Sample records for auranofin inhibit selenoprotein

  1. A Mixed Methods Feasibility Trial of PKCι Inhibition with Auranofin in Asymptomatic Patients with Ovarian Cancer (United States)

    Jatoi, Aminah; Breitkopf, Carmen Radecki; Foster, Nathan R.; Block, Matthew S.; Grudem, Megan; Hendrickson, Andrea Wahner; Carlson, Rachel E.; Barrette, Brigitte; Karlin, Nina; Fields, Alan P.


    Purpose This trial was undertaken to 1) determine the feasibility of enrolling asymptomatic ovarian cancer patients with Ca-125 elevation to a trial with the PKCι inhibitor, auranofin, and 2) understand patients’ perceptions of Ca-125 monitoring. Methods Asymptomatic ovarian cancer patients with Ca-125 elevation received auranofin 3 mg orally twice/day and were evaluated. Patients participated in interviews about Ca-125 monitoring. Results Ten patients were enrolled in slightly over 6 months, exceeding our anticipated rate. Four manifested stable Ca-125 levels for 1 month or longer. The median progression-free survival was 2.8 months (95% confidence interval: 1.3, 3.8 months); auranofin was well tolerated. One patient had baseline and monthly Ca-125 levels of 5570, 6085, 3511, and 2230 units/mL, respectively, stopped auranofin because of radiographic progression at 3 months, and manifested an increase in Ca-125 to 7168 units/mL approximately 3 months later. Patient interviews revealed: 1) the important role of Ca-125 in cancer monitoring; 2) ardent advocacy for Ca-125 testing; and 3) evolution toward the Ca-125 assuming a life of its own. Conclusions This study showed feasibility; and patients favored Ca-125 monitoring. One patient had a decline in Ca-125, suggesting that PKCι inhibition merits further study in ovarian cancer. PMID:25502607

  2. Investigation of a potential mechanism for the inhibition of SmTGR by Auranofin and its implications for Plasmodium falciparum inhibition

    KAUST Repository

    Caroli, Antonia


    Schistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified. Auranofin also kills P. falciparum, even if its molecular targets are unknown. Here, we used computational and docking techniques to investigate the molecular mechanism of interaction between SmTGR and Auranofin. Furthermore, we took advantage of the homology relationship and of docking studies to assess if PfTR, the SmTGR malaria parasite homologue, can be a putative target for Auranofin. Our findings support a recently hypothesized molecular mechanism of inhibition for SmTGR and suggest that PfTR is indeed a possible and attractive drug target in P. falciparum. © 2011 Elsevier Inc.

  3. Auranofin Inhibits the Enzyme Activity of Pasteurella multocida Toxin PMT in Human Cells and Protects Cells from Intoxication (United States)

    Carle, Stefan; Brink, Thorsten; Orth, Joachim H. C.; Aktories, Klaus; Barth, Holger


    The AB-type protein toxin from Pasteurella multocida (PMT) contains a functionally important disulfide bond within its catalytic domain, which must be cleaved in the host cell cytosol to render the catalytic domain of PMT into its active conformation. Here, we found that the reductive potential of the cytosol of target cells, and more specifically, the activity of the thioredoxin reductase (TrxR) is crucial for this process. This was demonstrated by the strong inhibitory effect of the pharmacological TrxR inhibitor auranofin, which inhibited the intoxication of target cells with PMT, as determined by analyzing the PMT-catalyzed deamidation of GTP-binding proteins (G-proteins) in the cytosol of cells. The amount of endogenous substrate levels modified by PMT in cells pretreated with auranofin was reduced compared to cells treated with PMT alone. Auranofin had no inhibitory effect on the activity of the catalytic domain of constitutively active PMT in vitro, demonstrating that auranofin did not directly inhibit PMT activity, but interferes with the mode of action of PMT in cells. In conclusion, the results show that TrxR is crucial for the mode of action of PMT in mammalian cells, and that the drug auranofin can serve as an efficient inhibitor, which might be a starting point for novel therapeutic options against toxin-associated diseases. PMID:28098782

  4. Antiproliferative effect of gold(I compound auranofin through inhibition of STAT3 and telomerase activity in MDA-MB 231 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Nam-Hoon Kim


    Full Text Available Signal transducer and activator of transcription 3 (STAT3 andtelomerase are considered attractive targets for anticancertherapy. The in vitro anticancer activity of the gold(I compoundauranofin was investigated using MDA-MB 231 human breastcancer cells, in which STAT3 is constitutively active. In cellculture, auranofin inhibited growth in a dose-dependent manner,and N-acetyl-L-cysteine (NAC, a scavenger of reactive oxygenspecies (ROS, markedly blocked the effect of auranofin.Incorporation of 5-bromo-2’-deoxyuridine into DNA andanchorage-independent cell growth on soft agar were decreasedby auranofin treatment. STAT3 phosphorylation and telomeraseactivity were also attenuated in cells exposed to auranofin, butNAC pretreatment restored STAT3 phosphorylation andtelomerase activity in these cells. These findings indicate thatauranofin exerts in vitro antitumor effects in MDA-MB 231 cellsand its activity involves inhibition of STAT3 and telomerase.Thus, auranofin shows potential as a novel anticancer drug thattargets STAT3 and telomerase. [BMB Reports 2013; 46(1: 59-64

  5. Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition (United States)

    Papaioannou, Margarita; Mylonas, Ioannis; Kast, Richard E.; Brüning, Ansgar


    A valuable strategy to develop new therapeutic options for a variety of diseases has been the identification of new targets and applications for already approved drugs, the so-called drug repositioning. Recurrent ovarian cancer is a nearly incurable malignancy for which new and effective treatments are urgently needed. The alcohol-deterring drug disulfiram has been shown to cause preferential cell death in a variety of cancer cells. In this study, it is shown that disulfiram mediates effective cell death in ovarian cancer cells by promoting a pro-oxidative intracellular environment in a copper-dependent mechanism. Within few hours of application, disulfiram caused irreversible cell damage associated with pronounced induction of the inducible heat shock proteins HSP70, HSP40, and HSP32. The small heat shock protein HSP27 was found to be covalently dimerized via oxidized disulfide bonds and precipitated in para-nuclear protein aggregates. Simultaneous inhibition of the cellular thioredoxin system by auranofin further enhanced the cytotoxic effect of disulfiram. These data indeed indicate that the combination of two approved drugs, the anti-alcoholic disulfiram and the anti-rheumatic auranofin, may be of interest for the treatment of recurrent and genotoxic drug-resistant ovarian cancer by inducing a proteotoxic cell death mechanism. PMID:25593981

  6. Deficiency in the 15 kDa Selenoprotein Inhibits Human Colon Cancer Cell Growth

    Directory of Open Access Journals (Sweden)

    Ryuta Tobe


    Full Text Available Selenium is an essential micronutrient for humans and animals, and is thought to provide protection against some forms of cancer. These protective effects appear to be mediated, at least in part, through selenium-containing proteins (selenoproteins. Recent studies in a mouse colon cancer cell line have shown that the 15 kDa selenoprotein (Sep15 may also play a role in promoting colon cancer. The current study investigated whether the effects of reversing the cancer phenotype observed when Sep15 was removed in mouse colon cancer cells, were recapitulated in HCT116 and HT29 human colorectal carcinoma cells. Targeted down-regulation of Sep15 using RNAi technology in these human colon cancer cell lines resulted in similarly decreased growth under anchorage-dependent and anchorage-independent conditions. However, the magnitude of reduction in cell growth was much less than in the mouse colon cancer cell line investigated previously. Furthermore, changes in cell cycle distribution were observed, indicating a delayed release of Sep15 deficient cells from the G0/G1 phase after synchronization. The potential mechanism by which human colon cancer cells lacking Sep15 revert their cancer phenotype will need to be explored further.

  7. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail:


    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  8. A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. (United States)

    Tejman-Yarden, Noa; Miyamoto, Yukiko; Leitsch, David; Santini, Jennifer; Debnath, Anjan; Gut, Jiri; McKerrow, James H; Reed, Sharon L; Eckmann, Lars


    Giardiasis is one of the most common causes of diarrheal disease worldwide. Treatment is primarily with 5-nitro antimicrobials, particularly metronidazole. Resistance to metronidazole has been described, and treatment failures can occur in up to 20% of cases, making development of alternative antigiardials an important goal. To this end, we have screened a chemical library of 746 approved human drugs and 164 additional bioactive compounds for activity against Giardia lamblia. We identified 56 compounds that caused significant inhibition of G. lamblia growth and attachment. Of these, 15 were previously reported to have antigiardial activity, 20 were bioactive but not approved for human use, and 21 were drugs approved for human use for other indications. One notable compound of the last group was the antirheumatic drug auranofin. Further testing revealed that auranofin was active in the low (4 to 6)-micromolar range against a range of divergent G. lamblia isolates representing both human-pathogenic assemblages A and B. Most importantly, auranofin was active against multiple metronidazole-resistant strains. Mechanistically, auranofin blocked the activity of giardial thioredoxin oxidoreductase, a critical enzyme involved in maintaining normal protein function and combating oxidative damage, suggesting that this inhibition contributes to the antigiardial activity. Furthermore, auranofin was efficacious in vivo, as it eradicated infection with different G. lamblia isolates in different rodent models. These results indicate that the approved human drug auranofin could be developed as a novel agent in the armamentarium of antigiardial drugs, particularly against metronidazole-resistant strains.

  9. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway (United States)

    Thangamani, Shankar; Maland, Matthew; Mohammad, Haroon; Pascuzzi, Pete E.; Avramova, Larisa; Koehler, Carla M.; Hazbun, Tony R.; Seleem, Mohamed N.


    Current antifungal therapies have limited effectiveness in treating invasive fungal infections. Furthermore, the development of new antifungal is currently unable to keep pace with the urgent demand for safe and effective new drugs. Auranofin, an FDA-approved drug for the treatment of rheumatoid arthritis, inhibits growth of a diverse array of clinical isolates of fungi and represents a new antifungal agent with a previously unexploited mechanism of action. In addition to auranofin's potent antifungal activity against planktonic fungi, this drug significantly reduces the metabolic activity of Candida cells encased in a biofilm. Unbiased chemogenomic profiling, using heterozygous S. cerevisiae deletion strains, combined with growth assays revealed three probable targets for auranofin's antifungal activity—mia40, acn9, and coa4. Mia40 is of particular interest given its essential role in oxidation of cysteine rich proteins imported into the mitochondria. Biochemical analysis confirmed auranofin targets the Mia40-Erv1 pathway as the drug inhibited Mia40 from interacting with its substrate, Cmc1, in a dose-dependent manner similar to the control, MB-7. Furthermore, yeast mitochondria overexpressing Erv1 were shown to exhibit resistance to auranofin as an increase in Cmc1 import was observed compared to wild-type yeast. Further in vivo antifungal activity of auranofin was examined in a Caenorhabditis elegans animal model of Cryptococcus neoformans infection. Auranofin significantly reduced the fungal load in infected C. elegans. Collectively, the present study provides valuable evidence that auranofin has significant promise to be repurposed as a novel antifungal agent and may offer a safe, effective, and quick supplement to current approaches for treating fungal infections. PMID:28149831

  10. Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. (United States)

    Hopper, Melissa; Yun, Jeong-Fil; Zhou, Bianhua; Le, Christine; Kehoe, Katelin; Le, Ryan; Hill, Ryan; Jongeward, Gregg; Debnath, Anjan; Zhang, Liangfang; Miyamoto, Yukiko; Eckmann, Lars; Land, Kirkwood M; Wrischnik, Lisa A


    Trichomoniasis, caused by the protozoan parasite Trichomonas vaginalis, is the most common, non-viral, sexually transmitted infection in the world, but only two closely related nitro drugs are approved for its treatment. New antimicrobials against trichomoniasis remain an urgent need. Several organic gold compounds were tested for activity against T. vaginalis thioredoxin reductase (TrxR) in cell-free systems as well as for activity against different trichomonads in vitro and in a murine infection model. The organic gold(I) compounds auranofin and chloro(diethylphenylphosphine)gold(I) inhibited TrxR in a concentration-dependent manner in assays with recombinant purified reductase and in cytoplasmic extracts of T. vaginalis transfected with a haemagglutinin epitope-tagged form of the reductase. Auranofin potently suppressed the growth of three independent clinical T. vaginalis isolates as well as several strains of another trichomonad (Tritrichomonas foetus) in a 24 h-assay, with 50% inhibitory concentrations of 0.7-2.5 µM and minimum lethal concentrations of 2-6 µM. The drug also compromised the ability of the parasite to overcome oxidant stress, supporting the notion that auranofin acts, in part, by inactivating TrxR-dependent antioxidant defences. Chloro(diethylphenylphosphine)gold(I) was 10-fold less effective against T. vaginalis in vitro than auranofin. Oral administration of auranofin for 4 days cleared the parasites in a murine model of vaginal T. foetus infection without displaying any apparent adverse effects. The approved human drug auranofin may be a promising agent as an alternative treatment of trichomoniasis in cases when standard nitro drug therapies have failed.

  11. Serum gold concentrations during treatment with auranofin. (United States)

    Van Riel, P L; Gribnau, F W; Van de Putte, L B; Arts, C W; Van Aernsbergen, A


    Serum gold concentrations were measured in rheumatoid arthritis patients during chronic treatment with the orally adsorbable gold compound auranofin. In agreement with data in the literature, the highest serum gold concentration was reached after 16 weeks of treatment with 6 mg auranofin daily. A striking finding in this study was that thereafter the serum gold concentrations did not appear to plateau but declined gradually. Statistically this resulted in a significantly lower concentration after one year as compared with week 16 (p less than 0.05, paired t-test). It is suggested that a shift from protein bound gold to cell-bound gold might be the explanation.

  12. Salsalate and Adiponectin Improve Palmitate-Induced Insulin Resistance via Inhibition of Selenoprotein P through the AMPK-FOXO1α Pathway.

    Directory of Open Access Journals (Sweden)

    Tae Woo Jung

    Full Text Available Selenoprotein P (SeP was recently identified as a hepatokine that induces insulin resistance (IR in rodents and humans. Recent clinical trials have shown that salsalate, a prodrug of salicylate, significantly lowers blood glucose levels and increases adiponectin concentrations. We examined the effects of salsalate and full length-adiponectin (fAd on the expression of SeP under hyperlipidemic conditions and explored their regulatory mechanism on SeP. In palmitate-treated HepG2 cells as well as high fat diet (HFD-fed male Spraque Dawley (SD rats and male db/db mice, SeP expression and its regulatory pathway, including AMPK-FOXO1α, were evaluated after administration of salsalate and salicylate. Palmitate treatment significantly increased SeP expression and aggravated IR, while knock-down of SeP by siRNA restored these changes in HepG2 cells. Palmitate-induced SeP expression was inhibited by both salsalate and salicylate, which was mediated by AMPK activation, and was blocked by AMPK siRNA or an inhibitor of AMPK. Chromatin immunoprecipitation (ChIP and electrophoretic mobility shift (EMSA assay showed that salsalate suppressed SeP expression by AMPK-mediated phosphorylation of FOXO1α. Moreover, fAd also reduced palmitate-induced SeP expression through the activation of AMPK, which results in improved IR. Both salsalate and salicylate treatment significantly improved glucose intolerance and insulin sensitivity, accompanied by reduced SeP mRNA and protein expression in HFD-fed rats and db/db mice, respectively. Taken together, we found that salsalate and adiponectin ameliorated palmitate-induced IR in hepatocytes via SeP inhibition through the AMPK-FOXO1α pathway. The regulation of SeP might be a novel mechanism mediating the anti-diabetic effects of salsalate and adiponectin.

  13. Selenium, glutathione peroxidase and other selenoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmsen, E.C.


    Selenium, as essential trace element, has long been associated with protein. The essentiality of selenium is partially understood as glutathione peroxidase contains an essential selenocysteine. Glutathione peroxidase has been purified from many tissues including rat liver. An estimated molecular weight of 105,000 was obtained for glutathione peroxidase by comparison to standards. A subunit size of 26,000 was obtained by SDS-gel electrophoresis. Glutathione peroxidase is not the only selenoprotein in the rat. In seven rat tissues examined, there were many different subunit sizes and change groups representing between 9 and 23 selenoproteins. Selenocysteine in glutathione peroxidase accounts for ca. 36% of the selenium in the rat. The mode of synthesis of glutathione peroxidase and the other selenoproteins is not understood. Glutathione peroxidase is strongly and reversibly inhibited by mercaptocarboxylic acids and other mercaptans, including some used as slow-acting drugs for the symtomatic treatment of rheumatoid arthritis. The mechanism and chemistry of this inhibition is discussed. This inhibition may provide a link between selenium and arthritis.

  14. Selenoprotein-Transgenic Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Jiazuan Ni


    Full Text Available Selenium (Se deficiency is associated with the occurrence of many diseases. However, excessive Se supplementation, especially with inorganic Se, can result in toxicity. Selenoproteins are the major forms of Se in vivo to exert its biological function. Expression of those selenoproteins, especially with the application of a newly developed system, is thus very important for studying the mechanism of Se in nutrition. The use of Chlamydomonas reinhardtii (C. reinhardtii as a biological vector to express an heterogeneous protein is still at the initial stages of development. In order to investigate the possibility of using this system to express selenoproteins, human 15-KDa selenoprotein (Sep15, a small but widely distributed selenoprotein in mammals, was chosen for the expression platform test. Apart from the wild-type human Sep15 gene fragment, two Sep15 recombinants were constructed containing Sep15 open reading frame (ORF and the selenocysteine insertion sequence (SECIS element from either human Sep15 or C. reinhardtii selenoprotein W1, a highly expressed selenoprotein in this alga. Those Sep15-containing plasmids were transformed into C. reinhardtii CC-849 cells. Results showed that Sep15 fragments were successfully inserted into the nuclear genome and expressed Sep15 protein in the cells. The transgenic and wild-type algae demonstrated similar growth curves in low Se culture medium. To our knowledge, this is the first report on expressing human selenoprotein in green alga.

  15. Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis.

    Directory of Open Access Journals (Sweden)

    Christina A Bulman


    Full Text Available Two major human diseases caused by filariid nematodes are onchocerciasis, or river blindness, and lymphatic filariasis, which can lead to elephantiasis. The drugs ivermectin, diethylcarbamazine (DEC, and albendazole are used in control programs for these diseases, but are mainly effective against the microfilarial stage and have minimal or no effect on adult worms. Adult Onchocerca volvulus and Brugia malayi worms (macrofilariae can live for up to 15 years, reproducing and allowing the infection to persist in a population. Therefore, to support control or elimination of these two diseases, effective macrofilaricidal drugs are necessary, in addition to current drugs. In an effort to identify macrofilaricidal drugs, we screened an FDA-approved library with adult worms of Brugia spp. and Onchocerca ochengi, third-stage larvae (L3s of Onchocerca volvulus, and the microfilariae of both O. ochengi and Loa loa. We found that auranofin, a gold-containing drug used for rheumatoid arthritis, was effective in vitro in killing both Brugia spp. and O. ochengi adult worms and in inhibiting the molting of L3s of O. volvulus with IC50 values in the low micromolar to nanomolar range. Auranofin had an approximately 43-fold higher IC50 against the microfilariae of L. loa compared with the IC50 for adult female O. ochengi, which may be beneficial if used in areas where Onchocerca and Brugia are co-endemic with L. loa, to prevent severe adverse reactions to the drug-induced death of L. loa microfilariae. Further testing indicated that auranofin is also effective in reducing Brugia adult worm burden in infected gerbils and that auranofin may be targeting the thioredoxin reductase in this nematode.

  16. Selenoproteins and maternal nutrition. (United States)

    Pappas, A C; Zoidis, E; Surai, P F; Zervas, G


    Selenium (Se) is an essential trace element of fundamental importance to health due to its antioxidant, anti-inflammatory and chemopreventive properties attributed to its presence within at least 25 selenoproteins (Sel). Sel include but not limited to glutathione peroxidases (GPx1-GPx6), thioredoxin reductases (TrxR1-TrxR3), iodothyronine deiodinases (ID1-ID3), selenophosphate synthetase 2 (SPS2), 15-kDa Sel (Sel15), SelH, SelI, SelK, SelM, SelN, SelO, SelP, SelR, SelS, SelT, SelV, SelW, as well as the 15-kDa Sel (Fep15), SelJ and SelU found in fish. In this review, we describe some of the recent progress in our understanding of the mechanisms of Sel synthesis. The impact of maternal Se intake on offspring is also discussed. The key regulatory point of Sel synthesis is Se itself, which acts predominantly at post-transcriptional levels, although recent findings indicate transcriptional and redox regulation. Maternal nutrition affects the performance and health of the progeny. Both maternal and offspring Se supplementations are essential for the antioxidant protection of the offspring. Prenatal Se supplementation provides an effective antioxidant system that is already in place at the time of birth while, postnatal Se supplementation becomes the main determinant of progeny Se status after the first few days of progeny life.

  17. Evolution of selenoproteins in the metazoan

    Directory of Open Access Journals (Sweden)

    Jiang Liang


    Full Text Available Abstract Background The selenocysteine (Sec containing proteins, selenoproteins, are an important group of proteins present throughout all 3 kingdoms of life. With the rapid progression of selenoprotein research in the post-genomic era, application of bioinformatics methods to the identification of selenoproteins in newly sequenced species has become increasingly important. Although selenoproteins in human and other vertebrates have been investigated, studies of primitive invertebrate selenoproteomes are rarely reported outside of insects and nematodes. Result A more integrated view of selenoprotein evolution was constructed using several representative species from different evolutionary eras. Using a SelGenAmic-based selenoprotein identification method, 178 selenoprotein genes were identified in 6 invertebrates: Amphimedon queenslandica, Trichoplax adhaerens, Nematostella vectensis, Lottia gigantean, Capitella teleta, and Branchiostoma floridae. Amphioxus was found to have the most abundant and variant selenoproteins of any animal currently characterized, including a special selenoprotein P (SelP possessing 3 repeated Trx-like domains and Sec residues in the N-terminal and 2 Sec residues in the C-terminal. This gene structure suggests the existence of two different strategies for extension of Sec numbers in SelP for the preservation and transportation of selenium. In addition, novel eukaryotic AphC-like selenoproteins were identified in sponges. Conclusion Comparison of various animal species suggests that even the most primitive animals possess a selenoproteome range and variety similar to humans. During evolutionary history, only a few new selenoproteins have emerged and few were lost. Furthermore, the massive loss of selenoproteins in nematodes and insects likely occurred independently in isolated partial evolutionary branches.

  18. X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action. (United States)

    Parsonage, Derek; Sheng, Fang; Hirata, Ken; Debnath, Anjan; McKerrow, James H; Reed, Sharon L; Abagyan, Ruben; Poole, Leslie B; Podust, Larissa M


    The anti-arthritic gold-containing drug Auranofin is lethal to the protozoan intestinal parasite Entamoeba histolytica, the causative agent of human amebiasis, in both culture and animal models of the disease. A putative mechanism of Auranofin action proposes that monovalent gold, Au(I), released from the drug, can bind to the redox-active dithiol group of thioredoxin reductase (TrxR). Au(I) binding in the active site is expected to prevent electron transfer to the downstream substrate thioredoxin (Trx), thus interfering with redox homeostasis in the parasite. To clarify the molecular mechanism of Auranofin action in more detail, we determined a series of atomic resolution X-ray structures for E. histolytica thioredoxin (EhTrx) and thioredoxin reductase (EhTrxR), the latter with and without Auranofin. Only the disulfide-bonded form of the active site dithiol (Cys(140)-Cys(143)) was invariably observed in crystals of EhTrxR in spite of the addition of reductants in various crystallization trials, and no gold was found associated with these cysteines. Non-catalytic Cys(286) was identified as the only site of modification, but further mutagenesis studies using the C286Q mutant demonstrated that this site was not responsible for inhibition of EhTrxR by Auranofin. Interestingly, we obtained both of the catalytically-relevant conformations of this bacterial-like, low molecular weight TrxR in crystals without requiring an engineered disulfide linkage between Cys mutants of TrxR and Trx (as was originally done with Escherichia coli TrxR and Trx). We note that the -CXXC- catalytic motif, even if reduced, would likely not provide space sufficient to bind Au(I) by both cysteines of the dithiol group.

  19. Aqueous extracts of selenium-fertilized broccoli increase selenoprotein activity and inhibit DNA single-strand breaks, but decrease the activity of quinone reductase in Hepa 1c1c7 cells. (United States)

    Keck, Anna-Sigrid; Finley, John W


    Depending on growth conditions, broccoli may be enriched in the isothiocyanate sulforaphane and/or the mineral selenium (Se); both compounds may play an important role in the reduction of intracellular oxidative stress and chronic disease prevention. Sulforaphane up-regulates transcription of Phase II detoxification proteins (e.g. quinone reductase [QR]), whereas Se is needed for the production of thioredoxin reductase (TR) and glutathione peroxidase-1 (GPx1), both of which exhibit antioxidant activity. The objective of the present study was to determine whether the fertilization of broccoli with Se increases the antioxidant ability of broccoli. Hydrogen peroxide-induced DNA single-strand breaks (measured by single cell electrophoresis, Comet assay) and activity of antioxidant enzymes (GPx, TR and QR) were measured in mouse hepatoma cells (Hepa 1c1c7 cells) treated with purified sulforaphane, sodium selenite or extracts of selenized broccoli. When supplied separately as chemically pure substances, sodium selenite was more effective than sulforaphane for reduction of single-strand breaks. Se-fertilized broccoli extracts were the most effective for reduction of DNA single-strand breaks, and extracts that contained 0.71 microM Se and 0.08 microM sulforaphane inhibited 94% of DNA single-strand breaks. A significant positive association (r = 0.81, p = 0.009) between GPx1 activity and inhibition of DNA single-strand breaks as well as a 24h lag time between addition of Se, sulforaphane or broccoli extract and inhibition of single-strand breaks suggests that some of the antioxidant protection is mediated through selenoproteins. Conversely, fertilization of broccoli with Se decreased the ability of broccoli extract to induce QR activity. These results demonstrate that Se and sulforaphane, alone or as a component of broccoli, may help decrease oxidative stress. They further suggest that Se is the most important for decreasing oxidative stress, but maximizing the Se content

  20. A Method for Identification of Selenoprotein Genes in Archaeal Genomes

    Institute of Scientific and Technical Information of China (English)

    Mingfeng Li; Yanzhao Huang; Yi Xiao


    The genetic codon UGA has a dual function: serving as a terminator and encoding selenocysteine. However, most popular gene annotation programs only take it as a stop signal, resulting in misannotation or completely missing selenoprotein genes. We developed a computational method named Asec-Prediction that is specific for the prediction of archaeal selenoprotein genes. To evaluate its effectiveness, we first applied it to 14 archaeal genomes with previously known selenoprotein genes, and Asec-Prediction identified all reported selenoprotein genes without redundant results. When we applied it to 12 archaeal genomes that had not been researched for selenoprotein genes, Asec-Prediction detected a novel selenoprotein gene in Methanosarcina acetivorans. Further evidence was also collected to support that the predicted gene should be a real selenoprotein gene. The result shows that Asec-Prediction is effective for the prediction of archaeal selenoprotein genes.

  1. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Energy Technology Data Exchange (ETDEWEB)

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)


    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  2. A new look at auranofin, dextromethorphan and rosiglitazone for reduction of glia-mediated inflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Jocelyn M Madeira


    Full Text Available Neurodegenerative disorders including Alzheimer′s disease are characterized by chronic inflammation in the central nervous system. The two main glial types involved in inflammatory reactions are microglia and astrocytes. While these cells normally protect neurons by providing nutrients and growth factors, disease specific stimuli can induce glial secretion of neurotoxins. It has been hypothesized that reducing glia-mediated inflammation could diminish neuronal loss. This hypothesis is supported by observations that chronic use of non-steroidal anti-inflammatory drugs (NSAIDs is linked with lower incidences of neurodegenerative disease. It is possible that the NSAIDs are not potent enough to appreciably reduce chronic neuroinflammation after disease processes are fully established. Gold thiol compounds, including auranofin, comprise another class of medications effective at reducing peripheral inflammation. We have demonstrated that auranofin inhibits human microglia- and astrocyte-mediated neurotoxicity. Other drugs which are currently used to treat peripheral inflammatory conditions could be helpful in neurodegenerative disease. Three different classes of anti-inflammatory compounds, which have a potential to inhibit neuroinflammation are highlighted below.

  3. Ebola viral selenoproteins: a metallomics analysis

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit


    Full Text Available Ebola virus infection is the present public health problem. The trend of worldwide epidemic becomes the serious consideration for this infection. The Ebola virus infection has main clinical manifestation as acute febrile illness with hemorrhagic episode. The problem of hemostatic disturbance can be seen. Focusing on the pathophysiology, selenium plays an important role in the blood clotting regulation. The study on the selenoprotein of the Ebola virus can be useful for further understanding on the pathology of the infection. Here, the authors use metallomics analysis for assessment of Ebola virus genome. According to this study, the selenoprotein portion within Ebola virus genome can be detected at position 1046-1115.

  4. Selenium, selenoproteins and human health: a review. (United States)

    Brown, K M; Arthur, J R


    Selenium is of fundamental importance to human health. It is an essential component of several major metabolic pathways, including thyroid hormone metabolism, antioxidant defence systems, and immune function. The decline in blood selenium concentration in the UK and other European Union countries has therefore several potential public health implications, particularly in relation to the chronic disease prevalence of the Western world such as cancer and cardiovascular disease. Ten years have elapsed since recommended dietary intakes of selenium were introduced on the basis of blood glutathione peroxidase activity. Since then 30 new selenoproteins have been identified, of which 15 have been purified to allow characterisation of their biological function. The long term health implications in relation to declining selenium intakes have not yet been thoroughly examined, yet the implicit importance of selenium to human health is recognised universally. Selenium is incorporated as selenocysteine at the active site of a wide range of selenoproteins. The four glutathione peroxidase enzymes (classical GPx1, gastrointestinal GPx2, plasma GPx3, phospholipid hydroperoxide GPx4)) which represent a major class of functionally important selenoproteins, were the first to be characterised. Thioredoxin reductase (TR) is a recently identified seleno-cysteine containing enzyme which catalyzes the NADPH dependent reduction of thioredoxin and therefore plays a regulatory role in its metabolic activity. Approximately 60% of Se in plasma is incorporated in selenoprotein P which contains 10 Se atoms per molecule as selenocysteine, and may serve as a transport protein for Se. However, selenoprotein-P is also expressed in many tissues which suggests that although it may facilitate whole body Se distribution, this may not be its sole function. A second major class of selenoproteins are the iodothyronine deiodinase enzymes which catalyse the 5'5-mono-deiodination of the prohormone thyroxine (T4

  5. Auranofin induces apoptosis and necrosis in HeLa cells via oxidative stress and glutathione depletion. (United States)

    You, Bo Ra; Shin, Hye Rim; Han, Bo Ram; Kim, Suhn Hee; Park, Woo Hyun


    Auranofin (Au), an inhibitor of thioredoxin reductase, is a known anti‑cancer drug. In the present study, the anti‑growth effect of Au on HeLa cervical cancer cells was examined in association with levels of reactive oxygen species (ROS) and glutathione (GSH). Au inhibited the growth of HeLa cells with an IC50 of ~2 µM at 24 h. This agent induced apoptosis and necrosis, accompanied by the cleavage of poly (ADP‑ribose) polymerase and loss of mitochondrial membrane potential. The pan‑caspase inhibitor, benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone, prevented apoptotic cell death and each of the assessed caspase inhibitors inhibited necrotic cell death induced by Au. With respect to the levels of ROS and GSH, Au increased intracellular O2•- in the HeLa cells and induced GSH depletion. The pan‑caspase inhibitor reduced the levels of O2•- and GSH depletion in Au‑treated HeLa cells. The antioxidant, N‑acetyl cysteine, not only attenuated apoptosis and necrosis in the Au‑treated HeLa cells, but also decreased the levels of O2•- and GSH depletion in the cells. By contrast, L‑buthionine sulfoximine, a GSH synthesis inhibitor, intensified cell death O2•- and GSH depletion in the Au‑treated HeLa cells. In conclusion, Au induced apoptosis and necrosis in HeLa cells via the induction of oxidative stress and the depletion of GSH.

  6. Ebola viral selenoproteins:a metallomics analysis

    Institute of Scientific and Technical Information of China (English)

    Somsri; Wiwanitkit; Viroj; Wiwanitkit


    Ebola virus infection is the present public health problem.The trend of worldwide epidemic becomes the serious consideration for this infection.The Ebola virus infection has main clinical manifestation as acute febrile illness with hemorrhagic episode.The problem of hemostatic disturbance can be seen.Focusing on the palhophysiology.selenium plays an important role in the blood clotting regulation.The study on the selenoprotein of the Ebola virus can be useful for further understanding on the pathology of the infection.Here,the authors use metallomics analysis for assessment of Ebola virus genome.According to this study,the selenoprotein portion within Ebola virus genome can be detected at position 1046-1115.

  7. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci. (United States)

    Martínez-González, J J; Guevara-Flores, A; Rendón, J L; del Arenal, I P


    Previously, we have studied the effect of the gold-compound auranofin (AF) on both thioredoxin-glutathione reductasa (TGR) activity and viability of Taenia crassiceps cysticerci. It was demonstrated that micromolar concentrations of AF were high enough to fully inhibit TGR and kill the parasites. In this work, the dynamics of changes in the glutathione pool of T. crassiceps cysticerci following the addition of AF, was analyzed. A dose-dependent decrease in the internal glutathione concentration, concomitant with an increase in ROS production was observed. These changes were simultaneous with the formation of glutathione-protein complexes and the export of glutathione disulfide (GSSG) to the culture medium. Incubation of cysticerci in the presence of both AF and N-acetyl cysteine (NAC) prevents all the above changes, maintaining cysticerci viability. By contrast, the presence of both AF and buthionine sulfoximine (BSO) resulted in a potentiation of the effects of the gold compound, jeopardizing cysticerci viability. These results suggest the lethal effect of AF on T. crassiceps cysticerci, observed at micromolar concentrations, can be explained as a consequence of major changes in the glutathione status, which results in a significant increase in the oxidative stress of the parasites.

  8. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway. (United States)

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P


    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  9. Acquired resistance to auranofin in cultured human cells. (United States)

    Glennås, A; Rugstad, H E


    A substrain (HEAF) of cultured human epithelial cells, grown as monolayers, was selected for resistance to auranofin (AF), a gold-containing anti-arthritic drug, by growing the parental HE cells with stepwise increased concentrations of AF in the medium. HEAF cells acquired resistance to 2 mumol AF/l, twice the concentration tolerated by the sensitive HE cells. Resistance to AF was also demonstrated in another substrain (HE100) originally selected for by its cadmium resistance, and characterized by a high cytosolic metallothionein (MT) content. Following continuous exposure to 2 mumol AF/l for 4 days, 58% of the HEAF cells, 67% of the HE100 cells, and 16% of the HE cells remained adherent to the flasks, compared with non-treated controls. Following 24 h AF exposure to living cells, HEAF cells had one-half and HE100 cells twice the cellular and cytosolic gold concentration per mg protein, as compared with HE cells. Gel filtration of cell cytosols revealed gold-binding proteins with a mol. wt. of about 10 000 apparently occurring on AF exposure in HEAF and HE cells. They bound 10-15% of cytosolic gold. MT in HE100 cells bound AF-gold to about the same extent. We suggest that the ability of cells to maintain the gold concentration at a low level (HEAF) and trapping of gold by MT (HE100) or low molecular weight proteins occurring on AF treatment (HEAF) may be mechanisms contributing to the observed cellular resistance to AF.

  10. Injectable gold dermatitis and proteinuria: retreatment with auranofin. (United States)

    Tosi, S; Cagnoli, M; Guidi, G; Murelli, M; Messina, K; Colombo, B


    Seven female patients with classical rheumatoid arthritis (RA), treated successfully with injectable gold salts (Fosfocrisolo ICI, 0.10 g/week, with a serum gold concentration of 200-400 mcg/dl), experienced severe gold side-effects after 3 to 20 months of therapy, requiring their withdrawal from gold despite the good results in both clinical and laboratory findings. Four patients showed mucocutaneous side-effects (2 dermatitis and 2 stomatitis) and three a moderate or severe proteinuria. Renal biopsy was performed in these patients, with a histological picture of membranous glomerulonephritis referable to gold therapy. Remission inducing drug (R.I.D.) therapy being mandatory in patients with a chronic progressive disease, and in view of the previous efficacy of gold salts, the patients were put on oral gold, Auranofin being administered 3 mg b.i.d. Both the mucocutaneous side-effects and the proteinuria ameliorated within 2 to 6 months, and the remission of the disease was maintained. The chemical and pharmacokinetic differences between the above two gold compounds are discussed.

  11. Selenium and the selenoprotein thioredoxin reductase in the prevention, treatment and diagnostics of cancer. (United States)

    Selenius, Markus; Rundlöf, Anna-Klara; Olm, Eric; Fernandes, Aristi P; Björnstedt, Mikael


    Selenium is an essential element that is specifically incorporated as selenocystein into selenoproteins. It is a potent modulator of eukaryotic cell growth with strictly concentration-dependant effects. Lower concentrations are necessary for cell survival and growth, whereas higher concentrations inhibit growth and induce cell death. It is well established that selenium has cancer preventive effects, and several studies also have shown that it has strong anticancer effects with a selective cytotoxicity on malignant drug-resistant cells while only exerting marginal effects on normal and benign cells. This cancer-specific cytotoxicity is likely explained by high affinity selenium uptake dependent on proteins connected to multidrug resistance. One of the most studied selenoproteins in cancer is thioredoxin reductase (TrxR) that has important functions in neoplastic growth and is an important component of the resistant phenotype. Several reports have shown that TrxR is induced in tumor cells and pre-neoplastic cells, and several commonly used drugs interact with the protein. In this review, we summarize the current knowledge of selenium as a potent preventive and tumor selective anticancer drug, and we also discuss the potential of using the expression and modulation of the selenoprotein TrxR in the diagnostics and treatment of cancer.

  12. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes.

    Directory of Open Access Journals (Sweden)

    Charles E Chapple

    Full Text Available BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may

  13. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells. (United States)

    Yan, Jidong; Fei, Yao; Han, Yan; Lu, Shemin


    Selenoprotein O (Sel O) is a selenium-containing protein, but its function is still unclear. In the present study, we observed that the mRNA and protein expression levels of Sel O increased during chondrogenic induction of ATDC5 cells. The effects of Sel O on chondrocyte differentiation were then examined through shRNA-mediated gene silencing technique. The expression of Sel O was significantly suppressed at both mRNA and protein levels in a stable cell line transfected with a Sel O-specific target shRNA construct. Thereafter, we demonstrated that Sel O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Sel O deficiencies inhibited expression of chondrogenic gene Sox9, Col II, and aggrecan. Sel O-deficient cells also accumulated a few cartilage glycosaminoglycans (GAGs) and decreased the activity of alkaline phosphatase (ALP). In addition, Sel O deficiencies inhibited chondrocyte proliferation through delayed cell cycle progression by suppression of cyclin D1 expression. Moreover, Sel O deficiencies induced chondrocyte death through cell apoptosis. In summary, we describe the expression patterns and the essential roles of Sel O in chondrocyte viability, proliferation, and chondrogenic differentiation. Additionally, Sel O deficiency-mediated impaired chondrogenesis may illustrate the mechanisms of Se deficiency in the pathophysiological process of the endemic osteoarthropathy.

  14. Selenoproteins are essential for proper keratinocyte function and skin development.

    Directory of Open Access Journals (Sweden)

    Aniruddha Sengupta

    Full Text Available Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec. Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14 expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development.

  15. Selenoprotein P is the essential selenium transporter for bones. (United States)

    Pietschmann, Nicole; Rijntjes, Eddy; Hoeg, Antonia; Stoedter, Mette; Schweizer, Ulrich; Seemann, Petra; Schomburg, Lutz


    Selenium (Se) plays an important role in bone physiology as best reflected by Kashin-Beck disease, an endemic Se-dependent osteoarthritis. Bone development is delayed in children with mutations in SECIS binding protein 2 (SBP2), a central factor for selenoprotein biosynthesis. Circulating selenoprotein P (SePP) is positively associated with bone turnover in humans, yet its function for bone homeostasis is not known. We have analysed murine models of altered Se metabolism. Most of the known selenoprotein genes and factors needed for selenoprotein biosynthesis are expressed in bones. Bone Se is not associated with the mineral but exclusively with the organic matrix. Genetic ablation of Sepp-expression causes a drastic decline in serum (25-fold) but only a mild reduction in bone (2.5-fold) Se concentrations. Cell-specific expression of a SePP transgene in hepatocytes efficiently restores bone Se levels in Sepp-knockout mice. Of the two known SePP receptors, Lrp8 was detected in bones while Lrp2 was absent. Interestingly, Lrp8 mRNA concentrations were strongly increased in bones of Sepp-knockout mice likely in order to counteract the developing Se deficiency. Our data highlight SePP as the essential Se transporter to bones, and suggest a novel feedback mechanism for preferential uptake of Se in Se-deprived bones, thereby contributing to our understanding of hepatic osteodystrophy and the consistent bone phenotype observed in subjects with inherited selenoprotein biosynthesis mutations.

  16. Determination and distribution of human plasma selenoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Plecko, T.; Nordmann, S.; Ruekgauer, M.; Kruse-Jarres, J.D. [Institute for Clinical Chemistry and Laboratory Medicine, Stuttgart (Germany)


    Major portions of plasma-selenium are incorporated in the proteins glutathione peroxidase (GSH-Px), selenoprotein P (Sel P) and albumin. A chromatographic method, adapted from a procedure by Harrison et al. [6], uses heparin- and blue-sepharose to separate the three protein fractions. The determination of selenium was carried out by electrothermal atomic absorption spectroscopy (ETAAS) using the Zeeman effect. The selenium distribution of 17 healthy subjects was 68 {+-} 7% of the total plasma selenium associated to Sel P, 25 {+-} 4% associated to p-GSH-Px and 7{+-}4% associated to albumin. The recovery of selenium was 99 {+-} 4%. For precision measurements a plasma pool has been separated seven times. The selectivity of this method was monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and GSH-Px activity measurements. A fast method, adapted for clinical applications, is described which allows to determine the human plasma selenium distribution in about an hour. (orig.) With 2 tabs., 8 refs.

  17. [Auranofin in the treatment of chronic polyarthritis. Results of an open multicenter study]. (United States)

    Siegmeth, W


    Auranofin (Ridaura SK and F 39 162) was tested in an open multicenter study with regard to its anti-inflammatory effect in 166 patients suffering from rheumatoid arthritis. The time for treatment lasted for one or two years. The therapeutic effect of the drug was judged by its influence on pain, joint swelling, morning stiffness, grip strength, blood-sedimentation rate and rheumatoid factor etc. The serum gold concentration was measured regularly. With Auranofin the majority of the patients achieved a lasting improvement of the condition. The therapeutical effect was observed gradually. Side-effects were frequent but removal from the therapy was rare. Most of the side-effects were diarrhea, rash, pruritus and conjunctivitis. Regular laboratory controls revealed in some cases toxic organic reactions.

  18. Redox effects and cytotoxic profiles of MJ25 and auranofin towards malignant melanoma cells (United States)

    Drummond, Catherine J.; McCarthy, Anna R.; Higgins, Maureen; Campbell, Johanna; Brodin, Bertha; Arnér, Elias S.J.; Laín, Sonia


    Malignant melanoma is the most dangerous type of skin cancer. Although recent progress in treatment has been achieved, lack of response, drug resistance and relapse remain major problems. The tumor suppressor p53 is rarely mutated in melanoma, yet it is inactive in the majority of cases due to dysregulation of upstream pathways. Thus, we screened for compounds that can activate p53 in melanoma cells. Here we describe effects of the small molecule MJ25 (2-{[2-(1,3-benzothiazol-2-ylsulfonyl)ethyl]thio}-1,3-benzoxazole), which increased the level of p53-dependent transactivation both as a single agent and in combination with nutlin-3. Furthermore, MJ25 showed potent cytotoxicity towards melanoma cell lines, whilst having weaker effects against human normal cells. MJ25 was also identified in an independent screen as an inhibitor of thioredoxin reductase 1 (TrxR1), an important selenoenzyme in the control of oxidative stress and redox regulation. The well-characterized TrxR inhibitor auranofin, which is FDA-approved and currently in clinical trials against leukemia and a number of solid cancers, displayed effects comparable with MJ25 on cells and led to eradication of cultured melanoma cells at low micromolar concentrations. In conclusion, auranofin, MJ25 or other inhibitors of TrxR1 should be evaluated as candidate compounds or leads for targeted therapy of malignant melanoma. PMID:26029997

  19. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)


    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins,where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine.The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species.Available computational tools fail to correctly predict selenoproteins.Thus,we devel-oped a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information,several programs were edited with PERL language to identify selenocysteine insertion sequence(SECIS)element,the coding potential of TGA codons,and cys-teine-containing homologs of selenoprotein genes.Our results showed that 11365 genes were termi-nated with TGA codons,918 of which contained SECIS elements.Similarity search revealed that 58 genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons.Finally,7 genes were found to fully meet requirements for selenoproteins,although they have not been anno-tated as selenoproteins in NCBI databases.Deduced from their basic properties,the newly found se-lenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles’ vectorial capacity of Plasmodium.This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  20. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    JIANG Liang; LIU Qiong; CHEN Ping; GAO ZhongHong; XU HuiBi


    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins, where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine. The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species. Available computational tools fail to correctly predict selenoproteins. Thus, we developed a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information, several programs were edited with PERL language to identify selenocysteine insertion sequence (SECIS) element, the coding potential of TGA codons, and cysteine-containing homologs of selenoprotein genes. Our results showed that 11365 genes were terminated with TGA codons, 918 of which contained SECIS elements. Similarity search revealed that 58genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons. Finally, 7genes were found to fully meet requirements for selenoproteins, although they have not been annotated as selenoproteins in NCBI databases. Deduced from their basic properties, the newly found selenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles' vectorial capacity of Plasmodium. This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  1. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern

    DEFF Research Database (Denmark)

    Petit, Nathalie; Lescure, Alain; Rederstorff, Mathieu;


    Rigid spine muscular dystrophy and the classical form of multiminicore disease are caused by mutations in SEPN1 gene, leading to a new clinical entity referred to as SEPN1-related myopathy. SEPN1 codes for selenoprotein N, a new member of the selenoprotein family, the function of which is still...

  2. Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation. (United States)

    Wu, Ryan T Y; Cao, Lei; Chen, Benjamin P C; Cheng, Wen-Hsing


    Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53.

  3. Deletion of selenoprotein P results in impaired function of parvalbumin interneurons and alterations in fear learning and sensorimotor gating. (United States)

    Pitts, M W; Raman, A V; Hashimoto, A C; Todorovic, C; Nichols, R A; Berry, M J


    One of the primary lines of defense against oxidative stress is the selenoprotein family, a class of proteins that contain selenium in the form of the 21st amino acid, selenocysteine. Within this class of proteins, selenoprotein P (Sepp1) is unique, as it contains multiple selenocysteine residues and is postulated to act in selenium transport. Recent findings have demonstrated that neuronal selenoprotein synthesis is required for the development of parvalbumin (PV)-interneurons, a class of GABAergic neurons involved in the synchronization of neural activity. To investigate the potential influence of Sepp1 on PV-interneurons, we first mapped the distribution of the Sepp1 receptor, ApoER2, and parvalbumin in the mouse brain. Our results indicate that ApoER2 is highly expressed on PV-interneurons in multiple brain regions. Next, to determine whether PV-interneuron populations are affected by Sepp1 deletion, we performed stereology on several brain regions in which we observed ApoER2 expression on PV-interneurons, comparing wild-type and Sepp1(-/-) mice. We observed reduced numbers of PV-interneurons in the inferior colliculus of Sepp1(-/-) mice, which corresponded with a regional increase in oxidative stress. Finally, as impaired PV-interneuron function has been implicated in several neuropsychiatric conditions, we performed multiple behavioral tests on Sepp1(-/-) mice. Our behavioral results indicate that Sepp1(-/-) mice have impairments in contextual fear extinction, latent inhibition, and sensorimotor gating. In sum, these findings demonstrate the important supporting role of Sepp1 on ApoER2-expressing PV-interneurons.

  4. Dual function of the selenoprotein PHGPx during sperm maturation. (United States)

    Ursini, F; Heim, S; Kiess, M; Maiorino, M; Roveri, A; Wissing, J; Flohé, L


    The selenoprotein phospholipid hydroperoxide glutathione peroxidase (PHGPx) changes its physical characteristics and biological functions during sperm maturation. PHGPx exists as a soluble peroxidase in spermatids but persists in mature spermatozoa as an enzymatically inactive, oxidatively cross-linked, insoluble protein. In the midpiece of mature spermatozoa, PHGPx protein represents at least 50 percent of the capsule material that embeds the helix of mitochondria. The role of PHGPx as a structural protein may explain the mechanical instability of the mitochondrial midpiece that is observed in selenium deficiency.

  5. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. (United States)

    Schomburg, Lutz; Schweizer, Ulrich


    The expression of selenoproteins is controlled on each one of the textbook steps of protein biosynthesis, i.e., during gene transcription, RNA processing, translation and posttranslational events as well as via control of the stability of the involved intermediates and final products. Selenoproteins are unique in their dependence on the trace element Se which they incorporate as the 21st proteinogenic amino acid, selenocysteine. Higher mammals have developed unique pathways to enable a fine-tuned expression of all their different selenoproteins according to developmental stage, actual needs, and current availability of the trace element. Tightly controlled and dynamic expression patterns of selenoproteins are present in different tissues. Interestingly, these patterns display some differences in male and female individuals, and can be grossly modified during disease, e.g. in cancer, inflammation or neurodegeneration. Likewise, important health issues related to the selenium status show unexpected sexual dimorphisms. Some detailed molecular insights have recently been gained on how the hierarchical Se distribution among the different tissues is achieved, how the selenoprotein biosynthesis machinery discriminates among the individual selenoprotein transcripts and how impaired selenoprotein biosynthesis machinery becomes phenotypically evident in humans. This review tries to summarize these fascinating findings and highlights some interesting and surprising sex-specific differences.

  6. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. (United States)

    Kast, Richard E; Karpel-Massler, Georg; Halatsch, Marc-Eric


    CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.

  7. A new target for gold(I) compounds : Glutathione-S-transferase inhibition by auranofin

    NARCIS (Netherlands)

    De Luca, Anastasia; Hartinger, Christian G.; Dyson, Paul J.; Lo Bello, Mario; Casini, Angela


    Nowadays, gold compounds occupy a relevant position constituting a promising class of experimental anticancer metallodrugs. Several research efforts have been devoted to the investigations of the pharmacological properties of gold(I) complexes bearing phosphine ligands, such as the antiarthritic dru

  8. Identification of selenocyst- eine insertion sequence (SECIS) element in eukaryotic selenoproteins by RNA Draw program

    Institute of Scientific and Technical Information of China (English)


    The computer program RNA Draw was used to identify the secondary structures in the 3′ untranslated re- gions (3′UTRs) of the mRNAs from 46 eukaryotic seleno- proteins among 7 species. The program found one or two possible SECIS elements in these selenoproteins. The SECIS element consists of a stem-loop or hairpin structure with three conserved sequences of AUGA-(A)AA-GA. SECIS element was not found by the RNA Draw program in randomly selected non-selenoproteins. The results showed that SECIS element is the unique character of the genes of eukaryotic selenoproteins. Thus it is possible to use RNA Draw to search the SECIS elements in gene bank for poten- tial new selenoproteins.

  9. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca2+]i in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth Varghese


    Full Text Available Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca2+]i in breast cancer cells (MCF-7. Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca2+]i was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM with a strong negative correlation (r = −0.713 to viability. Pharmacological modulators 2-APB (50 μM, Nimodipine (10 μM, Caffeine (10 mM, SKF 96365(20 μM were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca2+]i in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca2+]i. Overall, elevation of [Ca2+]i by Auranofin might be crucial for triggering Ca2+-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca2+]i should be considered as a crucial factor for the induction of cell death in cancer cells.

  10. Cloning, Sequencing, and Expression of Selenoprotein Transcripts in the Turkey (Meleagris gallopavo). (United States)

    Sunde, Roger A; Sunde, Gavin R; Sunde, Colin M; Sunde, Milton L; Evenson, Jacqueline K


    The minimum Se requirement for male turkey poults is 0.3 μg Se/g--three times higher than requirements found in rodents--based on liver and gizzard glutathione peroxidase-4 (GPX4) and GPX1 activities. In addition, turkey liver GPX4 activity is 10-fold higher and GPX1 activity is 10-fold lower than in rats, and both GPX1 and GPX4 mRNA levels are dramatically down-regulated by Se deficiency. Currently, the sequences of all annotated turkey selenoprotein transcripts and proteins in the NCBI database are only "predicted." Thus we initiated cloning and sequencing of the full turkey selenoprotein transcriptome to demonstrate expression of selenoprotein transcripts in the turkey, and to develop tools to investigate Se regulation of the full selenoproteome. Total RNA was isolated from six tissues of Se-adequate adult tom turkeys, and used to prepare reverse-transcription cDNA libraries. PCR primers were designed, based initially on chicken, rodent, porcine, bovine and human sequences and later on turkey shotgun cloning sequences. We report here the cloning of full transcript sequences for 9 selenoproteins, and 3'UTR portions for 15 additional selenoproteins, which include SECIS elements in 22 3'UTRs, and in-frame Sec (UGA) codons within coding regions of 19 selenoproteins, including 12 Sec codons in SEPP1. In addition, we sequenced the gap between two contigs from the shotgun cloning of the turkey genome, and found the missing sequence for the turkey Sec-tRNA. RTPCR was used to determine the relative transcript expression in 6 tissues. GPX3 expression was high in all tissues except kidney, GPX1 expression was high in kidney, SEPW1 expression was high in heart, gizzard and muscle, and SELU expression was high in liver. SEPP2, a selenoprotein not found in mammals, was highly expressed in liver but not in other tissues. In summary, transcripts for 24 selenoproteins are expressed in the turkey, not just predicted.

  11. Selenoprotein P mRNA expression in human hepatic tissues

    Institute of Scientific and Technical Information of China (English)

    Chun-Li Li; Ke-Jun Nan; Tao Tian; Chen-Guang Sui; Yan-Fang Liu


    AIM: To investigate the expression of Selenoprotein P mRNA (SePmRNA) in tissues of normal liver, liver cirrhosis and hepatocellular carcinoma (HCC), and its relationship with HCC occurrence and development.METHODS: The expression of SePmRNA in tissues of normal liver, liver cirrhosis and HCC were detected by in situ hybridization using a cDNA probe.RESULTS: The enzyme digesting products of pBluescript-Human Selenoprotein P were evaluated by electrophoresis.The positive expression of SePmRNA was found in the tissues of normal liver,liver cirrhosis and HCC.The expression of SeP mRNA was found in hepatic interstitial substance,especially in endothelial cells and lymphocytes of vasculature.The positive rate of SePmRNA in normal liver tissue was 84.6% (11/13) and the positive signals appeared in the nucleus and cytoplasm,mostly in the nucleolus,and the staining granules were larger in the nucleolus and around the nucleus.The positive rate of SePmRNA in liver cirrhosis tissue was 45.O% (9/20) and the positive signals were mainly in the nucleolus and cytoplasm,being less around the nucleus and inner nucleus than that in normal liver tissue. The positive rate of SePmRNA in HCC tissue was 30.0% (9/30) and the positive signals were in the cytoplasm, but less in the nucleus.CONCLUSION: SePmRNA expression in the tissues of normal liver and HCC is significantly different (84.6% vs 30.0%, P = 0.003), suggesting that SeP might play a role in the occurrence and development of HCC.

  12. Dose response studies and longterm evaluation of auranofin in rheumatoid arthritis. (United States)

    Champion, G D; Cairns, D R; Bieri, D; Adena, M A; Browne, C D; Cohen, M L; Day, R O; Edmonds, J P; Graham, G G; de Jager, J


    Fifty-eight patients with rheumatoid arthritis (RA) entered a double blind trial of auranofin (AF) designed to assess dose response relationships and longterm outcome. Multivariate analysis of repeated measures with trend analysis and discriminant function analysis of standard measures of RA activity were applied to a randomized double blind trial of AF at daily doses of 4, 6 and 8 mg over 6 months. Improvement occurred in each group. There was a highly significant (p less than 0.001) linear trend in the 6 mg group, 73% of whom showed linear improvement. A significant correlation (p less than 0.05) was found between response of individual patients and AF dose (mg/kg/day), but there was no significant correlation between dosage and mean steady state serum gold concentration. No significant correlation was seen between outcome and pretreatment demographic and disease variables. In a subsequent 6 month phase of dosage adjustment, aiming for optimal dosage, no advantage resulted from increasing the dose above 6 mg/day. Patients apparently benefiting from treatment continued an open long-term trial of AF. By 45 months, 33.5% had stopped treatment due to lack of efficacy and 14.5% due to toxicity, mainly rash and diarrhea.

  13. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency.

    LENUS (Irish Health Repository)

    Kelly, Emer


    Z alpha(1)-antitrypsin (ZAAT) deficiency is a disease associated with emphysematous lung disease and also with liver disease. The liver disease of AAT deficiency is associated with endoplasmic reticulum (ER) stress. SEPS1 is a selenoprotein that, through a chaperone activity, decreases ER stress. To determine the effect of SEPS1 on ER stress in ZAAT deficiency, we measured activity of the grp78 promoter and levels of active ATF6 as markers of the unfolded protein response in HepG2 cells transfected with the mutant form of AAT, a ZAAT transgene. We evaluated levels of NFkappaB activity as a marker of the ER overload response. To determine the effect of selenium supplementation on the function of SEPS1, we investigated glutathione peroxidase activity, grp78 promoter activity, and NFkappaB activity in the presence or absence of selenium. SEPS1 reduced levels of active ATF6. Overexpression of SEPS1 also inhibited grp78 promoter and NFkappaB activity, and this effect was enhanced in the presence of selenium supplementation. This finding demonstrates a role for SEPS1 in ZAAT deficiency and suggests a possible therapeutic potential for selenium supplementation.

  14. A candidate anti-HIV reservoir compound, auranofin, exerts a selective 'anti-memory' effect by exploiting the baseline oxidative status of lymphocytes. (United States)

    Chirullo, B; Sgarbanti, R; Limongi, D; Shytaj, I L; Alvarez, D; Das, B; Boe, A; DaFonseca, S; Chomont, N; Liotta, L; Petricoin, E Iii; Norelli, S; Pelosi, E; Garaci, E; Savarino, A; Palamara, A T


    Central memory (T(CM)) and transitional memory (T(TM)) CD4(+) T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that T(CM) and T(TM) lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the T(CM)/T(TM) lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways.

  15. Effects of acclimation salinity on the expression of selenoproteins in the tilapia, Oreochromis mossambicus. (United States)

    Seale, Lucia A; Gilman, Christy L; Moorman, Benjamin P; Berry, Marla J; Grau, E Gordon; Seale, Andre P


    Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.

  16. Factors impacting the aminoglycoside-induced UGA stop codon readthrough in selenoprotein translation. (United States)

    Martitz, Janine; Hofmann, Peter Josef; Johannes, Jörg; Köhrle, Josef; Schomburg, Lutz; Renko, Kostja


    Aminoglycosides (AG) are oligosaccharide antibiotics that interfere with the small ribosomal subunit in aerobic, Gram-negative bacteria, causing pathogen-destructing error rates in their protein biosynthesis. Aminoglycosides also induce mRNA misinterpretation in eukaryotic cells, especially of the UGA (Opal)-stop codon, albeit to a lower extent. UGA recoding is essentially required for the incorporation of selenocysteine (Sec) into growing selenoproteins during translation. Selenocysteine incorporation requires the presence of a selenoprotein-specific stem-loop structure within the 3'-untranslated region of the mRNA, the so-called Sec-insertion sequence (SECIS) element. Interestingly, selenoprotein genes differ in their SECIS-element sequence and in their UGA base context. We hypothesized that the SECIS-element and the specific codon context synergize in controlling the effects of AG on stop codon readthrough. To this end, the SECIS-elements of glutathione peroxidase 1, glutathione peroxidase 4 and selenoprotein P transcripts were cloned into a reporter system and analyzed in combination with different UGA codon contexts. Our results indicate that a cytosine in position 4 (directly downstream of UGA) confers strongest effects on both the Se- and AG-dependent readthrough. Overall selenoprotein biosynthesis rate depends on the Se-status, AG concentration and the specific SECIS-element present in the transcript. These findings help to get a better understanding for the susceptibility of different transcripts towards AG-mediated interference with the biosynthesis of functional Se-containing selenoproteins, and highlight the importance of the Se-status for successful selenoprotein biosynthesis under antibiotic therapy.

  17. Polymorphism analysis of six selenoprotein genes : support for a selective sweep at the glutathione peroxidase I locus (3p2I) in Asian populations

    NARCIS (Netherlands)

    Foster, Charles B.; Aswath, Kshama; Chanock, Stephen J.; Mckay, Heather F.; Peters, Ulrike


    Background: There are at least 25 human selenoproteins, each characterized by the incorporation of selenium into the primary sequence as the amino acid selenocysteine. Since many selenoproteins have antioxidant properties, it is plausible that inter-individual differences in selenoprotein expression

  18. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes. (United States)

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen


    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P cytokines (IL-1γ, IL-6 and IL-7) was higher in the Se-deficient group. In both groups, glutathione peroxidase (GPX), thioredoxin 1 (Txnrd1), selenoprotein P1 (SELP), and selenoprotein synthetase (SPS2) were highly expressed compared to the other selenoproteins in chicken erythrocytes (P cytokines (IL-1γ, IL-6, and IL-7) suggested that the immune system of chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins and 10 cytokines in chicken erythrocytes, revealing a relationship between Se and the chicken immune system. This study offers information regarding the mechanism of Se deficiency-induced hemolysis.

  19. Serum selenium and selenoprotein P status in adult Danes-8-year followup

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Hollenbach, B.; Laurberg, P.;


    Selenium is an essential micronutrient important to human health. The main objective of this study is to describe serum selenium and selenoprotein P status in two samples of the Danish population. In addition, the influence of various factors potentially associated with selenium status was invest......Selenium is an essential micronutrient important to human health. The main objective of this study is to describe serum selenium and selenoprotein P status in two samples of the Danish population. In addition, the influence of various factors potentially associated with selenium status...... subjects had filled in a food frequency questionnaire (FFQ) and a questionnaire with information about smoking habits, alcohol consumption and exercise habits. Mean serum selenium level was 98.7+/-19.8microg/L and median selenoprotein P level was 2.72 (2.18-3.49)mg/L. Serum selenium and selenoprotein P...... increased with age, and selenoprotein P was higher in men than in women. Serum selenium levels decreased by 5% on average from 1997-98 to 2004-05 (PP level increased (PP

  20. Auranofin, an Anti-Rheumatic Gold Compound, Modulates Apoptosis by Elevating the Intracellular Calcium Concentration ([Ca{sup 2+}]{sub i}) in MCF-7 Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Elizabeth; Büsselberg, Dietrich, E-mail: [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144 Doha (Qatar)


    Auranofin, a transition metal complex is used for the treatment of rheumatoid arthritis but is also an effective anti-cancer drug. We investigate the effects of Auranofin in inducing cell death by apoptosis and whether these changes are correlated to changes of intracellular calcium concentration ([Ca{sup 2+}]{sub i}) in breast cancer cells (MCF-7). Cytotoxicity of Auranofin was evaluated using MTS assay and the Trypan blue dye exclusion method. With fluorescent dyes SR-FLICA and 7-AAD apoptotic death and necrotic death were differentiated by Flow cytometry. A concentration dependent decrease in the viability occurred and cells were shifted to the apoptotic phase. Intracellular calcium ([Ca{sup 2+}]{sub i}) was recorded using florescence microscopy and a calcium sensitive dye (Fluo-4 AM) with a strong negative correlation (r = −0.713) to viability. Pharmacological modulators 2-APB (50 μM), Nimodipine (10 μM), Caffeine (10 mM), SKF 96365(20 μM) were used to modify calcium entry and release. Auranofin induced a sustained increase of [Ca{sup 2+}]{sub i} in a concentration and time dependent manner. The use of different blockers of calcium channels did not reveal the source for the rise of [Ca{sup 2+}]{sub i}. Overall, elevation of [Ca{sup 2+}]{sub i} by Auranofin might be crucial for triggering Ca{sup 2+}-dependent apoptotic pathways. Therefore, in anti-cancer therapy, modulating [Ca{sup 2+}]{sub i} should be considered as a crucial factor for the induction of cell death in cancer cells.

  1. Cloning, Sequencing, and Expression of Selenoprotein Transcripts in the Turkey (Meleagris gallopavo.

    Directory of Open Access Journals (Sweden)

    Roger A Sunde

    Full Text Available The minimum Se requirement for male turkey poults is 0.3 μg Se/g--three times higher than requirements found in rodents--based on liver and gizzard glutathione peroxidase-4 (GPX4 and GPX1 activities. In addition, turkey liver GPX4 activity is 10-fold higher and GPX1 activity is 10-fold lower than in rats, and both GPX1 and GPX4 mRNA levels are dramatically down-regulated by Se deficiency. Currently, the sequences of all annotated turkey selenoprotein transcripts and proteins in the NCBI database are only "predicted." Thus we initiated cloning and sequencing of the full turkey selenoprotein transcriptome to demonstrate expression of selenoprotein transcripts in the turkey, and to develop tools to investigate Se regulation of the full selenoproteome. Total RNA was isolated from six tissues of Se-adequate adult tom turkeys, and used to prepare reverse-transcription cDNA libraries. PCR primers were designed, based initially on chicken, rodent, porcine, bovine and human sequences and later on turkey shotgun cloning sequences. We report here the cloning of full transcript sequences for 9 selenoproteins, and 3'UTR portions for 15 additional selenoproteins, which include SECIS elements in 22 3'UTRs, and in-frame Sec (UGA codons within coding regions of 19 selenoproteins, including 12 Sec codons in SEPP1. In addition, we sequenced the gap between two contigs from the shotgun cloning of the turkey genome, and found the missing sequence for the turkey Sec-tRNA. RTPCR was used to determine the relative transcript expression in 6 tissues. GPX3 expression was high in all tissues except kidney, GPX1 expression was high in kidney, SEPW1 expression was high in heart, gizzard and muscle, and SELU expression was high in liver. SEPP2, a selenoprotein not found in mammals, was highly expressed in liver but not in other tissues. In summary, transcripts for 24 selenoproteins are expressed in the turkey, not just predicted.

  2. Compositions and methods for the expression of selenoproteins in eukaryotic cells (United States)

    Gladyshev, Vadim [Lincoln, NE; Novoselov, Sergey [Puschino, RU


    Recombinant nucleic acid constructs for the efficient expression of eukaryotic selenoproteins and related methods for production of recombinant selenoproteins are provided. The nucleic acid constructs comprise novel selenocysteine insertion sequence (SECIS) elements. Certain novel SECIS elements of the invention contain non-canonical quartet sequences. Other novel SECIS elements provided by the invention are chimeric SECIS elements comprising a canonical SECIS element that contains a non-canonical quartet sequence and chimeric SECIS elements comprising a non-canonical SECIS element that contains a canonical quartet sequence. The novel SECIS elements of the invention facilitate the insertion of selenocysteine residues into recombinant polypeptides.

  3. Selenoprotein N in skeletal muscle: from diseases to function. (United States)

    Castets, Perrine; Lescure, Alain; Guicheney, Pascale; Allamand, Valérie


    Selenoprotein N (SelN) deficiency causes several inherited neuromuscular disorders collectively termed SEPN1-related myopathies, characterized by early onset, generalized muscle atrophy, and muscle weakness affecting especially axial muscles and leading to spine rigidity, severe scoliosis, and respiratory insufficiency. SelN is ubiquitously expressed and is located in the membrane of the endoplasmic reticulum; however, its function remains elusive. The predominant expression of SelN in human fetal tissues and the embryonic muscle phenotype reported in mutant zebrafish suggest that it is involved in myogenesis. In mice, SelN is also mostly expressed during embryogenesis and especially in the myotome, but no defect was detected in muscle development and growth in the Sepn1 knock-out mouse model. By contrast, we recently demonstrated that SelN is essential for muscle regeneration and satellite cell maintenance in mice and humans, hence opening new avenues regarding the pathomechanism(s) leading to SEPN1-related myopathies. At the cellular level, recent data suggested that SelN participates in oxidative and calcium homeostasis, with a potential role in the regulation of the ryanodine receptor activity. Despite the recent and exciting progress regarding the physiological function(s) of SelN in muscle tissue, the pathogenesis leading to SEPN1-related myopathies remains largely unknown, with several unsolved questions, and no treatment available. In this review, we introduce SelN, its properties and expression pattern in zebrafish, mice, and humans, and we discuss its potential roles in muscle tissue and the ensuing clues for the development of therapeutic options.

  4. Expression of Selenoprotein Genes Is Affected by Obesity of Pigs Fed a High-Fat Diet123 (United States)

    Zhao, Hua; Li, Ke; Tang, Jia-Yong; Zhou, Ji-Chang; Wang, Kang-Ning; Xia, Xin-Jie; Lei, Xin Gen


    Background: Relations of the 25 mammalian selenoprotein genes with obesity and the associated inflammation remain unclear. Objective: This study explored impacts of high-fat diet-induced obesity on inflammation and expressions of selenoprotein and obesity-related genes in 10 tissues of pigs. Methods: Plasma and 10 tissues were collected from pigs (n = 10) fed a corn-soy–based control diet or that diet containing 3–7% lard from weanling to finishing (180 d). Plasma concentrations (n = 8) of cytokines and thyroid hormones and tissue mRNA abundance (n = 4) of 25 selenoprotein genes and 16 obesity-related genes were compared between the pigs fed the control and high-fat diets. Stepwise regression was applied to analyze correlations among all these measures, including the previously reported body physical and plasma biochemical variables. Results: The high-fat diet elevated (P < 0.05) plasma concentrations of tumor necrosis factor α, interleukin-6, leptin, and leptin receptor by 29–42% and affected (P < 0.05–0.1) tissue mRNA levels of the selenoprotein and obesity-related genes in 3 patterns. Specifically, the high-fat diet up-regulated 12 selenoprotein genes in 6 tissues, down-regulated 13 selenoprotein genes in 7 tissues, and exerted no effect on 5 genes in any tissue. Body weights and plasma triglyceride concentrations of pigs showed the strongest regressions to tissue mRNA abundances of selenoprotein and obesity-related genes. Among the selenoprotein genes, selenoprotein V and I were ranked as the strongest independent variables for the regression of phenotypic and plasma measures. Meanwhile, agouti signaling protein, adiponectin, and resistin genes represented the strongest independent variables of the obesity-related genes for the regression of tissue selenoprotein mRNA. Conclusions: The high-fat diet induced inflammation in pigs and affected their gene expression of selenoproteins associated with thioredoxin and oxidoreductase systems, local tissue

  5. Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to selenium intake in mice colon

    NARCIS (Netherlands)

    Kipp, A.; Banning, A.; Schothorst, van E.M.; Meplan, C.; Schomburg, L.; Evelo, C.; Coort, S.L.; Gaj, S.; Keijer, J.; Hesketh, J.; Brigelius, R.


    Selenium is an essential micronutrient. Its recommended daily allowance is not attained by a significant proportion of the population in many countries and its intake has been suggested to affect colorectal carcinogenesis. Therefore, microarrays were used to determine how both selenoprotein and glob

  6. Advances in Extraction of Selenoproteins Biosyntheses in Plant%植物硒蛋白提取研究

    Institute of Scientific and Technical Information of China (English)

    梁潘霞; 刘永贤; 江泽普


    硒(Se)是生物必需的一种微量元素,其生物学功能主要是以硒蛋白的形式表现的,植物硒蛋白具有抗氧化、抗癌、提高免疫力等功能。综述了硒在植物中的存在形态、硒蛋白的分类及提取方法,并提出今后的研究方向。%Selenium (Se) is an essential trace element in many organisms, its biolog-ical function is mainly in the form of selenoproteins, and plant selenoproteins have antioxidant, anti-cancer, and immunity enhancing effects. This study reviewed the ex-isting forms of selenium in plants, selenoproteins classification and selenoproteins extraction methods and proposed future research directions.

  7. Selenotranscriptomic Analyses Identify Signature Selenoproteins in Brain Regions in a Mouse Model of Parkinson’s Disease (United States)

    Zhu, Hui; Sun, Sheng-Nan; Zheng, Jing; Fan, Hui-Hui; Wu, Hong-Mei; Chen, Song-Fang; Cheng, Wen-Hsing; Zhu, Jian-Hong


    Genes of selenoproteome have been increasingly implicated in various aspects of neurobiology and neurological disorders, but remain largely elusive in Parkinson’s disease (PD). In this study, we investigated the selenotranscriptome (24 selenoproteins in total) in five brain regions (cerebellum, substantia nigra, cortex, pons and hippocampus) by real time qPCR in a two-phase manner using a mouse model of chronic PD. A wide range of changes in selenotranscriptome was observed in a manner depending on selenoproteins and brain regions. While Selv mRNA was not detectable and Dio1& 3 mRNA levels were not affected, 1, 11 and 9 selenoproteins displayed patterns of increase only, decrease only, and mixed response, respectively, in these brain regions of PD mice. In particular, the mRNA expression of Gpx1-4 showed only a decreased trend in the PD mouse brains. In substantia nigra, levels of 17 selenoprotein mRNAs were significantly decreased whereas no selenoprotein was up-regulated in the PD mice. In contrast, the majority of selenotranscriptome did not change and a few selenoprotein mRNAs that respond displayed a mixed pattern of up- and down-regulation in cerebellum, cortex, hippocampus, and/or pons of the PD mice. Gpx4, Sep15, Selm, Sepw1, and Sepp1 mRNAs were most abundant across all these five brain regions. Our results showed differential responses of selenoproteins in various brain regions of the PD mouse model, providing critical selenotranscriptomic profiling for future functional investigation of individual selenoprotein in PD etiology. PMID:27656880

  8. SelenoDB 2.0: annotation of selenoprotein genes in animals and their genetic diversity in humans. (United States)

    Romagné, Frédéric; Santesmasses, Didac; White, Louise; Sarangi, Gaurab K; Mariotti, Marco; Hübler, Ron; Weihmann, Antje; Parra, Genís; Gladyshev, Vadim N; Guigó, Roderic; Castellano, Sergi


    SelenoDB ( aims to provide high-quality annotations of selenoprotein genes, proteins and SECIS elements. Selenoproteins are proteins that contain the amino acid selenocysteine (Sec) and the first release of the database included annotations for eight species. Since the release of SelenoDB 1.0 many new animal genomes have been sequenced. The annotations of selenoproteins in new genomes usually contain many errors in major databases. For this reason, we have now fully annotated selenoprotein genes in 58 animal genomes. We provide manually curated annotations for human selenoproteins, whereas we use an automatic annotation pipeline to annotate selenoprotein genes in other animal genomes. In addition, we annotate the homologous genes containing cysteine (Cys) instead of Sec. Finally, we have surveyed genetic variation in the annotated genes in humans. We use exon capture and resequencing approaches to identify single-nucleotide polymorphisms in more than 50 human populations around the world. We thus present a detailed view of the genetic divergence of Sec- and Cys-containing genes in animals and their diversity in humans. The addition of these datasets into the second release of the database provides a valuable resource for addressing medical and evolutionary questions in selenium biology.

  9. Polymorphisms in thioredoxin reductase and selenoprotein K genes and selenium status modulate risk of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Catherine Méplan

    Full Text Available Increased dietary intake of Selenium (Se has been suggested to lower prostate cancer mortality, but supplementation trials have produced conflicting results. Se is incorporated into 25 selenoproteins. The aim of this work was to assess whether risk of prostate cancer is affected by genetic variants in genes coding for selenoproteins, either alone or in combination with Se status. 248 cases and 492 controls from an EPIC-Heidelberg nested case-control study were subjected to two-stage genotyping with an initial screening phase in which 384 tagging-SNPs covering 72 Se-related genes were determined in 94 cases and 94 controls using the Illumina Goldengate methodology. This analysis was followed by a second phase in which genotyping for candidate SNPs identified in the first phase was carried out in the full study using Sequenom. Risk of high-grade or advanced stage prostate cancer was modified by interactions between serum markers of Se status and genotypes for rs9880056 in SELK, rs9605030 and rs9605031 in TXNRD2, and rs7310505 in TXNRD1. No significant effects of SNPs on prostate cancer risk were observed when grade or Se status was not taken into account. In conclusion, the risk of high-grade or advanced-stage prostate cancer is significantly altered by a combination of genotype for SNPs in selenoprotein genes and Se status. The findings contribute to explaining the biological effects of selenium intake and genetic factors in prostate cancer development and highlight potential roles of thioredoxin reductases and selenoprotein K in tumour progression.

  10. Galectin-1 Is an Interactive Protein of Selenoprotein M in the Brain

    Directory of Open Access Journals (Sweden)

    Qiong Liu


    Full Text Available Selenium, an essential trace element for human health, mainly exerts its biological function through selenoproteins. Selenoprotein M (SelM is one of the highly expressed selenoproteins in the brain, but its biological effect and molecular mechanism remain unclear. Thus, the interactive protein of SelM was investigated in this paper to guide further study. In order to avoid protein translational stop, the selenocysteine-encoding UGA inside the open reading frame of SelM was site-directly changed to the cysteine-encoding UGC to generate the SelM' mutant. Meanwhile, its N terminal transmembrane signal peptide was also cut off. This truncated SelM' was used to screen a human fetal brain cDNA library by the yeast two-hybrid system. A new interactive protein of SelM' was found to be galectin-1 (Gal-1. This protein-protein interaction was further verified by the results of fluorescence resonance energy transfer techniques, glutathione S-transferase pull-down and co-immunoprecipitation assays. As Gal-1 plays important roles in preventing neurodegeneration and promoting neuroprotection in the brain, the interaction between SelM' and Gal-1 displays a new direction for studying the biological function of SelM in the human brain.

  11. Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio). (United States)

    Penglase, Sam; Hamre, Kristin; Rasinger, Josef D; Ellingsen, Staale


    Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.

  12. Mouse Models Targeting Selenocysteine tRNA Expression for Elucidating the Role of Selenoproteins in Health and Development

    Directory of Open Access Journals (Sweden)

    Dolph L. Hatfield


    Full Text Available Selenium (Se deficiency has been known for many years to be associated with disease, impaired growth and a variety of other metabolic disorders in mammals. Only recently has the major role that Se-containing proteins, designated selenoproteins, play in many aspects of health and development begun to emerge. Se is incorporated into protein by way of the Se-containing amino acid, selenocysteine (Sec. The synthesis of selenoproteins is dependent on Sec tRNA for insertion of Sec, the 21st amino acid in the genetic code, into protein. We have taken advantage of this dependency to modulate the expression of Sec tRNA that in turn modulates the expression of selenoproteins by generating transgenic, conditional knockout, transgenic/standard knockout and transgenic/conditional knockout mouse models, all of which involve the Sec tRNA gene, to elucidate the intracellular roles of this protein class.

  13. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente


    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  14. Protective Action of Se-Supplement Against Acute Alcoholism Is Regulated by Selenoprotein P (SelP) in the Liver. (United States)

    Zhang, Zhenbiao; Guo, Yingfang; Qiu, Changwei; Deng, Ganzhen; Guo, Mengyao


    Acute alcoholism is a major cause of cirrhosis and liver failure around the world. Selenium (Se) is an essential micronutrient promoting liver health in humans and animals. Selenoprotein P (SelP) is a glycoprotein secreted within the liver, which interacts with cytokines and the growth factor pathway to provide protection for hepatic cells. The present study was conducted to confirm the effect and mechanism of Se and SelP action in livers affected by acute alcoholism. In this study, a mouse model of acute alcoholism, as well as a hepatocyte model, was successfully established. The Se content of the liver was detected by atomic fluorescence spectrophotometry. The expression of messenger RNA (mRNA) was analyzed by quantitative polymerase chain reaction (qPCR). The protein expression of inflammatory factors was detected by ELISA. The other proteins were analyzed by western blotting. The results showed that pathological damage to the liver was gradually weakened by Se-supplementation, which was evaluated by hematoxylin and eosin (H&E) and TUNEL staining. Se-supplementation inhibited expression of pro-inflammatory factors TNF-α and IL-1β and promoted production of anti-inflammatory cytokine IL-10 in the liver with acute alcoholism. Se-supplementation also prevented the apoptosis of hepatocytes by suppressing the cleavage of caspases-9, 3, 6, 7, and poly(ADP-ribose) polymerase (PARP). Through correlational analysis, it was determined that the effects of Se-supplement were closely related to SelP expression, inflammatory cytokines, and apoptosis molecule production. The sienna of SelP further confirmed the protective action of Se-supplementation on the liver and that the mechanism of SelP involves the regulation of inflammatory cytokines and apoptosis molecules in acute alcoholism. These findings provide information regarding a new potential target for the treatment of acute alcoholism.

  15. [Biliary, renal and fecal elimination and distribution of gold after a single oral administration of auranofin, quantified by the instrumental neutron activation analysis method]. (United States)

    Benn, H P; Schnier, C; Bauer, E; Seiler, K U; Elhöft, H; Löffler, H


    Three days after cholecystectomy, seven patients received a single dose of auranofin (5 tablets Ridaura = 4.35 mg gold). At defined time points thereafter the gold content in samples of blood, plasma, urine, bile, and feces was determined by instrumental neutron activation analysis (INAA). Maxima of the mean gold concentrations in blood (140 +/- 42 ng/ml) and plasma (173 +/- 54 ng/ml) are found 2 h after oral administration of the antirheumatic agent, after 16 h in urine (43 +/- 28 ng/ml) and bile (65 +/- 50 ng/ml), and after 24 h in erythrocytes (greater than 200 ng/ml). The mean terminal half-lives are 7.6 days (blood), 15 days (plasma), 5 days (erythrocytes), and 6.5 days (bile). The cumulative biliary gold excretion within 8 days after the administration of auranofin was 1.6%, compared with 4% and 40% for renal and fecal elimination, respectively. The gold concentration in plasma is always higher than that in bile. There is a close correlation between the areas under the concentration curves (AUC) in bile and plasma (r = 0.864).

  16. Selenoprotein P Is the Major Selenium Transport Protein in Mouse Milk (United States)

    Hill, Kristina E.; Motley, Amy K.; Winfrey, Virginia P.; Burk, Raymond F.


    Selenium is transferred from the mouse dam to its neonate via milk. Milk contains selenium in selenoprotein form as selenoprotein P (Sepp1) and glutathione peroxidase-3 (Gpx3) as well as in non-specific protein form as selenomethionine. Selenium is also present in milk in uncharacterized small-molecule form. We eliminated selenomethionine from the mice in these experiments by feeding a diet that contained sodium selenite as the source of selenium. Selenium-replete dams with deletion of Sepp1 or Gpx3 were studied to assess the effects of these genes on selenium transfer to the neonate. Sepp1 knockout caused a drop in milk selenium to 27% of the value in wild-type milk and a drop in selenium acquisition by the neonates to 35%. In addition to decreasing milk selenium by eliminating Sepp1, deletion of Sepp1 causes a decline in whole-body selenium, which likely also contributes to the decreased transfer of selenium to the neonate. Deletion of Gpx3 did not decrease milk selenium content or neonate selenium acquisition by measurable amounts. Thus, when the dam is fed selenium-adequate diet (0.25 mg selenium/kg diet), milk Sepp1 transfers a large amount of selenium to neonates but the transfer of selenium by Gpx3 is below detection by our methods. PMID:25068390

  17. Selenoprotein P is the major selenium transport protein in mouse milk.

    Directory of Open Access Journals (Sweden)

    Kristina E Hill

    Full Text Available Selenium is transferred from the mouse dam to its neonate via milk. Milk contains selenium in selenoprotein form as selenoprotein P (Sepp1 and glutathione peroxidase-3 (Gpx3 as well as in non-specific protein form as selenomethionine. Selenium is also present in milk in uncharacterized small-molecule form. We eliminated selenomethionine from the mice in these experiments by feeding a diet that contained sodium selenite as the source of selenium. Selenium-replete dams with deletion of Sepp1 or Gpx3 were studied to assess the effects of these genes on selenium transfer to the neonate. Sepp1 knockout caused a drop in milk selenium to 27% of the value in wild-type milk and a drop in selenium acquisition by the neonates to 35%. In addition to decreasing milk selenium by eliminating Sepp1, deletion of Sepp1 causes a decline in whole-body selenium, which likely also contributes to the decreased transfer of selenium to the neonate. Deletion of Gpx3 did not decrease milk selenium content or neonate selenium acquisition by measurable amounts. Thus, when the dam is fed selenium-adequate diet (0.25 mg selenium/kg diet, milk Sepp1 transfers a large amount of selenium to neonates but the transfer of selenium by Gpx3 is below detection by our methods.

  18. Selenoprotein P expression in liver, uterus and placenta during late pregnancy. (United States)

    Kasik, J W; Rice, E J


    To identify genes that exhibit increased expression in the placenta during late pregnancy, the technique of differential cDNA library screening was used to isolate a clone subsequently identified as the 3' untranslated region of the mouse selenoprotein p gene. Random primed radiolabelled cDNA probes were constructed from this clone and these probes were used to conduct Northern hybridizations against total RNA purified from mouse placenta, liver (maternal and fetal) and uterus collected sequentially during the latter third of pregnancy. Signal is present in the placenta and beginning 4 days before birth, the level of message increases, reaching maximal levels at term. The level of expression in the placenta at maximum is approximately 25 per cent of that observed in adult liver. In liver obtained from pregnant females, the level of message is increased compared to nonpregnant adults, but returns to normal shortly after birth. Message is also found in the fetal liver beginning at 4 days before birth and exhibits a pattern of expression similar to the placenta. The similarity of expression observed in fetal liver and placenta suggests a coordinated regulation of expression of this gene in these tissues. There is a minimal amount of signal present in the uterus and the expression does not appear to vary. We speculate that selenoprotein p may play a role in the transplacental transport of selenium to the fetus during late pregnancy.

  19. Selenoprotein gene variants, toenail selenium levels, and risk for advanced prostate cancer. (United States)

    Geybels, Milan S; van den Brandt, Piet A; Schouten, Leo J; van Schooten, Frederik J; van Breda, Simone G; Rayman, Margaret P; Green, Fiona R; Verhage, Bas A J


    Lower selenium levels have been associated with increased risk of prostate cancer (PCa), and genetic variation in the selenoprotein genes selenoprotein P (SEPP1) and glutathione peroxidase 1 (GPX1) is thought to modify this relationship. We investigated whether the association between toenail selenium levels and advanced PCa risk in the prospective Netherlands Cohort Study is modified by common genetic variation in SEPP1 and GPX1. Toenail clippings were used to determine selenium levels and to isolate DNA for genotyping. This case-cohort study, which included 817 case subjects with advanced PCa and 1048 subcohort members, was analyzed with Cox regression models. All statistical tests were two-sided. Three genetic variants were associated with advanced (stage III/IV or IV) PCa risk: SEPP1 rs7579 (lower risk; P trend = .01), GPX1 rs17650792 (higher risk; P trend = .03), and GPX1 rs1800668 (lower risk; P trend = .005). Toenail selenium levels were inversely associated with advanced PCa risk, independently of common genetic variation in SEPP1 and GPX1.

  20. Assessment of the Selenoprotein M (SELM over-expression on human hepatocellular carcinoma tissues by immunohistochemistry

    Directory of Open Access Journals (Sweden)

    E. Guerriero


    Full Text Available Selenium is an essential trace mineral of fundamental importance to human healthy and exerts its biological function through selenoproteins. In particular, Selenoprotein M (SELM is located in the endoplasmic reticulum and contains the common redox motif of cysteine-X-X-selenocysteine type. It attracts great attention due to its high expression in brain and its potential roles as antioxidant, neuroprotective, and cytosolic calcium regulator. Recently, our group found SELM over-expression  in human hepatocellular carcinoma (HCC cell lines. In this report some paraffin-embedded tissues from liver biopsy of patients with hepatitis C virus (HCV-related cirrhosis and HCC were immunohistochemically stained and SELM expression scoring was evaluated. Our results evidence for the first time an increase of SELM expression in HCC liver tissues, and its gradual expression raise associated with an increased malignancy grade. Therefore, we propose to use i SELM as putative marker for HCC as well as ii simple immunohistochemistry technique to distinguish between the different grades of malignancy. 

  1. Comparison of different transition metal ions for immobilized metal affinity chromatography of selenoprotein P from human plasma

    DEFF Research Database (Denmark)

    Sidenius, U; Farver, O; Jøns, O


    Cu2+, Ni2+, Zn2+, Co2+ and Cd2+ were evaluated in metal ion affinity chromatography for enrichment of selenoprotein P, and immobilized Co2+ affinity chromatography was found to be the most selective chromatographic method. The chromatography was performed by fast protein liquid chromatography and...

  2. Kissing loops hide premature termination codons in pre-mRNAof selenoprotein genes and in genes containing programmedribosomal frameshifts

    DEFF Research Database (Denmark)

    Knudsen, Steen; Brunak, Søren


    A novel RNA secondary structure that places the selenocysteine codon UGA in one hairpin and a donor splice site in another, has been discovered in selenoprotein genes. The presence of the structure resolves the discrepancy that the selenocysteine triplet, UGA, should block splicing. Without a spe...

  3. Determination of selenoprotein P in human plasma by solid phase extraction and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L.; Sidenius, U.; Gammelgaard, Bente


    measured by inductively coupled plasma mass spectrometry (ICP-MS) monitoring the Se-82 isotope. Linear response was observed in the concentration range 0.3-70.8 mu g/l selenium as selenoprotein P with a correlation coefficient of 0.9994. The precision expressed as relative standard deviation was better...

  4. Association between Polymorphisms in Glutathione Peroxidase and Selenoprotein P Genes, Glutathione Peroxidase Activity, HRT Use and Breast Cancer Risk

    DEFF Research Database (Denmark)

    Méplan, Catherine; Dragsted, Lars Ove; Ravn-Haren, Gitte


    Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this report, a study population including 975 Danish cases an...

  5. Selenium dietary supplementation as a mechanism to restore hepatic selenoprotein regulation in rat pups exposed to alcohol. (United States)

    Jotty, Karick; Ojeda, M Luisa; Nogales, Fátima; Murillo, M Luisa; Carreras, Olimpia


    Ethanol exposure during gestation and lactation decreases selenium (Se) intake, disrupting body Se balance and inducing oxidative stress in rat offspring. Selenium-supplemented diet (0.5 ppm) was administered to ethanol-exposed (20% v/v) dams during gestation and lactation. When the dams' pups were 21 days old, the pups' levels of the main hepatic selenoproteins glutathione peroxidase (GPx1 and GPx4) and selenoprotein P (SelP) were measured. The pups were divided into control (C), alcohol (A), control-selenium (CS), and alcohol-selenium (AS) groups. The purpose was to evaluate the effect of the selenium-supplemented diet on the levels of Se deposits present in the livers of their pups. Alcohol decreases hepatic Se deposits, GPx activity, and GPx1 expression; alcohol increases GPx4 and SelP expression. Se was measured by furnace graphite atomic absorption spectrometry, the antioxidant activity of GPx and concentration of hepatic phospholipids (PL) were determined by spectrophotometry, and the selenoprotein expressions were detected by Western blotting. Selenite treatment prevented alcohol's effects of diminishing the Se deposits, GPx activity, and GPx1 expression, while maintaining the high levels of the expression of GPx4 and SelP. These results suggest that depletion of hepatic Se levels in rat pups, caused by ethanol exposure to their dams, affects the synthesis of the 3 main hepatic selenoproteins in different ways, which is related to a decrease in GPx activity and PL concentration, and an increase in serum Se levels. Selenium supplementation to the dams increased the expression of GPx1, GPx4, and SelP in their pups.

  6. Genetic variation in selenoprotein genes, lifestyle, and risk of colon and rectal cancer.

    Directory of Open Access Journals (Sweden)

    Martha L Slattery

    Full Text Available BACKGROUND: Associations between selenium and cancer have directed attention to role of selenoproteins in the carcinogenic process. METHODS: We used data from two population-based case-control studies of colon (n = 1555 cases, 1956 controls and rectal (n = 754 cases, 959 controls cancer. We evaluated the association between genetic variation in TXNRD1, TXNRD2, TXNRD3, C11orf31 (SelH, SelW, SelN1, SelS, SepX, and SeP15 with colorectal cancer risk. RESULTS: After adjustment for multiple comparisons, several associations were observed. Two SNPs in TXNRD3 were associated with rectal cancer (rs11718498 dominant OR 1.42 95% CI 1.16,1.74 pACT 0.0036 and rs9637365 recessive 0.70 95% CI 0.55,0.90 pACT 0.0208. Four SNPs in SepN1 were associated with rectal cancer (rs11247735 recessive OR 1.30 95% CI 1.04,1.63 pACT 0.0410; rs2072749 GGvsAA OR 0.53 95% CI 0.36,0.80 pACT 0.0159; rs4659382 recessive OR 0.58 95% CI 0.39,0.86 pACT 0.0247; rs718391 dominant OR 0.76 95% CI 0.62,0.94 pACT 0.0300. Interaction between these genes and exposures that could influence these genes showed numerous significant associations after adjustment for multiple comparisons. Two SNPs in TXNRD1 and four SNPs in TXNRD2 interacted with aspirin/NSAID to influence colon cancer; one SNP in TXNRD1, two SNPs in TXNRD2, and one SNP in TXNRD3 interacted with aspirin/NSAIDs to influence rectal cancer. Five SNPs in TXNRD2 and one in SelS, SeP15, and SelW1 interacted with estrogen to modify colon cancer risk; one SNP in SelW1 interacted with estrogen to alter rectal cancer risk. Several SNPs in this candidate pathway influenced survival after diagnosis with colon cancer (SeP15 and SepX1 increased HRR and rectal cancer (SepX1 increased HRR. CONCLUSIONS: Findings support an association between selenoprotein genes and colon and rectal cancer development and survival after diagnosis. Given the interactions observed, it is likely that the impact of cancer susceptibility from genotype is

  7. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Jaclyn M.; Wang, Yi [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gillespie, Brenda [Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Werner, Robert [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Department of Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower Parkway Suite 100, Ann Arbor, MI 48108 (United States); Franzblau, Alfred [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Basu, Niladri, E-mail: [Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)


    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black

  8. Selenoprotein T Deficiency Leads to Neurodevelopmental Abnormalities and Hyperactive Behavior in Mice. (United States)

    Castex, Matthieu T; Arabo, Arnaud; Bénard, Magalie; Roy, Vincent; Le Joncour, Vadim; Prévost, Gaëtan; Bonnet, Jean-Jacques; Anouar, Youssef; Falluel-Morel, Anthony


    Selenoprotein T (SelT) is a newly discovered thioredoxin-like protein, which is abundantly but transiently expressed in the neural lineage during brain ontogenesis. Because its physiological function in the brain remains unknown, we developed a conditional knockout mouse line (Nes-Cre/SelT(fl/fl)) in which SelT gene is specifically disrupted in nerve cells. At postnatal day 7 (P7), these mice exhibited reduced volume of different brain structures, including hippocampus, cerebellum, and cerebral cortex. This phenotype, which is observed early during the first postnatal week, culminated at P7 and was associated with increased loss of immature neurons but not glial cells, through apoptotic cell death. This phenomenon was accompanied by elevated levels of intracellular reactive oxygen species, which may explain the increased neuron demise and reduced brain structure volumes. At the second postnatal week, an increase in neurogenesis was observed in the cerebellum of Nes-Cre/SelT(fl/fl) mice, suggesting the occurrence of developmental compensatory mechanisms in the brain. In fact, the brain volume alterations observed at P7 were attenuated in adult mice. Nevertheless, SelT mutant mice exhibited a hyperactive behavior, suggesting that despite an apparent morphological compensation, SelT deficiency leads to cerebral malfunction in adulthood. Altogether, these results demonstrate that SelT exerts a neuroprotective role which is essential during brain development, and that its loss impairs mice behavior.

  9. Polymorphisms in the selenoprotein S gene: lack of association with autoimmune inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Díaz-Rubio Manuel


    Full Text Available Abstract Background Selenoprotein S (SelS protects the functional integrity of the endoplasmic reticulum against the deleterious effects of metabolic stress. SEPS1/SelS polymorphisms have been involved in the increased release of pro-inflammatory cytokines interleukin (IL-1β, tumor necrosis factor (TNF-α and IL-6 in macrophages. We aimed at investigating the role of the SEPS1 variants previously associated with higher plasma levels of these cytokines and of the SEPS1 haplotypes in the susceptibility to develop immune-mediated diseases characterized by an inflammatory component. Results Six polymorphisms distributed through the SEPS1 gene (rs11327127, rs28665122, rs4965814, rs12917258, rs4965373 and rs2101171 were genotyped in more than two thousand patients suffering from type 1 diabetes, rheumatoid arthritis or inflammatory bowel diseases and 550 healthy controls included in the case-control study. Conclusion Lack of association of SEPS1 polymorphisms or haplotypes precludes a major role of this gene increasing predisposition to these inflammatory diseases.

  10. Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto's thyroiditis and hypothyroidism. (United States)

    Nourbakhsh, Mitra; Ahmadpour, Fatemeh; Chahardoli, Behnam; Malekpour-Dehkordi, Zahra; Nourbakhsh, Mona; Hosseini-Fard, Seyed Reza; Doustimotlagh, Amirhossein; Golestani, Abolfazl; Razzaghy-Azar, Maryam


    The essential trace element selenium (Se) is required for thyroid hormone synthesis and metabolism. Selenoproteins contain selenocysteine and are responsible for biological functions of selenium. Glutathione peroxidase (GPx) is one of the major selenoproteins which protects the thyroid cells from oxidative damage. Selenoprotein P (SePP) is considered as the plasma selenium transporter to tissues. The aim of this study was to evaluate serum Se and SePP levels, and GPx activity in erythrocytes of children and adolescents with treated Hashimoto's thyroiditis, hypothyroidism, and normal subjects. Blood samples were collected from 32 patients with Hashimoto's thyroiditis, 20 with hypothyroidism, and 25 matched normal subjects. All the patients were under treatment with levothyroxine and at the time of analysis all of the thyroid function tests were normal. GPx enzyme activity was measured by spectrophotometry at 340 nm. Serum selenium levels were measured by high-resolution continuum source graphite furnace atomic absorption. SePP, TPOAb (anti-thyroid peroxidase antibody), and TgAb (anti-thyroglobulin antibody) were determined by ELISA kits. T4, T3, T3 uptake and TSH were also measured. Neither GPx activity nor SePP levels were significantly different in patients with Hashimoto's thyroiditis or hypothyroidism compared to normal subjects. Although GPx and SePP were both lower in patients with hypothyroidism compared to those with Hashimoto's thyroiditis and normal subjects but the difference was not significant. Serum Se levels also did not differ significantly in patients and normal subjects. We did not find any correlation between GPx or SePP with TPOAb or TgAb but SePP was significantly correlated with Se. Results show that in patients with Hashimoto's thyroiditis or hypothyroidism who have been under treatment with levothyroxine and have normal thyroid function tests, the GPx, SePP and Se levels are not significantly different.

  11. Effects of selenium supplementation on selenoprotein gene expression and response to influenza vaccine challenge: a randomised controlled trial.

    Directory of Open Access Journals (Sweden)

    Andrew J Goldson

    Full Text Available BACKGROUND: The uncertainty surrounding dietary requirements for selenium (Se is partly due to limitations in biomarkers of Se status that are related to health outcomes. In this study we determined the effect of different doses and forms of Se on gene expression of selenoprotein S (SEPS1, selenoprotein W (SEPW1 and selenoprotein R (SEPR, and responses to an immune function challenge, influenza vaccine, were measured in order to identify functional markers of Se status. METHODS AND FINDINGS: A 12 week human dietary intervention study was undertaken in 119 volunteers who received placebo, 50, 100 or 200 µg/day Se-enriched yeast (Se-yeast or meals containing unenriched or Se-enriched onions (50 µg/day. Gene expression was quantified in RNA samples extracted from human peripheral blood mononuclear cells (PBMC's using quantitative RT-PCR. There was a significant increase in SEPW1 mRNA in the Se-enriched onion group (50 µg/day compared with the unenriched onion group. SEPR and SEPW1 did not change significantly over the duration of the supplementation period in the control or Se-yeast groups, except at week 10 when SEPW1 mRNA levels were significantly lower in the 200 µg/day Se-yeast group compared to the placebo group. Levels of SEPS1 mRNA increased significantly 7 days after the influenza vaccine challenge, the magnitude of the increase in SEPS1 gene expression was dose-dependent, with a significantly greater response with higher Se supplementation. CONCLUSIONS: This novel finding provides preliminary evidence for a role of SEPS1 in the immune response, and further supports the relationship between Se status and immune function. TRIAL REGISTRATION: [NCT00279812].

  12. Selenoprotein P in seminal fluid is a novel biomarker of sperm quality. (United States)

    Michaelis, Marten; Gralla, Oliver; Behrends, Thomas; Scharpf, Marcus; Endermann, Tobias; Rijntjes, Eddy; Pietschmann, Nicole; Hollenbach, Birgit; Schomburg, Lutz


    Hepatically-derived selenoprotein P (SePP) transports selenium (Se) via blood to other tissues including the testes. Male Sepp-knockout mice are infertile. SePP-mediated Se transport to Sertoli cells is needed for supporting biosynthesis of the selenoenzyme glutathione peroxidase-4 (GPX4) in spermatozoa. GPX4 becomes a structural component of sperm midpiece during sperm maturation, and its expression correlates to semen quality. We tested whether SePP is also present in seminal plasma, potentially correlating to fertility parameters. Semen quality was assessed by sperm density, morphology and motility. SePP was measured by an immunoluminometric assay, and trace elements were determined by X-ray fluorescence spectroscopy. SePP levels were considerably lower in seminal plasma as compared to serum (0.4±0.1 mg/l vs. 3.5±1.0 mg/l); Se concentrations showed a similar but less pronounced difference (48.9±20.7 μg/l vs. 106.7±17.3 μg/l). Se and Zn correlated positively in seminal fluid but not in serum. Seminal plasma SePP concentrations were independent of serum SePP concentrations, but correlated positively to sperm density and fraction of vital sperm. SePP concentrations in seminal plasma of vasectomized men were similar to controls indicating that accessory sex glands are a testes-independent source of SePP. This notion was corroborated by histochemical analyses localizing SePP in epithelial cells of seminal vesicles. We conclude that SePP is not only involved in Se transport to testes supporting GPX4 biosynthesis but it also becomes secreted into seminal plasma, likely important to protect sperm during storage, genital tract passage and final journey.

  13. Isolation, expression, and chromosomal localization of the human mitochondrial capsule selenoprotein gene (MCSP)

    Energy Technology Data Exchange (ETDEWEB)

    Aho, Hanne; Schwemmer, M.; Tessmann, D.; Murphy, D. [Institut fuer Humangenetik der Universitaet, Goettingen (Germany)] [and others


    The mitochondrial capsule selenoprotein (MCS) (HGMW-approved symbol MCSP) is one of three proteins that are important for the maintenance and stabilization of the crescent structure of the sperm mitochondria. We describe here the isolation of a cDNA, the exon-intron organization, the expression, and the chromosomal localization of the human MCS gene. Nucleotide sequence analysis of the human and mouse MCS cDNAs reveals that the 5{prime}- and 3{prime}-untranslated sequences are more conserved (71%) than the coding sequences (59%). The open reading frame encodes a 116-amino-acid protein and lacks the UGA codons, which have been reported to encode the selenocysteines in the N-terminal of the deduced mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein (39%). The most striking homology lies in the dicysteine motifs. Northern and Southern zooblot analyses reveal that the MCS gene in human, baboon, and bovine is more conserved than its counterparts in mouse and rat. The single intron in the human MCS gene is approximately 6 kb and interrupts the 5{prime}-untranslated region at a position equivalent to that in the mouse and rat genes. Northern blot and in situ hybridization experiments demonstrate that the expression of the human MCS gene is restricted to haploid spermatids. The human gene was assigned to q21 of chromosome 1. 30 refs., 9 figs.

  14. Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells (United States)

    The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The relative importance of small selenium compounds versus selenoproteins in the cancer-protective activity of Se is unresolved, but the main form of Se in animal ...

  15. Polymorphism analysis of six selenoprotein genes: support for a selective sweep at the glutathione peroxidase 1 locus (3p21 in Asian populations

    Directory of Open Access Journals (Sweden)

    Chanock Stephen J


    Full Text Available Abstract Background There are at least 25 human selenoproteins, each characterized by the incorporation of selenium into the primary sequence as the amino acid selenocysteine. Since many selenoproteins have antioxidant properties, it is plausible that inter-individual differences in selenoprotein expression or activity could influence risk for a range of complex diseases, such as cancer, infectious diseases as well as deleterious responses to oxidative stressors like cigarette smoke. To capture the common genetic variants for 6 important selenoprotein genes (GPX1, GPX2, GPX3, GPX4, TXNRD1, and SEPP1 known to contribute to antioxidant host defenses, a re-sequence analysis was conducted across these genes with particular interest directed at the coding regions, intron-exon borders and flanking untranslated regions (UTR for each gene in an 102 individual population representative of 4 major ethnic groups found within the United States. Results For 5 of the genes there was no strong evidence for selection according to the expectations of the neutral equilibrium model of evolution; however, at the GPX1 locus (3p21 there was evidence for positive selection. Strong confirmatory evidence for recent positive selection at the genomic region 3p21 in Asian populations is provided by data from the International HapMap project. Conclusion The SNPs and fine haplotype maps described in this report will be valuable resources for future functional studies, for population specific genetic studies designed to comprehensively explore the role of selenoprotein genetic variants in the etiology of various human diseases, and to define the forces responsible for a recent selective sweep in the vicinity of the GPX1 locus.

  16. Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements in the Turkey (Meleagris gallopavo.

    Directory of Open Access Journals (Sweden)

    Rachel M Taylor

    Full Text Available The current National Research Council (NRC selenium (Se requirement for the turkey is 0.2 μg Se/g diet. The sequencing of the turkey selenoproteome offers additional molecular biomarkers for assessment of Se status. To determine dietary Se requirements using selenoprotein transcript levels and enzyme activities, day-old male turkey poults were fed a Se-deficient diet supplemented with graded levels of Se (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0 μg Se/g diet as selenite, and 12.5X the vitamin E requirement. Poults fed less than 0.05 μg Se/g diet had a significantly reduced rate of growth, indicating the Se requirement for growth in young male poults is 0.05 μg Se/g diet. Se deficiency decreased plasma GPX3 (glutathione peroxidase, liver GPX1, and liver GPX4 activities to 2, 3, and 7%, respectively, of Se-adequate levels. Increasing Se supplementation resulted in well-defined plateaus for all blood, liver and gizzard enzyme activities and mRNA levels, showing that these selenoprotein biomarkers could not be used as biomarkers for supernutritional-Se status. Using selenoenzyme activity, minimum Se requirements based on red blood cell GPX1, plasma GPX3, and pancreas and liver GPX1 activities were 0.29-0.33 μg Se/g diet. qPCR analyses using all 10 dietary Se treatments for all 24 selenoprotein transcripts (plus SEPHS1 in liver, gizzard, and pancreas found that only 4, 4, and 3 transcripts, respectively, were significantly down-regulated by Se deficiency and could be used as Se biomarkers. Only GPX3 and SELH mRNA were down regulated in all 3 tissues. For these transcripts, minimum Se requirements were 0.07-0.09 μg Se/g for liver, 0.06-0.15 μg Se/g for gizzard, and 0.13-0.18 μg Se/g for pancreas, all less than enzyme-based requirements. Panels based on multiple Se-regulated transcripts were effective in identifying Se deficiency. These results show that the NRC turkey dietary Se requirement should be raised to 0.3 μg Se/g diet.

  17. Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements in the Turkey (Meleagris gallopavo). (United States)

    Taylor, Rachel M; Sunde, Roger A


    The current National Research Council (NRC) selenium (Se) requirement for the turkey is 0.2 μg Se/g diet. The sequencing of the turkey selenoproteome offers additional molecular biomarkers for assessment of Se status. To determine dietary Se requirements using selenoprotein transcript levels and enzyme activities, day-old male turkey poults were fed a Se-deficient diet supplemented with graded levels of Se (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0 μg Se/g diet) as selenite, and 12.5X the vitamin E requirement. Poults fed less than 0.05 μg Se/g diet had a significantly reduced rate of growth, indicating the Se requirement for growth in young male poults is 0.05 μg Se/g diet. Se deficiency decreased plasma GPX3 (glutathione peroxidase), liver GPX1, and liver GPX4 activities to 2, 3, and 7%, respectively, of Se-adequate levels. Increasing Se supplementation resulted in well-defined plateaus for all blood, liver and gizzard enzyme activities and mRNA levels, showing that these selenoprotein biomarkers could not be used as biomarkers for supernutritional-Se status. Using selenoenzyme activity, minimum Se requirements based on red blood cell GPX1, plasma GPX3, and pancreas and liver GPX1 activities were 0.29-0.33 μg Se/g diet. qPCR analyses using all 10 dietary Se treatments for all 24 selenoprotein transcripts (plus SEPHS1) in liver, gizzard, and pancreas found that only 4, 4, and 3 transcripts, respectively, were significantly down-regulated by Se deficiency and could be used as Se biomarkers. Only GPX3 and SELH mRNA were down regulated in all 3 tissues. For these transcripts, minimum Se requirements were 0.07-0.09 μg Se/g for liver, 0.06-0.15 μg Se/g for gizzard, and 0.13-0.18 μg Se/g for pancreas, all less than enzyme-based requirements. Panels based on multiple Se-regulated transcripts were effective in identifying Se deficiency. These results show that the NRC turkey dietary Se requirement should be raised to 0.3 μg Se/g diet.

  18. Knockout of the 15 kDa selenoprotein protects against chemically-induced aberrant crypt formation in mice.

    Directory of Open Access Journals (Sweden)

    Petra A Tsuji

    Full Text Available Evidence suggests that selenium has cancer preventive properties that are largely mediated through selenoproteins. Our previous observations demonstrated that targeted down-regulation of the 15 kDa selenoprotein (Sep15 in murine colon cancer cells resulted in the reversal of the cancer phenotype. The present study investigated the effect of Sep15 knockout in mice using a chemically-induced colon cancer model. Homozygous Sep15 knockout mice, and wild type littermate controls were given four weekly subcutaneous injections of azoxymethane (10 mg/kg. Sep15 knockout mice developed significantly (p<0.001 fewer aberrant crypt foci than controls demonstrating that loss of Sep15 protects against aberrant crypt foci formation. Dietary selenium above adequate levels did not significantly affect aberrant crypt foci formation in Sep15 knockout mice. To investigate molecular targets affected by loss of Sep15, gene expression patterns in colonic mucosal cells of knockout and wild type mice were examined using microarray analysis. Subsequent analyses verified that guanylate binding protein-1 (GBP-1 mRNA and protein expression were strongly upregulated in Sep15 knockout mice. GBP-1, which is expressed in response to interferon-γ, is considered to be an activation marker during inflammatory diseases, and up-regulation of GBP-1 in humans has been associated with a highly significant, increased five-year survival rate in colorectal cancer patients. In agreement with these studies, we observed a higher level of interferon-γ in plasma of Sep15 knockout mice. Overall, our results demonstrate for the first time, that Sep15 knockout mice are protected against chemically-induced aberrant crypt foci formation and that Sep15 appears to have oncogenic properties in colon carcinogenesis in vivo.

  19. SEPS1——新发现的炎症相关基因%Selenoprotein S1: A novel inflammatory gene

    Institute of Scientific and Technical Information of China (English)


    Selenoprotein S1 (SEPS1) , a novel gene involved in the stress response of endoplasmic reticulum and inflammation control. Recent results provide a direct mechanistic link between SEPS1 and the production of inflammatory cytokines, suggesting SEPS1 may play a major role in the mediation of inflammation in IDDM and some other immunological disorders.%Selenoprotein S1(SEPS1),一种新发现的对内质网的应激反应和炎症控制起作用的基因.近来的研究结果显示SEPS1与炎症细胞因子的产生存在直接的联系,可能在炎症介导的IDDM以及一些其他的免疫异常中起主要作用.

  20. [cDNA cloning, expression and determination of substrate specificity of mice selenocysteine-containing protein SelV (Selenoprotein V)]. (United States)

    Varlamova, E G; Novoselov, S V; Novoselov, V I


    To date various bioinformatics tools allowed to identify 25 selenocysteine-containing mammalian proteins. The name of these proteins assumes that they contain the amino acid selenocysteine (Sec). Functionally characterized selenocysteine-containing proteins are oxidoreductases with various functions, including glutathione peroxidases, thioredoxin reductases, deiodinases etc. However, the functions of more than half of identified proteins are still unclear, and mammalian selenoprotein SeIV is among them. We studied the selV in all stages of postnatal development with the maximum level of mRNA expression during puberty, whereas in adult mice (8-18 months) we observed a gradual decrease of expression. In order to get closer to the functional role of Selenoprotein V, we have carried out experiments on the substrate specificity and enzymatic activity measurement of this selenocysteine-containing protein. It was shown that SelV posseses glutathionperoxidase and thioredoxinreductase activities.

  1. Human selenoprotein P and S variant mRNAs with different numbers of SECIS elements and inferences from mutant mice of the roles of multiple SECIS elements. (United States)

    Wu, Sen; Mariotti, Marco; Santesmasses, Didac; Hill, Kristina E; Baclaocos, Janinah; Aparicio-Prat, Estel; Li, Shuping; Mackrill, John; Wu, Yuanyuan; Howard, Michael T; Capecchi, Mario; Guigó, Roderic; Burk, Raymond F; Atkins, John F


    Dynamic redefinition of the 10 UGAs in human and mouse selenoprotein P (Sepp1) mRNAs to specify selenocysteine instead of termination involves two 3' UTR structural elements (SECIS) and is regulated by selenium availability. In addition to the previously known human Sepp1 mRNA poly(A) addition site just 3' of SECIS 2, two further sites were identified with one resulting in 10-25% of the mRNA lacking SECIS 2. To address function, mutant mice were generated with either SECIS 1 or SECIS 2 deleted or with the first UGA substituted with a serine codon. They were fed on either high or selenium-deficient diets. The mutants had very different effects on the proportions of shorter and longer product Sepp1 protein isoforms isolated from plasma, and on viability. Spatially and functionally distinctive effects of the two SECIS elements on UGA decoding were inferred. We also bioinformatically identify two selenoprotein S mRNAs with different 5' sequences predicted to yield products with different N-termini. These results provide insights into SECIS function and mRNA processing in selenoprotein isoform diversity.

  2. Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. (United States)

    Rowntree, J E; Hill, G M; Hawkins, D R; Link, J E; Rincker, M J; Bednar, G W; Kreft, R A


    Although Se is essential for antioxidant and thyroid hormone function, factors influencing its requirement are not well understood. A survey and two experiments were conducted to determine the influence of cattle breed and age on selenoprotein activity and the effect of maternal Se supplementation on cow and calf selenoprotein activity and neonatal thyroid hormone production. In our survey, four cowherds of different ages representing three breeds were bled to determine the influence of breed and age on erythrocyte glutathione peroxidase activity (RBC GPX-1). All females were nonlactating, pregnant, and consumed total mixed diets (Holstein) or grazed pasture (Angus and Hereford). In our survey of beef breeds, yearlings had greater average RBC GPX-1 activity than mature cows. In Exp. 1, neonatal Holstein heifers (n = 8) were bled daily from 0 to 6 d of age to determine thyroid hormone profile. An injection of Se and vitamin E (BO-SE) was given after the initial bleeding. Thyroxine (T4) and triiodothyronine (T3) concentrations were greatest on d 0 and decreased (P < 0.05) continuously until d 5 postpartum (156.13 to 65.88 and 6.69 to 1.95 nmol/L, d 0 to 5 for T4 and T3, respectively). Reverse T3 concentrations were 3.1 nmol/L on d 0 and decreased (P < 0.05) to 0.52 nmol/ L by d 5. In Exp. 2, multiparous Hereford cows were drenched weekly with either a placebo containing 10 mL of double-deionized H2O (n = 14) or 20 mg of Se as sodium selenite (n = 13). After 2 mo of treatment, Se-drenched cows had greater (P < 0.01) plasma concentrations than control cows (84.92 vs. 67.08 ng/mL), and at parturition, they had plasma Se concentrations twofold greater than (P < 0.05) control cows (95.51 vs. 47.14 ng Se/mL). After 4 mo, cows receiving Se had greater (P < 0.05) RBC GPX-1 activity than controls; this trend continued until parturition. Colostrum Se concentration was twofold greater (P < 0.05) in Se-drenched cows than control cows (169.97 vs. 87.00 ng/mL). Calves born to cows

  3. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. (United States)

    Olson, Gary E; Winfrey, Virginia P; Nagdas, Subir K; Hill, Kristina E; Burk, Raymond F


    Selenium is a micronutrient that is essential for the production of normal spermatozoa. The selenium-rich plasma protein selenoprotein P (Sepp1) is required for maintenance of testis selenium and for fertility of the male mouse. Sepp1 trafficking in the seminiferous epithelium was studied using conventional methods and mice with gene deletions. Immunocytochemistry demonstrated that Sepp1 is present in vesicle-like structures in the basal region of Sertoli cells, suggesting that the protein is taken up intact. Sepp1 affinity chromatography of a testicular extract followed by mass spectrometry-based identification of bound proteins identified apolipoprotein E receptor 2 (ApoER2) as a candidate testis Sepp1 receptor. In situ hybridization analysis identified Sertoli cells as the only cell type in the seminiferous epithelium with detectable ApoER2 expression. Testis selenium levels in apoER2(-/-) males were sharply reduced from those in apoER2(+/+) males and were comparable with the depressed levels found in Sepp1(-/-) males. However, liver selenium levels were unchanged by deletion of apoER2. Immunocytochemistry did not detect Sepp1 in the Sertoli cells of apoER2(-/-) males, consistent with a defect in the receptor-mediated Sepp1 uptake pathway. Phase contrast microscopy revealed identical sperm defects in apoER2(-/-) and Sepp1(-/-) mice. Co-immunoprecipitation analysis demonstrated an interaction of testis ApoER2 with Sepp1. These data demonstrate that Sertoli cell ApoER2 is a Sepp1 receptor and a component of the selenium delivery pathway to spermatogenic cells.

  4. 硒蛋白P结构及功能的研究进展%Progress in study on structure and function of selenoprotein P

    Institute of Scientific and Technical Information of China (English)



    硒蛋白P(Selenoprotein P,Sepp1)是一种由2个结构域构成的分泌性糖蛋白.血浆中多数Sepp1均源于肝脏,肝脏合成的Sepp1能影响整个机体的硒含量,因此Sepp1在维持机体内硒的动态平衡和分布上起着关键作用.另外,血浆中的Sepp1能够调控微量元素硒缺乏,也是检测硒含量的指标之一.本文就Sepp1结构及功能的研究进展作一综述.%Selenoprotein P (Sepp1) is a secretory glycoprotein consisting of two domains. Most of Seppl in plasma is derived from liver, which affects the selenium content in the whole organism and plays an important role in maintaining the dynamic equilibrium and distribution of Seppl. In addition, plasma Seppl concentration may regulate, which is also an index of selenium nutritional status. This paper reviews the progress in study on structure and function of Seppl.

  5. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway (United States)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  6. Detection of selenocompounds in a tryptic digest of yeast selenoprotein by MALDI time-of-flight MS prior to their structural analysis by electrospray ionization triple quadrupole MS. (United States)

    Encinar, Jorge Ruiz; Ruzik, Rafal; Buchmann, William; Tortajada, Jeanine; Lobinski, Ryszard; Szpunar, Joanna


    MALDI-TOFMS was proposed as a key technique to a novel generic approach for the speciation analysis of selenium in yeast supplements. Owing to a lower detection limit and superior matrix tolerance to electrospray MS it allowed a successful detection of selenocompounds in samples for which electrospray MS had failed. The analytical approach developed was applied to the identification of a previously unreported selenopentapeptide (m/z 596) in the tryptic digest of a water-soluble selenoprotein fraction isolated by size-exclusion chromatography. The information on the mass of the protonated molecular ion obtained from MALDI allowed the optimization of the conditions for collision induced dissociation MS using a triple quadrupole spectrometer that enabled the determination of the amino acid sequence SeMet-Asn-Ala-Gly-Arg of the selenopeptide.

  7. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Claverie, Fanny [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Novalase SA, Z.I de la Briqueterie, 6 Impasse du bois de la Grange, 33610 Canejan (France); Pecheyran, Christophe [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France)], E-mail:; Mounicou, Sandra [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Ballihaut, Guillaume [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Laboratoire d' Ecologie Moleculaire (Microbiologie), UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, avenue de l' Universite, B.P. 1155, F-64013 Pau (France); Fernandez, Beatriz [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche sur l' Environnement et les Materiaux, UMR 5254 CNRS- Universite de Pau et des Pays de l' Adour, Helioparc Pau-Pyrenees, 2 Avenue du President Angot, 64053 Pau Cedex 9 (France); Alexis, Joel [Laboratoire Genie de Production, Ecole Nationale d' Ingenieurs de Tarbes, 47 avenue d' Azereix BP 1629, 65016 Tarbes (France)] (and others)


    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pecheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 {mu}m. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 {mu}m depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source ({delta}T{approx} 25 {+-} 5 K). This suggests that the cohesion forces between the thin particles composing these large

  8. Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P

    Directory of Open Access Journals (Sweden)

    Sandra Hybsier


    Full Text Available Selenoprotein P (SELENOP is a liver-derived transporter of selenium (Se in blood, and a meaningful biomarker of Se status. Se is an essential trace element for the biosynthesis of enzymatically-active selenoproteins, protecting the organism from oxidative damage. The usage of uncalibrated assays hinders the comparability of SELENOP concentrations and their pathophysiological interpretation across different clinical studies. On this account, we established a new sandwich SELENOP-ELISA and calibrated against a standard reference material (SRM1950. The ELISA displays a wide working range (11.6–538.4 µg/L, high accuracy (2.9% and good precision (9.3%. To verify whether SELENOP correlates to total Se and to SELENOP-bound Se, serum samples from healthy subjects and age-selected participants from the Berlin Aging Study II were analyzed by SELENOP-ELISA and Se quantification. SELENOP was affinity-purified and its Se content was determined from a subset of samples. There was a high correlation of total Se and SELENOP concentrations in young and elderly men, and in elderly women, but not in young women, indicating a specific sexual dimorphism in these biomarkers of Se status in young subjects. The Se content of isolated SELENOP was independent of sex and age (mean±SD: 5.4±0.5. By using this calibrated SELENOP-ELISA, prior reports on pathological SELENOP concentrations in diabetes and obesity are challenged as the reported values are outside reasonable limits. Biomarkers of Se status in clinical research need to be measured by validated assays in order to avoid erroneous data and incorrect interpretations, especially when analyzing young women. The Se content of circulating SELENOP differs between individuals and may provide some important diagnostic information on Se metabolism and status.

  9. Molecular characterization and expression analyses of cDNAs encoding the thioredoxin-interacting protein and selenoprotein P genes and histological changes in Nile tilapia (Oreochromis niloticus) in response to silver nanoparticle exposure. (United States)

    Thummabancha, Kubpaphas; Onparn, Nuttaphon; Srisapoome, Prapansak


    Herein, Nile tilapia thioredoxin-interacting protein (On-TXNIP) and selenoprotein P (On-SEPP) cDNAs were cloned and characterized. The full-length On-TXNIP cDNA contained 2 arrestin domains, 2 conserved cysteine residues that bind to thioredoxin to inhibit thioredoxin function, and 2 PPXY motifs, which negatively regulate the protein by stimulating binding to E3 ubiquitin ligase. The On-SEPP cDNA contained 17 selenocysteines (Sec) encoded by the TGA codon, which can be recognized as either a stop codon or a Sec codon. The On-SEPP cDNA also carried 2 typical SECIS elements located in the 3'UTR that are important for selenocysteine translation. Evolutionary analyses of both the On-TXNIP and On-SEPP genes revealed that these genes are closely related to the TXNIP and SEPP genes in zebrafish (Danio rerio), with amino acid similarities of 91.8% and 61.9%, respectively. A normal tissue distribution analysis indicated that the On-TXNIP and On-SEPP genes were ubiquitously expressed in all tissues examined, and the highest expression levels of these genes were observed in peripheral blood leukocytes (PBLs) and the trunk kidney, respectively. The expression levels of On-TXNIP and On-SEPP transcripts were acutely and chronically analyzed following the injection of fish with 1, 10 or 100mg/kg silver nanoparticles (Ag NPs). Significant up-regulation of On-TXNIP and On-SEPP transcripts was observed in the liver, spleen, and head kidney at the early phase of Ag NP exposure (hours 6 through 48). Down-regulation of On-SEPP transcripts was clearly observed in the liver at weeks 1 to 4. Histopathology analysis demonstrated that the fish livers exhibited a dramatic infiltration of Kupffer cells, elevated bi-nucleated cells, expanded sinusoidal blood congestion and severe necrosis in a dose-dependent manner. Based on these findings, coupling of the expression analysis of these two cellular stress response genes and histopathological observation of fish exposed to Ag NPs should be

  10. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)


    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  11. Effects of Selenium-Enriched Probiotics on Heart Lesions by Influencing the mRNA Expressions of Selenoproteins and Heat Shock Proteins in Heat Stressed Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Alam Zeb Khan1,2, Shahnawaz Kumbhar1, Muhammad Hamid1, Samreen Afzal3, Fahmida Parveen1, Yunhuan Liu1, Hao Shu1, Berhe Mekonnen Mengistu1 and Kehe Huang1*


    Full Text Available Selenium is one of the most vital trace elements regulating various body functions. Herein, we observe the effects of selenium-enriched probiotics on heart lesion in broiler chickens under high ambient temperature and explore the underlying mechanisms. Four different groups of broiler chickens were fed a corn-soybean basal diet having no Se supplementation (Con group, basal diet with the addition of probiotics (P group, a basal diet with Se supplementation in the form of sodium selenite (SS group, 0.30mg Se/kg and basal diet with the addition of selenium enriched probiotics (SP group, 0.30mg Se/kg. The results showed that P, SS, or SP supplementation significantly (P<0.05 up-regulated mRNA expression of selenoproteins (GPx1, GPx4 and down-regulated heat shock proteins (Hsp60, Hsp70 and Hsp90 in heart as compared to Con, P and SS diets. Herein, we suggest that SP product can serve as a feasible nutritive supplement, capable of protecting the heart from toxic effect of oxidative stress in summer season.

  12. Selenium Alleviates Aflatoxin B₁-Induced Immune Toxicity through Improving Glutathione Peroxidase 1 and Selenoprotein S Expression in Primary Porcine Splenocytes. (United States)

    Hao, Shu; Hu, Junfa; Song, Suquan; Huang, Da; Xu, Haibing; Qian, Gang; Gan, Fang; Huang, Kehe


    Selenium (Se) is generally known as an essential micronutrient and antioxidant for humans and animals. Aflatoxin B1 (AFB1) is a frequent contaminant of food and feed, causing immune toxicity and hepatotoxicity. Little has been done about the mechanisms of how Se protects against AFB1-induced immune toxicity. The aim of this present study is to investigate the protective effects of Se against AFB1 and the underlying mechanisms. The primary splenocytes isolated from healthy pigs were stimulated by anti-pig-CD3 monoclonal antibodies and treated by various concentrations of different Se forms and AFB1. The results showed that Se supplementation alleviated the immune toxicity of AFB1 in a dose-dependent manner, as demonstrated by increasing T-cell proliferation and interleukin-2 production. Addition of buthionine sulfoximine abrogated the protective effects of SeMet against AFB1. SeMet enhanced mRNA and protein expression of glutathione peroxidase 1 (GPx1), selenoprotein S (SelS), and thioredoxin reductase 1 without and with AFB1 treatments. Furthermore, knockdown of GPx1 and SelS by GPx1-specific siRNA and SelS-specific siRNA diminished the protective effects of SeMet against AFB1-induced immune toxicity. It is concluded that SeMet diminishes AFB1-induced immune toxicity through increasing antioxidant ability and improving GPx1 and SelS expression in splenocytes. This study suggests that organic selenium may become a promising supplementation to protect humans and animals against the decline in immunity caused by AFB1.

  13. Selenoprotein S (SEPS1 gene -105G>A promoter polymorphism influences the susceptibility to gastric cancer in the Japanese population

    Directory of Open Access Journals (Sweden)

    Nagasaka Mitsuo


    Full Text Available Abstract Background Inflammation is a key factor in the process of carcinogenesis from chronic gastritis induced by Helicobacter pylori. Selenoprotein S (SEPS1 is involved in the control of the inflammatory response in the endoplasmic reticulum (ER. Recently the -105G>A polymorphism in the promoter of SEPS1 was shown to increase pro-inflammatory cytokine expression. We examined the association between this polymorphism and the risk of gastric cancer. Methods We took stomach biopsies during endoscopies of 268 Japanese gastric cancer patients (193 males and 75 females, average age 65.3, and 306 control patients (184 males and 122 females, average age 62.7 and extracted the DNA from the biopsy specimens. All subjects provided written informed consent. For the genotyping of the SEPS1 promoter polymorphism at position -105G>A, PCR-RFLP methods were used and the PCR products were digested with PspGI. Logistic-regression analysis was used to estimate odds ratios (OR and 95% confidence intervals (CI, adjusting for age, sex, and H. pylori infection status. Results Among cases, the distribution of genotypes was as follows: 88.4% were GG, 11.2% were GA, and 0.4% were AA. Among controls, the distribution was as follows: 92.5% were GG, 7.2% were GA, and 0.3% were AA. Among males, carrying the A allele was associated with an increased odds of gastric cancer, compared with the GG genotype (OR: 2.0, 95% CI 1.0–4.1, p = 0.07. Compared with the GG genotype, carrying the A allele was significantly associated with increased risks of intestinal type gastric cancer (OR: 2.0, 95%CI 1.0–3.9, p Conclusion The -105G>A promoter polymorphism of SEPS1 was associated with the intestinal type of gastric cancer. This polymorphism may influence the inflammatory conditions of gastric mucosa. Larger population-based studies are needed for clarifying the relation between inflammatory responses and SEPS1 polymorphism.

  14. 人肝中硒蛋白K相互作用蛋白的筛选与验证%Screen and Verification of Interactive Protein of Selenoprotein K in Human Liver

    Institute of Scientific and Technical Information of China (English)

    梁雪莹; 刘琼; 陈平; 霍克克; 胡田勇; 倪嘉缵


    以硒蛋白K(SelK)突变体为“诱饵”,采用酵母双杂交系统对人肝cDNA文库进行筛选,得到一个与SelK相互作用的蛋白——环腺苷酸应答元件结合蛋白3(CREB3).将SelK与CREB3共同转染酵母细胞,验证了SelK与CREB3的相互作用;并采用受体漂白、敏化发射和荧光寿命3种荧光共振能量转移方法进一步验证了二者间的相互作用,发现其不受SelK中硒代半胱氨酸(Sec)的影响.推测SelK可能通过其Sec之前的区域与CREB3发生作用,参与CREB3介导的内质网相关降解过程,影响相关癌症的转移和发展.%Selenium, an essential trace element for human health, plays important roles in maintaining redox balance in vivo. Selenium deficiency is associated with many diseases, such as cancer, neurodegenerative diseases and cardiovascular diseases. The biological function of selenium in vivo is mainly exerted through selenoproteins. Selenoprotein K(SelK) is a newly discovered selenoprotein with unknown biological function and molecular mechanism. In this work, human SelK gene was cloned, site-directedly mutated and inserted into the " bait" plasmid to screen the human liver cDNA library using the yeast two-hybrid system. An interactive protein, homo sapiens cAMP responsive element binding protein 3 (CREB3), was screened out and analyzed. SelK' and CREB3 genes were then co-transformed into yeast cells to verify the protein interaction, followed by the co-transfection into HEK293T cells to further verify the interaction via three methods of fluorescence resonance energy transfer technique, including the receptor photobleaching, sensitized emission and fluorescence lifetime. The results show that SelK interacte with CREB3 independent of its selenocysteine residue. By interacting with CREB3, SelK may participate in CREB3-mediated endoplasmic reticulum-asso-ciated degradation and make impact on cancer migration and development.

  15. Combined inhibition of glycolysis, the pentose cycle, and thioredoxin metabolism selectively increases cytotoxicity and oxidative stress in human breast and prostate cancer

    Directory of Open Access Journals (Sweden)

    Ling Li


    Full Text Available Inhibition of glycolysis using 2-deoxy-d-glucose (2DG, 20 mM, 24–48 h combined with inhibition of the pentose cycle using dehydroepiandrosterone (DHEA, 300 µM, 24–48 h increased clonogenic cell killing in both human prostate (PC-3 and DU145 and human breast (MDA-MB231 cancer cells via a mechanism involving thiol-mediated oxidative stress. Surprisingly, when 2DG+DHEA treatment was combined with an inhibitor of glutathione (GSH synthesis (l-buthionine sulfoximine; BSO, 1 mM that depleted GSH>90% of control, no further increase in cell killing was observed during 48 h exposures. In contrast, when an inhibitor of thioredoxin reductase (TrxR activity (Auranofin; Au, 1 µM, was combined with 2DG+DHEA or DHEA-alone for 24 h, clonogenic cell killing was significantly increased in all three human cancer cell lines. Furthermore, enhanced clonogenic cell killing seen with the combination of DHEA+Au was nearly completely inhibited using the thiol antioxidant, N-acetylcysteine (NAC, 20 mM. Redox Western blot analysis of PC-3 cells also supported the conclusion that thioredoxin-1 (Trx-1 oxidation was enhanced by treatment DHEA+Au and inhibited by NAC. Importantly, normal human mammary epithelial cells (HMEC were not as sensitive to 2DG, DHEA, and Au combinations as their cancer cell counterparts (MDA-MB-231. Overall, these results support the hypothesis that inhibition of glycolysis and pentose cycle activity, combined with inhibition of Trx metabolism, may provide a promising strategy for selectively sensitizing human cancer cells to oxidative stress-induced cell killing.

  16. The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. (United States)

    Hill, Kristina E; Zhou, Jiadong; Austin, Lori M; Motley, Amy K; Ham, Amy-Joan L; Olson, Gary E; Atkins, John F; Gesteland, Raymond F; Burk, Raymond F


    Selenoprotein P (Sepp1) has two domains with respect to selenium content: the N-terminal, selenium-poor domain and the C-terminal, selenium-rich domain. To assess domain function, mice with deletion of the C-terminal domain have been produced and compared with Sepp1-/- and Sepp1+/+ mice. All mice studied were males fed a semipurified diet with defined selenium content. The Sepp1 protein in the plasma of mice with the C-terminal domain deleted was determined by mass spectrometry to terminate after serine 239 and thus was designated Sepp1Delta240-361. Plasma Sepp1 and selenium concentrations as well as glutathione peroxidase activity were determined in the three types of mice. Glutathione peroxidase and Sepp1Delta240-361 accounted for over 90% of the selenium in the plasma of Sepp1Delta240-361 mice. Calculations using results from Sepp1+/+ mice revealed that Sepp1, with a potential for containing 10 selenocysteine residues, contained an average of 5 selenium atoms per molecule, indicating that shortened and/or selenium-depleted forms of the protein were present in these wild-type mice. Sepp1Delta240-361 mice had low brain and testis selenium concentrations that were similar to those in Sepp1-/- mice but they better maintained their whole body selenium. Sepp1Delta240-361 mice had depressed fertility, even when they were fed a high selenium diet, and their spermatozoa were defective and morphologically indistinguishable from those of selenium-deficient mice. Neurological dysfunction and death occurred when Sepp1Delta240-361 mice were fed selenium-deficient diet. These phenotypes were similar to those of Sepp1-/- mice but had later onset or were less severe. The results of this study demonstrate that the C terminus of Sepp1 is critical for the maintenance of selenium in brain and testis but not for the maintenance of whole body selenium.

  17. 鸡硒蛋白T的硒代半胱氨酸插入序列元件、蛋白结构与功能及组织表达差异%Analysis of selenocysteine insertion sequence element, structures and functions and expression profiles of selenoprotein T in chicken

    Institute of Scientific and Technical Information of China (English)

    葛延松; 曹嫦妤; 王丽丽; 李楠; 江秀清; 李金龙


    应用生物软件分析鸡和其他11种脊椎动物硒蛋白 T ( selenoprotein T ,SelT )的硒代半胱氨酸插入序列( selenocysteine insertion sequence , SECIS)元件、SelT核苷酸和氨基酸序列的同源性,并分析鸡SelT 的结构及功能;采用实时荧光定量PCR( fluorescent quantitative real-time PCR , fqRT-PCR)方法检测SelT基因在35日龄鸡体内30种组织中的表达谱.结果显示:脊椎动物 SelT的SECIS元件均属于Ⅱ型结构;鸡 SelT核苷酸序列与其他11种脊椎动物的同源性在48.0%~85.1%之间,而氨基酸序列与非洲爪蟾、斑马鱼的同源性低于90.0%,与其他9种动物的同源性在90.6%~94.9%之间;鸡 SelT 属于跨膜蛋白,存在信号肽,属于 RDx 家族,酶活性分类为EC,具有氧化还原功能,且存在Ca2+结合位点.SelT在鸡各组织中广泛表达,在睾丸中含量极其丰富,提示鸡SelT在雄性生殖系统中可能发挥功能.%Selenium ( Se) was an important , biologically necessary trace element , which played an important biological roles in avian growth , reproduction , immune function and disease resistance . The biological significance of Se was attributed to its occurrence in selenoproteins in the form of selenocysteine ( Sec) with a 21 amino acid genetic code . Se uses the stop codon UGA as the coding codon encoding Sec . Selenoproteins involved in many life processes such as antioxidant defense , cell signal transduction , metabolic pathway , development , immune function , and hormone regulates , and it was related to the occurrence and mechanism of many diseases . Selenoprotein T (SelT) was originally identified through silico studies ,cloned and expressed in a mammalian cell line ,confirmed as a selenoprotein . Previous studies have proved that SelT mainly occurred in Golgi apparatus and endoplasmic reticulum , with important biological function . SelT can act on the Ca2+ homeostasis , involved in neuroendocrine secretion . SelT has

  18. Se-Hg Dual-element Labeling Strategy for Selectively Recognizing Selenoprotein and Selenopeptide%硒-汞双元素标记策略识别硒蛋白/多肽

    Institute of Scientific and Technical Information of China (English)

    徐明; 杨利民; 王秋泉


    提出并发展了一种基于电感耦合等离子体质谱( ICP-MS)的双元素标签标记策略来选择性识别和检测硒蛋白/多肽,其中内源元素硒( Se)作为硒蛋白/多肽分子的识别元素,外源元素汞( Hg)作为硒蛋白/多肽和含硒蛋白/多肽分子的区分元素。通过对硒代半胱氨酸(SeCys)和谷胱甘肽过氧化酶1(GPx1)两种模型分子的研究,外源邻羧基苯硫甲基汞( CH3 Hg-THI )动态解离的 CH3 Hg+能够选择性标记硒代半胱氨酸残基( SeCys)中硒醇基(-SeH),但不能标记含硒蛋白/多肽分子的硒代蛋氨酸残基( SeMet)中的—SeCH3,进而依据Se和Hg的ICP-MS信号识别和检测硒蛋白/多肽。本方法应用于富硒酵母水溶性提取液的分析,结果表明,提取液中的硒蛋白/多肽能够被有效识别和检测,验证了Se-Hg双元素标签标记策略的发展是ICP-MS识别和检测硒蛋白/多肽的一种可行且优越的途径。%An endogenous element-label plus exogenous element-tag strategy was proposed for inductively coupled plasma mass spectrometry ( ICP-MS) to screen and discriminate a family of ultratrace but biological important biomolecules. The feasibility of this novel idea has been demonstrated when setting seleno ( SeCys) and Se-containing ( SeMet) proteins ( peptides) as an example. Se-label naturally occurring in the biomole-cules acts an identifier for picking them up out of large amount of various coexisting proteins ( peptides) , and CH3 Hg-tag that can bind to SeCys but not SeMet fulfills the task of discriminating seleno and Se-containing ones based on the Se and Hg signals on ICP-MS. After confirmed using SeCys and GPx1, the Se-Hg dual-element labeling strategy together with ICP-MS was applied to screen and discriminate seleno and Se-contai-ning proteins ( peptides) in the water-soluble extracts of Se-enriched yeast, and seven selenoproteins ( pep-tides) were detected with both 202 Hg and 82 Se signals out of fifteen Se

  19. Reciprocal inhibition in man. (United States)

    Crone, C


    Reciprocal inhibition is the automatic antagonist alpha motor neurone inhibition which is evoked by contraction of the agonist muscle. This so-called natural reciprocal inhibition is a ubiquitous and pronounced phenomenon in man and must be suspected of playing a major role in the control of voluntary movements. The spinal pathways underlying this inhibitory phenomenon were studied. The disynaptic reciprocal Ia inhibitory pathway between the tibial anterior muscle and the soleus alpha motor neurones was identified and described in man. It was shown that the inhibition can be evoked in most healthy subjects at rest, but the degree of inhibition varies considerably from one subject to another. It was concluded that it corresponds to the disynaptic reciprocal Ia inhibitory pathway which has been extensively described in animal experiments. The disynaptic reciprocal inhibition was shown to increase during the dynamic phase of a dorsiflexion movement of the foot, but not during the tonic phase. However, when the peripheral afferent feedback from the contracting muscle was blocked by ischaemia, an increase of the inhibition was revealed also during the tonic phase of the dorsiflexion. The concealment of this increase during unrestrained peripheral feedback from the muscle was thought to be due to the post-activation depression mechanism; a mechanism which was described further and which probably involves reduced transmitter release at Ia afferent terminals as a result of previous activation of these afferent fibers. Hence the hypothesis was supported that alpha motor neurones and the corresponding inhibitory interneurones, which project reciprocal inhibition to the antagonist motor neurones, are activated in parallel during voluntary contraction of agonist muscles. An additional reciprocal inhibitory mechanism, the long latency reciprocal inhibition, was described between the tibial anterior muscle and the soleus alpha motor neurones. It was shown to be evoked by group I

  20. Potentiation of latent inhibition. (United States)

    Rodriguez, Gabriel; Hall, Geoffrey


    Rats were given exposure either to an odor (almond) or a compound of odor plus taste (almond plus saline), prior to training in which the odor served as the conditioned stimulus. It was found, for both appetitive and aversive procedures, that conditioning was retarded by preexposure (a latent inhibition effect), and the extent of the retardation was greater in rats preexposed to the compound (i.e., latent inhibition to the odor was potentiated by the presence of the taste). In contrast, the presence of the taste during conditioning itself overshadowed learning about the odor. We argue that the presence of the salient taste in compound with the odor enhances the rate of associative learning, producing a rapid loss in the associability of the odor. This loss of associability will generate both overshadowing and the potentiation of latent inhibition that is observed after preexposure to the compound.

  1. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus


    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  2. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N


    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  3. Inhibition and Brain Work


    Buzsáki, György; Kaila, Kai; Raichle, Marcus


    The major part of the brain’s energy budget (~60%–80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understanding functional brain imaging techniques which rely on measurements related to blood flow...

  4. Latent inhibition in schizophrenia. (United States)

    Swerdlow, N R; Braff, D L; Hartston, H; Perry, W; Geyer, M A


    Latent inhibition (LI) refers to the retarded acquisition of a conditioned response that occurs if the subject being tested is first preexposed to the to-be-conditioned stimulus (CS) without the paired unconditioned stimulus (UCS). Because the 'irrelevance' of the to-be-conditioned stimulus is established during non-contingent preexposure, the slowed acquisition of the CS-UCS association is thought to reflect the process of overcoming this learned irrelevance. Latent inhibition has been reported to be diminished in acutely hospitalized schizophrenia patients. If acutely hospitalized schizophrenia patients are preexposed to the CS, they learn the association as fast as, and perhaps faster than, patients who are not preexposed to the CS. This finding has been interpreted as reflecting the inability of acute schizophrenia patients to ignore irrelevant stimuli. In this study, the LI paradigm was identical to the one used in previous reports of LI deficits in schizophrenia patients (Baruch et al., 1988). Latent inhibition was observed in normal control subjects (n = 73), including individuals identified as 'psychosis-prone' based on established screening criteria, and in anxiety (n = 19) and mood disorder (n = 13) patients. Learning scores (trials to criterion) in "acutely' hospitalized as well as "chronic' hospitalized schizophrenia patients (n = 45) were significantly elevated in both preexposed and non-preexposed subjects, compared to controls. Acute schizophrenia patients exhibited intact LI. Separate cohorts of acute and chronic schizophrenia patients (n = 23) and normal controls (n = 34) exhibited intact LI when tested in a new, easier-to-acquire computerized LI paradigm. These results fail to identify specific LI deficits in schizophrenia patients, and raise the possibility that previously observed LI deficits in schizophrenia patients may reflect, at least in part, performance deficits related to learning acquisition.

  5. Beneficial bacteria inhibit cachexia. (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E


    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.

  6. Lateral inhibition during nociceptive processing

    DEFF Research Database (Denmark)

    Quevedo, Alexandre S.; Mørch, Carsten Dahl; Andersen, Ole Kæseler


    of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits spatial summation of pain and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition......Spatial summation of pain is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is sub-additive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation...... for sub-additive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit spatial summation of pain, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer...

  7. Using chemical approaches to study selenoproteins - focus on thioredoxin reductases


    Hondal, Robert J.


    The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries.

  8. Treatment of chronic discoid lupus erythematosus with an oral gold compound (auranofin). (United States)

    Dalziel, K; Going, G; Cartwright, P H; Marks, R; Beveridge, G W; Rowell, N R


    Twenty-three patients with severe longstanding discoid lupus erythematosus, unresponsive to conventional treatments, were treated with oral gold in a multicentre open study. Nineteen patients showed clinical improvement and in four of these there was complete resolution of lesions. Adverse reactions were generally mild and self limiting.

  9. Activated sludge inhibition capacity index

    Directory of Open Access Journals (Sweden)

    V. Surerus


    Full Text Available Toxic compounds in sewage or industrial wastewater may inhibit the biological activity of activated sludge impairing the treatment process. This paper evaluates the Inhibition Capacity Index (ICI for the assessment of activated sludge in the presence of toxicants. In this study, activated sludge was obtained from industrial treatment plants and was also synthetically produced. Continuous respirometric measurements were carried out in a reactor, and the oxygen uptake rate profile obtained was used to evaluate the impact of inhibiting toxicants, such as dissolved copper, phenol, sodium alkylbenzene sulfonate and amoxicillin, on activated sludge. The results indicate that ICI is an efficient tool to quantify the intoxication capacity. The activated sludge from the pharmaceutical industry showed higher resistance than the sludge from other sources, since toxicants are widely discharged in the biological treatment system. The ICI range was from 58 to 81% when compared to the synthetic effluent with no toxic substances.

  10. 纳米硒对岢岚绒山羊妊娠母羊及胎儿抗氧化性、硒蛋白表达及生长发育的影响%Effects of Nano-Selenium on Antioxidation Function,Selenoprotein Expression, Growth and Development of Pregnant Cashmere Goat and Fetus in KeLan

    Institute of Scientific and Technical Information of China (English)

    武晓英; 曹贵东; 任有蛇; 岳文斌


    The study was conducted to investigate the effects of Nano-Se on antioxidation, selenoprotein expression, growth and development of pregnant cashmere goat and fetus in KeLan. A total of 80 pregnant cashmere goats in KeLan with approximately equal body weight were allotted to one of two experimental treatments, a control (C, n=40) withoutsupplemental Se in basal diet or supplemented (S, n = 40) with nano-selenium (declared Se content 0. 5 mg/kg DM). The whole feeding experiment lasted for 110 days. The results from supplemental Nano-Se in diet showed that activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were markedly increased(P <0.01) in serum of pregnant goats and fetus, activities of GSH-Px and SOD were markedly increased (P <0.01) in live, placental tissues of pregnant goats and fetus, malondialdehyde (MDA) concentration were markedly decreased (P <0. 01) in serum of pregnant goats and fetus and placental tissue. Adding Nano-Se in diet, Expressions of cGPxlmRNA were enhanced significantly (P <0. 05) in live, kidney tissues of pregnant goats and fetus. The mRNA expressions of SeP、Trxl were markedly enhanced (P< 0. 01) in placental tissues of pregnant goats and fetus. Supplementation of basal diet with Nano-Se markedly increased the concentration of IGF-1 and expression of IGF-1 mRNA (P < 0.01) in serum and tissues of pregnant goat and fetus. Compared with basal diet group, weight of placenta, fetus, fetal liver and kidney tissues increased significantly (P < 0. 05). It is concluded that supplementation of Nano-Se can improve the antioxidation function, increase the mRNA expressions of cGPxl, SeP, Trx\\ and IGF-l, and increase growth development of fetus. Supplementation level of Nano-Se is 0.5 mg/kg DM in basal diet for pregnant goats.%为研究纳米硒对岢岚绒山羊妊娠母羊及胎儿抗氧化能力、硒蛋白表达和生长发育的影响.选择体重相近的岢岚妊娠绒山羊80只,随机分为2组,分

  11. Homo economicus belief inhibits trust. (United States)

    Xin, Ziqiang; Liu, Guofang


    As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  12. Methanogenic inhibition by arsenic compounds. (United States)

    Sierra-Alvarez, Reyes; Cortinas, Irail; Yenal, Umur; Field, Jim A


    The acute acetoclastic methanogenic inhibition of several inorganic and organic arsenicals was assayed. Trivalent species, i.e., methylarsonous acid and arsenite, were highly inhibitory, with 50% inhibitory concentrations of 9.1 and 15.0 microM, respectively, whereas pentavalent species were generally nontoxic. The nitrophenylarsonate derivate, roxarsone, displayed moderate toxicity.

  13. Islam Does Not Inhibit Science. (United States)

    Shanavas, T. O.


    Compares the science/religion relationship in both Christian and Islamic countries. Presents Muslim scholars' ideas about the presence of humans on earth. Presents ideas on active nature, Noah's curse, and the age of the universe. Refutes the notion that Islam inhibited science and advocates the belief that Islam promoted science. (YDS)

  14. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup


    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  15. Inhibition of carcinogenesis by tea. (United States)

    Yang, Chung S; Maliakal, Pius; Meng, Xiaofeng


    Tea has received a great deal of attention because tea polyphenols are strong antioxidants, and tea preparations have inhibitory activity against tumorigenesis. The bioavailability and biotransformation of tea polyphenols, however, are key factors limiting these activities in vivo. The inhibition of tumorigenesis by green or black tea preparations has been demonstrated in animal models on different organ sites such as skin, lung, oral cavity, esophagus, forestomach, stomach, small intestine, colon, pancreas, and mammary gland. Epidemiological studies, however, have not yielded clear conclusions concerning the protective effects of tea consumption against cancer formation in humans. The discrepancy between the results from humans and animal models could be due to 1) the much higher doses of tea used in animals in comparison to human consumption, 2) the differences in causative factors between the cancers in humans and animals, and 3) confounding factors limiting the power of epidemiological studies to detect an effect. It is possible that tea may be only effective against specific types of cancer caused by certain etiological factors. Many mechanisms have been proposed for the inhibition of carcinogenesis by tea, including the modulation of signal transduction pathways that leads to the inhibition of cell proliferation and transformation, induction of apoptosis of preneoplastic and neoplastic cells, as well as inhibition of tumor invasion and angiogenesis. These mechanisms need to be evaluated and verified in animal models or humans in order to gain more understanding on the effect of tea consumption on human cancer.

  16. Strigolactone inhibition of shoot branching

    NARCIS (Netherlands)

    Gomez-Roldan, M.V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; Bouwmeester, H.J.; Becard, G.; Beveridge, C.A.; Rameau, C.; Rochange, S.F.


    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence

  17. Infant Predictors of Behavioural Inhibition (United States)

    Moehler, Eva; Kagan, Jerome; Oelkers-Ax, Rieke; Brunner, Romuald; Poustka, Luise; Haffner, Johann; Resch, Franz


    Behavioural inhibition in the second year of life is a hypothesized predictor for shyness, social anxiety and depression in later childhood, adolescence and even adulthood. To search for the earliest indicators of this fundamental temperamental trait, this study examined whether behavioural characteristics in early infancy can predict behavioural…

  18. Corrosion Chemistry in Inhibited HDA. (United States)


    Titanium and chromium have sufficiently low Flade potentials to pass- ivate in non-oxidising acids, but Iron will only exhibit self-passivity if the...inhibition e.g. involving organic and pickling inhibitors* the rest potential can actually 4.5,4.6become more negative " This is due to cathodic 321 stainless steel, titanium stabilised, was the particular steel studied, being very similar in composition to the 347also stainless steel

  19. Conditioned inhibition and reinforcement rate. (United States)

    Harris, Justin A; Kwok, Dorothy W S; Andrew, Benjamin J


    We investigated conditioned inhibition in a magazine approach paradigm. Rats were trained on a feature negative discrimination between an auditory conditioned stimulus (CS) reinforced at one rate versus a compound of that CS and a visual stimulus (L) reinforced at a lower rate. This training established L as a conditioned inhibitor. We then tested the inhibitory strength of L by presenting it in compound with other auditory CSs. L reduced responding when tested with a CS that had been reinforced at a high rate, but had less or even no inhibitory effect when tested with a CS that had been reinforced at a low rate. The inhibitory strength of L was greater if it signaled a decrease in reinforcement from an already low rate than if it signaled an equivalent decrease in reinforcement from a high rate. We conclude that the strength of inhibition is not a linear function of the change in reinforcement that it signals. We discuss the implications of this finding for models of learning (e.g., Rescorla & Wagner, 1972) that identify inhibition with a difference (subtraction) rule.

  20. Th2 cytokines inhibit lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Ira L Savetsky

    Full Text Available Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2 cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4 and interleukin-13 (IL-13 have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.

  1. New drug target in protozoan parasites: the role of thioredoxin reductase. (United States)

    Andrade, Rosa M; Reed, Sharon L


    Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin's anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E. histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E. histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden.

  2. Self-regulation, ego depletion, and inhibition. (United States)

    Baumeister, Roy F


    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  3. Graphene: corrosion-inhibiting coating. (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I


    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  4. Suramin inhibits EV71 infection. (United States)

    Wang, Yaxin; Qing, Jie; Sun, Yuna; Rao, Zihe


    Enterovirus-71 (EV71) is one of the major causative reagents for hand-foot-and-mouth disease. In particular, EV71 causes severe central nervous system infections and leads to numerous dead cases. Although several inactivated whole-virus vaccines have entered in clinical trials, no antiviral agent has been provided for clinical therapy. In the present work, we screened our compound library and identified that suramin, which has been clinically used to treat variable diseases, could inhibit EV71 proliferation with an IC50 value of 40 μM. We further revealed that suramin could block the attachment of EV71 to host cells to regulate the early stage of EV71 infection, as well as affected other steps of EV71 life cycle. Our results are helpful to understand the mechanism for EV71 life cycle and provide a potential for the usage of an approved drug, suramin, as the antiviral against EV71 infection.

  5. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni


    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  6. Latent inhibition in human adults without masking. (United States)

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R


    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  7. Enhanced latent inhibition in high schizotypy individuals


    Granger, Kiri T.; Moran, Paula M.; Buckley, Matthew G.; Haselgrove, Mark


    Latent inhibition refers to a retardation in learning about a stimulus that has been rendered familiar by non-reinforced preexposure, relative to a non-preexposed stimulus. Latent inhibition has been shown to be inversely correlated with schizotypy, and abnormal in people with schizophrenia, but these findings are inconsistent. One potential contributing factor to this inconsistency is that many tasks that purport to measure latent inhibition are confounded by alternative effects that also re...

  8. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer's cramp patients. (United States)

    Veugen, Lidwien C; Hoffland, Britt S; Stegeman, Dick F; van de Warrenburg, Bart P


    Writer's cramp is a task-specific form of focal dystonia, characterized by abnormal movements and postures of the hand and arm during writing. Two consistent abnormalities in its pathophysiology are a loss of surround inhibition and overactivity of the dorsal premotor cortex (PMd). This study aimed to assess a possible link between these two phenomena by investigating whether PMd inhibition leads to an improvement of surround inhibition, in parallel with previously demonstrated writing improvement. Fifteen writer's cramp patients and ten controls performed a simple motor hand task during which surround inhibition was measured using transcranial magnetic stimulation. Motor cortical excitability was measured of the active and surround muscles at three phases of the task. Surround inhibition and writing performance were assessed before and after PMd inhibitory continuous theta burst stimulation. In contrast to healthy controls, patients did not show inhibition of the abductor digiti minimi muscle during movement initiation of the first dorsal interosseus muscle, confirming the loss of surround inhibition. PMd inhibition led to an improvement of writing speed in writer's cramp patients. However, in both groups, no changes in surround inhibition were observed. The results confirm a role for the PMd in the pathophysiology of writer's cramp. We show that PMd inhibition does not lead to restoration of the surround inhibition defect in writer's cramp, despite the improvement in writing. This questions the involvement of the PMd in the loss of surround inhibition, and perhaps also the direct link between surround inhibition and dystonia.

  9. Reduced surround inhibition in musicians. (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H


    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  10. A Qualitative Approach to Enzyme Inhibition (United States)

    Waldrop, Grover L.


    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  11. Quorum Sensing Inhibition, Relevance to Periodontics


    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K


    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  12. Inhibition: Mental Control Process or Mental Resource? (United States)

    Im-Bolter, Nancie; Johnson, Janice; Ling, Daphne; Pascual-Leone, Juan


    The current study tested 2 models of inhibition in 45 children with language impairment and 45 children with normally developing language; children were aged 7 to 12 years. Of interest was whether a model of inhibition as a mental-control process (i.e., executive function) or as a mental resource would more accurately reflect the relations among…

  13. Inhibited and Uninhibited Types of Children. (United States)

    Kagan, Jerome; And Others


    Investigates the preservation of inhibited and uninhibited behaviors in 100 children of 14, 20, 32, and 48 months. Children who had been extremely inhibited or uninhibited at 14 and 20 months differed significantly at 4 years of age in behavior and cardiac acceleration. (RJC)

  14. Quorum sensing inhibition, relevance to periodontics. (United States)

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K


    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  15. Inhibition in Autism: Children with Autism Have Difficulty Inhibiting Irrelevant Distractors but Not Prepotent Responses (United States)

    Adams, Nena C.; Jarrold, Christopher


    Resistance to distractor inhibition tasks have previously revealed impairments in children with autism. However, on the classic Stroop task and other prepotent response tasks, children with autism show intact inhibition. These data may reflect a distinction between prepotent response and resistance to distractor inhibition. The current study…

  16. Inhibition of ethylene production by rhizobitoxine

    Energy Technology Data Exchange (ETDEWEB)

    Owens, L.D.; Lieberman, M.; Kunishi, A.


    Rhizobitoxine, an inhibitor of methionine biosynthesis in Salmonella typhimurium, inhibited ethylene production about 75% in light-grown sorghum seedlings and in senescent apple tissue. Ethylene production stimulated by indoleacetic acid and kinetin in sorghum was similarly inhibited. With both apple and sorghum, the inhibition could only be partially relieved by additions of methionine. A methionine analogue, ..cap alpha..-keto-..gamma..-methylthiobutyric acid, which has been suggested as an intermediate between methionine and ethylene, had no effect on the inhibition. Incorporation of /sup 14/C from added methionine-/sup 14/C into ethylene was curtailed by rhizobitoxine to about the same extent as was ethylene production. These results suggest that rhizobitoxine interferes with ethylene biosynthesis by blocking the conversion of methionine to ethylene and not indirectly by inhibiting the biosynthesis of methionine. Ethylene production by Penicillium digitatum, a fungus which produces ethylene via pathways not utilizing methionine as a precursor, was not affected by rhizobitoxine. 16 references, 2 figures, 4 tables.

  17. Habituation, latent inhibition, and extinction. (United States)

    Jordan, Wesley P; Todd, Travis P; Bucci, David J; Leaton, Robert N


    In two conditioned suppression experiments with a latent inhibition (LI) design, we measured the habituation of rats in preexposure, their LI during conditioning, and then extinction over days. In the first experiment, lick suppression, the preexposed group (PE) showed a significant initial unconditioned response (UR) to the target stimulus and significant long-term habituation (LTH) of that response over days. The significant difference between the PE and nonpreexposed (NPE) groups on the first conditioning trial was due solely to the difference in their URs to the conditioned stimulus (CS)-a habituated response (PE) and an unhabituated response (NPE). In the second experiment, bar-press suppression, little UR to the target stimulus was apparent during preexposure, and no detectable LTH. Thus, there was no difference between the PE and NPE groups on the first conditioning trial. Whether the UR to the CS confounds the interpretation of LI (Exp. 1) or not (Exp. 2) can only be known if the UR is measured. In both experiments, LI was observed in acquisition. Also in both experiments, rats that were preexposed and then conditioned to asymptote were significantly more resistant to extinction than were the rats not preexposed. This result contrasts with the consistently reported finding that preexposure either produces less resistance to extinction or has no effect on extinction. The effect of stimulus preexposure survived conditioning to asymptote and was reflected directly in extinction. These two experiments provide a cautionary procedural note for LI experiments and have shown an unexpected extinction effect that may provide new insights into the interpretation of LI.

  18. Fear inhibition in high trait anxiety. (United States)

    Kindt, Merel; Soeter, Marieke


    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  19. BST2/Tetherin Inhibition of Alphavirus Exit

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi


    Full Text Available Alphaviruses such as chikungunya virus (CHIKV and Semliki Forest virus (SFV are small enveloped RNA viruses that bud from the plasma membrane. Tetherin/BST2 is an interferon-induced host membrane protein that inhibits the release of many enveloped viruses via direct tethering of budded particles to the cell surface. Alphaviruses have highly organized structures and exclude host membrane proteins from the site of budding, suggesting that their release might be insensitive to tetherin inhibition. Here, we demonstrated that exogenously-expressed tetherin efficiently inhibited the release of SFV and CHIKV particles from host cells without affecting virus entry and infection. Alphavirus release was also inhibited by the endogenous levels of tetherin in HeLa cells. While rubella virus (RuV and dengue virus (DENV have structural similarities to alphaviruses, tetherin inhibited the release of RuV but not DENV. We found that two recently identified tetherin isoforms differing in length at the N-terminus exhibited distinct capabilities in restricting alphavirus release. SFV exit was efficiently inhibited by the long isoform but not the short isoform of tetherin, while both isoforms inhibited vesicular stomatitis virus exit. Thus, in spite of the organized structure of the virus particle, tetherin specifically blocks alphavirus release and shows an interesting isoform requirement.

  20. The IFITMs Inhibit Zika Virus Replication

    Directory of Open Access Journals (Sweden)

    George Savidis


    Full Text Available Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

  1. Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2. (United States)

    Nickell, Justin R; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P


    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [(3)H]dihydrotetrabenazine binding, inhibition of [(3)H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (K(i) = 45 nM) inhibiting vesicular [(3)H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC(50) = 0.65 microM; I(max) = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC(50) = 0.42 microM, I(max) = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for

  2. Lobelane Inhibits Methamphetamine-Evoked Dopamine Release via Inhibition of the Vesicular Monoamine Transporter-2S⃞ (United States)

    Nickell, Justin R.; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B.; Zheng, Guangrong; Crooks, Peter A.


    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [3H]dihydrotetrabenazine binding, inhibition of [3H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (Ki = 45 nM) inhibiting vesicular [3H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC50 = 0.65 μM; Imax = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC50 = 0.42 μM, Imax = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for the development of a

  3. Inhibition of urinary calculi -- a spectroscopic study (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis


    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  4. Toxicants inhibiting anaerobic digestion: a review. (United States)

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C


    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  5. Glycerol inhibition of ruminal lipolysis in vitro (United States)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  6. Inhibited solid propellant composition containing beryllium hydride (United States)

    Thompson, W. W. (Inventor)


    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  7. The inhibition of monoamine oxidase by esomeprazole



    Virtual screening of a library of drugs has suggested that esomeprazole, the S-enantiomer of omeprazole, may possess binding affinities for the active sites of the monoamine oxidase (MAO) A and B enzymes. Based on this finding, the current study examines the MAO inhibitory properties of esomeprazole. Using recombinant human MAO-A and MAO-B, IC50 values for the inhibition of these enzymes by esomeprazole were experimentally determined. To examine the reversibility of MAO inhibition by esomepra...

  8. Neomycin inhibits angiogenin-induced angiogenesis



    A class of angiogenesis inhibitor has emerged from our mechanistic study of the action of angiogenin, a potent angiogenic factor. Neomycin, an aminoglycoside antibiotic, inhibits nuclear translocation of human angiogenin in human endothelial cells, an essential step for angiogenin-induced angiogenesis. The phospholipase C-inhibiting activity of neomycin appears to be involved, because U-73122, another phospholipase C inhibitor, has a similar effect. In contrast, genistein, oxophenylarsine, an...

  9. Piperine, a dietary phytochemical, inhibits angiogenesis



    Angiogenesis plays an important role in tumor progression. Piperine, a major alkaloid constituent of black pepper, has diverse physiological actions including killing of cancer cells; however, the effect of piperine on angiogenesis is not known. Here we show that piperine inhibited the proliferation and G1/S transition of human umbilical vein endothelial cells (HUVECs) without causing cell death. Piperine also inhibited HUVEC migration and tubule formation in vitro, as well as collagen-induce...

  10. Inhibition of Heme Peroxidases by Melamine

    Directory of Open Access Journals (Sweden)

    Pattaraporn Vanachayangkul


    Full Text Available In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP, lactoperoxidase (LPO, and cyclooxygenase-1 and -2 (COX-1 and -2. Melamine exhibited noncompetitive inhibition of HRP (9.5±0.7mM, and LPO showed a mixed model of inhibition (14.5±4.7mM. The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases.

  11. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  12. Scale Inhibition of Green Inhibitor Polyepoxysuccinic Sodium

    Institute of Scientific and Technical Information of China (English)

    Feng Hui-xia; Wang Yi; Yu Shu-rong; Liang Bao-feng


    Polyepoxysuccinic acid (PESA) is the green water treatment agents recognized all over the world[1-3]. It is found that when PESA is used alone, it had good scale inhibition. PESA should be included in the category of green scale inhibitor.PESA is synthesized with maleicanhydride in the presence of catalysts. The effect on scale-in-hibiting property of the product from amount and feed times of catalyst, the reaction temperature, the reaction time were investigated. The optimum reaction conditions are as follows:n(maleic anhydride):n(Ca(OH)2):n(NaOH)=1:0.05-0.2:0.5, reaction temperature 95C, reaction time 4h.In all the references about PESA, PESA is researched as a kind of highly effective scale inhibitor or chelate. In this paper, the performance of scale inhibition of PESA is evaluated by scale static inhibitor.The results are shown in Figture1.It is evident from our experimental data (Figture1) that when inhibition for CaCO3.With the increase of PESA dosage, scale inhibition increases. When dosage is more than 6mg/L, inhibition efficiency is over 50%. The formulas give scale inhibition efficiency more than 95% at 12mg/L of total dosage.

  13. Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain. (United States)

    Goddard, C Alex; Mysore, Shreesh P; Bryant, Astra S; Huguenard, John R; Knudsen, Eric I


    Reciprocal inhibition between inhibitory projection neurons has been proposed as the most efficient circuit motif to achieve the flexible selection of one stimulus among competing alternatives. However, whether such a motif exists in networks that mediate selection is unclear. Here, we study the connectivity within the nucleus isthmi pars magnocellularis (Imc), a GABAergic nucleus that mediates competitive selection in the midbrain stimulus selection network. Using laser photostimulation of caged glutamate, we find that feedback inhibitory connectivity is global within the Imc. Unlike typical lateral inhibition in other circuits, intra-Imc inhibition remains functionally powerful over long distances. Anatomically, we observed long-range axonal projections and retrograde somatic labeling from focal injections of bi-directional tracers in the Imc, consistent with spatial reciprocity of intra-Imc inhibition. Together, the data indicate that spatially reciprocal inhibition of inhibition occurs throughout the Imc. Thus, the midbrain selection circuit possesses the most efficient circuit motif possible for fast, reliable, and flexible selection.

  14. Cell-bound gold (CBG) in patients treated with aurothioglucose and with auranofin. A comparison of different methods of determination. (United States)

    van Riel, P L; Gribnau, F W; van de Putte, L B


    Three different methods of determining the cell-bound gold concentration were compared in patients given intramuscular and oral chrysotherapy for rheumatoid arthritis. We found a strong correlation between the different methods and no difference between 2 washing procedures.

  15. Matrix metalloproteinase inhibition in atherosclerosis and stroke. (United States)

    Roycik, M D; Myers, J S; Newcomer, R G; Sang, Q-X A


    Matrix metalloproteinases (MMPs) are a family of tightly regulated, zinc-dependent proteases that degrade extracellular matrix (ECM), cell surface, and intracellular proteins. Vascular remodeling, whether as a function of normal physiology or as a consequence of a myriad of pathological processes, requires degradation of the ECM. Thus, the expression and activity of many MMPs are up-regulated in numerous conditions affecting the vasculature and often exacerbate vascular dysfunction. A growing body of evidence supports the rationale of using MMP inhibitors for the treatment of cardiovascular diseases, stroke, and chronic vascular dementia. This manuscript will examine promising targets for MMP inhibition in atherosclerosis and stroke, reviewing findings in preclinical animal models and human patient studies. Strategies for MMP inhibition have progressed beyond chelating the catalytic zinc to functional blocking antibodies and peptides that target either the active site or exosites of the enzyme. While the inhibition of MMP activity presents a rational therapeutic avenue, the multiplicity of roles for MMPs and the non-selective nature of MMP inhibitors that cause unintended side-effects hinder full realization of MMP inhibition as therapy for vascular disease. For optimal therapeutic effects to be realized, specific targets for MMP inhibition in these pathologies must first be identified and then attacked by potent and selective agents during the most appropriate timepoint.

  16. Aspartate inhibits Staphylococcus aureus biofilm formation. (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping


    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  17. Genistein inhibits differentiation of primary human adipocytes. (United States)

    Park, Hea Jin; Della-Fera, Mary Anne; Hausman, Dorothy B; Rayalam, Srujana; Ambati, Suresh; Baile, Clifton A


    Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens.

  18. Neomycin inhibits angiogenin-induced angiogenesis. (United States)

    Hu, G F


    A class of angiogenesis inhibitor has emerged from our mechanistic study of the action of angiogenin, a potent angiogenic factor. Neomycin, an aminoglycoside antibiotic, inhibits nuclear translocation of human angiogenin in human endothelial cells, an essential step for angiogenin-induced angiogenesis. The phospholipase C-inhibiting activity of neomycin appears to be involved, because U-73122, another phospholipase C inhibitor, has a similar effect. In contrast, genistein, oxophenylarsine, and staurosporine, inhibitors of tyrosine kinase, phosphotyrosine phosphatase, and protein kinase C, respectively, do not inhibit nuclear translocation of angiogenin. Neomycin inhibits angiogenin-induced proliferation of human endothelial cells in a dose-dependent manner. At 50 microM, neomycin abolishes angiogenin-induced proliferation but does not affect the basal level of proliferation and cell viability. Other aminoglycoside antibiotics, including gentamicin, streptomycin, kanamycin, amikacin, and paromomycin, have no effect on angiogenin-induced cell proliferation. Most importantly, neomycin completely inhibits angiogenin-induced angiogenesis in the chicken chorioallantoic membrane at a dose as low as 20 ng per egg. These results suggest that neomycin and its analogs are a class of agents that may be developed for anti-angiogenin therapy.

  19. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants. (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong


    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  20. The role of (dis)inhibition in creativity: decreased inhibition improves idea generation. (United States)

    Radel, Rémi; Davranche, Karen; Fournier, Marion; Dietrich, Arne


    There is now a large body of evidence showing that many different conditions related to impaired fronto-executive functioning are associated with the enhancement of some types of creativity. In this paper, we pursue the possibility that the central mechanism associated with this effect might be a reduced capacity to exert inhibition. We tested this hypothesis by exhausting the inhibition efficiency through prolonged and intensive practice of either the Simon or the Eriksen Flanker task. Performance on another inhibition task indicated that only the cognitive resources for inhibition of participants facing high inhibition demands were impaired. Subsequent creativity tests revealed that exposure to high inhibition demands led to enhanced fluency in a divergent thinking task (Alternate Uses Task), but no such changes occurred in a convergent task (Remote Associate Task; studies 1a and 1b). The same manipulation also led to a hyper-priming effect for weakly related primes in a Lexical Decision Task (Study 2). Together, these findings suggest that inhibition selectively affects some types of creative processes and that, when resources for inhibition are lacking, the frequency and the originality of ideas was facilitated.

  1. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer


    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  2. Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation

    Directory of Open Access Journals (Sweden)

    Susan Skanderup Falkenberg


    Full Text Available 12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM and collagen- (2.0 μg/mL induced aggregations in human blood. These four species in respective extracts (in brackets were Blechnum chilense (MeOH, Luma apiculata (H2O, Amomyrtus luma (DCM : MeOH 1 : 1 and Cestrum parqui (DCM : MeOH 1 : 1. The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1, and L. apiculata (H2O were substantial and confirmed by inhibition of platelet surface activation markers.

  3. Vanadium inhibition of serine and cysteine proteases. (United States)

    Guerrieri, N; Cerletti, P; De Vincentiis, M; Salvati, A; Scippa, S


    A study was made on the effect of vanadium, in both the tetravalent state in vanadyl sulphate and in the pentavalent state in sodium meta-vanadate, and ortho-vanadate, on the proteolysis of azocasein by two serine proteases, trypsin and subtilisin and two cysteine proteases bromelain and papain. Also the proteolysis of bovine azoalbumin by serine proteases was considered. An inhibitory effect was present in all cases, except meta-vanadate with subtilisin. The oxidation level of vanadium by itself did not determine the inhibition kinetics, which also depended on the type and composition of the vanadium containing molecule and on the enzyme assayed. The pattern of inhibition was similar for proteases belonging to the same class. The highest inhibition was obtained with meta-vanadate on papain and with vanadyl sulphate on bromelain.

  4. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel


    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  5. Inhibition of aluminum corrosion using Opuntia extract

    Energy Technology Data Exchange (ETDEWEB)

    El-Etre, A.Y


    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions.

  6. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning;


    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other...... monosaccharides such as mannose and galactose (stereoisomers of glucose) decrease glucose yields as well. NMR relaxometry measurements showed direct correlations between the initial T 2 of the liquid phase in which hydrolysis takes place and the total glucose production during cellulose hydrolysis, indicating...... that low free water availability contributes to cellulase inhibition. Of the hydrolytic enzymes involved, those acting on the cellulose substrate, that is, exo- and endoglucanases, were the most inhibited. The β -glucosidases were shown to be less sensitive to high monosaccharide concentrations except...

  7. Complete corrosion inhibition through graphene defect passivation. (United States)

    Hsieh, Ya-Ping; Hofmann, Mario; Chang, Kai-Wen; Jhu, Jian Gang; Li, Yuan-Yao; Chen, Kuang Yao; Yang, Chang Chung; Chang, Wen-Sheng; Chen, Li-Chyong


    Graphene is expected to enable superior corrosion protection due to its impermeability and chemical inertness. Previous reports, however, demonstrate limited corrosion inhibition and even corrosion enhancement of graphene on metal surfaces. To enable the reliable and complete passivation, the origin of the low inhibition efficiency of graphene was investigated. Combining electrochemical and morphological characterization techniques, nanometer-sized structural defects in chemical vapor deposition grown graphene were found to be the cause for the limited passivation effect. Extremely fast mass transport on the order of meters per second both across and parallel to graphene layers results in an inhibition efficiency of only ∼50% for Cu covered with up to three graphene layers. Through selective passivation of the defects by atomic layer deposition (ALD) an enhanced corrosion protection of more than 99% was achieved, which compares favorably with commercial corrosion protection methods.

  8. Neural inhibition enables selection during language processing. (United States)

    Snyder, Hannah R; Hutchison, Natalie; Nyhus, Erika; Curran, Tim; Banich, Marie T; O'Reilly, Randall C; Munakata, Yuko


    Whether grocery shopping or choosing words to express a thought, selecting between options can be challenging, especially for people with anxiety. We investigate the neural mechanisms supporting selection during language processing and its breakdown in anxiety. Our neural network simulations demonstrate a critical role for competitive, inhibitory dynamics supported by GABAergic interneurons. As predicted by our model, we find that anxiety (associated with reduced neural inhibition) impairs selection among options and associated prefrontal cortical activity, even in a simple, nonaffective verb-generation task, and the GABA agonist midazolam (which increases neural inhibition) improves selection, whereas retrieval from semantic memory is unaffected when selection demands are low. Neural inhibition is key to choosing our words.

  9. Pyrilamine inhibits nicotine-induced catecholamine secretion. (United States)

    Kim, Dong-Chan; Yun, So Jeong; Park, Yong-Soo; Jun, Dong-Jae; Kim, Dongjin; Jiten Singh, N; Kim, Sanguk; Kim, Kyong-Tai


    Function of nicotine, which induces activation of all parts of the body including our brain, has been receiving much attention for a long period of time and also been actively studied by researchers for its pharmacological actions in the central nervous system. The modulation of nicotine concentration and the inhibition of nicotine binding on target receptors in the brain are the key factors for smoking addiction therapy. In previous studies showed that influx of nicotine at the blood-brain barrier was through the pyrilamine-sensitive organic cation transporters. But the direct interacting mechanism of pyrilamine on the nicotine binding target receptors has not yet been clarified. The aim of the present study is to investigate the direct binding mechanisms of a pyrilamine on the nicotinic acetylcholine receptors (nAChRs). We found that pyrilamine shares the same ligand binding pocket of nicotine (NCT) on nAChRs but interacts with more amino acid residues than NCT does. The extended part of pyrilamine interacts with additional residues in the ligand binding pocket of nAChRs which are located nearby the entrance of the binding pocket. The catecholamine (CA) secretion induced by nAChR agonist (NCT') was significantly inhibited by the pyrilamine pretreatment. Real time carbon-fiber amperometry confirmed the inhibition of the NCT'-induced exocytosis by pyrilamine in a single cell level. We also found that pyrilamine inhibited the NCT'-induced [Ca(2+)]i. In contrast, pyrilamine did not affect the increase in calcium induced by high K(+). Overall, these data suggest that pyrilamine directly docks into the ligand binding site of nAChRs and specifically inhibits the nAChR-mediated effects thereby causing inhibition of CA secretion. Therefore, pyrilamine may play an important role to explore new treatments to aid smoking cessation.

  10. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A


    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  11. Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis

    DEFF Research Database (Denmark)

    Kristensen, David M.; Skalkam, Maria L.; Audouze, Karine Marie Laure


    Background: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine disrupting compounds (EDCs) share a high...... of endocrine disruption. Results: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis and it was correlated with a reduced testosterone production. The inhibition of PG synthesis occurs...

  12. Phytic Acid Inhibits Lipid Peroxidation In Vitro


    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz


    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  13. Inhibition of spinach bolting by growth regulators

    Directory of Open Access Journals (Sweden)

    Jan Borkowski


    Full Text Available Spinach (Spinacia oleracea L. plants must be harvested during a short period of time because they bolt just after producing some edible leaves. Maleic hydrazide (MH and its commercial preparation "Antyrost" were found to inhibit bolting very strongly. The preparation Off-shoot-O showed very weak activity in suppressing bolting but diminished markedly the resistance of spinach plants to fungus diseases. Triiodobenzoic acid stimulated bolting, and the retardant succinic acid-2-2-dimethylhydrazide (SADH did not affect bolting. Application of MH to inhibit spinach bolting cannot be recommended in practice before investigating the residues of this compound in leaves.

  14. Targeted inhibition of cancer-inflammation

    NARCIS (Netherlands)

    Gomes Coimbra, M.J.


    The new paradigm in cancer treatment that aims to inhibit the smoldering inflammatory response in tumors is explored to develop new anticancer treatments. It appears that targeted drug delivery is essential in this concept as high local levels of anti-inflammatory agents are needed to observe the be

  15. Stress kinase inhibition modulates acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    F. Fleischer; R. Dabew; B. Goke; ACC Wagner


    AIM To examine the role of p38 during acute experimental cerulein pancreatitis.METHODS Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347)andy or a specific p38 inhbitor (SB203380) and pancreatic stress kinase activity wasdetermined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology.RESULTS JNK inhibition with CEP1347ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580aggravated pancreatitis with higher trypsinlevels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation.Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis.CONCLUSION Stress kinases modulatepancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.

  16. Fear inhibition in high trait anxiety

    NARCIS (Netherlands)

    Kindt, M.; Soeter, M.


    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows f

  17. Serum amyloid P inhibits dermal wound healing (United States)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  18. Search Asymmetry, Sustained Attention, and Response Inhibition (United States)

    Stevenson, Hugh; Russell, Paul N.; Helton, William S.


    In the present experiment, we used search asymmetry to test whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed feature present and feature absent target detection tasks using either a sustained attention to response task (SART; high Go low No-Go) or a…

  19. Target Predictability, Sustained Attention, and Response Inhibition (United States)

    Carter, Leonie; Russell, Paul N.; Helton, William S.


    We examined whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed a number detection task for 37.3 min using either a Sustained Attention to Response Task (SART; high Go low No-Go) or a more traditionally formatted vigilance task (TFT; high No-Go low Go) response…

  20. Inhibition of denitrification by ultraviolet radiation (United States)

    Mancinelli, R. L.; White, M. R.

    It has been shown that UV-A (λ = 320- 400 nm) and UV-B (λ = 280 - 320 nm) inhibit photosynthesis, nitrogen fixation and nitrification. The purpose of this study was to determine the effects, if any, on denitrification in a microbial community inhabiting the intertidal. The community studied is the microbial mat consisting primarily of Lyngbya that inhabits the Pacific marine intertidal, Baja California, Mexico. Rates of denitrification were determined using the acetylene blockage technique. Pseudomonas fluorescens (ATCC # 17400) was used as a control organism, and treated similarly to the mat samples. Samples were incubated either beneath a PAR transparent, UV opaque screen (OP3), or a mylar screen to block UV-B, or a UV transparent screen (UVT) for 2 to 3 hours. Sets of samples were also treated with nitrapyrin to inhibit nitrification, or DCMU to inhibit photosynthesis and treated similarly. Denitrification rates were greater in the UV protected samples than in the UV exposed samples the mat samples as well as for the Ps. fluorescens cultures. Killed controls exhibited no activity. In the DCMU and nitrapyrin treated samples denitrification rates were the same as in the untreated samples. These data indicate that denitrification is directly inhibited by UV radiation.

  1. Inhibiting Intuitive Thinking in Mathematics Education (United States)

    Thomas, Michael O. J.


    The papers in this issue describe recent collaborative research into the role of inhibition of intuitive thinking in mathematics education. This commentary reflects on this research from a mathematics education perspective and draws attention to some of the challenges that arise in collaboration between research fields with different cultures,…

  2. Nickel inhibits mitochondrial fatty acid oxidation. (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S


    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  3. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.


    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  4. Temporal Preparation, Response Inhibition and Impulsivity (United States)

    Correa, Angel; Trivino, Monica; Perez-Duenas, Carolina; Acosta, Alberto; Lupianez, Juan


    Temporal preparation and impulsivity involve overlapping neural structures (prefrontal cortex) and cognitive functions (response inhibition and time perception), however, their interrelations had not been investigated. We studied such interrelations by comparing the performance of groups with low vs. high non-clinical trait impulsivity during a…

  5. Acidosis inhibits mineralization in human osteoblasts. (United States)

    Takeuchi, Shoko; Hirukawa, Koji; Togari, Akifumi


    Osteoblasts and osteoclasts maintain bone volume. Acidosis affects the function of these cells including mineral metabolism. We examined the effect of acidosis on the expression of transcription factors and mineralization in human osteoblasts in vitro. Human osteoblasts (SaM-1 cells) derived from the ulnar periosteum were cultured with α-MEM containing 50 μg/ml ascorbic acid and 5 mM β-glycerophosphate (calcifying medium). Acidosis was induced by incubating the SaM-1 cells in 10 % CO₂ (pH approximately 7.0). Mineralization, which was augmented by the calcifying medium, was completely inhibited by acidosis. Acidosis depressed c-Jun mRNA and increased osteoprotegerin (OPG) production in a time-dependent manner. Depressing c-Jun mRNA expression using siRNA increased OPG production and inhibited mineralization. In addition, depressing OPG mRNA expression with siRNA enhanced mineralization in a dose-dependent manner. Acidosis or the OPG protein strongly inhibited mineralization in osteoblasts from neonatal mice. The present study was the first to demonstrate that acidosis inhibited mineralization, depressed c-Jun mRNA expression, and induced OPG production in human osteoblasts. These results suggest that OPG is involved in mineralization via c-Jun in human osteoblasts.

  6. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles (United States)

    Bearne, Stephen L.


    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  7. Cerebellar cortical inhibition and classical eyeblink conditioning. (United States)

    Bao, Shaowen; Chen, Lu; Kim, Jeansok J; Thompson, Richard F


    The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.

  8. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A. [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States); Yap, Sook Fan [Faculty of Medicine and Health Sciences, Department of Pre-Clinical Sciences, University of Tunku Abdul Rahman (Malaysia); Ngeow, Yun Fong [Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chin, Khew-Voon, E-mail: [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States)


    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  9. Bioluminescence inhibition of bacterial luciferase by aliphatic alcohol, amine and carboxylic acid: inhibition potency and mechanism. (United States)

    Yamasaki, Shinya; Yamada, Shuto; Takehara, Kô


    The inhibitory effects of hydrophobic molecules on the bacterial luciferase, BL, luminescence reaction were analyzed using an electrochemically-controlled BL luminescence system. The inhibition potency of alkyl amines, C(n)NH(2), and fatty acids, C(m)COOH (m = n - 1), on the BL reaction increased with an increase in the alkyl chain-length of these aliphatic compounds. C(m)COOH showed lower inhibition potency than C(n)NH(2) and alkyl alcohols, C(n)OH, data for which have been previously reported. To make clear the inhibition mechanisms of the aliphatic compounds on the BL reaction, the initial rate of the BL reaction was measured and analyzed using the Dixon plot and Cornish-Bowden plot. The C(12)OH inhibited the BL reaction in competition with the substrate C(11)CHO, while C(12)NH(2) and C(11)COOH inhibited in an uncompetitive manner with the C(11)CHO. These results suggest that the alkyl chain-length and the terminal unit of the aliphatic compound determine the inhibition potency and the inhibition mechanism, respectively.

  10. Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity. (United States)

    Hashimoto, M; Sasaki, J I; Yamaguchi, S; Kawai, K; Kawakami, H; Iwasaki, Y; Imazato, S


    Nanoparticles (NPs) are currently the focus of considerable attention for dental applications; however, their biological effects have not been fully elucidated. The long-term, slow release of matrix metalloproteases (MMPs) digests collagen fibrils within resin-dentin bonds. Therefore, MMP inhibitors can prolong the durability of resin-dentin bonds. However, there have been few reports evaluating the combined effect of MMP inhibition and the cytotoxic effects of NPs for dentin bonding. The aim of this study was to evaluate MMP inhibition and cytotoxic responses to gold (AuNPs) and platinum nanoparticles (PtNPs) stabilized by polyvinylpyrrolidone (PVP) in cultured murine macrophages (RAW264) by using MMP inhibition assays, measuring cell viability and inflammatory responses (quantitative reverse transcription polymerase chain reaction [RT-qPCR]), and conducting a micromorphological analysis by fluorescence and transmission electron microscopy. Cultured RAW264 cells were exposed to metal NPs at various concentrations (1, 10, 100, and 400 µg/mL). AuNPs and PtNPs markedly inhibited MMP-8 and MMP-9 activity. Although PtNPs were cytotoxic at high concentrations (100 and 400 µg/mL), no cytotoxic effects were observed for AuNPs at any concentration. Transmission electron microscopy images showed a significant nonrandom intercellular distribution for AuNPs and PtNPs, which were mostly observed to be localized in lysosomes but not in the nucleus. RT-qPCR analysis demonstrated inflammatory responses were not induced in RAW264 cells by AuNPs or PtNPs. The cytotoxicity of nanoparticles might depend on the core metal composition and arise from a "Trojan horse" effect; thus, MMP inhibition could be attributed to the surface charge of PVP, which forms the outer coating of NPs. The negative charge of the surface coating of PVP binds to Zn(2+) from the active center of MMPs by chelate binding and results in MMP inhibition. In summary, AuNPs are attractive NPs that effectively

  11. Selenium and its' role in the maintenance of genomic stability. (United States)

    Ferguson, Lynnette R; Karunasinghe, Nishi; Zhu, Shuotun; Wang, Alice H


    Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.

  12. WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    Directory of Open Access Journals (Sweden)

    Helder Marco N


    Full Text Available Abstract Background The use of radiotherapy in osteosarcoma (OS is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G2 arrest and could sensitize OS cells to irradiation induced cell death. Methods WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot. Results WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment. Conclusion We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS.

  13. Inhibition of lung tumorigenesis by tea. (United States)

    Yang, Chung S; Liao, Jie; Yang, Guang-yu; Lu, Gary


    Tea and tea constituents have been shown by different investigators to inhibit lung tumorigenesis in different animal model systems. This includes lung tumorigenesis in A/J mice induced by 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone (NNK), N-nitrosodiethylamine, benzo[a]pyrene, N-nitrosomethylurea, or cisplatin. Inhibition of lung tumorigenesis has also been demonstrated in C3H mice treated with N-nitrosodiethylamine. In most of these experiments, reduction in tumor number and tumor size has been observed in the tea-treated group, and in some experiments, decreased tumor incidence has also been observed. The green tea constituent, epigallocatechin-3-gallate (EGCG), and the black tea constituent, theaflavins, have also been shown to be effective. Black tea preparations have been shown to reduce the incidence and number of spontaneously generated lung adenocarcinomas and rhabdomyosarcoma in A/J mice, as well as inhibit the progression of lung adenoma to adenocarcinoma. The mechanisms for the inhibitory action have not been well elucidated. It may be related to the antiproliferative, proapoptotic, and antiangiogenic activities of tea constituents that have been demonstrated in some experiments. These activities may be a result of the inhibition of key protein kinases involved in signal transduction and cell cycle regulation. Tea catechins, such as EGCG, have been suggested to be the effective components. However, a study suggests that caffeine is the key effective constituent for the inhibitory activity of lung tumorigenesis in Fisher 344 rats by black tea. In many of the experiments, tea consumption resulted in the reduction of body fat and body weight; these factors may also contribute to the inhibition of tumorigenesis.

  14. Amiloride inhibits the initiation of Coxsackievirus and poliovirus RNA replication by inhibiting VPg uridylylation. (United States)

    Ogram, Sushma A; Boone, Christopher D; McKenna, Robert; Flanegan, James B


    The mechanism of amiloride inhibition of Coxsackievirus B3 (CVB3) and poliovirus type 1 (PV1) RNA replication was investigated using membrane-associated RNA replication complexes. Amiloride was shown to inhibit viral RNA replication and VPgpUpU synthesis. However, the drug had no effect on polymerase elongation activity during either (-) strand or (+) strand synthesis. These findings indicated that amiloride inhibited the initiation of RNA synthesis by inhibiting VPg uridylylation. In addition, in silico binding studies showed that amiloride docks in the VPg binding site on the back of the viral RNA polymerase, 3D(pol). Since VPg binding at this site on PV1 3D(pol) was previously shown to be required for VPg uridylylation, our results suggest that amiloride inhibits VPg binding to 3D(pol). In summary, our findings are consistent with a model in which amiloride inhibits VPgpUpU synthesis and viral RNA replication by competing with VPg for binding to 3D(pol).

  15. Inhibition Controls Asynchronous States of Neuronal Networks (United States)

    Treviño, Mario


    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  16. Antibiotic inhibition of group I ribozyme function. (United States)

    von Ahsen, U; Davies, J; Schroeder, R


    The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.

  17. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair


    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  18. AMPA receptor inhibition by synaptically released zinc. (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos


    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  19. Emotional inhibition: a discourse analysis of disclosure. (United States)

    Ellis, Darren; Cromby, John


    Evidence generated within the emotional disclosure paradigm (EDP) suggests that talking or writing about emotional experiences produces health benefits, but recent meta-analyses have questioned its efficacy. Studies within the EDP typically rely upon a unidimensional and relatively unsophisticated notion of emotional inhibition, and tend to use quantitative forms of content analysis to identify associations between percentages of word types and positive or negative health outcomes. In this article, we use a case study to show how a qualitative discourse analysis has the potential to identify more of the complexity linking the disclosure practices and styles that may be associated with emotional inhibition. This may illuminate the apparent lack of evidence for efficacy of the EDP by enabling more comprehensive theorisations of the variations within it.

  20. How x rays inhibit amphibian limb regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maden, M.; Wallace, H.


    The effects of an inhibiting dose of 2,000 rad of x-rays on the regenerating limbs of axolotl larvae have been examined in a histological and cytological study. Particular attention was paid to the mitotic indices of normal and irradiated epidermal and blastemal cells. Both the characteristic pattern of epidermal mitotic stimulation which normally follows amputation and the later increase in blastemal mitoses are suppressed by irradiation. In most cells the effects are permanent, but in a small proportion a mitotic delay is induced and upon subsequent division chromosome damage in the form of micronuclei is revealed. Thus irradiated cells which do divide almost certainly die. These results are discussed in relation to other theories of x-ray inhibition of regeneration with particular reference to the view that irradiated cells can be reactivated.

  1. Product inhibition of five Hypocrea jecorina cellulases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Westh, Peter; Bohlin, Christina;


    Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...... on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly...

  2. Direct renin inhibition in chronic kidney disease

    DEFF Research Database (Denmark)

    Persson, Frederik; Rossing, Peter; Parving, Hans-Henrik


    that renin inhibition could hold potential for improved treatment in patients with chronic kidney disease, with diabetic nephropathy as an obvious group of patients to investigate, as the activity of the renin-angiotensin-aldosterone system is enhanced in these patients and as there is an unmet need....... In addition, combination treatment seemed safe and effective also in patients with impaired kidney function. These initial findings formed the basis for the design of a large morbidity and mortality trial investigating aliskiren as add-on to standard treatment. The study has just concluded, but was terminated...... early as a beneficial effect was unlikely and there was an increased frequency of side effects. Also in non-diabetic kidney disease a few intervention studies have been carried out, but there is no ongoing hard outcome study. In this review we provide the current evidence for renin inhibition in chronic...

  3. Cross-domain inhibition of TACE ectodomain

    DEFF Research Database (Denmark)

    Tape, Christopher J; Willems, Sofie H; Dombernowsky, Sarah L;


    Proteolytic release from the cell surface is an essential activation event for many growth factors and cytokines. TNF-a converting enzyme (TACE) is a membrane-bound metalloprotease responsible for solubilizing many pathologically significant membrane substrates and is an attractive therapeutic...... target for the treatment of cancer and arthritis. Prior attempts to antagonize cell-surface TACE activity have focused on small-molecule inhibition of the metalloprotease active site. Given the highly conserved nature of metalloprotease active sites, this paradigm has failed to produce a truly specific...... individual antibody variable domains to desired epitopes. The resulting "cross-domain" human antibody is a previously undescribed selective TACE antagonist and provides a unique alternative to small-molecule metalloprotease inhibition....

  4. Theobromine inhibits sensory nerve activation and cough. (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J


    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  5. Non-Classical Inhibition of Carbonic Anhydrase (United States)

    Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert


    Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828

  6. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter


    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...... the first order asymmetry severalfold (“second order asymmetry”). It was shown that a substrate competitive mode of action involving competition both for the enzyme and for the enzyme-bound carrier will result in a behaviour resembling the observed “second order asymmetry”. It is felt, therefore...

  7. Blocking of potentiation of latent inhibition. (United States)

    Hall, Geoffrey; Rodriguez, Gabriel


    We present a theory of latent inhibition based on the Pearce-Hall (Pearce & Hall, 1980) model for classical conditioning. Its central features are (1) that the associability of a stimulus declines as it comes to predict its consequences and (2) that nonreinforced exposure to a stimulus engages an associative learning process that makes the stimulus an accurate predictor of its consequences (in this case, the occurrence of no event). A formalization of this theory is shown to accommodate the finding that preexposure in compound with another cue can potentiate latent inhibition to the target cue. It further predicts that preexposure to the added cue will eliminate the potentiation effect. An experiment using rats and the flavor-aversion procedure confirmed this prediction.

  8. Inhibition Controls Asynchronous States of Neuronal Networks. (United States)

    Treviño, Mario


    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks.

  9. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Petr Dobes


    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  10. Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport


    Marks, J; Churchill, L J; Debnam, E. S.; Unwin, R J


    The role of putative humoral factors, known as phosphatonins, in phosphate homeostasis and the relationship between phosphate handling by the kidney and gastrointestinal tract are incompletely understood. Matrix extracellular phosphoglycoprotein (MEPE), one of several candidate phosphatonins, promotes phosphaturia, but whether it also affects intestinal phosphate absorption is unknown. Here, using the in situ intestinal loop technique, we demonstrated that short-term infusion of MEPE inhibits...

  11. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.


    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  12. Hydroxyapatite growth inhibition by osteopontin hexapeptide sequences. (United States)

    Silverman, L D; Saadia, M; Ishal, J S; Tishbi, N; Leiderman, E; Kuyunov, I; Recca, B; Reitblat, C; Viswanathan, R


    The effects of three acidic hexapeptides on in vitro hydroxyapatite growth were characterized by pH-stat kinetic studies, adsorption isotherms, and molecular modeling. The three peptides, pSDEpSDE, SDESDE, and DDDDDD, are equal-length model compounds for the acidic sequences in osteopontin, a protein that inhibits mineral formation in both calcified and noncalcified tissues. Growth rates from 1.67 mM calcium and 1.00 mM phosphate solution were measured at pH 7.4 and 37 degrees C in 150 mM NaCl. pSDEpSDE was a strong growth inhibitor when preadsorbed onto hydroxyapatite (HA) seeds from > or = 0.67 mM solutions, concentrations where adsorption isotherms showed relatively complete surface coverage. The nonphosphorylated SDESDE control showed no growth inhibition. Although it adsorbed to almost the same extent as pSDEpSDE, it rapidly desorbed under the pH-stat growth conditions while pSDEpSDE did not. DDDDDD exhibited weak inhibition as its concentration was increased and similar adsorption/desorption behavior to pSDEpSDE. Molecular modeling yielded binding energy trends based on simple adsorption of peptides on the [100] surface that were consistent with observed inhibition, but not for the [001] surface. The relatively unfavorable binding energies for peptides on the [001] surface suggest that their absorption will be primarily on the [100] face. The kinetic and adsorption data are consistent with phosphorylation of osteopontin acting to control mineral formation.

  13. Evidence of dopaminergic processing of executive inhibition.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand ((11C-raclopride after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging.

  14. An Activation Threshold Model for Response Inhibition (United States)

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.


    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  15. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  16. Inhibition of acetylcholinesterase by Tea Tree oil. (United States)

    Mills, Clive; Cleary, Brian J; Gilmer, John F; Walsh, John J


    Pediculosis is a widespread condition reported in schoolchildren. Treatment most commonly involves the physical removal of nits using fine-toothcombs and the chemical treatment of adult lice and eggs with topical preparations. The active constituents of these preparations frequently exert their effects through inhibition of acetylcholinesterase (AChE, EC Increasing resistance to many preparations has led to the search for more effective treatments. Tea Tree oil, otherwise known as Melaleuca oil, has been added to several preparations as an alternative treatment of head lice infestations. In this study two major constituents of Tea Tree oil, 1,8-cineole and terpinen-4-ol, were shown to inhibit acetylcholinesterase at IC50 values (inhibitor concentrations required to give 50% inhibition) of 0.04 and 10.30 mM, respectively. Four samples of Tea Tree oil tested (Tisserand, Body Treats, Main Camp and Irish Health Culture Association Pure Undiluted) showed anticholinesterase activity at IC50 values of 0.05, 0.10, 0.08 and 0.11 microL mL(-1), respectively. The results supported the hypothesis that the insecticidal activity of Tea Tree oil was attributable, in part, to the anticholinesterase activity of Tea Tree oil.

  17. Gabapentin inhibits central sensitization during migraine

    Institute of Scientific and Technical Information of China (English)

    Yanbo Zhang; Guo Shao; Wei Zhang; Sijie Li; Jingzhong Niu; Dongmei Hu; Mingfeng Yang; Xunming Ji


    Peripheral and central sensitizations are phenomena that occur during migraine. The role of pentin, a migraine preventive drug, on central sensitization remains unclear. In this study, a rat model of migraine was established by electrical stimulation of the trigeminal ganglion, and the an-imals were given intragastric gabapentin. Changes in amino acid content in the cerebrospinal fluid and protein kinase C membrane translocation in the spinal trigeminal nucleus were examined to clarify the mechanisms underlying the efficacy of gabapentin in the treatment of central sensitization during migraine. Electrophysiology, liquid chromatography-mass spectrometry and western blot analysis results revealed that gabapentin reduces neuronal excitability in the spinal nucleus in the trigeminal nerve, decreases excitatory amino acid content and inhibits the activation of protein ki-nase C. This provides evidence that excitatory amino acids and protein kinase C are involved in the formation and maintenance of central sensitization during migraine. Gabapentin inhibits migraine by reducing excitatory amino acid content in the cerebrospinal fluid and inhibiting protein kinase C ac-tivation.

  18. Trace element inhibition of phytase activity. (United States)

    Santos, T; Connolly, C; Murphy, R


    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  19. ROCK inhibition prevents early mouse embryo development. (United States)

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen


    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  20. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Directory of Open Access Journals (Sweden)

    Alicja Zajdel


    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  1. Phytic acid inhibits lipid peroxidation in vitro. (United States)

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia


    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  2. Wnt signaling inhibits CTL memory programming. (United States)

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei


    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers.

  3. Deubiquitinase inhibition as a cancer therapeutic strategy. (United States)

    D'Arcy, Padraig; Wang, Xin; Linder, Stig


    The ubiquitin proteasome system (UPS) is the main system for controlled protein degradation and a key regulator of fundamental cellular processes. The dependency of cancer cells on a functioning UPS has made this an attractive target for development of drugs that show selectivity for tumor cells. Deubiquitinases (DUBs, ubiquitin isopeptidases) are components of the UPS that catalyze the removal of ubiquitin moieties from target proteins or polyubiquitin chains, resulting in altered signaling or changes in protein stability. A number of DUBs regulate processes associated with cell proliferation and apoptosis, and as such represent candidate targets for cancer therapeutics. The majority of DUBs are cysteine proteases and are likely to be more "druggable" than E3 ligases. Cysteine residues in the active sites of DUBs are expected to be reactive to various electrophiles. Various compounds containing α,β-unsaturated ketones have indeed been demonstrated to inhibit cellular DUB activity. Inhibition of proteasomal cysteine DUB enzymes (i.e. USP14 and UCHL5) can be predicted to be particularly cytotoxic to cancer cells as it leads to blocking of proteasome function and accumulation of proteasomal substrates. We here provide an overall review of DUBs relevant to cancer and of various small molecules which have been demonstrated to inhibit DUB activity.

  4. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering


    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  5. Inhibition of SIRT2 suppresses hepatic fibrosis. (United States)

    Arteaga, Maribel; Shang, Na; Ding, Xianzhong; Yong, Sherri; Cotler, Scott J; Denning, Mitchell F; Shimamura, Takashi; Breslin, Peter; Lüscher, Bernhard; Qiu, Wei


    Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that inhibition of SIRT2 results in the degradation of c-MYC, which is important for HSC activation. In addition, we discovered that inhibition of SIRT2 suppresses the phosphorylation of ERK, which is critical for the stabilization of c-MYC. Moreover, we found that Sirt2 deficiency attenuates the hepatic fibrosis induced by carbon tetrachloride (CCl4) and thioacetamide (TAA). Furthermore, we showed that SIRT2, p-ERK, and c-MYC proteins are all overexpressed in human hepatic fibrotic tissues. These data suggest a critical role for the SIRT2/ERK/c-MYC axis in promoting hepatic fibrogenesis. Inhibition of the SIRT2/ERK/c-MYC axis represents a novel strategy to prevent and to potentially treat liver fibrosis and cirrhosis.

  6. Bioassays for the determination of nitrification inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Grunditz, Camilla


    Requirements for nitrogen reduction in wastewater treatment plants were introduced in Sweden in the early 1990's. This was a governmental move to reduce the nitrogen discharges to the Baltic and Kattegat in order to prevent eutrophication. The nitrification process in wastewater treatment plants is performed by nitrifying bacteria. These are susceptible to inhibition and it is of great importance that the influent water does not contain toxic compounds. Therefore, there is a need for assays for the determination of nitrification inhibition. This thesis describes the development and applications of such bioassays. Pure cultures of Nitrosomonas sp. and Nitrobacter sp. were isolated from activated sludge of a wastewater treatment plant. These cultures were used as test organisms in the development of bioassays for nitrification inhibition measurements. The assays are based on two different principles; cell suspensions of the bacteria, performed in test tubes, and mediated amperometric biosensors with the bacteria immobilised. Ammonia oxidation and nitrite oxidation are studied separately without interference from other organisms, which makes it easier to interpret the results. The cell suspension assays were applied to samples of industrial and municipal wastewater. The Nitrosomonas and Nitrobacter assays showed to have different inhibition patterns. A large percentage of the Swedish municipal wastewater treatment plants were found to receive inhibitory influent water, but the inhibition level was generally low. Compared to an assay based on activated sludge, the screening method, the pure culture assays found more samples of influent water strongly inhibitory or stimulating. The highest correlation was found between the screening method and the Nitrosomonas assay. The Nitrobacter assay was found to be the most sensitive method. Assessment of toxicity of a number of chemical substances was studied using the biosensors, together with the cell suspension assays

  7. Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Wang, Xiaodong; Axelsen, Lene Nygaard


    remains unclear. OBJECTIVES: We speculated that together with a direct inhibition of repolarizing SK current, the previously observed depolarization of the atrial resting membrane potential (RMP) after SK channel inhibition reduces sodium channel availability thereby prolonging the effective refractory...

  8. A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III based on the protein sequence and structure. For Rift Valley fever virus (RVFV, the glycoprotein Gc (Class II fusion protein mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus, Class II (Andes virus, or Class III (vesicular stomatitis virus fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.

  9. Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin (United States)

    Verespy III, Stephen; Mehta, Akul Y.; Afosah, Daniel; Al-Horani, Rami A.; Desai, Umesh R.


    Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding. PMID:27053426

  10. SIRT1 controls cell proliferation by regulating contact inhibition. (United States)

    Cho, Elizabeth H; Dai, Yan


    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition.

  11. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle


    Zn2+ ions were found to efficiently inhibit activated protein C (APC), suggesting a potential regulatory function for such inhibition. APC activity assays employing a chromogenic peptide substrate demonstrated that the inhibition was reversible and the apparent K I was 13 +/- 2 microM. k cat was ...

  12. Interferon-γ Inhibits Ebola Virus Infection. (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy


    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  13. Reliability of Transcallosal Inhibition in Healthy Adults (United States)

    Fleming, Melanie K.; Newham, Di J.


    Transcallosal inhibition (TCI), assessed using transcranial magnetic stimulation, can provide insight into the neurophysiology of aging and of neurological disorders such as stroke. However, the reliability of TCI using the ipsilateral silent period (iSP) has not been formally assessed, despite its use in longitudinal studies. This study aimed to determine the reliability of iSP onset latency, duration and depth in healthy young and older adults. A sample of 18 younger (mean age 27.7 years, range: 19–42) and 13 older healthy adults (mean age 68.1 years, range: 58–79) attended four sessions whereby the iSP was measured from the first dorsal interosseous (FDI) muscle of each hand. 20 single pulse stimuli were delivered to each primary motor cortex at 80% maximum stimulator output while the participant maintained an isometric contraction of the ipsilateral FDI. The average onset latency, duration of the iSP, and depth of inhibition relative to baseline electromyography activity was calculated for each hand in each session. Intraclass correlation coefficients (ICCs) were calculated for all four sessions, or the first two sessions only. For iSP onset latency the reliability ranged from poor to good. For iSP duration there was moderate to good reliability (ICC > 0.6). Depth of inhibition demonstrated variation in reproducibility depending on which hand was assessed and whether two or four sessions were compared. Bland and Altman analyses showed wide limits of agreement between the first two sessions, particularly for iSP depth. However, there was no systematic pattern to the variability. These results indicate that although iSP duration is reliable in healthy adults, changes in longitudinal studies should be interpreted with caution, particularly for iSP depth. Future studies are needed to determine reliability in clinical populations. PMID:28119588

  14. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾


    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  15. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  16. Inhibition by somatostatin interneurons in olfactory cortex

    Directory of Open Access Journals (Sweden)

    Adam M Large


    Full Text Available Inhibitory circuitry plays an integral cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST interneurons onto pyramidal cells, parvalbumin (PV interneurons and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre and G42 that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS interneurons rather than regular (RS or low threshold spiking (LTS phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that somatostatin interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing.

  17. Inhibiting bacterial toxins by channel blockage. (United States)

    Bezrukov, Sergey M; Nestorovich, Ekaterina M


    Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.

  18. Novel agents inhibit human leukemic cells

    Institute of Scientific and Technical Information of China (English)

    Wei-ping YU; Juan LI


    Ouabain (OUA) and pyrithione zinc (PZ) have been proved as the potential drugs for treating acute myeloid leukemia (AML).Selected from a screening among 1040 Food and Drug Administration-approved pharmacological agents,both drugs showability to induce apoptosis of the culturing AML cells,exhibiting the poisoning effect on the cells.Studies also reveal the efficiency of the drugs in inhibiting the growth of human AML cells injected into the mice lacking of immunity and killing primary AML cells from the peripheral blood of AML patients[1].

  19. Basis of pyruvate inhibition in Thiobacillus thiooxidans. (United States)

    Rao, G S; Berger, L R


    Addition of 10(-3)m pyruvic acid to cultures of Thiobacillus thiooxidans, at pH 2.3, results in its rapid intracellular accumulation and in the cessation of sulfur oxidation, CO(2) fixation, and oxygen consumption; at pH 7.0, pyruvate neither inhibits oxygen uptake nor accumulates appreciably intracellularly. Pyruvate does not affect CO(2) fixation in cell-free extracts. The data suggest that the cells of T. thiooxidans are passively permeable to pyruvic acid at low pH. Thus entry of pyruvic acid causes accumulation of pyruvate with a concomitant decrease in intracellular pH.

  20. Homochiral growth through enantiomeric cross-inhibition

    CERN Document Server

    Brandenburg, A; Höfner, S; Nilsson, M


    The stability and conservation properties of a recently proposed polymerization model are studied. The achiral (racemic) solution is linearly unstable once the relevant control parameter (here the fidelity of the catalyst) exceeds a critical value. The growth rate is calculated for different fidelity parameters and cross-inhibition rates. A chirality parameter is defined and shown to be conserved by the nonlinear terms of the model. Finally, a truncated version of the model is used to derive a set of two ordinary differential equations and it is argued that these equations are more realistic than those used in earlier models of that form.

  1. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity....... High-quality toxicity data are carefully selected from peer-reviewed scientific literature and QSAR databases. This presentation shows how the chemical activity concept can be used to compare and combine toxicity data across compounds and species in order to characterize toxicity – and further how...

  2. A novel approach to inhibit bone resorption

    DEFF Research Database (Denmark)

    Panwar, Preety; Søe, Kent; Guido, Rafael VC;


    -dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF-ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X-ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. KEY...... RESULTS: DHT1 selectively inhibited the collagenase activity of CatK, without affecting the viability of osteoclasts. Both inhibitors abolished the formation of resorption trenches, with DHT1 having a slightly higher IC50 value than ODN. Maximal reductions of other resorption parameters by DHT1 and ODN...

  3. New drug target in protozoan parasites: the role of thioredoxin reductase

    Directory of Open Access Journals (Sweden)

    Rosa M. Andrade


    Full Text Available Amebiasis causes approximately 70,000 deaths annually and is the third cause of death due to parasites worldwide. It is treated primarily with metronidazole, which has adverse side effects, is mutagenic and carcinogenic, and emergence of resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Re-purposing of older FDA approved drugs is advantageous to drug discovery since safety and pharmacokinetic effects in humans are already known. In high throughput screening studies, we recently demonstrated that auranofin, a gold containing compound originally approved to treat rheumatoid arthritis, has activity against trophozoites of E. histolytica, the causative agent of amebiasis. Auranofin’s anti-parasitic activity is attributed to its monovalent gold molecule that readily inhibits E.histolytica thioredoxin reductase. This anti-oxidant enzyme is the only thiol-dependent flavo-reductase present in E.histolytica. Auranofin has also shown promising activity against other protozoans of significant public health importance. Altogether, this evidence suggests that auranofin has the potential to become a broad spectrum alternative therapeutic agent for diseases with a large global burden.

  4. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth



    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control...

  5. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. (United States)

    Pohanka, Miroslav


    Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated.

  6. A comparator view of Pavlovian and differential inhibition. (United States)

    Urcelay, Gonzalo P; Miller, Ralph R


    In 3 experiments using rats as subjects, the authors varied trial spacing to investigate the conditions under which Pavlovian and differential inhibition are observed. Experiment 1 compared Pavlovian and differential inhibition with spaced training trials. Spaced trials resulted in only the Pavlovian inhibitor passing both summation and retardation tests. Conversely, Experiment 2 compared these 2 types of inhibition with massed training trials. This training resulted in only the differential inhibitor passing both tests for conditioned inhibition. Finally, in Experiment 3 all subjects experienced Pavlovian inhibition training with massed trials. Although this training by itself did not result in behavior indicative of inhibition, subjects that also experienced posttraining extinction of the training context did pass both tests for inhibition. Overall, these results are anticipated by the extended comparator hypothesis (Denniston, Savastano, & Miller, 2001) but are problematic for most contemporary associative learning theories.

  7. Optogenetic and chemogenetic strategies for sustained inhibition of pain (United States)

    Iyer, Shrivats M.; Vesuna, Sam; Ramakrishnan, Charu; Huynh, Karen; Young, Stephanie; Berndt, Andre; Lee, Soo Yeun; Gorini, Christopher J.; Deisseroth, Karl; Delp, Scott L.


    Spatially targeted, genetically-specific strategies for sustained inhibition of nociceptors may help transform pain science and clinical management. Previous optogenetic strategies to inhibit pain have required constant illumination, and chemogenetic approaches in the periphery have not been shown to inhibit pain. Here, we show that the step-function inhibitory channelrhodopsin, SwiChR, can be used to persistently inhibit pain for long periods of time through infrequent transdermally delivered light pulses, reducing required light exposure by >98% and resolving a long-standing limitation in optogenetic inhibition. We demonstrate that the viral expression of the hM4D receptor in small-diameter primary afferent nociceptor enables chemogenetic inhibition of mechanical and thermal nociception thresholds. Finally, we develop optoPAIN, an optogenetic platform to non-invasively assess changes in pain sensitivity, and use this technique to examine pharmacological and chemogenetic inhibition of pain. PMID:27484850

  8. Kaempferol inhibits thrombosis and platelet activation. (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung


    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge.

  9. Therapeutic proteasome inhibition in experimental acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Tamás Letoha; Tamás Takács; Liliána Z Fehér; László Pecze; Csaba Somlai; Ilona Varga; József Kaszaki; Gábor Tóth; Csaba Vizier; László Tiszlavicz


    AIM: To establish the therapeutic potential of proteasome inhibition, we examined the therapeutic effects of MG132 (Z-Leu-Leu-Leu-aldehyde) in an experimental model of acute pancreatitis.METHODS: Pancreatitis was induced in rats by two hourly intraperitoneal (ip) injections of cholecystokinin octapeptide (CCK; 2 × 100 μg/kg) and the proteasome inhibitor MG132 (10 mg/kg ip) was administered 30 min after the second CCK injection. Animals were sacrificed 4 h after the first injection of CCK.RESULTS: Administering the proteasome inhibitor MG132 (at a dose of 10 mg/kg, ip) 90 min after the onset of pancreatic inflammation induced the expression of cell-protective 72 kDa heat shock protein (HSP72) and decreased DNA-binding of nuclear factor-κB (NF-κB).Furthermore MG132 treatment resulted in milder inflammatory response and cellular damage, as revealed by improved laboratory and histological parameters of pancreatitis and associated oxidative stress.CONCLUSION: Our findings suggest that proteasome inhibition might be beneficial not only for the prevention,but also for the therapy of acute pancreatitis.

  10. Diacylglycerol Kinase Inhibition and Vascular Function. (United States)

    Choi, Hyehun; Allahdadi, Kyan J; Tostes, Rita C A; Webb, R Clinton


    Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction.

  11. Chromosome tips damaged in anaphase inhibit cytokinesis.

    Directory of Open Access Journals (Sweden)

    Norman M Baker

    Full Text Available Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres in anaphase of Potorous tridactylis cells (PtK2 inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit.

  12. Inhibition of saccades elicits attentional suppression. (United States)

    Dhawan, Saurabh; Deubel, Heiner; Jonikaitis, Donatas


    Visuospatial attention has been shown to have a central role in planning and generation of saccades but what role, if any, it plays in inhibition of saccades remains unclear. In this study, we used an oculomotor delayed match- or nonmatch-to-sample task in which a cued location has to be encoded and memorized for one of two very different goals-to plan a saccade to it or to avoid making a saccade to it. We measured the spatial allocation of attention during the delay and found that while marking a location as a future saccade target resulted in an attentional benefit at that location, marking it as forbidden to saccades led to an attentional cost. Additionally, saccade trajectories were found to deviate away more from the "don't look" location than from a saccade-irrelevant distractor confirming greater inhibition of an actively forbidden location in oculomotor programming. Our finding that attention is suppressed at locations forbidden to saccades confirms and complements the claim of a selective and obligatory coupling between saccades and attention-saccades at the memorized location could neither be planned nor suppressed independent of a corresponding effect on attentional performance.

  13. Ribosome Inactivating Proteins from Plants Inhibiting Viruses

    Institute of Scientific and Technical Information of China (English)

    Inderdeep Kaur; R C Gupta; Munish Puri


    Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity,which depurinate large ribosomal RNA and arrest protein synthesis.RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins,isolated from plants,are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV),hepatitis B virus (HBV) and herpes simplex virus (HSV).Most of the research work related to RIPs has been focused on antiviral activity against HIV; however,the exact mechanism of antiviral activity is still not clear.The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome,leading to inhibition of viral protein translation and host cell death.Enzymatic activity of RIPs is not hmited to depurination of the large rRNA,in addition they can depurinate viral DNA as well as RNA.Recently,Phase Ⅰ/Ⅱ clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease.The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

  14. Tigecycline inhibits proliferation of Acanthamoeba castellanii. (United States)

    Jha, Bijay Kumar; Seo, Incheol; Kong, Hyun-Hee; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki


    Acanthamoeba is an opportunistic protozoan parasite responsible for different diseases in humans, such as granulomatous amoebic encephalitis and amoebic keratitis. Tigecycline, a third-generation tetracycline antibiotic, has potential activity to treat most of the antibiotic resistant bacterial infections. The effects of tigecycline in eukaryotic cells as well as parasites are less well studied. In the present study, we tested the effects of tigecycline on trophozoites of Acanthamoeba castellanii. The inhibitory effect of tigecycline on Acanthamoeba was determined by resazurin reduction and trypan blue exclusion assays. We found that tigecycline significantly inhibited the growth of Acanthamoeba (46.4 % inhibition at the concentration of 100 μM) without affecting cell viability and induction of encystation, whereas other tetracycline groups of antibiotics such as tetracycline and doxycycline showed no inhibitory effects. Furthermore, tigecycline decreased cellular adenosine triphosphate (ATP) level by 26 % than the control and increased mitochondrial mass, suggesting mitochondrial dysfunction in tigecycline-treated cells. These findings suggest that mitochondrial dysfunction with decreased ATP production might play an important mechanism of tigecycline in suppression of Acanthamoeba proliferation.

  15. Understanding biocatalyst inhibition by carboxylic acids. (United States)

    Jarboe, Laura R; Royce, Liam A; Liu, Ping


    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  16. Understanding biocatalyst inhibition by carboxylic acids

    Directory of Open Access Journals (Sweden)

    Laura R Jarboe


    Full Text Available Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  17. Transcriptional inhibition by the retinoblastoma protein

    DEFF Research Database (Denmark)

    Fattaey, A; Helin, K; Harlow, E


    The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M. The underphosphory......The retinoblastoma protein, pRB, appears to play a key role in coordinating the regulation of cell cycle position and transcriptional events. pRB undergoes specific cell-cycle-dependent phosphorylation, being underphosphorylated in G1 and heavily phosphorylated in S, G2, and M....... The underphosphorylated form is able to interact with the E2F transcription factor. Recently, we have cloned a cDNA for E2F-1. By using this clone and a series of non-pRB binding mutants, we have been able to show that the binding of pRB to E2F-1 causes inhibition of E2F-mediated transactivation. pRB's inhibition of E2F......-mediated transcription would be lost by mutation in the retinoblastoma gene in human tumours, by pRB's interaction with DNA tumour virus oncoproteins, or by phosphorylation during the cell cycle....

  18. Safrole oxide inhibits angiogenesis by inducing apoptosis. (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling


    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  19. Calcineurin/NFAT signalling inhibits myeloid haematopoiesis. (United States)

    Fric, Jan; Lim, Clarice X F; Koh, Esther G L; Hofmann, Benjamin; Chen, Jinmiao; Tay, Hock Soon; Mohammad Isa, Siti Aminah Bte; Mortellaro, Alessandra; Ruedl, Christiane; Ricciardi-Castagnoli, Paola


    Nuclear factor of activated T cells (NFAT) comprises a family of transcription factors that regulate T cell development, activation and differentiation. NFAT signalling can also mediate granulocyte and dendritic cell (DC) activation, but it is unknown whether NFAT influences their development from progenitors. Here, we report a novel role for calcineurin/NFAT signalling as a negative regulator of myeloid haematopoiesis. Reconstituting lethally irradiated mice with haematopoietic stem cells expressing an NFAT-inhibitory peptide resulted in enhanced development of the myeloid compartment. Culturing bone marrow cells in media supplemented with Flt3-L in the presence of the calcineurin/NFAT inhibitor Cyclosporin A increased numbers of differentiated DC. Global gene expression analysis of untreated DC and NFAT-inhibited DC revealed differential expression of transcripts that regulate cell cycle and apoptosis. In conclusion, these results provide evidence that calcineurin/NFAT signalling negatively regulates myeloid lineage development. The finding that inhibition of NFAT enhances myeloid development provides a novel insight into understanding how the treatment with drugs targeting calcineurin/NFAT signalling influence the homeostasis of the innate immune system.

  20. Phenols displaying tyrosinase inhibition from Humulus lupulus. (United States)

    Kim, Dae Wook; Woo, Hyun Sim; Kim, Jeong Yoon; Ryuk, Jin Ah; Park, Ki Hun; Ko, Byoung Seob


    Tyrosinase is the rate-limiting enzyme for the production of melanin and other pigments via the oxidation of l-tyrosine. The methanol extract from Humulus lupulus showed potent inhibition against mushroom tyrosinase. The bioactivity-guided fractionation of this methanol extract resulted in the isolation of seven flavonoids (1-7), identified as xanthohumol (1), 4'-O-methylxanthohumol (2), xanthohumol C (3), flavokawain C (4), xanthoumol B (5), 6-prenylnaringenin (6) and isoxanthohumol (7). All isolated flavonoids (1-7) effectively inhibited the monophenolase (IC50s = 15.4-58.4 µM) and diphenolase (IC50s = 27.1-117.4 µM) activities of tyrosinase. Kinetic studies using Lineweaver-Burk and Dixon-plots revealed that chalcones (1-5) were competitive inhibitors, whereas flavanones (6 and 7) exhibited both mixed and non-competitive inhibitory characteristics. In conclusion, this study is the first to demonstrate that the phenolic phytochemicals of H. lupulus display potent inhibitory activities against tyrosinase.

  1. Effects of renin inhibition in systemic hypertension. (United States)

    Anderson, P W; Do, Y S; Schambelan, M; Horton, R; Boger, R S; Luther, R R; Hsueh, W A


    The effect of the direct renin inhibitor enalkiren (Abbott Laboratories) was examined in 8 healthy patients with essential hypertension. With an unrestricted sodium diet, plasma renin concentration was inhibited within 10 minutes by intravenous enalkiren and remained essentially undetectable for greater than or equal to 6 hours (11.9 +/- 4 to 1.0 +/- 0.6 ng angiotensin I/ml/hour, p less than 0.05). Mean arterial blood pressure declined gradually (108 +/- 5 to 84 +/- 4 mm Hg, p = 0.02), as did plasma aldosterone concentration (14.4 +/- 3.8 to 4.4 +/- 0.8 ng/dl, p = 0.03), whereas plasma immunoreactive active renin concentration increased progressively (35 +/- 14 to 160 +/- 60 pg/ml, p greater than 0.05). Urinary excretion of the stable metabolite of prostacyclin (6-keto-prostaglandin F1 alpha) decreased slightly, but not significantly (42 +/- 10 to 33 +/- 11 ng/g creatinine, p = 0.13). The addition of a diuretic decreased baseline blood pressure and increased baseline plasma renin and aldosterone values. Blood pressure responses to enalkiren were slightly (though not significantly) greater than those observed before diuretic administration. We conclude that enalkiren is effective in decreasing blood pressure and in inhibiting the renin system, without significantly altering urinary prostacyclin excretion, in patients with essential hypertension. These results suggest that the renin system contributes to the maintenance of elevated blood pressure in some patients with essential hypertension.

  2. In search of lost presynaptic inhibition. (United States)

    Rudomin, Pablo


    This chapter presents an historical review on the development of some of the main findings on presynaptic inhibition. Particular attention is given to recent studies pertaining the differential GABAa control of the synaptic effectiveness of muscle, cutaneous and articular afferents, to some of the problems arising with the identification of the interneurons mediating the GABAergic depolarization of primary afferents (PAD) of muscle afferents, on the influence of the spontaneous activity of discrete sets of dorsal horn neurons on the pathways mediating PAD of muscle and cutaneous afferents, and to the unmasking of the cutaneous-evoked responses in the lumbosacral spinal cord and associated changes in tonic PAD that follow acute and chronic section of cutaneous nerves. The concluding remarks are addressed to several issues that need to be considered to have a better understanding of the functional role of presynaptic inhibition and PAD on motor performance and sensory processing and on their possible contribution to the shaping of a higher coherence between the cortically programmed and the executed movements.

  3. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana. (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki


    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  4. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations.

    Directory of Open Access Journals (Sweden)

    Emmelie Björklund

    Full Text Available BACKGROUND: The antifungal compound ketoconazole has, in addition to its ability to interfere with fungal ergosterol synthesis, effects upon other enzymes including human CYP3A4, CYP17, lipoxygenase and thromboxane synthetase. In the present study, we have investigated whether ketoconazole affects the cellular uptake and hydrolysis of the endogenous cannabinoid receptor ligand anandamide (AEA. METHODOLOGY/PRINCIPAL FINDINGS: The effects of ketoconazole upon endocannabinoid uptake were investigated using HepG2, CaCo2, PC-3 and C6 cell lines. Fatty acid amide hydrolase (FAAH activity was measured in HepG2 cell lysates and in intact C6 cells. Ketoconazole inhibited the uptake of AEA by HepG2 cells and CaCo2 cells with IC50 values of 17 and 18 µM, respectively. In contrast, it had modest effects upon AEA uptake in PC-3 cells, which have a low expression of FAAH. In cell-free HepG2 lysates, ketoconazole inhibited FAAH activity with an IC50 value (for the inhibitable component of 34 µM. CONCLUSIONS/SIGNIFICANCE: The present study indicates that ketoconazole can inhibit the cellular uptake of AEA at pharmacologically relevant concentrations, primarily due to its effects upon FAAH. Ketoconazole may be useful as a template for the design of dual-action FAAH/CYP17 inhibitors as a novel strategy for the treatment of prostate cancer.

  5. Distinct Neural Correlates for Two Types of Inhibition in Bilinguals: Response Inhibition versus Interference Suppression (United States)

    Luk, Gigi; Anderson, John A. E.; Craik, Fergus I. M.; Grady, Cheryl; Bialystok, Ellen


    To examine the effects of bilingualism on cognitive control, we studied monolingual and bilingual young adults performing a flanker task with functional MRI. The trial types of primary interest for this report were incongruent and no-go trials, representing interference suppression and response inhibition, respectively. Response times were similar…

  6. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis. (United States)

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei


    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro. However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  7. Doxycycline inhibits leukemic cell migration via inhibition of matrix metalloproteinases and phosphorylation of focal adhesion kinase. (United States)

    Wang, Chunhuai; Xiang, Ru; Zhang, Xiangzhong; Chen, Yunxian


    Doxycycline, a tetracycline-based antibiotic, has been reported to attenuate melanoma cell migration through inhibiting the focal adhesion kinase (FAK) signaling pathway. However, it remains to be elucidated whether doxycycline exerts this effect on leukemia cell migration. The present study aimed to examine the role of doxycycline in leukemia cell migration. The invasion capacities of the human leukemia cell lines KG1a (acute myelogenous leukemia) and K562 (chronic myelogenous leukemia) were evaluated using Matrigel® matrix‑coated Transwell® chamber assays; leukemic cell lines treated with doxycycline (1 µg/ml) or anti‑β1‑integrin antibodies were added to the upper chamber, while untreated cells were included as controls. Reverse transcription quantitative polymerase chain reaction was performed in order to further understand the influence of doxycycline treatment on the expression of FAK and gelatinases in the KG1a and K562 leukemic cell lines. In addition, FAK protein expression and phosphorylation were determined using western blot analysis in order to investigate the mechanism by which doxycycline inhibited leukemic cell migration. The results revealed that doxycycline treatment significantly attenuated the migration of KG1a and K562 cells, which was demonstrated to be associated with inhibition of the expression and phosphorylation of FAK. In addition, doxycycline treatment inhibited matrix metalloproteinase (MMP)‑2 and MMP‑9 expression. Furthermore, incubation with blocking anti‑β1‑integrin antibodies had an analogous inhibitory effect on leukemic cell migration to that of doxycycline. In conclusion, the results of the present study suggested that doxycycline attenuated leukemic cell migration through inhibiting the FAK signaling pathway. Therefore, doxycycline may have potential for use as a novel strategy for the treatment of leukemia.

  8. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro. (United States)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A


    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles.

  9. Neural and behavioral mechanisms of proactive and reactive inhibition. (United States)

    Meyer, Heidi C; Bucci, David J


    Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control.

  10. Ubiquitylation of terminal deoxynucleotidyltransferase inhibits its activity.

    Directory of Open Access Journals (Sweden)

    So Maezawa

    Full Text Available Terminal deoxynucleotidyltransferase (TdT, which template-independently synthesizes DNA during V(DJ recombination in lymphoid cells, is ubiquitylated by a BPOZ-2/Cul3 complex, as the ubiquitin ligase, and then degraded by the 26 S proteasome. We show here that TdT is ubiquitylated by the Cul3-based ubiquitylation system in vitro. Because TdT could also be ubiquitylated in the absence of Cul/BPOZ-2, we determined that it could also be directly ubiquitylated by the E2 proteins UbcH5a/b/c and UbcH6, E3-independently. Furthermore, the ubiquitylated TdT inhibited its nucleotidyltransferase activity.

  11. Menthol inhibits the perception of warmth. (United States)

    Green, B G


    The effect of l-menthol on the ability to perceive gradual increases in skin temperature was measured in two experiments. Experiment 1 established that suprathreshold sensations of warmth generated on the vermilion border of the lip could be significantly attenuated by exposure to menthol in concentrations of 0.2 and 2.0% (in mineral oil). Experiment 2 demonstrated that exposure to the 2.0% menthol solution caused the threshold for warmth to rise significantly whereas the threshold for heat pain was unchanged. Although masking of sensations of warmth by menthol-induced sensations of cold is discussed as a possible explanation for the results, a direct effect of the menthol molecule on warm receptors (i.e., inhibition or desensitization) is considered a more likely explanation.

  12. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites. (United States)

    Murphy, Sean C; Palmer, Lucy M; Nyffeler, Thomas; Müri, René M; Larkum, Matthew E


    One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.

  13. Inhibition of morphine metabolism by ketamine. (United States)

    Qi, Xiaoxin; Evans, Allan M; Wang, Jiping; Miners, John O; Upton, Richard N; Milne, Robert W


    Clinical observation of a synergistic effect of ketamine on morphine analgesia remains controversial. Although a pharmacodynamic basis for an interaction has been explored in animal and clinical studies, the possibility of a pharmacokinetic mechanism has not been investigated. Whereas both morphine and morphine-6-glucuronide are effective analgesics, morphine-3-glucuronide (M3G) lacks activity. Thus, changes in the metabolism and disposition of morphine may result in an altered response. First, we investigated the interaction between morphine and ketamine in the isolated perfused rat liver preparation. The clearance of morphine was decreased from 16.8 +/- 4.6 ml/min in the control period to 7.7 +/- 2.8 ml/min in the ketamine-treatment period, with the formation clearance of M3G decreasing from 8.0 +/- 4.1 ml/min to 2.1 +/- 1.1 ml/min. Fractional conversion of morphine to M3G was significantly decreased from 0.46 +/- 0.17 in the control period to 0.28 +/- 0.14 upon the addition of ketamine. The possible mechanism of the interaction was further investigated in vitro with rat liver microsomes as the enzyme source. The formation of M3G followed single-enzyme Michaelis-Menten kinetics, with a mean apparent K(m) of 2.18 +/- 0.45 mM and V(max) of 8.67 +/- 0.59 nmol/min/mg. Ketamine inhibited morphine 3-glucuronidation noncompetitively, with a mean K(i) value of 33.3 +/- 7.9 microM. The results demonstrate that ketamine inhibits the glucuronidation of morphine in a rat model.

  14. IL-1β Inhibits Human Osteoblast Migration (United States)

    Hengartner, Nina-Emily; Fiedler, Jörg; Ignatius, Anita; Brenner, Rolf E


    Bone has a high capacity for self-renewal and repair. Prolonged local secretion of interleukin 1β (IL-1β), however, is known to be associated with severe bone loss and delayed fracture healing. Since induction of bone resorption by IL-1β may not sufficiently explain these pathologic processes, we investigated, in vitro, if and how IL-1β affects migration of multipotent mesenchymal stromal cells (MSC) or osteoblasts. We found that homogenous exposure to IL-1β significantly diminished both nondirectional migration and site-directed migration toward the chemotactic factors platelet-derived growth factor (PDGF)-BB and insulinlike growth factor 1 (IGF-1) in osteoblasts. Exposure to a concentration gradient of IL-1β induced an even stronger inhibition of migration and completely abolished the migratory response of osteoblasts toward PDGF-BB, IGF-1, vascular endothelial growth factor A (VEGF-A) and the complement factor C5a. IL-1β induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and c-Jun N-terminal kinases (JNK) activation and inhibition of these signaling pathways suggested an involvement in the IL-1β effects on osteoblast migration. In contrast, basal migration of MSC and their migratory activity toward PDGF-BB was found to be unaffected by IL-1β. These results indicate that the presence of IL-1β leads to impaired recruitment of osteoblasts which might influence early stages of fracture healing and could have pathological relevance for bone remodeling in inflammatory bone disease. PMID:23508571

  15. Cartilage proteoglycans inhibit fibronectin-mediated adhesion (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.


    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  16. Reconciling the role of serotonin in behavioral inhibition and aversion: acute tryptophan depletion abolishes punishment-induced inhibition in humans. (United States)

    Crockett, Molly J; Clark, Luke; Robbins, Trevor W


    The neuromodulator serotonin has been implicated in a large number of affective and executive functions, but its precise contribution to motivation remains unclear. One influential hypothesis has implicated serotonin in aversive processing; another has proposed a more general role for serotonin in behavioral inhibition. Because behavioral inhibition is a prepotent reaction to aversive outcomes, it has been a challenge to reconcile these two accounts. Here, we show that serotonin is critical for punishment-induced inhibition but not overall motor response inhibition or reporting aversive outcomes. We used acute tryptophan depletion to temporarily lower brain serotonin in healthy human volunteers as they completed a novel task designed to obtain separate measures of motor response inhibition, punishment-induced inhibition, and sensitivity to aversive outcomes. After a placebo treatment, participants were slower to respond under punishment conditions compared with reward conditions. Tryptophan depletion abolished this punishment-induced inhibition without affecting overall motor response inhibition or the ability to adjust response bias in line with punishment contingencies. The magnitude of reduction in punishment-induced inhibition depended on the degree to which tryptophan depletion reduced plasma tryptophan levels. These findings extend and clarify previous research on the role of serotonin in aversive processing and behavioral inhibition and fit with current theorizing on the involvement of serotonin in predicting aversive outcomes.

  17. Molecular mechanisms of DNA repair inhibition by caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.P.; Sancar, A. (Univ. of North Carolina School of Medicine, Chapel Hill (USA))


    Caffeine potentiates the mutagenic and lethal effects of genotoxic agents. It is thought that this is due, at least in some organisms, to inhibition of DNA repair. However, direct evidence for inhibition of repair enzymes has been lacking. Using purified Escherichia coli DNA photolyase and (A)BC excinuclease, we show that the drug inhibits photoreactivation and nucleotide excision repair by two different mechanisms. Caffeine inhibits photoreactivation by interfering with the specific binding of photolyase to damaged DNA, and it inhibits nucleotide excision repair by promoting nonspecific binding of the damage-recognition subunit, UvrA, of (A)BC excinuclease. A number of other intercalators, including acriflavin and ethidium bromide, appear to inhibit the excinuclease by a similar mechanism--that is, by trapping the UvrA subunit in nonproductive complexes on undamaged DNA.

  18. Latent inhibition and autonomic responses: a psychophysiological approach. (United States)

    Vaitl, D; Lipp, O V


    Latent inhibition, retarded learning after preexposure to the to-be-conditioned stimulus, has been implied as a tool for the investigation of attentional deficits in schizophrenia and related disorders. The present paper reviews research that used Pavlovian conditioning as indexed by autonomic responses (electrodermal, vasomotor, cardiac) to investigate latent inhibition in adult humans. Latent inhibition has been demonstrated repeatedly in healthy subjects in absence of a masking task that is required in other latent inhibition paradigms. Moreover, latent inhibition of Pavlovian conditioning is stimulus-specific and increases with an increased number of preexposure trials which mirrors results from research in animals. A reduction of latent inhibition has been shown in healthy subjects who score high on questionnaire measures of psychosis proneness and in unmedicated schizophrenic patients. The latter result was obtained in a within-subject paradigm that holds promise for research with patient samples.

  19. Btk inhibition treats TLR7/IFN driven murine lupus. (United States)

    Bender, Andrew T; Pereira, Albertina; Fu, Kai; Samy, Eileen; Wu, Yin; Liu-Bujalski, Lesley; Caldwell, Richard; Chen, Yi-Ying; Tian, Hui; Morandi, Federica; Head, Jared; Koehler, Ursula; Genest, Melinda; Okitsu, Shinji L; Xu, Daigen; Grenningloh, Roland


    Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling.

  20. [Inhibition of aromatics on ammonia-oxidizing activity of sediment]. (United States)

    Dong, Chun-hong; Hu, Hong-ying; Wei, Dong-bin; Huang, Xia; Qian, Yi


    The inhibition of 24 aromatics on ammonia-oxidizing activity of nitrifying bacteria in sediment was measured. The effects of the kind, number and position of substituted groups on ammonia-oxidizing activity of nitrifying bacteria were discussed. The inhibition of mono-substituted benzenes on ammonia-oxidizing activity of nitrifying bacteria were in order of -OH > -NO2 > -NH2 > -Cl > -CH3 > -H. The position of substituted groups of di-substituted benzenes also affected the inhibition, and the inhibitions of dimethylbenzenes(xylene) were in order of meta-> ortho-> para-. The increase in number of substituted group on benzene-ring enhanced the inhibition of aromatics studied in this study on nitrifying bacteria. There was a linear relationship between inhibition (IC50, mumol.L-1) of aromatics on ammonia-oxidizing activity and total electronegativity (sigma E) of aromatics: lgIC50 = 14.72 - 0.91 sigma E.

  1. Firing regulation of fast-spiking interneurons by autaptic inhibition (United States)

    Guo, Daqing; Chen, Mingming; Perc, Matjaž; Wu, Shengdun; Xia, Chuan; Zhang, Yangsong; Xu, Peng; Xia, Yang; Yao, Dezhong


    Fast-spiking (FS) interneurons in the brain are self-innervated by powerful inhibitory GABAergic autaptic connections. By computational modelling, we investigate how autaptic inhibition regulates the firing response of such interneurons. Our results indicate that autaptic inhibition both boosts the current threshold for action potential generation and modulates the input-output gain of FS interneurons. The autaptic transmission delay is identified as a key parameter that controls the firing patterns and determines multistability regions of FS interneurons. Furthermore, we observe that neuronal noise influences the firing regulation of FS interneurons by autaptic inhibition and extends their dynamic range for encoding inputs. Importantly, autaptic inhibition modulates noise-induced irregular firing of FS interneurons, such that coherent firing appears at an optimal autaptic inhibition level. Our results reveal the functional roles of autaptic inhibition in taming the firing dynamics of FS interneurons.

  2. Study on the Inhibition of Fermented Soybean to Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LU Yan; WANG Wei; SHAN Yi; E Zhiqiang; WANG Liqun


    In the experiment, the inhibition of isoflavones extracted from soybean and tempe to SP2/0 and Hela cells was studied,and the inhibition rate of each unit for cancer cells was also studied. The results showed that the inhibition rate of tempe isoflavones to SP2/0 was 96.9% and to Hela cells was 69.5% when the concentration was 20 μg·mL-1. In the same condition, the inhibition rate of soybean isoflavones was 83.16% and 60.5%. With the decline of concentration, the inhibition rate decreased. The inhibition of isoflavones to SP2/0 did not exist when the concentration was 5-1.25 μg·mL-1.

  3. Inhibition of poliovirus RNA synthesis by brefeldin A.


    Maynell, L A; Kirkegaard, K; Klymkowsky, M W


    Brefeldin A (BFA), a fungal metabolite that blocks transport of newly synthesized proteins from the endoplasmic reticulum, was found to inhibit poliovirus replication 10(5)- to 10(6)-fold. BFA does not inhibit entry of poliovirus into the cell or translation of viral RNA. Poliovirus RNA synthesis, however, is completely inhibited by BFA. A specific class of membranous vesicles, with which the poliovirus replication complex is physically associated, is known to proliferate in poliovirus-infect...

  4. Acute inhibition of corticosteroidogenesis by inhibitors of calmodulin action. (United States)

    Carsia, R V; Moyle, W R; Wolff, D J; Malamed, S


    To identify the possible role of calmodulin in ACTH function, we tested the ability of chlorpromazine (CP) and other calmodulin antagonists to inhibit steroidogenesis of isolated adrenocortical cells of the rat. CP reversibly inhibited maximal ACTH-induced corticosterone (B) production. The presence of the drug did not alter the ED50 of ACTH stimulation (3.2 X 10(3) pg/ml), suggesting that it inhibited ACTH-induced steroidogenesis in a noncompetitive manner. The CP concentration required for half-maximal inhibition was 8.2 microM, a value close to the dissociation constant of the CP-calmodulin complex (5.3 microM). Concentrations greater than 40 microM resulted in complete inhibition. Similar concentrations of CP inhibited ACTH-induced cAMP accumulation in a dose-dependent manner, indicating an effect of the drug on early events in ACTH action. In addition, CP also apparently acted at a site distal to the point of cAMP formation, as shown by the finding that it inhibited cAMP-induced B production. CP inhibition of ACTH-induced B production was independent of the Ca2+ concentration, suggesting that the drug did not compete with Ca2+ directly. Concentrations of CP greater than 20 microM inhibited protein synthesis as measured by leucine incorporation into cellular proteins. Thus, although the inhibitory effect of high concentrations of CP on steroidogenesis might be explained by an effect on protein synthesis, the inhibition seen at 10 microM appeared to be independent of protein synthesis. Other antagonists of calmodulin action inhibited maximal ACTH-induced B production with the following relative potencies: trifluoperazine greater than CP greater than haloperidol greater than chlordiazepoxide. This order is similar to that reported for inhibition of calmodulin-activated phosphodiesterase and for binding to calmodulin. These findings suggest that calmodulin may modulate the effect of ACTH on steroidogenesis at multiple sites.

  5. High molecular weight polysaccharide that binds and inhibits virus (United States)

    Konowalchuk, Thomas W


    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  6. Inhibition of Action, Thought, and Emotion: A Selective Neurobiological Review


    Dillon, Daniel; Pizzagalli, Diego


    The neural bases of inhibitory function are reviewed, covering data from paradigms assessing inhibition of motor responses (antisaccade, go/nogo, stop-signal), cognitive sets (e.g., Wisconsin Card Sort Test), and emotion (fear extinction). The frontal cortex supports performance on these paradigms, but the specific neural circuitry varies: response inhibition depends upon fronto-basal ganglia networks, inhibition of cognitive sets is supported by orbitofrontal cortex, and retention of fear ex...

  7. Functional networks underlying latent inhibition learning in the mouse brain


    Puga, Frank; Barrett, Douglas W.; Bastida, Christel C.; Gonzalez-Lima, F.


    The present study reports the first comprehensive map of brain networks underlying latent inhibition learning and the first application of structural equation modeling to cytochrome oxidase data. In latent inhibition, repeated exposure to a stimulus results in a latent form of learning that inhibits subsequent associations with that stimulus. As neuronal energy demand to form learned associations changes, so does the induction of the respiratory enzyme cytochrome oxidase. Therefore, cytochrom...

  8. Protection from Latent Inhibition Provided by a Conditioned Inhibitor


    McConnell, Bridget L.; Wheeler, Daniel S.; Urcelay, Gonzalo P; Miller, Ralph R.


    Two conditioned suppression experiments with rats investigated the influence on latent inhibition of compounding a Pavlovian conditioned inhibitor with the target cue during preexposure treatment. Results were compared to subjects that received conventional latent inhibition training, no preexposure, or preexposure to the target cue in compound with a neutral stimulus. In Experiment 1, greater attenuation of the latent inhibition effect was observed in subjects that received target preexposur...

  9. A small yeast RNA inhibits HCV IRES mediated translation and inhibits replication of poliovirus in vivo

    Institute of Scientific and Technical Information of China (English)

    Xue-Song Liang; Jian-Qi Lian; Yong-Xing Zhou; Qing-He Nie; Chun-Qiu Hao


    AIM: To investigate the anti-virus infection activity of internal ribosome entry site (IRES) specific inhibitor RNA (IRNA).METHODS: IRNA eukaryotic vector pcRz-IRNA or mIRNA eukaryotic vector pcRz-mIRNA was tansfected into human hepatocarcinoma cells (HHCC), then selected with neomycin G418 for 4 to 8 weeks, and then infected with polio virus vaccinas line. The cytopethogenesis effect was investigated and the cell extract was collected. At last the polio virus titer of different cells was determined by plaque assay.RESULTS: Constitutive expression of IRNA was not detrimental to cell growth. HCV IRES-mediated capindependent translation was markedly inhibited in cells constitutively expressing IRNA compared to control hepatoma cells. However, cap-dependent translation was not significantly affected in these cell line. Additionally, HHCC cells constitutively expressing IRNA became refractory to infection of polio virus.CONCLUSION: IRES specific IRNA can inhibit HCV IRES mediated translation and poliovirus replication.

  10. Osmotic stress inhibits thymidine incorporation into soybean protoplast DNA. (United States)

    Cress, D E


    DNA synthesis in protoplasts isolated from soybean cell suspension cultures has been investigated by [(3)H] thymidine uptake and incorporation kinetics. Initial rates of incorporation in exponential and 5-fluorodeoxyuridine synchronized protoplasts are inhibited by increased osmolarities of the medium. The inhibition was not readily reversible during 3 h culture in low osmotic medium. Velocity sedimentation analyses of replicating DNA from such protoplasts shows a complex pattern of inhibition. The inhibition probably effects replicon initiation as well as strand elongation and ligation of replication intermediates.

  11. Inhibition behavior for copper corrosion by photoelectrochemical methods

    Institute of Scientific and Technical Information of China (English)

    徐群杰; 周国定


    The application of photoelectrochemical methods in the inhibition effects for copper corrosion was described. The methods include cyclic voltammetry photocurrent measurements, intensity modulated photocurrent spectrum(IMPS) and laser-scanning photoelectrochemical microscopic method(PEM) which have been applied to the evaluation of inhibitors and inhibition behavior. The inhibition effect of BTA for copper corrosion is better than that of 4CBTA, 5CBTA, CBT-1, PTD, BT-250, CBTME and CBTBE at the same concentration. The inhibition mechanism of the derivatives of BTA with-COOH group(4CBTA, 5CBTA, CBT-1) is different from those with estergroup(CBTME, CBTBE).

  12. Selective and nonselective inhibition of competitors in picture naming. (United States)

    Shao, Zeshu; Meyer, Antje S; Roelofs, Ardi


    The present study examined the relation between nonselective inhibition and selective inhibition in picture naming performance. Nonselective inhibition refers to the ability to suppress any unwanted response, whereas selective inhibition refers to the ability to suppress specific competing responses. The degree of competition in picture naming was manipulated by presenting targets along with distractor words that could be semantically related (e.g., a picture of a dog combined with the word cat) or unrelated (tree) to the picture name. The mean naming response time (RT) was longer in the related than in the unrelated condition, reflecting semantic interference. Delta plot analyses showed that participants with small mean semantic interference effects employed selective inhibition more effectively than did participants with larger semantic interference effects. The participants were also tested on the stop-signal task, which taps nonselective inhibition. Their performance on this task was correlated with their mean naming RT but, importantly, not with the selective inhibition indexed by the delta plot analyses and the magnitude of the semantic interference effect. These results indicate that nonselective inhibition ability and selective inhibition of competitors in picture naming are separable to some extent.

  13. Schedule of Punishment and Inhibition of Aggression in Children (United States)

    Parke, Ross D.; Deur, Jan L.


    Data showed that consistent punishment resulted in faster inhibition than inconsistent punishment; subjects who were punished showed less persistence than subjects placed on an extinction schedule. (Authors)

  14. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis

    Directory of Open Access Journals (Sweden)

    Li Q


    Full Text Available Qingli Li,1,2 Mark J Lambrechts,1 Qiuyang Zhang,1 Sen Liu,1 Dongxia Ge,1 Rutie Yin,2 Mingrong Xi,2 Zongbing You1 1Departments of Structural and Cellular Biology and Orthopaedic Surgery, Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, and Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA; 2Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China Abstract: Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA, are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy. Keywords: serine hydroxymethyltransferase, prostate cancer, apoptosis

  15. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3



    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Ni...

  16. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. (United States)

    Ma, Jianqun; Xu, Hai; Wu, Jun; Qu, Changfa; Sun, Fenglin; Xu, Shidong


    Linalool, a natural compound that exists in the essential oils of several aromatic plants species, has been reported to have anti-inflammatory effects. However, the effects of linalool on cigarette smoke (CS)-induced acute lung inflammation have not been reported. In the present study, we investigated the protective effects of linalool on CS-induced acute lung inflammation in mice. Linalool was given i.p. to mice 2h before CS exposure daily for five consecutive days. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were measured. The production of TNF-α, IL-6, IL-1β, IL-8 and MCP-1 were detected by ELISA. The expression of NF-κB was detected by Western blotting. Our results showed that treatment of linalool significantly attenuated CS-induced lung inflammation, coupled with inhibited the infiltration of inflammatory cells and TNF-α, IL-6, IL-1β, IL-8 and MCP-1 production. Meanwhile, treatment of linalool inhibited CS-induced lung MPO activity and pathological changes. Furthermore, linalool suppressed CS-induced NF-κB activation in a dose-dependent manner. In conclusion, our results demonstrated that linalool protected against CS-induced lung inflammation through inhibiting CS-induced NF-κB activation.

  17. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Peng-fei GE; Ji-zhou ZHANG; Xiao-fei WANG; Fan-kai MENG; Wen-chen LI; Yong-xin LUAN; Feng LING; Yi-nan LUO


    Aim:The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation.Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy.Due to the dual roles of autophagy in tumor cell survival and death,the effect of autophagy on the destiny of glioma cells remains unclear.In this study,we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells.Methods:The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells,and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA.Cell viability was measured by MTT assay.Apoptosis and cell cycle were detected by flow cytometry.The expression of autophagy related proteins was determined by Western blot.Results:MG-132 inhibited cell proliferation,induced cell death and cell cycle arrest at G~JM phase,and activated autophagy in SHG-44 glioma cells.The expression of autophagy-related Beclin-1 and LC3-1 was significantly up-regulated and part of LC3-1 was converted into LC3-11.However,when SHG-44 glioma cells were co-treated with MG-132 and 3-MA,the cells became less viable,but cell death and cell numbers at G2/M phase increased.Moreover,the accumulation of acidic vesicular organelles was decreased,the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-11 from LC3-1 was also inhibited.Conclusion:Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells,and inhibition of autophagy increases cell death.This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.

  18. Pathogenesis of rheumatoid arthritis and the immune response

    Energy Technology Data Exchange (ETDEWEB)

    Scheinberg, M.A.


    The interrelationship among lymphocytes, macrophages, and neutrophils appears to be an important aspect of the synovial inflammation that is characteristic of rheumatoid arthritis. In a study comparing gold sodium aurothiomalate (GST) with auranofin (Au), an orally absorbed compound, both appeared to inhibit the disease process and no difference between parenteral and oral administration was observed. Another study involved two groups of nine patients with severe rheumatoid arthritis. One group underwent plasmapheresis. The second group underwent total lymphoid irradiation. Both agents appeared to inhibit the disease process. Plasmapheresis was better tolerated that irradiation.

  19. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation. (United States)

    Kottmann, Robert Matthew; Trawick, Emma; Judge, Jennifer L; Wahl, Lindsay A; Epa, Amali P; Owens, Kristina M; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J


    Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis.

  20. The grapevine polygalacturonase-inhibiting protein (VvPGIP1) reduces Botrytis cinerea susceptibility in transgenic tobacco and differentially inhibits fungal polygalacturonases

    NARCIS (Netherlands)

    Joubert, D.A.; Slaughter, A.R.; Kemp, G.; Becker, J.V.W.; Krooshof, G.H.; Bergmann, C.; Benen, J.A.E.; Pretorius, I.S.; Vivier, M.A.


    Polygalacturonase-inhibiting proteins (PGIPs) selectively inhibit polygalacturonases (PGs) secreted by invading plant pathogenic fungi. PGIPs display differential inhibition towards PGs from different fungi, also towards different isoforms of PGs originating from a specific pathogen. Recently, a PGI

  1. Say it with me: stuttering inhibited. (United States)

    Saltuklaroglu, Tim; Dayalu, Vikram N; Kalinowski, Joseph; Stuart, Andrew; Rastatter, Michael P


    This study examined fluency enhancement in people who stutter via the concomitant presentation of silently mouthed visual speech. Ten adults who stutter recited memorized text while watching another speaker silently mouth linguistically equivalent and linguistically different material. Relative to a control condition, in which no concomitant stimulus was provided, stuttering was reduced by 71% in the linguistically equivalent condition versus only 35% in the linguistically different condition. Despite being an 'incomplete' second speech signal, visual speech possesses the capacity to immediately and substantially enhance fluency when it is linguistically equivalent to the intended utterance. It is suggested that fluency enhancement via concomitantly presented external speech is achieved through the extraction of relevant speech gestures from the external speech signal that compliment the intended production, thereby compensating for possible internal inconsistencies in the matching of speech codes in people who stutter. As visual speech perception relies on fewer redundant cues to demarcate the intended gestures, when used as an external stuttering inhibitor, higher degrees of linguistic equivalence seem to be necessary for optimal stuttering inhibition.

  2. Aspirin, cyclooxygenase inhibition and colorectal cancer. (United States)

    Sostres, Carlos; Gargallo, Carla Jerusalen; Lanas, Angel


    Colorectal cancer (CRC) is the third most common type of cancer worldwide. Screening measures are far from adequate and not widely available in resource-poor settings. Primary prevention strategies therefore remain necessary to reduce the risk of developing CRC. Increasing evidence from epidemiological studies, randomized clinical trials and basic science supports the effectiveness of aspirin, as well as other non-steroidal anti-inflammatory drugs, for chemoprevention of several types of cancer, including CRC. This includes the prevention of adenoma recurrence and reduction of CRC incidence and mortality. The detectable benefit of daily low-dose aspirin (at least 75 mg), as used to prevent cardiovascular disease events, strongly suggests that its antiplatelet action is central to explaining its antitumor efficacy. Daily low-dose aspirin achieves complete and persistent inhibition of cyclooxygenase (COX)-1 in platelets (in pre-systemic circulation) while causing a limited and rapidly reversible inhibitory effect on COX-2 and/or COX-1 expressed in nucleated cells. Aspirin has a short half-life in human circulation (about 20 minutes); nucleated cells have the ability to resynthesize acetylated COX isozymes within a few hours, while platelets do not. COX-independent mechanisms of aspirin have been suggested to explain its chemopreventive effects but this concept remains to be demonstrated in vivo at clinical doses.

  3. Inhibition of carcinogenesis by retinoids. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Nettesheim, P.


    Progress made in recent years in the search for retinoids with anticarcinogenic activity is reviewed. There are many studies to be found in the literature which show no substantial effect of retinoids on carcinogenesis or tumor growth. Some of these negative findings may be related to the carcinogen dose used, the type of retinoid used, the dose, dose schedule or mode of administration of the retinoid. Others may indicate that the particular type of tumor or tumor system is, indeed, refractory to retinoids in general or to those retinoids that were tested. A great gap still exists in our knowledge concerning the pharmake-kinetics of most retinoids their availability to various normal and cancerous tissues, and the role and existence of transport and binding proteins. There are studies which indicate that under certain conditions, particularly conditions of topical application, some retinoids may even enhance carcinogenesis. It seems, however, indisputable by now that some retinoids are effective inhibitors of carcinogenesis in some organ systems and can even inhibit the growth of some established tumors. While the mechanisms of these inhibitory effects are presently not understood, it does seem clear that they are not mediated via the cytotoxic mechanisms typical of chemotherapeutic agents. The hope that retinoids might become an effective tool to halt the progression of some neoplastic diseases, seems to be justified.

  4. Aspirin, cyclooxygenase inhibition and colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Carlos; Sostres; Carla; Jerusalen; Gargallo; Angel; Lanas


    Colorectal cancer(CRC)is the third most common type of cancer worldwide.Screening measures are far from adequate and not widely available in resourcepoor settings.Primary prevention strategies therefore remain necessary to reduce the risk of developing CRC.Increasing evidence from epidemiological studies,randomized clinical trials and basic science supports the effectiveness of aspirin,as well as other non-steroidal anti-inflammatory drugs,for chemoprevention of several types of cancer,including CRC.This includes the prevention of adenoma recurrence and reduction of CRC incidence and mortality.The detectable benefit of daily low-dose aspirin(at least 75 mg),as used to prevent cardiovascular disease events,strongly suggests that its antiplatelet action is central to explaining its antitumor efficacy.Daily low-dose aspirin achieves complete and persistent inhibition of cyclooxygenase(COX)-1 in platelets(in pre-systemic circulation)while causing alimited and rapidly reversible inhibitory effect on COX-2and/or COX-1 expressed in nucleated cells.Aspirin has a short half-life in human circulation(about 20 minutes);nucleated cells have the ability to resynthesize acetylated COX isozymes within a few hours,while platelets do not.COX-independent mechanisms of aspirin have been suggested to explain its chemopreventive effects but this concept remains to be demonstrated in vivo at clinical doses.

  5. Mortalin inhibition in experimental Parkinson's disease. (United States)

    Chiasserini, Davide; Tozzi, Alessandro; de Iure, Antonio; Tantucci, Michela; Susta, Federica; Orvietani, Pier Luigi; Koya, Keizo; Binaglia, Luciano; Calabresi, Paolo


    Among heat shock proteins, mortalin has been linked to the pathogenesis of Parkinson's disease. In the present work a rat model of Parkinson's disease was used to analyze the expression of striatal proteins and, more specifically, mortalin expression. The possible involvement of mortalin in Parkinson's disease pathogenesis was further investigated by utilizing an electrophysiological approach and pharmacological inhibition of mortalin in both the physiological and the parkinsonian states. Proteomic analysis was used to investigate changes in striatal protein expression in the 6-hydroxydopamine rat model of Parkinson's disease. The electrophysiological effects of MKT-077, a rhodamine-123 analogue acting as an inhibitor of mortalin, were measured by field potential recordings from corticostriatal brain slices obtained from control, sham-operated, and 6-hydroxydopamine-denervated animals. Slices in the presence of rotenone, an inhibitor of mitochondrial complex I, were also analyzed. Proteomic analysis revealed downregulation of mortalin in the striata of 6-hydroxydopamine-treated rats in comparison with sham-operated animals. MKT-077 reduced corticostriatal field potential amplitude in physiological conditions, inducing membrane depolarization and inward current in striatal medium spiny neurons. In addition, we observed that concentrations of MKT-077 not inducing any electrophysiological effect in physiological conditions caused significant changes in striatal slices from parkinsonian animals as well as in slices treated with a submaximal concentration of rotenone. These findings suggest a critical link between mortalin function and mitochondrial activity in both physiological and pathological conditions mimicking Parkinson's disease.

  6. Rational drug design applied to myeloperoxidase inhibition. (United States)

    Van Antwerpen, P; Zouaoui Boudjeltia, K


    Rational drug design is a general approach using protein-structure technique in which the discovery of a ligand can be driven either by chance, screening, or rational theory. Myeloperoxidase (MPO) was rapidly identified as a therapeutical target because of its involvement in chronic inflammatory syndromes. In this context, the research of MPO inhibitors was intensified and development of new chemical entities was rationally driven by the research of ligands that enter into the MPO catalytic pocket. Actually, as soon as crystallography data of MPO have become available and its structure was virtually designed, the rational drug design has been applied to this peroxidase. Pharmaceutical industries and academic laboratories apply rational drug design on MPO by either optimizing known inhibitors or searching new molecules by high-throughput virtual screening. By these ways, they were able to find efficient MPO inhibitors and understand their interactions with the enzyme. During this quest of MPO inhibition, it appears that Glu268 is a crucial residue in order to optimize ligand-target interaction. This amino acid should be carefully considered by medicinal chemist when they design inhibitors interfering with MPO activity.

  7. Inhibition of Complement Retards Ankylosing Spondylitis Progression (United States)

    Yang, Chaoqun; Ding, Peipei; Wang, Qingkai; Zhang, Long; Zhang, Xin; Zhao, Jianquan; Xu, Enjie; Wang, Na; Chen, Jianfeng; Yang, Guang; Hu, Weiguo; Zhou, Xuhui


    Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-β1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-β1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy. PMID:27698377

  8. Effects of fencamfamine on latent inhibition. (United States)

    Alves, Cilene R R; Delucia, Roberto; Silva, M Teresa A


    The effects of fencamfamine (FCF), an indirect dopamine (DA) agent, were investigated using the latent inhibition (LI) model of schizophrenia. In the LI procedure, rats preexposed (PE) to an unreinforced stimulus show difficulty in subsequent learning of an association in which that stimulus is predictive of an unconditioned stimulus (US). FCF (1.75, 3.5 and 7.0 mg/kg i.p.) yielded an inverse dose-response relationship regarding LI. At 3.5 mg/kg, LI was abolished and no effect was observed at 1.75 and 7.0 mg/kg. The effect of FCF (3.5 mg/kg) on LI was blocked by the antipsychotic risperidone (RIS; 4.0 mg/kg), a D2/5HT2 antagonist. These results confirm the similarity of the behavioral profile of FCF and amphetamine (AMPH). In addition, they provide a further validation of the LI model for psychosis, since RIS was shown to prevent a psychostimulant-induced disruption of LI.

  9. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  10. Stathmin potentiates vinflunine and inhibits Paclitaxel activity. (United States)

    Malesinski, Soazig; Tsvetkov, Philipp O; Kruczynski, Anna; Peyrot, Vincent; Devred, François


    Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs). In a previous study we showed that stathmin increases vinblastine (VLB) binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC). These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency.

  11. Efficacy of ALK5 inhibition in myelofibrosis (United States)

    Zhao, Wanke; Ho, Wanting Tina; Han, Ying; Murdun, Cem; Mailloux, Adam W.; Zhang, Ling; Wang, Xuefeng; Budhathoki, Anjali; Pradhan, Kith; Rapaport, Franck; Wang, Huaquan; Shao, Zonghong; Ren, Xiubao; Steidl, Ulrich; Levine, Ross L.; Zhao, Zhizhuang Joe; Verma, Amit; Epling-Burnette, Pearlie K.


    Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.

  12. Dihydroxyoctadecamonoenoate esters inhibit the neutrophil respiratory burst

    Indian Academy of Sciences (India)

    David Alan Thompson; Bruce D Hammock


    The leukotoxins [9(10)- and 12(13)-EpOME] are produced by activated inflammatory leukocytes such as neutrophils. High EpOME levels are observed in disorders such as acute respiratory distress syndrome and in patients with extensive burns. Although the physiological significance of the EpOMEs remains poorly understood, in some systems, the EpOMEs act as a protoxin, with their corresponding epoxide hydrolase metabolites, 9,10- and 12,13-DiHOME, specifically exerting toxicity. Both the EpOMEs and the DiHOMEs were also recently shown to have neutrophil chemotactic activity. We evaluated whether the neutrophil respiratory burst, a surge of oxidant production thought to play an important role in limiting certain bacterial and fungal infections, is modulated by members of the EpOME metabolic pathway. We present evidence that the DiHOMEs suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation.

  13. Inhibition of Oxidation in Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Phil Winston; James W. Sterbentz; William E. Windes


    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  14. Vagus nerve stimulation inhibits cortical spreading depression. (United States)

    Chen, Shih-Pin; Ay, Ilknur; de Morais, Andreia Lopes; Qin, Tao; Zheng, Yi; Sadeghian, Homa; Oka, Fumiaki; Simon, Bruce; Eikermann-Haerter, Katharina; Ayata, Cenk


    Vagus nerve stimulation has recently been reported to improve symptoms of migraine. Cortical spreading depression is the electrophysiological event underlying migraine aura and is a trigger for headache. We tested whether vagus nerve stimulation inhibits cortical spreading depression to explain its antimigraine effect. Unilateral vagus nerve stimulation was delivered either noninvasively through the skin or directly by electrodes placed around the nerve. Systemic physiology was monitored throughout the study. Both noninvasive transcutaneous and invasive direct vagus nerve stimulations significantly suppressed spreading depression susceptibility in the occipital cortex in rats. The electrical stimulation threshold to evoke a spreading depression was elevated by more than 2-fold, the frequency of spreading depressions during continuous topical 1 M KCl was reduced by ∼40%, and propagation speed of spreading depression was reduced by ∼15%. This effect developed within 30 minutes after vagus nerve stimulation and persisted for more than 3 hours. Noninvasive transcutaneous vagus nerve stimulation was as efficacious as direct invasive vagus nerve stimulation, and the efficacy did not differ between the ipsilateral and contralateral hemispheres. Our findings provide a potential mechanism by which vagus nerve stimulation may be efficacious in migraine and suggest that susceptibility to spreading depression is a suitable platform to optimize its efficacy.

  15. Inhibition of foodborne pathogens by pomegranate juice. (United States)

    Haghayeghi, Koorosh; Shetty, Kalidas; Labbé, Ronald


    Pomegranates have health-promoting benefits because of their polyphenol constituents. Previous studies have demonstrated the antimicrobial activity of aqueous and organic extracts of pomegranate components and by-products. We sought to determine the antimicrobial activity against 40 foodborne pathogens representing eight bacterial species using juice itself. In addition, we sought to determine the synergistic antimicrobial activity between pomegranate juice and other plant products displaying antimicrobial activity. The antimicrobial activity of pomegranate juice was dependent on the test organism, which varied to highly susceptible (four Gram-positive species) to unaffected (Salmonella and Escherichia coli O157:H7). Two Gram-negative species, which were inhibited were Helicobacter pylori and Vibrio parahemolyticus. No synergistic antimicrobial activity was seen between pomegranate and either barberry, oregano, or cranberry. The antimicrobial activity of pomegranate juice is dependent on the test organism and extraction method. The sensitivity of H. pylori suggests that pomegranate juice may be an alternative or supplemental treatment for gastric ulcers caused by this organism.

  16. Stathmin potentiates vinflunine and inhibits Paclitaxel activity.

    Directory of Open Access Journals (Sweden)

    Soazig Malesinski

    Full Text Available Cell biology and crystallographic studies have suggested a functional link between stathmin and microtubule targeting agents (MTAs. In a previous study we showed that stathmin increases vinblastine (VLB binding to tubulin, and that conversely VLB increases stathmin binding to tubulin. This constituted the first biochemical evidence of the direct relationship between stathmin and an antimitotic drug, and revealed a new mechanism of action for VLB. The question remained if the observed interaction was specific for this drug or represented a general phenomenon for all MTAs. In the present study we investigated the binding of recombinant stathmin to purified tubulin in the presence of paclitaxel or another Vinca alkaloid, vinflunine, using Isothermal Titration Calorimetry (ITC. These experiments revealed that stathmin binding to tubulin is increased in the presence of vinflunine, whereas no signal is observed in the presence of paclitaxel. Further investigation using turbidity and co-sedimentation showed that stathmin inhibited paclitaxel microtubule-stabilizing activity. Taken together with the previous study using vinblastine, our results suggest that stathmin can be seen as a modulator of MTA activity and binding to tubulin, providing molecular explanation for multiple previous cellular and in vivo studies showing that stathmin expression level affects MTAs efficiency.

  17. Decoupled echo state networks with lateral inhibition. (United States)

    Xue, Yanbo; Yang, Le; Haykin, Simon


    Building on some prior work, in this paper we describe a novel structure termed the decoupled echo state network (DESN) involving the use of lateral inhibition. Two low-complexity implementation schemes, namely, the DESN with reservoir prediction (DESN + RP) and DESN with maximum available information (DESN + MaxInfo), are developed: (1) In the multiple superimposed oscillator (MSO) problem, DESN + MaxInfo exhibits three important attributes: lower generalization mean-square error (MSE), better robustness with respect to the random generation of reservoir weight matrix and feedback connections, and robustness to variations in the sparseness of reservoir weight matrix, compared to DESN + RP. (2) For a noiseless nonlinear prediction task, DESN + RP outperforms the DESN + MaxInfo and single reservoir-based ESN approach in terms of lower prediction MSE and better robustness to a change in the number of inputs and sparsity of the reservoir weight matrix. Finally, in a real-life prediction task using noisy sea clutter data, both schemes exhibit higher prediction accuracy and successful design ratio than a conventional ESN with a single reservoir.

  18. The Role of Test Context in Latent Inhibition of Conditioned Inhibition: Part of a Search for General Principles of Associative Interference


    Miguez, Gonzalo; Soares, Julia S.; Miller, Ralph R.


    Two lick-suppression experiments with rats assessed interference with behavior indicative of conditioned inhibition by a latent inhibition treatment as a function of test context. We asked what effect the test context has, given identical latent inhibition treatment in Phase 1 and identical conditioned inhibition training in Phase 2. In Experiment 1, an AAA vs. AAB context-shift design determined that latent inhibition treatment in Phase 1 attenuated behavior indicative of conditioned inhibit...

  19. The Affective Consequences of Cognitive Inhibition: Devaluation or Neutralization? (United States)

    Frischen, Alexandra; Ferrey, Anne E.; Burt, Dustin H. R.; Pistchik, Meghan; Fenske, Mark J.


    Affective evaluations of previously ignored visual stimuli are more negative than those of novel items or prior targets of attention or response. This has been taken as evidence that inhibition has negative affective consequences. But inhibition could act instead to attenuate or "neutralize" preexisting affective salience, predicting opposite…

  20. Attention Inhibition Training Can Reduce Betel-Nut Chewing Time

    Directory of Open Access Journals (Sweden)

    Ming-Chou Ho


    Full Text Available Betel nut (or areca is the fourth most commonly used drug worldwide after tobacco, alcohol, and caffeine. Many chemical ingredients of betel nut are carcinogenic. We examined whether the manipulation of attentional inhibition toward the areca-related stimuli could affect betel-nut chewing time. Three matched groups of habitual chewers were recruited: inhibit-areca, inhibit-non-areca, and control. This study consisted of a Go/No-Go task for inhibition training, followed by a taste test for observing chewing behavior. The Go/No-Go task constituted three phases (pretest, training and posttest. In the taste test, the habitual chewers were asked to rate the flavors of one betel nut and one gum. The purpose (blind to the chewers of this taste test was to observe whether their picking order and chewing time were affected by experimental manipulation. Results from the Go/No-Go task showed successful training. Further, the training groups (the inhibit-areca and inhibit-non-areca groups showed a significant reduction in betel nut chewing time, in comparison to the control group. Since both training groups showed reduced chewing time, the inhibition training may affect general control ability, in regardless of the stimulus (areca or not to be inhibited. Reduced chewing time is important for reducing areca-related diseases.

  1. Underlying Personality Characteristics of Behavioral Inhibition in Children (United States)

    Muris, Peter; Dietvorst, Roeland


    Behavioral inhibition refers to the tendency of children to be unusually shy and to react with fear and withdrawal in situations that are novel and/or unfamiliar, and is generally regarded as a vulnerability factor for developing anxiety disorders. The present study investigated the hypothesis that behavioral inhibition is characterized by a…

  2. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting. (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met,...

  3. A Subinhibitory Concentration of Clarithromycin Inhibits Mycobacterium avium Biofilm Formation



    Mycobacterium avium causes disseminated infection in immunosuppressed individuals and lung infection in patients with chronic lung diseases. M. avium forms biofilm in the environment and possibly in human airways. Antibiotics with activity against the bacterium could inhibit biofilm formation. Clarithromycin inhibits biofilm formation but has no activity against established biofilm.

  4. Executive functioning in boys with ADHD: primarily an inhibition deficit?

    NARCIS (Netherlands)

    Scheres, A.P.J.; Oosterlaan, J.; Geurts, H.M.; Morein-Zamir, S.; Meiran, N.; Vlasveld, L.; Sergeant, J.A.


    This study was aimed at: (1) testing whether boys with Attention Deficit/Hyperactivity Disorder (ADHD) demonstrate a deficit in response inhibition and deficits in other executive functions (EF), or alternatively, demonstrate a deficit in only response inhibition; (2) investigating which role associ

  5. The Root-inhibiting Substance of Allium Cepa

    NARCIS (Netherlands)

    Stolk, Anth.


    Whereas scientific research on inhibiting substances has mainly occupied itself with the effect of these substances on the germination process, I was able to demonstrate the presence of a root-inhibiting agent during my studies on root formation in Fuchsia hybrida and Pelargonium zonale (Stolk, 1952

  6. Effective inhibition of viral reproduction by hydrophobised antiviral antibodies. (United States)

    Kabanov, A V; Ovcharenko, A V; Melik-Nubarov, N S; Bannikov, A I; Lisok, T P; Klyushnenkova, E V; Cherchenko, N G; Alakhov VYu; Levashov, A V; Kiselev, V I


    A method is proposed for the inhibition of viral reproduction in cells by means of fatty-acylated antiviral antibodies which, in contrast to the unmodified antibodies, have the ability to enter the cells. The potential of this technique is demonstrated in experiments involving inhibition of the reproduction of various strains of influenza virus and respiratory syncytial virus.

  7. Distractor Inhibition: Principles of Operation during Selective Attention (United States)

    Wyatt, Natalie; Machado, Liana


    Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in…

  8. The role of non-CRF inhibition in contour detection

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.; Skala,


    We propose a biologically motivated computational step, called non-classical receptive field (non-CRF) inhibition, to improve the performance of contour detectors. Non-CRF inhibition is exhibited by 80% of the orientation selective neurons in the primary visual cortex of macaque monkeys and has been

  9. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives


    Shih-Chen Shi; Chieh-Chang Su


    The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate prom...

  10. Corrosion Inhibition of Aluminium by Capparis deciduas in Acidic Media

    Directory of Open Access Journals (Sweden)

    P. Arora


    Full Text Available The inhibition efficiency of ethanolic extract of different parts of Capparis deciduas (Ker in acidic medium has been evaluated by mass loss and thermometric methods. Values of inhibition efficiency obtained from the two methods are in good agreement and are dependent upon the concentration of inhibitor and acid.

  11. Cognitive Inhibition in Students with and without Dyslexia and Dyscalculia (United States)

    Wang, Li-Chih; Tasi, Hung-Ju; Yang, Hsien-Ming


    The present study presents a comparison of the cognitive inhibition abilities of dyslexic, dyscalculic, and control students. The participants were 45 dyslexic students, 45 dyscalculic students, and 45 age-, gender-, and IQ-matched control students. The major evaluation tools included six cognitive inhibition tasks which were restructured during…

  12. Stuttering Inhibition via Altered Auditory Feedback during Scripted Telephone Conversations (United States)

    Hudock, Daniel; Kalinowski, Joseph


    Background: Overt stuttering is inhibited by approximately 80% when people who stutter read aloud as they hear an altered form of their speech feedback to them. However, levels of stuttering inhibition vary from 60% to 100% depending on speaking situation and signal presentation. For example, binaural presentations of delayed auditory feedback…

  13. An alternative inhibition method for determining cross-reactive allergens

    NARCIS (Netherlands)

    Schmidt-Hieltjes, Yvonne; Teodorowicz, Malgorzata; Jansen, Ad; Hartog, Den Gerco; Elfvering-Berendsen, Lisette; Jong, De Nicolette W.; Savelkoul, Huub F.J.; Ruinemans-Koerts, Janneke


    Inhibition assays are an useful tool to identify the allergen of primary sensitization of cross-reactive allergens. Classical ELISA-based inhibition assays are limited by both the availability of commercial standardized allergen extracts and the experience and knowledge needed for making home-made e

  14. Forgetting the Literal: The Role of Inhibition in Metaphor Comprehension (United States)

    George, Tim; Wiley, Jennifer


    In order for a person to comprehend metaphoric expressions, do metaphor-irrelevant aspects of literal information need to be inhibited? Previous research using sentence-verification paradigms has found that literal associates take longer to process after reading metaphorical sentences; however, it is problematic to infer inhibition from this…

  15. Deletion of glutathione peroxidase-2 inhibits azoxymethane-induced colon cancer development.

    Directory of Open Access Journals (Sweden)

    Mike F Müller

    Full Text Available The selenoprotein glutathione peroxidase-2 (GPx2 appears to have a dual role in carcinogenesis. While it protected mice from colon cancer in a model of inflammation-triggered carcinogenesis (azoxymethane and dextran sodium sulfate treatment, it promoted growth of xenografted tumor cells. Therefore, we analyzed the effect of GPx2 in a mouse model mimicking sporadic colorectal cancer (azoxymethane-treatment only. GPx2-knockout (KO and wild-type (WT mice were adjusted to an either marginally deficient (-Se, adequate (+Se, or supranutritional (++Se selenium status and were treated six times with azoxymethane (AOM to induce tumor development. In the -Se and ++Se groups, the number of tumors was significantly lower in GPx2-KO than in respective WT mice. On the +Se diet, the number of dysplastic crypts was reduced in GPx2-KO mice. This may be explained by more basal and AOM-induced apoptotic cell death in GPx2-KO mice that eliminates damaged or pre-malignant epithelial cells. In WT dysplastic crypts GPx2 was up-regulated in comparison to normal crypts which might be an attempt to suppress apoptosis. In contrast, in the +Se groups tumor numbers were similar in both genotypes but tumor size was larger in GPx2-KO mice. The latter was associated with an inflammatory and tumor-promoting environment as obvious from infiltrated inflammatory cells in the intestinal mucosa of GPx2-KO mice even without any treatment and characterized as low-grade inflammation. In WT mice the number of tumors tended to be lowest in +Se compared to -Se and ++Se feeding indicating that selenium might delay tumorigenesis only in the adequate status. In conclusion, the role of GPx2 and presumably also of selenium depends on the cancer stage and obviously on the involvement of inflammation.

  16. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper


    Biofouling can cause many undesirable effects in industrial and medical settings. In this study, a new biofouling inhibiting Ag-Pd surface was designed to form an inhibiting effect by itself. This design was based on silver combined with nobler palladium, both with catalytic properties. Owing...... to the potential difference between silver and palladium while contacting with an electrolyte, the surface can form numerous discrete anodic and cathodic areas, so that an inhibiting reaction can occur. In this paper, a series of electrochemical and biological investigations were conducted to study the properties...... and biofouling inhibiting mechanism of these surfaces. In this study, the evidence is presented that the inhibiting effect can be caused by the electrochemical interactions and/or electric field between Pd and Ag/AgCl combined with an organic environment....

  17. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams


    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  18. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ahmad

    Full Text Available We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  19. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth. (United States)

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O


    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  20. Corrosion inhibition of carbon steel by sodium metavanadate

    Directory of Open Access Journals (Sweden)



    Full Text Available The inhibition efficiency of sodium metavanadate (SMV-adipic acid (AA system in controlling corrosion of carbon steel in an aqueous solution containing 60 ppm of Cl- has been evaluated by weight-loss method; 250 ppm of SMV exhibits inhibition efficiency of 56 %. Addition of adipic acid to SMV improves the inhibition efficiency of the system. The formulation consisting of 250 ppm of SMV and 250 ppm of adipic acid has inhibition efficiency of 98 %. A synergistic effect exists between SMV and adipic acid with the synergism parameters greater than 1. Mecha¬nistic aspects of corrosion inhibition have been studied by electrochemical methods like potentiodynamic polarization and electrochemical impedance spectroscopy. FTIR spectra reveal that the protective film consists of Fe2+-SMV complex and Fe2+-adipic acid complex. The protective film has been analyzed by fluorescence spectra, SEM and EDAX.

  1. . Psychological predictors of inhibition development in educational environments

    Directory of Open Access Journals (Sweden)

    Symanyuk, Elvira E.


    Full Text Available This article examines psychological predictors of inhibition in educational environments as well as various aspects of pedagogical communication, including facilitation, which is aimed at enhancing educational effectiveness and developing students by means of using a particular communication style and the teacher’s personality. The need to study inhibition (the deterioration of teacher-children interactions; the negation of a student’s individuality; the inability to understand and accept students’ viewpoints; teacher-provoked conflicts; and emotional callousness is substantiated. The essence of psychological predictors as independent variables, changes in which lead to changes in other dependent variables, allowing the prediction of inhibition development, is explained. The research objective was to identify psychological predictors of the development of inhibition in pedagogical communication. An empirical study was conducted using standardized techniques for diagnosing communicative attitudes (V. Boyko, developing general communicative tolerance (V. Boyko, identifying aggressiveness (A. Asinger, identifying the level of empathy (V. Boyko, and identifying the degree of pedagogical inhibition (L. Polosova. The sample contained 375 teachers from Yekaterinburg educational institutions, with participant selection made using stratified sampling. The teacher’s personality features (a negative communicative attitude, low communicative tolerance and empathy, and higher levels of aggression were shown to be key predictors of inhibition, which itself was found to depend on the length of teaching experience. At the beginning of one’s professional teaching career, the level of inhibition is minimal. However, the level of inhibition reaches its maximum level after 5-10 years of teaching, and after 20 years, there is a sharp decrease in the level of inhibition. The conclusion of this study stresses the importance of developing strategies to

  2. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    Directory of Open Access Journals (Sweden)

    Angela eSherry


    Full Text Available Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5-nC10, methylcyclohexane, benzene, toluene and xylenes were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12-nC34 and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 µmol CH4/g sediment/day with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12-nC34. For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 µmol CH4/g sediment/day. This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers.

  3. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition. (United States)

    Hubers, Scott A; Brown, Nancy J


    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.

  4. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment. (United States)

    Cugini, Carla; Stephens, Danielle N; Nguyen, Daniel; Kantarci, Alpdogan; Davey, Mary E


    The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.

  5. Inhibition of inflammatory arthritis using fullerene nanomaterials.

    Directory of Open Access Journals (Sweden)

    Anthony L Dellinger

    Full Text Available Inflammatory arthritis (e.g. rheumatoid arthritis; RA is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC. Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

  6. Inhibition of inflammatory arthritis using fullerene nanomaterials. (United States)

    Dellinger, Anthony L; Cunin, Pierre; Lee, David; Kung, Andrew L; Brooks, D Bradford; Zhou, Zhiguo; Nigrovic, Peter A; Kepley, Christopher L


    Inflammatory arthritis (e.g. rheumatoid arthritis; RA) is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC). Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA) were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA) in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

  7. Pain inhibits pain; human brainstem mechanisms. (United States)

    Youssef, A M; Macefield, V G; Henderson, L A


    Conditioned pain modulation is a powerful analgesic mechanism, occurring when a painful stimulus is inhibited by a second painful stimulus delivered at a different body location. Reduced conditioned pain modulation capacity is associated with the development of some chronic pain conditions and the effectiveness of some analgesic medications. Human lesion studies show that the circuitry responsible for conditioned pain modulation lies within the caudal brainstem, although the precise nuclei in humans remain unknown. We employed brain imaging to determine brainstem sites responsible for conditioned pain modulation in 54 healthy individuals. In all subjects, 8 noxious heat stimuli (test stimuli) were applied to the right side of the mouth and brain activity measured using functional magnetic resonance imaging. This paradigm was then repeated. However, following the fourth noxious stimulus, a separate noxious stimulus, consisting of an intramuscular injection of hypertonic saline into the leg, was delivered (conditioning stimulus). During this test and conditioning stimulus period, 23 subjects displayed conditioned pain modulation analgesia whereas 31 subjects did not. An individual's analgesic ability was not influenced by gender, pain intensity levels of the test or conditioning stimuli or by psychological variables such as pain catastrophizing or fear of pain. Brain images were processed using SPM8 and the brainstem isolated using the SUIT toolbox. Significant increases in signal intensity were determined during each test stimulus and compared between subjects that did and did not display CPM analgesia (ppain modulation circuitry provides a framework for the future investigations into the neural mechanisms responsible for the maintenance of persistent pain conditions thought to involve altered analgesic circuitry.

  8. Risedronate inhibits human osteosarcoma cell invasion

    Directory of Open Access Journals (Sweden)

    Jung Sung


    Full Text Available Abstract Background Osteosarcoma is a highly malignant bone tumor and is the most commonly encountered malignant bone tumor in children and adolescents. Furthermore, significant numbers of patients eventually develop pulmonary metastases and succumb to the disease even after conventional multi-agent chemotherapy and surgical excision. Several solid tumors display enhanced expression of matrix metalloproteinases (MMPs, and recently clinical trials have been initiated on MMP-inhibitors. On the other hand, bisphosphonates (BPs, which have a profound effect on bone resorption, are widely used to treat osteoclast-mediated bone diseases. BPs are also known to inhibit tumor growths and metastases in some tumors such as breast cancer, renal cell carcinoma, and prostate cancer. Methods Two osteosarcoma cell lines (SaOS-2 and U2OS were treated with risedronate (0, 0.1, 1, 10 μM for 48 hours. Cell viabilities were determined using MTT assay, the mRNA levels of MMP-2 and MMP-9 were analyzed by reverse-transcription polymerase chain reaction, the amount of MMP-2 and MMP-9 protein were analyzed by Westernblot, the activities of MMP-2 and MMP-9 were observed by Gelatin zymography, and Matrigel invasion assays were used to investigate the invasive potential of osteosarcoma cell lines before and after risedronate treatment. Results The invasiveness of osteosarcoma cell lines (SaOS-2, U2OS were reduced in a dose dependent manner follow 48 hour treatment of up to 10 μM of the risedronate at which concentration no cytotoxicity occurred. Furthermore, the gelatinolytic activities and protein and mRNA levels of MMP-2 and MMP-9 were also suppressed by increasing risedronate concentrations. Conclusion Given that MMP-2 and MMP-9 are instrumental in tumor cell invasion, our results suggest the risedronate could reduce osteosarcoma cell invasion.

  9. Inositol pyrophosphates inhibit synaptotagmin-dependent exocytosis. (United States)

    Lee, Tae-Sun; Lee, Joo-Young; Kyung, Jae Won; Yang, Yoosoo; Park, Seung Ju; Lee, Seulgi; Pavlovic, Igor; Kong, Byoungjae; Jho, Yong Seok; Jessen, Henning J; Kweon, Dae-Hyuk; Shin, Yeon-Kyun; Kim, Sung Hyun; Yoon, Tae-Young; Kim, Seyun


    Inositol pyrophosphates such as 5-diphosphoinositol pentakisphosphate (5-IP7) are highly energetic inositol metabolites containing phosphoanhydride bonds. Although inositol pyrophosphates are known to regulate various biological events, including growth, survival, and metabolism, the molecular sites of 5-IP7 action in vesicle trafficking have remained largely elusive. We report here that elevated 5-IP7 levels, caused by overexpression of inositol hexakisphosphate (IP6) kinase 1 (IP6K1), suppressed depolarization-induced neurotransmitter release from PC12 cells. Conversely, IP6K1 depletion decreased intracellular 5-IP7 concentrations, leading to increased neurotransmitter release. Consistently, knockdown of IP6K1 in cultured hippocampal neurons augmented action potential-driven synaptic vesicle exocytosis at synapses. Using a FRET-based in vitro vesicle fusion assay, we found that 5-IP7, but not 1-IP7, exhibited significantly higher inhibitory activity toward synaptic vesicle exocytosis than IP6 Synaptotagmin 1 (Syt1), a Ca(2+) sensor essential for synaptic membrane fusion, was identified as a molecular target of 5-IP7 Notably, 5-IP7 showed a 45-fold higher binding affinity for Syt1 compared with IP6 In addition, 5-IP7-dependent inhibition of synaptic vesicle fusion was abolished by increasing Ca(2+) levels. Thus, 5-IP7 appears to act through Syt1 binding to interfere with the fusogenic activity of Ca(2+) These findings reveal a role of 5-IP7 as a potent inhibitor of Syt1 in controlling the synaptic exocytotic pathway and expand our understanding of the signaling mechanisms of inositol pyrophosphates.

  10. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. (United States)

    Nigg, J T


    Disinhibition is a common focus in psychopathology research. However, use of inhibition models often is piecemeal, lacking an overarching taxonomy of inhibitory processes. The author organizes key concepts and models pertaining to different kinds of inhibitory control from the cognitive and temperament/personality literatures. Within the rubrics of executive inhibitory processes, motivational inhibitory processes, and automatic attentional inhibition processes, 8 kinds of inhibition are distinguished. Three basic temperament traits may address key executive and motivational inhibitory processes. Future developmental psychopathology research should be based on a systematic conceptual taxonomy of the kinds of inhibitory function relevant to a given disorder. Such an approach can clarify which inhibition distinctions are correct and which inhibition deficits go with which disorders.

  11. Presynaptic inhibition by kainate receptors converges mechanistically with presynaptic inhibition by adenosine and GABAB receptors. (United States)

    Partovi, Dara; Frerking, Matthew


    Kainate receptors are widely reported to regulate the release of neurotransmitter in the CNS, but the mechanisms involved remain controversial. Previous studies have found that the kainate receptor agonist ATPA, which selectively activates Glu(K5)-containing kainate receptors, depresses glutamate release at Schaffer-collateral synapses in the hippocampus. In the present study, we provide pharmacological evidence that this depressant effect is mediated by Glu(K5)-containing heteromers, but is distinct from a similar depressant effect engaged by the kainate receptor agonist domoate. The depressant effect of ATPA is insensitive to antagonists for GABA(A), GABA(B), and adenosine receptors, and is also unaffected by lowering the release probability by reducing extracellular calcium. However, the effect of ATPA is partly occluded by prior activation of GABA(B) receptors and completely occluded by prior activation of adenosine receptors, suggesting a mechanistic convergence of heteromeric Glu(K5) kainate receptor signaling with GABA(B) receptors and adenosine receptors. The effects of domoate are partially occluded by both adenosine and GABA(B) receptor agonists, indicating at least a partial convergence of Glu(K5)-lacking kainate receptor signaling with these other pathways. The depressant effect of ATPA is not blocked by inhibition of serine/threonine protein kinases. These results suggest that ATPA and domoate inhibit glutamate release through mechanisms that converge with those of classical metabotropic receptor agonists, although they do so through different receptors.

  12. Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments. (United States)

    Pecka, Michael; Zahn, Thomas P; Saunier-Rebori, Bernadette; Siveke, Ida; Felmy, Felix; Wiegrebe, Lutz; Klug, Achim; Pollak, George D; Grothe, Benedikt


    The precedence effect describes the phenomenon whereby echoes are spatially fused to the location of an initial sound by selectively suppressing the directional information of lagging sounds (echo suppression). Echo suppression is a prerequisite for faithful sound localization in natural environments but can break down depending on the behavioral context. To date, the neural mechanisms that suppress echo directional information without suppressing the perception of echoes themselves are not understood. We performed in vivo recordings in Mongolian gerbils of neurons of the dorsal nucleus of the lateral lemniscus (DNLL), a GABAergic brainstem nucleus that targets the auditory midbrain, and show that these DNLL neurons exhibit inhibition that persists tens of milliseconds beyond the stimulus offset, so-called persistent inhibition (PI). Using in vitro recordings, we demonstrate that PI stems from GABAergic projections from the opposite DNLL. Furthermore, these recordings show that PI is attributable to intrinsic features of this GABAergic innervation. Implementation of these physiological findings into a neuronal model of the auditory brainstem demonstrates that, on a circuit level, PI creates an enhancement of responsiveness to lagging sounds in auditory midbrain cells. Moreover, the model revealed that such response enhancement is a sufficient cue for an ideal observer to identify echoes and to exhibit echo suppression, which agrees closely with the percepts of human subjects.

  13. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. (United States)

    Nelson, Erik A; Walker, Sarah R; Kepich, Alicia; Gashin, Laurie B; Hideshima, Teru; Ikeda, Hiroshi; Chauhan, Dharminder; Anderson, Kenneth C; Frank, David A


    Constitutive activation of the transcription factor STAT3 contributes to the pathogenesis of many cancers, including multiple myeloma (MM). Since STAT3 is dispensable in most normal tissue, targeted inhibition of STAT3 is an attractive therapy for patients with these cancers. To identify STAT3 inhibitors, we developed a transcriptionally based assay and screened a library of compounds known to be safe in humans. We found the drug nifuroxazide to be an effective inhibitor of STAT3 function. Nifuroxazide inhibits the constitutive phosphorylation of STAT3 in MM cells by reducing Jak kinase autophosphorylation, and leads to down-regulation of the STAT3 target gene Mcl-1. Nifuroxazide causes a decrease in viability of primary myeloma cells and myeloma cell lines containing STAT3 activation, but not normal peripheral blood mononuclear cells. Although bone marrow stromal cells provide survival signals to myeloma cells, nifuroxazide can overcome this survival advantage. Reflecting the interaction of STAT3 with other cellular pathways, nifuroxazide shows enhanced cytotoxicity when combined with either the histone deacetylase inhibitor depsipeptide or the MEK inhibitor UO126. Therefore, using a mechanistic-based screen, we identified the clinically relevant drug nifuroxazide as a potent inhibitor of STAT signaling that shows cytotoxicity against myeloma cells that depend on STAT3 for survival.

  14. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis (United States)

    Reed, R. C.; Brady, S. R.; Muday, G. K.


    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  15. Tim-3 inhibits macrophage control of Listeria monocytogenes by inhibiting Nrf2 (United States)

    Wang, Zhiding; Sun, Dejun; Chen, Guojiang; Li, Ge; Dou, Shuaijie; Wang, Renxi; Xiao, He; Hou, Chunmei; Li, Yan; Feng, Jiannan; Shen, Beifen; Han, Gencheng


    T cell immunoglobulin mucin-3 (Tim-3) is an immune checkpoint inhibitor and its dysregulation has been related to T cell tolerance and many immune disorders, such as tumors and infection tolerance. However, the physiopathology roles of Tim-3 in innate immunity remain elusive. Here, we demonstrate that Tim-3 inhibits macrophage phagocytosis of L. monocytogenes by inhibiting the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway and increases bacterial burden. Tim-3 signaling promotes Nrf2 degradation by increasing its ubiquitination and, as a result, decreasing its nuclear translocation. CD36 and heme oxygenase-1 (HO-1), two downstream molecules in the Tim-3-Nrf2 signaling axis, are involved in the Tim-3- mediated immune evasion of L. monocytogenes both in vitro and in vivo. We here identified new mechanisms by which Tim-3 induces infection tolerance. By modulating the Tim-3 pathway, we demonstrate the feasibility of manipulating macrophage function as a potent tool for treating infectious diseases, such as Listeria infection. PMID:28205579

  16. Malonate inhibits virulence gene expression in Vibrio cholerae. (United States)

    Minato, Yusuke; Fassio, Sara R; Häse, Claudia C


    We previously found that inhibition of the TCA cycle, either through mutations or chemical inhibition, increased toxT transcription in Vibrio cholerae. In this study, we found that the addition of malonate, an inhibitor of succinate dehydrogenase (SDH), decreased toxT transcription in V. cholerae, an observation inconsistent with the previous pattern observed. Unlike another SDH inhibitor, 2-thenoyltrifluoroacetone (TTFA), which increased toxT transcription and slightly inhibited V. cholerae growth, malonate inhibited toxT transcription in both the wild-type strain and TCA cycle mutants, suggesting malonate-mediated inhibition of virulence gene expression is independent to TCA cycle activity. Addition of malonate also inhibited ctxB and tcpA expressions but did not affect aphA, aphB, tcpP and toxR expressions. Malonate inhibited cholera toxin (CT) production in both V. cholerae classical biotype strains O395N1 and CA401, and El Tor biotype strain, N16961. Consistent with previous reports, we confirmed that these strains of V. cholerae did not utilize malonate as a primary carbon source. However, we found that the addition of malonate to the growth medium stimulated V. cholerae growth. All together, these results suggest that metabolizing malonate as a nutrient source negatively affects virulence gene expression in V. cholerae.

  17. Neural correlates of central inhibition during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available Central inhibition plays a pivotal role in determining physical performance during physical fatigue. Classical conditioning of central inhibition is believed to be associated with the pathophysiology of chronic fatigue. We tried to determine whether classical conditioning of central inhibition can really occur and to clarify the neural mechanisms of central inhibition related to classical conditioning during physical fatigue using magnetoencephalography (MEG. Eight right-handed volunteers participated in this study. We used metronome sounds as conditioned stimuli and maximum handgrip trials as unconditioned stimuli to cause central inhibition. Participants underwent MEG recording during imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The next day, neural activities during imagery of maximum grips of the right hand guided by metronome sounds were measured for 10 min. Levels of fatigue sensation and sympathetic nerve activity on the second day were significantly higher relative to those of the first day. Equivalent current dipoles (ECDs in the posterior cingulated cortex (PCC, with latencies of approximately 460 ms, were observed in all the participants on the second day, although ECDs were not identified in any of the participants on the first day. We demonstrated that classical conditioning of central inhibition can occur and that the PCC is involved in the neural substrates of central inhibition related to classical conditioning during physical fatigue.

  18. Lactobacillus acidophilus Probiotic Inhibits the Growth of Candida albicans

    Directory of Open Access Journals (Sweden)

    Sawitri D. Pertami


    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Candida albicans is the most common organism causing oral candidiasis. Drug resistance to synthetic antifungal medication is becoming a problem in the treatment of oral candidiasis, especially in immunocompromised patients.Probiotic has been known for its health benefits. It produces lactic acid and bacteriocin that has antibacterial effect. Research focuses on antifungal effect of probiotic, escpecially for C. albicans is still needed. Objective: To determinethe inhibition effect of probiotic in the growth of C. albicans. Methods: Three concentrations of Lactobacillus acidophilus-containing probiotic (McFarland 6, 8, 10 were used to determine their inhibition effect on C. albicans (McFarland 0.5 growing in trypticase yeast-extract cystine (TYC agar. The inhibition effect of probiotic was determined by measuring the inhibition zone produced after 48 hours of culture. Difference in inhibition zone among experimental groups was analyzed using one-way ANOVA and LSD post-test. Results: Probiotic with McFarland 10 had the highest inhibition effect against C. albicans and the difference to other experimental groups was statistically significant (p<0.05. Conclusion: L. acidophilus probiotic has inhibition effect in the growth of C. albicans.DOI: 10.14693/jdi.v20i3.196

  19. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))


    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  20. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine. (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C


    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  1. Novel Bioactivity of Ellagic Acid in Inhibiting Human Platelet Activation

    Directory of Open Access Journals (Sweden)

    Yi Chang


    Full Text Available Pomegranates are widely consumed either as fresh fruit or in beverage form as juice and wine. Ellagic acid possesses potent antioxidative properties; it is known to be an effective phytotherapeutic agent with antimutagenic and anticarcinogenic qualities. Ellagic acid (20 to 80 μM exhibited a potent activity in inhibiting platelet aggregation stimulated by collagen; however, it did not inhibit platelet aggregation stimulated by thrombin, arachidonic acid, or U46619. Treatment with ellagic acid (50 and 80 μM significantly inhibited platelet activation stimulated by collagen; this alteration was accompanied by the inhibition of relative [Ca2+]i mobilization, and the phosphorylation of phospholipase C (PLCγ2, protein kinase C (PKC, mitogen-activated protein kinases (MAPKs, and Akt, as well as hydroxyl radical (OH● formation. In addition, ellagic acid also inhibited p38 MAPK and Akt phosphorylation stimulated by hydrogen peroxide. By contrast, ellagic acid did not significantly affect PKC activation and platelet aggregation stimulated by PDBu. This study is the first to show that, in addition to being considered a possible agent for preventing tumor growth, ellagic acid possesses potent antiplatelet properties. It appears to initially inhibit the PLCγ2-PKC cascade and/or hydroxyl radical formation, followed by decreased phosphorylation of MAPKs and Akt, ultimately inhibiting platelet aggregation.

  2. Inhibition of a plant sesquiterpene cyclase by mevinolin. (United States)

    Vögeli, U; Chappell, J


    The specificity of mevinolin as an inhibitor of sterol and sesquiterpene metabolism in tobacco cell suspension cultures was examined. Exogenous mevinolin inhibited [14C]acetate, but not [3H]mevalonate incorporation into free sterols. In contrast, mevinolin inhibited the incorporation of both [14C]acetate and [3H]mevalonate into capsidiol, an extracellular sesquiterpene. Microsomal 3-hydroxy-3-methylglutaryl Coenzyme A reductase was inhibited greater than 90% by microM mevinolin, while squalene synthetase was insensitive to even 600 microM mevinolin. Sesquiterpene cyclase, the first branch point enzyme specific for sesquiterpene biosynthesis, was inhibited in a dose-dependent manner by mevinolin with a 50% reduction in activity at 100 microM. Kinetic analysis indicated that the mechanism for inhibition was complex with mevinolin acting as both a competitive and noncompetitive inhibitor. The results suggest that the mevinolin inhibition of [3H]mevalonate incorporation into extracellular sesquiterpenes can, in part, be attributed to a secondary, but specific, site of inhibition, the sesquiterpene cyclase.

  3. Boric acid and boronic acids inhibition of pigeonpea urease. (United States)

    Reddy, K Ravi Charan; Kayastha, Arvind M


    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  4. Preference toward a polylysine enantiomer in inhibiting prions. (United States)

    Jackson, Karen S; Yeom, Jihyun; Han, Youngmi; Bae, Younsoo; Ryou, Chongsuk


    Differential anti-prion activity of polylysine enantiomers was studied. Based on our recent discovery that poly-L-lysine (PLK) is a potent anti-prion agent, we investigated suppression of prions in cultured cells using poly-D-lysine (PDK). The results showed that PDK was more efficacious than PLK to inhibit prions. Protein misfolding cyclic amplification assay demonstrated improved efficacy of PDK in inhibiting plasminogen-mediated prion propagation, corresponding to the enantio-preference of PDK observed in cultured cells. Furthermore, our study demonstrated that polylysines formed a complex with plasminogen. These results propose to hypothesize a plausible mechanism that elicits prion inhibition by polylysine enantiomers.

  5. Mechanism of acid corrosion inhibition using magnetic nanofluid (United States)

    Parekh, Kinnari; Jauhari, Smita; Upadhyay, R. V.


    The inhibition effect of magnetic nanofluid on carbon steel in acid solutions was investigated using gravimetric, potentiodynamic and SEM measurement. The inhibition efficiency increases up to 95% and 75% for 51.7 mM concentration, respectively, in 1 M HCl and 1 M H2SO4 medium. The adsorption of nanoparticles to the steel surface forms a barrier between the metal and the aggressive environment, which is responsible for observed inhibition action. The adsorption of nanoparticles on steel surface is supported by the Langmuir and Freundlich adsorption isotherm and surface morphology scanned through SEM.

  6. Endocannabinoids inhibit the growth of free-living amoebae. (United States)

    Dey, Rafik; Pernin, Pierre; Bodennec, Jacques


    The cannabinoid Delta(9)-tetrahydrocannabinol inhibits the growth of some pathogenic amoebae in vitro and exacerbates amoebic encephalitis in animal models. However, the effects of endogenous cannabinoids on amoebae remain unknown. Therefore, we tested several endocannabinoids (N-acyl ethanolamines and 2-O-acyl glycerol) on different genera of amoebae. The results showed that all of the endocannabinoids tested inhibit amoebic growth at subpharmacological doses, with 50% inhibitory concentrations ranging from 15 to 20 microM. A nonhydrolyzable endocannabinoid had similar effects, showing that the inhibition seen results from endocannabinoids per se rather than from a catabolic product.


    Institute of Scientific and Technical Information of China (English)


    In this paper the results of inhibition of the Aldose reductase(AR) activity on Wistar rat lens by Quercetagetin extracted from Tagetes erects Linn and by Patuletin extracted from Tagetes patula Linn are reported.Quercetagetin inhibited AR of the rat lens by 93.9% at 10~(-4)M, 76.0% at 10~(-5)M and 13.3% at 10~(-6)M. Patuletin inhibited AR of the rat lens by 100% at 10~(-1)M, 80% at 10~(-5)M and 22.7% at 10~(-6)M respectively. The results show that these two flavones are lens AR Inhibitors, but further ...

  8. Inhibition of cullin RING ligases by cycle inhibiting factor: evidence for interference with Nedd8-induced conformational control. (United States)

    Boh, Boon Kim; Ng, Mei Ying; Leck, Yee Chin; Shaw, Barry; Long, Jed; Sun, Guang Wen; Gan, Yunn Hwen; Searle, Mark S; Layfield, Robert; Hagen, Thilo


    Cycle inhibiting factor (Cif) is produced by pathogenic intracellular bacteria and injected into the host cells via a type III secretion system. Cif is known to interfere with the eukaryotic cell cycle by inhibiting the function of cullin RING E3 ubiquitin ligases (CRLs). Cullin proteins form the scaffold protein of CRLs and are modified with the ubiquitin-like protein Nedd8, which exerts important conformational control required for CRL activity. Cif has recently been shown to catalyze the deamidation of Gln40 in Nedd8 to Glu. Here, we addressed how Nedd8 deamidation inhibits CRL activity. Our results indicate that Burkholderia pseudomallei Cif (also known as CHBP) inhibits the deconjugation of Nedd8 in vivo by inhibiting binding of the deneddylating COP9 signalosome (CSN) complex. We provide evidence that the reduced binding of CSN and the inhibition of CRL activity by Cif are due to interference with Nedd8-induced conformational control, which is dependent on the interaction between the Nedd8 hydrophobic patch and the cullin winged-helix B subdomain. Of note, mutation of Gln40 to Glu in ubiquitin, an additional target of Cif, inhibits the interaction between the hydrophobic surface of ubiquitin and the ubiquitin-binding protein p62/SQSTM1, showing conceptually that Cif activity can impair ubiquitin/ubiquitin-like protein non-covalent interactions. Our results also suggest that Cif may exert additional cellular effects by interfering with the association between ubiquitin and ubiquitin-binding proteins.

  9. MK615 inhibits pancreatic cancer cell growth by dual inhibition of Aurora A and B kinases

    Institute of Scientific and Technical Information of China (English)

    Toshie Okada; Tokihiko Sawada; Tatsushi Osawa; Masakazu Adachi; Keiichi Kubota


    AIM:To investigate the anti-neoplastic effect of MK615,an anti-neoplastic compound isolated from Japanese apricot,against human pancreatic cancer cells in vitro.METHODS:Three human pancreatic cancer cell lines PANC-1,PK-1,and PK45H were cultured with MK615 at concentrations of 600,300,150,and O μg/mL.Growth inhibition was evaluated by cell proliferation assay,and killing activity was determined by lactate dehydrogenase (LDH) assay.Expression of Aurora A and B kinases was detected by real-time polymerase chain reaction (PCR) and Western blotting.Cell cycle stages were evaluated by flow cytometry.RESULTS:The growth inhibitory rates of MK615 at 150,300,and 600 μg/mL were 2.3% ± 0.9%,8.9% ±3.2% and 67.1% ± 8.1% on PANC1 cells,1.3% ± 0.3%,8.7% ± 4.1% and 45.7 ± 7.6% on PK1 cells,and 1.2 ±0.8%,9.1% ± 2.1% and 52.1% ± 5.5% on PK45H cells,respectively (P<0.05).The percentage cytotoxicities of MK615 at 0,150,300,and 600 μg/mL were 19.6% ±1.3%,26.7% ± 1.8%,25.5% ± 0.9% and 26.4% ± 0.9%in PANC1 cells,19.7% ± 1.3%,24.7% ± 0.8%,25.9% ±0.9% and 29.9% ± 1.1% in PK1 cells,and 28.0% ± 0.9%,31.2% ± 0.9%,30.4% ± 1.1% and 35.3 ± 1.0% in PK45H cells,respectively (P<0.05).Real-time PCR and Western blotting showed that MK615 dually inhibited the expression of Aurora A and B kinases.Cell cycle analysis revealed that MK615 increased the population of cells in G2/M phase.CONCLUSION:MK615 exerts an anti-neoplastic effect on human pancreatic cancer cells in vitro by dual inhibition of Aurora A and B kinases.

  10. Effect of glycolysis inhibition on mitochondrial function in rat brain. (United States)

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M


    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  11. Aging and vigilance: who has the inhibition deficit? (United States)

    Brache, Kristina; Scialfa, Charles; Hudson, Carl


    The present study compared 18 younger (M = 21.00 years) and 17 older adults (M = 64.29 years) in a modified vigilance task that required the inhibition of a routinized response. The task was a 50-min simulation of industrial inspection, wherein observers were presented with simple displays labeled "good" and "bad" parts. General linear modeling indicated that younger adults showed a doubling of inhibition failures over time (from 19% to 43%); older adults' inhibition failures held constant at approximately 17.5%. In both age groups, those who responded most quickly were also most error-prone. A control experiment, using the traditional vigilance task requiring a response to infrequent "bad" parts, found only small age differences in accuracy and these also favored older adults. This research suggests that younger adults may demonstrate larger inhibition failures when the routinized responses on simple tasks must be suppressed. There are several implications for theory, industrial design, and cognitive assessment.

  12. Motivating inhibition - reward prospect speeds up response cancellation. (United States)

    Boehler, Carsten N; Hopf, Jens-Max; Stoppel, Christian M; Krebs, Ruth M


    Reward prospect has been demonstrated to facilitate various cognitive and behavioral operations, particularly by enhancing the speed and vigor of processes linked to approaching reward. Studies in this domain typically employed task regimes in which participants' overt responses are facilitated by prospective rewards. In contrast, we demonstrate here that even the cancellation of a motor response can be accelerated by reward prospect, thus signifying reward-related benefits on restraint rather than approach behavior. Importantly, this facilitation occurred independent of strategy-related adjustments of response speed, which are known to systematically distort the estimation of response-cancellation speed. The fact that motivational factors can indeed facilitate response inhibition is not only relevant for understanding how motivation and response inhibition interact in healthy participants but also for work on various patient groups that display response-inhibition deficits, suggesting that core differences in the ability to inhibit motor responses have to be differentiated from motivational factors.

  13. A Broad Dynamical Model for Pattern Formation by Lateral Inhibition

    CERN Document Server

    Arcak, Murat


    Many patterning events in multi-cellular organisms rely on cell-to-cell contact signaling, such as the Notch pathway in metazoans. A particularly interesting phenomenon in this form of communication is lateral inhibition where a cell that adopts a particular fate inhibits its immediate neighbors from doing the same. Dynamical models are of great interest for understanding the circuit topologies involved in lateral inhibition and for predicting the associated patterns. Several simplified models have been employed for Notch signalling pathways in the literature. The objective of this paper is to present an abstract dynamical model that captures the essential features of lateral inhibition and to demonstrate with dynamical systems techniques that these features indeed lead to patterning.

  14. Biological phosphorus removal inhibition by roxarsone in batch culture systems. (United States)

    Guo, Qingfeng; Liu, Li; Hu, Zhenhu; Chen, Guowei


    Roxarsone has been extensively used in the feed of animals, which is usually excreted unchanged in the manure and eventually enter into animal wastewater, challenging the biological phosphorus removal processes. Knowledge of its inhibition effect is key for guiding treatment of roxarsone-contaminated wastewater, and is unfortunately keeping unclear. We study the inhibition of roxarsone on biological phosphorus removal processes for roxarsone-contaminated wastewater treatment, in terms of the removal and rates of chemical oxygen demand (COD), phosphate. Results showed that presence of roxarsone considerably limited the COD removals, especially at roxarsone concentration exceeding 40 mg L(-1). Additionally, roxarsone inhibited both phosphorus release and uptake processes, consistent with the phosphate profiles during the biological phosphorus removal processes; whereas, roxarsone is more toxic to phosphorus uptake process, than release function. The results indicated that it is roxarsone itself, rather than the inorganic arsenics, inhibit biological phosphorus removal processes within both aerobic and anaerobic roxarsone-contaminated wastewater treatment.

  15. Transcriptome dynamics of the microRNA inhibition response

    DEFF Research Database (Denmark)

    Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto


    We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show...... validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods...... of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies....

  16. What about inhibition in the Wisconsin Card Sorting Test? (United States)

    Steinmetz, Jean-Paul; Houssemand, Claude


    The commercially available Wisconsin Card Sorting Test (WCST) is one of the most commonly used tests for assessing executive functions within clinical settings. Importantly, however, it remains relatively unclear exactly what processes are assessed by the test. Conceptually, increased perseverative errors in sorting cards are usually related to deficient inhibition processes. Empirically, evidence supporting this conclusion is limited. In a sample of 38 healthy adults we addressed the question to what extent inhibition mechanisms assessed by the go/no-go and the stop-signal paradigm are related to WCST performances. Inhibition-related scores were found to predict non-perseverative errors better than perseverative errors. Consequently we conclude that the non-perseverative errors score reflects processes that are partly dependent on inhibition functions.

  17. The neural basis of inhibition in cognitive control. (United States)

    Aron, Adam R


    The concept of "inhibition" is widely used in synaptic, circuit, and systems neuroscience, where it has a clear meaning because it is clearly observable. The concept is also ubiquitous in psychology. One common use is to connote an active/willed process underlying cognitive control. Many authors claim that subjects execute cognitive control over unwanted stimuli, task sets, responses, memories, and emotions by inhibiting them, and that frontal lobe damage induces distractibility, impulsivity, and perseveration because of damage to an inhibitory mechanism. However, with the exception of the motor domain, the notion of an active inhibitory process underlying cognitive control has been heavily challenged. Alternative explanations have been provided that explain cognitive control without recourse to inhibition as concept, mechanism, or theory. This article examines the role that neuroscience can play when examining whether the psychological concept of active inhibition can be meaningfully applied in cognitive control research.

  18. Mildiomycin: a nucleoside antibiotic that inhibits protein synthesis. (United States)

    Feduchi, E; Cosín, M; Carrasco, L


    Mildiomycin, a new nucleoside antibiotic, selectively inhibits protein synthesis in HeLa cells, and is less active in the inhibition of RNA or DNA synthesis. An increased inhibition of translation by mildiomycin is observed in cultured HeLa cells when they are permeabilized by encephalomyocarditis virus. This observation suggests that this antibiotic does not easily pass through the cell membrane, as occurs with other nucleoside and aminoglycoside antibiotics. The inhibition of translation is also observed in cell-free systems, such as endogenous protein synthesis in a rabbit reticulocyte lysate or the synthesis of polyphenylalanine directed by poly (U). Finally the mode of action of mildiomycin was investigated and the results suggest that the compound blocks the peptidyl-transferase center.

  19. Glycinergic inhibition tunes coincidence detection in the auditory brainstem. (United States)

    Myoga, Michael H; Lehnert, Simon; Leibold, Christian; Felmy, Felix; Grothe, Benedikt


    Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of inhibition on coincidence detection in adult Mongolian gerbil MSO brain slices by testing precise temporal integration of measured synaptic responses using conductance-clamp. We find that inhibition dynamically shifts the peak timing of excitation, depending on its relative arrival time, which in turn modulates the timing of best coincidence detection. Inhibitory control of coincidence detection timing is consistent with the diversity of ITD functions observed in vivo and is robust under physiologically relevant conditions. Our results provide strong evidence that temporal interactions between excitation and inhibition on microsecond timescales are critical for binaural processing.

  20. Cross inhibition improves activity selection when switching incurs time costs

    Institute of Scientific and Technical Information of China (English)



    We consider a behavioural model of an animal choosing between two activities,based on positive feedback,and examine the effect of introducing cross inhibition between the motivations for the two activities.While cross-inhibition has previously been included in models of decision making,the question of what benefit it may provide to an animal's activity selection behaviour has not previously been studied.In neuroscience and in collective behaviour cross-inhibition,and other equivalent means of coupling evidence-accumulating pathways,have been shown to approximate statistically-optimal decision-making and to adaptively break deadlock,thereby improving decision performance.Switching between activities is an ongoing decision process yet here we also find that cross-inhibition robustly improves its efficiency,by reducing the frequency of costly switches between behaviours [Current Zoology 61 (2):242-250,2015].

  1. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. (United States)

    Chuong, Amy S; Miri, Mitra L; Busskamp, Volker; Matthews, Gillian A C; Acker, Leah C; Sørensen, Andreas T; Young, Andrew; Klapoetke, Nathan C; Henninger, Mike A; Kodandaramaiah, Suhasa B; Ogawa, Masaaki; Ramanlal, Shreshtha B; Bandler, Rachel C; Allen, Brian D; Forest, Craig R; Chow, Brian Y; Han, Xue; Lin, Yingxi; Tye, Kay M; Roska, Botond; Cardin, Jessica A; Boyden, Edward S


    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light-induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.

  2. A hammerhead ribozyme inhibits ADE1 gene expression in yeast. (United States)

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R


    To study factors that affect in vivo ribozyme (Rz) activity, a model system has been devised in Saccharomyces cerevisiae based on the inhibition of ADE1 gene expression. This gene was chosen because Rz action can be evaluated visually by the Red phenotype produced when the activity of the gene product is inhibited. Different plasmid constructs allowed the expression of the Rz either in cis or in trans with respect to ADE1. Rz-related inhibition of ADE1 expression was correlated with a Red phenotype and a diminution of ADE1 mRNA levels only when the Rz gene was linked 5' to ADE1. The presence of the expected 3' cleavage fragment was demonstrated using a technique combining RNA ligation and PCR. This yeast system and detection technique are suited to the investigation of general factors affecting Rz-catalyzed inhibition of gene expression under in vivo conditions.

  3. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)


    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  4. Spectroscopic analysis of urinary calculi and inhibition of their growth (United States)

    Manciu, Felicia; Durrer, William; Govani, Jayesh; Reza, Layra; Pinales, Luis


    We present here a study of kidney stone formation and growth inhibition based on a traditional medicine approach with Aquatica Lour (RAL) herbal extracts. Kidney stone material systems were synthesized in vitro using a simplified single diffusion gel growth technique. With the objective of revealing the mechanism of inhibition of calculi formation by RAL extracts, samples prepared without the presence of extract, and with the presence of extract, were analyzed using Raman, photoluminescence, and XPS. The unexpected presence of Zn revealed by XPS in a sample prepared with RAL provides an explanation for the inhibition process, and also explains the dramatic reflectance of incident light observed in attempts to obtain infrared transmission data. Raman data are consistent with the binding of the inhibitor to the oxygen of the kidney stone. Photoluminescence data corroborate with the other results to provide additional evidence of Zn-related inhibition.

  5. Beyond Behavioral Inhibition: Etiological Factors in Childhood Anxiety (United States)

    Manassis, Katharina; Hudson, Jennifer L.; Webb, Alicia; Albano, Anne Marie


    Theoretical models of childhood anxiety have emphasized temperamental vulnerability, principally behavioral inhibition, and its interaction with various environmental factors promoting anxiety (for example, overprotective parenting, insecure attachment, life stress). Although clearly establishing the importance of both nature and nurture in…

  6. Impaired face recognition is associated with social inhibition. (United States)

    Avery, Suzanne N; VanDerKlok, Ross M; Heckers, Stephan; Blackford, Jennifer U


    Face recognition is fundamental to successful social interaction. Individuals with deficits in face recognition are likely to have social functioning impairments that may lead to heightened risk for social anxiety. A critical component of social interaction is how quickly a face is learned during initial exposure to a new individual. Here, we used a novel Repeated Faces task to assess how quickly memory for faces is established. Face recognition was measured over multiple exposures in 52 young adults ranging from low to high in social inhibition, a core dimension of social anxiety. High social inhibition was associated with a smaller slope of change in recognition memory over repeated face exposure, indicating participants with higher social inhibition showed smaller improvements in recognition memory after seeing faces multiple times. We propose that impaired face learning is an important mechanism underlying social inhibition and may contribute to, or maintain, social anxiety.

  7. Inhibition of Porcine Small Intestinal Sucrase by Validamine

    Institute of Scientific and Technical Information of China (English)

    郑裕国; 申屠旭萍; 沈寅初


    As an important medicinal intermediate with broad uses, validamine, an aminocyclitol, isolated from the enzymolysis broth of validamycins, has gained more and more attention. The absolute configuration of validamine is similar to that of α-D-glucose, and it demonstrates powerful inhibition activity on glycosidase. In this paper, the inhibitory effect of validamine on porcine small intestinal sucrase was investigated. Validamine was found to be a potent, competitive inhibitor to porcine small intestinal sucrase in vitro with an IC50 value of 6.85 × 10-4 mol·L-1. Validamine exhibited a dose-dependent inhibition effect on porcine small intestinal sucrase, whereby the inhibition interaction of validamine and porcine small intestinal sucrase was a fast binding process. The inhibition of validamine on porcine small intestinal sucrase was pH-dependent.

  8. Corrosion Inhibition of a Green Scale Inhibitor Polyepoxysuccinic Acid

    Institute of Scientific and Technical Information of China (English)

    Rong Chun XIONG; Qing ZHOU; Gang WEI


    The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) wasstudied based on dynamic tests. It is found that when PESA is used alone, it had good corrosioninhibition. So, PESA should be included in the category of corrosion inhibitors. It is not only akind of green scale inhibitor, but also a green corrosion inhibitor. The synergistic effect betweenPESA and Zn2+ or sodium gluconate is poor. However, the synergistic effect among PESA, Zn2+and sodium gluconate is excellent, and the corrosion inhibition efficiency for carbon steel is higherthan 99%. Further study of corrosion inhibition mechanism reveals that corrosion inhibition ofPESA is not affected by carboxyl group, but by the oxygen atom inserted The existence ofoxygen atom in PESA molecular structure makes it easy to form stable chelate with pentacyclicstructure.

  9. Protection from latent inhibition provided by a conditioned inhibitor. (United States)

    McConnell, Bridget L; Wheeler, Daniel S; Urcelay, Gonzalo P; Miller, Ralph R


    Two conditioned suppression experiments with rats investigated the influence on latent inhibition of compounding a Pavlovian conditioned inhibitor with the target cue during preexposure treatment. Results were compared with those of subjects that received conventional latent inhibition training, no preexposure, or preexposure to the target cue in compound with a neutral stimulus. In Experiment 1, greater attenuation of the latent inhibition effect was observed in subjects that received target preexposure in compound with a Pavlovian conditioned inhibitor relative to subjects that received preexposure with a neutral stimulus or to the target alone. In Experiment 2, this protection from latent inhibition was attenuated if the excitor that was used to train the conditioned inhibitor was extinguished between preexposure and target training. The results are consistent with an account offered by the extended comparator hypothesis.

  10. Motivational control of latent inhibition in flavor preference conditioning. (United States)

    Garcia-Burgos, David; González, Felisa; Hall, Geoffrey


    In three experiments, rats given pairings of a neutral flavor with sucrose showed a preference for that flavor when subsequently allowed to choose between it and water. Preexposure to the flavor produced a latent inhibition effect (reduced the size of the preference) when the rats were hungry during the test (Experiments 1 and 2). Rats that were not hungry during the test failed to show latent inhibition (Experiments 1-3). Experiment 3 confirmed that sucrose-flavor pairings were capable of producing a preference even in nonhungry rats. It is argued that the preference shown by rats that are hungry on test depends on a flavor-nutrient association, a form of learning that is susceptible to latent inhibition in the same way as standard conditioning procedures are. The failure to obtain latent inhibition in nonhungry rats suggests that the preference obtained in these conditions depends on a different form of learning that is less susceptible to the effects of stimulus exposure.

  11. Electrochemical impedance spectroscopy study on corrosion inhibition of benzyltriethylammonium chloride (United States)

    Idris, Mohd Nazri; Daud, Abdul Razak; Othman, Norinsan Kamil


    Electrochemical Impedance Spectroscopy (EIS) was employed to study the corrosion inhibition behavior of benzyltriethylammonium chloride (BTC) for carbon steel corrosion. The inhibition efficiency was investigated in 1.0 M HCl solution at room temperature (25°C) by varying the BTC concentration. EIS results indicated that the double layer capacitance of electrolyte/carbon steel interface decreases with the increasing of BTC concentration and consequently enhances the polarization resistance of equivalence Randles circuit. The results indicated that inhibition efficiency of as high as 65% could be achieved when 10mM BTC was present in 1.0 M HCl solution as compared to inhibitor-free solution. The inhibition process of BTC on the carbon steel corrosion was found to obey Langmuir adsorption isotherm. This study revealed that BTC is suitable to be used as a corrosion inhibitor in acid media.

  12. Glycine transporter-1 inhibition preceding extinction training inhibits reacquisition of cocaine seeking. (United States)

    Achat-Mendes, Cindy; Nic Dhonnchadha, Bríd Á; Platt, Donna M; Kantak, Kathleen M; Spealman, Roger D


    Cognitive enhancers that act by increasing glycine transmission might be useful adjuncts to cocaine-cue extinction training to deter relapse. The study investigated the effects of combining treatments of the glycine transporter-1 (GlyT-1) inhibitor, Org24598, with extinction training on the subsequent reacquisition of cocaine self-administration. Squirrel monkeys and rats were trained to self-administer cocaine under a second-order schedule of intravenous drug injection in which responding was maintained by cocaine injections and a cocaine-paired visual stimulus. During three weekly extinction sessions, saline was substituted for cocaine but responding still produced the cocaine-paired stimulus. Subjects were treated with Org24598 or vehicle, either before or after each extinction session. One week later, cocaine injections were restored, and reacquisition of cocaine self-administration was evaluated over 15 sessions. Compared with vehicle, administration of Org24598 (1.0 mg/kg in monkeys; 3.0 or 7.5 mg/kg in rats) before each extinction session significantly inhibited reacquisition of cocaine self-administration in each species. In contrast, administration of Org24598 (1.0 mg/kg in monkeys) following, rather than preceding, each extinction session did not affect reacquisition compared with vehicle. When extinction training was replaced by cocaine self-administration or abstinence control conditions, treatment with the same doses of Org24598 resulted in reacquisition that was significantly more rapid than the reacquisition observed when Org24598 was administered before extinction training sessions. The results support the potential clinical utility of GlyT-1 inhibitor pretreatments combined with cocaine-cue extinction training to inhibit relapse.

  13. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    Energy Technology Data Exchange (ETDEWEB)

    Asmis, Lars [Institute for Clinical Hematology, University Hospital Zuerich, Zuerich (Switzerland); Tanner, Felix C. [Cardiovascular Research, Physiology Institute, University of Zuerich, Zuerich (Switzerland); Center for Integrative Human Physiology, University of Zuerich, Zuerich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zuerich, Zuerich (Switzerland); Sudano, Isabella [Cardiology, Cardiovascular Center, University Hospital Zuerich, Zuerich (Switzerland); Luescher, Thomas F. [Cardiovascular Research, Physiology Institute, University of Zuerich, Zuerich (Switzerland); Center for Integrative Human Physiology, University of Zuerich, Zuerich (Switzerland); Cardiology, Cardiovascular Center, University Hospital Zuerich, Zuerich (Switzerland); Camici, Giovanni G., E-mail: [Cardiovascular Research, Physiology Institute, University of Zuerich, Zuerich (Switzerland); Center for Integrative Human Physiology, University of Zuerich, Zuerich (Switzerland)


    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  14. Inhibition of influenza A virus replication by rifampicin and selenocystamine

    Energy Technology Data Exchange (ETDEWEB)

    Hamzehei, M.; Ledinko, N.


    The effects of selenocystamine, an inhibitor of influenza virus RNA-dependent RNA polymerase in vitro activity, in the antibiotic rifampicin were studied on influenza A/PR/8/34 (HON1) infection in embryonated eggs. Both drugs completely inhibited hemagglutinating and infective virus yields when added at relatively early times postinfection. Maximal inhibition was produced by apparently noncytotoxic concentrations of 50 microgram of selenocystamine, or of 400 microgram of rifampicin, per egg.

  15. Delta-Notch Lateral Inhibition within the Organ of Corti (United States)

    Summers, R.; Abdulla, T.; Luff, R.


    Lateral inhibition is described as an emergent property of the Delta-Notch signalling network. Two separate model representations of lateral inhibition are proposed for different purposes. One provides information about bioenergetics while the other has the capability to produce a physical representation. It is proposed that both can be used in further studies of the sensory pathways in the human connectome model of brain function.

  16. Anger inhibition and pain: conceptualizations, evidence and new directions. (United States)

    Burns, John W; Quartana, Phillip J; Bruehl, Stephen


    Anger and how anger is regulated appear to affect acute and chronic pain intensity. The inhibition of anger (anger-in), in particular, has received much attention, and it is widely believed that suppressing or inhibiting the verbal or physical expression of anger is related to increased pain severity. We examine theoretical accounts for expecting that anger inhibition should affect pain, and review evidence for this claim. We suggest that the evidence for a link between trait anger-in (the self-reported tendency to inhibit anger expression when angry) and acute and chronic pain severity is quite limited owing to a number of factors including a inadequate definition of trait anger-in embodied in the popular anger-in subscale of Spielberger's Anger Expression Inventory, and a strong overlap between trait anger-in scores and measures of general negative affect (NA). We argue that in order to determine whether something unique to the process of anger inhibition exerts direct effects on subsequent pain intensity, new conceptualizations and approaches are needed that go beyond self-report assessments of trait anger-in. We present one model of anger inhibition and pain that adopts elements of Wegner's ironic process theory of thought suppression. Findings from this emerging research paradigm indicate that state anger suppression (suppression manipulated in the laboratory) may indeed affect sensitivity to subsequent painful stimuli, and we outline potentially productive avenues of future inquiry that build on this model. We conclude that although studies employing correlational designs and self-reports of trait anger-in have not upheld the claim that anger inhibition affects pain severity, evidence from studies using new models suggests that actually inhibiting anger expression during a provocative event may increase perceived pain at a later time.

  17. Aspirin inhibits hepatitis C virus entry by downregulating claudin-1. (United States)

    Yin, P; Zhang, L


    Aspirin has previously been reported to inhibit hepatitis C virus (HCV) replication. The aim of this study was to investigate whether aspirin is involved in blocking HCV entry. We found that aspirin inhibits the entry of HCVpp and infectious HCV. The level of claudin-1, an HCV receptor, is reduced by aspirin. Our results extend the anti-HCV effect of aspirin to the HCV entry step and further reinforce the anti-HCV role of aspirin.



    Tsakanikos, Elias


    The review of the literature suggests that the interpretation of the disruption of latent inhibition within the schizophrenia continuum remains elusive due to a number of methodological and theoretical problems. This thesis adopted a personality-based approach to experimental psychopathology testing alternative interpretations of latent inhibition deficits as a function of psychotic-like features in non-clinical participants. Results from 12 Experiments are discussed in terms of a two-compone...

  19. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin


    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  20. Inhibition by streptovaricins of Rauscher leukemia virus splenomegaly. (United States)

    Borden, E C; Carter, W A; Sensenbrenner, L L; Owens, A H; Lichtenstein, J; Gray, G D; Neil, G L; Nichol, F R; Li, L H


    Streptovaricins (Sv), ansa macrolide antibiotics, inhibited Rauscher leukemia virus (RLV) splenomegaly by 25-50%. All streptovaricins tested were effective when administered orally either by diet ad lib or by intubation from infection to time of killing. When delivered by intubation, Sv was measurable in plasma for up to 6 h. SvC, at 300 mg/kg/day, reduced mean spleen weight of infected mice from 478 plus or minus 51 (SE) mg to 300 plus or minus 55 (SE) mg. Rifampicin, at 250 mg/kg/day, had no similar activity. Decrease in caloric intake and in body-weight gain also resulted in an inhibition of RLV splenomegaly; although Sv-treated mice gained weight, the increase was usually slightly less than controls. However, mice treated with a Sv diet for a week prior to infection, after an initial period of weight loss, gained at a rate equivalent to control group, and when killed had a marked reduction in splenomegaly. The selectivity of streptovaricins and specificity for viral events was suggested by several observations: (1) Splenomegaly and mortality, induced by L1210 or a non-infective transplantable tumor of RLV origin, was not inhibited. (2) No inhibition of normal hematopoietic spleen colonies was observed. (3) Host immune responses, including cellular and humoral immunity and interferon production and action, were not inhibited. Thus, although the effect of slightly decreased weight and intake could not be unequivocally established, the findings were most compatible with a selective inhibition of RLV splenomegaly by Sv.

  1. Unconsciously triggered response inhibition requires an executive setting. (United States)

    Chiu, Yu-Chin; Aron, Adam R


    Much research on response inhibition has focused on a consciously triggered variety (i.e., outright stopping of action). However, recent studies have shown that response inhibition can also be triggered unconsciously. For example, van Gaal, Ridderinkhof, Scholte, and Lamme (2010) showed that an unconscious no-go prime slowed down ongoing behavior, at least when outright stopping was sometimes required (i.e., in an executive setting). Here we replicated that result but also went further by including a condition with no executive setting. Then there was no slowing following a no-go prime. These results support the hypothesis that an executive setting is necessary for unconsciously triggered inhibition. We speculate that this arises from the fact that when the context includes outright stopping, the brain network for response inhibition is primed, and it can be triggered by the unconscious prime. The result has theoretical implications for the distinction between conscious and unconscious response inhibition and also clinical implications for how to train response inhibition so that it is instantiated automatically.

  2. Targeted Inhibition of Multiple Receptor Tyrosine Kinases in Mesothelioma

    Directory of Open Access Journals (Sweden)

    Wen-Bin Ou


    Full Text Available The receptor tyrosine kinases (RTKs epidermal growth factor receptor (EGFR and MET are activated in subsets of mesothelioma, suggesting that these kinases might represent novel therapeutic targets in this notoriously chemotherapy-resistant cancer. However, clinical trials have shown little activity for EGFR inhibitors in mesothelioma. Despite the evidence for RTK activation in mesothelioma pathogenesis, it is unclear whether transforming activity is dependent on an individual kinase oncoprotein or the coordinated activity of multiple kinases. Using phospho-RTK and immunoblot assays, we herein demonstrate activation of multiple RTKs (EGFR, MET, AXL, and ERBB3 in individual mesothelioma cell lines but not in normal mesothelioma cells. Inhibition of mesothelioma multi-RTK signaling was accomplished using combinations of RTK direct inhibitors or by inhibition of the RTK chaperone, heat shock protein 90 (HSP90. Multi-RTK inhibition by the HSP90 inhibitor 17-allyloamino-17demethoxygeldanamycin (17-AAG had a substantially greater effect on mesothelioma proliferation and survival compared with inhibition of individual activated RTKs. HSP90 inhibition also suppressed phosphorylation of down-stream signaling intermediates (AKT, mitogen-activated protein kinase, and S6; upregulated the p53, p21, and p27 cell cycle checkpoints; induced G2 phase arrest; induced caspase 3/7 activity; and led to an increase in the sub-G1 apoptotic population. These compelling proapoptotic and antiproliferative responses indicate that HSP90 inhibition warrants clinical evaluation as a novel therapeutic strategy in mesothelioma.

  3. Inhibition of Bacillus subtilis growth and sporulation by threonine. (United States)

    Lamb, D H; Bott, K F


    A 1-mg/ml amount of threonine (8.4 mM) inhibited growth and sporulation of Bacillus subtilis 168. Inhibition of sporulation was efficiently reversed by valine and less efficiently by pyruvate, arginine, glutamine, and isoleucine. Inhibition of vegetative growth was reversed by asparate and glutamate as well as by valine, arginine, or glutamine. Cells in minimal growth medium were inhibited only transiently by very high concentrations of threonine, whereas inhibition of sporulation was permanent. Addition of threonine prevented the normal increase in alkaline phosphatase and reduced the production of extracellular protease by about 50%, suggesting that threonine blocked the sporulation process relatively early. 2-Ketobutyrate was able to mimic the effect of threonine on sporulation. Sporulation in a strain selected for resistance to azaleucine was partially resistant. Seventy-five percent of the mutants selected for the ability to grow vegetatively in the presence of high threonine concentrations were found to be simultaneously isoleucine auxotrophs. In at least one of these mutants, the threonine resistance phenotpye could not be dissociated from the isoleucine requirement by transformation. This mutation was closely linked to a known ilvA mutation (recombination index, 0.16). This strain also had reduced intracellular threonine deaminase activity. These results suggest that threonine inhibits B. subtilis by causing valine starvation.

  4. Magnetoencephalographic signatures of right prefrontal cortex involvement in response inhibition. (United States)

    Hege, Maike A; Preissl, Hubert; Stingl, Krunoslav T


    The prefrontal cortex has a pivotal role in top-down control of cognitive and sensory functions. In complex go-nogo tasks, the right dorsolateral prefrontal cortex is considered to be important for guiding the response inhibition. However, little is known about the temporal dynamics and neurophysiological nature of this activity. To address this issue, we recorded magnetoencephalographic brain activity in 20 women during a visual go-nogo task. The right dorsolateral prefrontal cortex showed an increase for the amplitude of the event-related fields and an increase in induced alpha frequency band activity for nogo in comparison to go trials. The peak of this prefrontal activity preceded the mean reaction time of around 360 ms for go trials, and thus supports the proposed role of right dorsolateral prefrontal cortex in gating the response inhibition and further suggests that right prefrontal alpha band activity might be involved in this gating. However, the results in right dorsolateral prefrontal cortex were similar for both successful and unsuccessful response inhibition. In these conditions, we instead observed pre- and poststimulus differences in alpha band activity in occipital and central areas. Thus, successful response inhibition seemed to additionally depend on prestimulus anticipatory alpha desynchronization in sensory areas as it was reduced prior to unsuccessful response inhibition. In conclusion, we suggest a role for functional inhibition by alpha synchronization not only in sensory, but also in prefrontal areas.

  5. The Inhibition of Lipase and Glucosidase Activities by Acacia Polyphenol

    Directory of Open Access Journals (Sweden)

    Nobutomo Ikarashi


    Full Text Available Acacia polyphenol (AP extracted from the bark of the black wattle tree (Acacia mearnsii is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. In an in vitro study, we measured the inhibitory activity of AP on lipase and glucosidase. In addition, we evaluated the effects of AP on absorption of orally administered olive oil, glucose, maltose, sucrose and starch solution in mice. We found that AP concentration-dependently inhibited the activity of lipase, maltase and sucrase with an IC50 of 0.95, 0.22 and 0.60 mg ml−1, respectively. In ICR mice, olive oil was administered orally immediately after oral administration of AP solution, and plasma triglyceride concentration was measured. We found that AP significantly inhibited the rise in plasma triglyceride concentration after olive oil loading. AP also significantly inhibited the rise in plasma glucose concentration after maltose and sucrose loading, and this effect was more potent against maltose. AP also inhibited the rise in plasma glucose concentration after glucose loading and slightly inhibited it after starch loading. Our results suggest that AP inhibits lipase and glucosidase activities, which leads to a reduction in the intestinal absorption of lipids and carbohydrates.

  6. Alpha oscillatory correlates of motor inhibition in the aged brain

    Directory of Open Access Journals (Sweden)

    Marlene eBoenstrup


    Full Text Available Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time - early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains.

  7. Proteasome inhibition as a novel therapeutic target in human cancer. (United States)

    Rajkumar, S Vincent; Richardson, Paul G; Hideshima, Teru; Anderson, Kenneth C


    The 26S proteasome is a large intracellular adenosine 5'-triphosphate-dependent protease that identifies and degrades proteins tagged for destruction by the ubiquitin system. The orderly degradation of cellular proteins is critical for normal cell cycling and function, and inhibition of the proteasome pathway results in cell-cycle arrest and apoptosis. Dysregulation of this enzymatic system may also play a role in tumor progression, drug resistance, and altered immune surveillance, making the proteasome an appropriate and novel therapeutic target in cancer. Bortezomib (formerly known as PS-341) is the first proteasome inhibitor to enter clinical practice. It is a boronic aid dipeptide that binds directly with and inhibits the enzymatic complex. Bortezomib has recently shown significant preclinical and clinical activity in several cancers, confirming the therapeutic value of proteasome inhibition in human malignancy. It was approved in 2003 for the treatment of advanced multiple myeloma (MM), with approximately one third of patients with relapsed and refractory MM showing significant clinical benefit in a large clinical trial. Its mechanism of action is partly mediated through nuclear factor-kappa B inhibition, resulting in apoptosis, decreased angiogenic cytokine expression, and inhibition of tumor cell adhesion to stroma. Additional mechanisms include c-Jun N-terminal kinase activation and effects on growth factor expression. Several clinical trials are currently ongoing in MM as well as several other malignancies. This article discusses proteasome inhibition as a novel therapeutic target in cancer and focuses on the development, mechanism of action, and current clinical experience with bortezomib.

  8. Inhibition of in vitro cholesterol synthesis by fatty acids. (United States)

    Kuroda, M; Endo, A


    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  9. Aggregated IgG inhibits the differentiation of human fibrocytes. (United States)

    Pilling, Darrell; Tucker, Nancy M; Gomer, Richard H


    Fibrocytes are fibroblast-like cells, which appear to participate in wound healing and are present in pathological lesions associated with asthma, pulmonary fibrosis, and scleroderma. Fibrocytes differentiate from CD14+ peripheral blood monocytes, and the presence of serum delays this process dramatically. We previously purified the factor in serum, which inhibits fibrocyte differentiation, and identified it as serum amyloid P (SAP). As SAP binds to Fc receptors for immunoglobulin G (IgG; Fc gammaRs), Fc gammaR activation may be an inhibitory signal for fibrocyte differentiation. Fc gammaR are activated by aggregated IgG, and we find aggregated but not monomeric, human IgG inhibits human fibrocyte differentiation. Monoclonal antibodies that bind to Fc gammaRI (CD64) or Fc gammaRII (CD32) also inhibit fibrocyte differentiation. Aggregated IgG lacking Fc domains or aggregated IgA, IgE, or IgM do not inhibit fibrocyte differentiation. Incubation of monocytes with SAP or aggregated IgG inhibited fibrocyte differentiation. Using inhibitors of protein kinase enzymes, we show that Syk- and Src-related tyrosine kinases participate in the inhibition of fibrocyte differentiation. These observations suggest that fibrocyte differentiation can occur in situations where SAP and aggregated IgG levels are low, such as the resolution phase of inflammation.

  10. Posterior insular cortex is necessary for conditioned inhibition of fear. (United States)

    Foilb, Allison R; Flyer-Adams, Johanna G; Maier, Steven F; Christianson, John P


    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors.

  11. Comparing the context specificity of extinction and latent inhibition. (United States)

    Miller, Ralph R; Laborda, Mario A; Polack, Cody W; Miguez, Gonzalo


    Exposure to a cue alone either before (i.e., latent inhibition treatment) or after (i.e., extinction) the cue is paired with an unconditioned stimulus results in attenuated conditioned responding to the cue. Here we report two experiments in which potential parallels between the context specificity of the effects of extinction and latent inhibition treatments were directly compared in a lick suppression preparation with rats. The reversed ordering of conditioning and nonreinforcement in extinction and latent inhibition designs allowed us to examine the effect of training order on the context specificity of what is learned given phasic reinforcement and nonreinforcement of a target cue. Experiment 1 revealed that when conditioned-stimulus (CS) conditioning and CS nonreinforcement were administered in the same context, both extinction and latent inhibition treatments had reduced impacts on test performance, relative to excitatory conditioning when testing occurred outside the treatment context. Similarly, Experiment 2 showed that when conditioning was administered in one context and nonreinforcement was administered in a second context, the effects of both extinction and latent inhibition treatments were attenuated when testing occurred in a neutral context, relative to the context in which the CS was nonreinforced. The observed context specificity of extinction and latent inhibition treatments has been previously reported in both cases, but not in a single experiment under otherwise identical conditions. The results of the two experiments convergently suggest that memory of nonreinforcement becomes context dependent after a cue is both reinforced and nonreinforced, independent of the order of training.

  12. Highly reflective reasoners show no signs of belief inhibition. (United States)

    Svedholm-Häkkinen, Annika M


    The processes underlying individual differences in reasoning performance are not entirely understood. What do people who do well on reasoning tasks where beliefs and logic conflict do differently from other people? Because abundant evidence shows that even poorer reasoners detect these conflicts, it has been suggested that individual differences in reasoning performance arise from inhibition failures later in the reasoning process. The present paper argues that a minority of highly skilled reasoners may deviate from this general reasoning process from an early stage. Two studies investigated signs of belief inhibition using a lexical access paradigm (Study 1) and a negative priming paradigm (Study 2). Study 1 showed that while other people exhibited signs of belief inhibition following a belief-logic conflict, people with the highest disposition for cognitive reflection did not. In Study 2, this finding was replicated and similar results were also obtained when comparing groups with higher and lower general cognitive ability. Two possible explanations are discussed. The reasoners with a highly reflective cognitive style or high general cognitive ability may have engaged and inhibited belief processing but if so, they may have been exceptionally efficient at recovering from it, wherefore no belief inhibition effects were found. An alternative account is that these reasoners started Type 2 processing directly, without first engaging in and then inhibiting belief-based processing. Under either explanation, the results indicate that individual differences in reasoning may partly arise from differences that occur early in the reasoning process.

  13. Cantharidin biosynthesis in a blister beetle: inhibition by 6-fluoromevalonate causes chemical disarmament. (United States)

    Carrel, J E; Doom, J P; McCormick, J P


    Biosynthesis of cantharidin in a blister beetle, Lytta polita, is effectively inhibited by 6-fluoromevalonate. Inhibition is attributed specifically to the fluorine substituent. Biochemical inhibition has not been demonstrated previously for an arthropod's defensive substance.

  14. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Niel, van E.W.J.; Claassen, P.A.M.; Stams, A.J.M.


    Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe inhibito

  15. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira


    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  16. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt;


    hydrolysis rates and higher enzyme usage efficiency (kg(product/)kg(enzyme)). Current membrane reactor designs are however not feasible for large scale operations. The report emphasizes that the industrial realization of cellulosic ethanol requires more focus on the operational feasibility within......Product inhibition of cellulolytic enzymes affects the efficiency of the biocatalytic conversion of lignocellulosic biomass to ethanol and other valuable products. New strategies that focus on reactor designs encompassing product removal, notably glucose removal, during enzymatic cellulose...... conversion are required for alleviation of glucose product inhibition. Supported by numerous calculations this review assesses the quantitative aspects of glucose product inhibition on enzyme-catalyzed cellulose degradation rates. The significance of glucose product inhibition on dimensioning of different...

  17. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition. (United States)

    Abusnina, Abdurazzag; Keravis, Thérèse; Zhou, Qingwei; Justiniano, Hélène; Lobstein, Annelise; Lugnier, Claire


    Vascular endothelial growth factor (VEGF) plays a major role in angiogenesis by stimulating endothelial cells. Increase in cyclic AMP (cAMP) level inhibits VEGF-induced endothelial cell proliferation and migration. Cyclic nucleotide phosphodiesterases (PDEs), which specifically hydrolyse cyclic nucleotides, are critical in the regulation of this signal transduction. We have previously reported that PDE2 and PDE4 up-regulations in human umbilical vein endothelial cells (HUVECs) are implicated in VEGF-induced angiogenesis and that inhibition of PDE2 and PDE4 activities prevents the development of the in vitro angiogenesis by increasing cAMP level, as well as the in vivo chicken embryo angiogenesis. We have also shown that polyphenols are able to inhibit PDEs. The curcumin having anti-cancer properties, the present study investigated whether PDE2 and PDE4 inhibitors and curcumin could have similar in vivo anti-tumour properties and whether the anti-angiogenic effects of curcumin are mediated by PDEs. Both PDE2/PDE4 inhibitor association and curcumin significantly inhibited in vivo tumour growth in C57BL/6N mice. In vitro, curcumin inhibited basal and VEGF-stimulated HUVEC proliferation and migration and delayed cell cycle progression at G0/G1, similarly to the combination of selective PDE2 and PDE4 inhibitors. cAMP levels in HUVECs were significantly increased by curcumin, similarly to rolipram (PDE4 inhibitor) and BAY-60-550 (PDE2 inhibitor) association, indicating cAMP-PDE inhibitions. Moreover, curcumin was able to inhibit VEGF-induced cAMP-PDE activity without acting on cGMP-PDE activity and to modulate PDE2 and PDE4 expressions in HUVECs. The present results suggest that curcumin exerts its in vitro anti-angiogenic and in vivo anti-tumour properties through combined PDE2 and PDE4 inhibition.

  18. The Effect of Oxidation on Berberine-Mediated CYP1 Inhibition: Oxidation Behavior and Metabolite-Mediated Inhibition. (United States)

    Lo, Sheng-Nan; Shen, Chien-Chang; Chang, Chia-Yu; Tsai, Keng-Chang; Huang, Chiung-Chiao; Wu, Tian-Shung; Ueng, Yune-Fang


    The protoberberine alkaloid berberine carries methylenedioxy moiety and exerts a variety of pharmacological effects, such as anti-inflammation and lipid-lowering effects. Berberine causes potent CYP1B1 inhibition, whereas CYP1A2 shows resistance to the inhibition. To reveal the influence of oxidative metabolism on CYP1 inhibition by berberine, berberine oxidation and the metabolite-mediated inhibition were determined. After NADPH-fortified preincubation of berberine with P450, the inhibition of CYP1A1 and CYP1B1 variants (CYP1B1.1, CYP1B1.3, and CYP1B1.4) by berberine was not enhanced, and CYP1A2 remained resistant. Demethyleneberberine was identified as the most abundant metabolite of CYP1A1- and CYP1B1-catalyzed oxidations, and thalifendine was generated at a relatively low rate. CYP1A1-catalyzed berberine oxidation had the highest maximal velocity (V max) and exhibited positive cooperativity, suggesting the assistance of substrate binding when the first substrate was present. In contrast, the demethylenation by CYP1B1 showed the property of substrate inhibition. CYP1B1-catalyzed berberine oxidation had low K m values, but it had V max values less than 8% of those of CYP1A1. The dissociation constants generated from the binding spectrum and fluorescence quenching suggested that the low K m values of CYP1B1-catalyzed oxidation might include more than the rate constants describing berberine binding. The natural protoberberine/berberine fmetabolites with methylenedioxy ring-opening (palmatine, jatrorrhizine, and demethyleneberberine) and the demethylation (thalifendine and berberrubine) caused weak CYP1 inhibition. These results demonstrated that berberine was not efficiently oxidized by CYP1B1, and metabolism-dependent irreversible inactivation was minimal. Metabolites of berberine caused a relatively weak inhibition of CYP1.

  19. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer (United States)


    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  20. Toll-like receptor 2 agonists inhibit human fibrocyte differentiation

    Directory of Open Access Journals (Sweden)

    Maharjan Anu S


    Full Text Available Abstract Background In healing wounds, some monocytes enter the wound and differentiate into fibroblast-like cells called fibrocytes. Since Toll-like receptors (TLRs are present on monocytes, and pathogens that can infect a wound have and/or release TLR agonists, we examined whether TLR agonists affect fibrocyte differentiation. Results When human peripheral blood mononuclear cells (PBMCs were cultured with TLR3, TLR4, TLR5, TLR7, TLR8 or TLR9 agonists, there was no significant effect on fibrocyte differentiation, even though enhanced extracellular tumor necrosis factor (TNF-α accumulation and/or increased cell surface CD86 or major histocompatibility complex (MHC class II levels were observed. However, all TLR2 agonists tested inhibited fibrocyte differentiation without any significant effect on cell survival. Adding TLR2 agonists to purified monocytes had no effect on fibrocyte differentiation. However, some TLR2 agonists caused PBMCs to secrete a factor that inhibits the differentiation of purified monocytes into fibrocytes. This factor is not interferon (IFN-α, IFN-γ, interleukin (IL-12, aggregated immunoglobulin G (IgG or serum amyloid P (SAP, factors known to inhibit fibrocyte differentiation. TLR2 agonist-treated PBMCs secrete low levels of IL-6, TNF-α, IFN-γ, granulocyte colony-stimulating factor and tumor growth factor β1, but combinations of these factors had no effect on fibrocyte differentiation from purified monocytes. Conclusions Our results indicate that TLR2 agonists indirectly inhibit fibrocyte differentiation and that, for some TLR2 agonists, this inhibition involves other cell types in the PBMC population secreting an unknown factor that inhibits fibrocyte differentiation. Together, these data suggest that the presence of some bacterial signals can inhibit fibrocyte differentiation and may thus slow wound closure.

  1. Evidence that neomycin inhibits human cytomegalovirus infection of fibroblasts. (United States)

    Lobert, P E; Hober, D; Delannoy, A S; Wattré, P


    The effect of phosphoinositide-binding aminoglycosides, such as neomycin, gentamicin and streptomycin, on human cytomegalovirus (HCMV) infection of human fibroblasts MRC-5 was studied. The inhibition of HCMV infection was obtained with all of these molecules but neomycin was more effective than the others. We showed that the inoculation of the cells with cell-free viral suspension in presence of neomycin concentrations above 5 mM at 37 degrees C, inhibited more than 98% the HCMV infection. However, the preincubation of the fibroblasts with neomycin at 4 degrees C, before the removal of the drug and the inoculation of the cells, induced only a 30% decrease in the number of infected cells. Addition of neomycin after the HCMV-binding at 4 degrees C or the infection of the cells was less efficient to inhibit HCMV infection than the standard incubation of neomycin during inoculation of the fibroblasts. Indeed, 1 hour after the inoculation of the cells at 37 degrees C, neomycin still inhibited HCMV infection, but 4 hours after the inoculation, this drug had no effect on HCMV infection. Our findings demonstrated that neomycin must be present at the time of infection in order to exert a full inhibiting effect. The effect of neomycin on the HCMV infection was almost immediate upon the addition of the drug (binding and/or internalization) and after the virus internalization (inhibition of immediate-early events). We suggest that neomycin and other aminoglycoside antibiotics may interact with HCMV glycoproteins for binding to similar structural features of cell surface heparan sulfate proteoglycans and may inhibit HCMV infection in fibroblasts by disrupting phosphoinositide-mediated events in the cells.

  2. Is Selenium a Potential Treatment for Cancer Metastasis?

    Directory of Open Access Journals (Sweden)

    Yu-Chi Chen


    Full Text Available Selenium (Se is an essential micronutrient that functions as a redox gatekeeper through its incorporation into proteins to alleviate oxidative stress in cells. Although the epidemiological data are somewhat controversial, the results of many studies suggest that inorganic and organic forms of Se negatively affect cancer progression, and that several selenoproteins, such as GPXs, also play important roles in tumor development. Recently, a few scientists have examined the relationship between Se and metastasis, a late event in cancer progression, and have evaluated the potential of Se as an anti-angiogenesis or anti-metastasis agent. In this review, we present the current knowledge about Se compounds and selenoproteins, and their effects on the development of metastasis, with an emphasis on cell migration, invasion, and angiogenesis. In the cancers of breast, prostate, colorectal, fibrosarcoma, melanoma, liver, lung, oral squamous cell carcinoma, and brain glioma, there is either clinical evidence linking selenoproteins, such as thioredoxin reductase-1 to lymph node metastasis; in vitro studies indicating that Se compounds and selenoproteins inhibited cell motility, migration, and invasion, and reduced angiogenic factors in some of these cancer cells; or animal studies showing that Se supplementation resulted in reduced microvessel density and metastasis. Together, these data support the notion that Se may be an anti-metastastatic element in addition to being a cancer preventative agent.

  3. Is selenium a potential treatment for cancer metastasis? (United States)

    Chen, Yu-Chi; Prabhu, K Sandeep; Mastro, Andrea M


    Selenium (Se) is an essential micronutrient that functions as a redox gatekeeper through its incorporation into proteins to alleviate oxidative stress in cells. Although the epidemiological data are somewhat controversial, the results of many studies suggest that inorganic and organic forms of Se negatively affect cancer progression, and that several selenoproteins, such as GPXs, also play important roles in tumor development. Recently, a few scientists have examined the relationship between Se and metastasis, a late event in cancer progression, and have evaluated the potential of Se as an anti-angiogenesis or anti-metastasis agent. In this review, we present the current knowledge about Se compounds and selenoproteins, and their effects on the development of metastasis, with an emphasis on cell migration, invasion, and angiogenesis. In the cancers of breast, prostate, colorectal, fibrosarcoma, melanoma, liver, lung, oral squamous cell carcinoma, and brain glioma, there is either clinical evidence linking selenoproteins, such as thioredoxin reductase-1 to lymph node metastasis; in vitro studies indicating that Se compounds and selenoproteins inhibited cell motility, migration, and invasion, and reduced angiogenic factors in some of these cancer cells; or animal studies showing that Se supplementation resulted in reduced microvessel density and metastasis. Together, these data support the notion that Se may be an anti-metastastatic element in addition to being a cancer preventative agent.

  4. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li


    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  5. Organo-selenium-containing dental sealant inhibits bacterial biofilm. (United States)

    Tran, P; Hamood, A; Mosley, T; Gray, T; Jarvis, C; Webster, D; Amaechi, B; Enos, T; Reid, T


    Oral bacteria, including Streptococcus mutans and Streptococcus salivarius, contribute to tooth decay and plaque formation; therefore, it is essential to develop strategies to prevent dental caries and plaque formation. We recently showed that organo-selenium compounds covalently attached to different biomaterials inhibited bacterial biofilms. Our current study investigates the efficacy of an organo-selenium dental sealant (SeLECT-Defense(TM) sealant) in inhibiting S. mutans and S. salivarius biofilm formation in vitro. The organo-selenium was synthesized and covalently attached to dental sealant material via standard polymer chemistry. By colony-forming unit (CFU) assay and confocal microscopy, SeLECT-Defense(TM) sealant was found to completely inhibit the development of S. mutans and S. salivarius biofilms. To assess the durability of the anti-biofilm effect, we soaked the SeLECT-Defense(TM) sealant in PBS for 2 mos at 37°C and found that the biofilm-inhibitory effect was not diminished after soaking. To determine if organo-selenium inhibits bacterial growth under the sealant, we placed SeLECT-Defense sealant over a lawn of S. mutans. In contrast to a control sealant, SeLECT-Defense(TM) sealant completely inhibited the growth of S. mutans. These results suggest that the inhibitory effect of SeLECT-Defense(TM) sealant against S. mutans and S. salivarius biofilms is very effective and durable.

  6. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation (United States)

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim


    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  7. Mechanism of Arsenic Trioxide Inhibiting Angiogenesis in Multiple Myeloma

    Institute of Scientific and Technical Information of China (English)


    In order to explore the molecular mechanism of arsenic trioxide treating multiple myeloma (MM) via inhibition of angiogenesis, the expression of brain derived neurotrophic factor (BD-NF) and its specific receptor TrkB in human MM cell line KM3 and endothelial cell line ECV304 was detected by Western blotting. The angiogenic activity was evaluated by wound migration assay and tubule formation assay in vitro. The results showed that BDNF was detected in the MM cells and TrkB in the endothelial cells. Furthermore, 100 ng/mL BDNF could significantly induced endo thelial cell tubule formation and wound migration. As2 O3 depressed the expression of BDNF and TrkB in the dose- and time-dependent manner. As2O3 inhibited BDNF-induced wound migration and capillary tube formation. It was concluded that BDNF is a novel angiogenic protein as well as VEGF and has a relation with the pathogenesis of MM. As2O3 interrupts a paracrine loop between MM cells and endothelial cells by down-regulating the TrkB expression in endothelial cells and inhibiting BDNF production in MM cells, finally resulting in inhibition of MM angiogenesis. This is probably one part of the mechanisms of the As2O3 treating MM via the inhibition of angiogenesis.

  8. Thyroid peroxidase activity is inhibited by amino acids

    Directory of Open Access Journals (Sweden)

    D.P. Carvalho


    Full Text Available Normal in vitro thyroid peroxidase (TPO iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml. A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml and some amino acids (cysteine, tryptophan and methionine, 50 µM each also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml, and tyrosine, phenylalanine and histidine (50 µM each inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml or any other amino acid (50 µM tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine. Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2 concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  9. Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption. (United States)

    Soares, S S; Gutiérrez-Merino, C; Aureliano, M


    Decavanadate induced rat liver mitochondrial depolarization at very low concentrations, half-depolarization with 39 nM decavanadate, while it was needed a 130-fold higher concentration of monomeric vanadate (5 microM) to induce the same effect. Decavanadate also inhibits mitochondrial repolarization induced by reduced glutathione in vitro, with an inhibition constant of 1 microM, whereas no effect was observed up to 100 microM of monomeric vanadate. The oxygen consumption by mitochondria is also inhibited by lower decavanadate than monomeric vanadate concentrations, i.e. 50% inhibition is attained with 99 M decavanadate and 10 microM monomeric vanadate. Thus, decavanadate is stronger as mitochondrial depolarization agent than as inhibitor of mitochondrial oxygen consumption. Up to 5 microM, decavanadate does not alter mitochondrial NADH levels nor inhibit neither F(O)F(1)-ATPase nor cytochrome c oxidase activity, but it induces changes in the redox steady-state of mitochondrial b-type cytochromes (complex III). NMR spectra showed that decameric vanadate is the predominant vanadate species in decavanadate solutions. It is concluded that decavanadate is much more potent mitochondrial depolarization agent and a more potent inhibitor of mitochondrial oxygen consumption than monomeric vanadate, pointing out the importance to take into account the contribution of higher oligomeric species of vanadium for the biological effects of vanadate solutions.

  10. Paeoniflorin inhibits macrophage-mediated lung cancer metastasis. (United States)

    Wu, Qi; Chen, Gang-Ling; Li, Ya-Juan; Chen, Yang; Lin, Fang-Zhen


    Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages (M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages (stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P lung cancer cells (paeoniflorin 100 μmol·L(-1), P lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo (paeoniflorin 20, 40 mg·kg(-1), P lung metastasis of Lewis lung cancer cells xenograft partly through inhibiting the alternative activation of macrophages.

  11. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D. [Greehey Children' s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Keller, Charles, E-mail: [Greehey Children' s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 (United States); Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229 (United States)


    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression. We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.

  12. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  13. Prox1 regulates the notch1-mediated inhibition of neurogenesis.

    Directory of Open Access Journals (Sweden)

    Valeria Kaltezioti

    Full Text Available Activation of Notch1 signaling in neural progenitor cells (NPCs induces self-renewal and inhibits neurogenesis. Upon neuronal differentiation, NPCs overcome this inhibition, express proneural genes to induce Notch ligands, and activate Notch1 in neighboring NPCs. The molecular mechanism that coordinates Notch1 inactivation with initiation of neurogenesis remains elusive. Here, we provide evidence that Prox1, a transcription repressor and downstream target of proneural genes, counteracts Notch1 signaling via direct suppression of Notch1 gene expression. By expression studies in the developing spinal cord of chick and mouse embryo, we showed that Prox1 is limited to neuronal precursors residing between the Notch1+ NPCs and post-mitotic neurons. Physiological levels of Prox1 in this tissue are sufficient to allow binding at Notch1 promoter and they are critical for proper Notch1 transcriptional regulation in vivo. Gain-of-function studies in the chick neural tube and mouse NPCs suggest that Prox1-mediated suppression of Notch1 relieves its inhibition on neurogenesis and allows NPCs to exit the cell cycle and differentiate. Moreover, loss-of-function in the chick neural tube shows that Prox1 is necessary for suppression of Notch1 outside the ventricular zone, inhibition of active Notch signaling, down-regulation of NPC markers, and completion of neuronal differentiation program. Together these data suggest that Prox1 inhibits Notch1 gene expression to control the balance between NPC self-renewal and neuronal differentiation.

  14. IGFBP-3, hypoxia and TNF-{alpha} inhibit adiponectin transcription

    Energy Technology Data Exchange (ETDEWEB)

    Zappala, Giovanna, E-mail: [Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Rechler, Matthew M. [Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States); Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD (United States)


    The thiazolidinedione rosiglitazone, an agonist ligand for the nuclear receptor PPAR-{gamma}, improves insulin sensitivity in part by stimulating transcription of the insulin-sensitizing adipokine adiponectin. It activates PPAR-{gamma}-RXR-{alpha} heterodimers bound to PPAR-{gamma} response elements in the adiponectin promoter. Rosiglitazone-stimulated adiponectin protein synthesis in 3T3-L1 mouse adipocytes has been shown to be inhibited by IGFBP-3, which can be induced by hypoxia and the proinflammatory cytokine, TNF-{alpha}, two inhibitors of adiponectin transcription. The present study demonstrates that IGFBP-3, the hypoxia-mimetic agent cobalt chloride, and TNF-{alpha} inhibit rosiglitazone-induced adiponectin transcription in mouse embryo fibroblasts that stably express PPAR-{gamma}2. Native IGFBP-3 can bind RXR-{alpha} and inhibited rosiglitazone stimulated promoter activity, whereas an IGFBP-3 mutant that does not bind RXR-{alpha} did not. These results suggest that IGFBP-3 may mediate the inhibition of adiponectin transcription by hypoxia and TNF-{alpha}, and that IGFBP-3 binding to RXR-{alpha} may be required for the observed inhibition.

  15. Mutant p53 protein localized in the cytoplasm inhibits autophagy. (United States)

    Morselli, Eugenia; Tasdemir, Ezgi; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Vicencio, José Miguel; Soussi, Thierry; Kroemer, Guido


    The knockout, knockdown or chemical inhibition of p53 stimulates autophagy. Moreover, autophagy-inducing stimuli such as nutrient depletion, rapamycin or lithium cause the depletion of cytoplasmic p53, which in turn is required for the induction of autophagy. Here, we show that retransfection of p53(-/-) HCT 116 colon carcinoma cells with wild type p53 decreases autophagy down to baseline levels. Surprisingly, one third among a panel of 22 cancer-associated p53 single amino acid mutants also inhibited autophagy when transfected into p53(-/-) cells. Those variants of p53 that preferentially localize to the cytoplasm effectively repressed autophagy, whereas p53 mutants that display a prominently nuclear distribution failed to inhibit autophagy. The investigation of a series of deletion mutants revealed that removal of the DNA-binding domain from p53 fails to interfere with its role in the regulation of autophagy. Altogether, these results identify the cytoplasmic localization of p53 as the most important feature for p53-mediated autophagy inhibition. Moreover, the structural requirements for the two biological activities of extranuclear p53, namely induction of apoptosis and inhibition of autophagy, are manifestly different.

  16. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors. (United States)

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat


    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+)-dependent Cl(-) channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing Ba(2+). Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125)I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+) transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  17. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Abrar Ashoor

    Full Text Available Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+-dependent Cl(- channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+ chelator BAPTA and perfusion with Ca(2+-free bathing solution containing Ba(2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  18. Selection and inhibition mechanisms for human voluntary action decisions. (United States)

    Zhang, Jiaxiang; Hughes, Laura E; Rowe, James B


    One can choose between action alternatives that have no apparent difference in their outcomes. Such voluntary action decisions are associated with widespread frontal-parietal activation, and a tendency to inhibit the repetition of a previous action. However, the mechanism of initiating voluntary actions and the functions of different brain regions during this process remains largely unknown. Here, we combine computational modeling and functional magnetic resonance imaging to test the selection and inhibition mechanisms that mediate trial-to-trial voluntary action decisions. We fitted an optimized accumulator model to behavioral responses in a finger-tapping task in which participants were instructed to make chosen actions or specified actions. Model parameters derived from each individual were then applied to estimate the expected accumulated metabolic activity (EAA) engaged in every single trial. The EAA was associated with blood oxygenation level-dependent responses in a decision work that was maximal in the supplementary motor area and the caudal anterior cingulate cortex, consistent with a competitive accumulation-to-threshold mechanism for action decision by these regions. Furthermore, specific inhibition of the previous action's accumulator was related to the suppression of response repetition. This action-specific inhibition correlated with the activity of the right inferior frontal gyrus, when the option to repeat existed. Our findings suggest that human voluntary action decisions are mediated by complementary processes of intentional selection and inhibition.

  19. Molecular mechanism of viomycin inhibition of peptide elongation in bacteria. (United States)

    Holm, Mikael; Borg, Anneli; Ehrenberg, Måns; Sanyal, Suparna


    Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼ 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.

  20. Rolipram attenuates MK-801-induced deficits in latent inhibition. (United States)

    Davis, Jennifer A; Gould, Thomas J


    Latent inhibition is used to examine attention and study cognitive deficits associated with schizophrenia. Research using MK-801, an N-methyl-D-aspartate (NMDA) open channel blocker, implicates glutamate receptors in acquisition of latent inhibition of cued fear conditioning. Evidence suggests an important relationship between NMDA-induced increases in cyclic adenosine monophosphate (cAMP) and learning and memory. The authors examine whether amplification of the cAMP signaling pathway by rolipram, a selective Type 4 cAMP phosphodiesterase inhibitor, reverses MK-801-induced impairments in latent inhibition. One day before training, mice were injected with MK-801, rolipram, MK-801 and rolipram, or vehicle and received 20 preexposures or no preexposures to an auditory conditioned stimulus (CS). Training consisted of 2 CS-footshock unconditioned stimulus pairings. Rolipram attenuated the disruptive effect of MK-801 on latent inhibition, which suggests a role for the cAMP signaling pathway in the task and implicates phosphodiesterase inhibition as a target for treating cognitive impairments associated with schizophrenia.

  1. AI-2 of Aggregatibacter actinomycetemcomitans Inhibits Candida albicans Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Endang W. Bachtiar


    Full Text Available Aggregatibacter actinomycetemcomitans, a Gram-negative bacterium, and Candida albicans, a polymorphic fungus, are both commensals of the oral cavity but both are opportunistic pathogens that can cause oral diseases. A. actinomycetemcomitans produces a quorum-sensing molecule called autoinducer-2 (AI-2, synthesized by LuxS, that plays an important role in expression of virulence factors, in intra- but also in interspecies communication. The aim of this study was to investigate the role of AI-2 based signaling in the interactions between C. albicans and A. actinomycetemcomitans. A. actinomycetemcomitans adhered to C. albicans and inhibited biofilm formation by means of a molecule that was secreted during growth. C. albicans biofilm formation increased significantly when co-cultured with A. actinomycetemcomitans luxS, lacking AI-2 production. Addition of wild-type-derived spent medium or synthetic AI-2 to spent medium of the luxS strain, restored inhibition of C. albicans biofilm formation to wild-type levels. Addition of synthetic AI-2 significantly inhibited hypha formation of C. albicans possibly explaining the inhibition of biofilm formation. AI-2 of A. actinomycetemcomitans is synthesized by LuxS, accumulates during growth and inhibits C. albicans hypha- and biofilm formation. Identifying the molecular mechanisms underlying the interaction between bacteria and fungi may provide important insight into the balance within complex oral microbial communities.

  2. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Patrick R., E-mail:; Brannick, Katherine E., E-mail:; Wang, Wei, E-mail:; Gupta, Rupesh K., E-mail:; Flaws, Jodi A., E-mail:


    Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant found in consumer products that causes ovarian toxicity. Antral follicles are the functional ovarian units and must undergo growth, survival from atresia, and proper regulation of steroidogenesis to ovulate and produce hormones. Previous studies have determined that DEHP inhibits antral follicle growth and decreases estradiol levels in vitro; however, the mechanism by which DEHP elicits these effects is unknown. The present study tested the hypothesis that DEHP directly alters regulators of the cell cycle, apoptosis, and steroidogenesis to inhibit antral follicle functionality. Antral follicles from adult CD-1 mice were cultured with vehicle control or DEHP (1–100 μg/ml) for 24–96 h to establish the temporal effects of DEHP on the follicle. Following 24–96 h of culture, antral follicles were subjected to gene expression analysis, and media were subjected to measurements of hormone levels. DEHP increased the mRNA levels of cyclin D2, cyclin dependent kinase 4, cyclin E1, cyclin A2, and cyclin B1 and decreased the levels of cyclin-dependent kinase inhibitor 1A prior to growth inhibition. Additionally, DEHP increased the mRNA levels of BCL2-associated agonist of cell death, BCL2-associated X protein, BCL2-related ovarian killer protein, B-cell leukemia/lymphoma 2, and Bcl2-like 10, leading to an increase in atresia. Further, DEHP decreased the levels of progesterone, androstenedione, and testosterone prior to the decrease in estradiol levels, with decreased mRNA levels of side-chain cleavage, 17α-hydroxylase-17,20-desmolase, 17β-hydroxysteroid dehydrogenase, and aromatase. Collectively, DEHP directly alters antral follicle functionality by inhibiting growth, inducing atresia, and inhibiting steroidogenesis. - Highlights: • DEHP inhibits antral follicle growth by dysregulating cell cycle regulators. • DEHP induces antral follicle atresia by dysregulating apoptosis regulators. • DEHP

  3. Genetic influences on the acquisition and inhibition of fear. (United States)

    Wendt, Julia; Neubert, Jörg; Lindner, Katja; Ernst, Florian D; Homuth, Georg; Weike, Almut I; Hamm, Alfons O


    As a variant of the Pavlovian fear conditioning paradigm the conditional discrimination design allows for a detailed investigation of fear acquisition and fear inhibition. Measuring fear-potentiated startle responses, we investigated the influence of two genetic polymorphisms (5-HTTLPR and COMT Val(158)Met) on fear acquisition and fear inhibition which are considered to be critical mechanisms for the etiology and maintenance of anxiety disorders. 5-HTTLPR s-allele carriers showed a more stable potentiation of the startle response during fear acquisition. Homozygous COMT Met-allele carriers, which had demonstrated delayed extinction in previous investigations, show deficient fear inhibition in presence of a learned safety signal. Thus, our results provide further evidence that 5-HTTLPR and COMT Val(158)Met genotypes influence the vulnerability for the development of anxiety disorders via different mechanisms.

  4. Quantum Chemical Study on the Corrosion Inhibition of Some Oxadiazoles

    Directory of Open Access Journals (Sweden)

    Hong Ju


    Full Text Available Quantum chemical calculations based on DFT method were performed on three nitrogen-bearing heterocyclic compounds used as corrosion inhibitors for the mild steel in acid media to determine the relationship between the molecular structure of inhibitors and inhibition efficiency. The structural parameters, such as energy and distribution of highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, the charge distribution of the studied inhibitors, the absolute electronegativity (χ values, and the fraction of electrons (ΔN transfer from inhibitors to mild steel were also calculated and correlated with inhibition efficiencies. The results showed that the inhibition efficiency of inhibitors increased with the increase in energy of HOMO and decrease in energy gap of frontier molecular orbital, and the areas containing N and O atoms are most possible sites for bonding the steel surface by donating electrons to the mild steel.

  5. Electrochemical and Corrosion Inhibition Studies of Cucurbita Maxima

    Directory of Open Access Journals (Sweden)

    K. Anbarasi


    Full Text Available The influence of the acid extract of peel of Cucurbita maxima (PCM on the corrosion of mild steel in 1N H2SO4 was investigated by weight loss, polarization and impedance methods and SEM analysis. The inhibition efficiency increases with extract concentration and immersion period. Weight loss and corrosion rates of mild steel decreased as the concentration of inhibitor increased. The results showed that PCM was potential corrosion inhibitor and maximum inhibition efficiency (IE % obtained was 98% for 3%PCM at 1h. Impedance measurement results an increase in charge transfer resistance (Rct, which also confirms the corrosion inhibitive nature of the plant extract. Potentiodynamic study showed that PCM acts as a mixed type of inhibitor, which controls both the anodic and cathodic reactions. Scanning electron microscopic studies provided the evidence of improved surface condition for the corrosion protection, due to the adsorption.

  6. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti (United States)

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.


    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  7. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. (United States)

    Gabernet, Laetitia; Jadhav, Shantanu P; Feldman, Daniel E; Carandini, Matteo; Scanziani, Massimo


    The temporal features of tactile stimuli are faithfully represented by the activity of neurons in the somatosensory cortex. However, the cellular mechanisms that enable cortical neurons to report accurate temporal information are not known. Here, we show that in the rodent barrel cortex, the temporal window for integration of thalamic inputs is under the control of thalamocortical feed-forward inhibition and can vary from 1 to 10 ms. A single thalamic fiber can trigger feed-forward inhibition and contacts both excitatory and inhibitory cortical neurons. The dynamics of feed-forward inhibition exceed those of each individual synapse in the circuit and are captured by a simple disynaptic model of the thalamocortical projection. The variations in the integration window produce changes in the temporal precision of cortical responses to whisker stimulation. Hence, feed-forward inhibitory circuits, classically known to sharpen spatial contrast of tactile inputs, also increase the temporal resolution in the somatosensory cortex.

  8. Inhibitive Effects of Quercetin on Rabbit Tenon Capsule Fibroblasts Proliferation

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Lin Chen


    Purpose:To study the inhibitive effects of quercetin (QU) on the fibroblasts proliferation of rabbit Tenon's capsule and its mechanism.Methods: Cultured fibroblasts were exposed to different concentrations of QU solution and investigated by microculture tetrazolium (MTT) assay. The effect of QU was obser ved on cells cycle using the flow cytometer. Besults: QU can suppress the proliferation of rabbit Tenon's capsule fibroblasts in vitro and show a dose-time dependent tendency.Flow cytometer results showed 26.92% cell increase in G1 phase, 23.50% decrease in S phase and 3.42% decrease in G2 phase.Conclusions: QU can suppress the proliferation of rabbit Tenon's capsule fibroblasts in vitro and show a dose-time dependent tendency. QU may effect all phase of cell cycle and inhibit cell proliferation by inhibiting G1 phase transitting to S phase and G2 phase.

  9. Repellents inhibit P450 enzymes in Stegomyia (Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Gloria Isabel Jaramillo Ramirez

    Full Text Available The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES arm-in cage assay with Stegomyia (Aedes aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils.

  10. Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection (United States)

    Conway, Michael J.; Londono-Renteria, Berlin; Troupin, Andrea; Watson, Alan M.; Klimstra, William B.; Fikrig, Erol; Colpitts, Tonya M.


    Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions. PMID:27632170

  11. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi


    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  12. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus


    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  13. Natural Product Polyamines That Inhibit Human Carbonic Anhydrases

    Directory of Open Access Journals (Sweden)

    Rohan A. Davis


    Full Text Available Natural product compound collections have proven an effective way to access chemical diversity and recent findings have identified phenolic, coumarin, and polyamine natural products as atypical chemotypes that inhibit carbonic anhydrases (CAs. CA enzymes are implicated as targets of variable drug therapeutic classes and the discovery of selective, drug-like CA inhibitors is essential. Just two natural product polyamines, spermine and spermidine, have until now been investigated as CA inhibitors. In this study, five more complex natural product polyamines 1–5, derived from either marine sponge or fungi, were considered for inhibition of six different human CA isozymes of interest in therapeutic drug development. All compounds share a simple polyamine core fragment, either spermine or spermidine, yet display substantially different structure activity relationships for CA inhibition. Notably, polyamines 1–5 were submicromolar inhibitors of the cancer drug target CA IX, this is more potent than either spermine or spermidine.

  14. Inhibition of coagulation factors by recombinant barley serpin BSZx

    DEFF Research Database (Denmark)

    Dahl, Søren Weis; Rasmussen, S.K.; Petersen, L..C.;


    Barley serpin BSZx is a potent inhibitor of trypsin and chymotrypsin at overlapping reactive sites (Dahl, S.W., Rasmussen, S.K. and Hejgaard, J. (1996) J. Biol, Chem., in press), We have now investigated the interactions of BSZx with a range of serine proteinases from human plasma, pancreas...... as substrate, Complexes of these proteinase with BSZx resisted boiling in SDS, and amino acid sequencing showed that cleavage in the reactive center loop only occurred after P-1 Arg. Activated protein C and leukocyte elastase were slowly inhibited by BSZx (k(ass) = 1-2 x 10(2) M(-1) s(-1)) whereas factor XIIa......, urokinase and tissue type plasminogen activator, plasmin and pancreas kallikrein and elastase were not or only weakly affected, The inhibition pattern with mammalian proteinases reveal a specificity of BSZx similar to that of antithrombin III. Trypsin from Fusarium was not inhibited while interaction...

  15. Study of electroplated silver-palladium biofouling inhibiting coating

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Møller, Per

    , a new coating has been designed to form an inhibiting effect on the surface by itself. In this way, it is desired that the release of any matter will be in low concentration. This design is based on silver combined with nobler palladium, both with catalytic properties. Due to the potential difference......The undesired microbial and biofilm adhesions on the surfaces of food industrial facilities, water supply systems and etc. are so called as “biofouling”. Biofouling can cause many undesirable effects. Until now for solving biofouling, there are few non-toxic inhibiting treatments. In this study...... between silver and palladium while contacting with an electrolyte, the surface can form numerous discrete anodic and cathodic areas, so that an inhibiting reaction can be formed. In this paper, a series of electrochemical and biological tests were conducted to study the properties of these surfaces...

  16. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication (United States)

    Sacramento, Carolina Q.; de Melo, Gabrielle R.; de Freitas, Caroline S.; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C.; Barbosa-Lima, Giselle; Abrantes, Juliana L.; Vieira, Yasmine Rangel; Bastos, Mônica M.; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A.; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K.; Bozza, Fernando A.; Bozza, Patrícia T.; Boechat, Nubia; Thompson, Fabiano L.; de Filippis, Ana M. B.; Brüning, Karin; Souza, Thiago Moreno L.


    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV. PMID:28098253

  17. Inhibition of Bacterial RNase P RNA by Phenothiazine Derivatives

    Directory of Open Access Journals (Sweden)

    Shiying Wu


    Full Text Available There is a need to identify novel scaffolds and targets to develop new antibiotics. Methylene blue is a phenothiazine derivative, and it has been shown to possess anti-malarial and anti-trypanosomal activities. Here, we show that different phenothiazine derivatives and pyronine G inhibited the activities of three structurally different bacterial RNase P RNAs (RPRs, including that from Mycobacterium tuberculosis, with Ki values in the lower μM range. Interestingly, three antipsychotic phenothiazines (chlorpromazine, thioridazine, and trifluoperazine, which are known to have antibacterial activities, also inhibited the activity of bacterial RPRs, albeit with higher Ki values than methylene blue. Phenothiazines also affected lead(II-induced cleavage of bacterial RPR and inhibited yeast tRNAPhe, indicating binding of these drugs to functionally important regions. Collectively, our findings provide the first experimental data showing that long, noncoding RNAs could be targeted by different phenothiazine derivatives.

  18. Corrosion inhibition performance of a ionic liquid surfactant Br

    Directory of Open Access Journals (Sweden)

    Jing LIU


    Full Text Available In order to study the novel green organic mercury-substituting inhibitors, the ionic liquid surfactant 1-methyl-3-dodecyl imidazole bromide ( Br is synthesized with N-methyl imidazole and 1-bromodecane as raw materials. The corrosion inhibition of Br for zinc in zinc-manganese batteries is investigated using electrochemical methods and weight loss methods. The results show that corrosion inhibition efficiency increases with the increase of the concentration of Br, and when the concentration is higher than 8×10-3 mol/L, the inhibition efficiency tends to be stable. The polarization curve shows that Br belongs to mixed-type corrosion inhibitor. The thermodynamic parameters show that Br is spontaneously adsorbed on the zinc surface, forming a monomolecular adsorption layer, which fits with Langmuir adsorption isotherm with physical and chemical adsorption mechanism.

  19. Biofilms: strategies for metal corrosion inhibition employing microorganisms. (United States)

    Zuo, Rongjun


    Corrosion causes dramatic economic loss. Currently widely used corrosion control strategies have disadvantages of being expensive, subject to environmental restrictions, and sometimes inefficient. Studies show that microbial corrosion inhibition is actually a common phenomenon. The present review summarizes recent progress in this novel strategy: corrosion control using beneficial bacteria biofilms. The possible mechanisms may involve: (1) removal of corrosive agents (such as oxygen) by bacterial physiological activities (e.g., aerobic respiration), (2) growth inhibition of corrosion-causing bacteria by antimicrobials generated within biofilms [e.g., sulfate-reducing bacteria (SRB) corrosion inhibition by gramicidin S-producing Bacillus brevis biofilm], (3) generation of protective layer by biofilms (e.g., Bacillus licheniformis biofilm produces on aluminum surface a sticky protective layer of gamma-polyglutamate). Successful utilization of this novel strategy relies on advances in study at the interface of corrosion engineering and biofilm biology.

  20. Ketamine protects acetylcholinesterase against inhibition by propoxur and phoxim. (United States)

    Koutsoviti-Papadopoulou, M; Kounenis, G; Elezoglou, V


    In the present study the effect of ketamine on the contractions caused by propoxur and phoxim on the isolated guinea pig ileum was investigated. Ketamine was found able to inhibit in a concentration-dependent manner the contractile responses of the ileum to propoxur and phoxim, while it did not significantly modify the contractions induced by acetylcholine. Propoxur and phoxim augmented the contractile responses induced by acetylcholine in the presence of acetylcholinesterase. This augmentation was prevented by ketamine, in a concentration-dependent manner. These findings suggest that ketamine inhibits the contractile effect of propoxur and phoxim on the guinea pig ileum and this inhibition seems to be associated with the protection of acetylcholinesterase against the action of these two compounds.

  1. Investigation on inhibition of biological effects of endothelin

    Institute of Scientific and Technical Information of China (English)

    田青; 赵东; 张继峰; 高连如; 刘胜昔; 杨军; 苏静怡; 张肇康; 汤健; 唐朝枢


    The effects of a series of substances on the biological function of endothelin (ET) are reported. The substances used are: synthetic inhibitors of endothelium derived relaxing factors (EDRFs), inhibitor of big-endothelin converting enzyme phosphoramidon, antiserum of endothelin, antagonists of endothelin A receptor BQ123 and JKC301, and two Chinese anti-snake venom herb medicines Lobelia radians Thumb and Taris polyphylla Smith var. chinensis (Franch) Hara. The results showed that inhibiting the production of nitric oxide (NO) could stimulate ET release from vascular endothelium, elevate plasma ET and increase blood pressure. These changes could be reversed by L-arginine (L-Arg), the substrate of nitric oxide synthase (NOS). The amount of ET released by arterial endothelium could be increased or inhibited by inhibiting or stimulating the synthesis of prostacyclin (PGI2). The plasma ET level and blood pressure in both SHR and WKY rats could be decreased by giving phosphoramidon (PhR). The above results i

  2. Verapamil inhibits scar formation after peripheral nerve repairin vivo

    Institute of Scientific and Technical Information of China (English)

    A-chao Han; Jing-xiu Deng; Qi-shun Huang; Huai-yuan Zheng; Pan Zhou; Zhi-wei Liu; Zhen-bing Chen


    The calcium channel blocker, verapamil, has been shown to reduce scar formation by inhibiting ifbroblast adhesion and proliferationin vitro. It was not clear whether topical application of verapamil after surgical repair of the nerve in vivo could inhibit the formation of ex-cessive scar tissue. In this study, the right sciatic nerve of adult Sprague-Dawley rats was transected and sutured with No. 10-0 suture. The stoma was wrapped with gelfoam soaked with verapamil solution for 4 weeks. Compared with the control group (stoma wrapped with gelfoam soaked with physiological saline), the verapamil application inhibited the secretion of extracellular matrix from ifbroblasts in vivo, suppressed type I and III collagen secretion and increased the total number of axons and the number of myelinated axons. These ifndings suggest that verapamil could reduce the formation of scar tissue and promote axon growth after peripheral nerve repair.

  3. Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus. (United States)

    Arrizubieta, María Jesús; Toledo-Arana, Alejandro; Amorena, Beatriz; Penadés, José R; Lasa, Iñigo


    Bap (biofilm-associated protein) is a 254-kDa staphylococcal surface protein implicated in formation of biofilms by staphylococci isolated from chronic mastitis infections. The presence of potential EF-hand motifs in the amino acid sequence of Bap prompted us to investigate the effect of calcium on the multicellular behavior of Bap-expressing staphylococci. We found that addition of millimolar amounts of calcium to the growth media inhibited intercellular adhesion of and biofilm formation by Bap-positive strain V329. Addition of manganese, but not addition of magnesium, also inhibited biofilm formation, whereas bacterial aggregation in liquid media was greatly enhanced by metal-chelating agents. In contrast, calcium or chelating agents had virtually no effect on the aggregation of Bap-deficient strain M556. The biofilm elicited by insertion of bap into the chromosome of a biofilm-negative strain exhibited a similar dependence on the calcium concentration, indicating that the observed calcium inhibition was an inherent property of the Bap-mediated biofilms. Site-directed mutagenesis of two of the putative EF-hand domains resulted in a mutant strain that was capable of forming a biofilm but whose biofilm was not inhibited by calcium. Our results indicate that Bap binds Ca2+ with low affinity and that Ca2+ binding renders the protein noncompetent for biofilm formation and for intercellular adhesion. The fact that calcium inhibition of Bap-mediated multicellular behavior takes place in vitro at concentrations similar to those found in milk serum supports the possibility that this inhibition is relevant to the pathogenesis and/or epidemiology of the bacteria in the mastitis process.

  4. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. (United States)

    Martínez, María Guadalupe; Prado Acosta, Mariano; Candurra, Nélida A; Ruzal, Sandra M


    It has been previously described that S-layer binds to the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209). It was also shown that DC-SIGN is a cell-surface adhesion factor that enhances viral entry of several virus families. Among those, Junin virus (JUNV) entry is enhanced in cells expressing DC-SIGN and for that reason surface-layer protein (S-layer) of Lactobacillus acidophilus ATCC 4365 was evaluated as a possible JUNV inhibitor. Experiments using 3T3 cells stably expressing DC-SIGN, showed an almost complete inhibition of JUNV infection when they were treated with S-layer in a similar extend as the inhibition shown by mannan. However no inhibition effect was observed in 3T3 wild type cells or in 3T3 cells expressing liver/lymph node-specific ICAM-3 grabbing nonintegrin (L-SIGN or DC-SIGNR or CD209L). Treatments with S-layer during different times in the infection demonstrated that inhibition was only observed when S-layer was presented in early stages of the viral infection. This inhibition does not involve the classic recognition of mannose by this C-type lectin as the S-layer showed no evidence to be glycosylated. In fact, the highly basic nature of the S-layer (pI>9.5) seems to be involved in electrostatic interactions between DC-SIGN and S-layer, since high pH abolished the inhibitory effect on infection cause by the S-layer. In silico analysis predicts a Ca(2+)-dependant carbohydrate recognition domain in the SlpA protein. This novel characteristic of the S-layer, a GRAS status protein, contribute to the pathogen exclusion reported for this probiotic strain and may be applied as an antiviral agent to inhibit several kinds of viruses.

  5. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. (United States)

    Quistad, G B; Sparks, S E; Casida, J E


    Organophosphorus (OP) compound-induced inhibition of acetylcholinesterase (AChE) and neuropathy target esterase explains the rapid onset and delayed neurotoxic effects, respectively, for OP insecticides and related compounds but apparently not a third or intermediate syndrome with delayed onset and reduced limb mobility. This investigation tests the hypothesis that fatty acid amide hydrolase (FAAH), a modulator of endogenous signaling compounds affecting sleep (oleamide) and analgesia (anandamide), is a sensitive target for OP pesticides with possible secondary neurotoxicity. Chlorpyrifos oxon inhibits 50% of the FAAH activity (IC50 at 15 min, 25 degrees C, pH 9.0) in vitro at 40--56 nM for mouse brain and liver, whereas methyl arachidonyl phosphonofluoridate, ethyl octylphosphonofluoridate (EOPF), oleyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (oleyl-BDPO), and dodecyl-BDPO give IC50s of 0.08--1.1 nM. These BDPOs and EOPF inhibit mouse brain FAAH in vitro with > or =200-fold higher potency than for AChE. Five OP pesticides inhibit 50% of the brain FAAH activity (ED50) at diazinon, and methamidophos occurs near acutely toxic levels, profenofos and tribufos are effective at asymptomatic doses. Two BDPOs (dodecyl and phenyl) and EOPF are potent inhibitors of FAAH in vivo (ED50 0.5--6 mg/kg). FAAH inhibition of > or =76% in brain depresses movement of mice administered anandamide at 30 mg/kg ip, often leading to limb recumbency. Thus, OP pesticides and related inhibitors of FAAH potentiate the cannabinoid activity of anandamide in mice. More generally, OP compound-induced FAAH inhibition and the associated anandamide accumulation may lead to reduced limb mobility as a secondary neurotoxic effect.

  6. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase. (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S


    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.

  7. Response inhibition signals and miscoding of direction in dorsomedial striatum

    Directory of Open Access Journals (Sweden)

    Daniel W Bryden


    Full Text Available The ability to inhibit action is critical for everyday behavior and is affected by a variety of disorders. Behavioral control and response inhibition is thought to depend on a neural circuit that includes the dorsal striatum, yet the neural signals that lead to response inhibition and its failure are unclear. To address this issue, we recorded from neurons in rat dorsomedial striatum (mDS in a novel task in which rats responded to a spatial cue that signaled that reward would be delivered either to the left or to the right. On 80% of trials rats were instructed to respond in the direction cued by the light (GO. On 20% of trials a second light illuminated instructing the rat to refrain from making the cued movement and move in the opposite direction (STOP. Many neurons in mDS encoded direction, firing more or less strongly for GO movements made ipsilateral or contralateral to the recording electrode. Neurons that fired more strongly for contralateral GO responses were more active when rats were faster, showed reduced activity on STOP trials, and miscoded direction on errors, suggesting that when these neurons were overly active, response inhibition failed. Neurons that decreased firing for contralateral movement were excited during trials in which the rat was required to stop the ipsilateral movement. For these neurons activity was reduced when errors were made and was negatively correlated with movement time suggesting that when these neurons were less active on STOP trials, response inhibition failed. Finally, the activity of a significant number of neurons represented a global inhibitory signal, firing more strongly during response inhibition regardless of response direction. Breakdown by cell type suggests that putative medium spiny neurons tended to fire more strongly under STOP trials, whereas putative interneurons exhibited both activity patterns. 

  8. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail:; Zhang, Yi, E-mail:


    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  9. Inhibitive effects of three compositae plants on Microcystis aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Weihao ZHANG; Fuqing XU; Wei HE; Xing ZHENG; Chen YANG


    Based on common phenomena of biochemical interaction between plants and microorganisms, the inhi-bitive effects of three common terrestrial compositae plants, namely Artemisia lavandulaefolia DC., Conyza canadensis (L.) Cronq., and Kalimeris indica (L.) Sch.-Bip. on the blue algae Microcystis aeruginosa was studied.Live compositae plants are co-cultivated with algae in two different inoculation doses for 10 days in 5-pools incuba-tors, in order to exclude the influence of bacteria and nutri-ents. The results show that Artemisia lavandulaefolia DC has the most inhibitive potential among the three plants as evidenced by the most drastic decrease in optical density (OD680) of the algae. The inhibition rate is 93.3% (with initial inoculation dose of 2.0 × l06 Cells/mL) and 89.3% (with initial inoculation dose of 4.0 × 106 Cells/mL)respectively on the 10th day of cultivation. The average inhibition rate during the later half of the experiment is 0.76 (with initial inoculation dose of 2.0 × 106 Cells/mL) and 0.71 (with initial inoculation dose of 4.0 × 106 Cells/ mL), respectively. Logistic model analysis shows that com-positae plants such as A. lavandulaefolia DC. causes the reduction of the habitat's carrying capacity of algae.ANOVA analysis is used to determine the similarity and differences between every experimental group and an aver-age inhibitive rate model is used to evaluate the inhibition effects. The results show that A. lavandulaefolia DC., which grow well in the aquatic environment, may have a great potential in controlling algae bloom in eutrophic water.

  10. Kinetic properties and inhibition of Acinetobacter glutaminase-asparaginase. (United States)

    Steckel, J; Roberts, J; Philips, F S; Chou, T C


    Kinetic parameters, substrate specificity and exclusivity of ligands at binding sites of L-glutaminase-L-asparaginase purified from Acinetobacter glutaminasificans were studied in order to gain knowledge about the dual activities of this enzyme and its inhibition by structural analogs. Both L-glutamine and L-asparagine, which showed similar Km (4 approximately 7 X 10(-5) M) and Vmax (molecular activity 1.0 min-1) values, were competitive with each other for the substrate binding site. The products, L-glutamic acid and L-aspartic acid, showed competitive inhibition with respect to either L-glutamine or L-asparagine as substrates. Multiple inhibition of the glutaminase activity by L-glutamic acid and L-aspartic acid indicated that these ligands are mutually exclusive at the product-releasing site. The initial rates of both of the enzyme's activities were competitively inhibited by the following inhibitors (in rates of both of the enzyme's activities were competitively inhibited by the following inhibitors (in decreasing order of activity): 6-diazo-5-oxo-L-norleucine (DON), L-methionine sulfoximine, azaserine, and Acivicin. DON and azaserine inhibited both the asparaginase and glutaminase activities in a time-dependent and irreversible manner. The kinetic data suggest an ordered mechanism with glutamine or asparagine as the first substrate and glutamic acid or aspartic acid, respectively, as the last product. These results also suggest that a single mechanism and a single set of binding sites are responsible for catalyzing both of the enzyme's activities. The data also showed that succinylated enzyme, which has a 10-fold increase of plasma half-life in animals and humans and, thus, has benefit as a cancer chemotherapeutic agent, retained its catalytic activity and maintained Km and Vmax values similar to the native enzyme.

  11. Inhibition of Adipogenesis by Oligonol through Akt-mTOR Inhibition in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Jae-Yeo Park


    Full Text Available Polyphenols have recently become an important focus of study in obesity research. Oligonol is an oligomerized polyphenol, typically comprised of catechin-type polyphenols from a variety of fruits, which has been found to exhibit better bioavailability and bioreactivity than natural polyphenol compounds. Here, we demonstrated that Oligonol inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression. During adipogenesis, Oligonol downregulated the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ, CCAAT/enhancer binding proteins α (C/EBPα, and δ (C/EBPδ in a dose-dependent manner and the expression of genes involved in lipid biosynthesis. The antiadipogenic effect of Oligonol appears to originate from its ability to inhibit the Akt and mammalian target of rapamycin (mTOR signaling pathway by diminishing the phosphorylation of ribosomal protein S6 kinase (p70S6K, a downstream target of mTOR and forkhead box protein O1 (Foxo1. These results suggest that Oligonol may be a potent regulator of obesity by repressing major adipogenic genes through inhibition of the Akt signaling pathway, which induces the inhibition of lipid accumulation, ultimately inhibiting adipogenesis.

  12. Precision of Inhibition: Dendritic Inhibition by Individual GABAergic Synapses on Hippocampal Pyramidal Cells Is Confined in Space and Time. (United States)

    Müllner, Fiona E; Wierenga, Corette J; Bonhoeffer, Tobias


    Inhibition plays a fundamental role in controlling neuronal activity in the brain. While perisomatic inhibition has been studied in detail, the majority of inhibitory synapses are found on dendritic shafts and are less well characterized. Here, we combine paired patch-clamp recordings and two-photon Ca(2+) imaging to quantify inhibition exerted by individual GABAergic contacts on hippocampal pyramidal cell dendrites. We observed that Ca(2+) transients from back-propagating action potentials were significantly reduced during simultaneous activation of individual nearby inhibitory contacts. The inhibition of Ca(2+) transients depended on the precise spike-timing (time constant < 5 ms) and declined steeply in the proximal and distal direction (length constants 23-28 μm). Notably, Ca(2+) amplitudes in spines were inhibited to the same degree as in the shaft. Given the known anatomical distribution of inhibitory synapses, our data suggest that the collective inhibitory input to a pyramidal cell is sufficient to control Ca(2+) levels across the entire dendritic arbor with micrometer and millisecond precision.

  13. MMB-4 Inhibition of Aceylcholinesterase Is Similar across Species (United States)


    in 50% inhibition of AChE activity ( IC50 ) for RBC ghosts from each species was found to be very similar, differing by roughly two fold; of note...version 5.4). An IC50 value was determined for AChE from each animal species by fitting the percent of AChE activity with respect to MMB 4 concentration...Therefore, AChE activity and inhibition studies were carried out at 435 nm to reduce interference from MMB 4. Comparison of IC50 Values for MMB 4 with AChE

  14. Selective Inhibition of Aromatase by a Dihydroisocoumarin from Xyris pterygoblephara


    Endringer,Denise C.; Guimarães, Keller G.; Kondratyuk, Tamara P.; Pezzuto, John M.; Braga, Fernão C.


    Aromatase is a well-established target for the chemoprevention of breast cancer. The dihydroisocoumarin (3R,4R)-(-)-6-methoxy-1-oxo-3-pentyl-3,4-dihydro-1H-isochromen-4-yl acetate (1) (IC50 = 1.6 ± 0.1 μM), isolated from aerial parts of Xyris pterygoblephara, showed aromatase inhibitory activity. The specificity of 1 was evaluated by inhibition assays with cytochrome P450 enzymes. CYP1A1 was inhibited modestly (IC50 = 38.0 ± 2.0 μM), while CYP2C8 and CYP3A4 enzymes were not affected. Dihydroi...

  15. A New Approach for Biologically-Inhibiting Surfaces

    DEFF Research Database (Denmark)

    Møller, Per; Hilbert, Lisbeth Rischel; Corfitzen, Charlotte B.;


    A biologically-inhibiting surface based on electrochemical principles has been shown to have a reducing effect on the formation of biofilms in drinking water. The coating consists of silver and another precious metal, which is applied to the surface in small areas with a thickness measured...... in nanometers. Due to the difference in potentials, the biologically-inhibiting material will act as a galvanic element in contact with an electrolyte. The electrochemical processes taking place at the metal surface seem to exhibit a catalytic oxidation character more than an oligomeric effect from the silver....

  16. Mach band type lateral inhibition in different sense organs. (United States)

    von Békésy, G


    Experiments were done on the skin with shearing forces, vibrations, and heat stimuli and on the tongue with taste stimuli to show that the well known Mach bands are not exclusively a visual phenomenon. On the contrary, it is not difficult to produce areas of a decreased sensation magnitude corresponding to the dark Mach bands in vision. It is shown on a geometrical model of nervous interaction that the appearance of Mach bands for certain patterns of stimulus distribution is correlated with nervous inhibition surrounding the area of sensation. This corroborates the earlier finding that surrounding every area transmitting sensation there is an area simultaneously transmitting inhibition.


    Institute of Scientific and Technical Information of China (English)

    邵志敏; 江明; 吴炅; 余黎民; 韩企夏; 张延璆; 沈镇宙


    Breast tumorigenesis proceeds through an accumulation of specific genetic alteration. Breast malignant transformation is dependent on not only the rate of cell production but also on apoptcsis,a genetically prograined process of autonomous ceil death. We investigated whether breast tumorigenesis involved an altered susceptibility to apoptosis and proliferation by examining normal breast epithelium and breast cancer sampies. We found there is a great inhibition of spontaneous apoptosis in breast cancer ceils compared with normal breast epithelium. The inhibition of apoptosis in breast cancer may contribute to neoplastic transformation.

  18. Therapeutic complement inhibition – from experimental to clinical medicine. (United States)

    Lappegård, Knut Tore; Bjerre, Anna; Tjønnfjord, Geir Erland; Mollnes, Tom Eirik


    Internationally, the use of the C5-inhibiting monoclonal antibody eculizumab has in the course of just a few years become the first choice of treatment of atypical haemolytic uraemic syndrome and the most severe phenotypes of paroxysmal nocturnal haemoglobinuria. At present eculizumab is the only complement inhibitor in ordinary clinical use. This despite the fact that there only exists one randomised, placebo-controlled trial of eculizumab for paroxysmal nocturnal haemoglobinuria and none for atypical haemolytic uraemic syndrome, and that the therapy is very costly. There is reason to believe that complement inhibition as therapy will increase in the future, and that other drugs will also prove to be effective.

  19. Inhibition of skeletal muscle S1-myosin ATPase by peroxynitrite. (United States)

    Tiago, Teresa; Simão, Sónia; Aureliano, Manuel; Martín-Romero, Francisco Javier; Gutiérrez-Merino, Carlos


    Exposure of myosin subfragment 1 (S1) to 3-morpholinosydnonimine (SIN-1) produced a time-dependent inhibition of the F-actin-stimulated S1 Mg(2+)-ATPase activity, reaching 50% inhibition with 46.7 +/- 8.3 microM SIN-1 for 8.7 microM S1, that is, at a SIN-1/S1 molar ratio of approximately 5.5. The inhibition was due to the peroxynitrite produced by SIN-1 decomposition because (1) decomposed SIN-1 was found to have no effect on S1 ATPase activity, (2) addition of SIN-1 in the presence of superoxide dismutase and catalase fully prevented inhibition by SIN-1, and (3) micromolar pulses of chemically synthesized peroxynitrite produced inhibition of F-actin-stimulated S1 Mg(2+)-ATPase activity. In parallel, SIN-1 produced the inhibition of the nonphysiological Ca(2+)-dependent and K(+)/EDTA-dependent S1 ATPase activity of S1 and, therefore, suggested that the inhibition of F-actin-stimulated S1 Mg(2+)-ATPase activity is produced by the oxidation of highly reactive cysteines of S1 (Cys(707) and Cys(697)), located close to the catalytic center. This point was further confirmed by the titration of S1 cysteines with 5,5'-dithiobis(2-nitrobenzoic acid) and by the parallel decrease of Cys(707) labeling by 5-(iodoacetamido)fluorescein, and it was reinforced by the fact that other common protein modifications produced by peroxynitrite, for example, protein carbonyl and nitrotyrosine formation, were barely detected at the concentrations of SIN-1 that produced more than 50% inhibition of the F-actin-stimulated S1 Mg(2+)-ATPase activity. Differential scanning calorimetry of S1 (untreated and treated with different SIN-1 concentrations) pointed out that SIN-1, at concentrations that generate micromolar peroxynitrite fluxes, impaired the ability of ADP.V(1) to induce the intermediate catalytic transition state and also produced the partial unfolding of S1 that leads to an enhanced susceptibility of S1 to trypsin digestion, which can be fully protected by 2 mM GSH.

  20. Age-group differences in inhibiting an oculomotor response. (United States)

    Gottlob, Lawrence R; Fillmore, Mark T; Abroms, Ben D


    Age-group differences were examined in the delayed oculomotor response task, which requires that observers delay the execution of a saccade (eye movement) toward an abrupt-onset visual cue. This task differs from antisaccade and attentional capture in that inhibition causes saccades to be postponed, not redirected. Older adults executed more premature saccades than young adults, but there were no age-group differences in latency or accuracy of saccades executed at the proper time. The results suggest that older adults are less capable of inhibiting a prepotent saccadic response, but that other aspects of visual working memory related to the task are preserved.