empirical expressions are suggested.

  4. Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment

    International Nuclear Information System (INIS)

    Chandra, K.; Kain, Vivekanand; Raja, V.S.; Tewari, R.; Dey, G.K.

    2012-01-01

    Highlights: ► Embrittlement study of austenitic stainless steel welds after ageing up to 20,000 h. ► Spinodal decomposition and G-phase precipitation in ferrite at 400 °C. ► Spinodal decomposition of ferrite at 335 and 365 °C. ► Large decrease in corrosion resistance due to G-phase precipitation. ► Good correlation between electrochemical properties and the degree of embrittlement. - Abstract: The low temperature thermal ageing embrittlement of austenitic stainless steel welds is investigated after ageing up to 20,000 h at 335, 365 and 400 °C. Spinodal decomposition and G-phase precipitation after thermal ageing were identified by transmission electron microscopy. Ageing led to increase in hardness of the ferrite phase while there was no change in the hardness of austenite. The degree of embrittlement was evaluated by non-destructive methods, e.g., double-loop and single-loop electrochemical potentiokinetic reactivation tests. A good correlation was obtained between the electrochemical properties and hardening of the ferrite phase of the aged materials.

  5. Residual stresses associated with welds in austenitic steel

    International Nuclear Information System (INIS)

    Fidler, R.

    1978-01-01

    Two exploratory welds have been made with AISI 316 austenitic steel and Armex GT electrodes by the manual metal-arc process, and residual stress measurements made in the as-welded condition and after various periods of stress relief. The results show that substantial stress relief occurs at temperatures of 850 0 and 750 0 C after 1 hr, but is not complete. The stress distributions are compared with those obtained from ferritic welds and the effect of differences in thermal expansion coefficients is examined using finite element analysis. (author)

  6. Grain boundary precipitation in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Jones, A.R.; Howell, P.R.; Ralph, B.

    The precipitation of second phase particles of niobium carbide in an austenitic stainless steel is shown to be considerably influenced by the degree of deformation introduced prior to the ageing treatment. Sites for the nucleation of second phase particles are identified and the importance of one type of nucleation site, extrinsic dislocations, to the evolution of the final boundary precipitate distributions is emphasized. Further, it is shown that the presence of a grain boundary can effect precipitation processes for some considerable distance into the matrix on either side of the boundary. (author)

  7. Theoretical and experimental study of carburisation and decarburisation of a meta-stable austenitic steel

    Directory of Open Access Journals (Sweden)

    Charles West

    2005-12-01

    Full Text Available Metastable austenitic stainless steels are known to undergo a partial transformation of austenite to martensite as a consequence of plastic deformation. In the case of cyclic loading, a certain level of plastic strain must be exceeded, and phase formation takes place after an incubation period, during which the necessary amount of plastic deformation is accumulated. The susceptibility of the austenitic phase to deformation-induced martensite formation is strongly affected by the temperature of loading and the stability of austenite, which itself depends on the chemical composition. A key element in this regard is carbon which stabilizes the austenitic phase. It is shown in this study that the carbon concentration can be analysed systematically and reproducible by means of annealing treatments, if the parameters of these treatments are carefully defined on the basis of advanced theoretical thermodynamic and kinetic considerations. First results on the effect of carbon concentration and temperature of fatigue testing on the austenite/martensite transformation are presented, in order to illustrate the significance of these parameters on the martensite formation rate.

  8. Mechanical and microstructural aspects of severe plastic deformation of austenitic steel

    Science.gov (United States)

    Rodak, K.; Pawlicki, J.; Tkocz, M.

    2012-05-01

    The paper presents the effects of severe plastic deformation by multiple compression in the orthogonal directions on the microstructure and the mechanical properties of austenitic steel. Several deformation variants were conducted with different number of passes. FEM simulations were performed in order to evaluate the actual values of the effective strain in the examined, central parts of the compressed samples. The deformed microstructure was investigated by means of the scanning transmission electron microscopy (STEM) and the scanning electron microscopy (SEM) supported by the electron back scattered diffraction (EBSD). X-ray phase analysis was performed to evaluate the martensite volume fraction. The mechanical properties were determined by means of the digital image correlation method and hardness testing. It is shown that the applied forming technique leads to strong grain refinement in the austenitic steel. Moreover, deformation induces the martensitic γ- α' transformation. The microstructural changes cause an improvement in the strength properties. The material exhibits the ultimate tensile strength of 1560 MPa and the yield stress of 1500 MPa after reaching the effective strain of 10.

  9. Mechanical and microstructural aspects of severe plastic deformation of austenitic steel

    International Nuclear Information System (INIS)

    Rodak, K; Pawlicki, J; Tkocz, M

    2012-01-01

    The paper presents the effects of severe plastic deformation by multiple compression in the orthogonal directions on the microstructure and the mechanical properties of austenitic steel. Several deformation variants were conducted with different number of passes. FEM simulations were performed in order to evaluate the actual values of the effective strain in the examined, central parts of the compressed samples. The deformed microstructure was investigated by means of the scanning transmission electron microscopy (STEM) and the scanning electron microscopy (SEM) supported by the electron back scattered diffraction (EBSD). X-ray phase analysis was performed to evaluate the martensite volume fraction. The mechanical properties were determined by means of the digital image correlation method and hardness testing. It is shown that the applied forming technique leads to strong grain refinement in the austenitic steel. Moreover, deformation induces the martensitic γ– α' transformation. The microstructural changes cause an improvement in the strength properties. The material exhibits the ultimate tensile strength of 1560 MPa and the yield stress of 1500 MPa after reaching the effective strain of 10.

  10. EFFECT OF ALLOYING ON TEMPERATURE OF TRANSFORMATION «PEARLITE – AUSTENITE» IN COMPLEX-ALLOYED WHITE CAST IRONS

    Directory of Open Access Journals (Sweden)

    T. V. Pastukhova

    2014-11-01

    Full Text Available Purpose. Pearlite is not accepted in the microstructure of wear resistant steels and cast irons. To prevent the pearlite by means of appropriate selection of mode of quenching requires the knowledge of the temperature of the critical points Ac1 and Ac3 for various steels and cast irons. Purpose of work is determine the effect of V (5-10% and Cr (up to 9% on the temperature range of the phase-structural transformation "pearlite®austenite in the complex-alloyed V-Cr-Mn-Ni white cast irons with spheroidal vanadium carbides. Methodology. Nine Mg-treated cast irons smelted in laboratory furnace were used for investigation. The metallographic and optical dilatometric analysis methods as well as energy-dispersive spectroscopy were used. Findings. It is shown that in irons studied the critical point Ac1 is in a temperature range from 710-780 °C (lower limit up to 730-850 °C (upper limit. The data on the concentrations of chromium and vanadium in a matrix of iron are presented, the regression equation describing the effect of vanadium and chromium on the temperature limits of the transformation «pearlite ® austenite» are obtained. Originality. It is shown that increase the chromium content leads to growth of lower and upper limits of the temperature interval of transformation "pearlite ® austenite"; vanadium increases only the upper limit of the range. It was found that the effect of chromium on the critical point Ac1 is attributed to its solubility in the metallic matrix (concentration of Cr in the austenite reaches 7%; vanadium, due to its slight dissolution in the matrix (vanadium content does not exceed 1.75%, affects the critical point indirectly by increasing of chromium concentration in the matrix due to enhanced carbon sequestration in VC carbides. Practical value. The temperature ranges of heating for quenching of V-Cr-Mn-Ni cast irons with spheroidal vanadium carbides, which provides the formation of austenitic-martensitic matrix without

  11. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    Science.gov (United States)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  12. Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining: an in situ EBSD study

    DEFF Research Database (Denmark)

    Lomholt, Trine Nybo; Adachi, Y.; da Silva Fanta, Alice Bastos

    2013-01-01

    The transformation of austenite to martensite in an Al–Mn–Si transformation-induced plasticity steel was investigated with in situ electron backscatter diffraction (EBSD) measurements under tensile straining. The visualisation of the microstructure upon straining allows for an investigation...... to be more stable than large grains, while austenite grains located beside bainitic ferrite are the most stable. Moreover, it is demonstrated that austenite grains transform gradually...

  13. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; Busby, J.T. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States); Gussev, M.N., E-mail: gussevmn@ornl.gov [Nuclear Fuel & Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6136 (United States); Maziasz, P.J.; Hoelzer, D.T.; Rowcliffe, A.F.; Vitek, J.M. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States)

    2017-01-15

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14–0.36%) and Mn (2–5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  14. The effects of fast-neutron irradiation on the mechanical properties of austenitic stainless steel

    International Nuclear Information System (INIS)

    Dalton, J.H.

    1978-01-01

    The paper reviews the effects of fast-neutron irradiation on the tensile properties of austenitic stainless steels at irradiation temperatures of less than 400 degrees Celcius, using as an example, work carried out at Pelindaba on an AISI 316 type steel produced in South Africa. Damage produced in these steels at higher irradiation temperatures and fluences is also briefly discussed. The paper concludes with a discussion of some methods of overcoming or decreasing the effects of irradiation damage [af

  15. Swelling analysis of austenitic stainless steels by means of ion irradiation and kinetic modeling

    International Nuclear Information System (INIS)

    Kohyama, Akira; Donomae, Takako

    1999-03-01

    The influences of irradiation environment on the swelling behavior of austenitic stainless steel has been studied, to aid understanding the origin of the difference in swelling response of PNC316 stainless steel in fuel-pin environment and in materials irradiation capsules, in terms of irradiation conditions, damage mechanism and material conditions. This work focused on the theoretical investigation of the influence of temperature variation on microstructural development of austenitic stainless steels during irradiation, using a kinetic rate theory model. A modeling and calculation on non-steady irradiation effects were first carried out. A fully dynamic model of point defect evolution and extended defect development, which accounts for cascade damage, was developed and successfully applied to simulate the interstitial loop evolution in low temperature regimes. The influence of cascade interstitial clustering on dislocation loop formation has also been assessed. The establishment of a basis for general assessment of non-steady irradiation effects in austenitic stainless steels was advanced. The developed model was applied to evaluate the influences of temperature variation in formerly carried out CMIR and FFTF/MFA-1 FBR irradiation experiments. The results suggested the gradual approach of microstructural features to equilibrium states in all the temperature variation conditions and no sign of anomalous behavior was noted. On the other hand, there is the influence of temperature variation on microstructural development under the neutron irradiation, like CMIR. So there are some possibilities of the work of mechanism which is not taken care on this model, for example the effect of the precipitate behavior which is sensitive to irradiation temperature. (author)

  16. In-situ investigation of strain-induced martensitic transformation kinetics in an austenitic stainless steel by inductive measurements

    NARCIS (Netherlands)

    Alonso de Celada Casero, C.; Kooiker, Harm; Groen, Manso; Post, J; San Martin, D

    2017-01-01

    An inductive sensor developed by Philips ATC has been used to study in-situ the austenite (γ) to martensite (α′) phase transformation kinetics during tensile testing in an AISI 301 austenitic stainless steel. A correlation between the sensor output signal and the volume fraction of α′-martensite

  17. Kinetics of steel heavy ingot formation in dies of semicontinuous-casting machines

    International Nuclear Information System (INIS)

    Tsukerman, V.Ya.; Marchenko, I.K.

    1986-01-01

    Formation kinetics of round section ingot of up to 0.67 m in diameter was analyzed in dies of semicontinuous-casting machines on casting of the most usable assortment steels: medium-carbon low-alloyed and chromium-nickel stainless steels. It is established that solidification coefficient decreases in direct proportion to ingot diameter. Value of different-thickness ingot skin at die outlet is in direct proportion to a casted steel overheating temperature, ingot diameter and inversely proportional to the number and diameter of holes in a ladder nozzle and square root of ingot drawing rate

  18. Static strain aging type AISI-304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Trindade, M.B.

    1981-03-01

    Static strain aging of type AISI-304 austenitic stainless steel was studied from room temperature up to 623K by conducting tests in which the load was held approximately constant, continuously relaxing and unloaded. The aging times varied between 10s and 100h, using a plastic pre deformation of 9% in most of the cases. The static strain aging of 304 steel furnished an activation energy of 23,800 cal/mol. This implies that vacancies play an important role on the aging process. The curve of the variation of the discontinuous yielding with aging time presented different stages, to which specific mathematical expressions were developed. These facts permited the conclusion that Snoek type mechanisms are responsible for the aging in such conditions. (Author) [pt

  19. Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.F., E-mail: shenyf@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Liu, Y.D. [Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Sun, X. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Wang, Y.D.; Zuo, L. [Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504 (United States)

    2013-10-20

    TRIP (transformation-induced-plasticity) steel with a chemical composition of 0.19C–0.30Si–1.76Mn–1.52Al (weight percentage, wt%) have been treated by intercritical annealing and austempering process. The microstructures of the obtained samples consist of the ferrite, the bainite and the retained austenite phase. The volume fractions of the bainite and the retained austenite gradually increase with increasing the temperature of the intercritical annealing. Consequently, significantly different mechanical properties have been observed. The sample annealed at 820 °C (for 120 s) and partitioned at 400 °C (for 300 s) has the best combination of ultimate tensile strength (UTS, ∼682 MPa) and elongation to failure (∼70%) with about 26% of bainitic ferrite plates and 17% retained austenite in its microstructure. The retained austenite has a lamella morphology with 100‒300 nm in thickness and 2‒5 µm in length. On the contrary, the sample annealed at the same temperature without the partitioning process yields much lower UTS and elongation to failure.

  20. Corrosion of austenitic steels and their components in vanadium-containing chloride melts

    Science.gov (United States)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.

    2014-08-01

    The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.

  1. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    Science.gov (United States)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  2. Design of Wear-Resistant Austenitic Steels for Selective Laser Melting

    Science.gov (United States)

    Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.

    2018-03-01

    Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.

  3. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1979-01-01

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels

  4. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  5. The Formation of Martensitic Austenite During Nitridation of Martensitic and Duplex Stainless Steels

    Science.gov (United States)

    Zangiabadi, Amirali; Dalton, John C.; Wang, Danqi; Ernst, Frank; Heuer, Arthur H.

    2017-01-01

    Isothermal martensite/ferrite-to-austenite phase transformations have been observed after low-temperature nitridation in the martensite and δ-ferrite phases in 15-5 PH (precipitation hardening), 17-7 PH, and 2205 (duplex) stainless steels. These transformations, in the region with nitrogen concentrations of 8 to 16 at. pct, are consistent with the notion that nitrogen is a strong austenite stabilizer and substitutional diffusion is effectively frozen at the paraequilibrium temperatures of our experiments. Our microstructural and diffraction analyses provide conclusive evidence for the martensitic nature of these phase transformations.

  6. Irradiation Assisted Stress Corrosion Cracking of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) of austenitic stainless steels in oxygenated high temperature water was studied. The IASCC failure has been considered as a degradation phenomenon potential not only in the present light water reactors but rather common in systems where the materials are exposed simultaneously to radiation and water environments. In this study, effects of the material and environmental factors on the IASCC of austenitic stainless steels were investigated in order to understand the underlying mechanism. The following three types of materials were examined: a series of model alloys irradiated at normal water-cooled research reactors (JRR-3M and JMTR), the material irradiated at a spectrally tailored mixed-spectrum research reactor (ORR), and the material sampled from a duct tube of a fuel assembly used in the experimental LMFBR (JOYO). Post-irradiation stress corrosion cracking tests in a high-temperature water, electrochemical corrosion tests, etc., were performed at hot laboratories. Based on the results obtained, analyses were made on the effects of alloying/impurity elements, irradiation/testing temperatures and material processing, (i.e., post-irradiation annealing and cold working) on the cracking behavior. On the basis of the analyses, possible remedies against IASCC in the core internals were discussed from viewpoints of complex combined effects among materials, environment and processing factors. (author). 156 refs.

  7. Effect of hydrogen on the microstructure, mechanical properties and phase transformations in austenitic steels

    International Nuclear Information System (INIS)

    Li, Y.Y.; Xing, Z.S.

    1989-01-01

    Effect of high-pressure hydrogen charging on the microstructure, mechanical properties and phase transformations in austenitic steels has been investigated and discussed. The results show that the strength and impact toughness of the steels increase slightly and that the ductility decreases after hydrogen charging. The existence of δ-ferrite deteriorates the resistance to hydrogen embrittlement (HE) of the steels. The occurrence of carbide in the steel resulted from aging reduces the ductility of the steel and makes the steel sensitive to HE. The existence of sufficient hydrogen promotes the ε-martensitic transformation and suppresses the α'-martensitic transformation. The permeabilities and diffusivities of hydrogen in the steels have also been determined. (orig.)

  8. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  9. Influence of austenite grain size on recrystallisation-precipitation interaction in a V-microalloyed steel

    International Nuclear Information System (INIS)

    Quispe, A.; Medina, S.F.; Gomez, M.; Chaves, J.I.

    2007-01-01

    By means of torsion tests using small specimens, the influence of austenite grain size on strain induced precipitation kinetics has been determined in a vanadium microalloyed steel. Determination of recrystallisation-precipitation-time-temperature (RPTT) diagrams for two austenite grain sizes allows values of the aforementioned magnitudes to be determined. An ample discussion is made of the quantitative influence found and its relation with nucleation and growth mechanisms of precipitates. The results are compared with the quantitative influence exerted by the other variables, reaching the conclusion that the austenite grain size has a notable influence on strain induced precipitation kinetics which should not be underestimated. Finally, the influence of austenite grain size is included in a strain induced precipitation model constructed by the authors of this work and which also takes into account the other aforementioned variables

  10. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Machine Tools and Factory Management, Technical University of Berlin, Pascalstraße 8 – 9, 10587, Berlin (Germany); Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Kannengiesser, Thomas [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin (Germany); Institute of Materials and Joining Technology, Otto von Guericke University Magdeburg, Universitetsplatz 2, 39106, Magdeburg (Germany)

    2014-09-08

    The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results.

  11. Contribution to the metallurgy of welding processes in stainless ferritic-austenitic (duplex) steels

    International Nuclear Information System (INIS)

    Perteneder, E.; Toesch, J.; Rabensteiner, G.

    1989-01-01

    Duplex steels have a ferritic austenitic structure. Therefore, to obtain a successful welding, special metallurgical regulations must be observed. The effect of energy per unit length and plate thickness onto the heat influence zone in case of manual arc welding is examined. Practice-oriented instructions for the welding technique to be applied are deduced from the results. Finally, the effect of the alloy composition onto the welding capacity of duplex steels is examined. (orig.) [de

  12. High Nitrogen Austenitic Stainless Steel Precipitation During Isothermal Annealing

    Directory of Open Access Journals (Sweden)

    Maria Domankova

    2016-07-01

    Full Text Available The time-temperature-precipitation in high-nitrogen austenitic stainless steel was investigated using light optical microscopy, transmission electron microscopy, selected area diffraction and energy-dispersive X-ray spectroscopy. The isothermal precipitation kinetics curves and the corresponding precipitation activation energy were obtained. The diffusion activation energy of M2N precipitation is 129 kJ/mol. The results show that critical temperature for M2N precipitation is about 825°C with the corresponding incubation period 2.5 min.

  13. Application of Moessbauer effect to the study of austenite retained in low carbon steels

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de; Silva, E.G. da

    1979-01-01

    Moessbauer effect measurements were performed in two samples of low carbon, low alloy steels, one with a bainite granular microstructure and the other a martensitic one. The concentration of the retained austenite was determined in both samples by Moessbauer spectrometry and X radiation, a very good agreement for the sample with a greater austenite content having been observed. From the assumption that the carbon atoms in the f.c.c. matrix repel one another due to Coulomb interactions, giving origin to quadrupolar interactions, it was possible to determine carbon concentration in the MA (Martensite Austenite) components of bainite, the results being in good agreement with the one obtained from metallographic considerations. (I.C.R.) [pt

  14. Ductile austenitic steel for fuel cans and core components of sodium cooled reactors

    International Nuclear Information System (INIS)

    Schaefer, L.

    1995-01-01

    Two austenitic steel melts of a new composition have been studied after irradiation in the PFR fast neutron flux, in the BR2 reactor, and in the Harwell V.E. Cyclotron. The investigations were focussed on helium embrittlement and irradiation induced swelling. (orig.)

  15. Effect of the wave shocking treatment on the structure and strengthening of austenitic steels

    International Nuclear Information System (INIS)

    Blinov, V.M.; Chernogorova, O.P.; Drozdova, E.I.; Afanas'ev, I.A.

    2006-01-01

    The structure and hardening of austenitic manganese steels after shock wave treatment are studied. It is shown that the treatment results in the structure where an elementary cell size decreases with a pressure increase. The strain hardening resulted from shock wave loading can be estimated using a Hall-Petch equation. It is established that at similar degree of residual strains the shock wave loading compared to cold rolling gives rise to higher strengthening which value grows as austenite stacking fault energy decreases [ru

  16. Solid state alloying by plasma nitriding and diffusion annealing treatment for austenitic stainless steel

    International Nuclear Information System (INIS)

    Pinedo, C.E.; Vatavuk, J.; Oliveira, S.D. de; Tschiptschin, A.P.

    1999-01-01

    Nitrogen has been added to stainless steels to improve mechanical strength and corrosion resistance. High nitrogen steel production is limited by high gas pressure requirements and low nitrogen solubility in the melt. One way to overcome this limitation is the addition of nitrogen in solid state because of its higher solubility in austenite. However, gas and salt bath nitriding have been done at temperatures around 550 C, where nitrogen solubility in the steel is still very low. High temperature nitriding has been, thus proposed to increase nitrogen contents in the steel but the presence of oxide layers on top of the steel is a barrier to nitrogen intake. In this paper a modified plasma nitriding process is proposed. The first step of this process is a hydrogen plasma sputtering for oxide removal, exposing active steel surface improving nitrogen pickup. This is followed by a nitriding step where high nitrogen contents are introduced in the outermost layer of the steel. Diffusion annealing is then performed in order to allow nitrogen diffusion into the core. AISI 316 austenitic stainless steel was plasma nitrided and diffusion annealed at 1423K, for 6 hours, with 0.2 MPa nitrogen pressure. The nitrided steel presented ∝60 μm outermost compact layer of (Fe,Cr) 3 N and (Fe,Cr) 4 N with 11 wt.% N measured by surface depth profiling chemical analysis - GDS system. During the annealing treatment the nitride layer was dissolved and nitrogen diffused to the core of the sample leaving more even nitrogen distribution into the steel. Using this technique one-millimetre thick sample were obtained having high nitrogen content and uniform distribution through the thickness. (orig.)

  17. Hot corrosion behaviour of austenitic steel-303 in molten chloride and carbonate salts

    International Nuclear Information System (INIS)

    Mohd Misbahul Amin; Shamsul Baharin Jamaludin; Che Mohd Ruzaidi Ghazali; Khairel Rafezi Ahmad

    2007-01-01

    The investigations are presented for the hot corrosion behaviors of Austenitic Steel-303, under influence of the molten chloride and carbonate salts viz KCl and K 2 CO 3 , oxidised at 1123 K for the period of 60 hour at atmospheric condition. The oxidation kinetic are effect of molten chloride and carbonate salts deposition on the oxidation rate were determined. The susceptibility to suffer a deleterious attack on the alloy by internal corrosion increases with increasing the time. In general, the corrosion resistance austenitic steel-303 in molten carbonate salts is much higher than chloride melt, being an active oxidizing agent providing oxygen during fluxing reaction. However, due to profuse evolution of CO/ CO 2 heavy mass losses are observed during corrosion and scales are porous. The test included mass change monitoring and surface layers were examined by means of scanning electron microscopy (SEM) studies. (author)

  18. Using Low-Frequency Phased Arrays to Detect Cracks in Cast Austenitic Piping Components

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2005-01-01

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address NDE reliability of inservice inspection (ISI) programs, recent studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effectiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the ISI of primary piping components in pressurized water reactors (PWRs). This paper describes progress, recent developments and early results from an assessment of a portion of this work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner's Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, are being used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays are employed in laboratory trials. Results from laboratory studies for assessing detection of thermal and mechanical fatigue cracks in cast stainless steel piping welds are discussed

  19. Characteristic of Low Temperature Carburized Austenitic Stainless Steel

    Science.gov (United States)

    Istiroyah; Pamungkas, M. A.; Saroja, G.; Ghufron, M.; Juwono, A. M.

    2018-01-01

    Low temperature carburizing process has been carried out on austenitic stainless steel (ASS) type AISI 316L, that contain chromium in above 12 at%. Therefore, conventional heat treatment processes that are usually carried out at high temperatures are not applicable. The sensitization process due to chromium migration from the grain boundary will lead to stress corrosion crack and decrease the corrosion resistance of the steel. In this study, the carburizing process was carried out at low temperatures below 500 °C. Surface morphology and mechanical properties of carburized specimens were investigated using optical microscopy, non destructive profilometer, and Vicker microhardness. The surface roughness analysis show the carburising process improves the roughness of ASS surface. This improvement is due to the adsorption of carbon atoms on the surface of the specimen. Likewise, the hardness test results indicate the carburising process increases the hardness of ASS.

  20. Effects of retained austenite and hydrogen on the rolling contact fatigue behaviours of carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chunlei; Dan, Rui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Fucheng, E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Lv, Bo [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Yan, Zhigang; Shan, Jun; Long, Xiaoyan [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-31

    The effects of retained austenite and hydrogen on the rolling contact fatigue (RCF) behaviours of a new carbide-free bainitic steel (CFBS) were studied by means of the RCF testing, electrolytic hydrogen charging, transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the new carbide-free bainitic steels (CFBSs) exhibited very good RCF performance under the high contact stress of 1.7 GPa, and pitting and spalling were the main mode of the RCF failure. The RCF performance of the new CFBS was improved by the retained austenite content increasing, while obviously decreased by hydrogen.

  1. Surface modification of austenitic steel by various glow-discharge nitriding methods

    Directory of Open Access Journals (Sweden)

    Tomasz Borowski

    2015-09-01

    Full Text Available Recent years have seen intensive research on modifying glow-discharge nitriding processes. One of the most commonly used glow-discharge methods includes cathodic potential nitriding (conventional method, and active screen plasma nitriding. Each of these methods has a number of advantages. One very important, common feature of these techniques is full control of the microstructure, chemical and phase composition, thickness and the surface topography of the layers formed. Another advantage includes the possibility of nitriding such materials as: austenitic steels or nickel alloys, i.e. metallic materials which do not diffuse nitrogen as effectively as ferritic or martensitic steels. However, these methods have some disadvantages as well. In the case of conventional plasma nitriding, engineers have to deal with the edge effect, which makes it difficult to use this method for complexly shaped components. In turn, in the case of active screen plasma nitriding, the problem disappears. A uniform, smooth layer forms, but is thinner, softer and is not as resistant to friction compared to layers formed using the conventional method. Research is also underway to combine these methods, i.e. use an active screen in conventional plasma nitriding at cathodic potential. However, there is a lack of comprehensive data presenting a comparison between these three nitriding processes and the impact of pulsating current on the formation of the microstructure and functional properties of austenitic steel surfaces. The article presents a characterisation of nitrided layers produced on austenitic X2CrNiMo17-12-2 (AISI 316L stainless steel in the course of glow-discharge nitriding at cathodic potential, at plasma potential and at cathodic potential incorporating an active screen. All processes were carried out at 440 °C under DC glow-discharge conditions and in 100 kHz frequency pulsating current. The layers were examined in terms of their microstructure, phase and

  2. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    Science.gov (United States)

    Mazias, Philip J.; McGreevy, Tim; Pollard,Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2007-08-14

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  3. Austenitic stainless steel alloys having improved resistance to fast neutron-induced swelling

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The present invention is based on the discovery that radiation-induced voids which occur during fast neutron irradiation can be controlled by small but effective additions of titanium and silicon. The void-suppressing effect of these metals in combination is demonstrated and particularly apparent in austenitic stainless steels. 3 figures, 3 tables

  4. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... demonstrate that a case of expanded austenite develops and that, in particular, strain-induced martensite has a large influence on the nitrided zone....

  5. Phase transformation of the L1{sub 2} phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Wei-Chun, E-mail: weicheng@mail.ntust.edu.tw [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Cheng, Chih-Yao; Hsu, Chia-Wei [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China); Laughlin, David E. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA (United States)

    2015-08-26

    Fe–C–Mn–Al steels have the potential to substitute for commercial Ni–Cr stainless steels. For the development of Fe–C–Mn–Al stainless steels, phase transformations play an important role. Our methods of studying the phase transformations of the steel include heating, cooling, and/or annealing. The results of our study show that spinodal decomposition, an atomic ordering reaction and the transformation of the L1{sub 2} phase to kappa-carbide occur in the Fe–C–Mn–Al steel. After cooling, the austenite decomposes by the spinodal mechanism into solute-lean and solute-rich austenite phases. The solute-rich austenite phase also transforms into the L1{sub 2} phase via the ordering reaction upon cooling to lower temperatures. After quenching and prolonged annealing, the L1{sub 2} phase grows in the austenite and finally transforms into kappa-carbide. This L1{sub 2} phase to kappa-carbide transformation has not been observed previously.

  6. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part II. Fatigue crack growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: margolinbz@yandex.ru; Minkin, A.; Smirnov, V.; Sorokin, A.; Shvetsova, V.; Potapova, V.

    2016-11-15

    The experimental data on the fatigue crack growth rate (FCGR) have been obtained for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various radiation swelling. The performed study of the fracture mechanisms for cracked specimens under cyclic loading has explained why radiation swelling affects weakly FCGR unlike its effect on fracture toughness. Mechanical modeling of fatigue crack growth has been carried out and the dependencies for prediction of FCGR in irradiated austenitic steel with and with no swelling are proposed and verified with the obtained experimental results. As input data for these dependencies, FCGR for unirradiated steel and the tensile mechanical properties for unirradiated and irradiated steels are used.

  7. Stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic steels: the role of precipitation

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Wareing, J.

    1979-01-01

    The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed

  8. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite...... obtained by low-temperature gaseous carburizing of AISI 316. X-ray diffraction was applied for the determination of lattice spacing depth profiles by destructive depth profiling and reconstruction of the original lattice spacing profiles from the measured, diffracted intensity weighted, values....... The compressive stress depth distributions correlate with the depth distribution of the strain-free lattice parameter, the latter being a measure for the depth distribution of carbon in expanded austenite. Elastically accommodated compressive stress values as high as -2.7 GPa were obtained, which exceeds...

  9. Development of neural network models for the prediction of solidification mode, weld bead geometry and sensitisation in austenitic stainless steels

    International Nuclear Information System (INIS)

    Vasudevan, M.; Raj, B.; Prasad Rao, K.

    2005-01-01

    Quantitative models describing the effect of weld composition on the solidification mode, ferrite content and process parameters on the weld bead geometry are necessary in order to design composition of the welding consumable to ensure primary ferritic solidification mode, proper ferrite content and to ensure right choice of process parameters to achieve good bead geometry. A quantitative model on sensitisation behaviour of austenitic stainless steels is also necessary to optimise the composition of the austenitic stainless steel and to limit the strain on the material in order to enhance the resistance to sensitisation. The present paper discuss the development of quantitative models using artificial neural networks to correlate weld metal composition with solidification mode, process parameter with weld bead geometry and time for sensitisation with composition, strain in the material before welding and the temperature of exposure in austenitic stainless steels. (author)

  10. Strain hardening and plastic instability properties of austenitic stainless steels after proton and neutron irradiation

    International Nuclear Information System (INIS)

    Byun, T.S.; Farrell, K.; Lee, E.H.; Hunn, J.D.; Mansur, L.K.

    2001-01-01

    Strain hardening and plastic instability properties were analyzed for EC316LN, HTUPS316, and AL6XN austenitic stainless steels after combined 800 MeV proton and spallation neutron irradiation to doses up to 10.7 dpa. The steels retained good strain-hardening rates after irradiation, which resulted in significant uniform strains. It was found that the instability stress, the stress at the onset of necking, had little dependence on the irradiation dose. Tensile fracture stress and strain were calculated from the stress-strain curve data and were used to estimate fracture toughness using an existing model. The doses to plastic instability and fracture, the accumulated doses at which the yield stress reaches instability stress or fracture stress, were predicted by extrapolation of the yield stress, instability stress, and fracture stress to higher dose. The EC316LN alloy required the highest doses for plastic instability and fracture. Plastic deformation mechanisms are discussed in relation to the strain-hardening properties of the austenitic stainless steels

  11. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel

    International Nuclear Information System (INIS)

    Vijayanand, V.D.; Parameswaran, P.; Nandagopal, M.; Panneer Selvi, S.; Laha, K.; Mathew, M.D.

    2013-01-01

    Prior cold worked (PCW) titanium-modified 14Cr–15Ni austenitic stainless steel (SS) is used as a core-structural material in fast breeder reactor because of its superior creep strength and resistance to void swelling. In this study, the influence of PCW in the range of 16–24% on creep properties of IFAC-1 SS, a titanium modified 14Cr–15Ni austenitic SS, at 923 K and 973 K has been investigated. It was found that PCW has no appreciable effect on the creep deformation rate of the steel at both the test temperatures; creep rupture life increased with PCW at 923 K and remained rather unaffected at 973 K. The dislocation structure along with precipitation in the PCW steel was found to change appreciably depending on creep testing conditions. A well-defined dislocation substructure was observed on creep testing at 923 K; a well-annealed microstructure with evidences of recrystallization was observed on creep testing at 973 K

  12. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  13. TiC reinforced cast Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  14. TiC-reinforced cast Cr steels

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Schrems, K. K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5-4.5Ti, and 1-1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  15. Thermal Fatigue of Die-Casting Dies: An Overview

    Directory of Open Access Journals (Sweden)

    Abdulhadi Hassan A.

    2016-01-01

    Full Text Available Coupled studies by experimental and numerical simulations are necessary for an increased understanding of the material behaviour as related to the interaction between the thermal and mechanical conditions. This paper focus on the mechanisms of thermal fatigue in the failure of dies and cores used in the die casting of aluminum alloys. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. Samples of various types of H13 steel were compared with a standard H13 steel by testing under identical thermal fatigue cycles. To determine the thermal constraint developed in the sample during the test, a finite difference technique was used to obtain the temperature distribution, based on temperature measurements at the boundaries. The resulting stresses and strains were computed, and the strain calculated at the edge or weakest point of the sample was used to correlate the number of cycles to crack initiation. As the strain at the edge increased, the number of cycles to failure decreased. The influence of various factors on thermal fatigue behavior was studied including austenitizing temperature, surface condition, stress relieving, casting, vacuum melting, and resulfurization. The thermal fatigue resistance improved as the austenitizing temperature increased from 1750 to 2050ºF.

  16. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the

  17. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought

  18. The influence of cooling parameters on the speed of continuous steel casting

    Science.gov (United States)

    Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C. P.

    2018-01-01

    This paper analyzes the cooling parameters of the continuous casting speed. In the researches carried out we aimed to establish some correlation equations between the parameters characterizing the continuous casting process, the temperature of the steel at the entrance to the crystallizer, the superheating of the steel and the flow of the cooling water in the crystallizer and different zones of the secondary cooling. Parallel to these parameters were also the values for the casting speed. The research was made for the casting of round ϕ270mm semi-finished steel products. The steel was developed in an electric EBT furnace with a capacity of 100t, treated in L.F. (Ladle - Furnace) and VD (Vacuum-Degassing) and poured in a 5-wire continuous casting plant. The obtained data was processed in MATLAB using three types of correlation equations. The obtained results are presented both in the analytical and graphical form, each correlation being analyzed from the technological point of view, indicating the optimal values for the independent parameters monitored. In the analysis we present a comparison between the results obtained after the three types of equations for each correlation.

  19. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  20. Characterization of the martensite phase formed during hydrogen ion irradiation in austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Lim, Sangyeob; Kwon, Junhyun

    2017-10-01

    Microstructural changes in austenitic stainless steel caused by hydrogen ion irradiation were investigated using transmission electron microscopy (TEM). It has been confirmed that the irradiation induced the formation of martensite along the grain boundary; the martensite phase exhibited a crystal orientation relationship with the adjacent austenite phase. The results of this study also indicate that the concentration of Cr in the martensite phase is lower compared to that in the austenite matrix. The TEM results showed the development of asymmetric radiation-induced segregation (RIS) near the grain boundary, which leads to local changes in the chemical composition such as reduction of Cr near the grain boundary. The asymmetric RIS serves as a prerequisite for the formation of the martensite under hydrogen irradiation.

  1. Development of fully dense and high performance powder metallurgy HSLA steel using HIP method

    Science.gov (United States)

    Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping

    2018-05-01

    In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.

  2. Evaluation of High Temperature Corrosion Resistance of Finned Tubes Made of Austenitic Steel And Nickel Alloys

    Directory of Open Access Journals (Sweden)

    Turowska A.

    2016-06-01

    Full Text Available The purpose of the paper was to evaluate the resistance to high temperature corrosion of laser welded joints of finned tubes made of austenitic steel (304,304H and nickel alloys (Inconel 600, Inconel 625. The scope of the paper covered the performance of corrosion resistance tests in the atmosphere of simulated exhaust gases of the following chemical composition: 0.2% HCl, 0.08% SO2, 9.0% O2 and N2 in the temperature of 800°C for 1000 hours. One found out that both tubes made of austenitic steel and those made of nickel alloy displayed good resistance to corrosion and could be applied in the energy industry.

  3. In Situ Techniques for the Investigation of the Kinetics of Austenitization of Supermartensitic Stainless Steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Apel, Daniel

    2016-01-01

    The austenitization and inter-critical annealing of X4CrNiMo16-5-1 (1.4418) supermartensitic stainless steel were investigated in-situ with synchrotron X-ray diffraction (XRD), dilatometry and differential scanning calorimetry (DSC) under isochronal heating conditions. Austenitization occurred...... of surface martensite formation on the XRD measurement. The applicable temperature range for DSC as well as the close proximity of the Ac1- and the Curietemperature limited the usage of the technique in the present case....

  4. On the grain boundary hardening in a B-bearing 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Yao, X.X.

    1999-01-01

    The precipitates, (Cr,Fe) 23 (C,B) 6 carbides and (Cr,Fe) 2 B borides, formed along the grain boundaries in a 304 austenitic stainless steel containing boron of 33 ppm after solution treatment at 1100 C for 1 h followed by isothermal ageing for 0.5 h at temperatures ranging from 750 to 1050 C have been identified. The influence of these precipitates on the grain boundary hardening has been investigated by means of micro-Vickers hardness measurements. It is found that the degree of grain boundary hardening below 900 C decreases, while it increases above 900 C with increasing ageing temperature. The dissolution of (Cr,Fe) 23 (C,B) 6 carbides and the precipitation of (Cr,Fe) 2 B borides are associated with the changes of grain boundary hardening in this B-bearing 304 austenitic stainless steel between 750 and 1100 C. The non-equilibrium boron segregation enhances the grain boundary hardening when the ageing temperature is above 900 C. (orig.)

  5. Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhang, H.; Shi, Y.; Kutsuna, M.; Xu, G.J.

    2010-01-01

    Stainless steels are widely used in nuclear power plant due to their good corrosion resistance, but their wear resistance is relatively low. Therefore, it is very important to improve this property by surface treatment. This paper investigates cladding Colmonoy 6 powder on AISI316L austenitic stainless steel by CO 2 laser. It is found that preheating is necessary for preventing cracking in the laser cladding procedure and 450 o C is the proper preheating temperature. The effects of laser power, traveling speed, defocusing distance, powder feed rate on the bead height, bead width, penetration depth and dilution are investigated. The friction and wear test results show that the friction coefficient of specimens with laser cladding is lower than that of specimens without laser cladding, and the wear resistance of specimens has been increased 53 times after laser cladding, which reveals that laser cladding layer plays roles on wear resistance. The microstructures of laser cladding layer are composed of Ni-rich austenitic, boride and carbide.

  6. Effect of composition on the electrochemical behavior of austenitic stainless steel in Ringer's solution

    International Nuclear Information System (INIS)

    Bandy, R.; Cahoon, J.R.

    1977-01-01

    Potentiodynamic cyclic polarization tests on Type 316L stainless steel, a common orthopedic implant alloy, in Ringer's solution show considerable hysteresis and a protection potential more active than the open circuit corrosion potential. This implies that chances of repassivation of actively growing pits in this alloy are limited. Tests in Ringer's solution containing hydrochloric acid show that the open circuit potential of Type 316L steel in this solution may exceed in the noble direction the critical pitting potential in the same solution. This signifies that spontaneous breakdown of passivity may occur in a bulk environment which grossly simulates the electrochemical environment within a crevice. Alloying elements such as Mo, Ni, Cr, all improve the corrosion resistance of Type 316L stainless steel in that the critical pitting potential shifts in the noble direction in the alloys having any of the three alloying elements in a higher proportion than in Type 316L steel. Polarization tests in Ringer's solution on a 20% Cr, 25% Ni, 4.5% Mo, 1.5% Cu austenitic stainless steel, having Mo, Cr, and Ni--all in higher proportions than in Type 316L steel, does not show any critical pitting potential or hysteresis at potentials below that for dissociation of water. However, test in 4% NaCl solution at 60 C, a more aggressive chloride environment than Ringer'ssolution, reveals considerable hysteresis and a very active protection potential, indicating that this behavior is a common feature of austenitic stainless steel in sufficiently aggressive, chloride media

  7. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  8. The Investigation on Strain Strengthening Induced Martensitic Phase Transformation of Austenitic Stainless Steel: A Fundamental Research for the Quality Evaluation of Strain Strengthened Pressure Vessel

    Science.gov (United States)

    Li, Bo; Cai Ren, Fa; Tang, Xiao Ying

    2018-03-01

    The manufacture of pressure vessels with austenitic stainless steel strain strengthening technology has become an important technical means for the light weight of cryogenic pressure vessels. In the process of increasing the strength of austenitic stainless steel, strain can induce the martensitic phase transformation in austenite phase. There is a quantitative relationship between the transformation quantity of martensitic phase and the basic mechanical properties. Then, the martensitic phase variables can be obtained by means of detection, and the mechanical properties and safety performance are evaluated and calculated. Based on this, the quantitative relationship between strain hardening and deformation induced martensite phase content is studied in this paper, and the mechanism of deformation induced martensitic transformation of austenitic stainless steel is detailed.

  9. Sensitivity of the magnetization curves of different austenitic stainless tube and pipe steels to mechanical fatigue

    International Nuclear Information System (INIS)

    Niffenegger, M.; Leber, H.J.

    2008-01-01

    In meta-stable austenitic stainless steels, fatigue is accompanied by a partial strain-induced transformation of paramagnetic austenite to ferromagnetic martensite [G.B. Olsen, M. Cohen, Kinetics of strain induced martensite nucleation, Metall. Trans. 6 (1975) 791-795]. The associated changes of magnetic properties as the eddy current impedance, magnetic permeability or the remanence field may serve as an indication for the degree of fatigue and therefore the remaining lifetime of a component, even though the exact causal relationship between martensite formation and fatigue is not fully understood. However, measuring these properties by magnetic methods may be limited by the low affinity for strain-induced martensite formation. Thus other methods have to be found which are able to detect very small changes of ferromagnetic contents. With this aim the influence of cyclic strain loading on the magnetization curves of the austenitic stainless tube and pipe steels TP 321, 347, 304L and 316L is analysed in the present paper. The measured characteristic magnetic properties, which are the saturation magnetization, residual magnetization, coercive field and the field dependent permeability (AC-magnetization), are sensitive to fatigue and the corresponding material changes (martensitic transformation). In particular, the AC-magnetization was found to be very sensitive to small changes of the amount of strain induced martensite and therefore also to the degree of fatigue. Hence we conclude that applying magnetic minor loops are promising for the non-destructive evaluation of fatigue in austenitic stainless steel, even if a very small amount of strain induced martensite is formed

  10. Thermal Effects That Arise upon Different Heat Treatments in Austenitic Steels Alloyed with Titanium and Phosphorus

    Science.gov (United States)

    Arbuzov, V. L.; Berger, I. F.; Bobrovskii, V. I.; Voronin, V. I.; Danilov, S. E.; Kazantsev, V. A.; Kataev, N. V.; Sagaradze, V. V.

    2018-04-01

    Structural and microstructural changes that arise in the course of the heat treatment of Cr-Ni-Mo austenitic stainless steels with different concentrations of titanium and phosphorus have been studied. It has been found that the alloying with phosphorus decreases the lattice parameter of these steels. The phosphorus contribution to this effect is 0.015 ± 0.002 Å/at %. Aging at a temperature of 670 K for about 20 h leads to the precipitation of dispersed needle-like particles, which are most likely to be iron phosphides. In the temperature range of 700-800 K, in austenitic steels, the atomic separation of the solid solution occurs, the intensity of which decreases upon alloying with titanium or phosphorus at concentrations of 1.0 and 0.1 wt %, respectively. At higher temperatures (about 950 K), the formed precipitates of the Ni3Ti (γ') phase increase in size to 7-10 nm.

  11. Integrity of austenitic stainless steel piping welds for nuclear service

    International Nuclear Information System (INIS)

    Canalini, A.; Lopes, L.R.

    1983-01-01

    A criterion applying K 1d concept was developed to determine the fracture mechanics properties of austenitic stainless steel nuclear piping welds. The critical dimensions, lenght and depth, for crack initiation were established and plotted in a chart. This study enables the dimensions of a discontinuity detected in an in-service inspection to be compared to the critical dimensions for crack initiation, and the indication can be judged critical or non-critical for the component. (author) [pt

  12. Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Roa, J.J., E-mail: joan.josep.roa@upc.edu [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Fargas, G. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); Jiménez-Piqué, E. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain); CRnE, Campus Diagonal Sud, Edificio C’, Universitat Politècnica de Catalunya, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Mateo, A. [CIEFMA-Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona (Spain)

    2014-03-01

    Advanced techniques were used to study the deformation mechanisms induced by fatigue tests in a metastable austenitic stainless steel AISI 301LN. Observations by Atomic Force Microscopy were carried out to study the evolution of a pre-existing martensite platelet at increasing number of cycles. The sub-superficial deformation mechanisms of the austenitic grains were studied considering the cross-section microstructure obtained by Focused Ion Beam and analysed by Scanning Electron Microscopy and Transmission Electron Microscopy. The results revealed no deformation surrounding the pre-existing martensitic platelet during fatigue tests, only the growth on height was observed. Martensite formation was associated with shear bands on austenite, mainly in the {111} plane, and with the activation of the other intersecting austenite {111}〈110〉 slip system. Furthermore, transmission electron microscopy results showed that the nucleation of ε-martensite follows a two stages phase transformation (γ{sub fcc}→ε{sub hcp}→α'{sub bcc})

  13. Effects of heat treatment condition on the mechanical properties and weldability of 10Cr-1Mo-VNbN cast steel

    International Nuclear Information System (INIS)

    Shon, Dae Young; Bang, Kook Soo; Lee, Kyong Woon; Chi, Byung Ha

    2003-01-01

    Mechanical properties and weldability such as HAZ hardness, cold cracking susceptibility and hot ductility of two differently heat treated 10Cr-1Mo-VNbN cast steels were measured and compared. Because of high hardenability of the cast steel, as-annealed cast steel showed martensitic microstructure and thus had higher hardness than annealed-normalized-tempered cast steel which had tempered martensite. Because the welding electrode used resulted in a high hardness weld metal, both cast steels showed same weld metal cold cracking susceptibility even though the as-annealed cast steel had higher HAZ hardness than the annealed-normalized-tempered cast steel. Both cast steels had excellent hot ductility in high temperature range, indicating no risk of grain boundary liquation cracking in the HAZ. However, the as-annealed cast steel showed an inferior ductility in the intermediate temperature range of 1000∼1150 .deg. C because of larger unrecrystallized grain size

  14. Swelling and swelling resistance possibilities of austenitic stainless steels in fusion reactors

    International Nuclear Information System (INIS)

    Maziasz, P.J.

    1983-01-01

    Fusion reactor helium generation rates in stainless steels are intermediate to those found in EBR-II and HFIR, and swelling in fusion reactors may differ from the fission swelling behavior. Advanced titanium-modified austenitic stainless steels exhibit much better void swelling resistance than AISI 316 under EBR-II (up to approx. 120 dpa) and HFIR (up to approx. 44 dpa) irradiations. The stability of fine titanium carbide (MC) precipitates plays an important role in void swelling resistance for the cold-worked titanium-modified steels irradiated in EBR-II. Futhermore, increased helium generation in these steels can (a) suppress void conversion, (b) suppress radiation-induced solute segregation (RIS), and (c) stabilize fine MC particles, if sufficient bubble nucleation occurs early in the irradation. The combined effects of helium-enhanced MC stability and helium-suppressed RIS suggest better void swelling resistance in these steels for fusion service than under EBR-II irradiation

  15. Corrosion Behavior of the Stressed Sensitized Austenitic Stainless Steels of High Nitrogen Content in Seawater

    Directory of Open Access Journals (Sweden)

    A. Almubarak

    2013-01-01

    Full Text Available The purpose of this paper is to study the effect of high nitrogen content on corrosion behavior of austenitic stainless steels in seawater under severe conditions such as tensile stresses and existence of sensitization in the structure. A constant tensile stress has been applied to sensitized specimens types 304, 316L, 304LN, 304NH, and 316NH stainless steels. Microstructure investigation revealed various degrees of stress corrosion cracking. SCC was severe in type 304, moderate in types 316L and 304LN, and very slight in types 304NH and 316NH. The electrochemical polarization curves showed an obvious second current peak for the sensitized alloys which indicated the existence of second phase in the structure and the presence of intergranular stress corrosion cracking. EPR test provided a rapid and efficient nondestructive testing method for showing passivity, degree of sensitization and determining IGSCC for stainless steels in seawater. A significant conclusion was obtained that austenitic stainless steels of high nitrogen content corrode at a much slower rate increase pitting resistance and offer an excellent resistance to stress corrosion cracking in seawater.

  16. Weldability and microstructural analysis of nuclear-grade austenitic stainless steels

    International Nuclear Information System (INIS)

    Lee, C.H.

    1988-01-01

    This study evaluated the hot-ductility response, and hot-cracking susceptibility (fusion-zone solidification cracking and HAZ liquation cracking) of modified nuclear-grade and standard austenitic stainless steels. Extensive microstructural characterization using state-of-the-art analytical electron microscopy (TEM and STEM) as well as SEM (EDAX) and OLM was performed to correlate the material behavior with metallurgical characteristics. In addition, studies of the effect of Si, N, and rare earth elements on hot-cracking susceptibility, significance of the ductility dip phenomena and backfilled solidification cracks were also performed. Furthermore, based on the metallurgical evaluation, the possible mechanisms involved in solidification cracking and HAZ liquation cracking of the modified alloys are proposed. Finally, the optimized chemical specifications and requirements for nuclear-grade stainless steels are also suggested

  17. Modified Monkman–Grant relationship for austenitic stainless steel foils

    Energy Technology Data Exchange (ETDEWEB)

    Osman Ali, Hassan, E-mail: hassaninsan@gmail.com [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Tamin, Mohd Nasir, E-mail: taminmn@fkm.utm.my [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2013-02-15

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman–Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ε{sub min},ε{sub r},t{sub r} can be expressed using the modified Monkman–Grant equation with exponent m′= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m′ = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman–Grant ductility factor λ{sup ′} saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ{sup ′} increases drastically (λ{sup ′}=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  18. Corrosion behavior of austenitic and ferritic/martensitic steels in oxygen-saturated liquid Pb-Bi eutectic at 450circC and 550circC

    OpenAIRE

    倉田 有司; 二川 正敏; 斎藤 滋

    2005-01-01

    Static corrosion tests of various austenitic and ferritic/martensitic steels were conducted in oxygen-saturated liquid Pb-Bi at 450circC and 550circC for 3000h to study the effects of temperature and alloying elements on corrosion behavior. Oxidation, grain boundary corrosion, dissolution and penetration were observed. The corrosion depth decreases at 450circC with increasing Cr content in steels regardless of ferritic/martensitic or austenitic steels. Appreciable dissolution of Ni and Cr doe...

  19. The characteristics creep fracture of austenitic stainless steels

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Assis, A.M.C.A.

    1977-05-01

    The characteristics of fracture on creep of two AISI type 316 austenitic stainless steels tested at constant load from 600 to 800 0 C were studied by scanning electron microscopy. The morphological aspects of the fracture were analysed and correllated to the ductility level attained in creep. A marked change from intergranular to transgranular type of fracture was observed in going from 600 to 800 0 C. At 800 0 C on the other hand, the condition for crack nucleation at sigma phase as well as the special conditions of oxidation, are apparently responsible for that same change with the applied stress. (Author) [pt

  20. Mechanical properties of austenitic stainless steels in sodium

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1978-03-01

    A detailed review of the mechanical properties of austenitic stainless steels in liquid sodium is presented. Consideration has been given to the influence of the of the impurities in reactor sodium and metallurgical variables upon the stress rupture life, the low cycle fatigue and combined creep/fatigue resistance, elastic-plastic crack propagation rates, the high cycle fatigue life, tensile properties and fracture toughness. The effects of exposure to contaminated sodium prior to testing are also discussed. Examples of the success of mechanistic interpretations of materials behaviour in sodium are given and additionally, the extent to which mechanical properties in sodium may be predicted with the use of appropriate data. (author)