WorldWideScience

Sample records for auditory response properties

  1. A comparison of anesthetic agents and their effects on the response properties of the peripheral auditory system.

    Science.gov (United States)

    Dodd, F; Capranica, R R

    1992-10-01

    Anesthetic agents were compared in order to identify the most appropriate agent for use during surgery and electrophysiological recordings in the auditory system of the tokay gecko (Gekko gecko). Each agent was first screened for anesthetic and analgesic properties and, if found satisfactory, it was subsequently tested in electrophysiological recordings in the auditory nerve. The following anesthetic agents fulfilled our criteria and were selected for further screening: sodium pentobarbital (60 mg/kg); sodium pentobarbital (30 mg/kg) and oxymorphone (1 mg/kg); 3.2% isoflurane; ketamine (440 mg/kg) and oxymorphone (1 mg/kg). These agents were subsequently compared on the basis of their effect on standard response properties of auditory nerve fibers. Our results verified that different anesthetic agents can have significant effects on most of the parameters commonly used in describing the basic response properties of the auditory system in vertebrates. We therefore conclude from this study that the selection of an appropriate experimental protocol is critical and must take into consideration the effects of anesthesia on auditory responsiveness. In the tokay gecko, we recommend 3.2% isoflurane for general surgical procedures; and for electrophysiological recordings in the eighth nerve we recommend barbiturate anesthesia of appropriate dosage in combination if possible with an opioid agent to provide additional analgesic action.

  2. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity.

    Science.gov (United States)

    Spitzer, M W; Semple, M N

    1998-12-01

    Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated

  4. The response properties of neurons in different fields of the auditory cortex in the rat

    Czech Academy of Sciences Publication Activity Database

    Profant, Oliver; Burianová, Jana; Syka, Josef

    2013-01-01

    Roč. 296, February (2013), s. 51-59 ISSN 0378-5955 R&D Projects: GA ČR(CZ) GAP303/12/1347; GA ČR(CZ) GBP304/12/G069 Institutional support : RVO:68378041 Keywords : auditory cortex * fequency representation * axon terminals Subject RIV: FH - Neurology Impact factor: 2.848, year: 2013

  5. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    Science.gov (United States)

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  6. Effects of Caffeine on Auditory Brainstem Response

    OpenAIRE

    Saleheh Soleimanian; Saeed Farahani; Mansoureh Adel Ghahraman; Dr. Abbas Kebriaiezadeh; Dr. Soghrat Faghihzadeh

    2008-01-01

    Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR).Materials and Methods: In this clinical trial study 43 nor...

  7. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  8. Presbycusis and auditory brainstem responses: a review

    Directory of Open Access Journals (Sweden)

    Shilpa Khullar

    2011-06-01

    Full Text Available Age-related hearing loss or presbycusis is a complex phenomenon consisting of elevation of hearing levels as well as changes in the auditory processing. It is commonly classified into four categories depending on the cause. Auditory brainstem responses (ABRs are a type of early evoked potentials recorded within the first 10 ms of stimulation. They represent the synchronized activity of the auditory nerve and the brainstem. Some of the changes that occur in the aging auditory system may significantly influence the interpretation of the ABRs in comparison with the ABRs of the young adults. The waves of ABRs are described in terms of amplitude, latencies and interpeak latency of the different waves. There is a tendency of the amplitude to decrease and the absolute latencies to increase with advancing age but these trends are not always clear due to increase in threshold with advancing age that act a major confounding factor in the interpretation of ABRs.

  9. Effects of Caffeine on Auditory Brainstem Response

    Directory of Open Access Journals (Sweden)

    Saleheh Soleimanian

    2008-06-01

    Full Text Available Background and Aim: Blocking of the adenosine receptor in central nervous system by caffeine can lead to increasing the level of neurotransmitters like glutamate. As the adenosine receptors are present in almost all brain areas like central auditory pathway, it seems caffeine can change conduction in this way. The purpose of this study was to evaluate the effects of caffeine on latency and amplitude of auditory brainstem response(ABR.Materials and Methods: In this clinical trial study 43 normal 18-25 years old male students were participated. The subjects consumed 0, 2 and 3 mg/kg BW caffeine in three different sessions. Auditory brainstem responses were recorded before and 30 minute after caffeine consumption. The results were analyzed by Friedman and Wilcoxone test to assess the effects of caffeine on auditory brainstem response.Results: Compared to control group the latencies of waves III,V and I-V interpeak interval of the cases decreased significantly after 2 and 3mg/kg BW caffeine consumption. Wave I latency significantly decreased after 3mg/kg BW caffeine consumption(p<0.01. Conclusion: Increasing of the glutamate level resulted from the adenosine receptor blocking brings about changes in conduction in the central auditory pathway.

  10. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals.

    Science.gov (United States)

    Lerud, Karl D; Almonte, Felix V; Kim, Ji Chul; Large, Edward W

    2014-02-01

    The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active processes in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear population responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet the biophysical origin of central auditory nonlinearities, their signal processing properties, and their relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical intervals that have been observed in the human brainstem. The model makes predictions about auditory signal processing and perception that are different from traditional delay-based models, and may provide insight into the nature of auditory population responses. We anticipate that the application of dynamical systems analysis will provide the starting point for generic models of auditory population dynamics, and lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-inhibitory networks of the central auditory nervous system. This approach has the potential to link neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of auditory system development. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Electrically evoked auditory steady-state responses in Guinea pigs.

    Science.gov (United States)

    Jeng, Fuh-Cherng; Abbas, Paul J; Brown, Carolyn J; Miller, Charles A; Nourski, Kirill V; Robinson, Barbara K

    2007-01-01

    Most cochlear implant systems available today provide the user with information about the envelope of the speech signal. The goal of this study was to explore the feasibility of recording electrically evoked auditory steady-state response (ESSR) and in particular to evaluate the degree to which the response recorded using electrical stimulation could be separated from stimulus artifact. Sinusoidally amplitude-modulated electrical stimuli with alternating polarities were used to elicit the response in adult guinea pigs. Separation of the stimulus artifact from evoked neural responses was achieved by summing alternating polarity responses or by using spectral analysis techniques. The recorded response exhibited physiological response properties including a pattern of nonlinear growth and their abolishment following euthanasia or administration of tetrodotoxin. These findings demonstrate that the ESSR is a response generated by the auditory system and can be separated from electrical stimulus artifact. As it is evoked by a stimulus that shares important features of cochlear implant stimulation, this evoked potential may be useful in either clinical or basic research efforts. Copyright 2007 S. Karger AG, Basel.

  12. The effectiveness of the Auditory Steady State Response in ...

    African Journals Online (AJOL)

    Determining the type, degree, and configuration of hearing loss in infants is a challenge requiring sophisticated electrophysiological equipment of which Auditory Evoked Responses, and more specifically the Auditory Brainstem Response, are currently the most reliable and widely used. These techniques, however, present ...

  13. A profile of auditory-responsive neurons in the larval zebrafish brain.

    Science.gov (United States)

    Vanwalleghem, Gilles; Heap, Lucy A; Scott, Ethan K

    2017-10-01

    Many features of auditory processing are conserved among vertebrates, but the degree to which these pathways are established at early stages is not well explored. In this study, we have observed single cell activity throughout the brains of larval zebrafish with the goal of identifying the cellular responses, brain regions, and brain-wide pathways through which these larvae perceive and process auditory stimuli. Using GCaMP and selective plane illumination microscopy, we find strong responses to auditory tones ranging from 100 Hz to 400 Hz. We also identify different categories of auditory neuron with distinct frequency response profiles. Auditory responses occur in the medial octavolateral nucleus, the torus semicircularis, the medial hindbrain, and the thalamus, and the flow of information among these regions resembles the pathways described in adult fish and mammals. The details of these patterns, however, indicate that auditory processing is still rudimentary in larvae. The range of frequencies detected is small, and while different neurons have distinct response profiles, most are sensitive to multiple frequencies, and distinct categories show substantial overlap in their responses. Likewise, while there are signs of nascent spatial representations of frequency in the larval brain, this only faintly resembles the clear tonotopy seen in adult fish and mammals. Overall, our results show that many fundamental properties of the auditory system are established early in development, and suggest that zebrafish will provide a good model in which to study the development and refinement of these pathways. © 2017 Wiley Periodicals, Inc.

  14. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas.

    Science.gov (United States)

    Gourévitch, Boris; Le Bouquin Jeannès, Régine; Faucon, Gérard; Liégeois-Chauvel, Catherine

    2008-03-01

    Temporal envelope processing in the human auditory cortex has an important role in language analysis. In this paper, depth recordings of local field potentials in response to amplitude modulated white noises were used to design maps of activation in primary, secondary and associative auditory areas and to study the propagation of the cortical activity between them. The comparison of activations between auditory areas was based on a signal-to-noise ratio associated with the response to amplitude modulation (AM). The functional connectivity between cortical areas was quantified by the directed coherence (DCOH) applied to auditory evoked potentials. This study shows the following reproducible results on twenty subjects: (1) the primary auditory cortex (PAC), the secondary cortices (secondary auditory cortex (SAC) and planum temporale (PT)), the insular gyrus, the Brodmann area (BA) 22 and the posterior part of T1 gyrus (T1Post) respond to AM in both hemispheres. (2) A stronger response to AM was observed in SAC and T1Post of the left hemisphere independent of the modulation frequency (MF), and in the left BA22 for MFs 8 and 16Hz, compared to those in the right. (3) The activation and propagation features emphasized at least four different types of temporal processing. (4) A sequential activation of PAC, SAC and BA22 areas was clearly visible at all MFs, while other auditory areas may be more involved in parallel processing upon a stream originating from primary auditory area, which thus acts as a distribution hub. These results suggest that different psychological information is carried by the temporal envelope of sounds relative to the rate of amplitude modulation.

  15. Auditory brainstem response in gas station attendants.

    Science.gov (United States)

    Quevedo, Lenita da Silva; Tochetto, Tania; Siqueira, Marcia Amaral; Machado, Márcia Salgado

    2012-12-01

    Ototoxicity of organic solvents can affect the hearing system up to the cochlea level and the central structures of hearing. To evaluate the neurophysiological integrity of the hearing system in subjects exposed to fuels using ABR. Prospective study. We evaluated attendants from three gas stations in Santa Maria/RS. The sample had 21 subjects, who were evaluated by auditory brainstem response. We found an alteration in the absolute latencies of Waves I and III and in all the interpeak latencies, in the right ear. In the left ear there was a change in the absolute latencies of all Waves, and in all the interpeak intervals. A change in the interaural difference of Wave V was found in 19% of the individuals. In the group exposed for more than five years, there were subjects with a statistically significant changes: in the I-V interpeak of the right ear; in the absolute latency of Wave I and in the III-V interpeak of the left year. Exposure to fuels can cause alterations in the central hearing system.

  16. Auditory middle latency response in children with learning difficulties.

    Science.gov (United States)

    Frizzo, Ana Claudia Figueiredo; Issac, Myriam Lima; Pontes-Fernandes, Angela Cristina; Menezes, Pedro de Lemos; Funayama, Carolina Araújo Rodrigues

    2012-07-01

     This is an objective laboratory assessment of the central auditory systems of children with learning disabilities.  To examine and determine the properties of the components of the Auditory Middle Latency Response in a sample of children with learning disabilities.  This was a prospective, cross-sectional cohort study with quantitative, descriptive, and exploratory outcomes. We included 50 children aged 8-13 years of both genders with and without learning disorders. Those with disorders of known organic, environmental, or genetic causes were excluded.  The Na, Pa, and Nb waves were identified in all subjects. The ranges of the latency component values were as follows: Na = 9.8-32.3 ms, Pa = 19.0-51.4 ms, Nb = 30.0-64.3 ms (learning disorders group) and Na = 13.2-29.6 ms, Pa = 21.8-42.8 ms, Nb = 28.4-65.8 ms (healthy group). The values of the Na-Pa amplitude ranged from 0.3 to 6.8 ìV (learning disorders group) or 0.2-3.6 ìV (learning disorders group). Upon analysis, the functional characteristics of the groups were distinct: the left hemisphere Nb latency was longer in the study group than in the control group. Peculiarities of the electrophysiological measures were observed in the children with learning disorders. This study has provided information on the Auditory Middle Latency Response and can serve as a reference for other clinical and experimental studies in children with these disorders.

  17. Modeling auditory evoked brainstem responses to transient stimuli

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Dau, Torsten; Harte, James

    2012-01-01

    A quantitative model is presented that describes the formation of auditory brainstem responses (ABR) to tone pulses, clicks and rising chirps as a function of stimulation level. The model computes the convolution of the instantaneous discharge rates using the “humanized” nonlinear auditory......-nerve (AN) model of Zilany and Bruce (2007) and an empirically derived unitary response function which is assumed to reflect contributions from different cell populations within the auditory brainstem, recorded at a given pair of electrodes on the scalp. It is shown that the model accounts for the decrease...

  18. Reevaluation of the Amsterdam Inventory for Auditory Disability and Handicap Using Item Response Theory

    Science.gov (United States)

    Hospers, J. Mirjam Boeschen; Smits, Niels; Smits, Cas; Stam, Mariska; Terwee, Caroline B.; Kramer, Sophia E.

    2016-01-01

    Purpose: We reevaluated the psychometric properties of the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1995) using item response theory. Item response theory describes item functioning along an ability continuum. Method: Cross-sectional data from 2,352 adults with and without hearing…

  19. Evaluating Auditory Pathway by Electrical Auditory Middle Latency Response and Postoperative Hearing Rehabilitation.

    Science.gov (United States)

    Wang, Bin; Cao, Keli; Wei, Chaogang; Gao, Zhiqiang; Li, Huan

    2018-03-14

    To establish an effective detection method to evaluate auditory pathway in patients by electrical evoked middle latency response (EMLR) before artificial cochlear implantation, and to analyze the relationship between postoperative hearing rehabilitation and auditory cortex functions. Twenty-three patients with artificial cochlear implant were recruited. EMLR was measured after adjusting the depth of anesthesia. The electrical auditory brainstem response (EABR) mode with monopolar stimulation and two-phase alternating current square waves was selected. The parameters of EMLR waveforms were recorded by the EABR measurement system. Nerve response telemetry (NRT) was examined by measuring threshold level (T value) and comfortable level (C value) 1 month after power-on, and hearing and speech development was followed up 12 months later. The detection rate of EMLR was 95.65%. The waveforms of EMLR were comparable to those of auditory middle latency response (AMLR), showing decreased latency and interval but similar amplitude. The induction rate of NRT was 69.23%, which was much lower than that of EMLR. The EMLR thresholds were significantly correlated to the T and C values, and were comparable to the T values numerically. The Spearman's r value between EMLR waveforms and CAP scores after using the cochlear implant for 12 months was 0.673 (P auditory cortex functions and postoperative hearing rehabilitation.

  20. Comparison of Responses in the Anterior and Primary Auditory Fields of the Ferret Cortex

    National Research Council Canada - National Science Library

    Kowalski, Nina; Versnel, Huib; Shamma, Shihab A

    1994-01-01

    Characteristics of an anterior auditory field (AAF) in the ferret auditory cortex are described in terms of its electrophysiological responses to tonal stimuli and compared to those of primary auditory cortex (AI...

  1. Hearing in action; auditory properties of neurones in the red nucleus of alert primates

    Directory of Open Access Journals (Sweden)

    Jonathan Murray Lovell

    2014-05-01

    Full Text Available The response of neurones in the Red Nucleus pars magnocellularis (RNm to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis, in a series of studies primarily designed to characterise the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behaviour, little is known about the sensory response properties of neurons in the red nucleus; particularly those concerning the auditory modality. Sites in the RN were recognised by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 µA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analysed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials were affected by electrical stimulation of the RN.

  2. Evaluation of peripheral compression and auditory nerve fiber intensity coding using auditory steady-state responses

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; M. Harte, James; Epp, Bastian

    2015-01-01

    . Evaluation of these properties provides information about the health state of the system. It has been shown that a loss of outer hair cells leads to a reduction in peripheral compression. It has also recently been shown in animal studies that noise over-exposure, producing temporary threshold shifts, can......The compressive nonlinearity of the auditory system is assumed to be an epiphenomenon of a healthy cochlea and, particularly, of outer-hair cell function. Another ability of the healthy auditory system is to enable communication in acoustical environments with high-level background noises...

  3. Auditory Evoked Responses in Neonates by MEG

    International Nuclear Information System (INIS)

    Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.

    2008-01-01

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age

  4. Auditory evoked responses in musicians during passive vowel listening are modulated by functional connectivity between bilateral auditory-related brain regions.

    Science.gov (United States)

    Kühnis, Jürg; Elmer, Stefan; Jäncke, Lutz

    2014-12-01

    Currently, there is striking evidence showing that professional musical training can substantially alter the response properties of auditory-related cortical fields. Such plastic changes have previously been shown not only to abet the processing of musical sounds, but likewise spectral and temporal aspects of speech. Therefore, here we used the EEG technique and measured a sample of musicians and nonmusicians while the participants were passively exposed to artificial vowels in the context of an oddball paradigm. Thereby, we evaluated whether increased intracerebral functional connectivity between bilateral auditory-related brain regions may promote sensory specialization in musicians, as reflected by altered cortical N1 and P2 responses. This assumption builds on the reasoning that sensory specialization is dependent, at least in part, on the amount of synchronization between the two auditory-related cortices. Results clearly revealed that auditory-evoked N1 responses were shaped by musical expertise. In addition, in line with our reasoning musicians showed an overall increased intracerebral functional connectivity (as indexed by lagged phase synchronization) in theta, alpha, and beta bands. Finally, within-group correlative analyses indicated a relationship between intracerebral beta band connectivity and cortical N1 responses, however only within the musicians' group. Taken together, we provide first electrophysiological evidence for a relationship between musical expertise, auditory-evoked brain responses, and intracerebral functional connectivity among auditory-related brain regions.

  5. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements...... that the middle components cannot be generated exclusively, if at all, in the primary auditory cortex, located in the temporal lobe. Furthermore, the responses are found to be of neurogenic origin according to the methodological procedure applied....

  6. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise.

    Science.gov (United States)

    White-Schwoch, Travis; Davies, Evan C; Thompson, Elaine C; Woodruff Carr, Kali; Nicol, Trent; Bradlow, Ann R; Kraus, Nina

    2015-10-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But this auditory learning rarely occurs in ideal listening conditions-children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3-5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features-even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response

  7. Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    Science.gov (United States)

    Cai, Shanqing; Beal, Deryk S.; Ghosh, Satrajit S.; Tiede, Mark K.; Guenther, Frank H.; Perkell, Joseph S.

    2012-01-01

    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (∼150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands. PMID:22911857

  8. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  9. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail

    2015-01-01

    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  10. Type-2 diabetes mellitus and auditory brainstem response.

    Science.gov (United States)

    Siddiqi, Sheelu S; Gupta, Rahul; Aslam, Mohd; Hasan, Syed Abrar; Khan, Shakeel Ahmad

    2013-11-01

    Diabetes mellitus (DM) causes pathophysiological changes at multiple organ system. With evoked potential techniques, the brain stem auditory response represents a simple procedure to detect both acoustic nerve and central nervous system pathway damage. The objective was to find the evidence of central neuropathy in diabetes patients by analyzing brainstem audiometry electric response obtained by auditory evoked potentials, quantify the characteristic of auditory brain response in long standing diabetes and to study the utility of auditory evoked potential in detecting the type, site, and nature of lesions. A total of 25 Type-2 DM [13 (52%) males and 12 (48%) females] with duration of diabetes over 5 years and aged over 30 years. The brainstem evoked response audiometry (BERA) was performed by universal smart box manual version 2.0 at 70, 80, and 90 dB. The wave latency pattern and interpeak latencies were estimated. This was compared with 25 healthy controls (17 [68%] males and 8 [32%] females). In Type-2 DM, BERA study revealed that wave-III representing superior olivary complex at 80 dB had wave latency of (3.99 ± 0.24) ms P diabetic neuropathy, of which 12 (92%) showed abnormal BERA. In nonneuropathic [12 (48%)] only 6 (50%) showed abnormal BERA. Delay in absolute latencies and interpeak latencies by BERA demonstrates defect at level of brainstem and midbrain in long standing Type-2 diabetes subjects, which is more pronounced in those with neuropathy.

  11. Accuracy of averaged auditory brainstem response amplitude and latency estimates

    DEFF Research Database (Denmark)

    Madsen, Sara Miay Kim; M. Harte, James; Elberling, Claus

    2017-01-01

    Objective: The aims were to 1) establish which of the four algorithms for estimating residual noise level and signal-to-noise ratio (SNR) in auditory brainstem responses (ABRs) perform better in terms of post-average wave-V peak latency and amplitude errors and 2) determine whether SNR or noise...

  12. Ipsilateral and Contralateral Auditory Brainstem Response Reorganization in Hemispherectomized Patients

    Directory of Open Access Journals (Sweden)

    Ning Yao

    2013-01-01

    Full Text Available Background. Cortical hemispherectomy leads to degeneration of ipsilateral subcortical structures, which can be observed long term after the operation. Therefore, reorganization of the brainstem auditory pathway might occur. The aim of this study was to assess reorganization of brainstem auditory pathways by measuring the auditory brainstem response (ABR in long-term hemispherectomized patients. Methods. We performed bilateral monaural stimulation and measured bilateral ABR in 8 patients ~20 years after hemispherectomy and 10 control subjects. Magnetic resonance imaging (MRI was performed in patients to assess structural degeneration. Results. All patients showed degenerated ipsilateral brainstem structures by MRI but no significant differences in bilateral recording ABR wave latencies. However, nonsurgical-side stimulation elicited significantly longer wave V latencies compared to surgical-side stimulation. Differences in bilateral ABR were observed between hemispherectomized patients and control subjects. Waves III and V latencies elicited by nonsurgical-side stimulation were significantly longer than those in control subjects; surgical-side stimulation showed no significant differences. Conclusions. (1 Differences in ABR latency elicited by unilateral stimulation are predominantly due to bilateral brainstem auditory pathway activity rather than to changes in brainstem volume; (2 ABR Waves III and V originate predominantly in the contralateral brainstem; and (3 subcortical auditory pathways appear to reorganize after long term hemispherectomy.

  13. Plasticity in neuromagnetic cortical responses suggests enhanced auditory object representation.

    Science.gov (United States)

    Ross, Bernhard; Jamali, Shahab; Tremblay, Kelly L

    2013-12-05

    Auditory perceptual learning persistently modifies neural networks in the central nervous system. Central auditory processing comprises a hierarchy of sound analysis and integration, which transforms an acoustical signal into a meaningful object for perception. Based on latencies and source locations of auditory evoked responses, we investigated which stage of central processing undergoes neuroplastic changes when gaining auditory experience during passive listening and active perceptual training. Young healthy volunteers participated in a five-day training program to identify two pre-voiced versions of the stop-consonant syllable 'ba', which is an unusual speech sound to English listeners. Magnetoencephalographic (MEG) brain responses were recorded during two pre-training and one post-training sessions. Underlying cortical sources were localized, and the temporal dynamics of auditory evoked responses were analyzed. After both passive listening and active training, the amplitude of the P2m wave with latency of 200 ms increased considerably. By this latency, the integration of stimulus features into an auditory object for further conscious perception is considered to be complete. Therefore the P2m changes were discussed in the light of auditory object representation. Moreover, P2m sources were localized in anterior auditory association cortex, which is part of the antero-ventral pathway for object identification. The amplitude of the earlier N1m wave, which is related to processing of sensory information, did not change over the time course of the study. The P2m amplitude increase and its persistence over time constitute a neuroplastic change. The P2m gain likely reflects enhanced object representation after stimulus experience and training, which enables listeners to improve their ability for scrutinizing fine differences in pre-voicing time. Different trajectories of brain and behaviour changes suggest that the preceding effect of a P2m increase relates to brain

  14. Auditory steady-state response in cochlear implant patients.

    Science.gov (United States)

    Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo

    2018-03-19

    Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Auditory-neurophysiological responses to speech during early childhood: Effects of background noise

    Science.gov (United States)

    White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina

    2015-01-01

    Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties

  16. Establishing the Response of Low Frequency Auditory Filters

    Science.gov (United States)

    Rafaelof, Menachem; Christian, Andrew; Shepherd, Kevin; Rizzi, Stephen; Stephenson, James

    2017-01-01

    The response of auditory filters is central to frequency selectivity of sound by the human auditory system. This is true especially for realistic complex sounds that are often encountered in many applications such as modeling the audibility of sound, voice recognition, noise cancelation, and the development of advanced hearing aid devices. The purpose of this study was to establish the response of low frequency (below 100Hz) auditory filters. Two experiments were designed and executed; the first was to measure subject's hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz), and the second was to measure the Psychophysical Tuning Curves (PTCs) at two signal frequencies (Fs= 40 and 63Hz). Experiment 1 involved 36 subjects while experiment 2 used 20 subjects selected from experiment 1. Both experiments were based on a 3-down 1-up 3AFC adaptive staircase test procedure using either a variable level narrow-band noise masker or a tone. A summary of the results includes masked threshold data in form of PTCs, the response of auditory filters, their distribution, and comparison with similar recently published data.

  17. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  18. [Comparative study between auditory steady-state responses, auditory brain-stem responses and liminar tonal audiometry].

    Science.gov (United States)

    Martínez Fernández, Asunción; Alañón Fernández, Miguel Angel; Ayala Martínez, Luis Félix; Alvarez Alvarez, Ana Belén; Miranda León, María Teresa; Sainz Quevedo, Manuel

    2007-01-01

    Auditory steady-state responses (ASSR) using frequencies of modulation between 70-110 Hz are a new auditive exploration technique. The aim of the study was to evaluate the contribution of the ASSR to diagnostic of the audition. Different aportations of auditory steady-states responses (ASSR) and auditory brain-stem responses (ABR) to diagnostic of threshold of audition were studied Differences between these thresholds and thresholds obtained by liminar tonal audiometry (LTA) were studied too. Correlations between thresholds obtained by ASSR and LTA were studied. ASSR detected rest of audition that transients ABR did not detect. Differences about -13.750 dB HL (-5.209 to -22.291) and -13.250 dB HL (-7.337 to -19.163) were found between registered values for carriers of 500 and 1000 Hz and the thresholds by LTA for these carriers. Differences about 1.625 dB HL (-6.967 to 10.217) and -2.875 dB HL (-7.446 to 1.696) were found between estimations for the carries of 500 and 1000 Hz and thresholds by TLA. Statistically very significant (P=.01) coefficients of correlation were found between registered and estimated thresholds by ASSR for carrier of 500 and 1000 Hz and threshold by TLA for these frequencies. Auditory steady-state responses (ASSR) using frequencies of modulation between 70-110 Hz are a new auditive technique of exploration. This stimulus is more frequency-specific than clicks for auditory brain-stem responses (ABR). Response is not modificated by steady of consciousness. The technique is doublely objective. Thresholds obtained by ASSR permits to estimation of the audition threshold.

  19. Response actions influence the categorization of directions in auditory space

    Directory of Open Access Journals (Sweden)

    Marcella de Castro Campos Velten

    2015-08-01

    Full Text Available Spatial region concepts such as front, back, left and right reflect our typical interaction with space, and the corresponding surrounding regions have different statuses in memory. We examined the representation of spatial directions in the auditory space, specifically in how far natural response actions, such as orientation movements towards a sound source, would affect the categorization of egocentric auditory space. While standing in the middle of a circle with 16 loudspeakers, participants were presented acoustic stimuli coming from the loudspeakers in randomized order, and verbally described their directions by using the concept labels front, back, left, right, front-right, front-left, back-right and back-left. Response actions varied in three blocked conditions: 1 facing front, 2 turning the head and upper body to face the stimulus, and 3 turning the head and upper body plus pointing with the hand and outstretched arm towards the stimulus. In addition to a protocol of the verbal utterances, motion capture and video recording generated a detailed corpus for subsequent analysis of the participants’ behavior. Chi-square tests revealed an effect of response condition for directions within the left and right sides. We conclude that movement-based response actions influence the representation of auditory space, especially within the sides’ regions.

  20. Auditory-visual integration modulates location-specific repetition suppression of auditory responses.

    Science.gov (United States)

    Shrem, Talia; Murray, Micah M; Deouell, Leon Y

    2017-11-01

    Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.

  1. Automatic hearing loss detection system based on auditory brainstem response

    International Nuclear Information System (INIS)

    Aldonate, J; Mercuri, C; Reta, J; Biurrun, J; Bonell, C; Gentiletti, G; Escobar, S; Acevedo, R

    2007-01-01

    Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory

  2. Auditory brain stem responses in the detection of brain death.

    Science.gov (United States)

    Ozgirgin, O Nuri; Ozçelik, Tuncay; Sevimli, Nilay Kizilkaya

    2003-01-01

    We evaluated comatose patients by auditory brain stem responses (ABR) to determine the role of ABR in the diagnosis of impending brain death. Sixty comatose patients in the intensive care unit were evaluated by brain stem evoked response audiometry. Correlations were sought between the absence or presence of ABRs and the presenting pathology, the Glasgow Coma Scale (GCS) scores, and ultimate diagnoses. The brain stem responses were totally absent in 41 patients. Presence of wave I could be obtained in only 10 patients. All the waveforms were found in nine patients; however, in eight patients the potentials disappeared as the GCS scores decreased to 3. Detection of wave I alone strongly suggested dysfunction of the brain stem. However, loss of wave I particularly in trauma patients aroused doubt as to whether the absence was associated with auditory end organ injury or brain stem dysfunction. The results suggest that evaluation of ABR may support brain death in a comatose patient (i) when wave I is present alone, (ii) the absence of wave I is accompanied by a documented auditory end organ injury, or (iii) when previously recorded potentials are no longer detectable.

  3. Influence of inter-field communication on neuronal response synchrony across auditory cortex.

    Science.gov (United States)

    Carrasco, Andres; Lomber, Stephen G

    2013-10-01

    Sensory information is encoded by cortical neurons in the form of synaptic discharge time and rate level. These neuronal codes generate response patterns across cell assemblies that are crucial to various cognitive functions. Despite pivotal information about structural and cognitive factors involved in the generation of synchronous neuronal responses such as stimulus context, attention, age, cortical depth, sensory experience, and receptive field properties, the influence of cortico-cortical connectivity on the emergence of neuronal response patterns is poorly understood. The present investigation assesses the role of cortico-cortical connectivity in the modulation of neuronal discharge synchrony across auditory cortex cell-assemblies. Acute single-unit recording techniques in combination with reversible cooling deactivation procedures were used in the domestic cat (Felis catus). Recording electrodes were positioned across primary and non-primary auditory fields and neuronal activity was measured before, during, and after synaptic deactivation of adjacent cortical regions in the presence of acoustic stimulation. Cross-correlation functions of simultaneously recorded units were generated and changes in response synchrony levels across cooling conditions were measured. Data analyses revealed significant decreases in response time coincidences between cortical neurons during periods of cortical deactivation. Collectively, the results of the present investigation demonstrate that cortical neurons participate in the modulation of response synchrony levels across neuronal assemblies of primary and non-primary auditory fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location.

    Science.gov (United States)

    Smulders, Tom V; Jarvis, Erich D

    2013-11-01

    Repeated exposure to an auditory stimulus leads to habituation of the electrophysiological and immediate-early-gene (IEG) expression response in the auditory system. A novel auditory stimulus reinstates this response in a form of dishabituation. This has been interpreted as the start of new memory formation for this novel stimulus. Changes in the location of an otherwise identical auditory stimulus can also dishabituate the IEG expression response. This has been interpreted as an integration of stimulus identity and stimulus location into a single auditory object, encoded in the firing patterns of the auditory system. In this study, we further tested this hypothesis. Using chronic multi-electrode arrays to record multi-unit activity from the auditory system of awake and behaving zebra finches, we found that habituation occurs to repeated exposure to the same song and dishabituation with a novel song, similar to that described in head-fixed, restrained animals. A large proportion of recording sites also showed dishabituation when the same auditory stimulus was moved to a novel location. However, when the song was randomly moved among 8 interleaved locations, habituation occurred independently of the continuous changes in location. In contrast, when 8 different auditory stimuli were interleaved all from the same location, a separate habituation occurred to each stimulus. This result suggests that neuronal memories of the acoustic identity and spatial location are different, and that allocentric location of a stimulus is not encoded as part of the memory for an auditory object, while its acoustic properties are. We speculate that, instead, the dishabituation that occurs with a change from a stable location of a sound is due to the unexpectedness of the location change, and might be due to different underlying mechanisms than the dishabituation and separate habituations to different acoustic stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Evaluation of an auditory brainstem response in icteric neonates

    Directory of Open Access Journals (Sweden)

    Ahmad Talebian

    2017-08-01

    Full Text Available Background: Neonatal hyperbilirubinemia is a common and preventable cause of sensory-neural hearing impairment, which can cause difficulties in the development of speech and communication. This study was conducted to detect the toxic effect of hyperbilirubinemia on the brain stem and auditory tract in neonates with icterus admitted to Shahid Beheshti Hospital in Kashan, Iran. Materials and Methods: This cross-sectional study was conducted on 98 neonates with increased indirect bilirubin admitted to Shahid Beheshti Hospital in Kashan during 2014-2015. The patients were referred to Matini Hospital for the assessment of the auditory brainstem response (ABR; wave latency and interpeak intervals of the waves were also evaluated. According to the serum bilirubin level, the neonates were allocated into two groups; one group had a serum bilirubin level of 13-20 mg/d and another group had a bilirubin level more than 20 mg/d. Results: From 98 neonates, 26 (26.5% had a bilirubin level more than 20 mg/d and 72 (73.5% had a bilirubin level of 13-20 mg/d. Also, 46.1% of the neonates in the first group (bilirubin20 mg/d can cause an auditory processing disorder in neonates. So, performing ABR for screening and early detection of bilirubin toxicity can be recommended as a necessary audiologic intervention in all cases of severe neonatal hyperbilirubinemia.

  6. Attentional Modulation of Auditory Steady-State Responses

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  7. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  8. A comparison of auditory brainstem responses across diving bird species

    Science.gov (United States)

    Crowell, Sara E.; Berlin, Alicia; Carr, Catherine E.; Olsen, Glenn H.; Therrien, Ronald E.; Yannuzzi, Sally E.; Ketten, Darlene R.

    2015-01-01

    There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscus demersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateria mollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species' vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range.

  9. Amelioration of Auditory Response by DA9801 in Diabetic Mouse

    Directory of Open Access Journals (Sweden)

    Yeong Ro Lee

    2015-01-01

    Full Text Available Diabetes mellitus (DM is a metabolic disease that involves disorders such as diabetic retinopathy, diabetic neuropathy, and diabetic hearing loss. Recently, neurotrophin has become a treatment target that has shown to be an attractive alternative in recovering auditory function altered by DM. The aim of this study was to evaluate the effect of DA9801, a mixture of Dioscorea nipponica and Dioscorea japonica extracts, in the auditory function damage produced in a STZ-induced diabetic model and to provide evidence of the mechanisms involved in enhancing these protective effects. We found a potential application of DA9801 on hearing impairment in the STZ-induced diabetic model, demonstrated by reducing the deterioration produced by DM in ABR threshold in response to clicks and normalizing wave I–IV latencies and Pa latencies in AMLR. We also show evidence that these effects might be elicited by inducing NGF related through Nr3c1 and Akt. Therefore, this result suggests that the neuroprotective effects of DA9801 on the auditory damage produced by DM may be affected by NGF increase resulting from Nr3c1 via Akt transformation.

  10. Auditory Brainstem Responses to Continuous Natural Speech in Human Listeners.

    Science.gov (United States)

    Maddox, Ross K; Lee, Adrian K C

    2018-01-01

    Speech is an ecologically essential signal, whose processing crucially involves the subcortical nuclei of the auditory brainstem, but there are few experimental options for studying these early responses in human listeners under natural conditions. While encoding of continuous natural speech has been successfully probed in the cortex with neurophysiological tools such as electroencephalography (EEG) and magnetoencephalography, the rapidity of subcortical response components combined with unfavorable signal-to-noise ratios signal-to-noise ratio has prevented application of those methods to the brainstem. Instead, experiments have used thousands of repetitions of simple stimuli such as clicks, tone-bursts, or brief spoken syllables, with deviations from those paradigms leading to ambiguity in the neural origins of measured responses. In this study we developed and tested a new way to measure the auditory brainstem response (ABR) to ongoing, naturally uttered speech, using EEG to record from human listeners. We found a high degree of morphological similarity between the speech-derived ABRs and the standard click-evoked ABR, in particular, a preserved Wave V, the most prominent voltage peak in the standard click-evoked ABR. Because this method yields distinct peaks that recapitulate the canonical ABR, at latencies too short to originate from the cortex, the responses measured can be unambiguously determined to be subcortical in origin. The use of naturally uttered speech to measure the ABR allows the design of engaging behavioral tasks, facilitating new investigations of the potential effects of cognitive processes like language and attention on brainstem processing.

  11. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  12. The auditory brainstem response in two lizard species

    DEFF Research Database (Denmark)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong

    2010-01-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal...... animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform...

  13. Amplitude modulation rate dependent topographic organization of the auditory steady-state response in human auditory cortex.

    Science.gov (United States)

    Weisz, Nathan; Lithari, Chrysoula

    2017-10-01

    Periodic modulations of an acoustic feature, such as amplitude over a certain frequency range, leads to phase locking of neural responses to the envelope of the modulation. Using electrophysiological methods this neural activity pattern, also called the auditory steady-state response (aSSR), is visible following frequency transformation of the evoked response as a clear spectral peak at the modulation frequency. Despite several studies employing the aSSR that show, for example, strongest responses for ∼40 Hz and an overall right-hemispheric dominance, it has not been investigated so far to what extent within auditory cortex different modulation frequencies elicit aSSRs at a homogenous source or whether the localization of the aSSR is topographically organized in a systematic manner. The latter would be suggested by previous neuroimaging works in monkeys and humans showing a periodotopic organization within and across distinct auditory fields. However, the sluggishness of the signal from these neuroimaging works prohibit inferences with regards to the fine-temporal features of the neural response. In the present study, we employed amplitude-modulated (AM) sounds over a range between 4 and 85 Hz to elicit aSSRs while recording brain activity via magnetoencephalography (MEG). Using beamforming and a fine spatially resolved grid restricted to auditory cortical processing regions, our study revealed a topographic representation of the aSSR that depends on AM rate, in particular in the medial-lateral (bilateral) and posterior-anterior (right auditory cortex) direction. In summary, our findings confirm previous studies that showing different AM rates to elicit maximal response in distinct neural populations. They extend these findings however by also showing that these respective neural ensembles in auditory cortex actually phase lock their activity over a wide modulation frequency range. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children

    OpenAIRE

    Hornickel, Jane; Knowles, Erica; Kraus, Nina

    2011-01-01

    The click-evoked auditory brainstem response (ABR) is widely used in clinical settings, partly due to its predictability and high test-retest consistency. More recently, the speech-evoked ABR has been used to evaluate subcortical processing of complex signals, allowing for the objective assessment of biological processes underlying auditory function and auditory processing deficits not revealed by responses to clicks. Test-retest reliability of some components of speech-evoked ABRs has been s...

  15. Electrophysiological response during auditory gap detection: Biomarker for sensory and communication alterations in autism spectrum disorder?

    Science.gov (United States)

    Foss-Feig, Jennifer H; Stavropoulos, Katherine K M; McPartland, James C; Wallace, Mark T; Stone, Wendy L; Key, Alexandra P

    2018-01-01

    Sensory symptoms, including auditory processing deficits, are common in autism spectrum disorder (ASD). Processing of temporal aspects of auditory input is understudied; yet, deficits in this domain could contribute to language-related impairments. In children with ASD and well-matched controls, this study examined electrophysiological response to silent gaps in auditory stimuli. Results revealed attenuated amplitude of the P2 event-related potential (ERP) component in ASD. The P2 amplitude reduction was also associated with sensory, language, and diagnostic features. These results suggest that neural response during auditory gap detection is a promising ASD biomarker that could be useful for stratifying subgroups and evaluating treatment response.

  16. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    Cochlear implants (CI) directly stimulate the auditory nerve (AN), bypassing the mechano-electrical transduction in the inner ear. Trains of biphasic, charge balanced pulses (anodic and cathodic) are used as stimuli to avoid damage of the tissue. The pulses of either polarity are capable......μs, which is large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulation of the AN [1,2] were considered in terms of their efficacy to predict the spike timing...... for anodic and cathodic stimulation of the AN of cat [3]. The models’ responses to the electrical pulses of various shapes [4,5,6] were also analyzed. It was found that, while the models can account for the firing rates in response to various biphasic pulse shapes, they fail to correctly describe the timing...

  17. Auditory Brainstem Responses and EMFs Generated by Mobile Phones.

    Science.gov (United States)

    Khullar, Shilpa; Sood, Archana; Sood, Sanjay

    2013-12-01

    There has been a manifold increase in the number of mobile phone users throughout the world with the current number of users exceeding 2 billion. However this advancement in technology like many others is accompanied by a progressive increase in the frequency and intensity of electromagnetic waves without consideration of the health consequences. The aim of our study was to advance our understanding of the potential adverse effects of GSM mobile phones on auditory brainstem responses (ABRs). 60 subjects were selected for the study and divided into three groups of 20 each based on their usage of mobile phones. Their ABRs were recorded and analysed for latency of waves I-V as well as interpeak latencies I-III, I-V and III-V (in ms). Results revealed no significant difference in the ABR parameters between group A (control group) and group B (subjects using mobile phones for maximum 30 min/day for 5 years). However the latency of waves was significantly prolonged in group C (subjects using mobile phones for 10 years for a maximum of 30 min/day) as compared to the control group. Based on our findings we concluded that long term exposure to mobile phones may affect conduction in the peripheral portion of the auditory pathway. However more research needs to be done to study the long term effects of mobile phones particularly of newer technologies like smart phones and 3G.

  18. Amphibious auditory responses of the American alligator (Alligator mississipiensis).

    Science.gov (United States)

    Higgs, D M; Brittan-Powell, E F; Soares, D; Souza, M J; Carr, C E; Dooling, R J; Popper, A N

    2002-04-01

    Animals that thrive both on land and underwater are faced with the task of interpreting stimuli in different media. This becomes a challenge to the sensory receptors in that stimuli (e.g., sound, motion) may convey the same type of information but are transmitted with different physical characteristics. We used auditory brainstem responses to examine hearing abilities of a species that makes full use of these two environments, the American alligator (Alligator mississipiensis). In water, alligators responded to tones from 100 Hz to 2,000 Hz, with peak sensitivity at 800 Hz. In air, they responded to tones from 100 Hz to 8,000 Hz, with peak sensitivity around 1,000 Hz. We also examined the contribution to hearing of an air bubble that becomes trapped in the middle ear as the animal submerges. This bubble has been previously implicated in underwater hearing. Our studies show that the trapped air bubble has no affect on auditory thresholds, suggesting the bubble is not an important adaptation for underwater hearing in this species.

  19. Auditory brainstem response in two children with autism.

    Science.gov (United States)

    Coutinho, Miguel B; Rocha, Virgínia; Santos, M Carmo

    2002-10-21

    Autism develops before 30 months of age. Autistic disorder is characterized by a qualitative impairment in verbal and non verbal communication, in imaginative activity, and in reciprocal social interactions. Communication in autism is so strikingly impaired that the function of the hearing system has been under study over the past 30 years, namely after the advent of physiological assessment of hearing with the auditory brainstem response (ABR). Many research studies were developed to study ABR in autism as they constitute a direct test of both hearing status and integrity of brainstem pathways, but the results obtained are contradictory. The authors present case reports of two children with autistic disorder, 2 and 4 years of age, in which the ABR findings document a prevalent Peak I in the four ears tested. This characteristic configuration in ABR has not been previously reported and future work is needed to establish the importance of this finding and its implications in the awareness of the auditory status in these children.

  20. Avoiding electromagnetic artifacts when recording auditory steady-state responses.

    Science.gov (United States)

    Picton, Terence W; John, M Sasha

    2004-09-01

    Electromagnetic artifacts can occur when recording multiple auditory steady-state responses evoked by sinusoidally amplitude modulated (SAM) stimuli. High-intensity air-conducted stimuli evoked responses even when hearing was prevented by masking. Additionally, high-intensity bone-conducted stimuli evoked responses that were completely different from those evoked by air-conducted stimuli of similar sensory level. These artifacts were caused by aliasing since they did not occur when recordings used high analog-digital (AD) conversion rates or when high frequencies in the electroencephalographic (EEG) signal were attenuated by steep-slope low-pass filtering. Two possible techniques can displace aliased energy away from the response frequencies: (1) using an AD rate that is not an integer submultiple of the carrier frequencies and (2) using stimuli with frequency spectra that do not alias back to the response frequencies, such as beats or "alternating SAM" tones. Alternating SAM tones evoke responses similar to conventional SAM tones, whereas beats produce significantly smaller responses.

  1. Experiential Response to Auditory and Visual Hallucination Suggestions in Hypnotic Subjects

    Science.gov (United States)

    Spanos, Nicholas P.; And Others

    1976-01-01

    The effects of several attitudinal, cognitive skill, and personality variables in response to auditory and visual hallucination suggestions to hypnotic subjects are assessed. Cooperative attitudes toward hypnosis and involvement in everyday imaginative activities (absorption) correlated with response to auditory and visual hallucination…

  2. Electrophysiological response during auditory gap detection: Biomarker for sensory and communication alterations in autism spectrum disorder?

    OpenAIRE

    Foss-Feig, JH; Stavropoulos, KKM; McPartland, JC; Wallace, MT; Stone, WL; Key, AP

    2018-01-01

    Sensory symptoms, including auditory processing deficits, are common in autism spectrum disorder (ASD). Processing of temporal aspects of auditory input is understudied; yet, deficits in this domain could contribute to language-related impairments. In children with ASD and well-matched controls, this study examined electrophysiological response to silent gaps in auditory stimuli. Results revealed attenuated amplitude of the P2 event-related potential (ERP) component in ASD. The P2 amplitude r...

  3. Type-2 diabetes mellitus and auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Sheelu S Siddiqi

    2013-01-01

    Full Text Available Objective: Diabetes mellitus (DM causes pathophysiological changes at multiple organ system. With evoked potential techniques, the brain stem auditory response represents a simple procedure to detect both acoustic nerve and central nervous system pathway damage. The objective was to find the evidence of central neuropathy in diabetes patients by analyzing brainstem audiometry electric response obtained by auditory evoked potentials, quantify the characteristic of auditory brain response in long standing diabetes and to study the utility of auditory evoked potential in detecting the type, site, and nature of lesions. Design: A total of 25 Type-2 DM [13 (52% males and 12 (48% females] with duration of diabetes over 5 years and aged over 30 years. The brainstem evoked response audiometry (BERA was performed by universal smart box manual version 2.0 at 70, 80, and 90 dB. The wave latency pattern and interpeak latencies were estimated. This was compared with 25 healthy controls (17 [68%] males and 8 [32%] females. Result: In Type-2 DM, BERA study revealed that wave-III representing superior olivary complex at 80 dB had wave latency of (3.99 ± 0.24 ms P < 0.001, at 90 dB (3.92 ± 0.28 ms P < 0.001 compared with control. The latency of wave III was delayed by 0.39, 0.42, and 0.42 ms at 70, 80, and 90 dB, respectively. The absolute latency of wave V representing inferior colliculus at 70 dB (6.05 ± 0.27 ms P < 0.001, at 80 dB (5.98 ± 0.27 P < 0.001, and at 90 dB (6.02 ± 0.30 ms P < 0.002 compared with control. The latency of wave-V was delayed by 0.48, 0.47, and 0.50 ms at 70, 80, and 90 dB, respectively. Interlatencies I-III at 70 dB (2.33 ± 0.22 ms P < 0.001, at 80 dB (2.39 ± 0.26 ms P < 0.001, while at 90 dB (2.47 ± 0.25 ms P < 0.001 when compared with control. Interlatencies I-V at 70 dB (4.45 ± 0.29 ms P < 0.001 at 80 dB (4.39 ± 0.34 ms P < 0.001, and at 90 dB (4.57 ± 0.31 ms P < 0.001 compared with control. Out of 25 Type-2 DM, 13 (52

  4. Speech training alters consonant and vowel responses in multiple auditory cortex fields.

    Science.gov (United States)

    Engineer, Crystal T; Rahebi, Kimiya C; Buell, Elizabeth P; Fink, Melyssa K; Kilgard, Michael P

    2015-01-01

    Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Auditory-pupillary responses in patients with vestibular neuritis.

    Science.gov (United States)

    Kitajima, Naoharu; Kobayashi, Noriko; Otsuka, Koji; Ogawa, Yasuo; Inagaki, Taro; Ichimura, Akihide; Suzuki, Mamoru

    2013-01-01

    Pupillary dilation in response to sound stimuli is well established and generally represents a startle reflex to sound. We previously reported that auditory-pupillary responses (APRs) persist with bilateral deafness, and that the pathways mediating APRs involve not only the cochlea but also otolith organs, especially the saccule. Here, we evaluated the vestibulo-autonomic responses in vestibular neuritis (VN) by assessing APRs. Twelve young healthy volunteers without a history of hearing and equilibrium problems and 10 VN patients participated. To clarify the relationship between APRs and vestibular function, especially otolith function, we performed caloric and vestibular-evoked myogenic response testing on VN patients. In normal subjects, we examined APRs when delivering sound stimuli to both sides. In VN patients, we examined APRs when delivering stimuli simultaneously to both sides, to the affected side alone, and then to the unaffected side alone. With binaural stimulation, the pupillary index (PI) - the rate of dilation - of VN patients significantly differed from those of normal subjects. Moreover, in VN patients, PIs of the affected sides were significantly larger than those of the unaffected sides. Our study provides evidence that examining APRs may be useful for evaluating vestibulo-autonomic reflexes, especially otolith-autonomic reflexes.

  6. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibres...

  7. Comparison of cochlear delay estimates using otoacoustic emissions and auditory brainstem responses

    DEFF Research Database (Denmark)

    Harte, James; Pigasse, Gilles; Dau, Torsten

    2009-01-01

    Different attempts have been made to directly measure frequency specific basilar membrane (BM) delays in animals, e.g., laser velocimetry of BM vibrations and auditory nerve fiber recordings. The present study uses otoacoustic emissions (OAEs) and auditory brainstem responses (ABRs) to estimate BM...

  8. Modeling human auditory evoked brainstem responses based on nonlinear cochlear processing

    DEFF Research Database (Denmark)

    Harte, James; Rønne, Filip Munch; Dau, Torsten

    2010-01-01

    The aim of this study was to accurately simulate auditory evoked potentials (AEPs) from various classical stimuli such as clicks and tones, often used in research and clinical diagnostics. In an approach similar to Dau (2003), a model was developed for the generation of auditory brainstem responses...

  9. Auditory event-related response in visual cortex modulates subsequent visual responses in humans.

    Science.gov (United States)

    Naue, Nicole; Rach, Stefan; Strüber, Daniel; Huster, Rene J; Zaehle, Tino; Körner, Ursula; Herrmann, Christoph S

    2011-05-25

    Growing evidence from electrophysiological data in animal and human studies suggests that multisensory interaction is not exclusively a higher-order process, but also takes place in primary sensory cortices. Such early multisensory interaction is thought to be mediated by means of phase resetting. The presentation of a stimulus to one sensory modality resets the phase of ongoing oscillations in another modality such that processing in the latter modality is modulated. In humans, evidence for such a mechanism is still sparse. In the current study, the influence of an auditory stimulus on visual processing was investigated by measuring the electroencephalogram (EEG) and behavioral responses of humans to visual, auditory, and audiovisual stimulation with varying stimulus-onset asynchrony (SOA). We observed three distinct oscillatory EEG responses in our data. An initial gamma-band response around 50 Hz was followed by a beta-band response around 25 Hz, and a theta response around 6 Hz. The latter was enhanced in response to cross-modal stimuli as compared to either unimodal stimuli. Interestingly, the beta response to unimodal auditory stimuli was dominant in electrodes over visual areas. The SOA between auditory and visual stimuli--albeit not consciously perceived--had a modulatory impact on the multisensory evoked beta-band responses; i.e., the amplitude depended on SOA in a sinusoidal fashion, suggesting a phase reset. These findings further support the notion that parameters of brain oscillations such as amplitude and phase are essential predictors of subsequent brain responses and might be one of the mechanisms underlying multisensory integration.

  10. The auditory brainstem response in two lizard species.

    Science.gov (United States)

    Brittan-Powell, Elizabeth F; Christensen-Dalsgaard, Jakob; Tang, Yezhong; Carr, Catherine; Dooling, Robert J

    2010-08-01

    Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6-2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20-50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1-7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species.

  11. Auditory Cortex Responses to Clicks and Sensory Modulation Difficulties in Children with Autism Spectrum Disorders (ASD)

    OpenAIRE

    Orekhova, Elena V.; Tsetlin, Marina M.; Butorina, Anna V.; Novikova, Svetlana I.; Gratchev, Vitaliy V.; Sokolov, Pavel A.; Elam, Mikael; Stroganova, Tatiana A.

    2012-01-01

    Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD) and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD) children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and ma...

  12. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex

    Directory of Open Access Journals (Sweden)

    Khaleel A Razak

    2013-06-01

    Full Text Available Auditory neurons in bats that use frequency modulated (FM sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI exhibiting faster arrival times compared to high-frequency inhibition (HFI. Using the two-tone inhibition over time stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI versus HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI versus HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  13. Electrically-evoked frequency-following response (EFFR in the auditory brainstem of guinea pigs.

    Directory of Open Access Journals (Sweden)

    Wenxin He

    Full Text Available It is still a difficult clinical issue to decide whether a patient is a suitable candidate for a cochlear implant and to plan postoperative rehabilitation, especially for some special cases, such as auditory neuropathy. A partial solution to these problems is to preoperatively evaluate the functional integrity of the auditory neural pathways. For evaluating the strength of phase-locking of auditory neurons, which was not reflected in previous methods using electrically evoked auditory brainstem response (EABR, a new method for recording phase-locking related auditory responses to electrical stimulation, called the electrically evoked frequency-following response (EFFR, was developed and evaluated using guinea pigs. The main objective was to assess feasibility of the method by testing whether the recorded signals reflected auditory neural responses or artifacts. The results showed the following: 1 the recorded signals were evoked by neuron responses rather than by artifact; 2 responses evoked by periodic signals were significantly higher than those evoked by the white noise; 3 the latency of the responses fell in the expected range; 4 the responses decreased significantly after death of the guinea pigs; and 5 the responses decreased significantly when the animal was replaced by an electrical resistance. All of these results suggest the method was valid. Recording obtained using complex tones with a missing fundamental component and using pure tones with various frequencies were consistent with those obtained using acoustic stimulation in previous studies.

  14. Air and Bone Conduction Frequency-specific Auditory Brainstem Response in Children with Agenesis of the External Auditory Canal.

    Science.gov (United States)

    Sleifer, Pricila; Didoné, Dayane Domeneghini; Keppeler, Ísis Bicca; Bueno, Claudine Devicari; Riesgo, Rudimar Dos Santos

    2017-10-01

    Introduction  The tone-evoked auditory brainstem responses (tone-ABR) enable the differential diagnosis in the evaluation of children until 12 months of age, including those with external and/or middle ear malformations. The use of auditory stimuli with frequency specificity by air and bone conduction allows characterization of hearing profile. Objective  The objective of our study was to compare the results obtained in tone-ABR by air and bone conduction in children until 12 months, with agenesis of the external auditory canal. Method  The study was cross-sectional, observational, individual, and contemporary. We conducted the research with tone-ABR by air and bone conduction in the frequencies of 500 Hz and 2000 Hz in 32 children, 23 boys, from one to 12 months old, with agenesis of the external auditory canal. Results  The tone-ABR thresholds were significantly elevated for air conduction in the frequencies of 500 Hz and 2000 Hz, while the thresholds of bone conduction had normal values in both ears. We found no statistically significant difference between genders and ears for most of the comparisons. Conclusion  The thresholds obtained by bone conduction did not alter the thresholds in children with conductive hearing loss. However, the conductive hearing loss alter all thresholds by air conduction. The tone-ABR by bone conduction is an important tool for assessing cochlear integrity in children with agenesis of the external auditory canal under 12 months.

  15. Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.

    Science.gov (United States)

    Biagianti, Bruno; Roach, Brian J; Fisher, Melissa; Loewy, Rachel; Ford, Judith M; Vinogradov, Sophia; Mathalon, Daniel H

    2017-01-01

    Individuals with schizophrenia have heterogeneous impairments of the auditory processing system that likely mediate differences in the cognitive gains induced by auditory training (AT). Mismatch negativity (MMN) is an event-related potential component reflecting auditory echoic memory, and its amplitude reduction in schizophrenia has been linked to cognitive deficits. Therefore, MMN may predict response to AT and identify individuals with schizophrenia who have the most to gain from AT. Furthermore, to the extent that AT strengthens auditory deviance processing, MMN may also serve as a readout of the underlying changes in the auditory system induced by AT. Fifty-six individuals early in the course of a schizophrenia-spectrum illness (ESZ) were randomly assigned to 40 h of AT or Computer Games (CG). Cognitive assessments and EEG recordings during a multi-deviant MMN paradigm were obtained before and after AT and CG. Changes in these measures were compared between the treatment groups. Baseline and trait-like MMN data were evaluated as predictors of treatment response. MMN data collected with the same paradigm from a sample of Healthy Controls (HC; n = 105) were compared to baseline MMN data from the ESZ group. Compared to HC, ESZ individuals showed significant MMN reductions at baseline ( p = .003). Reduced Double-Deviant MMN was associated with greater general cognitive impairment in ESZ individuals ( p = .020). Neither ESZ intervention group showed significant change in MMN. We found high correlations in all MMN deviant types (rs = .59-.68, all ps < .001) between baseline and post-intervention amplitudes irrespective of treatment group, suggesting trait-like stability of the MMN signal. Greater deficits in trait-like Double-Deviant MMN predicted greater cognitive improvements in the AT group ( p = .02), but not in the CG group. In this sample of ESZ individuals, AT had no effect on auditory deviance processing as assessed by MMN. In ESZ individuals, baseline MMN

  16. Human auditory steady state responses to binaural and monaural beats.

    Science.gov (United States)

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  17. Age and Gender Effects On Auditory Brain Stem Response (ABR

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2012-10-01

    Full Text Available Objectives: Auditory Brain Stem Response (ABR is a result of eight nerve and brain stem nuclei stimulation. Several factors may affect the latencies, interpeak latencies and amplitudes in ABR especially sex and age. In this study, age and sex influence on ABR were studied. Methods: This study was performed on 120 cases (60 males and 60 females at Akhavan rehabilitation center of university of welfare and rehabilitation sciences, Tehran, Iran. Cases were divided in three age groups: 18-30, 31-50 and 51-70 years old. Each age group consists of 20 males and 20 females. Age and sex influences on absolute latency of wave I and V, and IPL of I-V were examined. Results: Independent t test showed that females have significantly shorter latency of wave I, V, and IPL I-V latency (P<0.001 than males. Two way ANOVA showed that latency of wave I, V and IPL I-V in 51-70 years old group was significantly higher than 18-30 and 31-50 years old groups (P<0.001 Discussion: According to the results of present study and similar studies, in clinical practice, different norms for older adults and both genders should be established.

  18. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.

    Science.gov (United States)

    Singer, Wibke; Kasini, Kamyar; Manthey, Marie; Eckert, Philipp; Armbruster, Philipp; Vogt, Miriam Annika; Jaumann, Mirko; Dotta, Michela; Yamahara, Kohei; Harasztosi, Csaba; Zimmermann, Ulrike; Knipper, Marlies; Rüttiger, Lukas

    2018-01-12

    Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.

  19. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Renata Mota Mamede de Carvallo

    2008-09-01

    Full Text Available Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU, as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests could be applied to all babies. The “pass” result for the group of babies from the nursery was 94.7% using Transient Evoked Otoacoustic Emissions and 96% using Automatic Auditory Brainstem Response. The newborn intensive care unit group obtained 87.1% on Transient Evoked Otoacoustic Emissions and 80% on the Automatic Auditory Brainstem Response, and there was no statistical difference between the procedures when the groups were evaluated individually. However, comparing the groups, Transient Evoked Otoacoustic Emissions were presented in 94.7% of the nursery babies and in 87.1% in the group from the newborn intensive care unit. Considering the Automatic Auditory Brainstem Response, we found 96 and 87%, respectively. Cconclusions: Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response had similar “pass” and “fail” results when the procedures were applied to neonates from the regular nursery, and the combined tests were more precise to detect hearing impairment in the newborn intensive care unit babies.

  20. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    Directory of Open Access Journals (Sweden)

    Crystal T Engineer

    2014-08-01

    Full Text Available Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.

  1. Auditory Brainstem Responses in Young Males with Fragile X Syndrome

    Science.gov (United States)

    Roberts, Joanne; Hennon, Elizabeth A.; Anderson, Kathleen; Roush, Jackson; Gravel, Judith; Skinner, Martie; Misenheimer, Jan; Reitz, Patricia

    2005-01-01

    Fragile X syndrome (FXS) is the most common inherited cause of mental retardation resulting in developmental delays in males. Atypical outer ear morphology is characteristic of FXS and may serve as a marker for abnormal auditory function. Despite this abnormality, studies of the hearing of young males with FXS are generally lacking. A few studies…

  2. Reduced P50 Auditory Sensory Gating Response in Professional Musicians

    Science.gov (United States)

    Kizkin, Sibel; Karlidag, Rifat; Ozcan, Cemal; Ozisik, Handan Isin

    2006-01-01

    Evoked potential studies have demonstrated that musicians have the ability to distinguish musical sounds preattentively and automatically at the temporal, spectral, and spatial levels in more detail. It is however not known whether there is a difference in the early processes of auditory data processing of musicians. The most emphasized and…

  3. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    OpenAIRE

    Renata Mota Mamede de Carvallo; Carla Gentile Matas; Isabela de Souza Jardim

    2008-01-01

    Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU), as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem...

  4. Speech-evoked auditory brainstem responses reflect familial and cognitive influences.

    Science.gov (United States)

    Hornickel, Jane; Lin, Deborah; Kraus, Nina

    2013-01-01

    Cortical function and related cognitive, language, and communication skills are genetically influenced. The auditory brainstem response to speech is linked to language skill, reading ability, cognitive skills, and speech-in-noise perception; however, the impact of shared genetic and environmental factors on the response has not been investigated. We assessed auditory brainstem responses to speech presented in quiet and background noise from (1) 23 pairs of same sex, same learning diagnosis siblings (Siblings), (2) 23 unrelated children matched on age, sex, IQ, and reading ability to one of the siblings (Reading-Matched), and (3) 22 pairs of unrelated children matched on age and sex but not on reading ability to the same sibling (Age/Sex-Matched). By quantifying response similarity as the intersubject response-to-response correlation for sibling pairs, reading-matched pairs, and age- and sex-matched pairs, we found that siblings had more similar responses than age- and sex-matched pairs and reading-matched pairs. Similarity of responses between siblings was as high as the similarity of responses collected from an individual over the course of the recording session. Responses from unrelated children matched on reading were more similar than responses from unrelated children matched only on age and sex, supporting previous data linking variations in auditory brainstem activity with variations in reading ability. These results suggest that auditory brainstem function can be influenced by siblingship and auditory-based communication skills such as reading, motivating the use of speech-evoked auditory brainstem responses for assessing risk of reading and communication impairments in family members. © 2012 Blackwell Publishing Ltd.

  5. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Directory of Open Access Journals (Sweden)

    Meytal Wilf

    Full Text Available Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  6. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli.

    Science.gov (United States)

    Chen, Ling-Chia; Sandmann, Pascale; Thorne, Jeremy D; Herrmann, Christoph S; Debener, Stefan

    2015-09-01

    Functional near-infrared spectroscopy (fNIRS) has been proven reliable for investigation of low-level visual processing in both infants and adults. Similar investigation of fundamental auditory processes with fNIRS, however, remains only partially complete. Here we employed a systematic three-level validation approach to investigate whether fNIRS could capture fundamental aspects of bottom-up acoustic processing. We performed a simultaneous fNIRS-EEG experiment with visual and auditory stimulation in 24 participants, which allowed the relationship between changes in neural activity and hemoglobin concentrations to be studied. In the first level, the fNIRS results showed a clear distinction between visual and auditory sensory modalities. Specifically, the results demonstrated area specificity, that is, maximal fNIRS responses in visual and auditory areas for the visual and auditory stimuli respectively, and stimulus selectivity, whereby the visual and auditory areas responded mainly toward their respective stimuli. In the second level, a stimulus-dependent modulation of the fNIRS signal was observed in the visual area, as well as a loudness modulation in the auditory area. Finally in the last level, we observed significant correlations between simultaneously-recorded visual evoked potentials and deoxygenated hemoglobin (DeoxyHb) concentration, and between late auditory evoked potentials and oxygenated hemoglobin (OxyHb) concentration. In sum, these results suggest good sensitivity of fNIRS to low-level sensory processing in both the visual and the auditory domain, and provide further evidence of the neurovascular coupling between hemoglobin concentration changes and non-invasive brain electrical activity.

  7. Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children.

    Science.gov (United States)

    Hornickel, Jane; Knowles, Erica; Kraus, Nina

    2012-02-01

    The click-evoked auditory brainstem response (ABR) is widely used in clinical settings, partly due to its predictability and high test-retest consistency. More recently, the speech-evoked ABR has been used to evaluate subcortical processing of complex signals, allowing for the objective assessment of biological processes underlying auditory function and auditory processing deficits not revealed by responses to clicks. Test-retest reliability of some components of speech-evoked ABRs has been shown for adults and children over the course of months. However, a systematic study of the consistency of the speech-evoked brainstem response in school-age children has not been conducted. In the present study, speech-evoked ABRs were collected from 26 typically-developing children (ages 8-13) at two time points separated by one year. ABRs were collected for /da/ presented in quiet and in a 6-talker babble background noise. Test-retest consistency of response timing, spectral encoding, and signal-to-noise ratio was assessed. Response timing and spectral encoding were highly replicable over the course of one year. The consistency of response timing and spectral encoding found for the speech-evoked ABRs of typically-developing children suggests that the speech-evoked ABR may be a unique tool for research and clinical assessment of auditory function, particularly with respect to auditory-based communication skills. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effects of contralateral noise on the 20-Hz auditory steady state response--magnetoencephalography study.

    Science.gov (United States)

    Usubuchi, Hajime; Kawase, Tetsuaki; Kanno, Akitake; Yahata, Izumi; Miyazaki, Hiromitsu; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2014-01-01

    The auditory steady state response (ASSR) is an oscillatory brain response, which is phase locked to the rhythm of an auditory stimulus. ASSRs have been recorded in response to a wide frequency range of modulation and/or repetition, but the physiological features of the ASSRs are somewhat different depending on the modulation frequency. Recently, the 20-Hz ASSR has been emphasized in clinical examinations, especially in the area of psychiatry. However, little is known about the physiological properties of the 20-Hz ASSR, compared to those of the 40-Hz and 80-Hz ASSRs. The effects of contralateral noise on the ASSR are known to depend on the modulation frequency to evoke ASSR. However, the effects of contralateral noise on the 20-Hz ASSR are not known. Here we assessed the effects of contralateral white noise at a level of 70 dB SPL on the 20-Hz and 40-Hz ASSRs using a helmet-shaped magnetoencephalography system in 9 healthy volunteers (8 males and 1 female, mean age 31.2 years). The ASSRs were elicited by monaural 1000-Hz 5-s tone bursts amplitude-modulated at 20 and 39 Hz and presented at 80 dB SPL. Contralateral noise caused significant suppression of both the 20-Hz and 40-Hz ASSRs, although suppression was significantly smaller for the 20-Hz ASSRs than the 40-Hz ASSRs. Moreover, the greatest suppression of both 20-Hz and 40-Hz ASSRs occurred in the right hemisphere when stimuli were presented to the right ear with contralateral noise. The present study newly showed that 20-Hz ASSRs are suppressed by contralateral noise, which may be important both for characterization of the 20-Hz ASSR and for interpretation in clinical situations. Physicians must be aware that the 20-Hz ASSR is significantly suppressed by sound (e.g. masking noise or binaural stimulation) applied to the contralateral ear.

  9. Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2017-07-01

    The two-tone sequence (ABA_), which comprises two different sounds (A and B) and a silent gap, has been used to investigate how the auditory system organizes sequential sounds depending on various stimulus conditions or brain states. Auditory streaming can be evoked by differences not only in the tone frequency ("spectral cue": ΔF TONE , TONE condition) but also in the amplitude modulation rate ("AM cue": ΔF AM , AM condition). The aim of the present study was to explore the relationship between the perceptual properties of auditory streaming for the TONE and AM conditions. A sequence with a long duration (400 repetitions of ABA_) was used to examine the property of the bistability of streaming. The ratio of feature differences that evoked an equivalent probability of the segregated percept was close to the ratio of the Q-values of the auditory and modulation filters, consistent with a "channeling theory" of auditory streaming. On the other hand, for values of ΔF AM and ΔF TONE evoking equal probabilities of the segregated percept, the number of perceptual switches was larger for the TONE condition than for the AM condition, indicating that the mechanism(s) that determine the bistability of auditory streaming are different between or sensitive to the two domains. Nevertheless, the number of switches for individual listeners was positively correlated between the spectral and AM domains. The results suggest a possibility that the neural substrates for spectral and AM processes share a common switching mechanism but differ in location and/or in the properties of neural activity or the strength of internal noise at each level. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Cortical contributions to the auditory frequency-following response revealed by MEG

    Science.gov (United States)

    Coffey, Emily B. J.; Herholz, Sibylle C.; Chepesiuk, Alexander M. P.; Baillet, Sylvain; Zatorre, Robert J.

    2016-01-01

    The auditory frequency-following response (FFR) to complex periodic sounds is used to study the subcortical auditory system, and has been proposed as a biomarker for disorders that feature abnormal sound processing. Despite its value in fundamental and clinical research, the neural origins of the FFR are unclear. Using magnetoencephalography, we observe a strong, right-asymmetric contribution to the FFR from the human auditory cortex at the fundamental frequency of the stimulus, in addition to signal from cochlear nucleus, inferior colliculus and medial geniculate. This finding is highly relevant for our understanding of plasticity and pathology in the auditory system, as well as higher-level cognition such as speech and music processing. It suggests that previous interpretations of the FFR may need re-examination using methods that allow for source separation. PMID:27009409

  11. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses.

    Science.gov (United States)

    Kaminska, A; Delattre, V; Laschet, J; Dubois, J; Labidurie, M; Duval, A; Manresa, A; Magny, J-F; Hovhannisyan, S; Mokhtari, M; Ouss, L; Boissel, A; Hertz-Pannier, L; Sintsov, M; Minlebaev, M; Khazipov, R; Chiron, C

    2017-08-11

    Characteristic preterm EEG patterns of "Delta-brushes" (DBs) have been reported in the temporal cortex following auditory stimuli, but their spatio-temporal dynamics remains elusive. Using 32-electrode EEG recordings and co-registration of electrodes' position to 3D-MRI of age-matched neonates, we explored the cortical auditory-evoked responses (AERs) after 'click' stimuli in 30 healthy neonates aged 30-38 post-menstrual weeks (PMW). (1) We visually identified auditory-evoked DBs within AERs in all the babies between 30 and 33 PMW and a decreasing response rate afterwards. (2) The AERs showed an increase in EEG power from delta to gamma frequency bands over the middle and posterior temporal regions with higher values in quiet sleep and on the right. (3) Time-frequency and averaging analyses showed that the delta component of DBs, which negatively peaked around 550 and 750 ms over the middle and posterior temporal regions, respectively, was superimposed with fast (alpha-gamma) oscillations and corresponded to the late part of the cortical auditory-evoked potential (CAEP), a feature missed when using classical CAEP processing. As evoked DBs rate and AERs delta to alpha frequency power decreased until full term, auditory-evoked DBs are thus associated with the prenatal development of auditory processing and may suggest an early emerging hemispheric specialization. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction.

    Science.gov (United States)

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N; Desai, Shivani S; Hill, Susanna S; Antovich, Ashley D; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S; Marco, Elysa J

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8-12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  13. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  14. A model of auditory nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    peripheral for the cathodic phase. This results in an average difference of 200 μs in spike latency for AP generated by anodic vs cathodic pulses. It is hypothesized here that this difference is large enough to corrupt the temporal coding in the AN. To quantify effects of pulse polarity on auditory...... as a framework to test various stimulation strategies and to quantify their effect on the performance of CI listeners in psychophysical tasks....

  15. Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity

    DEFF Research Database (Denmark)

    Strelcyk, Olaf; Christoforidis, Dimitrios; Dau, Torsten

    2009-01-01

    for some of the HI listeners. The behavioral auditory-filter bandwidths accounted for the across-listener variability in the ABR latencies: Cochlear response time decreased with increasing filter bandwidth, consistent with linear-system theory. The results link cochlear response time and frequency...... response times. For the same listeners, auditory-filter bandwidths at 2 kHz were estimated using a behavioral notched-noise masking paradigm. Generally, shorter derived-band latencies were observed for the HI than for the NH listeners. Only at low click sensation levels, prolonged latencies were obtained...

  16. Processamento auditivo e potenciais evocados auditivos de tronco cerebral (BERA Auditory precessing and auditory brainstem response (ABR

    Directory of Open Access Journals (Sweden)

    Marcela Pfeiffer

    2009-01-01

    Full Text Available OBJETIVO: verificar relação existente entre os potenciais auditivos de tronco cerebral e a avaliação comportamental do processamento auditivo. MÉTODOS: foi realizada em um grupo de 60 meninas residentes de Paraíba do Sul na idade de nove a 12 anos com limiares tonais dentro dos padrões de normalidade e timpanometria tipo A com presença dos reflexos acústicos. Os testes utilizados para a avaliação comportamental do processamento auditivo foram: avaliação simplificada do processamento auditivo, teste de fala no ruído, teste de dissílabos alternados e teste dicótico não verbal. Após a avaliação do processamento auditivo, as crianças foram subdivididas em dois grupos, G1 (sem alteração no processamento auditivo e G2 (com alteração no processamento auditivo e submetidas aos potenciais auditivos de tronco cerebral. Os parâmetros utilizados na comparação dos dois grupos foram: latência absoluta das ondas I, III e V; latência interpicos das ondas I-III, I-V, III-V; diferença interaural da latência interpico I-V; e diferença interaural da latência da onda V. RESULTADOS: foram encontradas diferenças estatísticas nos parâmetros de latência interpico das ondas I-V na orelha esquerda (p=0,009, diferença interaural da latência interpico de ondas I-V (p=0,020 e diferença da latência interpico de ondas I e V da orelha direita para a esquerda entre os grupos G1 e G2 (p=0,025. CONCLUSÃO: foi possível encontrar relação dos potenciais evocados auditivos de tronco cerebral com a avaliação comportamental do processamento auditivo nos parâmetros de latência interpico entre as ondas I e V da orelha esquerda e diferença interaural da latência interpico I-V na orelha esquerda.PURPOSE: to investigate the correlation of auditory brainstem response (ABR and behavioral auditory processing evaluation. METHODS: sixty girls, from Paraíba do Sul, ranging from 9 to 12-year-old were evaluated. In order to take part in the study

  17. Evaluation of a Loudspeaker-Based Virtual Acoustic Environment for Investigating sound-field auditory steady-state responses

    DEFF Research Database (Denmark)

    Zapata-Rodriguez, Valentina; Marbjerg, Gerd Høy; Brunskog, Jonas

    2017-01-01

    stimulus used for eliciting the ASSR. To systematically investigate the effect of the room acoustics conditions on sound-field ASSR, a loudspeaker-based auralization system was implemented using a mixed order Ambisonics approach. The present study investigates the performance of the auralization system......Measuring sound-field auditory steady-state responses (ASSR) is a promising new objective clinical procedure for hearing aid fitting validation, particularly for infants who cannot respond to behavioral tests. In practice, room acoustics of non-anechoic test rooms can heavily influence the auditory...... in terms of objective room acoustic measurements and sound-field ASSR measurements, both in the actual room and in the simulated and auralized room. The evaluation is conducted for a small room with well-defined acoustic properties. The room is carefully modeled using the novel room acoustic simulation...

  18. Covert manual response preparation triggers attentional modulations of visual but not auditory processing.

    Science.gov (United States)

    Eimer, Martin; van Velzen, José

    2006-05-01

    We investigated whether covert unimanual response preparation triggers attention shifts, as postulated by the premotor theory of attention, and whether these result in spatially specific modulations of visual and auditory processing. Visual response cues instructed participants to prepare to lift their left or right index finger in response to a subsequent target stimulus. Irrelevant visual or auditory probes were delivered to the left or right hand during the response preparation interval. ERPs were measured time-locked to cue onset, and time-locked to probe stimulus onset. Lateralised ERP components triggered during covert response preparation (ADAN, LDAP) were similar to components previously found during attention shifts. N1 components were enhanced to visual probes delivered adjacent to the cued response relative to those delivered to the opposite hand. Auditory probe ERPs were unaffected by manual response preparation. Shifts of spatial attention that are triggered during covert unimanual response preparation result in spatially specific modulations of visual but not auditory processing. Results support the claim of the premotor theory that the preparation of manual responses is associated with attention shifts. However, such shifts are not based on purely supramodal processes, as they result in a modality-specific pattern of sensory modulations.

  19. Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain

    OpenAIRE

    Woolley, Sarah M. N.; Portfors, Christine V.

    2013-01-01

    The ubiquity of social vocalization among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve vocal communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The ...

  20. Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Timo Ruusuvirta

    Full Text Available Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN of event-related potentials (ERPs reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant was interspersed with a repeated tone (standard. Two standard-to-standard (SSI and standard-to-deviant (SDI intervals (200 ms vs. 500 ms were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses. Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical manifestation of MMN.

  1. (Amusicality in Williams syndrome: Examining relationships among auditory perception, musical skill, and emotional responsiveness to music

    Directory of Open Access Journals (Sweden)

    Miriam eLense

    2013-08-01

    Full Text Available Williams syndrome (WS, a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and typically developing individuals with and without amusia.

  2. Prepulse Inhibition of Auditory Cortical Responses in the Caudolateral Superior Temporal Gyrus in Macaca mulatta.

    Science.gov (United States)

    Chen, Zuyue; Parkkonen, Lauri; Wei, Jingkuan; Dong, Jin-Run; Ma, Yuanye; Carlson, Synnöve

    2018-04-01

    Prepulse inhibition (PPI) refers to a decreased response to a startling stimulus when another weaker stimulus precedes it. Most PPI studies have focused on the physiological startle reflex and fewer have reported the PPI of cortical responses. We recorded local field potentials (LFPs) in four monkeys and investigated whether the PPI of auditory cortical responses (alpha, beta, and gamma oscillations and evoked potentials) can be demonstrated in the caudolateral belt of the superior temporal gyrus (STGcb). We also investigated whether the presence of a conspecific, which draws attention away from the auditory stimuli, affects the PPI of auditory cortical responses. The PPI paradigm consisted of Pulse-only and Prepulse + Pulse trials that were presented randomly while the monkey was alone (ALONE) and while another monkey was present in the same room (ACCOMP). The LFPs to the Pulse were significantly suppressed by the Prepulse thus, demonstrating PPI of cortical responses in the STGcb. The PPI-related inhibition of the N1 amplitude of the evoked responses and cortical oscillations to the Pulse were not affected by the presence of a conspecific. In contrast, gamma oscillations and the amplitude of the N1 response to Pulse-only were suppressed in the ACCOMP condition compared to the ALONE condition. These findings demonstrate PPI in the monkey STGcb and suggest that the PPI of auditory cortical responses in the monkey STGcb is a pre-attentive inhibitory process that is independent of attentional modulation.

  3. Modulation of auditory cortex response to pitch variation following training with microtonal melodies

    Directory of Open Access Journals (Sweden)

    Robert J Zatorre

    2012-12-01

    Full Text Available We tested changes in cortical functional response to auditory configural learning by training ten human listeners to discriminate micromelodies (consisting of smaller pitch intervals than normally used in Western music. We measured covariation in blood oxygenation signal to increasing pitch-interval size in order to dissociate global changes in activity from those specifically associated with the stimulus feature of interest. A psychophysical staircase procedure with feedback was used for training over a two-week period. Behavioral tests of discrimination ability performed before and after training showed significant learning on the trained stimuli, and generalization to other frequencies and tasks; no learning occurred in an untrained control group. Before training the functional MRI data showed the expected systematic increase in activity in auditory cortices as a function of increasing micromelody pitch-interval size. This function became shallower after training, with the maximal change observed in the right posterior auditory cortex. Global decreases in activity in auditory regions, along with global increases in frontal cortices also occurred after training. Individual variation in learning rate was related to the hemodynamic slope to pitch-interval size, such that those who had a higher sensitivity to pitch-interval variation prior to learning achieved the fastest learning. We conclude that configural auditory learning entails modulation in the response of auditory cortex specifically to the trained stimulus feature. Reduction in blood oxygenation response to increasing pitch-interval size suggests that fewer computational resources, and hence lower neural recruitment, is associated with learning, in accord with models of auditory cortex function, and with data from other modalities.

  4. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  5. Click-evoked auditory brainstem responses and autism spectrum disorder: A meta-analytic review.

    Science.gov (United States)

    Talge, Nicole M; Tudor, Brooke M; Kileny, Paul R

    2018-03-30

    Behavior does not differentiate ASD risk prior to 12 months of age, but biomarkers may inform risk before symptoms emerge. Click-evoked auditory brainstem responses (ABRs) may be worth consideration due to their measurement properties (noninvasiveness; reliability) and conceptual features (well-characterized neural generators), but participant characteristics and assessment protocols vary considerably across studies. Our goal is to perform a meta-analysis of the association between ABRs and ASD. Following an electronic database search (PubMed, Medline, PsycInfo, PsycArticles), we included papers that were written in English, included ASD and typically-developing (TD) groups, and reported the information needed to calculate standardized mean differences (Hedges's g) for at least one ABR latency component (I, III, V, I-III, III-V, I-V). We weighted and averaged effect sizes across conditions and subsets of participants to yield one estimate per component per study. We then performed random-effects regressions to generate component-specific estimates. ASD was associated with longer ABR latencies for Waves III (g = 0.5, 95% CI 0.1, 0.9), V (g = 0.7, 95% CI 0.3, 1.1), I-III (g = 0.7, 95% CI 0.2, 1.2), and I-V (g = 0.6, 95% CI 0.2, 1.0). All components showed significant heterogeneity. Associations were strongest among participants ≤8 years of age and those without middle ear abnormalities or elevated auditory thresholds. In sum, associations between ABRs and ASD are medium-to-large in size, but exhibit heterogeneity. Identifying sources of heterogeneity is challenging, however, due to power limitations and co-occurrence of sample/design characteristics across studies. Research addressing the above limitations is crucial to determining the etiologic and/or prognostic value of ABRs for ASD. Autism Res 2018. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. Auditory brainstem responses (ABR) may be associated with ASD, but

  6. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Directory of Open Access Journals (Sweden)

    Francisco Jose Alvarez

    Full Text Available Hypoxia-ischemia (HI is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets.Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs of newborn piglets exposed to acute hypoxia/ischemia (n = 6 and a control group with no such exposure (n = 10. ABRs were recorded for both ears before the start of the experiment (baseline, after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury.Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant.The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  7. Effect of neonatal asphyxia on the impairment of the auditory pathway by recording auditory brainstem responses in newborn piglets: a new experimentation model to study the perinatal hypoxic-ischemic damage on the auditory system.

    Science.gov (United States)

    Alvarez, Francisco Jose; Revuelta, Miren; Santaolalla, Francisco; Alvarez, Antonia; Lafuente, Hector; Arteaga, Olatz; Alonso-Alconada, Daniel; Sanchez-del-Rey, Ana; Hilario, Enrique; Martinez-Ibargüen, Agustin

    2015-01-01

    Hypoxia-ischemia (HI) is a major perinatal problem that results in severe damage to the brain impairing the normal development of the auditory system. The purpose of the present study is to study the effect of perinatal asphyxia on the auditory pathway by recording auditory brain responses in a novel animal experimentation model in newborn piglets. Hypoxia-ischemia was induced to 1.3 day-old piglets by clamping 30 minutes both carotid arteries by vascular occluders and lowering the fraction of inspired oxygen. We compared the Auditory Brain Responses (ABRs) of newborn piglets exposed to acute hypoxia/ischemia (n = 6) and a control group with no such exposure (n = 10). ABRs were recorded for both ears before the start of the experiment (baseline), after 30 minutes of HI injury, and every 30 minutes during 6 h after the HI injury. Auditory brain responses were altered during the hypoxic-ischemic insult but recovered 30-60 minutes later. Hypoxia/ischemia seemed to induce auditory functional damage by increasing I-V latencies and decreasing wave I, III and V amplitudes, although differences were not significant. The described experimental model of hypoxia-ischemia in newborn piglets may be useful for studying the effect of perinatal asphyxia on the impairment of the auditory pathway.

  8. Learning of new sound categories shapes neural response patterns in human auditory cortex.

    Science.gov (United States)

    Ley, Anke; Vroomen, Jean; Hausfeld, Lars; Valente, Giancarlo; De Weerd, Peter; Formisano, Elia

    2012-09-19

    The formation of new sound categories is fundamental to everyday goal-directed behavior. Categorization requires the abstraction of discrete classes from continuous physical features as required by context and task. Electrophysiology in animals has shown that learning to categorize novel sounds alters their spatiotemporal neural representation at the level of early auditory cortex. However, functional magnetic resonance imaging (fMRI) studies so far did not yield insight into the effects of category learning on sound representations in human auditory cortex. This may be due to the use of overlearned speech-like categories and fMRI subtraction paradigms, leading to insufficient sensitivity to distinguish the responses to learning-induced, novel sound categories. Here, we used fMRI pattern analysis to investigate changes in human auditory cortical response patterns induced by category learning. We created complex novel sound categories and analyzed distributed activation patterns during passive listening to a sound continuum before and after category learning. We show that only after training, sound categories could be successfully decoded from early auditory areas and that learning-induced pattern changes were specific to the category-distinctive sound feature (i.e., pitch). Notably, the similarity between fMRI response patterns for the sound continuum mirrored the sigmoid shape of the behavioral category identification function. Our results indicate that perceptual representations of novel sound categories emerge from neural changes at early levels of the human auditory processing hierarchy.

  9. Searching for the optimal stimulus eliciting auditory brainstem responses in humans

    DEFF Research Database (Denmark)

    Fobel, Oliver; Dau, Torsten

    2004-01-01

    This study examines auditory brainstem responses (ABR) elicited by rising frequency chirps. Two chirp stimuli were developed and designed such as to compensate for cochlear travel-time differences across frequency, in order to maximize neural synchrony. One chirp, referred to as the O-chirp, was ......This study examines auditory brainstem responses (ABR) elicited by rising frequency chirps. Two chirp stimuli were developed and designed such as to compensate for cochlear travel-time differences across frequency, in order to maximize neural synchrony. One chirp, referred to as the O...

  10. Auditory brainstem response – a valid and cost-effective screening tool for vestibular schwannoma?

    DEFF Research Database (Denmark)

    Rafique, Irfan; Wennervaldt, Kasper; Melchiors, Jacob

    2016-01-01

    Abstract: Conclusion: Contemporary auditory brainstem response (ABR) is not valid as a screening tool for VS, when considering the sensitivity of 80%, the specificity of 77%, and the positive predictive value of 3.4%, MRI screening is superior to ABR in Denmark when considering cost-effectiveness......Abstract: Conclusion: Contemporary auditory brainstem response (ABR) is not valid as a screening tool for VS, when considering the sensitivity of 80%, the specificity of 77%, and the positive predictive value of 3.4%, MRI screening is superior to ABR in Denmark when considering cost...

  11. Responses of mink to auditory stimuli: Prerequisites for applying the ‘cognitive bias’ approach

    DEFF Research Database (Denmark)

    Svendsen, Pernille Maj; Malmkvist, Jens; Halekoh, Ulrich

    2012-01-01

    /neutral situation), whereas another auditory stimulus was followed by an aversive stimulus (air blow) before the inter-trial-interval (danger situation). We observed behaviour including latencies to show a response during both experiments. The High mink showed significant habituation in experiment 1 but the Low...... mink only showed habituation in experiment 2. Regardless of the frequency used (2 and 18 kHz), cues predicting the danger situation initially elicited slower responses compared to those predicting the safe situation but quickly became faster. Using auditory cues as discrimination stimuli for female...

  12. Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing.

    Science.gov (United States)

    Kayser, Christoph; Wilson, Caroline; Safaai, Houman; Sakata, Shuzo; Panzeri, Stefano

    2015-05-20

    The phase of low-frequency network activity in the auditory cortex captures changes in neural excitability, entrains to the temporal structure of natural sounds, and correlates with the perceptual performance in acoustic tasks. Although these observations suggest a causal link between network rhythms and perception, it remains unknown how precisely they affect the processes by which neural populations encode sounds. We addressed this question by analyzing neural responses in the auditory cortex of anesthetized rats using stimulus-response models. These models included a parametric dependence on the phase of local field potential rhythms in both stimulus-unrelated background activity and the stimulus-response transfer function. We found that phase-dependent models better reproduced the observed responses than static models, during both stimulation with a series of natural sounds and epochs of silence. This was attributable to two factors: (1) phase-dependent variations in background firing (most prominent for delta; 1-4 Hz); and (2) modulations of response gain that rhythmically amplify and attenuate the responses at specific phases of the rhythm (prominent for frequencies between 2 and 12 Hz). These results provide a quantitative characterization of how slow auditory cortical rhythms shape sound encoding and suggest a differential contribution of network activity at different timescales. In addition, they highlight a putative mechanism that may implement the selective amplification of appropriately timed sound tokens relative to the phase of rhythmic auditory cortex activity. Copyright © 2015 Kayser et al.

  13. Spectral and Temporal Acoustic Features Modulate Response Irregularities within Primary Auditory Cortex Columns.

    Directory of Open Access Journals (Sweden)

    Andres Carrasco

    Full Text Available Assemblies of vertically connected neurons in the cerebral cortex form information processing units (columns that participate in the distribution and segregation of sensory signals. Despite well-accepted models of columnar architecture, functional mechanisms of inter-laminar communication remain poorly understood. Hence, the purpose of the present investigation was to examine the effects of sensory information features on columnar response properties. Using acute recording techniques, extracellular response activity was collected from the right hemisphere of eight mature cats (felis catus. Recordings were conducted with multichannel electrodes that permitted the simultaneous acquisition of neuronal activity within primary auditory cortex columns. Neuronal responses to simple (pure tones, complex (noise burst and frequency modulated sweeps, and ecologically relevant (con-specific vocalizations acoustic signals were measured. Collectively, the present investigation demonstrates that despite consistencies in neuronal tuning (characteristic frequency, irregularities in discharge activity between neurons of individual A1 columns increase as a function of spectral (signal complexity and temporal (duration acoustic variations.

  14. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  15. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses.

    Science.gov (United States)

    Molloy, Katharine; Griffiths, Timothy D; Chait, Maria; Lavie, Nilli

    2015-12-09

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying "inattentional deafness"--the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼ 100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 "awareness" response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory

  16. The auditory brainstem response to complex sounds: a potential biomarker for guiding treatment of psychosis

    Directory of Open Access Journals (Sweden)

    Melissa A Tarasenko

    2014-10-01

    Full Text Available Cognitive deficits limit psychosocial functioning in schizophrenia. For many patients, cognitive remediation approaches have yielded encouraging results. Nevertheless, therapeutic response is variable, and outcome studies consistently identify individuals who respond minimally to these interventions. Biomarkers that can assist in identifying patients likely to benefit from particular forms of cognitive remediation are needed. Here we describe an event-related potential (ERP biomarker – the auditory brainstem response to complex sounds (cABR – that appears to be particularly well-suited for predicting response to at least one form of cognitive remediation that targets auditory information processing. Uniquely, the cABR quantifies the fidelity of sound encoded at the level of the brainstem and midbrain. This ERP biomarker has revealed auditory processing abnormalities in various neurodevelopmental disorders, correlates with functioning across several cognitive domains, and appears to be responsive to targeted auditory training. We present preliminary cABR data from 18 schizophrenia patients and propose further investigation of this biomarker for predicting and tracking response to cognitive interventions.

  17. Improved Transient Response Estimations in Predicting 40 Hz Auditory Steady-State Response Using Deconvolution Methods

    Directory of Open Access Journals (Sweden)

    Xiaodan Tan

    2017-12-01

    Full Text Available The auditory steady-state response (ASSR is one of the main approaches in clinic for health screening and frequency-specific hearing assessment. However, its generation mechanism is still of much controversy. In the present study, the linear superposition hypothesis for the generation of ASSRs was investigated by comparing the relationships between the classical 40 Hz ASSR and three synthetic ASSRs obtained from three different templates for transient auditory evoked potential (AEP. These three AEPs are the traditional AEP at 5 Hz and two 40 Hz AEPs derived from two deconvolution algorithms using stimulus sequences, i.e., continuous loop averaging deconvolution (CLAD and multi-rate steady-state average deconvolution (MSAD. CLAD requires irregular inter-stimulus intervals (ISIs in the sequence while MSAD uses the same ISIs but evenly-spaced stimulus sequences which mimics the classical 40 Hz ASSR. It has been reported that these reconstructed templates show similar patterns but significant difference in morphology and distinct frequency characteristics in synthetic ASSRs. The prediction accuracies of ASSR using these templates show significant differences (p < 0.05 in 45.95, 36.28, and 10.84% of total time points within four cycles of ASSR for the traditional, CLAD, and MSAD templates, respectively, as compared with the classical 40 Hz ASSR, and the ASSR synthesized from the MSAD transient AEP suggests the best similarity. And such a similarity is also demonstrated at individuals only in MSAD showing no statistically significant difference (Hotelling's T2 test, T2 = 6.96, F = 0.80, p = 0.592 as compared with the classical 40 Hz ASSR. The present results indicate that both stimulation rate and sequencing factor (ISI variation affect transient AEP reconstructions from steady-state stimulation protocols. Furthermore, both auditory brainstem response (ABR and middle latency response (MLR are observed in contributing to the composition of ASSR but

  18. Auditory cues increase the hippocampal response to unimodal virtual reality.

    Science.gov (United States)

    Andreano, Joseph; Liang, Kevin; Kong, Lingjun; Hubbard, David; Wiederhold, Brenda K; Wiederhold, Mark D

    2009-06-01

    Previous research suggests that the effectiveness of virtual reality exposure therapy should increase as the experience becomes more immersive. However, the neural mechanisms underlying the experience of immersion are not yet well understood. To address this question, neural activity during exposure to two virtual worlds was measured by functional magnetic resonance imaging (fMRI). Two levels of immersion were used: unimodal (video only) and multimodal (video plus audio). The results indicated increased activity in both auditory and visual sensory cortices during multimodal presentation. Additionally, multimodal presentation elicited increased activity in the hippocampus, a region well known to be involved in learning and memory. The implications of this finding for exposure therapy are discussed.

  19. Auditory evoked responses upon awakening from sleep in human subjects.

    Science.gov (United States)

    Ferrara, M; De Gennaro, L; Ferlazzo, F; Curcio, G; Barattucci, M; Bertini, M

    2001-09-14

    The hypothesis that a state of hypoarousal upon awakening should lead to a decrease in amplitude and an increase in latency of the N1-P2 components of the Auditory Evoked Potentials (AEPs) as compared to presleep wakefulness levels, was evaluated after two nocturnal awakenings and after the final morning awakening from a 7.5-h night of sleep. The amplitude of the N1-P2 complex was reduced upon awakening as compared to presleep wakefulness levels, but only following the first nocturnal awakening, scheduled after the first 2 h of sleep. This result is interpreted as indicating a link between slow wave sleep amount, mainly present during the first part of the night, and lowered levels of brain activation upon awakening. The reaction times, recorded concomitantly to AEPs, were more sensitive to the negative effects of sleep inertia.

  20. Atypical brain responses to auditory spatial cues in adults with autism spectrum disorder.

    Science.gov (United States)

    Lodhia, Veema; Hautus, Michael J; Johnson, Blake W; Brock, Jon

    2018-03-01

    The auditory processing atypicalities experienced by many individuals on the autism spectrum disorder might be understood in terms of difficulties parsing the sound energy arriving at the ears into discrete auditory 'objects'. Here, we asked whether autistic adults are able to make use of two important spatial cues to auditory object formation - the relative timing and amplitude of sound energy at the left and right ears. Using electroencephalography, we measured the brain responses of 15 autistic adults and 15 age- and verbal-IQ-matched control participants as they listened to dichotic pitch stimuli - white noise stimuli in which interaural timing or amplitude differences applied to a narrow frequency band of noise typically lead to the perception of a pitch sound that is spatially segregated from the noise. Responses were contrasted with those to stimuli in which timing and amplitude cues were removed. Consistent with our previous studies, autistic adults failed to show a significant object-related negativity (ORN) for timing-based pitch, although their ORN was not significantly smaller than that of the control group. Autistic participants did show an ORN to amplitude cues, indicating that they do not experience a general impairment in auditory object formation. However, their P400 response - thought to indicate the later attention-dependent aspects of auditory object formation - was missing. These findings provide further evidence of atypical auditory object processing in autism with potential implications for understanding the perceptual and communication difficulties associated with the condition. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Echoic Memory: Investigation of Its Temporal Resolution by Auditory Offset Cortical Responses

    OpenAIRE

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temp...

  2. Brainstem auditory evoked responses and ophthalmic findings in llamas and alpacas in eastern Canada

    OpenAIRE

    Webb, Aubrey A.; Cullen, Cheryl L.; Lamont, Leigh A.

    2006-01-01

    Seventeen llamas and 23 alpacas of various coat and iris colors were evaluated for: 1) deafness by using brainstem auditory evoked response testing; and 2) for ocular abnormalities via complete ophthalmic examination. No animals were deaf. The most common ocular abnormalities noted were iris-to-iris persistent pupillary membranes and incipient cataracts.

  3. Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables.

    Directory of Open Access Journals (Sweden)

    Henning U Voss

    2010-12-01

    Full Text Available How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables.

  4. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  5. Can auditory stady-state responses reflect place-specific cochlear dispersion?

    DEFF Research Database (Denmark)

    Paredes Gallardo, Andreu; Epp, Bastian; Dau, Torsten

    . Previous studies showed the applicability of auditory evoked potentials (AEP) to investigate cochlear dispersion along the basilar membrane (BM) (e.g. Dau et al., 2000). In contrast to those studies, the present study maximizes the response in a given frequency region, aiming to objectively estimate local...

  6. Robust Subthreshold Cross-modal Modulation of Auditory Response by Cutaneous Electrical Stimulation in First- and Higher-order Auditory Thalamic Nuclei.

    Science.gov (United States)

    Kimura, Akihisa; Imbe, Hiroki

    2018-02-21

    Conventional extracellular recording has revealed cross-modal alterations of auditory cell activities by cutaneous electrical stimulation of the hindpaw in first- and higher-order auditory thalamic nuclei (Donishi et al., 2011). Juxta-cellular recording and labeling techniques were used in the present study to examine the cross-modal alterations in detail, focusing on possible nucleus and/or cell type-related distinctions in modulation. Recordings were obtained from 80 cells of anesthetized rats. Cutaneous electrical stimulation, which did not elicit unit discharges, i.e., subthreshold effects, modulated early (onset) and/or late auditory responses of first- (64%) and higher-order nucleus cells (77%) with regard to response magnitude, latency and/or burst spiking. Attenuation predominated in the modulation of response magnitude and burst spiking, and delay predominated in the modulation of response time. Striking alterations of burst spiking took place in higher-order nucleus cells, which had the potential to exhibit higher propensities for burst spiking as compared to first-order nucleus cells. A subpopulation of first-order nucleus cells showing modulation in early response magnitude in the caudal domain of the nucleus had larger cell bodies and higher propensities for burst spiking as compared to cells showing no modulation. These findings suggest that somatosensory influence is incorporated into parallel channels in auditory thalamic nuclei to impose distinct impacts on cortical and subcortical sensory processing. Further, cutaneous electrical stimulation given after early auditory responses modulated late responses. Somatosensory influence is likely to affect ongoing auditory processing at any time without being coincident with sound onset in a narrow temporal window. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Methylmercury Exposure Reduces the Auditory Brainstem Response of Zebra Finches (Taeniopygia guttata ).

    Science.gov (United States)

    Wolf, Sarah E; Swaddle, John P; Cristol, Daniel A; Buchser, William J

    2017-08-01

    Mercury contamination from mining and fossil fuel combustion causes damage to humans and animals worldwide. Mercury exposure has been implicated in mammalian hearing impairment, but its effect on avian hearing is unknown. In this study, we examined whether lifetime dietary mercury exposure affected hearing in domestic zebra finches (Taeniopygia guttata) by studying their auditory brainstem responses (ABRs). Zebra finches exposed to mercury exhibited elevated hearing thresholds, decreased amplitudes, and longer latencies in the ABR, the first evidence of mercury-induced hearing impairment in birds. Birds are a more appropriate model for the human auditory spectrum than most mammals because of similarities in frequency discrimination, vocal learning, and communication behavior. When mercury is considered in combination with other anthropogenic stressors such as noise pollution and habitat alteration, the hearing impairments we document here could substantially degrade avian auditory communication in wild birds.

  8. Auditory event-related responses to diphthongs in different attention conditions

    DEFF Research Database (Denmark)

    Morris, David Jackson; Steinmetzger, Kurt; Tøndering, John

    2016-01-01

    (i) attended to the auditory stimuli, (ii) ignored the auditory stimuli and watched a film, and (iii) diverted their attention to a visual discrimination task. Responses elicited by diphthongs where F2 values rose and fell were found to be different and this precluded their combined analysis......The modulation of auditory event-related potentials (ERP) by attention generally results in larger amplitudes when stimuli are attended. We measured the P1-N1-P2 acoustic change complex elicited with synthetic overt (second formant, F2 = 1000 Hz) and subtle (F2 = 100 Hz) diphthongs, while subjects...... quality transitions, even when the attention of a subject is diverted to an unrelated visual task....

  9. Stress and Auditory Responses of the Otophysan Fish, Cyprinella venusta, to Road Traffic Noise.

    Science.gov (United States)

    Crovo, Jenna A; Mendonça, Mary T; Holt, Daniel E; Johnston, Carol E

    2015-01-01

    Noise pollution from anthropogenic sources is an increasingly problematic challenge faced by many taxa, including fishes. Recent studies demonstrate that road traffic noise propagates effectively from bridge crossings into surrounding freshwater ecosystems; yet, its effect on the stress response and auditory function of freshwater stream fishes is unexamined. The blacktail shiner (Cyprinella venusta) was used as a model to investigate the degree to which traffic noise impacts stress and hearing in exposed fishes. Fish were exposed to an underwater recording of traffic noise played at approximately 140 dB re 1 μPa. Waterborne cortisol samples were collected and quantified using enzyme immunoassay (EIA). Auditory thresholds were assessed in control and traffic exposed groups by measuring auditory evoked potentials (AEPs). After acute exposure to traffic noise, fish exhibited a significant elevation in cortisol levels. Individuals exposed to 2 hours of traffic noise playback had elevated hearing thresholds at 300 and 400 Hz, corresponding to the most sensitive bandwidth for this species.

  10. Percepts, not acoustic properties, are the units of auditory short-term memory.

    Science.gov (United States)

    Mathias, Samuel R; von Kriegstein, Katharina

    2014-04-01

    For decades, researchers have sought to understand the organizing principles of auditory and visual short-term memory (STM). Previous work in audition has suggested that there are independent memory stores for different sound features, but the nature of the representations retained within these stores is currently unclear. Do they retain perceptual features, or do they instead retain representations of the sound's specific acoustic properties? In the present study we addressed this question by measuring listeners' abilities to keep one of three acoustic properties (interaural time difference [ITD], interaural level difference [ILD], or frequency) in memory when the target sound was followed by interfering sounds that varied randomly in one of the same properties. Critically, ITD and ILD evoked the same percept (spatial location), despite being acoustically different and having different physiological correlates, whereas frequency evoked a different percept (pitch). The results showed that listeners found it difficult to remember the percept of spatial location when the interfering tones varied either in ITD or ILD, but not when they varied in frequency. The study demonstrates that percepts are the units of auditory STM, and provides testable predictions for future neuroscientific work on both auditory and visual STM.

  11. Classification of auditory brainstem responses through symbolic pattern discovery.

    Science.gov (United States)

    Molina, Marco E; Perez, Aurora; Valente, Juan P

    2016-06-01

    Numeric time series are present in a very wide range of domains, including many branches of medicine. Data mining techniques have proved to be useful for knowledge discovery in this type of data and for supporting decision-making processes. The overall objective is to classify time series based on the discovery of frequent patterns. These patterns will be discovered in symbolic sequences obtained from the time series data by means of a temporal abstraction process. Firstly, we transform numeric time series into symbolic time sequences, where the symbols aim to represent the relevant domain concepts. These symbols can be defined using either public or expert domain knowledge. Then we apply a symbolic pattern discovery technique to the output symbolic sequences. This technique identifies the subsequences frequently found in a population group. These subsequences (patterns) are representative of population groups. Finally, we employ a classification technique based on the identified patterns in order to classify new individuals. Thanks to the inclusion of domain knowledge, the classification results can be explained using domain terminology. This makes the results easier to interpret for the domain specialist (physician). This method has been applied to brainstem auditory evoked potentials (BAEPs) time series. Preliminary experiments were carried out to analyse several aspects of the method including the best configuration of the pattern discovery technique parameters. We then applied the method to the BAEPs of 83 individuals belonging to four classes (healthy, conductive hearing loss, vestibular schwannoma-brainstem involvement and vestibular schwannoma-8th-nerve involvement). According to the results of the cross-validation, overall accuracy was 99.4%, sensitivity (recall) was 97.6% and specificity was 100% (no false positives). The proposed method effectively reduces dimensionality. Additionally, if the symbolic transformation includes the right domain knowledge

  12. The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants.

    Science.gov (United States)

    Hughes, Michelle L; Baudhuin, Jacquelyn L; Goehring, Jenny L

    2014-10-01

    The purpose of this study was to examine auditory-nerve temporal response properties and their relation to psychophysical threshold for electrical pulse trains of varying rates ("rate integration"). The primary hypothesis was that better rate integration (steeper slope) would be correlated with smaller decrements in ECAP amplitude as a function of stimulation rate (shallower slope of the amplitude-rate function), reflecting a larger percentage of the neural population contributing more synchronously to each pulse in the train. Data were obtained for 26 ears in 23 cochlear-implant recipients. Electrically evoked compound action potential (ECAP) amplitudes were measured in response to each of 21 pulses in a pulse train for the following rates: 900, 1200, 1800, 2400, and 3500 pps. Psychophysical thresholds were obtained using a 3-interval, forced-choice adaptive procedure for 300-ms pulse trains of the same rates as used for the ECAP measures, which formed the rate-integration function. For each electrode, the slope of the psychophysical rate-integration function was compared to the following ECAP measures: (1) slope of the function comparing average normalized ECAP amplitude across pulses versus stimulation rate ("adaptation"), (2) the rate that produced the maximum alternation depth across the pulse train, and (3) rate at which the alternating pattern ceased (stochastic rate). Results showed no significant relations between the slope of the rate-integration function and any of the ECAP measures when data were collapsed across subjects. However, group data showed that both threshold and average ECAP amplitude decreased with increased stimulus rate, and within-subject analyses showed significant positive correlations between psychophysical thresholds and mean ECAP response amplitudes across the pulse train. These data suggest that ECAP temporal response patterns are complex and further study is required to better understand the relative contributions of adaptation

  13. [Changes in the parameters of the simple auditory-motor response in children users of mobile communication: longitudinal study].

    Science.gov (United States)

    Khorseva, N I; Grigor'ev, Iu G; Gorbunova, N V

    2012-01-01

    The study presents the findings of longitudinal observations of the changes in the parameters of simple auditory-motor response in children-users of mobile communication. The obtained results indicate the multivariability of possible effects of radiation from mobile phones on the auditory system of children.

  14. Information-Theoretic Properties of Auditory Sequences Dynamically Influence Expectation and Memory.

    Science.gov (United States)

    Agres, Kat; Abdallah, Samer; Pearce, Marcus

    2018-01-01

    A basic function of cognition is to detect regularities in sensory input to facilitate the prediction and recognition of future events. It has been proposed that these implicit expectations arise from an internal predictive coding model, based on knowledge acquired through processes such as statistical learning, but it is unclear how different types of statistical information affect listeners' memory for auditory stimuli. We used a combination of behavioral and computational methods to investigate memory for non-linguistic auditory sequences. Participants repeatedly heard tone sequences varying systematically in their information-theoretic properties. Expectedness ratings of tones were collected during three listening sessions, and a recognition memory test was given after each session. Information-theoretic measures of sequential predictability significantly influenced listeners' expectedness ratings, and variations in these properties had a significant impact on memory performance. Predictable sequences yielded increasingly better memory performance with increasing exposure. Computational simulations using a probabilistic model of auditory expectation suggest that listeners dynamically formed a new, and increasingly accurate, implicit cognitive model of the information-theoretic structure of the sequences throughout the experimental session. Copyright © 2017 Cognitive Science Society, Inc.

  15. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.

    Directory of Open Access Journals (Sweden)

    Winfried Schlee

    Full Text Available BACKGROUND: Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. METHODS AND FINDINGS: Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. CONCLUSIONS: To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus.

  16. Pattern of BOLD signal in auditory cortex relates acoustic response to perceptual streaming

    Directory of Open Access Journals (Sweden)

    Yadav Deepak

    2011-08-01

    Full Text Available Abstract Background Segregating auditory scenes into distinct objects or streams is one of our brain's greatest perceptual challenges. Streaming has classically been studied with bistable sound stimuli, perceived alternately as a single group or two separate groups. Throughout the last decade different methodologies have yielded inconsistent evidence about the role of auditory cortex in the maintenance of streams. In particular, studies using functional magnetic resonance imaging (fMRI have been unable to show persistent activity within auditory cortex (AC that distinguishes between perceptual states. Results We use bistable stimuli, an explicit perceptual categorization task, and a focused region of interest (ROI analysis to demonstrate an effect of perceptual state within AC. We find that AC has more activity when listeners perceive the split percept rather than the grouped percept. In addition, within this ROI the pattern of acoustic response across voxels is significantly correlated with the pattern of perceptual modulation. In a whole-brain exploratory test, we corroborate previous work showing an effect of perceptual state in the intraparietal sulcus. Conclusions Our results show that the maintenance of auditory streams is reflected in AC activity, directly relating sound responses to perception, and that perceptual state is further represented in multiple, higher level cortical regions.

  17. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  18. Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex.

    Directory of Open Access Journals (Sweden)

    Yukiko Kikuchi

    2017-04-01

    Full Text Available Learning complex ordering relationships between sensory events in a sequence is fundamental for animal perception and human communication. While it is known that rhythmic sensory events can entrain brain oscillations at different frequencies, how learning and prior experience with sequencing relationships affect neocortical oscillations and neuronal responses is poorly understood. We used an implicit sequence learning paradigm (an "artificial grammar" in which humans and monkeys were exposed to sequences of nonsense words with regularities in the ordering relationships between the words. We then recorded neural responses directly from the auditory cortex in both species in response to novel legal sequences or ones violating specific ordering relationships. Neural oscillations in both monkeys and humans in response to the nonsense word sequences show strikingly similar hierarchically nested low-frequency phase and high-gamma amplitude coupling, establishing this form of oscillatory coupling-previously associated with speech processing in the human auditory cortex-as an evolutionarily conserved biological process. Moreover, learned ordering relationships modulate the observed form of neural oscillatory coupling in both species, with temporally distinct neural oscillatory effects that appear to coordinate neuronal responses in the monkeys. This study identifies the conserved auditory cortical neural signatures involved in monitoring learned sequencing operations, evident as modulations of transient coupling and neuronal responses to temporally structured sensory input.

  19. Test-retest reliability of the 40 Hz EEG auditory steady-state response.

    Directory of Open Access Journals (Sweden)

    Kristina L McFadden

    Full Text Available Auditory evoked steady-state responses are increasingly being used as a marker of brain function and dysfunction in various neuropsychiatric disorders, but research investigating the test-retest reliability of this response is lacking. The purpose of this study was to assess the consistency of the auditory steady-state response (ASSR across sessions. Furthermore, the current study aimed to investigate how the reliability of the ASSR is impacted by stimulus parameters and analysis method employed. The consistency of this response across two sessions spaced approximately 1 week apart was measured in nineteen healthy adults using electroencephalography (EEG. The ASSR was entrained by both 40 Hz amplitude-modulated white noise and click train stimuli. Correlations between sessions were assessed with two separate analytical techniques: a channel-level analysis across the whole-head array and b signal-space projection from auditory dipoles. Overall, the ASSR was significantly correlated between sessions 1 and 2 (p<0.05, multiple comparison corrected, suggesting adequate test-retest reliability of this response. The current study also suggests that measures of inter-trial phase coherence may be more reliable between sessions than measures of evoked power. Results were similar between the two analysis methods, but reliability varied depending on the presented stimulus, with click train stimuli producing more consistent responses than white noise stimuli.

  20. Near-infrared spectroscopic imaging of stimulus-related hemodynamic responses on the neonatal auditory cortices

    Science.gov (United States)

    Kotilahti, Kalle; Nissila, Ilkka; Makela, Riikka; Noponen, Tommi; Lipiainen, Lauri; Gavrielides, Nasia; Kajava, Timo; Huotilainen, Minna; Fellman, Vineta; Merilainen, Pekka; Katila, Toivo

    2005-04-01

    We have used near-infrared spectroscopy (NIRS) to study hemodynamic auditory evoked responses on 7 full-term neonates. Measurements were done simultaneously above both auditory cortices to study the distribution of speech and music processing between hemispheres using a 16-channel frequency-domain instrument. The stimulation consisted of 5-second samples of music and speech with a 25-second silent interval. In response to stimulation, a significant increase in the concentration of oxygenated hemoglobin ([HbO2]) was detected in 6 out of 7 subjects. The strongest responses in [HbO2] were seen near the measurement location above the ear on both hemispheres. The mean latency of the maximum responses was 9.42+/-1.51 s. On the left hemisphere (LH), the maximum amplitude of the average [HbO2] response to the music stimuli was 0.76+/- 0.38 μ M (mean+/-std.) and to the speech stimuli 1.00+/- 0.45 μ+/- μM. On the right hemisphere (RH), the maximum amplitude of the average [HbO2] response was 1.29+/- 0.85 μM to the music stimuli and 1.23+/- 0.93 μM to the speech stimuli. The results indicate that auditory information is processed on both auditory cortices, but LH is more concentrated to process speech than music information. No significant differences in the locations and the latencies of the maximum responses relative to the stimulus type were found.

  1. Neural Hyperactivity of the Central Auditory System in Response to Peripheral Damage

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2016-01-01

    Full Text Available It is increasingly appreciated that cochlear pathology is accompanied by adaptive responses in the central auditory system. The cause of cochlear pathology varies widely, and it seems that few commonalities can be drawn. In fact, despite intricate internal neuroplasticity and diverse external symptoms, several classical injury models provide a feasible path to locate responses to different peripheral cochlear lesions. In these cases, hair cell damage may lead to considerable hyperactivity in the central auditory pathways, mediated by a reduction in inhibition, which may underlie some clinical symptoms associated with hearing loss, such as tinnitus. Homeostatic plasticity, the most discussed and acknowledged mechanism in recent years, is most likely responsible for excited central activity following cochlear damage.

  2. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC).

    Science.gov (United States)

    Ozdamar, Ozcan; Bohorquez, Jorge; Mihajloski, Todor; Yavuz, Erdem; Lachowska, Magdalena

    2011-01-01

    Electrophysiological indices of auditory binaural beats illusions are studied using late latency evoked responses. Binaural beats are generated by continuous monaural FM tones with slightly different ascending and descending frequencies lasting about 25 ms presented at 1 sec intervals. Frequency changes are carefully adjusted to avoid any creation of abrupt waveform changes. Binaural Interaction Component (BIC) analysis is used to separate the neural responses due to binaural involvement. The results show that the transient auditory evoked responses can be obtained from the auditory illusion of binaural beats.

  3. Auditory cortex lesions do not disrupt habituation of HPA axis responses to repeated noise stress.

    Science.gov (United States)

    Masini, Cher V; Babb, Jessica A; Nyhuis, Tara J; Day, Heidi E W; Campeau, Serge

    2012-03-14

    Previous research has suggested that sensory areas may play a role in adaptation to repeated stress. The auditory cortex was the target of the present studies because it is a major projection area of the auditory thalamus, where functional inactivation disrupts stress habituation to repeated loud noise. Large bilateral excitotoxic lesions of the auditory cortex were made in male rats 2 weeks prior to (Experiment 1) or a few days after (Experiment 2) a 5 day 30 min repeated 95 dBA noise or no noise regimen. Blood was collected immediately after exposure on days 1, 3, and 5. Two weeks after the 5th exposure, the rats were retested with 30 min noise or no noise to determine retention of the habituated responses. Animals were killed immediately after the retest and trunk blood and brains collected for lesion verification. Plasma adrenocorticotropic hormone (ACTH) and corticosterone levels were determined. In both experiments, significant between-subjects effects were found for noise (95 dBA or no noise) but not for surgery (lesion, sham, or no surgery control rats), with lesion groups exhibiting similar levels of ACTH and corticosterone across days as the sham and no surgery control groups. All noise exposed groups displayed similar habituation rates and retention levels. A third experiment indicated that similar auditory cortex lesions significantly disrupted background noise gap detection in an acoustic startle paradigm. Overall, these data suggest that the information mediating hypothalamic-pituitary-adrenal axis response habituation to repeated loud noise exposures is not derived from the auditory cortex. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training

    Directory of Open Access Journals (Sweden)

    Okamoto Hidehiko

    2009-12-01

    Full Text Available Abstract Background Due to auditory experience, musicians have better auditory expertise than non-musicians. An increased neocortical activity during auditory oddball stimulation was observed in different studies for musicians and for non-musicians after discrimination training. This suggests a modification of synaptic strength among simultaneously active neurons due to the training. We used amplitude-modulated tones (AM presented in an oddball sequence and manipulated their carrier or modulation frequencies. We investigated non-musicians in order to see if behavioral discrimination training could modify the neocortical activity generated by change detection of AM tone attributes (carrier or modulation frequency. Cortical evoked responses like N1 and mismatch negativity (MMN triggered by sound changes were recorded by a whole head magnetoencephalographic system (MEG. We investigated (i how the auditory cortex reacts to pitch difference (in carrier frequency and changes in temporal features (modulation frequency of AM tones and (ii how discrimination training modulates the neuronal activity reflecting the transient auditory responses generated in the auditory cortex. Results The results showed that, additionally to an improvement of the behavioral discrimination performance, discrimination training of carrier frequency changes significantly modulates the MMN and N1 response amplitudes after the training. This process was accompanied by an attention switch to the deviant stimulus after the training procedure identified by the occurrence of a P3a component. In contrast, the training in discrimination of modulation frequency was not sufficient to improve the behavioral discrimination performance and to alternate the cortical response (MMN to the modulation frequency change. The N1 amplitude, however, showed significant increase after and one week after the training. Similar to the training in carrier frequency discrimination, a long lasting

  5. Functional significance of the electrocorticographic auditory responses in the premotor cortex

    Directory of Open Access Journals (Sweden)

    Kazuyo eTanji

    2015-03-01

    Full Text Available Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS. The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the ‘sensory theory of speech production’, in which it was proposed that sensory representations are used to guide motor-articulatory processes.

  6. Timing of cochlear responses inferred from frequency-threshold tuning curves of auditory-nerve fibers

    Science.gov (United States)

    Temchin, Andrei N.; Recio-Spinoso, Alberto; Ruggero, Mario A.

    2010-01-01

    Links between frequency tuning and timing were explored in the responses to sound of auditory-nerve fibers. Synthetic transfer functions were constructed by combining filter functions, derived via minimum-phase computations from average frequency-threshold tuning curves of chinchilla auditory-nerve fibers with high spontaneous activity (A. N. Temchin et al., J. Neurophysiol. 100: 2889–2898, 2008), and signal-front delays specified by the latencies of basilar-membrane and auditory-nerve fiber responses to intense clicks (A. N. Temchin et al., J. Neurophysiol. 93: 3635–3648, 2005). The transfer functions predict several features of the phase-frequency curves of cochlear responses to tones, including their shape transitions in the regions with characteristic frequencies of 1 kHz and 3–4 kHz (A. N. Temchin and M. A. Ruggero, JARO 11: 297–318, 2010). The transfer functions also predict the shapes of cochlear impulse responses, including the polarities of their frequency sweeps and their transition at characteristic frequencies around 1 kHz. Predictions are especially accurate for characteristic frequencies < 1 kHz. PMID:20951191

  7. Organization of Response Areas in Ferret Primary Auditory Cortex

    National Research Council Canada - National Science Library

    Shamma, S. A; Fleshman, J. W; Wiser, P. R; Versnel, H

    1992-01-01

    ...) in the barbiturate- auesthetized ferret. Using a two-tone stimulus, the excitatory and inhibitory portious of the response areas were determined and then parametrized in terms of an asymmetry index...

  8. Auditory stimuli elicit hippocampal neuronal responses during sleep

    Directory of Open Access Journals (Sweden)

    Ekaterina eVinnik

    2012-06-01

    Full Text Available To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50 percent of the trials, sound stimuli were presented followed by water reward after a 3-second delay. Sound at the water port predicted subsequent reward delivery in 100 percent of the trials and the absence of sound predicted reward omission. During this task, 40% of recorded neurons fired differently according to which of the 2 reward ports the rat was visiting. A smaller fraction of neurons demonstrated onset response to sound/nosepoke (19% and reward delivery (24%. When the sounds were played during passive wakefulness, 8% of neurons responded with short latency onset responses; 25% of neurons responded to sounds when they were played during sleep. Based on the current findings and the results of previous experiments we propose the existence of two types of hippocampal neuronal responses to sounds: sound-onset responses with very short latency and longer-lasting sound-specific responses that are likely to be present when the animal is actively engaged in the task. During sleep the short-latency responses in hippocampus are intermingled with sustained activity which in the current experiment was detected for 1-2 seconds.

  9. The Effect of Objective Room Acoustic Parameters on Auditory Steady-State Responses

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; M. Harte, James; Jeong, Cheol-Ho

    2016-01-01

    Verification that Hearing Aids (HA) have been fitted correctly in pre-lingual infants and hard-to-test adults is an important emerging application in technical audiology. These test subjects are unable to undergo reliable behavioral testing, so an objective method is required. Auditory steady......-state responses (ASSR), recorded in a sound field is a promising technology to verify the hearing aid fitting. The test involves the presentation of the auditory stimuli via a loudspeaker, unlike the usual procedure of delivering via insert earphones. Room reverberation clearly may significantly affect...... the features of the stimulus important for eliciting a strong electrophysiological response, and thus complicate its detection. This study investigates the effect of different room acoustic conditions on recorded ASSRs via an auralisation approach using insert earphones. Fifteen normal-hearing listeners were...

  10. Psychometric properties of Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit-hyperactivity disorder.

    Science.gov (United States)

    Soltanparast, Sanaz; Jafari, Zahra; Sameni, Seyed Jalal; Salehi, Masoud

    2014-01-01

    The purpose of the present study was to evaluate the psychometric properties (validity and reliability) of the Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit hyperactivity disorder. The Persian version of the Sustained Auditory Attention Capacity Test was constructed to assess sustained auditory attention using the method provided by Feniman and colleagues (2007). In this test, comments were provided to assess the child's attentional deficit by determining inattention and impulsiveness error, the total scores of the sustained auditory attention capacity test and attention span reduction index. In the present study for determining the validity and reliability of in both Rey Auditory Verbal Learning test and the Persian version of the Sustained Auditory Attention Capacity Test (SAACT), 46 normal children and 41 children with Attention Deficit Hyperactivity (ADHD), all right-handed and aged between 7 and 11 of both genders, were evaluated. In determining convergent validity, a negative significant correlation was found between the three parts of the Rey Auditory Verbal Learning test (first, fifth, and immediate recall) and all indicators of the SAACT except attention span reduction. By comparing the test scores between the normal and ADHD groups, discriminant validity analysis showed significant differences in all indicators of the test except for attention span reduction (pAttention Capacity test has good validity and reliability, that matches other reliable tests, and it can be used for the identification of children with attention deficits and if they suspected to have Attention Deficit Hyperactivity Disorder.

  11. Brainstem auditory evoked responses in an equine patient population: part I--adult horses.

    Science.gov (United States)

    Aleman, M; Holliday, T A; Nieto, J E; Williams, D C

    2014-01-01

    Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  12. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  13. Modeling auditory-nerve responses to electrical stimulation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2014-01-01

    large enough to affect the temporal coding of sounds and hence, potentially, the communication abilities of the CI listener. In the present study, two recently proposed models of electric stimulationof the AN [1, 2, 3] were considered in terms of their efficacy to predict the spike timing for anodic...... andcathodic stimulation of the AN of cat [4]. The models' responses to the electrical pulses of variousshapes [5] were also analyzed. It was found that, while the models can account for the ring rates inresponse to various biphasic pulse shapes, they fail to correctly describe the timing of AP in response...

  14. Fetal auditory responses to external sounds and mother's heart beat: detection improved by Independent Component Analysis.

    Science.gov (United States)

    Porcaro, Camillo; Zappasodi, Filippo; Barbati, Giulia; Salustri, Carlo; Pizzella, Vittorio; Rossini, Paolo Maria; Tecchio, Franca

    2006-07-26

    In this paper, we present a magnetoencephalographic study of the fetal auditory response to external stimuli and to the sound of the mother's heartbeat. We describe how an ad hoc functional selection procedure allowed us to isolate the sources in the fetal brain responding to sounds only, after the application to the recorded data of a standard Independent Component Analysis algorithm. In our experiment, acoustic stimuli were delivered to twelve healthy women with uncomplicated pregnancies at a time between 36 and 40 weeks gestational age, with their fetuses in breech presentation. Ultrasound images allowed determination of the region over the women's abdomen nearest to the fetal head, over which both the acoustic stimulator and the MEG sensors were subsequently placed. In 8 out of the 12 cases, our analysis provided consistent evidence of a fetal response both to the mother's heartbeat and to the external auditory stimulation; both were characterized by a clear prominent component at around 200 ms latency, which is widely accepted as the marker of the fetal response to auditory stimuli.

  15. Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD.

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    Full Text Available Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH. The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.

  16. Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD).

    Science.gov (United States)

    Orekhova, Elena V; Tsetlin, Marina M; Butorina, Anna V; Novikova, Svetlana I; Gratchev, Vitaliy V; Sokolov, Pavel A; Elam, Mikael; Stroganova, Tatiana A

    2012-01-01

    Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD) and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD) children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH). The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.

  17. Speech-evoked auditory brainstem responses in children with hearing loss.

    Science.gov (United States)

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Auditory brainstem, middle and late latency responses to short gaps in noise at different presentation rates.

    Science.gov (United States)

    Alhussaini, Khalid; Bohorquez, Jorge; Delgado, Rafael E; Ozdamar, Ozcan

    2018-01-29

    The effects of rate on auditory-evoked potentials (AEP) to short noise gaps (12 ms) recorded at high sampling rates using wide-band filters were investigated. Auditory brainstem (ABR), middle latency (MLR), late latency (LLR) and steady-state (ASSR) responses were simultaneously recorded in adult subjects at four gap rates (0.5, 1, 5 and 40 Hz). Major components (V, Na, Pa, Nb, Pb, N1 and P2) were identified at each rate and analysed for latency/amplitude characteristics. Gap responses at 40 Hz were recovered from Quasi-ASSRs (QASSR) using the CLAD deconvolution method. Fourteen right ears of young normal hearing subjects were tested. All major components were present in all subjects at 1 Hz. P1 (P50) appeared as a low-pass filtered component of Pa and Pb waves. At higher rates, N1 and P2 disappeared completely while major ABR-MLR components were identified. Peak latencies were mostly determined by noise onsets slightly delayed by offset responses. Major AEP components can be recorded to short gaps at 1 Hz using high sampling rates and wide-band filters. At higher rates, only ABR and MLRs can be recorded. Such simultaneous recordings may provide a complete assessment of temporal resolution and processing at different levels of auditory pathways.

  19. Auditory responses in the amygdala to social vocalizations

    Science.gov (United States)

    Gadziola, Marie A.

    The underlying goal of this dissertation is to understand how the amygdala, a brain region involved in establishing the emotional significance of sensory input, contributes to the processing of complex sounds. The general hypothesis is that communication calls of big brown bats (Eptesicus fuscus) transmit relevant information about social context that is reflected in the activity of amygdalar neurons. The first specific aim analyzed social vocalizations emitted under a variety of behavioral contexts, and related vocalizations to an objective measure of internal physiological state by monitoring the heart rate of vocalizing bats. These experiments revealed a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a sender. The second specific aim characterized the responsiveness of single neurons in the basolateral amygdala to a range of social syllables. Neurons typically respond to the majority of tested syllables, but effectively discriminate among vocalizations by varying the response duration. This novel coding strategy underscores the importance of persistent firing in the general functioning of the amygdala. The third specific aim examined the influence of acoustic context by characterizing both the behavioral and neurophysiological responses to natural vocal sequences. Vocal sequences differentially modify the internal affective state of a listening bat, with lower aggression vocalizations evoking the greatest change in heart rate. Amygdalar neurons employ two different coding strategies: low background neurons respond selectively to very few stimuli, whereas high background neurons respond broadly to stimuli but demonstrate variation in response magnitude and timing. Neurons appear to discriminate the valence of stimuli, with aggression sequences evoking robust population-level responses across all sound levels. Further, vocal sequences show improved discrimination among stimuli

  20. Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex.

    Science.gov (United States)

    Eliades, Steven J; Wang, Xiaoqin

    2017-05-01

    During speech, humans continuously listen to their own vocal output to ensure accurate communication. Such self-monitoring is thought to require the integration of information about the feedback of vocal acoustics with internal motor control signals. The neural mechanism of this auditory-vocal interaction remains largely unknown at the cellular level. Previous studies in naturally vocalizing marmosets have demonstrated diverse neural activities in auditory cortex during vocalization, dominated by a vocalization-induced suppression of neural firing. How underlying auditory tuning properties of these neurons might contribute to this sensory-motor processing is unknown. In the present study, we quantitatively compared marmoset auditory cortex neural activities during vocal production with those during passive listening. We found that neurons excited during vocalization were readily driven by passive playback of vocalizations and other acoustic stimuli. In contrast, neurons suppressed during vocalization exhibited more diverse playback responses, including responses that were not predictable by auditory tuning properties. These results suggest that vocalization-related excitation in auditory cortex is largely a sensory-driven response. In contrast, vocalization-induced suppression is not well predicted by a neuron's auditory responses, supporting the prevailing theory that internal motor-related signals contribute to the auditory-vocal interaction observed in auditory cortex. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transient evoked otoacoustic emissions and auditory brainstem response in infants with perinatal asphyxia.

    Science.gov (United States)

    Ribeiro, Georgea Espindola; Silva, Daniela Polo Camargo da; Montovani, Jair Cortez

    2016-10-01

    The objective of this study was to verify the effects of perinatal asphyxia on different parts of the auditory system. This was a non-concurrent cohort study conducted on a fixed population in a tertiary public hospital. Participants included 181 infants born at term who underwent the transient evoked otoacoustic emission test as a part of a neonatal hearing screening program, with a "pass" result in both ears, and by auditory brainstem response testing. The infants were divided into 3 groups: G1, 20 infants who had perinatal asphyxia; G2, 111 infants with an Apgar score lower than 4 in the first minute and/or lower than 6 in the fifth minute (called "low Apgar" at birth); and G3, 50 infants with first- and fifth-minute Apgar scores ≥7. The signal-to-noise ratio of transient evoked otoacoustic emissions were greater in G3 compared with G1 and G2 at 4 kHz frequency for males. An increased latency of waves I and III in the auditory brainstem response of male infants in G1 was observed. This study demonstrated that alterations occurred in both the cochlear and the neural components in male infants who had perinatal asphyxia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    DEFF Research Database (Denmark)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders

    2016-01-01

    response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent....... No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system....... as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased...

  3. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  4. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    International Nuclear Information System (INIS)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y.

    1992-01-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author)

  5. Effect of Infant Prematurity on Auditory Brainstem Response at Preschool Age

    Directory of Open Access Journals (Sweden)

    Sara Hasani

    2013-03-01

    Full Text Available Introduction: Preterm birth is a risk factor for a number of conditions that requires comprehensive examination. Our study was designed to investigate the impact of preterm birth on the processing of auditory stimuli and brain structures at the brainstem level at a preschool age.   Materials and Methods: An auditory brainstem response (ABR test was performed with low rates of stimuli in 60 children aged 4 to 6 years. Thirty subjects had been born following a very preterm labor or late-preterm labor and 30 control subjects had been born following a full-term labor.   Results: Significant differences in the ABR test result were observed in terms of the inter-peak intervals of the I–III and III–V waves, and the absolute latency of the III wave (P

  6. A temperature rise reduces trial-to-trial variability of locust auditory neuron responses.

    Science.gov (United States)

    Eberhard, Monika J B; Schleimer, Jan-Hendrik; Schreiber, Susanne; Ronacher, Bernhard

    2015-09-01

    The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures. Copyright © 2015 the American Physiological Society.

  7. Missing and delayed auditory responses in young and older children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    J. Christopher eEdgar

    2014-06-01

    Full Text Available Background: The development of left and right superior temporal gyrus (STG 50ms (M50 and 100ms (M100 auditory responses in typically developing children (TD and in children with autism spectrum disorder (ASD was examined. It was hypothesized that (1 M50 responses would be observed equally often in younger and older children, (2 M100 responses would be observed more often in older than younger children indicating later development of secondary auditory areas, and (3 M100 but not M50 would be observed less often in ASD than TD in both age groups, reflecting slower maturation of later developing auditory areas in ASD. Methods: 35 typically developing controls, 63 ASD without language impairment (ASD-LI, and 38 ASD with language impairment (ASD+LI were recruited.The presence or absence of a STG M50 and M100 was scored. Subjects were grouped into younger (6 to 10-years-old and older groups (11 to 15-years-old. Results: Although M50 responses were observed equally often in older and younger subjects and equally often in TD and ASD, left and right M50 responses were delayed in ASD-LI and ASD+LI. Group comparisons showed that in younger subjects M100 responses were observed more often in TD than ASD+LI (90% vs 66%, p=0.04, with no differences between TD and ASD-LI (90% vs 76% p=0.14 or between ASD-LI and ASD+LI (76% vs 66%, p=0.53. In older subjects, whereas no differences were observed between TD and ASD+LI, responses were observed more often in ASD-LI than ASD+LI. Conclusions: Although present in all groups, M50 responses were delayed in ASD, suggesting delayed development of earlier developing auditory areas. Examining the TD data, findings indicated that by 11 years a right M100 should be observed in 100% of subjects and a left M100 in 80% of subjects. Thus, by 11years, lack of a left and especially right M100 offers neurobiological insight into sensory processing that may underlie language or cognitive impairment.

  8. Quantifying stimulus-response rehabilitation protocols by auditory feedback in Parkinson's disease gait pattern

    Science.gov (United States)

    Pineda, Gustavo; Atehortúa, Angélica; Iregui, Marcela; García-Arteaga, Juan D.; Romero, Eduardo

    2017-11-01

    External auditory cues stimulate motor related areas of the brain, activating motor ways parallel to the basal ganglia circuits and providing a temporary pattern for gait. In effect, patients may re-learn motor skills mediated by compensatory neuroplasticity mechanisms. However, long term functional gains are dependent on the nature of the pathology, follow-up is usually limited and reinforcement by healthcare professionals is crucial. Aiming to cope with these challenges, several researches and device implementations provide auditory or visual stimulation to improve Parkinsonian gait pattern, inside and outside clinical scenarios. The current work presents a semiautomated strategy for spatio-temporal feature extraction to study the relations between auditory temporal stimulation and spatiotemporal gait response. A protocol for auditory stimulation was built to evaluate the integrability of the strategy in the clinic practice. The method was evaluated in transversal measurement with an exploratory group of people with Parkinson's (n = 12 in stage 1, 2 and 3) and control subjects (n =6). The result showed a strong linear relation between auditory stimulation and cadence response in control subjects (R=0.98 +/-0.008) and PD subject in stage 2 (R=0.95 +/-0.03) and stage 3 (R=0.89 +/-0.05). Normalized step length showed a variable response between low and high gait velocity (0.2> R >0.97). The correlation between normalized mean velocity and stimulus was strong in all PD stage 2 (R>0.96) PD stage 3 (R>0.84) and controls (R>0.91) for all experimental conditions. Among participants, the largest variation from baseline was found in PD subject in stage 3 (53.61 +/-39.2 step/min, 0.12 +/- 0.06 in step length and 0.33 +/- 0.16 in mean velocity). In this group these values were higher than the own baseline. These variations are related with direct effect of metronome frequency on cadence and velocity. The variation of step length involves different regulation strategies and

  9. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  10. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Science.gov (United States)

    Källstrand, Johan; Olsson, Olle; Nehlstedt, Sara Fristedt; Sköld, Mia Ling; Nielzén, Sören

    2010-01-01

    Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD). In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs) elicited by forward masking in adults diagnosed with Asperger syndrome (AS). Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16), schizophrenic patients (n = 16) and attention deficit hyperactivity disorder patients (n = 16), respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005), which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking) may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases. PMID:20628629

  11. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    Science.gov (United States)

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  12. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  13. Echoic memory: investigation of its temporal resolution by auditory offset cortical responses.

    Directory of Open Access Journals (Sweden)

    Makoto Nishihara

    Full Text Available Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG. The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m. The latency of Off-P50m depended on the inter-stimulus interval (ISI of the click train, which was the longest at 40 ms (25 Hz and became shorter with shorter ISIs (2.5∼20 ms. The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms.

  14. Echoic Memory: Investigation of Its Temporal Resolution by Auditory Offset Cortical Responses

    Science.gov (United States)

    Nishihara, Makoto; Inui, Koji; Morita, Tomoyo; Kodaira, Minori; Mochizuki, Hideki; Otsuru, Naofumi; Motomura, Eishi; Ushida, Takahiro; Kakigi, Ryusuke

    2014-01-01

    Previous studies showed that the amplitude and latency of the auditory offset cortical response depended on the history of the sound, which implicated the involvement of echoic memory in shaping a response. When a brief sound was repeated, the latency of the offset response depended precisely on the frequency of the repeat, indicating that the brain recognized the timing of the offset by using information on the repeat frequency stored in memory. In the present study, we investigated the temporal resolution of sensory storage by measuring auditory offset responses with magnetoencephalography (MEG). The offset of a train of clicks for 1 s elicited a clear magnetic response at approximately 60 ms (Off-P50m). The latency of Off-P50m depended on the inter-stimulus interval (ISI) of the click train, which was the longest at 40 ms (25 Hz) and became shorter with shorter ISIs (2.5∼20 ms). The correlation coefficient r2 for the peak latency and ISI was as high as 0.99, which suggested that sensory storage for the stimulation frequency accurately determined the Off-P50m latency. Statistical analysis revealed that the latency of all pairs, except for that between 200 and 400 Hz, was significantly different, indicating the very high temporal resolution of sensory storage at approximately 5 ms. PMID:25170608

  15. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  16. Autism and attention deficit hyperactivity disorder: assessing attention and response control with the integrated visual and auditory continuous performance test.

    OpenAIRE

    Corbett, Blythe A; Constantine, Laura J

    2006-01-01

    Symptoms of attention deficit hyperactivity disorder (ADHD) have been widely reported in children with autism spectrum disorder (ASD). The current study investigated attention and response control in children with ASD, ADHD, and typical development using the Integrated Visual and Auditory Continuous Performance Test. Results indicate that many children with ASD show significant deficits in visual and auditory attention and greater deficits in impulsivity than children with ADHD or typical dev...

  17. 40 Hz Auditory Steady-State Response: The Impact of Handedness and Gender.

    Science.gov (United States)

    Melynyte, Sigita; Pipinis, Evaldas; Genyte, Vaida; Voicikas, Aleksandras; Rihs, Tonia; Griskova-Bulanova, Inga

    2017-12-07

    The 40 Hz auditory steady-state response (ASSR) is a periodic response to a periodic stimulation. Its sources are located in the primary auditory cortex and the asymmetry of the planum temporale has previously been associated with hand preference and gender-related differences; thus subject's handedness and gender could potentially influence ASSRs. Nevertheless, electrophysiological studies of ASSRs are mainly dominated by right-handed participants and the observed findings can only be generalized to the right-handed populations. However, for a potential use of 40 Hz ASSR as a translational biomarker of neuropsychiatric disorders, it is important to investigate the response in association to handedness and gender. We included an equal number of left-handed and right-handed males and females and recorded EEG responses during left-ear, right-ear and both ears stimulation. The results of the study suggest that the processing of 40 Hz auditory stimulation depends on the subjects' gender and handedness: significantly lower phase-locking and strength of 40 Hz ASSRs were observed in left-handed females as compared to left-handed males, but right-handers did not differ in 40 Hz ASSRs. Our observation of the opposite impact of gender in the examined handedness groups stresses the importance of careful consideration of handedness and gender factors when evaluating the determinants of inter individual variability of 40 Hz ASSRs. This finding is of particular importance for clinical studies in psychiatry and neurology.

  18. Characterization of auditory synaptic inputs to gerbil perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    2015-08-01

    Full Text Available The representation of acoustic cues involves regions downstream from the auditory cortex (ACx. One such area, the perirhinal cortex (PRh, processes sensory signals containing mnemonic information. Therefore, our goal was to assess whether PRh receives auditory inputs from the auditory thalamus (MG and ACx in an auditory thalamocortical brain slice preparation and characterize these afferent-driven synaptic properties. When the MG or ACx was electrically stimulated, synaptic responses were recorded from the PRh neurons. Blockade of GABA-A receptors dramatically increased the amplitude of evoked excitatory potentials. Stimulation of the MG or ACx also evoked calcium transients in most PRh neurons. Separately, when fluoro ruby was injected in ACx in vivo, anterogradely labeled axons and terminals were observed in the PRh. Collectively, these data show that the PRh integrates auditory information from the MG and ACx and that auditory driven inhibition dominates the postsynaptic responses in a non-sensory cortical region downstream from the auditory cortex.

  19. Effects of Voice Harmonic Complexity on ERP Responses to Pitch-Shifted Auditory Feedback

    Science.gov (United States)

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.

    2011-01-01

    Objective The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Methods Event-related potentials (ERPs) were recorded in response to +200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. Results During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. Conclusions These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. Significance This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. PMID:21719346

  20. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    Directory of Open Access Journals (Sweden)

    Eugen eDiesch

    2012-05-01

    Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.

  1. Auditory neurophysiologic responses and discrimination deficits in children with learning problems.

    Science.gov (United States)

    Kraus, N; McGee, T J; Carrell, T D; Zecker, S G; Nicol, T G; Koch, D B

    1996-08-16

    Children with learning problems often cannot discriminate rapid acoustic changes that occur in speech. In this study of normal children and children with learning problems, impaired behavioral discrimination of a rapid speech change (/dalpha/versus/galpha/) was correlated with diminished magnitude of an electrophysiologic measure that is not dependent on attention or a voluntary response. The ability of children with learning problems to discriminate another rapid speech change (/balpha/versus/walpha/) also was reflected in the neurophysiology. These results indicate that some children's discrimination deficits originate in the auditory pathway before conscious perception and have implications for differential diagnosis and targeted therapeutic strategies for children with learning disabilities and attention disorders.

  2. Linear combination of auditory steady-state responses evoked by co-modulated tones

    DEFF Research Database (Denmark)

    Guérit, François; Marozeau, Jeremy; Epp, Bastian

    2017-01-01

    Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...

  3. Enhanced auditory brainstem response and parental bonding style in children with gastrointestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Shizuka Seino

    Full Text Available The electrophysiological properties of the brain and influence of parental bonding in childhood irritable bowel syndrome (IBS are unclear. We hypothesized that children with chronic gastrointestinal (GI symptoms like IBS may show exaggerated brainstem auditory evoked potential (BAEP responses and receive more inadequate parental bonding.Children aged seven and their mothers (141 pairs participated. BAEP was measured by summation of 1,000 waves of the electroencephalogram triggered by 75 dB click sounds. The mothers completed their Children's Somatization Inventory (CSI and Parental Bonding Instrument (PBI. CSI results revealed 66 (42% children without GI symptoms (controls and 75 (58% children with one or more GI symptoms (GI group. The III wave in the GI group (median 4.10 interquartile range [3.95-4.24] ms right, 4.04 [3.90-4.18] ms left had a significantly shorter peak latency than controls (4.18 [4.06-4.34] ms right, p = 0.032, 4.13 [4.02-4.24] ms left, p = 0.018. The female GI group showed a significantly shorter peak latency of the III wave (4.00 [3.90-4.18] ms than controls (4.18 [3.97-4.31] ms, p = 0.034 in the right side. BAEP in the male GI group did not significantly differ from that in controls. GI scores showed a significant correlation with the peak latency of the III wave in the left side (rho = -0.192, p = 0.025. The maternal care PBI scores in the GI group (29 [26]-[33] were significantly lower than controls (31 [28.5-33], p = 0.010, while the maternal over-protection PBI scores were significantly higher in the GI group (16 [12]-[17] than controls (13 [10.5-16], p = 0.024. Multiple regression analysis in females also supported these findings.It is suggested that children with chronic GI symptoms have exaggerated brainstem responses to environmental stimuli and inadequate parental behaviors aggravate these symptoms.

  4. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  5. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Science.gov (United States)

    Ioannou, Christos I; Pereda, Ernesto; Lindsen, Job P; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  6. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    Science.gov (United States)

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem

  7. Property Rights, Restrictions and Responsibilities

    DEFF Research Database (Denmark)

    Enemark, Stig

    more to a social, ethical commitment or attitude to environmental sustainability and good husbandry. This paper provides an overall understanding of the concept of land administration systems for dealing with rights, restrictions and responsibilities in future spatially enabled government. Finally......Land Administration Systems are the basis for conceptualizing rights, restrictions and responsibilities related to people, policies and places. Property rights are normally concerned with ownership and tenure whereas restrictions usually control use and activities on land. Responsibilities relate...

  8. (A)musicality in Williams syndrome: examining relationships among auditory perception, musical skill, and emotional responsiveness to music.

    Science.gov (United States)

    Lense, Miriam D; Shivers, Carolyn M; Dykens, Elisabeth M

    2013-01-01

    Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia.

  9. (A)musicality in Williams syndrome: examining relationships among auditory perception, musical skill, and emotional responsiveness to music

    Science.gov (United States)

    Lense, Miriam D.; Shivers, Carolyn M.; Dykens, Elisabeth M.

    2013-01-01

    Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia. PMID:23966965

  10. Auditory laterality in a nocturnal, fossorial marsupial (Lasiorhinus latifrons) in response to bilateral stimuli.

    Science.gov (United States)

    Descovich, K A; Reints Bok, T E; Lisle, A T; Phillips, C J C

    2013-01-01

    Behavioural lateralisation is evident across most animal taxa, although few marsupial and no fossorial species have been studied. Twelve wombats (Lasiorhinus latifrons) were bilaterally presented with eight sounds from different contexts (threat, neutral, food) to test for auditory laterality. Head turns were recorded prior to and immediately following sound presentation. Behaviour was recorded for 150 seconds after presentation. Although sound differentiation was evident by the amount of exploration, vigilance, and grooming performed after different sound types, this did not result in different patterns of head turn direction. Similarly, left-right proportions of head turns, walking events, and food approaches in the post-sound period were comparable across sound types. A comparison of head turns performed before and after sound showed a significant change in turn direction (χ(2) (1)=10.65, p=.001) from a left preference during the pre-sound period (mean 58% left head turns, CI 49-66%) to a right preference in the post-sound (mean 43% left head turns, CI 40-45%). This provides evidence of a right auditory bias in response to the presentation of the sound. This study therefore demonstrates that laterality is evident in southern hairy-nosed wombats in response to a sound stimulus, although side biases were not altered by sounds of varying context.

  11. Predicting hearing thresholds and occupational hearing loss with multiple-frequency auditory steady-state responses.

    Science.gov (United States)

    Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng

    2010-10-01

    An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.

  12. Brainstem auditory responses to resolved and unresolved harmonics of a synthetic vowel in quiet and noise.

    Science.gov (United States)

    Laroche, Marilyn; Dajani, Hilmi R; Prévost, François; Marcoux, André M

    2013-01-01

    This study investigated speech auditory brainstem responses (speech ABR) with variants of a synthetic vowel in quiet and in background noise. Its objectives were to study the noise robustness of the brainstem response at the fundamental frequency F0 and at the first formant F1, evaluate how the resolved/unresolved harmonics regions in speech contribute to the response at F0, and investigate the origin of the response at F0 to resolved and unresolved harmonics in speech. In total, 18 normal-hearing subjects (11 women, aged 18-33 years) participated in this study. Speech ABRs were recorded using variants of a 300 msec formant-synthesized /a/ vowel in quiet and in white noise. The first experiment employed three variants containing the first three formants F1 to F3, F1 only, and F2 and F3 only with relative formant levels following those reported in the literature. The second experiment employed three variants containing F1 only, F2 only, and F3 only, with the formants equalized to the same level and the signal-to-noise ratio (SNR) maintained at -5 dB. Overall response latency was estimated, and the amplitude and local SNR of the envelope following response at F0 and of the frequency following response at F1 were compared for the different stimulus variants in quiet and in noise. The response at F0 was more robust to noise than that at F1. There were no statistically significant differences in the response at F0 caused by the three stimulus variants in both experiments in quiet. However, the response at F0 with the variant dominated by resolved harmonics was more robust to noise than the response at F0 with the stimulus variants dominated by unresolved harmonics. The latencies of the responses in all cases were very similar in quiet, but the responses at F0 due to resolved and unresolved harmonics combined nonlinearly when both were present in the stimulus. Speech ABR has been suggested as a marker of central auditory processing. The results of this study support

  13. Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.

    Science.gov (United States)

    Hage, Steffen R

    2018-03-20

    Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Maturation of auditory brainstem responses in young children with congenital monaural atresia.

    Science.gov (United States)

    Stuermer, Konrad Johannes; Foerst, Astrid; Sandmann, Pascale; Fuerstenberg, Dirk; Lang-Roth, Ruth; Walger, Martin

    2017-04-01

    To date, the impact of conductive hearing loss on the auditory pathway at brainstem level has only been investigated in animal studies, which showed a species-specific delay of maturation. In this study, the functional maturation of auditory brainstem response (ABR) parameters in humans with unilateral atresia of the external auditory canal was investigated. 42 newborns and toddlers ranging in age from 13 days to 11 months were included. The click-evoked ABR interpeak latencies (IPL) of the atretic ears and the contralateral ears with normal hearing were evaluated. The children had no comorbidities and had never been fitted with any kind of hearing aid. The absolute latencies (AL) and IPL of a matched control group were compared to the contralateral normally hearing ears of the children with unilateral atresia. The mean air-bone gap in the ears with atresia was 44 dB HL. Despite this partial acoustic deprivation, no significant difference between the IPLs of normal ears and ears with atresia could be detected. Both for AL and IPL, the differences between the normal ears and the control group were all within 1 standard deviation to the mean. The data showed that the monaural acoustic deprivation by a block of sound conduction does not produce any delay of functional maturation at brainstem level in this group of patients. With regard to the AL and IPL on brainstem level, no differences between the normal ears of children with unilateral atresia and children with bilateral normal hearing could be detected. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Attention-related modulation of auditory-cortex responses to speech sounds during dichotic listening.

    Science.gov (United States)

    Alho, Kimmo; Salonen, Johanna; Rinne, Teemu; Medvedev, Svyatoslav V; Hugdahl, Kenneth; Hämäläinen, Heikki

    2012-03-09

    Event-related magnetic fields (ERFs) were measured with magnetoencephalography (MEG) in fifteen healthy right-handed participants listening to sequences of consonant-vowel syllable pairs delivered dichotically (one syllable presented to the left ear and another syllable simultaneously to the right ear). The participants were instructed to press a response button to occurrences of a particular target syllable. In a condition with no other instruction (the non-forced condition, NF), they showed the well-known right-ear advantage (REA), that is, the participants responded more often to target syllables delivered to the right ear than to targets delivered to the left ear. The same was true in the forced-right (FR) condition, where the participants were instructed to attend selectively to the right-ear syllables and respond only to targets among them. In the forced-left (FL) condition, where they were instructed to respond only to left-ear targets, they responded more often to targets in this ear than to targets in the right ear. At 300-500 ms from syllable pair onset, a sustained field (SF) in ERFs to the syllable pairs was stronger in the left auditory cortex than in the right auditory cortex in the NF and FR conditions, while the opposite was true in the FL condition. Thus selective attention during dichotic listening leads to stronger processing of speech sounds in the auditory cortex contralateral to the attended direction. Our results also suggest that the REA observed for dichotic speech may involve a bias of attention to the right side even when there is no instruction to do so. This supports Kinsbourne's (1970) model of attention bias as a general principle of laterality. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Usefulness of Electrical Auditory Brainstem Responses to Assess the Functionality of the Cochlear Nerve Using an Intracochlear Test Electrode.

    Science.gov (United States)

    Lassaletta, Luis; Polak, Marek; Huesers, Jan; Díaz-Gómez, Miguel; Calvino, Miryam; Varela-Nieto, Isabel; Gavilán, Javier

    2017-12-01

    To use an intracochlear test electrode to assess the integrity and the functionality of the auditory nerve in cochlear implant (CI) recipients and to compare electrical auditory brainstem responses (eABR) via the test electrode with the eABR responses with the CI. Otolaryngology department, tertiary referral hospital. Ten subjects (age at implantation 55 yr, range, 19-72) were subsequently implanted with a MED-EL CONCERTO CI on the side without any useful residual hearing. Following identification of the round window (RW), the test electrode was inserted in the cochlea previous to cochlear implantation. To assess the quality of an eABR waveform, scoring criteria from Walton et al. (2008) were chosen. The waveforms in each session were classified by detecting waves III and V by the algorithm and visual assessment of the waveform. Speech performance was evaluated with monosyllables, disyllables, and sentence recognition tests. It was possible to evoke electrical stimulation responses along with both the test electrode and the CI in all subjects. No significant differences in latencies or amplitudes after stimulation were found between the test electrode and the CI. All subjects obtained useful hearing with their CI and use their implants daily. The intracochlear test electrode may be suitable to test the integrity of the auditory nerve by recording eABR signals. This allows for further research on the status of the auditory nerve after tumor removal and correlation with auditory performance.

  17. Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey.

    Science.gov (United States)

    Kajikawa, Yoshinao; Frey, Stephen; Ross, Deborah; Falchier, Arnaud; Hackett, Troy A; Schroeder, Charles E

    2015-03-11

    The superior temporal gyrus (STG) is on the inferior-lateral brain surface near the external ear. In macaques, 2/3 of the STG is occupied by an auditory cortical region, the "parabelt," which is part of a network of inferior temporal areas subserving communication and social cognition as well as object recognition and other functions. However, due to its location beneath the squamous temporal bone and temporalis muscle, the STG, like other inferior temporal regions, has been a challenging target for physiological studies in awake-behaving macaques. We designed a new procedure for implanting recording chambers to provide direct access to the STG, allowing us to evaluate neuronal properties and their topography across the full extent of the STG in awake-behaving macaques. Initial surveys of the STG have yielded several new findings. Unexpectedly, STG sites in monkeys that were listening passively responded to tones with magnitudes comparable to those of responses to 1/3 octave band-pass noise. Mapping results showed longer response latencies in more rostral sites and possible tonotopic patterns parallel to core and belt areas, suggesting the reversal of gradients between caudal and rostral parabelt areas. These results will help further exploration of parabelt areas. Copyright © 2015 the authors 0270-6474/15/354140-11$15.00/0.

  18. Distinct features of auditory steady-state responses as compared to transient event-related potentials.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Transient event-related potentials (ERPs and steady-state responses (SSRs have been popularly employed to investigate the function of the human brain, but their relationship still remains a matter of debate. Some researchers believed that SSRs could be explained by the linear summation of successive transient ERPs (superposition hypothesis, while others believed that SSRs were the result of the entrainment of a neural rhythm driven by the periodic repetition of a sensory stimulus (oscillatory entrainment hypothesis. In the present study, taking auditory modality as an example, we aimed to clarify the distinct features of SSRs, evoked by the 40-Hz and 60-Hz periodic auditory stimulation, as compared to transient ERPs, evoked by a single click. We observed that (1 SSRs were mainly generated by phase synchronization, while late latency responses (LLRs in transient ERPs were mainly generated by power enhancement; (2 scalp topographies of LLRs in transient ERPs were markedly different from those of SSRs; (3 the powers of both 40-Hz and 60-Hz SSRs were significantly correlated, while they were not significantly correlated with the N1 power in transient ERPs; (4 whereas SSRs were dominantly modulated by stimulus intensity, middle latency responses (MLRs were not significantly modulated by both stimulus intensity and subjective loudness judgment, and LLRs were significantly modulated by subjective loudness judgment even within the same stimulus intensity. All these findings indicated that high-frequency SSRs were different from both MLRs and LLRs in transient ERPs, thus supporting the possibility of oscillatory entrainment hypothesis to the generation of SSRs. Therefore, SSRs could be used to explore distinct neural responses as compared to transient ERPs, and help us reveal novel and reliable neural mechanisms of the human brain.

  19. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  20. 22q11.2 Deletion Syndrome Is Associated With Impaired Auditory Steady-State Gamma Response

    DEFF Research Database (Denmark)

    Larsen, Kit Melissa; Pellegrino, Giovanni; Birknow, Michelle Rosgaard

    2017-01-01

    The 22q11.2 deletion syndrome confers a markedly increased risk for schizophrenia. 22q11.2 deletion carriers without manifest psychotic disorder offer the possibility to identify functional abnormalities that precede clinical onset. Since schizophrenia is associated with a reduced cortical gamma...... response to auditory stimulation at 40 Hz, we hypothesized that the 40 Hz auditory steady-state response (ASSR) may be attenuated in nonpsychotic individuals with a 22q11.2 deletion. Eighteen young nonpsychotic 22q11.2 deletion carriers and a control group of 27 noncarriers with comparable age range (12...... Hz click stimulation. Both gamma power and inter-trial phase coherence of the ASSR were markedly reduced in the 22q11.2 deletion group. The ability to phase lock cortical gamma activity to regular auditory 40 Hz stimulation correlated with the individual expression of negative symptoms in deletion...

  1. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Christos I Ioannou

    Full Text Available The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB. The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  2. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise

    Science.gov (United States)

    Ioannou, Christos I.; Pereda, Ernesto; Lindsen, Job P.; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies. PMID:26065708

  3. Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex.

    Science.gov (United States)

    Land, Rüdiger; Radecke, Jan-Ole; Kral, Andrej

    2018-04-01

    Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Clinical Experience of Auditory Brainstem Response Testing on Pediatric Patients in the Operating Room

    Directory of Open Access Journals (Sweden)

    Guangwei Zhou

    2012-01-01

    Full Text Available Objectives. To review our experience of conducting auditory brainstem response (ABR test on children in the operating room and discuss the benefits versus limitations of this practice. Methods. Retrospective review study conducted in a pediatric tertiary care facility. A total of 267 patients identified with usable data, including ABR results, medical and surgical notes, and follow-up evaluation. Results. Hearing status successfully determined in all patients based on the ABR results form the operating room. The degrees and the types of hearing loss also documented in most of the cases. In addition, multiple factors that may affect the outcomes of ABR in the operating room identified. Conclusions. Hearing loss in children with complicated medical issues can be accurately evaluated via ABR testing in the operating room. Efforts should be made to eliminate adverse factors to ABR recording, and caution should be taken when interpreting ABR results from the operating room.

  5. Abnormal Auditory Brainstem Response (ABR Findings in a Near-Normal Hearing Child with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Bahram Jalaei

    2017-01-01

    Full Text Available Introduction: Noonan syndrome (NS is a heterogeneous genetic disease that affects many parts of the body. It was named after Dr. Jacqueline Anne Noonan, a paediatric cardiologist.Case Report: We report audiological tests and auditory brainstem response (ABR findings in a 5-year old Malay boy with NS. Despite showing the marked signs of NS, the child could only produce a few meaningful words. Audiological tests found him to have bilateral mild conductive hearing loss at low frequencies. In ABR testing, despite having good waveform morphology, the results were atypical. Absolute latency of wave V was normal but interpeak latencies of wave’s I-V, I-II, II-III were prolonged. Interestingly, interpeak latency of waves III-V was abnormally shorter.Conclusion:Abnormal ABR results are possibly due to abnormal anatomical condition of brainstem and might contribute to speech delay.

  6. Response of cardiac autonomic modulation after a single exposure to musical auditory stimulation.

    Science.gov (United States)

    Ferreira, Lucas L; Vanderlei, Luiz Carlos M; Guida, Heraldo L; de Abreu, Luiz Carlos; Garner, David M; Vanderlei, Franciele M; Ferreira, Celso; Valenti, Vitor E

    2015-01-01

    The acute effects after exposure to different styles of music on cardiac autonomic modulation assessed through heart rate variability (HRV) analysis have not yet been well elucidated. We aimed to investigate the recovery response of cardiac autonomic modulation in women after exposure to musical auditory stimulation of different styles. The study was conducted on 30 healthy women aged between 18 years and 30 years. We did not include subjects having previous experience with musical instruments and those who had an affinity for music styles. The volunteers remained at rest for 10 min and were exposed to classical baroque (64-84 dB) and heavy metal (75-84 dB) music for 10 min, and their HRV was evaluated for 30 min after music cessation. We analyzed the following HRV indices: Standard deviation of normal-to-normal (SDNN) intervals, root mean square of successive differences (RMSSD), percentage of normal-to-normal 50 (pNN50), low frequency (LF), high frequency (HF), and LF/HF ratio. SDNN, LF in absolute units (ms 2 ) and normalized (nu), and LF/HF ratio increased while HF index (nu) decreased after exposure to classical baroque music. Regarding the heavy metal music style, it was observed that there were increases in SDNN, RMSSD, pNN50, and LF (ms 2 ) after the musical stimulation. In conclusion, the recovery response of cardiac autonomic modulation after exposure to auditory stimulation with music featured an increased global activity of both systems for the two musical styles, with a cardiac sympathetic modulation for classical baroque music and a cardiac vagal tone for the heavy metal style.

  7. [On the terminology of auditory steady-state responses. What differentiates steady-state and transient potentials?].

    Science.gov (United States)

    Mühler, R

    2012-05-01

    Recording human auditory steady-state responses (ASSR) at different frequencies allows objective assessment of auditory thresholds. Common practice has been to record ASSR to pure tones that are sinusoidally modulated in amplitude and frequency. Recently, optimized chirp stimuli have been proposed to evoke transient as well as steady-state responses. Because of the resulting uncertainty about the different methods, this paper aims to reconsider the terminology of transient and steady-state responses. Two experiments demonstrate the smooth transition between transient and steady-state responses. In experiment 1, click-evoked auditory brainstem responses (ABR) were recorded over a wide range of stimulus repetition rates (24/s to 72/s). In experiment 2, auditory steady-state responses were recorded for the same stimulus repetition rates, using three different stimulus types: an amplitude modulated 1-kHz tone (AM), a 1-kHz tone-burst (TB) and a flat-spectrum chirp. Experiment 1 demonstrates the merging of the typical ABR wave complexes at higher repetition rates, forming a steady-state response. This effect can only be observed if the time window is extended far beyond the window traditionally used for clinical ABR recordings. Experiment 2 reveals similar ASSR amplitude spectra regardless of the stimulus type and repetition rate used. Steady-state responses can be evoked for a large variety of stimulus types and repetition rates. Thus, from a clinician's point of view, steady-state responses cannot be considered a new type of evoked responses. They differ from transient responses primarily in the frequency response method and the longer timeframe required.

  8. Attenuated Auditory Event-Related Potentials and Associations with Atypical Sensory Response Patterns in Children with Autism

    Science.gov (United States)

    Donkers, Franc C. L.; Schipul, Sarah E.; Baranek, Grace T.; Cleary, Katherine M.; Willoughby, Michael T.; Evans, Anna M.; Bulluck, John C.; Lovmo, Jeanne E.; Belger, Aysenil

    2015-01-01

    Neurobiological underpinnings of unusual sensory features in individuals with autism are unknown. Event-related potentials elicited by task-irrelevant sounds were used to elucidate neural correlates of auditory processing and associations with three common sensory response patterns (hyperresponsiveness; hyporesponsiveness; sensory seeking).…

  9. The influence of prenatal tactile and vestibular stimulation on auditory and visual responsiveness in bobwhite quail: A matter of timing.

    Science.gov (United States)

    Honeycutt, Hunter; Lickliter, Robert

    2003-09-01

    The fact that the sensory systems do not become functional at the same time during prenatal development raises the question of how experience in a given modality can influence functioning in other sensory modalities. The present study exposed groups of bobwhite quail embryos to augmented tactile and vestibular stimulation at times that either coincided with or followed the period of onset of function in the later-developing auditory and visual modalities. Differences in the timing of augmented prenatal stimulation led to different patterns of subsequent auditory and visual responsiveness following hatching. No effect on normal visual responsiveness to species-typical maternal cues was found when exposure to tactile and vestibular stimulation coincided with the emergence of visual function (Days 14-19), but when exposure took place after the onset of visual functioning (Days 17-22), chicks displayed enhanced responsiveness to the same maternal visual cues. When augmented tactile and vestibular stimulation coincided with the onset of auditory function (Days 9-14), embryos subsequently failed to learn a species-typical maternal call prior to hatching. However, when given exposure to the same type and amount of augmented stimulation following the onset of auditory function (Days 14-19), embryos did learn the maternal call. These findings demonstrate that augmented stimulation to earlier-emerging sensory modalities can either facilitate or interfere with perceptual responsiveness in later-developing modalities, depending on when that stimulation takes place. Copyright 2003 Wiley Periodicals, Inc. Dev Psychobiol 43: 71-81, 2003.

  10. Thresholds of Tone Burst Auditory Brainstem Responses for Infants and Young Children with Normal Hearing in Taiwan

    Directory of Open Access Journals (Sweden)

    Chung-Yi Lee

    2007-10-01

    Conclusion: Based on the published research and our study, we suggest setting the normal criterion levels for infants and young children in Taiwan of the tone burst auditory brainstem response to air-conducted tones as 30 dB nHL for 500 and 1000 Hz, and 25 dB nHL for 2000 and 4000 Hz.

  11. Automatic auditory and somatosensory brain responses in relation to cognitive abilities and physical fitness in older adults.

    Science.gov (United States)

    Strömmer, Juho M; Põldver, Nele; Waselius, Tomi; Kirjavainen, Ville; Järveläinen, Saara; Björksten, Sanni; Tarkka, Ina M; Astikainen, Piia

    2017-10-20

    In normal ageing, structural and functional changes in the brain lead to an altered processing of sensory stimuli and to changes in cognitive functions. The link between changes in sensory processing and cognition is not well understood, but physical fitness is suggested to be beneficial for both. We recorded event-related potentials to somatosensory and auditory stimuli in a passive change detection paradigm from 81 older and 38 young women and investigated their associations with cognitive performance. In older adults also associations to physical fitness were studied. The somatosensory mismatch response was attenuated in older adults and it associated with executive functions. Somatosensory P3a did not show group differences, but in older adults, it associated with physical fitness. Auditory N1 and P2 responses to repetitive stimuli were larger in amplitude in older than in young adults. There were no group differences in the auditory mismatch negativity, but it associated with working memory capacity in young but not in older adults. Our results indicate that in ageing, changes in stimulus encoding and deviance detection are observable in electrophysiological responses to task-irrelevant somatosensory and auditory stimuli, and the higher somatosensory response amplitudes are associated with better executive functions and physical fitness.

  12. Auditory Brainstem Response Wave Amplitude Characteristics as a Diagnostic Tool in Children with Speech Delay with Unknown Causes

    Directory of Open Access Journals (Sweden)

    Susan Abadi

    2016-09-01

    Full Text Available Speech delay with an unknown cause is a problem among children. This diagnosis is the last differential diagnosis after observing normal findings in routine hearing tests. The present study was undertaken to determine whether auditory brainstem responses to click stimuli are different between normally developing children and children suffering from delayed speech with unknown causes. In this cross-sectional study, we compared click auditory brainstem responses between 261 children who were clinically diagnosed with delayed speech with unknown causes based on normal routine auditory test findings and neurological examinations and had >12 months of speech delay (case group and 261 age- and sex-matched normally developing children (control group. Our results indicated that the case group exhibited significantly higher wave amplitude responses to click stimuli (waves I, III, and V than did the control group (P=0.001. These amplitudes were significantly reduced after 1 year (P=0.001; however, they were still significantly higher than those of the control group (P=0.001. The significant differences were seen regardless of the age and the sex of the participants. There were no statistically significant differences between the 2 groups considering the latency of waves I, III, and V. In conclusion, the higher amplitudes of waves I, III, and V, which were observed in the auditory brainstem responses to click stimuli among the patients with speech delay with unknown causes, might be used as a diagnostic tool to track patients’ improvement after treatment.

  13. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of ZNF804A on auditory P300 response in schizophrenia.

    LENUS (Irish Health Repository)

    O'Donoghue, T

    2014-01-01

    The common variant rs1344706 within the zinc-finger protein gene ZNF804A has been strongly implicated in schizophrenia (SZ) susceptibility by a series of recent genetic association studies. Although associated with a pattern of altered neural connectivity, evidence that increased risk is mediated by an effect on cognitive deficits associated with the disorder has been equivocal. This study investigated whether the same ZNF804A risk allele was associated with variation in the P300 auditory-evoked response, a cognitively relevant putative endophenotype for SZ. We compared P300 responses in carriers and noncarriers of the ZNF804A risk allele genotype groups in Irish patients and controls (n=97). P300 response was observed to vary according to genotype in this sample, such that risk allele carriers showed relatively higher P300 response compared with noncarriers. This finding accords with behavioural data reported by our group and others. It is also consistent with the idea that ZNF804A may have an impact on cortical efficiency, reflected in the higher levels of activations required to achieve comparable behavioural accuracy on the task used.

  15. Normal Hearing Ability but Impaired Auditory Selective Attention Associated with Prediction of Response to Donepezil in Patients with Alzheimer's Disease

    Science.gov (United States)

    Ouchi, Yoshitaka; Meguro, Kenichi; Akanuma, Kyoko; Kato, Yuriko; Yamaguchi, Satoshi

    2015-01-01

    Background. Alzheimer's disease (AD) patients have a poor response to the voices of caregivers. After administration of donepezil, caregivers often find that patients respond more frequently, whereas they had previously pretended to be “deaf.” We investigated whether auditory selective attention is associated with response to donepezil. Methods. The subjects were40 AD patients, 20 elderly healthy controls (HCs), and 15 young HCs. Pure tone audiometry was conducted and an original Auditory Selective Attention (ASA) test was performed with a MoCA vigilance test. Reassessment of the AD group was performed after donepezil treatment for 3 months. Results. Hearing level of the AD group was the same as that of the elderly HC group. However, ASA test scores decreased in the AD group and were correlated with the vigilance test scores. Donepezil responders (MMSE 3+) also showed improvement on the ASA test. At baseline, the responders had higher vigilance and lower ASA test scores. Conclusion. Contrary to the common view, AD patients had a similar level of hearing ability to healthy elderly. Auditory attention was impaired in AD patients, which suggests that unnecessary sounds should be avoided in nursing homes. Auditory selective attention is associated with response to donepezil in AD. PMID:26161001

  16. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum-A Response in the Auditory Nerve.

    Science.gov (United States)

    Guthrie, O'neil W

    2017-03-01

    In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum-A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve.

  17. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum–A Response in the Auditory Nerve

    Science.gov (United States)

    Guthrie, O’neil W.

    2017-01-01

    In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum–A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve. PMID:28056182

  18. Three young adult patients with Pelizaeus-Merzbacher disease who showed only waves I and II in auditory brainstem responses but had good auditory perception.

    Science.gov (United States)

    Kaga, Kimitaka; Tamai, Fumi; Kodama, Mariko; Kodama, Kazuo

    2005-09-01

    Three young adult males with Pelizaeus-Merzbacher disease have been followed up since childhood. This disease is thought to be a dysmyelinating disorder of the brain during the prenatal period caused by gene mutations. The patients manifested horizontal nystagmus and severe rigidity of the extremities. Although the patients showed only waves I and II in auditory brainstem responses, they had relatively good hearing ability at approximately equal to dB. They could not speak words at all but could hear well and enjoy listening to conversation and music. One of them had a normal hearing threshold in pure-tone audiometry and a normal speech discrimination rate in speech audiometry. This can be explained by a nerve conduction blockade through dysmyelinated axons or the desynchronization of neurons and nerves responsible for the waves following waves I and II. At present, all three patients are living with their families. We report their present hearing, speech and language abilities.

  19. Impact of loudness dependency of auditory evoked potentials on the panic response to CCK-4.

    Science.gov (United States)

    Eser, Daniela; Leicht, Gregor; Baghai, Thomas; Pogarell, Oliver; Schüle, Cornelius; Karch, Susanne; Nothdurfter, Caroline; Rupprecht, Rainer; Mulert, Christoph

    2009-01-01

    Experimental panic induction with cholecystokinin-tetrapeptide (CCK-4) has been established as a model to study the pathophysiology of panic disorder. In line with the serotonin (5-HT)-hypothesis of panic disorder it has been suggested that the panicogenic effects of CCK-4 are mediated in part through the 5-HT system. The analysis of the loudness dependency of the auditory evoked potentials (LDAEP) is a valid non-invasive indicator of central serotonergic activity. We investigated the correlation between LDAEP and behavioral, cardiovascular and neuroendocrine panic responses to CCK-4in 77 healthy volunteers and explored whether differences in LDAEP paralleled subjective panic severity. Behavioral panic responses were measured with the panic symptom scale (PSS). Heart rate and ACTH/cortisol plasma concentrations were assessed concomitantly. LDAEP did not differ between panickers and nonpanickers. Furthermore, LDAEP did not correlate with the behavioral panic response. However, a significant positive correlation between LDAEP and CCK-4 induced HPA-axis activation, which was uniform in panickers and nonpanickers, could be detected. The psychological effects of CCK-4 rather are mediated by neurotransmitters others than the endogenous 5-HT system. However, the extent of the neuroendocrine activation related to the CCK-4 panic provocation was correlated with the LDAEP, thereby suggesting that central 5-HT mechanisms are involved in the HPA-axis activation during this challenge paradigm.

  20. Automatic Pre-Attentive Auditory Responses: MMN to Tone Burst Frequency Changes in Autistic School-Age Children.

    Science.gov (United States)

    Abdeltawwab, Mohamed Moustafa; Baz, Hemmat

    2015-04-01

    Autism is a pervasive developmental disorder that includes deficits in socialization, communication, and adaptive functioning. The mismatch negativity (MMN) is a component of evoked response potentials that reflects pre-attentive change detection. The purpose of this study was to determine whether a group of autistic school-age children had abnormal changes in auditory MMN and to analyze and compare the results with an age-matched group of normal children. This prospective study was carried out on 31 autistic school-age children. Thirty age-, gender-, and IQ-matched children served as a control group. The children were evaluated through diagnostic procedures that included psychometric and speech language tests and audiological assessments. Auditory MMNs were recorded from all participants, and the peak amplitudes and latencies were measured. The mean ages were 11.3±2.8 and 11.2±3.2 years for the autistic and normal children, respectively. The MMN amplitudes obtained from the two groups were found to be statistically significantly different. The MMN amplitudes were reduced, and latencies were prolonged in autistic versus normal children. Our results suggest that children with autism do have auditory changes at the level measured by MMN, mainly pre-attentive response, which argues for a doubt on affection of the supposed origin of auditory MMN in those children.

  1. Test-retest reliability of speech-evoked auditory brainstem response in healthy children at a low sensation level.

    Science.gov (United States)

    Zakaria, Mohd Normani; Jalaei, Bahram

    2017-11-01

    Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  3. Using Auditory Steady-State Responses for Measuring Hearing Protector Attenuation

    Directory of Open Access Journals (Sweden)

    Olivier Valentin

    2017-01-01

    Full Text Available Introduction: Present methods of measuring the attenuation of hearing protection devices (HPDs have limitations. Objective measurements such as field microphone in real-ear do not assess bone-conducted sound. Psychophysical measurements such as real-ear attenuation at threshold (REAT are biased due to the low frequency masking effects from test subjects’ physiological noise and the variability of measurements based on subjective responses. An auditory steady-state responses (ASSRs procedure is explored as a technique which might overcome these limitations. Subjects and Methods: Pure tone stimuli (500 and 1000 Hz, amplitude modulated at 40 Hz, are presented to 10 normal-hearing adults through headphones at three levels in 10 dB steps. Two conditions were assessed: unoccluded ear canal and occluded ear canal. ASSR amplitude data as a function of the stimulation level are linearized using least-square regressions. The “physiological attenuation” is then calculated as the average difference between the two measurements. The technical feasibility of measuring earplug attenuation is demonstrated for the group average attenuation across subjects. Results: No significant statistical difference is found between the average REAT attenuation and the average ASSR-based attenuation. Conclusion: Feasibility is not yet demonstrated for individual subjects since differences between the estimates occurred for some subjects.

  4. Relationship between neuroticism, childhood trauma and cognitive-affective responses to auditory verbal hallucinations

    Science.gov (United States)

    So, Suzanne Ho-wai; Begemann, Marieke J. H.; Gong, Xianmin; Sommer, Iris E.

    2016-01-01

    Neuroticism has been shown to adversely influence the development and outcome of psychosis. However, how this personality trait associates with the individual’s responses to psychotic symptoms is less well known. Auditory verbal hallucinations (AVHs) have been reported by patients with psychosis and non-clinical individuals. There is evidence that voice-hearers who are more distressed by and resistant against the voices, as well as those who appraise the voices as malevolent and powerful, have poorer outcome. This study aimed to examine the mechanistic association of neuroticism with the cognitive-affective reactions to AVH. We assessed 40 psychotic patients experiencing frequent AVHs, 135 non-clinical participants experiencing frequent AVHs, and 126 healthy individuals. In both clinical and non-clinical voice-hearers alike, a higher level of neuroticism was associated with more distress and behavioral resistance in response to AVHs, as well as a stronger tendency to perceive voices as malevolent and powerful. Neuroticism fully mediated the found associations between childhood trauma and the individuals’ cognitive-affective reactions to voices. Our results supported the role of neurotic personality in shaping maladaptive reactions to voices. Neuroticism may also serve as a putative mechanism linking childhood trauma and psychological reactions to voices. Implications for psychological models of hallucinations are discussed. PMID:27698407

  5. Synchronized Progression of Prestin Expression and Auditory Brainstem Response during Postnatal Development in Rats

    Directory of Open Access Journals (Sweden)

    Jianfeng Hang

    2016-01-01

    Full Text Available Prestin is the motor protein expressed in the cochlear outer hair cells (OHCs of mammalian inner ear. The electromotility of OHCs driven by prestin is responsible for the cochlear amplification which is required for normal hearing in adult animals. Postnatal expression of prestin and activity of OHCs may contribute to the maturation of hearing in rodents. However, the temporal and spatial expression of prestin in cochlea during the development is not well characterized. In the present study, we examined the expression and function of prestin from the OHCs in apical, middle, and basal turns of the cochleae of postnatal rats. Prestin first appeared at postnatal day 6 (P6 for basal turn, P7 in middle turn, and P9 for apical turn of cochlea. The expression level increased progressively over the next few days and by P14 reached the mature level for all three segments. By comparison with the time course of the development of auditory brainstem response for different frequencies, our data reveal that prestin expression synchronized with the hearing development. The present study suggests that the onset time of hearing may require the expression of prestin and is determined by the mature function of OHCs.

  6. Using Auditory Steady-State Responses for Measuring Hearing Protector Attenuation.

    Science.gov (United States)

    Valentin, Olivier; John, Sasha M; Laville, Frédéric

    2017-01-01

    Present methods of measuring the attenuation of hearing protection devices (HPDs) have limitations. Objective measurements such as field microphone in real-ear do not assess bone-conducted sound. Psychophysical measurements such as real-ear attenuation at threshold (REAT) are biased due to the low frequency masking effects from test subjects' physiological noise and the variability of measurements based on subjective responses. An auditory steady-state responses (ASSRs) procedure is explored as a technique which might overcome these limitations. Pure tone stimuli (500 and 1000 Hz), amplitude modulated at 40 Hz, are presented to 10 normal-hearing adults through headphones at three levels in 10 dB steps. Two conditions were assessed: unoccluded ear canal and occluded ear canal. ASSR amplitude data as a function of the stimulation level are linearized using least-square regressions. The "physiological attenuation" is then calculated as the average difference between the two measurements. The technical feasibility of measuring earplug attenuation is demonstrated for the group average attenuation across subjects. No significant statistical difference is found between the average REAT attenuation and the average ASSR-based attenuation. Feasibility is not yet demonstrated for individual subjects since differences between the estimates occurred for some subjects.

  7. Auditory stimulation with music influences the geometric indices of heart rate variability in response to the postural change maneuver

    Directory of Open Access Journals (Sweden)

    Bianca C. R. de Castro

    2014-01-01

    Full Text Available It is poor in the literature the behavior of the geometric indices of heart rate variability (HRV during the musical auditory stimulation. The objective is to investigate the acute effects of classic musical auditory stimulation on the geometric indexes of HRV in women in response to the postural change maneuver (PCM. We evaluated 11 healthy women between 18 and 25 years old. We analyzed the following indices: Triangular index, Triangular interpolation of RR intervals and Poincarι plot (standard deviation of the instantaneous variability of the beat-to beat heart rate [SD1], standard deviation of long-term continuous RR interval variability and Ratio between the short - and long-term variations of RR intervals [SD1/SD2] ratio. HRV was recorded at seated rest for 10 min. The women quickly stood up from a seated position in up to 3 s and remained standing still for 15 min. HRV was recorded at the following periods: Rest, 0-5 min, 5-10 min and 10-15 min during standing. In the second protocol, the subject was exposed to auditory musical stimulation (Pachelbel-Canon in D for 10 min at seated position before standing position. Shapiro-Wilk to verify normality of data and ANOVA for repeated measures followed by the Bonferroni test for parametric variables and Friedman′s followed by the Dunn′s posttest for non-parametric distributions. In the first protocol, all indices were reduced at 10-15 min after the volunteers stood up. In the protocol musical auditory stimulation, the SD1 index was reduced at 5-10 min after the volunteers stood up compared with the music period. The SD1/SD2 ratio was decreased at control and music period compared with 5-10 min after the volunteers stood up. Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

  8. The maturation of auditory responses in infants and young children: a cross-sectional study from 6 to 59 months

    Directory of Open Access Journals (Sweden)

    James Christopher eEdgar

    2015-10-01

    Full Text Available Background: An understanding of the maturation of auditory cortex responses in typically developing infants and toddlers is needed to later identify auditory processing abnormalities in infants at risk for neurodevelopmental disorders. The availability of infant and young child magnetoencephalography (MEG systems may now provide near optimal assessment of left and right hemisphere auditory neuromagnetic responses in young populations. To assess the performance of a novel whole-head infant MEG system, a cross-sectional study examined the maturation of left and right auditory cortex responses in children 6- to 50-months of age. Methods: Blocks of 1000Hz (1st and 3rd blocks and 500Hz tones (2nd block were presented while MEG data were recorded using an infant/young child biomagnetometer (Artemis 123. Data were obtained from 29 children (11 males; 6 months to 59 months. Latency measures were obtained for the first positive-to-negative evoked response waveform complex in each hemisphere. Latency and age associations as well as frequency and hemisphere latency differences were examined. For the 1000 Hz tone, measures of reliability were computed. Results: For the first response - a response with a ‘P2m’ topography - latencies decreased as a function of age. For the second response - a response with a ‘N2m’ topography - no N2m latency and age relationships were observed. A main effect of tone frequency showed earlier P2m responses for 1st 1000 Hz (150 ms and 2nd 1000 Hz (148 ms versus 500 Hz tones (162 ms. A significant main effect of hemisphere showed earlier N2m responses for 2nd 1000 Hz (226 ms versus 1st 1000 Hz (241 ms versus 500 Hz tones (265 ms. P2m and N2m interclass correlation coefficient latency findings were as follows: left P2m (0.72, p < 0.001, right P2m (0.84, p < 0.001, left N2m (0.77, p < 0.001, and right N2m (0.77, p < 0.01.Conclusions: Findings of strong age and latency associations, sensitivity to tone frequency, and good

  9. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    Directory of Open Access Journals (Sweden)

    Mikkel Wallentin

    2016-01-01

    Full Text Available Klinefelter syndrome (47, XXY (KS is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49 responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors. One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  10. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    Science.gov (United States)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  11. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    Science.gov (United States)

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Prediction of Human's Ability in Sound Localization Based on the Statistical Properties of Spike Trains along the Brainstem Auditory Pathway

    Directory of Open Access Journals (Sweden)

    Ram Krips

    2014-01-01

    Full Text Available The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time delay, interaural level differences, and spectral information about the acoustic stimulus. These physical properties are estimated at different stages along the brainstem auditory pathway. The interaural time delay is ambiguous at certain frequencies, thus confusion arises as to the source of these frequencies. It is assumed that in a typical minimum audible angle experiment, the brain acts as an unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds. Two types of lower bounds are tested: the Cramer-Rao and the Barankin. The Cramer-Rao bound only takes into account the approximation of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase information. These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural cues are estimated. An agreement between human experimental data was obtained only when the superior olivary complex was considered and the Barankin lower bound was used. This result suggests that sound localization is estimated by the auditory nuclei using ambiguous binaural information.

  13. Development of a Chirp Stimulus PC-Based Auditory Brainstem Response Audiometer

    Directory of Open Access Journals (Sweden)

    Ali AL-Afsaa

    2004-05-01

    Full Text Available Hearing losses during infancy and childhood have many negative future effects and impacts on the child life and productivity. The earlier detection of hearing losses, the earlier medical intervention and then the greater benefit of remediation will be. During this research a PC-based audiometer is designed and, currently, the audiometer prototype is in its final development steps. It is based on the auditory brainstem response (ABR method. Chirp stimuli instead of traditional click stimuli will be used to invoke the ABR signal. The stimulus is designed to synchronize the hair cells movement when it spreads out over the cochlea. In addition to the available hardware utilization (PC and PCI board, the efforts confined to design and implement a hardware prototype and to develop a software package that enables the system to behave as ABR audiometer. By using such a method and chirp stimulus, it is expected to be able to detect hearing impairment (sensorineural in the first few days of the life and conduct hearing test at low frequency of stimulus. Currently, the intended chirp stimulus has been successfully generated and the implemented module is able to amplify a signal (on the order of ABR signal to a recordable level. Moreover, a NI-DAQ data acquisition board has been chosen to implement the PC-prototype interface.

  14. Unraveling the Mystery of Auditory Brainstem Response Corrections: The Need for Universal Standards.

    Science.gov (United States)

    Norrix, Linda W; Velenovsky, David

    The auditory brainstem response (ABR) is used to estimate behavioral hearing thresholds in infants and difficult-to-test populations. Differences between the toneburst ABR and behavioral thresholds exist making the correspondence between the two measures less than perfect. Some authors have suggested that corrections be applied to ABR thresholds to account for these differences. However, because there is no agreed upon universal standard, confusion regarding the use of corrections exists. The primary purpose of this article is to review the reasoning behind and use of corrections when the toneburst ABR is employed to estimate behavioral hearing thresholds. We also discuss other considerations that all audiologists should be aware of when obtaining and reporting ABR test results. A review of the purpose and use of corrections reveals no consensus as to whether they should be applied or which should be used. Additionally, when ABR results are adjusted, there is no agreement as to whether additional corrections for hearing loss or the age of the client are necessary. This lack of consensus can be confusing for all individuals working with hearing-impaired children and their families. Toneburst ABR thresholds do not perfectly align with behavioral hearing thresholds. Universal protocols for the use of corrections are needed. Additionally, evidence-based procedures must be employed to obtain valid ABRs that will accurately estimate hearing thresholds. American Academy of Audiology

  15. Measuring hearing in the harbor seal (Phoca vitulina): Comparison of behavioral and auditory brainstem response techniques

    Science.gov (United States)

    Wolski, Lawrence F.; Anderson, Rindy C.; Bowles, Ann E.; Yochem, Pamela K.

    2003-01-01

    Auditory brainstem response (ABR) and standard behavioral methods were compared by measuring in-air audiograms for an adult female harbor seal (Phoca vitulina). Behavioral audiograms were obtained using two techniques: the method of constant stimuli and the staircase method. Sensitivity was tested from 0.250 to 30 kHz. The seal showed good sensitivity from 6 to 12 kHz [best sensitivity 8.1 dB (re 20 μPa2.s) RMS at 8 kHz]. The staircase method yielded thresholds that were lower by 10 dB on average than the method of constant stimuli. ABRs were recorded at 2, 4, 8, 16, and 22 kHz and showed a similar best range (8-16 kHz). ABR thresholds averaged 5.7 dB higher than behavioral thresholds at 2, 4, and 8 kHz. ABRs were at least 7 dB lower at 16 kHz, and approximately 3 dB higher at 22 kHz. The better sensitivity of ABRs at higher frequencies could have reflected differences in the seal's behavior during ABR testing and/or bandwidth characteristics of test stimuli. These results agree with comparisons of ABR and behavioral methods performed in other recent studies and indicate that ABR methods represent a good alternative for estimating hearing range and sensitivity in pinnipeds, particularly when time is a critical factor and animals are untrained.

  16. Effect of Sound Conditioning on Click Auditory Brainstem Response Threshold Shifts in Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Masoud Motalebi Kashani

    2012-10-01

    Full Text Available Background and Aim: Sound conditioning is exposure to a non-traumatic, moderate level of sound which increases inner ear resistance against further severe noise. In this study, we aimed to survey the effect of sound conditioning on auditory brainstem response (ABR threshold shifts using click stimulus, and the effect of the frequency of conditioning on hearing protection.Methods: Fifteen guinea pigs were randomly divided into 3 groups. Two conditioned groups were exposed to 1 kHz, and 4 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, respectively.On the sixth day, the animals were exposed to 4 kHz octave band noise at 105 dB SPL, for 4 hours.The control group was exposed to intense noise, 4 kHz at 105 Db SPL for 4 hours (withoutconditioning. After exposure, ABR thresholds using click were recorded an hour, and 7 days after noise exposure.Results: The results of the ABR with click stimulus showed less thresold shifts in conditioned groups than control (p≤0.001. Comparison of the results of conditioned groups, showed less threshold shift by 4 kHz conditioning, however, this difference was not statistically significant (p>0.05.Conclusion: Electrophysiological data of our study showed that sound conditioning has a protective effect against subsequent intensive noise exposure, and the frequency of conditioning does not havesignificant effect on ABR threshold shifts when using click stimulus.

  17. Auditory Steady-State Response Thresholds in Adults With Conductive and Mild to Moderate Sensorineural Hearing Loss

    OpenAIRE

    Hosseinabadi, Reza; Jafarzadeh, Sadegh

    2014-01-01

    Background: The Auditory steady state response (ASSR) provides a frequency-specific and automatic assessment of hearing sensitivity and is used in infants and difficult-to-test adults. Objectives: The aim of this study was to compare the ASSR thresholds among various types (normal, conductive, and sensorineural), degree (normal, mild, and moderate), and configuration (flat and sloping) of hearing sensitivity, and measuring the cutoff point between normal condition and hearing loss for differe...

  18. Comparisons of memory for nonverbal auditory and visual sequential stimuli.

    Science.gov (United States)

    McFarland, D J; Cacace, A T

    1995-01-01

    Properties of auditory and visual sensory memory were compared by examining subjects' recognition performance of randomly generated binary auditory sequential frequency patterns and binary visual sequential color patterns within a forced-choice paradigm. Experiment 1 demonstrated serial-position effects in auditory and visual modalities consisting of both primacy and recency effects. Experiment 2 found that retention of auditory and visual information was remarkably similar when assessed across a 10s interval. Experiments 3 and 4, taken together, showed that the recency effect in sensory memory is affected more by the type of response required (recognition vs. reproduction) than by the sensory modality employed. These studies suggest that auditory and visual sensory memory stores for nonverbal stimuli share similar properties with respect to serial-position effects and persistence over time.

  19. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex.

    Science.gov (United States)

    Fallon, James B; Shepherd, Robert K; Nayagam, David A X; Wise, Andrew K; Heffer, Leon F; Landry, Thomas G; Irvine, Dexter R F

    2014-09-01

    We have previously shown that neonatal deafness of 7-13 months duration leads to loss of cochleotopy in the primary auditory cortex (AI) that can be reversed by cochlear implant use. Here we describe the effects of a similar duration of deafness and cochlear implant use on temporal processing. Specifically, we compared the temporal resolution of neurons in AI of young adult normal-hearing cats that were acutely deafened and implanted immediately prior to recording with that in three groups of neonatally deafened cats. One group of neonatally deafened cats received no chronic stimulation. The other two groups received up to 8 months of either low- or high-rate (50 or 500 pulses per second per electrode, respectively) stimulation from a clinical cochlear implant, initiated at 10 weeks of age. Deafness of 7-13 months duration had no effect on the duration of post-onset response suppression, latency, latency jitter, or the stimulus repetition rate at which units responded maximally (best repetition rate), but resulted in a statistically significant reduction in the ability of units to respond to every stimulus in a train (maximum following rate). None of the temporal response characteristics of the low-rate group differed from those in acutely deafened controls. In contrast, high-rate stimulation had diverse effects: it resulted in decreased suppression duration, longer latency and greater jitter relative to all other groups, and an increase in best repetition rate and cut-off rate relative to acutely deafened controls. The minimal effects of moderate-duration deafness on temporal processing in the present study are in contrast to its previously-reported pronounced effects on cochleotopy. Much longer periods of deafness have been reported to result in significant changes in temporal processing, in accord with the fact that duration of deafness is a major factor influencing outcome in human cochlear implantees. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Type -2 diabetes mellitus and auditory brainstem responses-a hospital based study.

    Science.gov (United States)

    Gupta, Rahul; Aslam, Mohd; Hasan, Sa; Siddiqi, Ss

    2010-01-01

    Diabetes mellitus comprises a group of common metabolic disorders that share the phenotype of hyperglycemia. The metabolic dysregulation associated with DM causes secondary patho-physiological changes in multiple organ systems. The brainstem auditory electric responses represent a useful, non invasive and simple procedure to detect both acoustic nerve and CNS damage. MATERIAL #ENTITYSTARTX00026; The study was carried out in the department of ENT, JNMC from 2008 -2010. The study included two groups, (i) diabetic group (n=25) (ii) Control group (n = 25). Diabetic group included patients attending Endocrinology OPD and ward. The equipment used for recording evoked response audiometry is IHS-BERA. Model number TH72312HT. Year of manufacture 2006. Mean age of control group was 45.7 years. In the study group 13 (52%) were males where as 12 (48%) were females. Mean age of study group was 46.8 years. There is no significant difference between age groups of controls and cases. Significant difference was found in latencies of wave III and interpeak III-V while highly significant difference was found in latencies of wave V and interpeak I-III, I-V between control and study group at 70 dB. Highly significant difference was found in latencies of wave III, V and interpeak I-III and I-V while significant difference was found in interwave III-V between control and study group at 80 dB. Significant difference was found in latencies of wave V and interpeak III-V while highly significant difference was found in wave III and interpeak I-III, I-V between control and study group at 90 dB. BERA is a simple, non-invasive procedure to detect early impairment of acoustic nerve, and CNS pathways, even in the absence of specific symptoms. This study suggests that if BERA is carried out in diabetic patients; involvement of central neuronal axis can be detected earlier.

  1. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements

    Science.gov (United States)

    Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc

    2018-02-01

    Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.

  2. Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses.

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca(2+) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.

  3. Elementary properties of Ca2+ channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L.; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca2+ entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca2+ channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses. PMID:25904847

  4. Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation.

    Science.gov (United States)

    Hari, R; Kaila, K; Katila, T; Tuomisto, T; Varpula, T

    1982-11-01

    Auditory vertex responses elicited by short tone bursts were compared with their magnetic counter parts. Special attention was paid to the behaviour of the N100 deflection of the response. Electrical responses were recorded from scalp locations Fp2, Fz, Cz, Pz, C4 and T4 and the magnetic responses half way between P4 and T6, at a point where the response has one of its amplitude extrema. Different ISIs (from 1 to 16 sec) were applied in order to differentiate specific and nonspecific evoked potential components from each other. The main results were as follows: (1) The scalp distsribution of the electical vertex response depends on the ISI used: with frequent stimulation there are no marked differences in the amplitudes of N100 between frontal and central areas but with long ISIs the amplitude maxima move to the vertex. (2) The magnetic responses also show a clear ISI dependence. The magnetic counterpart of N100 saturates at shorter ISIs than N100 recorded from the vertex. Independent of the ISI the magnetic counterpart of P200 is constantly very small. On the basis of the different sensitivities of the EEG and MEG to current sources of different orientations it is concluded that the auditory vertex response contains both modality specific and non-specific components. Experimental conditions, especially the ISI used, determine the relative contributions of these components to the potential recorded on the scalp.

  5. Plasticity of the auditory system: theoretical considerations

    OpenAIRE

    Kappel,Vanessa; Moreno,Ana Clara de Paula; Buss,Ceres Helena

    2011-01-01

    Auditory plasticity refers to the possibility of anatomical and/or functional changes in the system where transmission of auditory information takes place. The auditory system is often required in communication; it is important to learn how the auditory system reacts to stimuli in order to improve performance in individual communication of subjects with impaired hearing. AIM: To review the literature on auditory plasticity and the possibility and ability of plastic responses in the auditory s...

  6. Nonlinear feature extraction for objective classification of complex auditory brainstem responses to diotic perceptually critical consonant-vowel syllables.

    Science.gov (United States)

    Jafarpisheh, Amir Salar; Jafari, Amir Homayoun; Abolhassani, Mohammadjavad; Farhadi, Mohammad; Sadjedi, Hamed; Pourbakht, Akram; Shirzhiyan, Zahra

    2016-02-01

    To examine if nonlinear feature extraction method yields appropriate results in complex brainstem response classification of three different consonant vowels diotically presented in normal Persian speaking adults. Speech-evoked auditory brainstem responses were obtained in 27 normal hearing young adults by using G.tec EEG recording system. 170ms synthetic consonant-vowel stimuli /ba/, /da/, /ga/ were presented binaurally and the recurrence quantification analysis was performed on the responses. The recurrence time of second type was proposed as a suitable feature. ANOVA was also used for testing the significance of extracted feature. Post-comparison statistical method was used for showing which means are significantly different from each other. Dimension embedding and state space reconstruction were helpful for visualizing nonlinearity in auditory system. The proposed feature was successful in the objective classification of responses in window time 20.1-35.3ms, which belonged to formant transition period of stimuli. Also the p value behavior of recurrence time of second type feature as a discriminant feature was close to the nature of the response that includes transient and sustained parts. On the other hand, the /ba/ and /ga/ classification period was wider than the others. The extracted feature shown in this paper is helpful for the objective of distinguishing individuals with auditory processing disorders in the structurally similar voices. On the other hand, differing nonlinear feature is meaningful in a special region of response, equal to formant transition period, and this feature is related to the state space changes of brainstem response. It can be assumed that more information is within this region of signal and it is a sign of processing role of brainstem. The state changes of system are dependent on input stimuli, so the existence of top down feedback from cortex to brainstem forces the system to act differently. Copyright © 2015 Elsevier Ireland Ltd

  7. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  8. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  9. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  10. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Science.gov (United States)

    Meyer, Georg F; Shao, Fei; White, Mark D; Hopkins, Carl; Robotham, Antony J

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  11. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.

    Science.gov (United States)

    Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk

    2017-05-01

    Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 22q11.2 Deletion Syndrome Is Associated With Impaired Auditory Steady-State Gamma Response.

    Science.gov (United States)

    Larsen, Kit Melissa; Pellegrino, Giovanni; Birknow, Michelle Rosgaard; Kjær, Trine Nørgaard; Baaré, William Frans Christiaan; Didriksen, Michael; Olsen, Line; Werge, Thomas; Mørup, Morten; Siebner, Hartwig Roman

    2018-02-15

    The 22q11.2 deletion syndrome confers a markedly increased risk for schizophrenia. 22q11.2 deletion carriers without manifest psychotic disorder offer the possibility to identify functional abnormalities that precede clinical onset. Since schizophrenia is associated with a reduced cortical gamma response to auditory stimulation at 40 Hz, we hypothesized that the 40 Hz auditory steady-state response (ASSR) may be attenuated in nonpsychotic individuals with a 22q11.2 deletion. Eighteen young nonpsychotic 22q11.2 deletion carriers and a control group of 27 noncarriers with comparable age range (12-25 years) and sex ratio underwent 128-channel EEG. We recorded the cortical ASSR to a 40 Hz train of clicks, given either at a regular inter-stimulus interval of 25 ms or at irregular intervals jittered between 11 and 37 ms. Healthy noncarriers expressed a stable ASSR to regular but not in the irregular 40 Hz click stimulation. Both gamma power and inter-trial phase coherence of the ASSR were markedly reduced in the 22q11.2 deletion group. The ability to phase lock cortical gamma activity to regular auditory 40 Hz stimulation correlated with the individual expression of negative symptoms in deletion carriers (ρ = -0.487, P = .041). Nonpsychotic 22q11.2 deletion carriers lack efficient phase locking of evoked gamma activity to regular 40 Hz auditory stimulation. This abnormality indicates a dysfunction of fast intracortical oscillatory processing in the gamma-band. Since ASSR was attenuated in nonpsychotic deletion carriers, ASSR deficiency may constitute a premorbid risk marker of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  13. Comparing auditory brainstem responses (ABRs) to toneburst and narrow band CE-chirp in young infants.

    Science.gov (United States)

    Rodrigues, Gabriela Ribeiro Ivo; Ramos, Natália; Lewis, Doris Ruthi

    2013-09-01

    The difference of characteristics (latency and amplitude) between toneburst and narrow CE-chirp stimuli on ABR recording was analyzed in normal hearing infants. 500, 1000, 2000 and 4000 Hz toneburst and narrow band CE-chirp auditory brainstem responses (ABRs) were recorded in 40 normal-hearing infants. The amplitude and latency parameters of the ABR were collected for each of the four stimulus levels: 80, 60, 40, and 20 dB nHL. Both stimuli started from 80 dB nHL using alternating polarity and the rates were both 27.1/s. The toneburst latencies are greater than narrow band CE-chirp latencies for all intensities at 500, 1000 and 2000 Hz (p Hz this difference was not significant. At 500 Hz, wave V amplitude is larger for toneburst than narrow CE-chirp (p Hz there is no difference between the wave V toneburst and narrow band CE-chirp amplitudes at 80 dB nHL (p = 0.940; p = 0.776 and p = 0.217 respectively). On the other hand, in the levels to 60, 40 and 20 dB nHL, narrow band CE-chirp amplitudes are larger than toneburst amplitude (p < 0.001). Narrow band CE-chirp ABRs generates shorter latencies than the toneburst ABRs, especially to low frequencies. Higher amplitudes were found with narrow band CE-chirp stimuli for all frequencies tested, except to high levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: Does hallucination status matter?

    Science.gov (United States)

    Griskova-Bulanova, Inga; Hubl, Daniela; van Swam, Claudia; Dierks, Thomas; Koenig, Thomas

    2016-05-01

    Auditory steady-state responses are larger in patients experiencing auditory verbal hallucinations (AVH) than in never hallucinating subjects (NH) when recorded with open eyes. Compensatory effects were shown for schizophrenic patients when recorded with closed eyes. This effect has not been evaluated in respect to hallucination status. Gamma responses to 40Hz stimulation were recorded in 15AVH patients, 25 healthy controls and 11NH patients with closed eyes. Mean and peak evoked amplitude and phase-locking index, peak time and maximal frequency were extracted for early- and late-latency responses and compared between groups. Phase-locking of early, but not late-latency gamma was diminished in schizophrenic patients independently on hallucination status. Peak entrainment time was delayed in hallucinating patients. Magnitude and frequency of early-latency response correlated to negative symptoms. In AVH patients, entrainment at gamma frequency was "normal" when eyes were closed. In contrast to never hallucinating subjects, entrainment to stimulation was delayed in AVH. The early-latency gamma response, standing for early sensory stimulus processing, on the contrary, was impaired in SZ irrespective of prevalence of hallucinations and was not modulated by subjects' general state; however its magnitude might be related to the expression of negative symptomatology. Evaluation of auditory entrainment in both open eyes and closed eyes conditions is informative. Frequency and timing information of both early-latency and late-latency responses helps to uncover different aspects of impairment in schizophrenia patients. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  17. Predicting hearing thresholds in occupational noise-induced hearing loss by auditory steady state responses.

    Science.gov (United States)

    Attias, Joseph; Karawani, Hanin; Shemesh, Rafi; Nageris, Ben

    2014-01-01

    Currently available behavioral tools for the assessment of noise-induced hearing loss (NIHL) depend on the reliable cooperation of the subject. Furthermore, in workers' compensation cases, there is considerable financial gain to be had from exaggerating symptoms, such that accurate assessment of true hearing threshold levels is essential. An alternative objective physiologic tool for assessing NIHL is the auditory steady state response (ASSR) test, which combines frequency specificity with a high level of auditory stimulation, making it applicable for the evaluation of subjects with a moderate to severe deficit. The primary aim of the study was to assess the value of the multifrequency ASSR test in predicting the behavioral warble-tone audiogram in a large sample of young subjects with NIHL of varying severity or with normal hearing. The secondary goal was to assess suprathreshold ASSR growth functions in these two groups. The study group included 157 subjects regularly exposed to high levels of occupational noise, who attended a university-associated audiological clinic for evaluation of NIHL from 2009 through 2011. All underwent a behavioral audiogram, and on the basis of the findings, were divided into those with NIHL (108 subjects, 216 ears) or normal hearing (49 subjects, 98 ears). The accuracy of the ASSR threshold estimations for frequencies of 500, 1000, 2000, and 4000 Hz was compared between groups, and the specificity and sensitivity of the ASSR test in differentiating ears with or without NIHL was calculated using receiver operating characteristic analysis. Linear regression analysis was used to formulate an equation to predict the behavioral warble-tone audiogram at each test frequency using ASSR thresholds. Multifrequency ASSR amplitude growth as a function of stimulus intensity was compared between the NIHL and normal-hearing groups for 1000 Hz and 4000 Hz carrier frequencies. In the subjects with NIHL, ASSR thresholds to various frequencies were

  18. The Effects of Increasing the Stimulus Rate on Auditory Brainstem Response Waves Latency in Old Population with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Massoumeh Roozbahani

    2006-12-01

    Full Text Available Background and Aim: The auditory system changes by increasing age in both central and peripheral parts. The purpose of this study was to investigate the effect of the increasing the stimulus rate on auditory brainstem response (ABR waves latency in old population with normal hearing. Materials and Methods: In this cross-sectional study click ABR test performed on 20 young normal-hearing subjects with mean age of 20.8 years old and 10 old normal-hearing subjects with mean age of 66.4 years old. ABR results with different stimulus rates were compared between two groups. Results: ABR peak latencies and interpeak intervals were prolonged with increasing the click repetition rate. Peak latencies were slightly prolonged in older adults and the I-V interval did not differ with age but prolongation of III-V interval were significantly differs in older population compared to young adults. Conclusion: Using high click rates may sensitize the ABR to the identification of lesions of auditory nerve or brainstem, but before that, we need to know the normal range of different age groups, so that we can decide about probability of a retrocochlear lesion.

  19. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention

    NARCIS (Netherlands)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten; Martens, Sander

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were

  20. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Neonatal hearing screening of high-risk infants using automated auditory brainstem response: a retrospective analysis of referral rates.

    LENUS (Irish Health Repository)

    McGurgan, I J

    2013-10-07

    The past decade has seen the widespread introduction of universal neonatal hearing screening (UNHS) programmes worldwide. Regrettably, such a programme is only now in the process of nationwide implementation in the Republic of Ireland and has been largely restricted to one screening modality for initial testing; namely transient evoked otoacoustic emissions (TEOAE). The aim of this study is to analyse the effects of employing a different screening protocol which utilises an alternative initial test, automated auditory brainstem response (AABR), on referral rates to specialist audiology services.

  2. The amplitude and phase precision of 40 Hz auditory steady-state response depend on the level of arousal

    DEFF Research Database (Denmark)

    Griskova, Inga; Mørup, Morten; Parnas, Josef

    2007-01-01

    The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected by the le......The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected...... it pertinent to know the effects of fluctuations in arousal on passive response to gamma-range stimulation. In nine healthy volunteers trains of 40 Hz click stimuli were applied during two conditions: in the "high arousal" condition subjects were sitting upright silently reading a book of interest; in the "low...... arousal" condition subjects were sitting in a reclined position with eyes closed and the lights turned off. The 64-channel EEG data was wavelet transformed and the amplitude and phase precision of the wavelet transformed evoked potential were decomposed by the recently proposed multi-subject non...

  3. Auditory Neuropathy

    Science.gov (United States)

    ... with auditory neuropathy have greater impairment in speech perception than hearing health experts would predict based upon their degree of hearing loss on a hearing test. For example, a person with auditory neuropathy may be able to hear ...

  4. Are Auditory Steady-State Responses Useful to Evaluate Severe-to-Profound Hearing Loss in Children?

    Science.gov (United States)

    Grasel, Signe Schuster; de Almeida, Edigar Rezende; Beck, Roberto Miquelino de Oliveira; Goffi-Gomez, Maria Valéria Schmidt; Ramos, Henrique Faria; Rossi, Amanda Costa; Koji Tsuji, Robinson; Bento, Ricardo Ferreira; de Brito, Rubens

    2015-01-01

    To evaluate Auditory Steady-State Responses (ASSR) at high intensities in pediatric cochlear implant candidates and to compare the results to behavioral tests responses. This prospective study evaluated 42 children with suspected severe-to-profound hearing loss, aged from 3 to 72 months. All had absent ABR and OAE responses. ASSR were evoked using binaural single frequency stimuli at 110 dB HL with a 10 dB down-seeking procedure. ASSR and behavioral test results were compared. Forty-two subjects completed both ASSR and behavioral evaluation. Eleven children (26.2%) had bilateral responses. Four (9.5%) showed unilateral responses in at least two frequencies, all confirmed by behavioral results. Overall 61 ASSR responses were obtained, most (37.7%) in 500 Hz. Mean thresholds were between 101.3 and 104.2 dB HL. Among 27 subjects with absent ASSR, fifteen had no behavioral responses. Seven subjects showed behavioral responses with absent ASSR responses. No spurious ASSR responses were observed at 100 or 110 dB HL. ASSR is a valuable tool to detect residual hearing. No false-positive ASSR results were observed among 42 children, but in seven cases with absent ASSR, the test underestimated residual hearing as compared to the behavioral responses.

  5. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  6. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Science.gov (United States)

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico

  7. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearinga

    Science.gov (United States)

    Bidelman, Gavin M.; Heinz, Michael G.

    2011-01-01

    Human listeners prefer consonant over dissonant musical intervals and the perceived contrast between these classes is reduced with cochlear hearing loss. Population-level activity of normal and impaired model auditory-nerve (AN) fibers was examined to determine (1) if peripheral auditory neurons exhibit correlates of consonance and dissonance and (2) if the reduced perceptual difference between these qualities observed for hearing-impaired listeners can be explained by impaired AN responses. In addition, acoustical correlates of consonance-dissonance were also explored including periodicity and roughness. Among the chromatic pitch combinations of music, consonant intervals∕chords yielded more robust neural pitch-salience magnitudes (determined by harmonicity∕periodicity) than dissonant intervals∕chords. In addition, AN pitch-salience magnitudes correctly predicted the ordering of hierarchical pitch and chordal sonorities described by Western music theory. Cochlear hearing impairment compressed pitch salience estimates between consonant and dissonant pitch relationships. The reduction in contrast of neural responses following cochlear hearing loss may explain the inability of hearing-impaired listeners to distinguish musical qualia as clearly as normal-hearing individuals. Of the neural and acoustic correlates explored, AN pitch salience was the best predictor of behavioral data. Results ultimately show that basic pitch relationships governing music are already present in initial stages of neural processing at the AN level. PMID:21895089

  8. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.

    Science.gov (United States)

    Bidelman, Gavin M; Heinz, Michael G

    2011-09-01

    Human listeners prefer consonant over dissonant musical intervals and the perceived contrast between these classes is reduced with cochlear hearing loss. Population-level activity of normal and impaired model auditory-nerve (AN) fibers was examined to determine (1) if peripheral auditory neurons exhibit correlates of consonance and dissonance and (2) if the reduced perceptual difference between these qualities observed for hearing-impaired listeners can be explained by impaired AN responses. In addition, acoustical correlates of consonance-dissonance were also explored including periodicity and roughness. Among the chromatic pitch combinations of music, consonant intervals/chords yielded more robust neural pitch-salience magnitudes (determined by harmonicity/periodicity) than dissonant intervals/chords. In addition, AN pitch-salience magnitudes correctly predicted the ordering of hierarchical pitch and chordal sonorities described by Western music theory. Cochlear hearing impairment compressed pitch salience estimates between consonant and dissonant pitch relationships. The reduction in contrast of neural responses following cochlear hearing loss may explain the inability of hearing-impaired listeners to distinguish musical qualia as clearly as normal-hearing individuals. Of the neural and acoustic correlates explored, AN pitch salience was the best predictor of behavioral data. Results ultimately show that basic pitch relationships governing music are already present in initial stages of neural processing at the AN level. © 2011 Acoustical Society of America

  9. The impact of degree of hearing loss on auditory brainstem response predictions of behavioral thresholds.

    Science.gov (United States)

    McCreery, Ryan W; Kaminski, Jan; Beauchaine, Kathryn; Lenzen, Natalie; Simms, Kendell; Gorga, Michael P

    2015-01-01

    Diagnosis of hearing loss and prescription of amplification for infants and young children require accurate estimates of ear- and frequency-specific behavioral thresholds based on auditory brainstem response (ABR) measurements. Although the overall relationship between ABR and behavioral thresholds has been demonstrated, the agreement is imperfect, and the accuracy of predictions of behavioral threshold based on ABR may depend on degree of hearing loss. Behavioral thresholds are lower than ABR thresholds, at least in part due to differences in calibration interacting with the effects of temporal integration, which are manifest in behavioral measurements but not ABR measurements and depend on behavioral threshold. Listeners with sensory hearing loss exhibit reduced or absent temporal integration, which could impact the relationship between ABR and behavioral thresholds as degree of hearing loss increases. The present study evaluated the relationship between ABR and behavioral thresholds in infants and children over a range of hearing thresholds, and tested an approach for adjusting the correction factor based on degree of hearing loss as estimated by ABR measurements. A retrospective review of clinical records was completed for 309 ears of 177 children with hearing thresholds ranging from normal to profound hearing loss and for whom both ABR and behavioral thresholds were available. Children were required to have the same middle ear status at both evaluations. The relationship between ABR and behavioral thresholds was examined. Factors that potentially could affect the relationship between ABR and behavioral thresholds were analyzed, including degree of hearing loss observed on the ABR, behavioral test method (visual reinforcement, conditioned play, or conventional audiometry), the length of time between ABR and behavioral assessments, and clinician-reported reliability of the behavioral assessment. Predictive accuracy of a correction factor based on the difference

  10. Stimulus- and response-locked neuronal generator patterns of auditory and visual word recognition memory in schizophrenia.

    Science.gov (United States)

    Kayser, Jürgen; Tenke, Craig E; Gil, Roberto B; Bruder, Gerard E

    2009-09-01

    Examining visual word recognition memory (WRM) with nose-referenced EEGs, we reported a preserved ERP 'old-new effect' (enhanced parietal positivity 300-800 ms to correctly-recognized repeated items) in schizophrenia ([Kayser, J., Bruder, G.E., Friedman, D., Tenke, C.E., Amador, X.F., Clark, S.C., Malaspina, D., Gorman, J.M., 1999. Brain event-related potentials (ERPs) in schizophrenia during a word recognition memory task. Int. J. Psychophysiol. 34(3), 249-265.]). However, patients showed reduced early negative potentials (N1, N2) and poorer WRM. Because group differences in neuronal generator patterns (i.e., sink-source orientation) may be masked by choice of EEG recording reference, the current study combined surface Laplacians and principal components analysis (PCA) to clarify ERP component topography and polarity and to disentangle stimulus- and response-related contributions. To investigate the impact of stimulus modality, 31-channel ERPs were recorded from 20 schizophrenic patients (15 male) and 20 age-, gender-, and handedness-matched healthy adults during parallel visual and auditory continuous WRM tasks. Stimulus- and response-locked reference-free current source densities (spherical splines) were submitted to unrestricted Varimax-PCA to identify and measure neuronal generator patterns underlying ERPs. Poorer (78.2+/-18.7% vs. 87.8+/-11.3% correct) and slower (958+/-226 vs. 773+/-206 ms) performance in patients was accompanied by reduced stimulus-related left-parietal P3 sources (150 ms pre-response) and vertex N2 sinks (both overall and old/new effects) but modality-specific N1 sinks were not significantly reduced. A distinct mid-frontal sink 50-ms post-response was markedly attenuated in patients. Reductions were more robust for auditory stimuli. However, patients showed increased lateral-frontotemporal sinks (T7 maximum) concurrent with auditory P3 sources. Electrophysiologic correlates of WRM deficits in schizophrenia suggest functional impairments of

  11. Acoustic experience alters the aged auditory system.

    Science.gov (United States)

    Turner, Jeremy G; Parrish, Jennifer L; Zuiderveld, Loren; Darr, Stacy; Hughes, Larry F; Caspary, Donald M; Idrezbegovic, Esma; Canlon, Barbara

    2013-01-01

    Presbyacusis, one of the most common ailments of the elderly, is often treated with hearing aids, which serve to reintroduce some or all of those sounds lost to peripheral hearing loss. However, little is known about the underlying changes to the ear and brain as a result of such experience with sound late in life. The present study attempts to model this process by rearing aged CBA mice in an augmented acoustic environment (AAE). Aged (22-23 months) male (n = 12) and female (n = 9) CBA/CaJ mice were reared in either 6 weeks of low-level (70 dB SPL) broadband noise stimulation (AAE) or normal vivarium conditions. Changes as a function of the treatment were measured for behavior, auditory brainstem response thresholds, hair cell cochleograms, and gamma aminobutyric acid neurochemistry in the key central auditory structures of the inferior colliculus and primary auditory cortex. The AAE-exposed group was associated with sex-specific changes in cochlear pathology, auditory brainstem response thresholds, and gamma aminobutyric acid neurochemistry. Males exhibited significantly better thresholds and reduced hair cell loss (relative to controls) whereas females exhibited the opposite effect. AAE was associated with increased glutamic acid decarboxylase (GAD67) levels in the inferior colliculus of both male and female mice. However, in primary auditory cortex AAE exposure was associated with increased GAD67 labeling in females and decreased GAD67 in males. These findings suggest that exposing aged mice to a low-level AAE alters both peripheral and central properties of the auditory system and these changes partially interact with sex or the degree of hearing loss before AAE. Although direct application of these findings to hearing aid use or auditory training in aged humans would be premature, the results do begin to provide direct evidence for the underlying changes that might be occurring as a result of hearing aid use late in life. These results suggest the aged brain

  12. Auditory-perceptual learning improves speech motor adaptation in children.

    Science.gov (United States)

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  13. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  14. A Model of Electrically Stimulated Auditory Nerve Fiber Responses with Peripheral and Central Sites of Spike Generation

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Dau, Torsten; Epp, Bastian

    2017-01-01

    A computational model of cat auditory nerve fiber (ANF) responses to electrical stimulation is presented. The model assumes that (1) there exist at least two sites of spike generation along the ANF and (2) both an anodic (positive) and a cathodic (negative) charge in isolation can evoke a spike...... of facilitation, accommodation, refractoriness, and spike-rate adaptation in ANF. Although the model is parameterized using data for either single or paired pulse stimulation with monophasic rectangular pulses, it correctly predicts effects of various stimulus pulse shapes, stimulation pulse rates, and level...... on the neural response statistics. The model may serve as a framework to explore the effects of different stimulus parameters on psychophysical performance measured in cochlear implant listeners....

  15. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  16. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.

    Science.gov (United States)

    Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan

    2010-12-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.

  17. Hypnotizability and Placebo Analgesia in Waking and Hypnosis as Modulators of Auditory Startle Responses in Healthy Women: An ERP Study.

    Science.gov (United States)

    De Pascalis, Vilfredo; Scacchia, Paolo

    2016-01-01

    We evaluated the influence of hypnotizability, pain expectation, placebo analgesia in waking and hypnosis on tonic pain relief. We also investigated how placebo analgesia affects somatic responses (eye blink) and N100 and P200 waves of event-related potentials (ERPs) elicited by auditory startle probes. Although expectation plays an important role in placebo and hypnotic analgesia, the neural mechanisms underlying these treatments are still poorly understood. We used the cold cup test (CCT) to induce tonic pain in 53 healthy women. Placebo analgesia was initially produced by manipulation, in which the intensity of pain induced by the CCT was surreptitiously reduced after the administration of a sham analgesic cream. Participants were then tested in waking and hypnosis under three treatments: (1) resting (Baseline); (2) CCT-alone (Pain); and (3) CCT plus placebo cream for pain relief (Placebo). For each painful treatment, we assessed pain and distress ratings, eye blink responses, N100 and P200 amplitudes. We used LORETA analysis of N100 and P200 waves, as elicited by auditory startle, to identify cortical regions sensitive to pain reduction through placebo and hypnotic analgesia. Higher pain expectation was associated with higher pain reductions. In highly hypnotizable participants placebo treatment produced significant reductions of pain and distress perception in both waking and hypnosis condition. P200 wave, during placebo analgesia, was larger in the frontal left hemisphere while placebo analgesia, during hypnosis, involved the activity of the left hemisphere including the occipital region. These findings demonstrate that hypnosis and placebo analgesia are different processes of top-down regulation. Pain reduction was associated with larger EMG startle amplitudes, N100 and P200 responses, and enhanced activity within the frontal, parietal, and anterior and posterior cingulate gyres. LORETA results showed that placebo analgesia modulated pain-responsive areas

  18. Musical Auditory Stimulation Influences Heart Rate Autonomic Responses to Endodontic Treatment

    Directory of Open Access Journals (Sweden)

    Milana Drumond Ramos Santana

    2017-01-01

    Full Text Available We aimed to evaluate the acute effect of musical auditory stimulation on heart rate autonomic regulation during endodontic treatment. The study included 50 subjects from either gender between 18 and 40 years old, diagnosed with irreversible pulpitis or pulp necrosis of the upper front teeth and endodontic treatment indication. HRV was recorded 10 minutes before (T1, during (T2, and immediately (T3 and T4 after endodontic treatment. The volunteers were randomly divided into two equal groups: exposed to music (during T2, T3, and T4 or not. We found no difference regarding salivary cortisol and anxiety score. In the group with musical stimulation heart rate decreased in T3 compared to T1 and mean RR interval increased in T2 and T3 compared to T1. SDNN and TINN indices decreased in T3 compared to T4, the RMSSD and SD1 increased in T4 compared to T1, the SD2 increased compared to T3, and LF (low frequency band increased in T4 compared to T1 and T3. In the control group, only RMSSD and SD1 increased in T3 compared to T1. Musical auditory stimulation enhanced heart rate autonomic modulation during endodontic treatment.

  19. Decoding of single-trial auditory mismatch responses for online perceptual monitoring and neurofeedback

    Directory of Open Access Journals (Sweden)

    Alex eBrandmeyer

    2013-12-01

    Full Text Available Multivariate pattern classification methods are increasingly applied to neuroimaging data in the context of both fundamental research and in brain-computer interfacing approaches. Such methods provide a framework for interpreting measurements made at the single-trial level with respect to a set of two or more distinct mental states. Here, we define an approach in which the output of a binary classifier trained on data from an auditory mismatch paradigm can be used for online tracking of perception and as a neurofeedback signal. The auditory mismatch paradigm is known to induce distinct perceptual states related to the presentation of high- and low-probability stimuli, which are reflected in event-related potential (ERP components such as the mismatch negativity (MMN. In the first part of the paper, we illustrate how pattern classification methods can be applied to data collected in an MMN paradigm, including discussion of the optimization of preprocessing steps, the interpretation of features and how the performance of these methods generalizes across individual participants and measurement sessions. We then go on to show that the output of these decoding methods can be used in online settings as a continuous index of single-trial brain activation underlying perceptual discrimination. We conclude by discussing several potential domains of application, including neurofeedback, cognitive monitoring and passive brain-computer interfaces.

  20. Somatosensory cell response to an auditory cue in a haptic memory task.

    Science.gov (United States)

    Zhou, Yong-Di; Fuster, Joaquín M

    2004-08-31

    Neurons in the monkey's anterior parietal cortex (Brodmann's areas 3a, 3b, 1, and 2) have been reported to retain information from a visual cue that has been associated with a tactile stimulus in a haptic memory task. This cross-modal transfer indicates that neurons in somatosensory cortex can respond to non-tactile stimuli if they are associated with tactile information needed for performance of the task. We hypothesized that neurons in somatosensory cortex would be activated by other non-tactile stimuli signaling the haptic movements--of arm and hand--that the task required. We found such cells in anterior parietal areas. They reacted with short-latency activity changes to an auditory signal (a click) that prompted those movements. Further, some of those cells changed their discharge in temporal correlation with the movements themselves, with the touch of the test objects, and with the short-term memory of those objects for subsequent tactile discrimination. These findings suggest that cells in the somatosensory cortex participate in the behavioral integration of auditory stimuli with other sensory stimuli and with motor acts that are associated with those stimuli.

  1. Estimation of Human Workload from the Auditory Steady-State Response Recorded via a Wearable Electroencephalography System during Walking

    Directory of Open Access Journals (Sweden)

    Yusuke Yokota

    2017-06-01

    Full Text Available Workload in the human brain can be a useful marker of internal brain state. However, due to technical limitations, previous workload studies have been unable to record brain activity via conventional electroencephalography (EEG and magnetoencephalography (MEG devices in mobile participants. In this study, we used a wearable EEG system to estimate workload while participants walked in a naturalistic environment. Specifically, we used the auditory steady-state response (ASSR which is an oscillatory brain activity evoked by repetitive auditory stimuli, as an estimation index of workload. Participants performed three types of N-back tasks, which were expected to command different workloads, while walking at a constant speed. We used a binaural 500 Hz pure tone with amplitude modulation at 40 Hz to evoke the ASSR. We found that the phase-locking index (PLI of ASSR activity was significantly correlated with the degree of task difficulty, even for EEG data from few electrodes. Thus, ASSR appears to be an effective indicator of workload during walking in an ecologically valid environment.

  2. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  3. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  4. Effects of glutamate receptor agonists on the P13 auditory evoked potential and startle response in the rat

    Directory of Open Access Journals (Sweden)

    Christen eSimon

    2011-01-01

    Full Text Available The P13 potential is the rodent equivalent of the P50 potential, which is an evoked response recorded at the vertex (Vx 50 msec following an auditory stimulus in humans. Both the P13 and P50 potentials are only present during waking and rapid eye movement (REM sleep, and are considered to be measures of level of arousal. The source of the P13 and P50 potentials appears to be the pedunculopontine nucleus (PPN, a brainstem nucleus with indirect ascending projections to the cortex through the intralaminar thalamus (ILT, mediating arousal, and descending inhibitory projections to the caudal pontine reticular formation (CPRF, which mediates the auditory startle response (SR. We tested the hypothesis that intracranial microinjection (ICM of glutamate (GLU or GLU receptor agonists will increase the activity of PPN neurons, resulting in an increased P13 potential response, and decreased SR due to inhibitory projections from the PPN to the CPRF, in freely moving animals. Cannulae were inserted into the PPN to inject neuroactive agents, screws were inserted into the Vx in order to record the P13 potential, and electrodes inserted into the dorsal nuchal muscle to record electromyograms (EMGs and SR amplitude. Our results showed that ICM of GLU into the PPN dose-dependently increased the amplitude of the P13 potential and decreased the amplitude of the SR. Similarly, ICM of NMDA or KA into the PPN increased the amplitude of the P13 potential. These findings indicate that glutamatergic input to the PPN plays a role in arousal control in vivo, and changes in glutamatergic input, or excitability of PPN neurons, could be implicated in a number of neuropsychiatric disorders with the common symptoms of hyperarousal and REM sleep dysregulation.

  5. Oral Contraceptives Attenuate Cardiac Autonomic Responses to Musical Auditory Stimulation: Pilot Study.

    Science.gov (United States)

    Milan, Réveni Carmem; Plassa, Bruna Oliveira; Guida, Heraldo Lorena; de Abreu, Luiz Carlos; Gomes, Rayana L; Garner, David M; Valenti, Vitor E

    2015-01-01

    The literature presents contradictory results regarding the effects of contraceptives on cardiac autonomic regulation. The research team aimed to evaluate the effects of musical auditory stimulation on cardiac autonomic regulation in women who use oral contraceptives. The research team designed a transversal observational pilot study. The setting was the Centro de Estudos do Sistema Nervoso Autônomo (CESNA) in the Departamento de Fonoaudiologia at the Universidade Estadual Paulista (UNESP) in Marília, SP, Brazil. Participants were 22 healthy nonathletic and nonsedentary females, all nonsmokers and aged between 18 and 27 y. Participants were divided into 2 groups: (1) 12 women who were not taking oral contraceptives, the control group; and (2) 10 women who were taking oral contraceptives, the oral contraceptive group. In the first stage, a rest control, the women sat with their earphones turned off for 20 min. After that period, the participants were exposed to 20 min of classical baroque music (ie, "Canon in D Major," Johann Pachelbel), at 63-84 dB. Measurements of the equivalent sound levels were conducted in a soundproof room, and the intervals between consecutive heartbeats (R-R intervals) were recorded, with a sampling rate of 1000 Hz. For calculation of the linear indices, the research team used software to perform an analysis of heart rate variability (HRV). Linear indices of HRV were analyzed in the time domain: (1) the standard deviation of normal-to-normal R-R intervals (SDNN), (2) the root-mean square of differences between adjacent normal R-R intervals in a time interval (RMSSD), and (3) the percentage of adjacent R-R intervals with a difference of duration greater than 50 ms (pNN50). The study also analyzed the frequency domain-low frequency (LF), high frequency (HF), and LF/HF ratio. For the control group, the musical auditory stimulation reduced (1) the SDNN from 52.2 ± 10 ms to 48.4 ± 16 ms (P = .0034); (2) the RMSSD from 45.8 ± 22 ms to 41.2

  6. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): intracellular evaluation.

    Science.gov (United States)

    Navia, Benjamin; Stout, John; Atkins, Gordon

    2003-03-01

    The L3 auditory interneuron in female Acheta domesticus, produces two different responses to the male calling song: an immediate response and a prolonged response. The prolonged response exhibited spiking activity and a correlated prolonged depolarization, both of which are clearly seen in intracellular recordings. The morphology revealed by intracellular staining was clearly the L3 neuron. The amplitude of the prolonged depolarization associated with the prolonged response increased with increases in sound intensity, resulting in increased spiking rates. Both depolarization and sound presentation increased the spiking rate and the slope of pre-potentials (thus leading to spiking threshold more quickly). Injecting hyperpolarizing current had the expected opposite effect. The effects of positive current injection and sound presentation were additive, resulting in spiking rates that were approximately double the rates in response to sound alone. Short postsynaptic potentials (PSPs), whose duration ranged from 15-60 ms, which may lead to action potentials were also observed in all recordings and summated with the prolonged depolarization, increasing the probability of spiking. Copyright 2003 Wiley-Liss, Inc.

  7. Pleasurable emotional response to music: a case of neurodegenerative generalized auditory agnosia.

    Science.gov (United States)

    Matthews, Brandy R; Chang, Chiung-Chih; De May, Mary; Engstrom, John; Miller, Bruce L

    2009-06-01

    Recent functional neuroimaging studies implicate the network of mesolimbic structures known to be active in reward processing as the neural substrate of pleasure associated with listening to music. Psychoacoustic and lesion studies suggest that there is a widely distributed cortical network involved in processing discreet musical variables. Here we present the case of a young man with auditory agnosia as the consequence of cortical neurodegeneration who continues to experience pleasure when exposed to music. In a series of musical tasks, the subject was unable to accurately identify any of the perceptual components of music beyond simple pitch discrimination, including musical variables known to impact the perception of affect. The subject subsequently misidentified the musical character of personally familiar tunes presented experimentally, but continued to report that the activity of 'listening' to specific musical genres was an emotionally rewarding experience. The implications of this case for the evolving understanding of music perception, music misperception, music memory, and music-associated emotion are discussed.

  8. A Qualitative Analysis of Student Pharmacists’ Response after an Auditory Hallucination Simulation

    Directory of Open Access Journals (Sweden)

    Genevieve L Ness

    2017-08-01

    Full Text Available Objectives: The goal of this research was to evaluate pharmacy students’ experiences and reactions when exposed to an auditory hallucination simulator. Methods: A convenient sample of 16 pharmacy students enrolled in the Advanced Psychiatry Elective at a private, faith-based university in the southeastern United States was selected. Students participated in an activity in which they listened to an auditory hallucination simulator from their personal laptop computers and completed a variety of tasks. Following the conclusion of the simulator, students composed a reflection guided by a five-question prompt. Qualitative analysis of the reflections was then completed to identify and categorize overarching themes. Results: The overarching themes identified included: 1 students mentioned strategies they used to overcome the distraction; 2 students discussed how the voices affected their ability to complete the activities; 3 students discussed the mental/physical toll they experienced; 4 students identified methods to assist patients with schizophrenia; 5 students mentioned an increase in their empathy for patients; 6 students reported their reactions to the voices; 7 students recognized how schizophrenia could affect the lives of these patients; and 8 students expressed how their initial expectations and reactions to the voices changed throughout the course of the simulation. Overall, the use of this simulator as a teaching aid was well received by students. Summary: In conclusion, pharmacy students were impacted by the hallucination simulator and expressed an increased awareness of the challenges faced by these patients on a daily basis. Conflict of Interest We declare no conflicts of interest or financial interests that the authors or members of their immediate families have in any product or service discussed in the manuscript, including grants (pending or received, employment, gifts, stock holdings or options, honoraria, consultancies, expert

  9. Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level

    Directory of Open Access Journals (Sweden)

    Berg Patrick

    2004-03-01

    Full Text Available Abstract Background Tinnitus is an auditory sensation frequently following hearing loss. After cochlear injury, deafferented neurons become sensitive to neighbouring intact edge-frequencies, guiding an enhanced central representation of these frequencies. As psychoacoustical data 123 indicate enhanced frequency discrimination ability for edge-frequencies that may be related to a reorganization within the auditory cortex, the aim of the present study was twofold: 1 to search for abnormal auditory mismatch responses in tinnitus sufferers and 2 relate these to subjective indicators of tinnitus. Results Using EEG-mismatch negativity, we demonstrate abnormalities (N = 15 in tinnitus sufferers that are specific to frequencies located at the audiometrically normal lesion-edge as compared to normal hearing controls (N = 15. Groups also differed with respect to the cortical locations of mismatch responsiveness. Sources in the 90–135 ms latency window were generated in more anterior brain regions in the tinnitus group. Both measures of abnormality correlated with emotional-cognitive distress related to tinnitus (r ~ .76. While these two physiological variables were uncorrelated in the control group, they were correlated in the tinnitus group (r = .72. Concerning relationships with parameters of hearing loss (depth and slope, slope turned out to be an important variable. Generally, the steeper the hearing loss is the less distress related to tinnitus was reported. The associations between slope and the relevant neurophysiological variables are in agreement with this finding. Conclusions The present study is the first to show near-to-complete separation of tinnitus sufferers from a normal hearing control group based on neurophysiological variables. The finding of lesion-edge specific effects and associations with slope of hearing loss corroborates the assumption that hearing loss is the basis for tinnitus development. It is likely that some central

  10. Auditory sensory processing deficits in sensory gating and mismatch negativity-like responses in the social isolation rat model of schizophrenia

    DEFF Research Database (Denmark)

    Witten, Louise; Oranje, Bob; Mørk, Arne

    2014-01-01

    Patients with schizophrenia exhibit disturbances in information processing. These disturbances can be investigated with different paradigms of auditory event related potentials (ERP), such as sensory gating in a double click paradigm (P50 suppression) and the mismatch negativity (MMN) component...... in an auditory oddball paradigm. The aim of the current study was to test if rats subjected to social isolation, which is believed to induce some changes that mimic features of schizophrenia, displays alterations in sensory gating and MMN-like response. Male Lister-Hooded rats were separated into two groups; one...... group socially isolated (SI) for 8 weeks and one group housed (GH). Both groups were then tested in a double click sensory gating paradigm and an auditory oddball paradigm (MMN-like) paradigm. It was observed that the SI animals showed reduced sensory gating of the cortical N1 amplitude. Furthermore...

  11. Development of the auditory system

    OpenAIRE

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to com...

  12. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  13. Otoacoustic emissions and auditory brainstem responses in patients with sudden sensorineural hearing loss. Do otoacoustic emissions have prognostic value?

    Directory of Open Access Journals (Sweden)

    Manoochehr Amiridavan

    2006-11-01

    Full Text Available BACKGROUND: Sudden sensorineural hearing loss (SSNHL is a perplexing condition for patients and there are many controversies about its etiology, audiologic characteristics, prognostic factors, and treatment. METHODS: In this prospective study, we performed some audiologic tests, including PTA, IA, ABR, and OAE (TEOAE before beginning treatment of 53 patients with SSNHL. We assigned the patients randomly to two treatment groups: oral steroids + acyclovir vs. intravenous urographin. Twenty-eight patients underwent Magnetic Resonance Imaging (MRI of the Brain. RESULTS: Of 53 patients (22 female and 31 male, 22 (41.5% had negative or no signal to noise ratio and overall correlation in TEOAE. Twenty-six patients (49% had positive overall correlations less than 50%, and 5 patients (4.4% had overall correlations >50%. Fifteen patients (28. 3% responded completely or well, 20 (37.7% responded partially, and 18 (33.9% had poor or no response to the treatment. The mean values for overall correlation in 3 subgroups of patients (no response, partial response, and complete response were – 3. 5% (+ 1/16%, +11% (+ 1/99%, and +36.6% (+3/07%, respectively (P = 0.01. Twenty out of 52 patients had no reproducible wave in ABR (38.5%, and waves I, III, and V were absent in 40 (77%, 31 (59.6% and 21 (40% patients, respectively. There were some limitations (false positive and false negative results in ABR use in our cases, but it may be useful in detecting site of lesion in SSNHL. Overall, according to the results of OAE, ABR, and brain MRI of these patients, 3 were affected by acoustic neurinomas, at least 1 had auditory neuropathy, and the site of lesion was cochlear in 6, and cochlear + retrocochlear in 13 patients. CONCLUSIONS: ABR has limitations for use in SSNHL and seems not to obviate the need for brain MRI, but may help in determining the site of lesions such as ischemia or neuropathy. Overall correlation (and S/N ratio in TEOAE is a valuable

  14. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  15. Investigation of Auditory Brain Stem Responses (ABRs In Children with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Mohsen Monadi

    2013-04-01

    Full Text Available Objective: The aim of this study was comparing ABR in normal and down children. Materials & Methods: This study was performed between 1388 to 1391 at Akhavan rehabilitation center of University of Social Welfare and Rehabilitation Sciences Tehran and Babol Amir Kola hospital. Forty five 3-6 year-old boy with Down’s syndrome and forty five normal children were selected from available population. After case history, otoscopy and basic hearing tests, ABR test was performed. In ABR absolute latencies, interpeak latencies and amplitude ratio of V/I were analyzed. For analyzing data, parametric independent t test was selected. Results: Latencies and inter-peak latencies of I-III, I-V (P-value<0.001, III-V (P-value=0.01 and V/I amplitude ratio (P-value<0.001 were shorter than normal. Children with Down syndrome had significantly higher threshold than normal children (P-value<0.001. Conclusion: Peripheral auditory system development is delayed and brainstem function in children with Down’s syndrome is abnormal. Early diagnosis of hearing impairments and intervention in these children is very important because it affects communication skills.

  16. Auditory brainstem responses for click and CE-chirp stimuli in individuals with and without occupational noise exposure

    Directory of Open Access Journals (Sweden)

    Zeena Venkatacheluvaiah Pushpalatha

    2016-01-01

    Full Text Available Introduction: Encoding of CE-chirp and click stimuli in auditory system was studied using auditory brainstem responses (ABRs among individuals with and without noise exposure. Materials and Methods: The study consisted of two groups. Group 1 (experimental group consisted of 20 (40 ears individuals exposed to occupational noise with hearing thresholds within 25 dB HL. They were further divided into three subgroups based on duration of noise exposure (0–5 years of exposure-T1, 5–10 years of exposure-T2, and >10 years of exposure-T3. Group 2 (control group consisted of 20 individuals (40 ears. Absolute latency and amplitude of waves I, III, and V were compared between the two groups for both click and CE-chirp stimuli. T1, T2, and T3 groups were compared for the same parameters to see the effect of noise exposure duration on CE-chirp and click ABR. Result: In Click ABR, while both the parameters for wave III were significantly poorer for the experimental group, wave V showed a significant decline in terms of amplitude only. There was no significant difference obtained for any of the parameters for wave I. In CE-Chirp ABR, the latencies for all three waves were significantly prolonged in the experimental group. However, there was a significant decrease in terms of amplitude in only wave V for the same group. Discussion: Compared to click evoked ABR, CE-Chirp ABR was found to be more sensitive in comparison of latency parameters in individuals with occupational noise exposure. Monitoring of early pathological changes at the brainstem level can be studied effectively by using CE-Chirp stimulus in comparison to click stimulus. Conclusion: This study indicates that ABR’s obtained with CE-chirp stimuli serves as an effective tool to identify the early pathological changes due to occupational noise exposure when compared to click evoked ABR.

  17. Effects of background noise on inter-trial phase coherence and auditory N1-P2 responses to speech stimuli.

    Science.gov (United States)

    Koerner, Tess K; Zhang, Yang

    2015-10-01

    This study investigated the effects of a speech-babble background noise on inter-trial phase coherence (ITPC, also referred to as phase locking value (PLV)) and auditory event-related responses (AERP) to speech sounds. Specifically, we analyzed EEG data from 11 normal hearing subjects to examine whether ITPC can predict noise-induced variations in the obligatory N1-P2 complex response. N1-P2 amplitude and latency data were obtained for the /bu/syllable in quiet and noise listening conditions. ITPC data in delta, theta, and alpha frequency bands were calculated for the N1-P2 responses in the two passive listening conditions. Consistent with previous studies, background noise produced significant amplitude reduction and latency increase in N1 and P2, which were accompanied by significant ITPC decreases in all the three frequency bands. Correlation analyses further revealed that variations in ITPC were able to predict the amplitude and latency variations in N1-P2. The results suggest that trial-by-trial analysis of cortical neural synchrony is a valuable tool in understanding the modulatory effects of background noise on AERP measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Altered effective brain connectivity at early response of antipsychotics in first-episode schizophrenia with auditory hallucinations.

    Science.gov (United States)

    Zheng, Leilei; Liu, Weibo; He, Wei; Yu, Shaohua; Zhong, Guodong

    2017-06-01

    This study aimed to examine the alterations of cortical connectivity in first-episode schizophrenia (FES) with auditory hallucinations at early response of antipsychotics. This was a nonexperimental control of medication study. We measured the cortical activity of 20 medicated patients with FES (medicated group), 19 nonmedicated patients with FES (nonmedicated group), and 22 healthy controls using electroencephalogram during eye-open resting state. Source reconstruction analysis was performed to determine the brain regions that showed significant group difference. A dynamic causal modelling (DCM) analysis was used to estimate the effective connectivity between sources. Both FES groups expressed increased activity in the right middle frontal gyrus (RMFG) and left/right superior temporal gyrus (L/RSTG) relative to that in the controls (phallucination diminished at early response of routine medication. This study provided the first evidence of early drug response-related alterations in effective brain connectivity. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. 40Hz auditory steady-state responses in patients with disorders of consciousness: Correlation between phase-locking index and Coma Recovery Scale-Revised score.

    Science.gov (United States)

    Binder, Marek; Górska, Urszula; Griskova-Bulanova, Inga

    2017-05-01

    We aimed to elucidate whether 40Hz auditory steady-state response (ASSR) could be sensitive to the state of patients with disorders of consciousness (DOC) as estimated with Coma Recovery Scale-Revised (CRS-R) diagnostic tool. Fifteen DOC patients and 24 healthy controls took part in the study. The 40Hz click trains were used to evoke ASSRs. Mean evoked amplitude (EA) and phase-locking index (PLI) within 38-42Hz window were calculated for 100ms bins, starting from -200 to 700ms relative to stimulus onset. The PLI values from the patient group in the period of 200-500ms after the stimulus onset positively correlated with the CRS-R total score and with the scores of the Auditory and Visual subscales. The phase-locking index of 40Hz auditory steady-state responses can be an indicator of the level of dysfunction of the central nervous system in DOC. Our results emphasize the role of central auditory system integrity in determining the level of functioning of DOC patients and suggest the possibility to use the ASSR protocol as an objective diagnostic method in DOC patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. Simulated auditory nerve axon demyelination alters sensitivity and response timing to extracellular stimulation.

    Science.gov (United States)

    Resnick, Jesse M; O'Brien, Gabrielle E; Rubinstein, Jay T

    2018-04-01

    Since cochlear implant function involves direct depolarization of spiral ganglion neurons (SGNs) by applied current, SGN physiological health must be an important factor in cochlear implant (CI) outcomes. This expected relationship has, however, been difficult to confirm in implant recipients. Suggestively, animal studies have demonstrated both acute and progressive SGN ultrastructural changes (notably axon demyelination), even in the absence of soma death, and corresponding altered physiology following sensorineural deafening. Whether such demyelination occurs in humans and how such changes might impact CI function remains unknown. To approach this problem, we incorporated SGN demyelination into a biophysical model of extracellular stimulation of SGN fibers. Our approach enabled exploration of the entire parameter space corresponding to simulated myelin diameter and extent of fiber affected. All simulated fibers were stimulated distally with anodic monophasic, cathodic monophasic, anode-phase-first (AF) biphasic, and cathode-phase-first (CF) biphasic pulses from an extracellular disc electrode and monitored for spikes centrally. Not surprisingly, axon sensitivity generally decreased with demyelination, resulting in elevated thresholds, however, this effect was strongly non-uniform. Fibers with severe demyelination affecting only the most peripheral nodes responded nearly identically to normally myelinated fibers. Additionally, partial demyelination (<50%) yielded only minimal increases in threshold even when the entire fiber was impacted. The temporal effects of demyelination were more unexpected. Both latency and jitter of responses demonstrated resilience to modest changes but exhibited strongly non-monotonic and stimulus-dependent relationships to more profound demyelination. Normal, and modestly demyelinated fibers, were more sensitive to cathodic than anodic monophasic pulses and to CF than AF biphasic pulses, however, when demyelination was more severe these

  1. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    Science.gov (United States)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  2. [Comparison of tone burst evoked auditory brainstem responses with different filter settings for referral infants after hearing screening].

    Science.gov (United States)

    Diao, Wen-wen; Ni, Dao-feng; Li, Feng-rong; Shang, Ying-ying

    2011-03-01

    Auditory brainstem responses (ABR) evoked by tone burst is an important method of hearing assessment in referral infants after hearing screening. The present study was to compare the thresholds of tone burst ABR with filter settings of 30 - 1500 Hz and 30 - 3000 Hz at each frequency, figure out the characteristics of ABR thresholds with the two filter settings and the effect of the waveform judgement, so as to select a more optimal frequency specific ABR test parameter. Thresholds with filter settings of 30 - 1500 Hz and 30 - 3000 Hz in children aged 2 - 33 months were recorded by click, tone burst ABR. A total of 18 patients (8 male/10 female), 22 ears were included. The thresholds of tone burst ABR with filter settings of 30 - 3000 Hz were higher than that with filter settings of 30 - 1500 Hz. Significant difference was detected for that at 0.5 kHz and 2.0 kHz (t values were 2.238 and 2.217, P Hz was smoother than that with filter settings of 30 - 3000 Hz at the same stimulus intensity. Response curve of the latter appeared jagged small interfering wave. The filter setting of 30 - 1500 Hz may be a more optimal parameter of frequency specific ABR to improve the accuracy of frequency specificity ABR for infants' hearing assessment.

  3. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.

    Science.gov (United States)

    Bronsert, Michael; Bingol, Hilary; Atkins, Gordon; Stout, John

    2003-03-01

    L3, an auditory interneuron in the prothoracic ganglion of female crickets (Acheta domesticus) exhibited two kinds of responses to models of the male's calling song (CS): a previously described, phasically encoded immediate response; a more tonically encoded prolonged response. The onset of the prolonged response required 3-8 sec of stimulation to reach its maximum spiking rate and 6-20 sec to decay once the calling song ceased. It did not encode the syllables of the chirp. The prolonged response was sharply selective for the 4-5 kHz carrier frequency of the male's calling songs and its threshold tuning matched the threshold tuning of phonotaxis, while the immediate response of the same neuron was broadly tuned to a wide range of carrier frequencies. The thresholds for the prolonged response covaried with the changing phonotactic thresholds of 2- and 5-day-old females. Treatment of females with juvenile hormone reduced the thresholds for both phonotaxis and the prolonged response by equivalent amounts. Of the 3 types of responses to CSs provided by the ascending L1 and L3 auditory interneurons, the threshold for L3's prolonged response, on average, best matched the same females phonotactic threshold. The prolonged response was stimulated by inputs from both ears while L3's immediate response was driven only from its axon-ipsilateral ear. The prolonged response was not selective for either the CS's syllable period or chirp rate. Copyright 2003 Wiley-Liss, Inc.

  4. The encoding of auditory objects in auditory cortex: insights from magnetoencephalography.

    Science.gov (United States)

    Simon, Jonathan Z

    2015-02-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Dichotic multiple-frequency auditory steady-state responses in evaluating the hearing thresholds of occupational noise-exposed workers

    Directory of Open Access Journals (Sweden)

    Ruey-Fen Hsu

    2011-08-01

    Full Text Available An objective, fast, and reasonably accurate assessment test that allows for easy interpretation of the responses of the hearing thresholds at all frequencies of a conventional audiogram is needed to resolve the medicolegal aspects of an occupational hearing injury. This study evaluated the use of dichotic multiple-frequency auditory steady-state responses (Mf-ASSR to predict the hearing thresholds in workers exposed to high levels of noise. The study sample included 34 workers with noise-induced hearing impairment. Thresholds of pure-tone audiometry (PTA and Mf-ASSRs at four frequencies were assessed. The differences and correlations between the thresholds of Mf-ASSRs and PTA were determined. The results showed that, on average, Mf-ASSR curves corresponded well with the thresholds of the PTA contours averaged across subjects. The Mf-ASSRs were 20±8 dB, 16±9 dB, 12±9 dB, and 11±12 dB above the thresholds of the PTA for 500 Hz, 1,000 Hz, 2,000 Hz, and 4,000 Hz, respectively. The thresholds of the PTA and the Mf-ASSRs were significantly correlated (r=0.77–0.89. We found that the measurement of Mf-ASSRs is easy and potentially time saving, provides a response at all dichotic multiple frequencies of the conventional audiogram, reduces variability in the interpretation of the responses, and correlates well with the behavioral hearing thresholds in subjects with occupational noise-induced hearing impairment. Mf-ASSR can be a valuable aid in the adjustment of compensation cases.

  6. The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system.

    Science.gov (United States)

    Pollak, George D

    2013-11-01

    This review is concerned with how communication calls are processed and represented by populations of neurons in both the inferior colliculus (IC), the auditory midbrain nucleus, and the dorsal nucleus of the lateral lemniscus (DNLL), the nucleus just caudal to the IC. The review has five sections where focus in each section is on inhibition and its role in shaping response selectivity for communication calls. In the first section, the lack of response selectivity for calls in DNLL neurons is presented and discusses why inhibition plays virtually no role in shaping selectivity. In the second section, the lack of selectivity in the DNLL is contrasted with the high degree of response selectivity in the IC. The third section then reviews how inhibition in the IC shapes response selectivities for calls, and how those selectivities can create a population response with a distinctive response profile to a particular call, which differs from the population profile evoked by any other call. The fourth section is concerned with the specifics of inhibition in the IC, and how the interaction of excitation and inhibition creates directional selectivities for frequency modulations, one of the principal acoustic features of communication signals. The two major hypotheses for directional selectivity are presented. One is the timing hypothesis, which holds that the precise timing of excitation relative to inhibition is the feature that shapes directionality. The other hypothesis is that the relative magnitudes of excitation and inhibition are the dominant features that shape directionality, where timing is relatively unimportant. The final section then turns to the role of serotonin, a neuromodulator that can markedly change responses to calls in the IC. Serotonin provides a linkage between behavioral states and processing. This linkage is discussed in the final section together with the hypothesis that serotonin acts to enhances the contrast in the population responses to various

  7. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  8. Noise-Induced “Toughening” Effect in Wistar Rats: Enhanced Auditory Brainstem Responses Are Related to Calretinin and Nitric Oxide Synthase Upregulation

    Science.gov (United States)

    Alvarado, Juan C.; Fuentes-Santamaría, Verónica; Gabaldón-Ull, María C.; Jareño-Flores, Tania; Miller, Josef M.; Juiz, José M.

    2016-01-01

    An appropriate conditioning noise exposure may reduce a subsequent noise-induced threshold shift. Although this “toughening” effect helps to protect the auditory system from a subsequent traumatic noise exposure, the mechanisms that regulate this protective process are not fully understood yet. Accordingly, the goal of the present study was to characterize physiological processes associated with “toughening” and to determine their relationship to metabolic changes in the cochlea and cochlear nucleus (CN). Auditory brainstem responses (ABR) were evaluated in Wistar rats before and after exposures to a sound conditioning protocol consisting of a broad-band white noise of 118 dB SPL for 1 h every 72 h, four times. After the last ABR evaluation, animals were perfused and their cochleae and brains removed and processed for the activity markers calretinin (CR) and neuronal nitric oxide synthase (nNOS). Toughening was demonstrated by a progressively faster recovery of the threshold shift, as well as wave amplitudes and latencies over time. Immunostaining revealed an increase in CR and nNOS levels in the spiral ganglion, spiral ligament, and CN in noise-conditioned rats. Overall, these results suggest that the protective mechanisms of the auditory toughening effect initiate in the cochlea and extend to the central auditory system. Such phenomenon might be in part related to an interplay between CR and nitric oxide signaling pathways, and involve an increased cytosolic calcium buffering capacity induced by the noise conditioning protocol. PMID:27065815

  9. Differential modulation of auditory responses to attended and unattended speech in different listening conditions.

    Science.gov (United States)

    Kong, Ying-Yee; Mullangi, Ala; Ding, Nai

    2014-10-01

    This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared to the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Characteristics of electrically evoked auditory brainstem responses in patients with cochlear nerve canal stenosis receiving cochlear implants.

    Science.gov (United States)

    Wang, Zhenxiao; Liu, Yun; Wang, Line; Shen, Xixi; Han, Shuguang; Wang, Wei; Gao, Fenqi; Liang, Wenqi; Peng, Kevin A

    2018-01-01

    To explore the characteristics of the electrically evoked auditory brainstem responses (EABR) in children with cochlear nerve canal stenosis (CNCs) following cochlear implantation (CI), and the EABR thresholds in children with stenotic versus normal cochlear nerve canals. Sixteen children with profound sensorineural hearing loss were included in this study: 8 with CNCs (CNCs group) and 8 with normal cochlear nerve canals (control group). All children underwent cochlear implantation with full insertion of all electrodes. EABR was performed 6 months postoperatively in both groups. The EABR extraction rate was 100% in children with normal cochlear nerve canals and only 50% in children with CNCs. EABR thresholds were significantly higher in children with CNCs of electrodes No. 11and 22 than in children with normal cochlear nerve canals (P  0.05 for all comparisons); while in the control group, the EABR threshold at electrode No 22 was lower than those at both electrodes No. 11 and 1 (P cochlear nerve canals vary according to the different locations of electrodes in the cochlea; while in children with CNCs, there was no significant difference among different electrode locations. The EABR thresholds in CNCs children were higher than those of children with normal cochlear nerve canals at electrode 11 and 22. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of noise exposure on neonatal auditory brainstem response thresholds in pregnant guinea pigs at different gestational periods.

    Science.gov (United States)

    Morimoto, Chihiro; Nario, Kazuhiko; Nishimura, Tadashi; Shimokura, Ryota; Hosoi, Hiroshi; Kitahara, Tadashi

    2017-01-01

    Noise exposure during pregnancy has been reported to cause fetal hearing impairment. However, little is known about the effects of noise exposure during various gestational stages on postnatal hearing. In the present study, we investigated the effects of noise exposure on auditory brainstem response (ABR) at the early, mid-, and late gestational periods in newborn guinea pigs. Pregnant guinea pigs were exposed to 4-kHz pure tone at a 120-dB sound pressure level for 4 h. We divided the animals into four groups as follows: the control, early gestational exposure, mid-gestational exposure, and late gestational exposure groups. ABR thresholds and latencies in newborns were recorded using 1-, 2-, and 4-kHz tone burst on postnatal days 1, 7, 14, and 28. Changes in ABR thresholds and latencies were measured between the 4 × 4 and 4 × 3 factorial groups mentioned above (gestational periods × postnatal days, gestational periods × frequencies). The thresholds were low in the order of control group guinea pigs. This is the first study to show that noise exposure during the early, mid-, and late gestational periods significantly elevated ABR thresholds in neonatal guinea pigs. © 2016 Japan Society of Obstetrics and Gynecology.

  12. The brain stem function in patients with brain bladder; Clinical evaluation using dynamic CT scan and auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshihiro (Yokohama City Univ. (Japan). Faculty of Medicine)

    1990-11-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author).

  13. Evaluation of deafness in American Paint Horses by phenotype, brainstem auditory-evoked responses, and endothelin receptor B genotype.

    Science.gov (United States)

    Magdesian, K Gary; Williams, D Colette; Aleman, Monica; Lecouteur, Richard A; Madigan, John E

    2009-11-15

    To evaluate deafness in American Paint Horses by phenotype, clinical findings, brainstem auditory-evoked responses (BAERs), and endothelin B receptor (EDNBR) genotype. Case series and case-control studies. 14 deaf American Paint Horses, 20 suspected-deaf American Paint Horses, and 13 nondeaf American Paint Horses and Pintos. Horses were categorized on the basis of coat color pattern and eye color. Testing for the EDNBR gene mutation (associated with overo lethal white foal syndrome) and BAERs was performed. Additional clinical findings were obtained from medical records. All 14 deaf horses had loss of all BAER waveforms consistent with complete deafness. Most horses had the splashed white or splashed white-frame blend coat pattern. Other patterns included frame overo and tovero. All of the deaf horses had extensive head and limb white markings, although the amount of white on the neck and trunk varied widely. All horses had at least 1 partially heterochromic iris, and most had 2 blue eyes. Ninety-one percent (31/34) of deaf and suspected-deaf horses had the EDNBR gene mutation. Deaf and suspected-deaf horses were used successfully for various performance events. All nondeaf horses had unremarkable BAER results. Veterinarians should be aware of deafness among American Paint Horses, particularly those with a splashed white or frame overo coat color pattern, blend of these patterns, or tovero pattern. Horses with extensive head and limb markings and those with blue eyes appeared to be at particular risk.

  14. Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside.

    Science.gov (United States)

    Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B

    1995-07-01

    Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.

  15. Piracetam-induced changes on the brainstem auditory response in anesthetized juvenile rhesus monkeys (Macaca mulatta). Report of two clinical cases.

    Science.gov (United States)

    Durand-Rivera, A; Gonzalez-Pina, R; Hernandez-Godinez, B; Ibanez-Contreras, A; Bueno-Nava, A; Alfaro-Rodriguez, A

    2012-10-01

    We describe two clinical cases and examine the effects of piracetam on the brainstem auditory response in infantile female rhesus monkeys (Macaca mulatta). We found that the interwave intervals show a greater reduction in a 3-year-old rhesus monkey compared to a 1-year-old rhesus monkey. In this report, we discuss the significance of these observations. © 2012 John Wiley & Sons A/S.

  16. Aberrant brain response after auditory deviance in PTSD compared to trauma controls: An EEG study

    NARCIS (Netherlands)

    Bangel, Katrin A.; van Buschbach, Susanne; Smit, Dirk J. A.; Mazaheri, Ali; Olff, Miranda

    2017-01-01

    Part of the symptomatology of post-traumatic stress disorder (PTSD) are alterations in arousal and reactivity which could be related to a maladaptive increase in the automated sensory change detection system of the brain. In the current EEG study we investigated whether the brain's response to a

  17. Sensitivity evaluation of the visual, tactile, and auditory detection response task method while driving.

    Science.gov (United States)

    Stojmenova, Kristina; Jakus, Grega; Sodnik, Jaka

    2017-05-19

    In this article, we evaluate the sensitivity to cognitive load of 3 versions of the Detection Response Task method (DRT), proposed in ISO Draft Standard DIS-17488. We present a user study with 30 participants in which we compared the sensitivity to cognitive load of visual, audio, and tactile DRT in a simulated driving environment. The amount of cognitive load was manipulated with secondary n-back tasks at 2 levels of difficulty (0-back and 1-back). We also explored whether the DRT method is least sensitive to cognitive load when the stimuli and secondary task are of the same modality. For this purpose, we used 3 forms to present the n-back task stimuli: visual, audio, and tactile. Responses to the task were always vocal. The experiment was based on a between-subject design (the DRT modalities) with 2 levels of within-subject design study (modalities and difficulty of the secondary n-back tasks). The participants' primary task in the study was to drive safely, and a second priority was to answer to DRT stimuli and perform secondary tasks. The results indicate that all 3 versions of the DRT tested were sensitive to detecting the difference in cognitive load between the reference driving period and driving and engaging in the secondary tasks. Only the visual DRT discriminated between the 0-back and 1-back conditions on mean response time. Contrary to expectations, no interaction was observed between DRT modality and the stimuli modality used for presentation of the secondary tasks. None of the 3 methods of presenting DRT stimuli showed a consistent advantage in sensitivity in differentiating multiple levels of cognitive load if all response times, hit rates, and secondary task performance are considered. If only response time is considered, the visual presentation of the DRT stimulus used in this study showed some advantages. In interpreting these data, it should be noted that the methods of DRT stimulus presentation varied somewhat from the currently proposed draft

  18. Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats

    Czech Academy of Sciences Publication Activity Database

    Popelář, Jiří; Grécová, Jolana; Rybalko, Natalia; Syka, Josef

    2008-01-01

    Roč. 245, 1-2 (2008), s. 82-91 ISSN 0378-5955 R&D Projects: GA ČR GA309/07/1336; GA MZd NR8113; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : Noise exposure * Long evans rats * Middle latency responses Subject RIV: FH - Neurology Impact factor: 2.333, year: 2008

  19. Speech-evoked cortical auditory responses in children with normal hearing

    Directory of Open Access Journals (Sweden)

    Aseel Almeqbel

    2013-11-01

    Method: CAEPs were recorded from 18 school-aged children with normal hearing, tested in two groups: younger (5 - 7 years and older children (8 - 12 years. Cortical responses differed in their P1 and N2 latencies and amplitudes in response to /m/, /g/ and /t/ sounds (from low-, mid- and high-frequency regions, respectively. The largest amplitude of the P1 and N2 component was for /g/ and the smallest was for /t/. The P1 latency in both age groups did not show any significant difference between these speech sounds. The N2 latency showed a significant change in the younger group but not in the older group. The N2 latency of the speech sound /g/ was always noted earlier in both groups. Conclusion: This study demonstrates that spectrally different speech sounds are encoded differentially at the cortical level, and evoke distinct CAEP response patterns. CAEP latencies and amplitudes may provide an objective indication that spectrally different speech sounds are encoded differently at the cortical level.

  20. Association Between Sex and Speech Auditory Brainstem Responses in Adults, and Relationship to Sex Hormone Levels.

    Science.gov (United States)

    Liu, Jinfeng; Wang, Dan; Li, Xiaoting; Ningyu, Wang

    2017-05-14

    BACKGROUND The aim of this study was to investigate the association between sex and speech-ABR in adults, and its relationship to sex hormone levels. MATERIAL AND METHODS Speech-ABR were elicited with the consonant-vowel syllable (/da/) in a total of 35 adults. Reproductive hormone levels were also measured. RESULTS The transient response of the speech-ABR (waves V, A, and O) in females show a shorter latency (waves V, A and O) and a larger amplitude (waves V and A) than in males (P0.05). The sustained response of females exhibited a larger amplitude (wave F, P0.05). The latencies of speech-ABR were positively correlated with testosterone level (P0.05). The E2 showed a positive correlation with the absolute value of amplitude of the speech-ABR (P speech-ABR (P0.05). CONCLUSIONS Sex differences in speech-ABR are significant in adults. The latencies and amplitude of the speech-ABR waves were correlated with the E2 concentration and testosterone level. The sex hormones likely affect speech encoding in the brainstem.

  1. A Comparison of Thresholds in Auditory Steady - State Response with Pure Tone Audiometry in Subjects with Normal Hearing and Those with Mild and Moderate Sensorineural Hearing los

    Directory of Open Access Journals (Sweden)

    Sadegh Jafarzadeh

    2008-06-01

    Full Text Available Background and Aim: Among all auditory assessment tools, auditory steady state response (ASSR is a modern test. Modulation frequency for this test is usually 80 Hz. The purpose of this study, was to examined adult subjects with 40 Hz and 80 Hz ASSR and compare the results.Materials and Methods: Thirty adult (60 ears were evaluated by ASSR and PTA test, Results were divided into three groups: normal hearing, mild and moderate sensorineural hearing loss. Results: In all groups, forty hertz ASSR thresholds were relatively closer to behavioral threshold than those of 80 Hz ASSR(p<0.05. Besides, the more severe hearing loss, the lower the difference between those two thresholds. Correlation coefficients were also higher in 40 Hz ASSR(p<0.05. Conclusion: Frequency modulation thresholds with 40 Hz are more likely to be closer to the behavioral thresholds. Moreover, it has better results than the thresholds with 80 Hz.

  2. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    Directory of Open Access Journals (Sweden)

    Jun-Li Liu

    Full Text Available BACKGROUND: In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. METHODS/MAIN FINDINGS: The effects of immediate (beginning at 10 min after the conditioning and delayed (beginning at 24 h after conditioning extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th day after extinction depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p. injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM task. CONCLUSIONS/SIGNIFICANCE: Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is

  3. Effects of vowel auditory training on concurrent speech segregation in hearing impaired children.

    Science.gov (United States)

    Talebi, Hossein; Moossavi, Abdollah; Lotfi, Yones; Faghihzadeh, Soghrat

    2015-01-01

    This clinical trial investigated the ability of concurrent speech segregation in hearing impaired children. The auditory behavioral responses and auditory late responses (ALRs) were compared between test and control groups prior to vowel auditory training and after 3 and 6 months of vowel auditory training to find the effects of bottom-up training on concurrent speech segregation in hearing impaired children. Auditory behavioral responses for 5 vowels and ALRs for double synthetic vowels, with special physical properties, were recorded in a timetable in 30 hearing impaired children (test group = 15 and control group = 15). Identification score and reaction time data showed that the test group was approximately proficient for some vowels (P training. N1-P2 amplitude indexing of the vowel change detection and reflecting central auditory speech representation without active client participation has been increased in the test group (P training-related improvements in concurrent speech segregation. This information provided evidence for bottom-up training based on F0, its differences in auditory scene analysis, and neural underpinnings. © The Author(s) 2014.

  4. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-01-01

    Full Text Available

    Background: Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs.

    Design and methods: Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry (VROA. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB SPL, and CAEP recordings were made. An automatic statistical detection paradigm was used for CAEP detection.

    Results: For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72 ± 10, 75 ± 10, and 78 ± 12%. In 79% of the cases, automatic detection p-values became smaller when the sensation level was increased by 10 dB.

    Conclusions: The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP provides confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  5. Conventional and cross-correlation brain-stem auditory evoked responses in the white leghorn chick: rate manipulations

    Science.gov (United States)

    Burkard, R.; Jones, S.; Jones, T.

    1994-01-01

    Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Auditory steady-state response thresholds in adults with conductive and mild to moderate sensorineural hearing loss.

    Science.gov (United States)

    Hosseinabadi, Reza; Jafarzadeh, Sadegh

    2015-01-01

    The Auditory steady state response (ASSR) provides a frequency-specific and automatic assessment of hearing sensitivity and is used in infants and difficult-to-test adults. The aim of this study was to compare the ASSR thresholds among various types (normal, conductive, and sensorineural), degree (normal, mild, and moderate), and configuration (flat and sloping) of hearing sensitivity, and measuring the cutoff point between normal condition and hearing loss for different frequencies. This clinical trial was performed in Iran and included patients who were referred from Ear, Nose, and Throat Department. A total of 54 adults (27 with sensorineural hearing loss, 17 with conductive hearing losses, and 10 with normal hearing) were randomly chosen to participate in our study. The type and degree of hearing loss were determined through testing by otoscopy, tympanometry, acoustic reflex, and pure tone audiometry. Then the ASSR was tested at carrier frequencies of 500, 1000, 2000, and 4000 Hz. The ASSR accurately estimates the behavioral thresholds as well as flat and sloping configurations. There was no correlation between types of hearing loss and difference of behavioral and ASSR thresholds (P = 0.69). The difference between ASSR and behavioral thresholds decreased as severity of hearing loss increased. The 40, 35, 30, and 35 dB could be considered as cutoffs between normal hearing and hearing loss for 500, 1000, 2000, and 4000 Hz, respectively. The ASSR can accurately predict the degree and configuration of hearing loss and discriminate the normal hearing from mild or moderate hearing loss and mild from moderate hearing loss, except for 500 Hz. The Air-conducted ASSR could not define the type of hearing loss.

  7. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences.

    Science.gov (United States)

    Price, D; Tyler, L K; Neto Henriques, R; Campbell, K L; Williams, N; Treder, M S; Taylor, J R; Henson, R N A

    2017-06-09

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.

  8. Neural plasticity expressed in central auditory structures with and without tinnitus

    Directory of Open Access Journals (Sweden)

    Larry E Roberts

    2012-05-01

    Full Text Available Sensory training therapies for tinnitus are based on the assumption that, notwithstanding neural changes related to tinnitus, auditory training can alter the response properties of neurons in auditory pathways. To address this question, we investigated whether brain changes induced by sensory training in tinnitus sufferers and measured by EEG are similar to those induced in age and hearing loss matched individuals without tinnitus trained on the same auditory task. Auditory training was given using a 5 kHz 40-Hz amplitude-modulated sound that was in the tinnitus frequency region of the tinnitus subjects and enabled extraction of the 40-Hz auditory steady-state response (ASSR and P2 transient response known to localize to primary and nonprimary auditory cortex, respectively. P2 amplitude increased with training equally in participants with tinnitus and in control subjects, suggesting normal remodeling of nonprimary auditory regions in tinnitus. However, training-induced changes in the ASSR differed between the tinnitus and control groups. In controls ASSR phase advanced toward the stimulus waveform by about ten degrees over training, in agreement with previous results obtained in young normal hearing individuals. However, ASSR phase did not change significantly with training in the tinnitus group, although some participants showed phase shifts resembling controls. On the other hand, ASSR amplitude increased with training in the tinnitus group, whereas in controls this response (which is difficult to remodel in young normal hearing subjects did not change with training. These results suggest that neural changes related to tinnitus altered how neural plasticity was expressed in the region of primary but not nonprimary auditory cortex. Auditory training did not reduce tinnitus loudness although a small effect on the tinnitus spectrum was detected.

  9. Auditory brainstem response latency in forward masking, a marker of sensory deficits in listeners with normal hearing thresholds

    DEFF Research Database (Denmark)

    Mehraei, Golbarg; Paredes Gallardo, Andreu; Shinn-Cunningham, Barbara G.

    2017-01-01

    In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels...

  10. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Adaptation in the auditory system: an overview

    Directory of Open Access Journals (Sweden)

    David ePérez-González

    2014-02-01

    Full Text Available The early stages of the auditory system need to preserve the timing information of sounds in order to extract the basic features of acoustic stimuli. At the same time, different processes of neuronal adaptation occur at several levels to further process the auditory information. For instance, auditory nerve fiber responses already experience adaptation of their firing rates, a type of response that can be found in many other auditory nuclei and may be useful for emphasizing the onset of the stimuli. However, it is at higher levels in the auditory hierarchy where more sophisticated types of neuronal processing take place. For example, stimulus-specific adaptation, where neurons show adaptation to frequent, repetitive stimuli, but maintain their responsiveness to stimuli with different physical characteristics, thus representing a distinct kind of processing that may play a role in change and deviance detection. In the auditory cortex, adaptation takes more elaborate forms, and contributes to the processing of complex sequences, auditory scene analysis and attention. Here we review the multiple types of adaptation that occur in the auditory system, which are part of the pool of resources that the neurons employ to process the auditory scene, and are critical to a proper understanding of the neuronal mechanisms that govern auditory perception.

  12. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  13. A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses.

    Directory of Open Access Journals (Sweden)

    Nicolas Guevara

    Full Text Available Cochlear implants (CIs are neural prostheses that have been used routinely in the clinic over the past 25 years. They allow children who were born profoundly deaf, as well as adults affected by hearing loss for whom conventional hearing aids are insufficient, to attain a functional level of hearing. The "modern" CI (i.e., a multi-electrode implant using sequential coding strategies has yielded good speech comprehension outcomes (recognition level for monosyllabic words about 50% to 60%, and sentence comprehension close to 90%. These good average results however hide a very important interindividual variability as scores in a given patients' population often vary from 5 to 95% in comparable testing conditions. Our aim was to develop a prognostic model for patients with unilateral CI. A novel method of objectively measuring electrical and neuronal interactions using electrical auditory brainstem responses (eABRs is proposed.The method consists of two measurements: 1 eABR measurements with stimulation by a single electrode at 70% of the dynamic range (four electrodes distributed within the cochlea were tested, followed by a summation of these four eABRs; 2 Measurement of a single eABR with stimulation from all four electrodes at 70% of the dynamic range. A comparison of the eABRs obtained by these two measurements, defined as the monaural interaction component (MIC, indicated electrical and neural interactions between the stimulation channels. Speech recognition performance without lip reading was measured for each patient using a logatome test (64 "vowel-consonant-vowel"; VCV; by forced choice of 1 out of 16. eABRs were measured in 16 CI patients (CIs with 20 electrodes, Digisonic SP; Oticon Medical ®, Vallauris, France. Significant correlations were found between speech recognition performance and the ratio of the amplitude of the V wave of the eABRs obtained with the two measurements (Pearson's linear regression model, parametric correlation: r

  14. Potenciais evocados auditivos de tronco encefálico em frentistas Auditory brainstem response in gas station attendants

    Directory of Open Access Journals (Sweden)

    Lenita da Silva Quevedo

    2012-12-01

    Full Text Available A ototoxidade dos solventes orgânicos pode atingir o sistema auditivo a nível coclear e retrococlear. OBJETIVO: Avaliar a integridade neurofisiológica do sistema auditivo até tronco cerebral por meio do PEATE. MÉTODO: Estudo prospectivo. Estudados frentistas de três postos de gasolina da cidade de Santa Maria/RS. A amostra ficou composta por 21 sujeitos, que foram avaliados por meio de potenciais evocados auditivos de tronco encefálico. RESULTADOS: Alteração nas latências absolutas das ondas I e III e em todas as latências interpicos, na orelha direita. Na orelha esquerda houve alteração na latência absoluta de todas as ondas, e em todos os intervalos interpicos. Alteração na diferença interaural da onda V foi verificada em 19% dos sujeitos. No grupo exposto há mais de cinco anos, foram estatisticamente significantes o número de sujeitos com alteração: no intervalo interpico I-V da orelha direita; na latência absoluta da onda I e no intervalo interpico III-V da orelha esquerda. CONCLUSÃO: A exposição a combustíveis pode causar alterações no sistema auditivo central.Ototoxicity of organic solvents can affect the hearing system up to the cochlea level and the central structures of hearing. OBJECTIVE: To evaluate the neurophysiological integrity of the hearing system in subjects exposed to fuels using ABR. METHOD: Prospective study. We evaluated attendants from three gas stations in Santa Maria/RS. The sample had 21 subjects, who were evaluated by auditory brainstem response. RESULTS: We found an alteration in the absolute latencies of Waves I and III and in all the interpeak latencies, in the right ear. In the left ear there was a change in the absolute latencies of all Waves, and in all the interpeak intervals. A change in the interaural difference of Wave V was found in 19% of the individuals. In the group exposed for more than five years, there were subjects with a statistically significant changes: in the I

  15. Efficacy of a sound-based intervention with a child with an autism spectrum disorder and auditory sensory over-responsivity.

    Science.gov (United States)

    Gee, Bryan M; Thompson, Kelly; St John, Holly

    2014-03-01

    Sound-based interventions (SBIs) are being used by paediatric occupational therapists to help children with autism spectrum disorders and co-morbid sensory processing disorders. A limited yet growing body of evidence is emerging related to the efficacy of SBIs in reducing sensory processing deficits among paediatric clients with co-morbid conditions. The current study employed an ABA single-subject case-controlled design, implementing The Listening Program® with a 7-year-old child diagnosed with autism spectrum disorder who demonstrated auditory sensory over-responsivity (SOR). The intervention consisted of 10 weeks of psycho-acoustically modified classical music that was delivered using specialized headphones and amplifier and a standard CD player. Repeated measures were conducted during the A(1), B and A(2) phases of the study using the Sensory Processing Measure, a subjective caregiver questionnaire, and the Sensory Over-Responsivity Scales, an examiner-based assessment measure to track changes of the participant's auditory SOR-related behaviours. The results indicated that the participant exhibited a decrease in the number of negative (avoidant, verbal and physical negative) and self-stimulatory behaviours. The decreases in negative and self-stimulatory behaviour may have been due to the therapeutic effect of the repeated exposure to the Sensory Over-Responsivity Scales or The Listening Program SBI. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Speech-induced suppression of evoked auditory fields in children who stutter.

    Science.gov (United States)

    Beal, Deryk S; Quraan, Maher A; Cheyne, Douglas O; Taylor, Margot J; Gracco, Vincent L; De Nil, Luc F

    2011-02-14

    Auditory responses to speech sounds that are self-initiated are suppressed compared to responses to the same speech sounds during passive listening. This phenomenon is referred to as speech-induced suppression, a potentially important feedback-mediated speech-motor control process. In an earlier study, we found that both adults who do and do not stutter demonstrated a reduced amplitude of the auditory M50 and M100 responses to speech during active production relative to passive listening. It is unknown if auditory responses to self-initiated speech-motor acts are suppressed in children or if the phenomenon differs between children who do and do not stutter. As stuttering is a developmental speech disorder, examining speech-induced suppression in children may identify possible neural differences underlying stuttering close to its time of onset. We used magnetoencephalography to determine the presence of speech-induced suppression in children and to characterize the properties of speech-induced suppression in children who stutter. We examined the auditory M50 as this was the earliest robust response reproducible across our child participants and the most likely to reflect a motor-to-auditory relation. Both children who do and do not stutter demonstrated speech-induced suppression of the auditory M50. However, children who stutter had a delayed auditory M50 peak latency to vowel sounds compared to children who do not stutter indicating a possible deficiency in their ability to efficiently integrate auditory speech information for the purpose of establishing neural representations of speech sounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  18. Comparison of peripheral compression estimates using auditory steady-state responses (ASSR) and distortion product otoacoustic emissions (DPOAE)

    DEFF Research Database (Denmark)

    Encina Llamas, Gerard; Epp, Bastian; Dau, Torsten

    The healthy auditory system shows a compressive input/output (I/O) function as a result of healthy outer-hair cell function. Hearing impairment often leads to a decrease in sensitivity and a reduction of compression, mainly caused by loss of inner and/or outer hair cells. Compression is commonly...... (DPOAEs) recordings. Results show compressive ASSR I/O functions for NH subjects. For HI subjects, ASSR reveal the loss of sensitivity at low stimulus levels. Growth slopes are smaller (more compressive) in ASSR than in DPOAE I/O functions....

  19. Auditory prediction during speaking and listening.

    Science.gov (United States)

    Sato, Marc; Shiller, Douglas M

    2018-02-02

    In the present EEG study, the role of auditory prediction in speech was explored through the comparison of auditory cortical responses during active speaking and passive listening to the same acoustic speech signals. Two manipulations of sensory prediction accuracy were used during the speaking task: (1) a real-time change in vowel F1 feedback (reducing prediction accuracy relative to unaltered feedback) and (2) presenting a stable auditory target rather than a visual cue to speak (enhancing auditory prediction accuracy during baseline productions, and potentially enhancing the perturbing effect of altered feedback). While subjects compensated for the F1 manipulation, no difference between the auditory-cue and visual-cue conditions were found. Under visually-cued conditions, reduced N1/P2 amplitude was observed during speaking vs. listening, reflecting a motor-to-sensory prediction. In addition, a significant correlation was observed between the magnitude of behavioral compensatory F1 response and the magnitude of this speaking induced suppression (SIS) for P2 during the altered auditory feedback phase, where a stronger compensatory decrease in F1 was associated with a stronger the SIS effect. Finally, under the auditory-cued condition, an auditory repetition-suppression effect was observed in N1/P2 amplitude during the listening task but not active speaking, suggesting that auditory predictive processes during speaking and passive listening are functionally distinct. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Bayesian Modeling of the Dynamics of Phase Modulations and their Application to Auditory Evoked Responses at Different Loudness Scales

    Directory of Open Access Journals (Sweden)

    Zeinab eMortezapouraghdam

    2016-01-01

    Full Text Available We study the effect of long-term habituation signatures of auditory selective attention reflected in the instantaneous phase information of the auditory event-related potentials (ERPs at four distinct stimuli levels of 60dB SPL, 70dB SPL, 80dB SPL and 90dB SPL. The analysis is based on the single-trial level. The effect of habituation can be observed in terms of the changes (jitter in the instantaneous phase information of ERPs. In particular, the absence of habituation is correlated with a consistently high phase synchronization over ERP trials.We estimate the changes in phase concentration over trials using a Bayesian approach, in which the phase is modeled as being drawn from a von Mises distribution with a concentration parameter which varies smoothly over trials. The smoothness assumption reflects the fact that habituation is a gradual process.We differentiate between different stimuli based on the relative changes and absolute values of the estimated concentration parameter using the proposed Bayesian model.

  1. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  2. Hearing threshold assessment in young children with electrocochleography (EcochG) and auditory brainstem responses (ABR): experience at the University Hospital of Ferrara.

    Science.gov (United States)

    Aimoni, C; Ciorba, A; Bovo, R; Trevisi, P; Busi, M; Martini, A

    2010-10-01

    Electrophysiological evaluation is a fundamental procedure for the diagnostic assessment of hearing loss during infancy; in these cases, information concerning threshold level and auditory perception is particularly useful to establish a correct hearing rehabilitation program (hearing aids and cochlear implants). Purpose of this study is to underline the role of auditory brainstem responses (ABR) and electrocochleography (EcochG) in the definition of hearing loss in a selected group of children, referred to the Audiology Department of the University Hospital of Ferrara, for a tertiary level audiological assessment. A retrospective study of the paediatric patient database at the Audiology Department of the University Hospital of Ferrara has been performed. In a period between January 2000 and December 2007, a total of 272 paediatric cases have been identified (544 ears). An EM 12 Mercury apparatus has been used for the electrophysiological threshold identification (ABR and EcochG). Recordings were carried out under general anaesthesia, in a protected enviroment. In 19 of the 272 paediatric cases selected--38 ears (7%), the results of threshold evaluation through ABR were uncertain. The Ecochg recording resulted crucial for the final diagnosis in terms of definition of the hearing threshold level, and it was then possible to ensure the better hearing rehabilitation strategy. ABR has to be considered the first choice in hearing assessment strategy, either for screening or for diagnosis in newborns as well as in non-collaborating children; ECochG still may be considered a reliable diagnostic tool. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Time-varying auditory gain control in response to double-pulse stimuli in harbour porpoises is not mediated by a stapedial reflex

    Directory of Open Access Journals (Sweden)

    Asger Emil Munch Schrøder

    2017-04-01

    Full Text Available Echolocating animals reduce their output level and hearing sensitivity with decreasing echo delays, presumably to stabilize the perceived echo intensity during target approaches. In bats, this variation in hearing sensitivity is formed by a call-induced stapedial reflex that tapers off over time after the call. Here, we test the hypothesis that a similar mechanism exists in toothed whales by subjecting a trained harbour porpoise to a series of double sound pulses varying in delay and frequency, while measuring the magnitudes of the evoked auditory brainstem responses (ABRs. We find that the recovery of the ABR to the second pulse is frequency dependent, and that a stapedial reflex therefore cannot account for the reduced hearing sensitivity at short pulse delays. We propose that toothed whale auditory time-varying gain control during echolocation is not enabled by the middle ear as in bats, but rather by frequency-dependent mechanisms such as forward masking and perhaps higher-order control of efferent feedback to the outer hair cells.

  4. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils.

    Directory of Open Access Journals (Sweden)

    Markus K Schaefer

    Full Text Available In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA as well as local field potentials (LFP, and current source density (CSD waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns could indeed be important for encoding sounds that differ in their acoustic attributes.

  5. A Non-canonical Reticular-Limbic Central Auditory Pathway via Medial Septum Contributes to Fear Conditioning.

    Science.gov (United States)

    Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I

    2018-01-17

    In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    OpenAIRE

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2014-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it...

  7. Neuromechanistic Model of Auditory Bistability.

    Directory of Open Access Journals (Sweden)

    James Rankin

    2015-11-01

    Full Text Available Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1. Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept-a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition.

  8. Auditory short-term memory in the primate auditory cortex

    Science.gov (United States)

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581

  9. [Dynamical examination of auditory event-related potentials P300 and sympathetic skin response in people with insomia of Sweet Dream Capsule therapy].

    Science.gov (United States)

    Zheng, Xu-Ning; Zhang, Ling-Ju; Liang, Hui; Chen, Wei; Zhu, Xiong-Chao; Yuan, Min; Liu, Yang

    2004-08-01

    To observe the change of auditory event-related potentials (P300) and sympathetic skin response (SSR) in people with insomia of Sweet Dream Capsule therapy. 30 patients meeting criteria for primary insomnia and 30 healthy volunteers with age matching controls were selected for the study. P300 and SSR were measured before treatment of Sweet Dream Capsule and at week 4 , 8 of the therapeutic course. That the change of P300 and SSR before and after treatment and their relations with PSQI were studied. Compared with those of normal controls, both P300 latency and SSR latency were prolonged while amplitude was decreased in patients with insomnia (P insomia of Sweet Dream Capsule therapy while SSR im proves significantly, and PSQI scores are ameliorated too.

  10. Development and regulation of response properties in spinal cord motoneurons

    DEFF Research Database (Denmark)

    Perrier, J F; Hounsgaard, J

    2000-01-01

    The intrinsic response properties of spinal motoneurons determine how converging premotor neuronal input is translated into the final motor command transmitted to muscles. From the patchy data available it seems that these properties and their underlying currents are highly conserved in terrestrial...... vertebrates in terms of both phylogeny and ontogeny. Spinal motoneurons in adults are remarkably similar in many respects ranging from the resting membrane potential to pacemaker properties. Apart from the axolotls, spinal motoneurons from all species investigated have latent intrinsic response properties...... mediated by L-type Ca2+ channels. This mature phenotype is reached gradually during development through phases in which A-type potassium channels and T-type calcium channels are transiently expressed. The intrinsic response properties of mature spinal motoneurons are subject to short-term adjustments via...

  11. Thresholding of auditory cortical representation by background noise

    Science.gov (United States)

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  12. Semantic congruency of auditory warnings.

    Science.gov (United States)

    Isherwood, Sarah J; McKeown, Denis

    2017-07-01

    The aim of this study was to explore operator experience and performance for semantically congruent and incongruent auditory icons and abstract alarm sounds. It was expected that performance advantages for congruent sounds would be present initially but would reduce over time for both alarm types. Twenty-four participants (12M/12F) were placed into auditory icon or abstract alarm groupings. For each group both congruent and incongruent alarms were used to represent different driving task scenarios. Once sounded, participants were required to respond to each alarm by selecting a corresponding driving scenario. User performance for all sound types improved over time, however even with experience a decrement in speed of response remained for the incongruent iconic sounds and in accuracy of performance for the abstract warning sounds when compared to the congruent auditory icons. Semantic congruency was found to be of more importance for auditory icons than for abstract sounds. Practitioner Summary: Alarms are used in many operating systems as emergency, alerting, or continuous monitoring signals for instance. This study found that the type and representativeness of an auditory warning will influence operator performance over time. Semantically congruent iconic sounds produced performance advantages over both incongruent iconic sounds and abstract warnings.

  13. Socially responsible intellectual property: a solution?

    Directory of Open Access Journals (Sweden)

    Abbe E. L. Brown

    2005-12-01

    Full Text Available This article reviews the extent to which the present global IP system contains an inherent imbalance between the rights of IP owning corporations and IP users, and the public benefit. It also studies the potential relevance of human rights in redressing any imbalance within existing institutional and legal fora. The article focuses on the relevance of corporate social responsibility (“CSR” related concepts, particularly in conjunction with legal human rights based arguments, to redress any imbalance by tempering the global conduct of IP owning corporations; how this new approach could be enforced, if at all, and the resulting lessons for IP and its future.

  14. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  15. Prenatal exposure to multiple pesticides is associated with auditory brainstem response at 9months in a cohort study of Chinese infants.

    Science.gov (United States)

    Sturza, Julie; Silver, Monica K; Xu, Lin; Li, Mingyan; Mai, Xiaoqin; Xia, Yankai; Shao, Jie; Lozoff, Betsy; Meeker, John

    2016-01-01

    Pesticides are associated with poorer neurodevelopmental outcomes, but little is known about the effects on sensory functioning. Auditory brainstem response (ABR) and pesticide data were available for 27 healthy, full-term 9-month-old infants participating in a larger study of early iron deficiency and neurodevelopment. Cord blood was analyzed by gas chromatography-mass spectrometry for levels of 20 common pesticides. The ABR forward-masking condition consisted of a click stimulus (masker) delivered via ear canal transducers followed by an identical stimulus delayed by 8, 16, or 64 milliseconds (ms). ABR peak latencies were evaluated as a function of masker-stimulus time interval. Shorter wave latencies reflect faster neural conduction, more mature auditory pathways, and greater degree of myelination. Linear regression models were used to evaluate associations between total number of pesticides detected and ABR outcomes. We considered an additive or synergistic effect of poor iron status by stratifying our analysis by newborn ferritin (based on median split). Infants in the sample were highly exposed to pesticides; a mean of 4.1 pesticides were detected (range 0-9). ABR Wave V latency and central conduction time (CCT) were associated with the number of pesticides detected in cord blood for the 64ms and non-masker conditions. A similar pattern seen for CCT from the 8ms and 16ms conditions, although statistical significance was not reached. Increased pesticide exposure was associated with longer latency. The relation between number of pesticides detected in cord blood and CCT depended on the infant's cord blood ferritin level. Specifically, the relation was present in the lower cord blood ferritin group but not the higher cord blood ferritin group. ABR processing was slower in infants with greater prenatal pesticide exposure, indicating impaired neuromaturation. Infants with lower cord blood ferritin appeared to be more sensitive to the effects of prenatal pesticide

  16. Brain responses and looking behaviour during audiovisual speech integration in infants predict auditory speech comprehension in the second year of life.

    Directory of Open Access Journals (Sweden)

    Elena V Kushnerenko

    2013-07-01

    Full Text Available The use of visual cues during the processing of audiovisual speech is known to be less efficient in children and adults with language difficulties and difficulties are known to be more prevalent in children from low-income populations. In the present study, we followed an economically diverse group of thirty-seven infants longitudinally from 6-9 months to 14-16 months of age. We used eye-tracking to examine whether individual differences in visual attention during audiovisual processing of speech in 6 to 9 month old infants, particularly when processing congruent and incongruent auditory and visual speech cues, might be indicative of their later language development. Twenty-two of these 6-9 month old infants also participated in an event-related potential (ERP audiovisual task within the same experimental session. Language development was then followed-up at the age of 14-16 months, using two measures of language development, the Preschool Language Scale (PLS and the Oxford Communicative Development Inventory (CDI. The results show that those infants who were less efficient in auditory speech processing at the age of 6-9 months had lower receptive language scores at 14-16 months. A correlational analysis revealed that the pattern of face scanning and ERP responses to audio-visually incongruent stimuli at 6-9 months were both significantly associated with language development at 14-16 months. These findings add to the understanding of individual differences in neural signatures of audiovisual processing and associated looking behaviour in infants.

  17. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  18. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  19. Silicon auditory processors as computer peripherals.

    Science.gov (United States)

    Lazzaro, J; Wawrzynek, J; Mahowald, M; Sivilotti, M; Gillespie, D

    1993-01-01

    Several research groups are implementing analog integrated circuit models of biological auditory processing. The outputs of these circuit models have taken several forms, including video format for monitor display, simple scanned output for oscilloscope display, and parallel analog outputs suitable for data-acquisition systems. Here, an alternative output method for silicon auditory models, suitable for direct interface to digital computers, is described. As a prototype of this method, an integrated circuit model of temporal adaptation in the auditory nerve that functions as a peripheral to a workstation running Unix is described. Data from a working hybrid system that includes the auditory model, a digital interface, and asynchronous software are given. This system produces a real-time X-window display of the response of the auditory nerve model.

  20. Event-related potential response to auditory social stimuli, parent-reported social communicative deficits and autism risk in school-aged children with congenital visual impairment

    Directory of Open Access Journals (Sweden)

    Joe Bathelt

    2017-10-01

    Full Text Available Communication with visual signals, like facial expression, is important in early social development, but the question if these signals are necessary for typical social development remains to be addressed. The potential impact on social development of being born with no or very low levels of vision is therefore of high theoretical and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the eye, retina, anterior optic nerve. Early-latency event-related potential responses showed no difference between the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over central and right frontal channels between 280 and 320 ms was reduced in response to own-name stimuli, but not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for the typical development of social processing across modalities.

  1. Event-related potential response to auditory social stimuli, parent-reported social communicative deficits and autism risk in school-aged children with congenital visual impairment.

    Science.gov (United States)

    Bathelt, Joe; Dale, Naomi; de Haan, Michelle

    2017-10-01

    Communication with visual signals, like facial expression, is important in early social development, but the question if these signals are necessary for typical social development remains to be addressed. The potential impact on social development of being born with no or very low levels of vision is therefore of high theoretical and clinical interest. The current study investigated event-related potential responses to basic social stimuli in a rare group of school-aged children with congenital visual disorders of the anterior visual system (globe of the eye, retina, anterior optic nerve). Early-latency event-related potential responses showed no difference between the VI and control group, suggesting similar initial auditory processing. However, the mean amplitude over central and right frontal channels between 280 and 320ms was reduced in response to own-name stimuli, but not control stimuli, in children with VI suggesting differences in social processing. Children with VI also showed an increased rate of autistic-related behaviours, pragmatic language deficits, as well as peer relationship and emotional problems on standard parent questionnaires. These findings suggest that vision may be necessary for the typical development of social processing across modalities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Post-spike hyperpolarization participates in the formation of auditory behavior-related response patterns of inferior collicular neurons in Hipposideros pratti.

    Science.gov (United States)

    Li, Y-L; Fu, Z-Y; Yang, M-J; Wang, J; Peng, K; Yang, L-J; Tang, J; Chen, Q-C

    2015-03-19

    To probe the mechanism underlying the auditory behavior-related response patterns of inferior collicular neurons to constant frequency-frequency modulation (CF-FM) stimulus in Hipposideros pratti, we studied the role of post-spike hyperpolarization (PSH) in the formation of response patterns. Neurons obtained by in vivo extracellular (N=145) and intracellular (N=171) recordings could be consistently classified into single-on (SO) and double-on (DO) neurons. Using intracellular recording, we found that both SO and DO neurons have a PSH with different durations. Statistical analysis showed that most SO neurons had a longer PSH duration than DO neurons (p<0.01). These data suggested that the PSH directly participated in the formation of SO and DO neurons, and the PSH elicited by the CF component was the main synaptic mechanism underlying the SO and DO response patterns. The possible biological significance of these findings relevant to bat echolocation is discussed. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Auditory Imagery: Empirical Findings

    Science.gov (United States)

    Hubbard, Timothy L.

    2010-01-01

    The empirical literature on auditory imagery is reviewed. Data on (a) imagery for auditory features (pitch, timbre, loudness), (b) imagery for complex nonverbal auditory stimuli (musical contour, melody, harmony, tempo, notational audiation, environmental sounds), (c) imagery for verbal stimuli (speech, text, in dreams, interior monologue), (d)…

  4. The effect of compression on tuning estimates in a simple nonlinear auditory filter model

    DEFF Research Database (Denmark)

    Marschall, Marton; MacDonald, Ewen; Dau, Torsten

    2013-01-01

    Behavioral experiments using auditory masking have been used to characterize frequency selectivity, one of the basic properties of the auditory system. However, due to the nonlinear response of the basilar membrane, the interpretation of these experiments may not be straightforward. Specifically...... consists of a compressor between two bandpass filters. The BPNL forms the basis of the dual-resonance nonlinear (DRNL) filter that has been used in a number of modeling studies. The location of the nonlinear element and its effect on estimated tuning in the two measurement paradigms was investigated......, then compression alone may explain a large part of the behaviorally observed differences in tuning between simultaneous and forward-masking conditions....

  5. Deciphering auditory processing disorders in children.

    Science.gov (United States)

    Chermak, Gail D

    2002-08-01

    APD is not a label for a unitary disease entity but rather a description of functional deficits [3]. It is a complex and heterogeneous group of auditory-specific disorders usually associated with a range of listening and learning deficits [3,4]. Underlying APD is a deficit observed in one or more of the auditory processes responsible for generating the auditory evoked potentials and the following behaviors: around localization and lateralization; auditory discrimination; auditory pattern recognition; temporal aspects of audition, including temporal resolution, masking, integration, and ordering; auditory performance with competing acoustic signals; and auditory performance with degraded acoustic signals [2]. Comprehensive assessment is necessary for the accurate differential diagnosis of APD from other "look-alike" disorders, most notably ADHD and language processing disorders. Speech-language pathologists, psychologists, educators, and physicians contribute to this more comprehensive assessment. The primary role of otolaryngologists is to evaluate and treat peripheral hearing disorders, such as otitis media. Children with APDs may present to an otolaryngologist, thus requiring the physician to make appropriate referral for assessment and intervention. Currently, diagnosis of APD is based on the outcomes of behavioral tests, supplemented by electroacoustic measures and, to a lesser extent, by electrophysiologic measures [1]. Intervention for APD focuses on improving the quality of the acoustic signal and the listening environment, improving auditory skills, and enhancing utilization of metacognitive and language resources [2]. Additional controlled case studies and single-subject and group research designs are needed to ascertain systematically the relative efficacy of various treatment and management approaches.

  6. Classification of frequency response areas in the inferior colliculus reveals continua not discrete classes

    OpenAIRE

    Palmer, Alan R; Shackleton, Trevor M; Sumner, Christian J; Zobay, Oliver; Rees, Adrian

    2013-01-01

    A differential response to sound frequency is a fundamental property of auditory neurons. Frequency analysis in the cochlea gives rise to V-shaped tuning functions in auditory nerve fibres, but by the level of the inferior colliculus (IC), the midbrain nucleus of the auditory pathway, neuronal receptive fields display diverse shapes that reflect the interplay of excitation and inhibition. The origin and nature of these frequency receptive field types is still open to question. One proposed hy...

  7. Plasticity after pediatric cochlear implantation: Implication from changes in peripheral plasma level of BDNF and auditory nerve responses.

    Science.gov (United States)

    Alemi, Razieh; Motassadi Zarandy, Masoud; Joghataei, Mohammad Taghi; Eftekharian, Ali; Zarrindast, Mohammad Reza; Vousooghi, Nasim

    2018-02-01

    Sensory neural hearing loss could lead to some structural and physiological changes in the auditory pathways, such as alteration in the expression of neurotrophins. These factors, especially Brain-Derived Neurotrophic Factor (BDNF), play an important role in synaptic functions and experience-related plasticity. Restoring cochlear function after hearing loss is possible through cochlear implantation (CI). Evaluation of the blood concentration changes of neurotrophins as prerequisites of plasticity could help scientists to determine the prognosis of CI as in the candidacy procedure or enhancing prosthesis function by adding the exact needed amount of BDNF to the electrode array. Here we have studied the plasma BDNF concentration before CI surgery and 6 months after using CI device in 15 pediatric CI recipients and compared this level with changes of BDNF concentration in 10 children who were using hearing aid (H.A). In addition, we searched for a possible correlation between post-surgery plasma BDNF concentration and electrical compound action potential (ECAP) and comfort-level (C-level) thresholds. Plasma BDNF concentration in children with CI increased significantly after CI surgery, while this difference in H.A group was not significant. Analysis of repeated measures of ECAP and C-level thresholds in CI group showed that there were some kinds of steadiness during follow- up sessions for ECAP thresholds in basal and E16 of middle electrodes, whereas C-level thresholds for all selected electrodes increased significantly up to six months follow-up. Interestingly, we did not find any significant correlation between post-surgery plasma BDNF concentration and ECAP or C-level threshold changes. It is concluded that changes in C-level threshold and steady state of ECAP thresholds and significant changes in BDNF concentration could be regarded as an indicator of experienced-related plasticity after CI stimulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Modulation of Long-term Potentiation of Cortico-amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid

    Directory of Open Access Journals (Sweden)

    Daisuke Yamada

    2016-08-01

    Full Text Available Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA in the brain is involved in mental illnesses such as anxiety disorders. However, the underlying mechanism is unknown. We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory. In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala. However, it is not known whether long-term synaptic plasticity in the amygdala is influenced by the dietary ratio of ω3 to ω6 PUFA. In the present study, we examined long-term potentiation (LTP of optogenetically–evoked excitatory synaptic responses in synapses between the terminal of the projection from the auditory cortex and the pyramidal cells in the lateral nucleus of the amygdala. We found that LTP in this pathway was attenuated in mice fed a diet with a high ω3 to ω6 PUFA ratio (0.97, compared with mice fed a diet with a low ω3 to ω6 PUFA ratio (0.14. Furthermore, mice in the former condition showed reduced fear responses in an auditory fear conditioning test, compared with mice in the latter condition. In both electrophysiological and behavioral experiments, the effect of a diet with a high ω3 to ω6 PUFA ratio was completely blocked by treatment with a CB1 receptor antagonist. Furthermore, a significant reduction was observed in cholesterol content, but not in the level of an endogenous CB1 receptor agonist, 2-arachidonoylglycerol, in brain samples containing the amygdala. These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor–dependent manner.

  9. Transient human auditory cortex activation during volitional attention shifting.

    Directory of Open Access Journals (Sweden)

    Christian Harm Uhlig

    Full Text Available While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues.

  10. Event-related potentials to visual, auditory, and bimodal (combined auditory-visual) stimuli.

    Science.gov (United States)

    Isoğlu-Alkaç, Ummühan; Kedzior, Karina; Keskindemirci, Gonca; Ermutlu, Numan; Karamursel, Sacit

    2007-02-01

    The purpose of this study was to investigate the response properties of event related potentials to unimodal and bimodal stimulations. The amplitudes of N1 and P2 were larger during bimodal evoked potentials (BEPs) than auditory evoked potentials (AEPs) in the anterior sites and the amplitudes of P1 were larger during BEPs than VEPs especially at the parieto-occipital locations. Responses to bimodal stimulation had longer latencies than responses to unimodal stimulation. The N1 and P2 components were larger in amplitude and longer in latency during the bimodal paradigm and predominantly occurred at the anterior sites. Therefore, the current bimodal paradigm can be used to investigate the involvement and location of specific neural generators that contribute to higher processing of sensory information. Moreover, this paradigm may be a useful tool to investigate the level of sensory dysfunctions in clinical samples.

  11. Sparse representation of sounds in the unanesthetized auditory cortex.

    Directory of Open Access Journals (Sweden)

    Tomás Hromádka

    2008-01-01

    Full Text Available How do neuronal populations in the auditory cortex represent acoustic stimuli? Although sound-evoked neural responses in the anesthetized auditory cortex are mainly transient, recent experiments in the unanesthetized preparation have emphasized subpopulations with other response properties. To quantify the relative contributions of these different subpopulations in the awake preparation, we have estimated the representation of sounds across the neuronal population using a representative ensemble of stimuli. We used cell-attached recording with a glass electrode, a method for which single-unit isolation does not depend on neuronal activity, to quantify the fraction of neurons engaged by acoustic stimuli (tones, frequency modulated sweeps, white-noise bursts, and natural stimuli in the primary auditory cortex of awake head-fixed rats. We find that the population response is sparse, with stimuli typically eliciting high firing rates (>20 spikes/second in less than 5% of neurons at any instant. Some neurons had very low spontaneous firing rates (<0.01 spikes/second. At the other extreme, some neurons had driven rates in excess of 50 spikes/second. Interestingly, the overall population response was well described by a lognormal distribution, rather than the exponential distribution that is often reported. Our results represent, to our knowledge, the first quantitative evidence for sparse representations of sounds in the unanesthetized auditory cortex. Our results are compatible with a model in which most neurons are silent much of the time, and in which representations are composed of small dynamic subsets of highly active neurons.

  12. Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation.

    Science.gov (United States)

    Javitt, D C; Steinschneider, M; Schroeder, C E; Vaughan, H G; Arezzo, J C

    1994-12-26

    Mismatch negativity (MMN) is a cognitive, auditory event-related potential (AEP) that reflects preattentive detection of stimulus deviance and indexes the operation of the auditory sensory ('echoic') memory system. MMN is elicited most commonly in an auditory oddball paradigm in which a sequence of repetitive standard stimuli is interrupted infrequently and unexpectedly by a physically deviant 'oddball' stimulus. Electro- and magnetoencephalographic dipole mapping studies have localized the generators of MMN to supratemporal auditory cortex in the vicinity of Heschl's gyrus, but have not determined the degree to which MMN reflects activation within primary auditory cortex (AI) itself. The present study, using moveable multichannel electrodes inserted acutely into superior temporal plane, demonstrates a significant contribution of AI to scalp-recorded MMN in the monkey, as reflected by greater response of AI to loud or soft clicks presented as deviants than to the same stimuli presented as repetitive standards. The MMN-like activity was localized primarily to supragranular laminae within AI. Thus, standard and deviant stimuli elicited similar degrees of initial, thalamocortical excitation. In contrast, responses within supragranular cortex were significantly larger to deviant stimuli than to standards. No MMN-like activity was detected in a limited number to passes that penetrated anterior and medial to AI. AI plays a well established role in the decoding of the acoustic properties of individual stimuli. The present study demonstrates that primary auditory cortex also plays an important role in processing the relationships between stimuli, and thus participates in cognitive, as well as purely sensory, processing of auditory information.

  13. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  14. Neural response to modulating the probability that actions of self or other result in auditory tones: A parametric fMRI study into causal ambiguity.

    Science.gov (United States)

    de Bézenac, Christophe E; Sluming, Vanessa; Gouws, André; Corcoran, Rhiannon

    2016-09-01

    In normal circumstances we can easily distinguish between changes to the external world brought about by our own actions from those with external causes. However, in certain contexts our sense of ownership and agency over acts is not so clear. Neuroimaging studies have implicated a number of regions in the sense of agency, some of which have been shown to vary continuously with action-outcome discordance. However, little is known about dynamic, ambiguous contexts characterised by a lack of information for self-other differentiation, yet such ambiguous states are important in relation to symptoms and levels of consciousness that characterise certain mental health conditions. With a block-design fMRI paradigm, we investigated neural responses to changes in the probability that a participant's irregular finger taps over 12s would result in auditory tones as opposed to tones generated by 'another's finger taps'. The main findings were that misattribution increased in ambiguous conditions where the probability of a tone belonging to self and other was equal. Task-sensitive brain regions, previously identified in self-agency, motor cognition, and ambiguity processing, showed a quadratic response to our self-to-other manipulation, with particular sensitivity to self-control. Task performance (low error and bias) was related to attenuated response in ambiguous conditions while increased response in regions associated with the default mode network was associated with greater overall error and bias towards other. These findings suggest that causal ambiguity as it occurs over time is a prominent feature in sense of agency, one that may eventually contribute to a more comprehensive understanding of positive symptoms of psychosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Representation of Reward Feedback in Primate Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Michael eBrosch

    2011-02-01

    Full Text Available It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys' performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1 the reward expectancy for each trial, (2 the reward size received and (3 the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized.

  16. Floor response spectra of buildings with uncertain structural properties

    International Nuclear Information System (INIS)

    Chen, P.C.

    1975-01-01

    All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces

  17. Auditory event files: integrating auditory perception and action planning.

    Science.gov (United States)

    Zmigrod, Sharon; Hommel, Bernhard

    2009-02-01

    The features of perceived objects are processed in distinct neural pathways, which call for mechanisms that integrate the distributed information into coherent representations (the binding problem). Recent studies of sequential effects have demonstrated feature binding not only in perception, but also across (visual) perception and action planning. We investigated whether comparable effects can be obtained in and across auditory perception and action. The results from two experiments revealed effects indicative of spontaneous integration of auditory features (pitch and loudness, pitch and location), as well as evidence for audio-manual stimulus-response integration. Even though integration takes place spontaneously, features related to task-relevant stimulus or response dimensions are more likely to be integrated. Moreover, integration seems to follow a temporal overlap principle, with features coded close in time being more likely to be bound together. Taken altogether, the findings are consistent with the idea of episodic event files integrating perception and action plans.

  18. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Brain responses to auditory oddball task in children with benign childhood epilepsy with centrotemporal spikes: Quantitative analysis and correlation with neuropsychological assessment scores.

    Science.gov (United States)

    Elkholy, Mostafa M; Ebraheim, Asmaa M; ElFayoumy, Neveen M

    2018-03-01

    Variable degrees of cognitive dysfunction have been reported in children with benign childhood epilepsy with centrotemporal spikes (BCECTS). Our aim was to perform quantitative analyses of the brain responses to cognitive tasks using event-related desynchronization (ERD) and event-related synchronization (ERS) and correlating the results with the scores of neuropsychological tests in patients with BCECTS. This case control study included 30 patients with BCECTS and 20 controls. Clinical assessment, neuropsychological tests, the Positive wave at 300 msec (P300) parameters recording, and quantitative electroencephalography (EEG) analysis were carried out for both groups. Alpha power ERD and ERS were measured in six different brain regions during an auditory oddball paradigm. Children with epilepsy showed a statistically significant poorer performance in verbal intelligence quotient (IQ), performance IQ, and total scale IQ and lower number of correct responses. Moreover, both groups showed diffuse alpha power attenuation in response to the target tones. After summation of the alpha power ERD over all brain regions to get the net diffuse ERD, the patients' group showed a statistically significant smaller net alpha ERD compared with that of the control group (P=0.001). No significant correlations between the alpha ERD percentage, recorded P300 parameters, and neuropsychological tests scores were found. Children with BCECTS have subtle cognitive dysfunction proved by significantly lower scores of verbal IQ and performance IQ subtests. The significantly smaller net diffuse alpha power ERD detected in children with epilepsy may be an electrophysiological indicator of disruptive brain activation in relation to cognitive attentional tasks; however, its correlation with neuropsychological tests was insignificant. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Auditory perception in individuals with Friedreich's ataxia.

    Science.gov (United States)

    Rance, Gary; Corben, Louise; Barker, Elizabeth; Carew, Peter; Chisari, Donella; Rogers, Meghan; Dowell, Richard; Jamaluddin, Saiful; Bryson, Rochelle; Delatycki, Martin B

    2010-01-01

    Friedreich's ataxia (FRDA) is an inherited ataxia with a range of progressive features including axonal degeneration of sensory nerves. The aim of this study was to investigate auditory perception in affected individuals. Fourteen subjects with genetically defined FRDA participated. Two control groups, one consisting of healthy, normally hearing individuals and another comprised of subjects with sensorineural hearing loss, were also assessed. Auditory processing was evaluated using structured tasks designed to reveal the listeners' ability to perceive temporal and spectral cues. Findings were then correlated with open-set speech understanding. Nine of 14 individuals with FRDA showed evidence of auditory processing disorder. Gap and amplitude modulation detection levels in these subjects were significantly elevated, indicating impaired encoding of rapid signal changes. Electrophysiologic findings (auditory brainstem response, ABR) also reflected disrupted neural activity. Speech understanding was significantly affected in these listeners and the degree of disruption was related to temporal processing ability. Speech analyses indicated that timing cues (notably consonant voice onset time and vowel duration) were most affected. The results suggest that auditory pathway abnormality is a relatively common consequence of FRDA. Regular auditory evaluation should therefore be part of the management regime for all affected individuals. This assessment should include both ABR testing, which can provide insights into the degree to which auditory neural activity is disrupted, and some functional measure of hearing capacity such as speech perception assessment, which can quantify the disorder and provide a basis for intervention. Copyright 2009 S. Karger AG, Basel.

  1. Synthesis and properties of a dual responsive hydrogel by inverse ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 6. Synthesis and properties of a dual responsive hydrogel by inverse microemulsion polymerization. Tao Wan Min Xu Liyi Chen Daqing Wu Wenzhong Cheng Ruixiang Li Chuzhang Zou. Rapid Communications Volume 126 Issue 6 November 2014 pp ...

  2. Auditory intensity processing: Categorization versus comparison.

    Science.gov (United States)

    Angenstein, Nicole; Brechmann, André

    2015-10-01

    Intensity is an important parameter for the perception of complex auditory stimuli like speech. The results of previous studies on the processing of intensity are diverse since left-lateralized, right-lateralized and non-lateralized processing was suggested. A clear dependence of the lateralization on the kind of stimuli and/or task is not apparent. With the present functional magnetic resonance imaging (fMRI) study, we directly investigated the differences between a categorical and comparative task. To determine hemispheric involvement we used a method with contralateral noise presentation. Harmonic complexes were presented monaurally without and with contralateral noise. Both categorization and comparison of harmonic complexes according to their intensity more strongly involved the left than the right auditory cortex shown by a stronger effect of the additional noise on the activity in the left auditory cortex. Together with previous results, this suggests that left-lateralized processing of intensity in the auditory cortex can be observed independent of task and stimuli. The comparison task more strongly engaged the left auditory cortex than the categorization task probably due the additional need for sequential comparison and the right auditory cortex probably due to capacity reasons. Comparison also more strongly engaged areas associated with attentional processes and areas responsible for motor response selection. We suggest this to be caused by a more difficult response selection and by the need for continuous update of information in reference memory during the comparison task. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    Science.gov (United States)

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.

  4. Phase-locking index and power of 40-Hz auditory steady-state response are not related to major personality trait dimensions.

    Science.gov (United States)

    Korostenskaja, Milena; Ruksenas, Osvaldas; Pipinis, Evaldas; Griskova-Bulanova, Inga

    2016-03-01

    Although a number of studies have demonstrated state-related dependence of auditory steady-state responses (ASSRs), the investigations assessing trait-related ASSR changes are limited. Five consistently identified major trait dimensions, also referred to as "big five" (Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness), are considered to account for virtually all personality variances in both healthy people and those with psychiatric disorders. The purpose of the present study was, for the first time, to establish the link between 40-Hz ASSR and "big five" major personality trait dimensions in young healthy adults. Ninety-four young healthy volunteers participated (38 males and 56 females; mean age ± SD 22.180 ± 2.75). The 40-Hz click trains were presented for each subject 30 times with an inter-train interval of 1-1.5 s. The EEG responses were recorded from F3, Fz, F4, C3, Cz, C4, P3, Pz and P4 locations according to 10/20 electrode placement system. Phase-locking index (PLI) and event-related power perturbation (ERSP) were calculated, each providing the following characteristics: peak time, entrainment frequency, peak value and mean value. For assessing "big five" personality traits, NEO Personality Inventory Revised (NEO-PI-R) was used. No significant correlation between 40-Hz ASSR PLI or ERSP and "big five" personality traits was observed. Our results indicate that there is no dependence between 40-Hz ASSR entrainment and personality traits, demonstrating low individual 40-Hz variability in this domain. Our results support further development of 40-Hz ASSR as a neurophysiological marker allowing distinguishing between healthy population and patients with psychiatric disorders.

  5. Trading of dynamic interaural time and level difference cues and its effect on the auditory motion-onset response measured with electroencephalography.

    Science.gov (United States)

    Altmann, Christian F; Ueda, Ryuhei; Bucher, Benoit; Furukawa, Shigeto; Ono, Kentaro; Kashino, Makio; Mima, Tatsuya; Fukuyama, Hidenao

    2017-10-01

    Interaural time (ITD) and level differences (ILD) constitute the two main cues for sound localization in the horizontal plane. Despite extensive research in animal models and humans, the mechanism of how these two cues are integrated into a unified percept is still far from clear. In this study, our aim was to test with human electroencephalography (EEG) whether integration of dynamic ITD and ILD cues is reflected in the so-called motion-onset response (MOR), an evoked potential elicited by moving sound sources. To this end, ITD and ILD trajectories were determined individually by cue trading psychophysics. We then measured EEG while subjects were presented with either static click-trains or click-trains that contained a dynamic portion at the end. The dynamic part was created by combining ITD with ILD either congruently to elicit the percept of a right/leftward moving sound, or incongruently to elicit the percept of a static sound. In two experiments that differed in the method to derive individual dynamic cue trading stimuli, we observed an MOR with at least a change-N1 (cN1) component for both the congruent and incongruent conditions at about 160-190 ms after motion-onset. A significant change-P2 (cP2) component for both the congruent and incongruent ITD/ILD combination was found only in the second experiment peaking at about 250 ms after motion onset. In sum, this study shows that a sound which - by a combination of counter-balanced ITD and ILD cues - induces a static percept can still elicit a motion-onset response, indicative of independent ITD and ILD processing at the level of the MOR - a component that has been proposed to be, at least partly, generated in non-primary auditory cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Meaning in the avian auditory cortex: neural representation of communication calls.

    Science.gov (United States)

    Elie, Julie E; Theunissen, Frédéric E

    2015-03-01

    Understanding how the brain extracts the behavioral meaning carried by specific vocalization types that can be emitted by various vocalizers and in different conditions is a central question in auditory research. This semantic categorization is a fundamental process required for acoustic communication, and presupposes discriminative and invariance properties of the auditory system for conspecific vocalizations. Songbirds have been used extensively to study vocal learning, but the communicative function of all their vocalizations and their neural representation has yet to be examined. In this study, we first generated a library containing almost the entire zebra finch vocal repertoire, and organised communication calls along nine different categories according to their behavioral meaning. We then investigated the neural representations of these semantic categories in the primary and secondary auditory areas of six anesthetised zebra finches. To analyse how single units encode these call categories, we described neural responses in terms of their discrimination, selectivity and invariance properties. Quantitative measures for these neural properties were obtained with an optimal decoder using both spike counts and spike patterns. Information theoretic metrics show that almost half of the single units encode semantic information. Neurons achieve higher discrimination of these semantic categories by being more selective and more invariant. These results demonstrate that computations necessary for semantic categorization of meaningful vocalizations are already present in the auditory cortex, and emphasise the value of a neuro-ethological approach to understand vocal communication. 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Increased whole-body auditory startle reflex and autonomic reactivity in children with anxiety disorders

    NARCIS (Netherlands)

    Bakker, Mirte J; Tijssen, Marina A J; van der Meer, Johan N; Koelman, Johannes H T M; Boer, Frits

    Background: Young patients with anxiety disorders are thought to have a hypersensitive fear system, including alterations of the early sensorimotor processing of threatening information. However, there is equivocal support in auditory blink response studies for an enlarged auditory startle reflex

  8. Increased whole-body auditory startle reflex and autonomic reactivity in children with anxiety disorders

    NARCIS (Netherlands)

    Bakker, Mirte J.; Tijssen, Marina A. J.; van der Meer, Johan N.; Koelman, Johannes H. T. M.; Boer, Frits

    2009-01-01

    Background: Young patients with anxiety disorders are thought to have a hypersensitive fear system, including alterations of the early sensorimotor processing of threatening information. However, there is equivocal support in auditory blink response studies for an enlarged auditory startle reflex

  9. The psychometric properties of the Persian version of categorization of auditory performance II and speech intelligibility rating scales in cochlear-implanted deaf children

    Directory of Open Access Journals (Sweden)

    Saeid Hassanzadeh

    2015-02-01

    Full Text Available Background and Aim: Clinicians and researchers always need standard measures for the evaluation of auditory perception and speech production in deaf children, particularly those with cochlear implants. This study addresses the reliability and validity of the Persian version of categorization of auditory performance (CAP scale and speech intelligibility rating (SIR in cochlear-implanted prelingual deaf children.Methods: A total of 92 cochlear-implanted deaf children aged 1.3-15.7 years participated in the study. Test-retest reliability, inter-rater reliability, and criterion and construct validity of the scales were investigated.Results: The obtained test-retest reliability for categorization of the auditory performance scale and speech intelligibility rating was 0.82 and 0.99 (p<0.01, respectively, whereas the suggested inter-rater reliability based on average Cohen’s kappa coefficient was 0.73 and 0.70 for the two scales (p<0.01, which appear acceptable. The concurrent validity of the scales was 0.64 and 0.69 (p<0.01. The construct validity for categorization of the auditory performance scale ranged between 0.58 and 0.74 (p<0.01, whereas the same feature for the speech intelligibility rating indicated a range between 0.66 and 0.69 (p<0.01.Conclusion: The findings of this investigation indicated that both CAPII and SIR scales are reliable and valid instruments for the assessment of auditory perception and speech production of cochlear-implant deaf children.

  10. Sex differences in the refractory period of the 100 ms auditory evoked magnetic field.

    Science.gov (United States)

    Rojas, D C; Teale, P; Sheeder, J; Reite, M

    1999-11-08

    The 100 ms latency auditory evoked magnetic response (M100) has been implicated in the earliest stage of acoustic memory encoding in the brain. Sex differences in this response have been found in its location within the brain and its functional properties. We recorded the M100 in 25 adults in response to changes in interstimulus interval of an auditory stimulus. Response amplitudes of the M100 were used to compute a measure of the M100 refractory period, which has been proposed to index the decay time constant of echoic memory. This time constant was significantly longer in both hemispheres of the female participants when compared to the male participants. Possible implications of this for behavioral sex differences in human memory performance are discussed.

  11. Auditory dysfunction in patients with Huntington's disease.

    Science.gov (United States)

    Profant, Oliver; Roth, Jan; Bureš, Zbyněk; Balogová, Zuzana; Lišková, Irena; Betka, Jan; Syka, Josef

    2017-10-01

    Huntington's disease (HD) is an autosomal, dominantly inherited, neurodegenerative disease. The main clinical features are motor impairment, progressive cognitive deterioration and behavioral changes. The aim of our study was to find out whether patients with HD suffer from disorders of the auditory system. A group of 17 genetically verified patients (11 males, 6 females) with various stages of HD (examined by UHDRS - motor part and total functional capacity, MMSE for cognitive functions) underwent an audiological examination (high frequency pure tone audiometry, otoacoustic emissions, speech audiometry, speech audiometry in babble noise, auditory brainstem responses). Additionally, 5 patients underwent a more extensive audiological examination, focused on central auditory processing. The results were compared with a group of age-matched healthy volunteers. Our results show that HD patients have physiologic hearing thresholds, otoacoustic emissions and auditory brainstem responses; however, they display a significant decrease in speech understanding, especially under demanding conditions (speech in noise) compared to age-matched controls. Additional auditory tests also show deficits in sound source localization, based on temporal and intensity cues. We also observed a statistically significant correlation between the perception of speech in noise, and motoric and cognitive functions. However, a correlation between genetic predisposition (number of triplets) and function of inner ear was not found. We conclude that HD negatively influences the function of the central part of the auditory system at cortical and subcortical levels, altering predominantly speech processing and sound source lateralization. We have thoroughly characterized auditory pathology in patients with HD that suggests involvement of central auditory and cognitive areas. Copyright © 2017. Published by Elsevier B.V.

  12. Comparison of Auditory Brainstem Response in HIV-1 exposed and unexposed newborns and their correlation with the maternal viral load and CD4 cell counts

    Science.gov (United States)

    FASUNLA, Ayotunde James; OGUNBOSI, Babatunde Oluwatosin; ODAIBO, Georgina Njideka; NWAORGU, Onyekwere George Benjamin; TAIWO, Babafemi; OLALEYE, David Olufemi; OSINUSI, Kikelomo; MURPHY, Robert Leo; ADEWOLE, Isaac Folorunso; AKINYINKA, Olusegun Olusina

    2014-01-01

    Objective The effects of maternal HIV infection and antiretroviral therapy on hearing of HIV-exposed newborns in sub-Saharan Africa have not been investigated. We determined the prevalence of sensorineural hearing loss among HIV-exposed newborns and the association between the hearing threshold and maternal & newborn parameters. Design A cohort audiometric study of newborns between October 2012 and April 2013. Settings Secondary and tertiary hospital based study. Participants Consecutive 126 HIV-exposed and 121 HIV-unexposed newborns. Intervention Hearing screening of the newborns were done with Auditory Brainstem Response and compared with maternal HAART, CD4 cell counts, RNA viral loads and newborn CD4 percent. Main outcome measure Hearing threshold levels of both groups were measured and analyzed. Results 11.1% of HIV-exposed and 6.6% of unexposed newborns had hearing impairment (p=0.2214). 6.4% of HIV-exposed and 2.5% HIV-unexposed newborns had hearing threshold >20dBHL (p = 0.1578). There was no significant association between the hearing thresholds of HIV-exposed newborns and maternal CD4 cell counts (p = 0.059) but there was with maternal viral load (p=0.034). There was significant difference between the hearing thresholds of HIV-exposed newborns with CD4 % of ≤25 and >25. This study showed significant difference in the hearing of the 119 HAART-exposed newborns and 7 unexposed newborns (p=0.002; RR=0.13 [0.05–0.32]). Conclusion There was a trend towards more hearing loss in HIV-exposed newborns. However, hearing thresholds increase with increasing mothers’ viral load. This background information supports the need for further studies on the role of in-utero exposure to HIV and HAART in newborn hearing loss. PMID:25313584

  13. Auditory Brainstem Responses to Bone-Conducted Brief Tones in Young Children with Conductive or Sensorineural Hearing Loss

    Directory of Open Access Journals (Sweden)

    Jennifer L. Hatton

    2012-01-01

    Full Text Available The bone-conduction (BC tone ABR has been used clinically for over 20 years. The current study formally evaluated the test performance of the BC tone-evoked ABR in infants with hearing loss. Method. By comparing BC-ABR results to follow-up behavioural results, this study addressed two questions: (i whether the BC tone ABR was successful in differentiating children with conductive versus sensorineural hearing loss (Study A; conductive: 68 ears; SNHL: 129 ears and (ii the relationship between BC ABR and behavioural hearing loss severity (Study B: 2000 Hz: 104 ears; 500 Hz: 47 ears. Results. Results demonstrate that the “normal” BC-ABR levels accurately differentiated normal versus elevated cochlear sensitivity (accuracy: 98% for 2000 Hz; 98% for 500 Hz. A subset of infants in Study A with elevated BC-ABR (i.e., no response at normal level had additional testing at higher intensities, which allowed for categorization of the degree of cochlear impairment. Study B results indicate that the BC ABR accurately categorizes the degree of cochlear hearing loss for 2000 Hz (accuracy = 95.2%. A preliminary dBnHL-to-dBHL correction factor of “0 dB” was determined for 2000 Hz BC ABR. Conclusions. These findings further support the use of BC tone ABR for diagnostic ABR testing.

  14. Auditory Brainstem Responses to Bone-Conducted Brief Tones in Young Children with Conductive or Sensorineural Hearing Loss

    Science.gov (United States)

    Hatton, Jennifer L.; Janssen, Renée M.; Stapells, David R.

    2012-01-01

    The bone-conduction (BC) tone ABR has been used clinically for over 20 years. The current study formally evaluated the test performance of the BC tone-evoked ABR in infants with hearing loss. Method. By comparing BC-ABR results to follow-up behavioural results, this study addressed two questions: (i) whether the BC tone ABR was successful in differentiating children with conductive versus sensorineural hearing loss (Study A; conductive: 68 ears; SNHL: 129 ears) and (ii) the relationship between BC ABR and behavioural hearing loss severity (Study B: 2000 Hz: 104 ears; 500 Hz: 47 ears). Results. Results demonstrate that the “normal” BC-ABR levels accurately differentiated normal versus elevated cochlear sensitivity (accuracy: 98% for 2000 Hz; 98% for 500 Hz). A subset of infants in Study A with elevated BC-ABR (i.e., no response at normal level) had additional testing at higher intensities, which allowed for categorization of the degree of cochlear impairment. Study B results indicate that the BC ABR accurately categorizes the degree of cochlear hearing loss for 2000 Hz (accuracy = 95.2%). A preliminary dBnHL-to-dBHL correction factor of “0 dB” was determined for 2000 Hz BC ABR. Conclusions. These findings further support the use of BC tone ABR for diagnostic ABR testing. PMID:22988461

  15. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  16. Auditory Discrimination and Auditory Memory as Predictors of Academic Success.

    Science.gov (United States)

    Warnock, Mairi; Boss, Marvin W.

    1987-01-01

    Eighty fourth-graders enrolled in an English/French bilingual program in Canada were administered an auditory skills battery of six tests to measure auditory discrimination and short-term auditory memory. It was concluded that a relationship exists between certain auditory perceptual abilities and school achievement independent of cognitive…

  17. Degraded auditory processing in a rat model of autism limits the speech representation in non-primary auditory cortex.

    Science.gov (United States)

    Engineer, C T; Centanni, T M; Im, K W; Borland, M S; Moreno, N A; Carraway, R S; Wilson, L G; Kilgard, M P

    2014-10-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. © 2014 Wiley Periodicals, Inc.

  18. Role of cervical vestibular evoked myogenic potentials (cVEMP and auditory brainstem response (ABR in the evaluation of vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Deepa Aniket Valame

    Full Text Available Abstract Introduction: Cervical vestibular evoked myogenic potentials (cVEMP can assess the integrity of the inferior vestibular nerve thereby promising to be a useful tool in the audiological test battery to diagnose vestibular schwannoma. Objective: To ascertain the utility of cVEMP in diagnosis of vestibular schwannoma in conjunction with the ABR and to evaluate whether the size of lesion has any effect on the cVEMP measures. Methods: Case-files of 15 known cases of vestibular schwannoma whose pure tone audiometry, auditory brainstem response (ABR, cVEMP and radiological investigation findings were available, were included in the study. Patients were categorised as large or small tumours based on the size. The absolute and inter-peak latencies of ABR, amplitudes of waves V and I, and inter-aural latency difference of wave V of ABR; and latency of P1 and N1 of cVEMP and amplitude of P1-N1 complex were considered in the study. Results: There were eight large and nine small tumours. All the patients with large tumours showed significant severity of hearing loss whereas only three out of nine patients with small tumours showed severe to profound deafness in the affected ear. The rest showed hearing status ranging from normal hearing sensitivity to moderate hearing loss. Most of the patients with large tumours showed complete absence of ABR in the affected ears with no identifiable wave-peaks. ABR in small tumours exhibited delayed III-I and delayed V-I interpeak latency interval (IPL. Four out of five patients with large unilateral tumours revealed contralateral effects of reduced amplitude or absence of cVEMP. On the contrary, six out of eight unilateral small tumours showed a normal cVEMP response in the contralateral ear. Both the patients with NF2 in the present study demonstrated cVEMP abnormalities. Conclusion: ABR and cVEMP, when used in combination, can be of immense use in identification of neuro-otologic conditions such as vestibular

  19. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  20. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  1. Effects of transient auditory deprivation during critical periods on the development of auditory temporal processing.

    Science.gov (United States)

    Kim, Bong Jik; Kim, Jungyoon; Park, Il-Yong; Jung, Jae Yun; Suh, Myung-Whan; Oh, Seung-Ha

    2018-01-01

    The central auditory pathway matures through sensory experiences and it is known that sensory experiences during periods called critical periods exert an important influence on brain development. The present study aimed to investigate whether temporary auditory deprivation during critical periods (CPs) could have a detrimental effect on the development of auditory temporal processing. Twelve neonatal rats were randomly assigned to control and study groups; Study group experienced temporary (18-20 days) auditory deprivation during CPs (Early deprivation study group). Outcome measures included changes in auditory brainstem response (ABR), gap prepulse inhibition of the acoustic startle reflex (GPIAS), and gap detection threshold (GDT). To further delineate the specific role of CPs in the outcome measures above, the same paradigm was applied in adult rats (Late deprivation group) and the findings were compared with those of the neonatal rats. Soon after the restoration of hearing, early deprivation study animals showed a significantly lower GPIAS at intermediate gap durations and a larger GDT than early deprivation controls, but these differences became insignificant after subsequent auditory inputs. Additionally, the ABR results showed significantly delayed latencies of waves IV, V, and interpeak latencies of wave I-III and wave I-V in study group. Late deprivation group didn't exhibit any deterioration in temporal processing following sensory deprivation. Taken together, the present results suggest that transient auditory deprivation during CPs might cause reversible disruptions in the development of temporal processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  3. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  4. Auditory interfaces in automated driving: an international survey

    NARCIS (Netherlands)

    Bazilinskyy, P.; de Winter, J.C.F.

    2015-01-01

    This study investigated peoples’ opinion on auditory interfaces in contemporary
    cars and their willingness to be exposed to auditory feedback in automated driving. We used an Internet-based survey to collect 1,205 responses from 91 countries. The respondents stated their attitudes towards two

  5. Encoding of temporal information by timing, rate, and place in cat auditory cortex.

    Directory of Open Access Journals (Sweden)

    Kazuo Imaizumi

    2010-07-01

    Full Text Available A central goal in auditory neuroscience is to understand the neural coding of species-specific communication and human speech sounds. Low-rate repetitive sounds are elemental features of communication sounds, and core auditory cortical regions have been implicated in processing these information-bearing elements. Repetitive sounds could be encoded by at least three neural response properties: 1 the event-locked spike-timing precision, 2 the mean firing rate, and 3 the interspike interval (ISI. To determine how well these response aspects capture information about the repetition rate stimulus, we measured local group responses of cortical neurons in cat anterior auditory field (AAF to click trains and calculated their mutual information based on these different codes. ISIs of the multiunit responses carried substantially higher information about low repetition rates than either spike-timing precision or firing rate. Combining firing rate and ISI codes was synergistic and captured modestly more repetition information. Spatial distribution analyses showed distinct local clustering properties for each encoding scheme for repetition information indicative of a place code. Diversity in local processing emphasis and distribution of different repetition rate codes across AAF may give rise to concurrent feed-forward processing streams that contribute differently to higher-order sound analysis.

  6. Visual form predictions facilitate auditory processing at the N1.

    Science.gov (United States)

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2017-02-20

    Auditory-visual (AV) events often involve a leading visual cue (e.g. auditory-visual speech) that allows the perceiver to generate predictions about the upcoming auditory event. Electrophysiological evidence suggests that when an auditory event is predicted, processing is sped up, i.e., the N1 component of the ERP occurs earlier (N1 facilitation). However, it is not clear (1) whether N1 facilitation is based specifically on predictive rather than multisensory integration and (2) which particular properties of the visual cue it is based on. The current experiment used artificial AV stimuli in which visual cues predicted but did not co-occur with auditory cues. Visual form cues (high and low salience) and the auditory-visual pairing were manipulated so that auditory predictions could be based on form and timing or on timing only. The results showed that N1 facilitation occurred only for combined form and temporal predictions. These results suggest that faster auditory processing (as indicated by N1 facilitation) is based on predictive processing generated by a visual cue that clearly predicts both what and when the auditory stimulus will occur. Copyright © 2016. Published by Elsevier Ltd.

  7. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance.

    Science.gov (United States)

    Norton, S J; Gorga, M P; Widen, J E; Folsom, R C; Sininger, Y; Cone-Wesson, B; Vohr, B R; Mascher, K; Fletcher, K

    2000-10-01

    The purpose of this study was to compare the performance of transient evoked otoacoustic emissions (TEOAEs), distortion product otoacoustic emissions (DPOAEs), and auditory brain stem responses (ABRs) as tools for identification of neonatal hearing impairment. A total of 4911 infants including 4478 graduates of neonatal intensive care units, 353 well babies with one or more risk factors for hearing loss (Joint Committee on Infant Hearing, 1994) and 80 well babies without risk factor who did not pass one or more neonatal test were targeted as the potential subject pool on which test performance would be assessed. During the neonatal period, they were evaluated using TEOAEs in response to an 80 dB pSPL click, DPOAE responses to two stimulus conditions (L1 = L2 = 75 dB SPL and L1 = 65 dB SPL L2 = 50 dB SPL), and ABR elicited by a 30 dB nHL click. In an effort to describe test performance, these "at-risk" infants were asked to return for behavioral audiologic assessments, using visual reinforcement audiometry (VRA) at 8 to 12 mo corrected age, regardless of neonatal test results. Sixty-four percent of these subjects returned and reliable VRA data were obtained on 95.6% of these returnees. This approach is in contrast to previous studies in which, by necessity, efforts were made to follow only those infants who "failed" the neonatal screening tests. The accuracy of the neonatal measures in predicting hearing status at 8 to 12 mo corrected age was determined. Only those infants who provided reliable, monaural VRA test results were included in the analysis. Separate analyses were performed without regard to intercurrent events (i.e., events between the neonatal and VRA tests that could cause their results to disagree), and then after accounting for the possible influence of intercurrent events such as otitis media and late-onset or progressive hearing loss. Low refer rates were achieved for the stopping criteria used in the present study, especially when a protocol

  8. Nature of auditory processing disorder in children.

    Science.gov (United States)

    Moore, David R; Ferguson, Melanie A; Edmondson-Jones, A Mark; Ratib, Sonia; Riley, Alison

    2010-08-01

    We tested the specific hypothesis that the presentation of auditory processing disorder (APD) is related to a sensory processing deficit. Randomly chosen, 6- to 11-year-old children with normal hearing (N = 1469) were tested in schools in 4 regional centers across the United Kingdom. Caregivers completed questionnaires regarding their participating children's listening and communication skills. Children completed a battery of audiometric, auditory processing (AP), speech-in-noise, cognitive (IQ, memory, language, and literacy), and attention (auditory and visual) tests. AP measures separated the sensory and nonsensory contributions to spectral and temporal perception. AP improved with age. Poor-for-age AP was significantly related to poor cognitive, communication, and speech-in-noise performance (P auditory perception and cognitive scores were generally low (r = 0.1-0.3). Multivariate regression analysis showed that response variability in the AP tests, reflecting attention, and cognitive scores were the best predictors of listening, communication, and speech-in-noise skills. Presenting symptoms of APD were largely unrelated to auditory sensory processing. Response variability and cognitive performance were the best predictors of poor communication and listening. We suggest that APD is primarily an attention problem and that clinical diagnosis and management, as well as further research, should be based on that premise.

  9. The Harmonic Organization of Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Xiaoqin eWang

    2013-12-01

    Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.

  10. Predictive uncertainty in auditory sequence processing.

    Science.gov (United States)

    Hansen, Niels Chr; Pearce, Marcus T

    2014-01-01

    Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty-a property of listeners' prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure. Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex). Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty). We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty). Finally, we simulate listeners' perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature. The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.

  11. Predictive uncertainty in auditory sequence processing

    Directory of Open Access Journals (Sweden)

    Niels Chr. eHansen

    2014-09-01

    Full Text Available Previous studies of auditory expectation have focused on the expectedness perceived by listeners retrospectively in response to events. In contrast, this research examines predictive uncertainty - a property of listeners’ prospective state of expectation prior to the onset of an event. We examine the information-theoretic concept of Shannon entropy as a model of predictive uncertainty in music cognition. This is motivated by the Statistical Learning Hypothesis, which proposes that schematic expectations reflect probabilistic relationships between sensory events learned implicitly through exposure.Using probability estimates from an unsupervised, variable-order Markov model, 12 melodic contexts high in entropy and 12 melodic contexts low in entropy were selected from two musical repertoires differing in structural complexity (simple and complex. Musicians and non-musicians listened to the stimuli and provided explicit judgments of perceived uncertainty (explicit uncertainty. We also examined an indirect measure of uncertainty computed as the entropy of expectedness distributions obtained using a classical probe-tone paradigm where listeners rated the perceived expectedness of the final note in a melodic sequence (inferred uncertainty. Finally, we simulate listeners’ perception of expectedness and uncertainty using computational models of auditory expectation. A detailed model comparison indicates which model parameters maximize fit to the data and how they compare to existing models in the literature.The results show that listeners experience greater uncertainty in high-entropy musical contexts than low-entropy contexts. This effect is particularly apparent for inferred uncertainty and is stronger in musicians than non-musicians. Consistent with the Statistical Learning Hypothesis, the results suggest that increased domain-relevant training is associated with an increasingly accurate cognitive model of probabilistic structure in music.

  12. Subcortical modulation in auditory processing and auditory hallucinations.

    Science.gov (United States)

    Ikuta, Toshikazu; DeRosse, Pamela; Argyelan, Miklos; Karlsgodt, Katherine H; Kingsley, Peter B; Szeszko, Philip R; Malhotra, Anil K

    2015-12-15

    Hearing perception in individuals with auditory hallucinations has not been well studied. Auditory hallucinations have previously been shown to involve primary auditory cortex activation. This activation suggests that auditory hallucinations activate the terminal of the auditory pathway as if auditory signals are submitted from the cochlea, and that a hallucinatory event is therefore perceived as hearing. The primary auditory cortex is stimulated by some unknown source that is outside of the auditory pathway. The current study aimed to assess the outcomes of stimulating the primary auditory cortex through the auditory pathway in individuals who have experienced auditory hallucinations. Sixteen patients with schizophrenia underwent functional magnetic resonance imaging (fMRI) sessions, as well as hallucination assessments. During the fMRI session, auditory stimuli were presented in one-second intervals at times when scanner noise was absent. Participants listened to auditory stimuli of sine waves (SW) (4-5.5kHz), English words (EW), and acoustically reversed English words (arEW) in a block design fashion. The arEW were employed to deliver the sound of a human voice with minimal linguistic components. Patients' auditory hallucination severity was assessed by the auditory hallucination item of the Brief Psychiatric Rating Scale (BPRS). During perception of arEW when compared with perception of SW, bilateral activation of the globus pallidus correlated with severity of auditory hallucinations. EW when compared with arEW did not correlate with auditory hallucination severity. Our findings suggest that the sensitivity of the globus pallidus to the human voice is associated with the severity of auditory hallucination. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Neural plasticity following auditory training in children with learning problems.

    Science.gov (United States)

    Hayes, Erin A; Warrier, Catherine M; Nicol, Trent G; Zecker, Steven G; Kraus, Nina

    2003-04-01

    This study examined the plasticity of the central auditory pathway and accompanying cognitive changes in children with learning problems. Children diagnosed with a learning disability and/or attention deficit disorder worked with commercial auditory processing training software for 8 weeks; control groups consisted of normal-learning and learning-impaired children who did not participate in any remedial programs. Auditory brainstem function was evaluated in response to click and speech stimuli in quiet; cortical responses to speech stimuli were obtained in quiet and noise. Academic achievement and cognitive abilities were assessed with standardized measures. Compared to controls, the trained group improved on measures of auditory processing and exhibited changes in cortical responses in quiet and in noise. In quiet, cortical responses reflected an accelerated maturational pattern; in background noise, cortical responses became more resistant to degradation. Brainstem responses did not change with training. Children with learning problems who practiced with auditory training software exhibited plasticity of neural encoding of speech sounds at the cortical, but not subcortical, level of the auditory pathway. This plasticity was accompanied by improvement in behavioral performance. This study demonstrates that in learning-impaired children working with commercial auditory processing training programs affects both the perception and the cortical representation of sound.

  14. A new class of auditory warning signals for complex systems: auditory icons.

    Science.gov (United States)

    Belz, S M; Robinson, G S; Casali, J G

    1999-12-01

    This simulator-based study examined conventional auditory warnings (tonal, nonverbal sounds) and auditory icons (representational, nonverbal sounds), alone and in combination with a dash-mounted visual display, to present information about impending collision situations to commercial motor vehicle operators. Brake response times were measured for impending front-to-rear collision scenarios under 6 display configurations, 2 vehicle speeds, and 2 levels of headway. Accident occurrence was measured for impending side collision scenarios under 2 vehicle speeds, 2 levels of visual workload, 2 auditory displays, absence/presence of mirrors, and absence/presence of a dash-mounted iconic visual display. For both front-to-rear and side collision scenarios, auditory icons elicited significantly improved driver performance over conventional auditory warnings. Driver performance improved when collision warning information was presented through multiple modalities. Brake response times were significantly faster for impending front-to-rear collision scenarios using the longer headway condition. The presence of mirrors significantly reduced the number of accidents for impending side collision scenarios. Subjective preference data indicated that participants preferred multimodal displays over single-modality displays. Actual or potential applications for this research include auditory displays and warnings, information presentation, and the development of alternative user interfaces.

  15. Noise perception in the workplace and auditory and extra-auditory symptoms referred by university professors.

    Science.gov (United States)

    Servilha, Emilse Aparecida Merlin; Delatti, Marina de Almeida

    2012-01-01

    To investigate the correlation between noise in the work environment and auditory and extra-auditory symptoms referred by university professors. Eighty five professors answered a questionnaire about identification, functional status, and health. The relationship between occupational noise and auditory and extra-auditory symptoms was investigated. Statistical analysis considered the significance level of 5%. None of the professors indicated absence of noise. Responses were grouped in Always (A) (n=21) and Not Always (NA) (n=63). Significant sources of noise were both the yard and another class, which were classified as high intensity; poor acoustic and echo. There was no association between referred noise and health complaints, such as digestive, hormonal, osteoarticular, dental, circulatory, respiratory and emotional complaints. There was also no association between referred noise and hearing complaints, and the group A showed higher occurrence of responses regarding noise nuisance, hearing difficulty and dizziness/vertigo, tinnitus, and earache. There was association between referred noise and voice alterations, and the group NA presented higher percentage of cases with voice alterations than the group A. The university environment was considered noisy; however, there was no association with auditory and extra-auditory symptoms. The hearing complaints were more evident among professors in the group A. Professors' health is a multi-dimensional product and, therefore, noise cannot be considered the only aggravation factor.

  16. Potenciais Evocados Auditivos de Média Latência: estudo em crianças saudáveis Auditory Middle Latency Responses: a study of healthy children

    Directory of Open Access Journals (Sweden)

    Ana Claudia Figueiredo Frizzo

    2007-06-01

    Full Text Available OBJETIVO: Investigar os componentes dos PEAMLs em crianças saudáveis para determinar suas propriedades. MATERIAL E MÉTODOS: 32 crianças, de ambos os sexos, 10 a 13 anos de idade, sem doenças neurológicas, participaram do estudo. Os dados foram analisados pela estatística descritiva (média e desvio padrão e por análise de variância (teste F. PEAMLs foram pesquisadas usando estímulo tom burst nas intensidades de 50, 60 e 70 dB NA. RESULTADOS E CONCLUSÃO: A média de latência dos componentes foi Na = 20.79ms, Pa = 35.34ms, Nb = 43.27ms e Pb = 53.36ms, a 70dB NA. A média dos valores de amplitude NaPa variou de 0.2 a 1.9 uV (M = 1.0 uV. A amplitude aumentou e a latência diminuiu com o aumento da intensidade sonora. A inclinação do complexo de ondas NaPa esteve presente em alguns casos, o que merece atenção em estudos semelhantes ou em mesmo em populações de crianças com dificuldade de fala e linguagem e do processamento auditivo. CONCLUSÃO: O presente trabalho trouxe informações adicionais sobre as AMLRs e pode servir como referência para outros estudos clínicos ou experimentais em crianças.AIM: To examine the components of auditory middle latency responses (AMLRs in a sample of healthy children to establish their properties. METHODS: Thirty-two children of both genders aged between 10 to 13 years, with no neurological disorders, were included in the study. Data were analyzed statistically by descriptive statistics (mean + SD and by analysis of variance using the F test. AMLRs were investigated with toneburst stimuli at 50, 60 and 70 dB HL. RESULTS AND CONCLUSIONS: The mean latencies of the components were Na = 20.79 ms, Pa = 35.34 ms, Nb = 43.27 ms, and Pb = 53.36 ms, in 70 dB HL. The mean values for the NaPa amplitude ranged from 0.2 to 1.9 mV (M = 1.0 mV. The amplitude increased and latency decreased with increasing sound intensity. Inclination of the NaPa wave complex was present in some cases, which deserves

  17. An evoked auditory response fMRI study of the effects of rTMS on putative AVH pathways in healthy volunteers.

    LENUS (Irish Health Repository)

    Tracy, D K

    2010-01-01

    Auditory verbal hallucinations (AVH) are the most prevalent symptom in schizophrenia. They are associated with increased activation within the temporoparietal cortices and are refractory to pharmacological and psychological treatment in approximately 25% of patients. Low frequency repetitive transcranial magnetic stimulation (rTMS) over the temporoparietal cortex has been demonstrated to be effective in reducing AVH in some patients, although results have varied. The cortical mechanism by which rTMS exerts its effects remain unknown, although data from the motor system is suggestive of a local cortical inhibitory effect. We explored neuroimaging differences in healthy volunteers between application of a clinically utilized rTMS protocol and a sham rTMS equivalent when undertaking a prosodic auditory task.

  18. Visual cortex and auditory cortex activation in early binocularly blind macaques: A BOLD-fMRI study using auditory stimuli.

    Science.gov (United States)

    Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin

    2017-04-15

    Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. On the comparison of VR-responses, as performance measures in prospective memory, with auditory P300 responses in MCI detection.

    Science.gov (United States)

    Tarnanas, Ioannis; Laskaris, Nikos; Tsolaki, Magda

    2012-01-01

    Patients with amnestic mild cognitive impairment are at high risk for developing Alzheimer's disease. Besides episodic memory dysfunction they show deficits in accessing contextual knowledge that further specifies a general spatial navigation task or an executive function (EF) virtual action planning. There has been only one previous work with virtual reality and the use of a virtual action planning supermarket for the diagnosis of mild cognitive impairment. The authors of that study examined the feasibility and the validity of the virtual action planning supermarket (VAP-S) for the diagnosis of patients with mild cognitive impairment (MCI) and found that the VAP-S is a viable tool to assess EF deficits. In our study we employed the in-house platform of virtual action planning museum (VAP-M) and a sample of 25 MCI and 25 controls, in order to investigate deficits in spatial navigation, prospective memory and executive function. In addition, we used the morphology of late components in event-related potential (ERP) responses, as a marker for cognitive dysfunction. The related measurements were fed to a common classification scheme facilitating the direct comparison of both approaches. Our results indicate that both the VAP-M and ERP averages were able to differentiate between healthy elders and patients with amnestic mild cognitive impairment and agree with the findings of the virtual action planning supermarket (VAP-S). The sensitivity (specificity) was 100% (98%) for the VAP-M data and 87%(90%) for the ERP responses. Considering that ERPs have proven to advance the early detection and diagnosis of "presymptomatic AD", the suggested VAP-M platform appears as an appealing alternative.

  20. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    Science.gov (United States)

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study

  1. Effective masking levels for 500 and 2000 Hz bone conduction auditory steady state responses in infants and adults with normal hearing.

    Science.gov (United States)

    Small, Susan A; Smyth, Aisling; Leon, Griselle

    2014-01-01

    Few studies have investigated effective masking levels (EMLs) needed to isolate the test ear for bone conduction assessments in infants. The objective of this study was to determine EMLs for 500 and 2000 Hz bone conduction auditory steady state responses (ASSRs) to amplitude (AM)/frequency-modulated (FM) stimuli for infants and adults with normal hearing. Maturational factors that contribute to infant-adult differences in EMLs will also be investigated. The present study and previously published 1000 and 4000 Hz EML data will be compared to investigate EML across four frequencies. These findings will provide a starting point for implementing clinical masking for infant bone conduction testing using physiological measures. Participants were 15 infants (7 to 35 weeks) and 15 adults (21 to 56 years) with normal hearing. Bone-conducted single ASSR stimuli (research MASTER) were 100% AM and 25% FM at 85 and 101 Hz for 500 and 2000 Hz carrier frequencies, respectively. They were presented at 25 and 35 dB HL for 500 Hz and at 35 and 45 dB HL for 2000 Hz for both infants and adults (approximately 10 and 20 dB SL at each frequency for infants). Air-conducted narrowband maskers were presented to both ears simultaneously. Real-ear to coupler differences were measured to account for differences in the sound pressure developed in infant and adult ear canals as a result of ear-canal size. Data analyses were conducted for mean EMLs across frequency (500 to 4000 Hz) and between age groups. Masked and unmasked ASSR amplitudes were compared for 500 and 2000 Hz. Both infants and adults required much more masking (25 to 33 dB) to eliminate responses at 500 compared with 2000 Hz. On average, infants required 16 dB more masking at 500 Hz and similar amounts of masking at 2000 Hz compared with adults. When adjusted for ear-canal size and bone conduction sensitivity, the pattern of results did not change. Across all four frequencies, infants showed a systematic decrease in mean EMLs with

  2. Auditory hallucinations induced by trazodone

    Science.gov (United States)

    Shiotsuki, Ippei; Terao, Takeshi; Ishii, Nobuyoshi; Hatano, Koji

    2014-01-01

    A 26-year-old female outpatient presenting with a depressive state suffered from auditory hallucinations at night. Her auditory hallucinations did not respond to blonanserin or paliperidone, but partially responded to risperidone. In view of the possibility that her auditory hallucinations began after starting trazodone, trazodone was discontinued, leading to a complete resolution of her auditory hallucinations. Furthermore, even after risperidone was decreased and discontinued, her auditory hallucinations did not recur. These findings suggest that trazodone may induce auditory hallucinations in some susceptible patients. PMID:24700048

  3. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  4. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  5. Late Maturation of Auditory Perceptual Learning

    Science.gov (United States)

    Huyck, Julia Jones; Wright, Beverly A.

    2011-01-01

    Adults can improve their performance on many perceptual tasks with training, but when does the response to training become mature? To investigate this question, we trained 11-year-olds, 14-year-olds and adults on a basic auditory task (temporal-interval discrimination) using a multiple-session training regimen known to be effective for adults. The…

  6. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  7. Auditory stimulus timing influences perceived duration of co-occurring visual stimuli

    Directory of Open Access Journals (Sweden)

    Vincenzo eRomei

    2011-09-01

    Full Text Available There is increasing interest in multisensory influences upon sensory-specific judgements, such as when auditory stimuli affect visual perception. Here we studied whether the duration of an auditory event can objectively affect the perceived duration of a co-occurring visual event. On each trial, participants were presented with a pair of successive flashes and had to judge whether the first or second was longer. Two beeps were presented with the flashes. The order of short and long stimuli could be the same across audition and vision (audiovisual congruent or reversed, so that the longer flash was accompanied by the shorter beep and vice versa (audiovisual incongruent; or the two beeps could have the same duration as each other. Beeps and flashes could onset synchronously or asynchronously. In a further control experiment, the beep durations were much longer (tripled than the flashes. Results showed that visual duration-discrimination sensitivity (d' was significantly higher for congruent (and significantly lower for incongruent audiovisual synchronous combinations, relative to the visual only presentation. This effect was abolished when auditory and visual stimuli were presented asynchronously, or when sound durations tripled those of flashes. We conclude that the temporal properties of co-occurring auditory stimuli influence the perceived duration of visual stimuli and that this can reflect genuine changes in visual sensitivity rather than mere response bias.

  8. [Understanding the elderly user of auditory prostheses].

    Science.gov (United States)

    de Paiva, Karina Mary; Maciel, Paulete Maria Ambrósio; Cintra, Letícia Guedes

    2011-06-01

    The main goal was to identify the factors involved in the application for and use of auditory prostheses by the elderly as well as their awareness of the Policy of Care to Auditory Health. 25 elderly people of both sexes using auditory prostheses in Vitória (Espírito Santo, Brazil) were selected. They were contacted by telephone to participate in the research by answering a questionnaire. The results demonstrated that most of the elderly people interviewed (52%) use the device all day which suggests good adaptation to the process. Thirteen elderly people reported that they contacted the prosthesis company of their own accord. The advantages involved better communication and listening to TV (64%) while the difficulties were due to noisy environments; 56% were unable to understand what was being said at lectures, in church, and on the telephone, 72% reported no improvement with the prosthesis. 88% of the elderly participants are unaware of donation policies for auditory devices and 100% are unaware of this kind of service. Research and practices in health services about auditory issues still have far to go. There is a need for a change in management with the objective of putting into action policies which define the responsibilities of the State.

  9. Rapidly induced auditory plasticity: the ventriloquism aftereffect.

    Science.gov (United States)

    Recanzone, G H

    1998-02-03

    Cortical representational plasticity has been well documented after peripheral and central injuries or improvements in perceptual and motor abilities. This has led to inferences that the changes in cortical representations parallel and account for the improvement in performance during the period of skill acquisition. There have also been several examples of rapidly induced changes in cortical neuronal response properties, for example, by intracortical microstimulation or by classical conditioning paradigms. This report describes similar rapidly induced changes in a cortically mediated perception in human subjects, the ventriloquism aftereffect, which presumably reflects a corresponding change in the cortical representation of acoustic space. The ventriloquism aftereffect describes an enduring shift in the perception of the spatial location of acoustic stimuli after a period of exposure of spatially disparate and simultaneously presented acoustic and visual stimuli. Exposure of a mismatch of 8 degrees for 20-30 min is sufficient to shift the perception of acoustic space by approximately the same amount across subjects and acoustic frequencies. Given that the cerebral cortex is necessary for the perception of acoustic space, it is likely that the ventriloquism aftereffect reflects a change in the cortical representation of acoustic space. Comparisons between the responses of single cortical neurons in the behaving macaque monkey and the stimulus parameters that give rise to the ventriloquism aftereffect suggest that the changes in the cortical representation of acoustic space may begin as early as the primary auditory cortex.

  10. Perceptual processing of a complex auditory context

    DEFF Research Database (Denmark)

    Quiroga Martinez, David Ricardo; Hansen, Niels Christian; Højlund, Andreas

    The mismatch negativity (MMN) is a brain response elicited by deviants in a series of repetitive sounds. It reflects the perception of change in low-level sound features and reliably measures perceptual auditory memory. However, most MMN studies use simple tone patterns as stimuli, failing...... to represent the complexity of everyday auditory contexts. We aim to develop a new MMN paradigm using more real-sounding and complex musical stimuli. For this purpose, we will improve a previous design based on the Alberti bass by adding a melody through dichotic presentation. We will use....... The ear of presentation will be counterbalanced across participants. We hypothesize that right-lateralized MMNs will be elicited for all types of deviants and their amplitude will be similar for both sound streams in all blocks. Once developed the design can be used to assess auditory perception...

  11. Reduced auditory segmentation potentials in first-episode schizophrenia.

    Science.gov (United States)

    Coffman, Brian A; Haigh, Sarah M; Murphy, Timothy K; Leiter-Mcbeth, Justin; Salisbury, Dean F

    2017-10-22

    Auditory scene analysis (ASA) dysfunction is likely an important component of the symptomatology of schizophrenia. Auditory object segmentation, the grouping of sequential acoustic elements into temporally-distinct auditory objects, can be assessed with electroencephalography through measurement of the auditory segmentation potential (ASP). Further, N2 responses to the initial and final elements of auditory objects are enhanced relative to medial elements, which may indicate auditory object edge detection (initiation and termination). Both ASP and N2 modulation are impaired in long-term schizophrenia. To determine whether these deficits are present early in disease course, we compared ASP and N2 modulation between individuals at their first episode of psychosis within the schizophrenia spectrum (FE, N=20) and matched healthy controls (N=24). The ASP was reduced by >40% in FE; however, N2 modulation was not statistically different from HC. This suggests that auditory segmentation (ASP) deficits exist at this early stage of schizophrenia, but auditory edge detection (N2 modulation) is relatively intact. In a subset of subjects for whom structural MRIs were available (N=14 per group), ASP sources were localized to midcingulate cortex (MCC) and temporal auditory cortex. Neurophysiological activity in FE was reduced in MCC, an area linked to aberrant perceptual organization, negative symptoms, and cognitive dysfunction in schizophrenia, but not temporal auditory cortex. This study supports the validity of the ASP for measurement of auditory object segmentation and suggests that the ASP may be useful as an early index of schizophrenia-related MCC dysfunction. Further, ASP deficits may serve as a viable biomarker of disease presence. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... Noisy, loosely structured classrooms could be very frustrating. Auditory memory problems: This is when a child has difficulty remembering information such as directions, lists, or study materials. It can ... later"). Auditory discrimination problems: This is when a child has ...

  13. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Science.gov (United States)

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  14. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  15. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  16. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  17. Auditory and visual spatial impression: Recent studies of three auditoria

    Science.gov (United States)

    Nguyen, Andy; Cabrera, Densil

    2004-10-01

    Auditory spatial impression is widely studied for its contribution to auditorium acoustical quality. By contrast, visual spatial impression in auditoria has received relatively little attention in formal studies. This paper reports results from a series of experiments investigating the auditory and visual spatial impression of concert auditoria. For auditory stimuli, a fragment of an anechoic recording of orchestral music was convolved with calibrated binaural impulse responses, which had been made with the dummy head microphone at a wide range of positions in three auditoria and the sound source on the stage. For visual stimuli, greyscale photographs were used, taken at the same positions in the three auditoria, with a visual target on the stage. Subjective experiments were conducted with auditory stimuli alone, visual stimuli alone, and visual and auditory stimuli combined. In these experiments, subjects rated apparent source width, listener envelopment, intimacy and source distance (auditory stimuli), and spaciousness, envelopment, stage dominance, intimacy and target distance (visual stimuli). Results show target distance to be of primary importance in auditory and visual spatial impression-thereby providing a basis for covariance between some attributes of auditory and visual spatial impression. Nevertheless, some attributes of spatial impression diverge between the senses.

  18. Single-unit Analysis of Somatosensory Processing in Core Auditory Cortex of Hearing Ferrets

    Science.gov (United States)

    Meredith, M. Alex; Allman, Brian L.

    2014-01-01

    The recent findings in several species that primary auditory cortex processes non-auditory information have largely overlooked the possibility for somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior – AAF, and primary auditory-- A1, fields) for tactile responsivity. Multiple single-unit recordings from anesthetized ferret cortex yielded histologically verified neurons (n=311) tested with electronically controlled auditory, visual and tactile stimuli and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions. PMID:25728185

  19. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  20. In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem.

    Science.gov (United States)

    Franken, Tom P; Smith, Philip H; Joris, Philip X

    2016-01-01

    The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar

  1. Cross-Modal Perception of Noise-in-Music: Audiences Generate Spiky Shapes in Response to Auditory Roughness in a Novel Electroacoustic Concert Setting

    Directory of Open Access Journals (Sweden)

    Kongmeng Liew

    2018-02-01

    Full Text Available Noise has become integral to electroacoustic music aesthetics. In this paper, we define noise as sound that is high in auditory roughness, and examine its effect on cross-modal mapping between sound and visual shape in participants. In order to preserve the ecological validity of contemporary music aesthetics, we developed Rama, a novel interface, for presenting experimentally controlled blocks of electronically generated sounds that varied systematically in roughness, and actively collected data from audience interaction. These sounds were then embedded as musical drones within the overall sound design of a multimedia performance with live musicians, Audience members listened to these sounds, and collectively voted to create the shape of a visual graphic, presented as part of the audio–visual performance. The results of the concert setting were replicated in a controlled laboratory environment to corroborate the findings. Results show a consistent effect of auditory roughness on shape design, with rougher sounds corresponding to spikier shapes. We discuss the implications, as well as evaluate the audience interface.

  2. Cross-Modal Perception of Noise-in-Music: Audiences Generate Spiky Shapes in Response to Auditory Roughness in a Novel Electroacoustic Concert Setting.

    Science.gov (United States)

    Liew, Kongmeng; Lindborg, PerMagnus; Rodrigues, Ruth; Styles, Suzy J

    2018-01-01

    Noise has become integral to electroacoustic music aesthetics. In this paper, we define noise as sound that is high in auditory roughness, and examine its effect on cross-modal mapping between sound and visual shape in participants. In order to preserve the ecological validity of contemporary music aesthetics, we developed Rama , a novel interface, for presenting experimentally controlled blocks of electronically generated sounds that varied systematically in roughness, and actively collected data from audience interaction. These sounds were then embedded as musical drones within the overall sound design of a multimedia performance with live musicians, Audience members listened to these sounds, and collectively voted to create the shape of a visual graphic, presented as part of the audio-visual performance. The results of the concert setting were replicated in a controlled laboratory environment to corroborate the findings. Results show a consistent effect of auditory roughness on shape design, with rougher sounds corresponding to spikier shapes. We discuss the implications, as well as evaluate the audience interface.

  3. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    Science.gov (United States)

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  4. Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments

    Directory of Open Access Journals (Sweden)

    Brishna Soraya Kamal

    2013-09-01

    Full Text Available Age-related impairments in the primary auditory cortex (A1 include poor tuning selectivity, neural desynchronization and degraded responses to low-probability sounds. These changes have been largely attributed to reduced inhibition in the aged brain, and are thought to contribute to substantial hearing impairment in both humans and animals. Since many of these changes can be partially reversed with auditory training, it has been speculated that they might not be purely degenerative, but might rather represent negative plastic adjustments to noisy or distorted auditory signals reaching the brain. To test this hypothesis, we examined the impact of exposing young adult rats to 8 weeks of low-grade broadband noise on several aspects of A1 function and structure. We then characterized the same A1 elements in aging rats for comparison. We found that the impact of noise exposure on A1 tuning selectivity, temporal processing of auditory signal and responses to oddball tones was almost indistinguishable from the effect of natural aging. Moreover, noise exposure resulted in a reduction in the population of parvalbumin inhibitory interneurons and cortical myelin as previously documented in the aged group. Most of these changes reversed after returning the rats to a quiet environment. These results support the hypothesis that age-related changes in A1 have a strong activity-dependent component and indicate that the presence or absence of clear auditory input patterns might be a key factor in sustaining adult A1 function.

  5. Acoustic communication in Panthera tigris: A study of tiger vocalization and auditory receptivity

    Science.gov (United States)

    Walsh, Edward J.; Wang, Lily M.; Armstrong, Douglas L.; Curro, Thomas; Simmons, Lee G.; McGee, Joann

    2003-04-01

    Acoustic communication represents a primary mode of interaction within the sub-species of Panthera tigris and it is commonly known that their vocal repertoire consists of a relatively wide range of utterances that include roars, growls, grunts, hisses and chuffling, vocalizations that are in some cases produced with extraordinary power. P. tigris vocalizations are known to contain significant amounts of acoustic energy over a wide spectral range, with peak output occurring in a low frequency bandwidth in the case of roars. von Muggenthaler (2000) has also shown that roars and other vocal productions uttered by P. tigris contain energy in the infrasonic range. While it is reasonable to assume that low and infrasonic acoustic cues are used as communication signals among conspecifics in the wild, it is clearly necessary to demonstrate that members of the P. tigris sub-species are responsive to low and infrasonic acoustic signals. The auditory brainstem response has proven to be an effective tool in the characterization of auditory performance among tigers and the results of an ongoing study of both the acoustical properties of P. tigris vocalizations and their auditory receptivity support the supposition that tigers are not only responsive to low frequency stimulation, but exquisitely so.

  6. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new

  7. Auditory Memory for Timbre

    Science.gov (United States)

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  8. Neural Entrainment to Auditory Imagery of Rhythms

    Directory of Open Access Journals (Sweden)

    Haruki Okawa

    2017-10-01

    Full Text Available A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.

  9. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  10. The human brain maintains contradictory and redundant auditory sensory predictions.

    Directory of Open Access Journals (Sweden)

    Marika Pieszek

    Full Text Available Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants' task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound as well as violations of the visual-auditory prediction (i.e., an incongruent sound elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]. Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events.

  11. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  12. In Vivo Whole-cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem

    Directory of Open Access Journals (Sweden)

    Tom P Franken

    2016-08-01

    Full Text Available The lateral nucleus of the trapezoid body (LNTB is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB, In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB. These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone

  13. Auditory and visual scene analysis: an overview.

    Science.gov (United States)

    Kondo, Hirohito M; van Loon, Anouk M; Kawahara, Jun-Ichiro; Moore, Brian C J

    2017-02-19

    We perceive the world as stable and composed of discrete objects even though auditory and visual inputs are often ambiguous owing to spatial and temporal occluders and changes in the conditions of observation. This raises important questions regarding where and how 'scene analysis' is performed in the brain. Recent advances from both auditory and visual research suggest that the brain does not simply process the incoming scene properties. Rather, top-down processes such as attention, expectations and prior knowledge facilitate scene perception. Thus, scene analysis is linked not only with the extraction of stimulus features and formation and selection of perceptual objects, but also with selective attention, perceptual binding and awareness. This special issue covers novel advances in scene-analysis research obtained using a combination of psychophysics, computational modelling, neuroimaging and neurophysiology, and presents new empirical and theoretical approaches. For integrative understanding of scene analysis beyond and across sensory modalities, we provide a collection of 15 articles that enable comparison and integration of recent findings in auditory and visual scene analysis.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  14. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Potenciais Evocados Auditivos de Estado Estável no diagnóstico audiológico infantil: uma comparação com os Potenciais Evocados Auditivos de Tronco Encefálico Steady-state auditory evoked responses in audiological diagnosis in children: a comparison with brainstem evoked auditory responses

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2010-02-01

    Full Text Available Os Potenciais Evocados Auditivos de Estado Estável (PEAEE têm sido apontados como uma técnica promissora na avaliação audiológica infantil. OBJETIVO: Investigar o nível de concordância entre os resultados dos PEAEE e dos Potenciais Evocados Auditivos de Tronco Encefálico (PEATE-clique em um grupo de crianças com perda auditiva sensorioneural, averiguando assim a aplicabilidade clínica desta técnica na avaliação audiológica infantil. FORMA DE ESTUDO: Clínico prospectivo de coorte transversal. MATERIAL E MÉTODO: 15 crianças com idade entre dois e 36 meses e diagnóstico de perda auditiva sensorioneural. A concordância entre as respostas dos dois testes foi avaliada por meio do coeficiente de correlação intraclasse e o teste de McNemar comparou os dois testes quanto à probabilidade de ocorrência de resposta. RESULTADOS: Os coeficientes de correlação encontrados foram 0,70; 0,64; 0,49; 0,69; 0,63 e 0,68 respectivamente para as frequências de 1, 2, 4, 1-2, 2-4 e 1-2-4kHz. No teste de McNemar foi obtido p=0.000, indicando que a probabilidade de se obter resposta presente nos dois testes não é igual, sendo maior nos PEAEE. CONCLUSÃO: A boa concordância observada entre as técnicas sugere que um exame pode ser complementar ao outro. Os PEAEE, entretanto, promoveram informações adicionais nos casos de perdas severas e profundas, acrescentando dados importantes para a reabilitação destas crianças e proporcionando maior precisão no diagnó