WorldWideScience

Sample records for auditory perceptual organization

  1. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  2. Perceptual processing of a complex auditory context

    DEFF Research Database (Denmark)

    Quiroga Martinez, David Ricardo; Hansen, Niels Christian; Højlund, Andreas

    The mismatch negativity (MMN) is a brain response elicited by deviants in a series of repetitive sounds. It reflects the perception of change in low-level sound features and reliably measures perceptual auditory memory. However, most MMN studies use simple tone patterns as stimuli, failing...

  3. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  4. Auditory perceptual load: A review.

    Science.gov (United States)

    Murphy, Sandra; Spence, Charles; Dalton, Polly

    2017-09-01

    Selective attention is a crucial mechanism in everyday life, allowing us to focus on a portion of incoming sensory information at the expense of other less relevant stimuli. The circumstances under which irrelevant stimuli are successfully ignored have been a topic of scientific interest for several decades now. Over the last 20 years, the perceptual load theory (e.g. Lavie, 1995) has provided one robust framework for understanding these effects within the visual modality. The suggestion is that successful selection depends on the perceptual demands imposed by the task-relevant information. However, less research has addressed the question of whether the same principles hold in audition and, to date, the existing literature provides a mixed picture. Here, we review the evidence for and against the applicability of perceptual load theory in hearing, concluding that this question still awaits resolution. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  6. Evolutionary conservation and neuronal mechanisms of auditory perceptual restoration.

    Science.gov (United States)

    Petkov, Christopher I; Sutter, Mitchell L

    2011-01-01

    Auditory perceptual 'restoration' occurs when the auditory system restores an occluded or masked sound of interest. Behavioral work on auditory restoration in humans began over 50 years ago using it to model a noisy environmental scene with competing sounds. It has become clear that not only humans experience auditory restoration: restoration has been broadly conserved in many species. Behavioral studies in humans and animals provide a necessary foundation to link the insights being obtained from human EEG and fMRI to those from animal neurophysiology. The aggregate of data resulting from multiple approaches across species has begun to clarify the neuronal bases of auditory restoration. Different types of neural responses supporting restoration have been found, supportive of multiple mechanisms working within a species. Yet a general principle has emerged that responses correlated with restoration mimic the response that would have been given to the uninterrupted sound of interest. Using the same technology to study different species will help us to better harness animal models of 'auditory scene analysis' to clarify the conserved neural mechanisms shaping the perceptual organization of sound and to advance strategies to improve hearing in natural environmental settings. © 2010 Elsevier B.V. All rights reserved.

  7. Perceptual organization and visual attention.

    Science.gov (United States)

    Kimchi, Ruth

    2009-01-01

    Perceptual organization--the processes structuring visual information into coherent units--and visual attention--the processes by which some visual information in a scene is selected--are crucial for the perception of our visual environment and to visuomotor behavior. Recent research points to important relations between attentional and organizational processes. Several studies demonstrated that perceptual organization constrains attentional selectivity, and other studies suggest that attention can also constrain perceptual organization. In this chapter I focus on two aspects of the relationship between perceptual organization and attention. The first addresses the question of whether or not perceptual organization can take place without attention. I present findings demonstrating that some forms of grouping and figure-ground segmentation can occur without attention, whereas others require controlled attentional processing, depending on the processes involved and the conditions prevailing for each process. These findings challenge the traditional view, which assumes that perceptual organization is a unitary entity that operates preattentively. The second issue addresses the question of whether perceptual organization can affect the automatic deployment of attention. I present findings showing that the mere organization of some elements in the visual field by Gestalt factors into a coherent perceptual unit (an "object"), with no abrupt onset or any other unique transient, can capture attention automatically in a stimulus-driven manner. Taken together, the findings discussed in this chapter demonstrate the multifaceted, interactive relations between perceptual organization and visual attention.

  8. Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making

    Directory of Open Access Journals (Sweden)

    Mohsen Alavash

    2017-06-01

    Full Text Available Perceptual decisions vary in the speed at which we make them. Evidence suggests that translating sensory information into perceptual decisions relies on distributed interacting neural populations, with decision speed hinging on power modulations of the neural oscillations. Yet the dependence of perceptual decisions on the large-scale network organization of coupled neural oscillations has remained elusive. We measured magnetoencephalographic signals in human listeners who judged acoustic stimuli composed of carefully titrated clouds of tone sweeps. These stimuli were used in two task contexts, in which the participants judged the overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of the source-projected neural oscillations on a trial-by-trial basis using power-envelope correlations and graph-theoretical network discovery. In both tasks, faster decisions were predicted by higher segregation and lower integration of coupled beta-band (∼16–28 Hz oscillations. We also uncovered the brain network states that promoted faster decisions in either lower-order auditory or higher-order control brain areas. Specifically, decision speed in judging the tone sweep direction critically relied on the nodal network configurations of anterior temporal, cingulate, and middle frontal cortices. Our findings suggest that global network communication during perceptual decision-making is implemented in the human brain by large-scale couplings between beta-band neural oscillations. The speed at which we make perceptual decisions varies. This translation of sensory information into perceptual decisions hinges on dynamic changes in neural oscillatory activity. However, the large-scale neural-network embodiment supporting perceptual decision-making is unclear. We addressed this question by experimenting two auditory perceptual decision-making situations. Using graph-theoretical network discovery, we traced the large-scale network

  9. Data Collection and Analysis Techniques for Evaluating the Perceptual Qualities of Auditory Stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Bonebright, T.L.; Caudell, T.P.; Goldsmith, T.E.; Miner, N.E.

    1998-11-17

    This paper describes a general methodological framework for evaluating the perceptual properties of auditory stimuli. The framework provides analysis techniques that can ensure the effective use of sound for a variety of applications including virtual reality and data sonification systems. Specifically, we discuss data collection techniques for the perceptual qualities of single auditory stimuli including identification tasks, context-based ratings, and attribute ratings. In addition, we present methods for comparing auditory stimuli, such as discrimination tasks, similarity ratings, and sorting tasks. Finally, we discuss statistical techniques that focus on the perceptual relations among stimuli, such as Multidimensional Scaling (MDS) and Pathfinder Analysis. These methods are presented as a starting point for an organized and systematic approach for non-experts in perceptual experimental methods, rather than as a complete manual for performing the statistical techniques and data collection methods. It is our hope that this paper will help foster further interdisciplinary collaboration among perceptual researchers, designers, engineers, and others in the development of effective auditory displays.

  10. Motivation and intelligence drive auditory perceptual learning.

    Science.gov (United States)

    Amitay, Sygal; Halliday, Lorna; Taylor, Jenny; Sohoglu, Ediz; Moore, David R

    2010-03-23

    Although feedback on performance is generally thought to promote perceptual learning, the role and necessity of feedback remain unclear. We investigated the effect of providing varying amounts of positive feedback while listeners attempted to discriminate between three identical tones on learning frequency discrimination. Using this novel procedure, the feedback was meaningless and random in relation to the listeners' responses, but the amount of feedback provided (or lack thereof) affected learning. We found that a group of listeners who received positive feedback on 10% of the trials improved their performance on the task (learned), while other groups provided either with excess (90%) or with no feedback did not learn. Superimposed on these group data, however, individual listeners showed other systematic changes of performance. In particular, those with lower non-verbal IQ who trained in the no feedback condition performed more poorly after training. This pattern of results cannot be accounted for by learning models that ascribe an external teacher role to feedback. We suggest, instead, that feedback is used to monitor performance on the task in relation to its perceived difficulty, and that listeners who learn without the benefit of feedback are adept at self-monitoring of performance, a trait that also supports better performance on non-verbal IQ tests. These results show that 'perceptual' learning is strongly influenced by top-down processes of motivation and intelligence.

  11. Perceptual Fluency, Auditory Generation, and Metamemory: Analyzing the Perceptual Fluency Hypothesis in the Auditory Modality

    Science.gov (United States)

    Besken, Miri; Mulligan, Neil W.

    2014-01-01

    Judgments of learning (JOLs) are sometimes influenced by factors that do not impact actual memory performance. One recent proposal is that perceptual fluency during encoding affects metamemory and is a basis of metacognitive illusions. In the present experiments, participants identified aurally presented words that contained inter-spliced silences…

  12. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    Science.gov (United States)

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory

  13. Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2017-07-01

    The two-tone sequence (ABA_), which comprises two different sounds (A and B) and a silent gap, has been used to investigate how the auditory system organizes sequential sounds depending on various stimulus conditions or brain states. Auditory streaming can be evoked by differences not only in the tone frequency ("spectral cue": ΔF TONE , TONE condition) but also in the amplitude modulation rate ("AM cue": ΔF AM , AM condition). The aim of the present study was to explore the relationship between the perceptual properties of auditory streaming for the TONE and AM conditions. A sequence with a long duration (400 repetitions of ABA_) was used to examine the property of the bistability of streaming. The ratio of feature differences that evoked an equivalent probability of the segregated percept was close to the ratio of the Q-values of the auditory and modulation filters, consistent with a "channeling theory" of auditory streaming. On the other hand, for values of ΔF AM and ΔF TONE evoking equal probabilities of the segregated percept, the number of perceptual switches was larger for the TONE condition than for the AM condition, indicating that the mechanism(s) that determine the bistability of auditory streaming are different between or sensitive to the two domains. Nevertheless, the number of switches for individual listeners was positively correlated between the spectral and AM domains. The results suggest a possibility that the neural substrates for spectral and AM processes share a common switching mechanism but differ in location and/or in the properties of neural activity or the strength of internal noise at each level. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    Science.gov (United States)

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the

  15. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    Science.gov (United States)

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  17. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  18. No counterpart of visual perceptual echoes in the auditory system.

    Directory of Open Access Journals (Sweden)

    Barkın İlhan

    Full Text Available It has been previously demonstrated by our group that a visual stimulus made of dynamically changing luminance evokes an echo or reverberation at ~10 Hz, lasting up to a second. In this study we aimed to reveal whether similar echoes also exist in the auditory modality. A dynamically changing auditory stimulus equivalent to the visual stimulus was designed and employed in two separate series of experiments, and the presence of reverberations was analyzed based on reverse correlations between stimulus sequences and EEG epochs. The first experiment directly compared visual and auditory stimuli: while previous findings of ~10 Hz visual echoes were verified, no similar echo was found in the auditory modality regardless of frequency. In the second experiment, we tested if auditory sequences would influence the visual echoes when they were congruent or incongruent with the visual sequences. However, the results in that case similarly did not reveal any auditory echoes, nor any change in the characteristics of visual echoes as a function of audio-visual congruence. The negative findings from these experiments suggest that brain oscillations do not equivalently affect early sensory processes in the visual and auditory modalities, and that alpha (8-13 Hz oscillations play a special role in vision.

  19. Age Differences in Voice Evaluation: From Auditory-Perceptual Evaluation to Social Interactions

    Science.gov (United States)

    Lortie, Catherine L.; Deschamps, Isabelle; Guitton, Matthieu J.; Tremblay, Pascale

    2018-01-01

    Purpose: The factors that influence the evaluation of voice in adulthood, as well as the consequences of such evaluation on social interactions, are not well understood. Here, we examined the effect of listeners' age and the effect of talker age, sex, and smoking status on the auditory-perceptual evaluation of voice, voice-related psychosocial…

  20. Structured Activities in Perceptual Training to Aid Retention of Visual and Auditory Images.

    Science.gov (United States)

    Graves, James W.; And Others

    The experimental program in structured activities in perceptual training was said to have two main objectives: to train children in retention of visual and auditory images and to increase the children's motivation to learn. Eight boys and girls participated in the program for two hours daily for a 10-week period. The age range was 7.0 to 12.10…

  1. Explaining seeing? Disentangling qualia from perceptual organization.

    Science.gov (United States)

    Ibáñez, Agustin; Bekinschtein, Tristan

    2010-09-01

    Abstract Visual perception and integration seem to play an essential role in our conscious phenomenology. Relatively local neural processing of reentrant nature may explain several visual integration processes (feature binding or figure-ground segregation, object recognition, inference, competition), even without attention or cognitive control. Based on the above statements, should the neural signatures of visual integration (via reentrant process) be non-reportable phenomenological qualia? We argue that qualia are not required to understand this perceptual organization.

  2. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    Science.gov (United States)

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  3. Auditory event-related potentials associated with perceptual reversals of bistable pitch motion.

    Science.gov (United States)

    Davidson, Gray D; Pitts, Michael A

    2014-01-01

    Previous event-related potential (ERP) experiments have consistently identified two components associated with perceptual transitions of bistable visual stimuli, the "reversal negativity" (RN) and the "late positive complex" (LPC). The RN (~200 ms post-stimulus, bilateral occipital-parietal distribution) is thought to reflect transitions between neural representations that form the moment-to-moment contents of conscious perception, while the LPC (~400 ms, central-parietal) is considered an index of post-perceptual processing related to accessing and reporting one's percept. To explore the generality of these components across sensory modalities, the present experiment utilized a novel bistable auditory stimulus. Pairs of complex tones with ambiguous pitch relationships were presented sequentially while subjects reported whether they perceived the tone pairs as ascending or descending in pitch. ERPs elicited by the tones were compared according to whether perceived pitch motion changed direction or remained the same across successive trials. An auditory reversal negativity (aRN) component was evident at ~170 ms post-stimulus over bilateral fronto-central scalp locations. An auditory LPC component (aLPC) was evident at subsequent latencies (~350 ms, fronto-central distribution). These two components may be auditory analogs of the visual RN and LPC, suggesting functionally equivalent but anatomically distinct processes in auditory vs. visual bistable perception.

  4. Auditory-Perceptual Evaluation of Dysphonia: A Comparison Between Narrow and Broad Terminology Systems

    DEFF Research Database (Denmark)

    Iwarsson, Jenny

    2017-01-01

    of the terminology used in the multiparameter Danish Dysphonia Assessment (DDA) approach into the five-parameter GRBAS system. Methods. Voice samples illustrating type and grade of the voice qualities included in DDA were rated by five speech language pathologists using the GRBAS system with the aim of estimating...... terms and antagonists, reflecting muscular hypo- and hyperfunction. Key Words: Auditory-perceptual voice analysis–Dysphonia–GRBAS–Listening test–Voice ratings....

  5. Perceptual grouping over time within and across auditory and tactile modalities.

    Directory of Open Access Journals (Sweden)

    I-Fan Lin

    Full Text Available In auditory scene analysis, population separation and temporal coherence have been proposed to explain how auditory features are grouped together and streamed over time. The present study investigated whether these two theories can be applied to tactile streaming and whether temporal coherence theory can be applied to crossmodal streaming. The results show that synchrony detection between two tones/taps at different frequencies/locations became difficult when one of the tones/taps was embedded in a perceptual stream. While the taps applied to the same location were streamed over time, the taps applied to different locations were not. This observation suggests that tactile stream formation can be explained by population-separation theory. On the other hand, temporally coherent auditory stimuli at different frequencies were streamed over time, but temporally coherent tactile stimuli applied to different locations were not. When there was within-modality streaming, temporally coherent auditory stimuli and tactile stimuli were not streamed over time, either. This observation suggests the limitation of temporal coherence theory when it is applied to perceptual grouping over time.

  6. Temporal Organization of Sound Information in Auditory Memory

    Directory of Open Access Journals (Sweden)

    Kun Song

    2017-06-01

    Full Text Available Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  7. Temporal Organization of Sound Information in Auditory Memory.

    Science.gov (United States)

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  8. Auditory Multi-Stability: Idiosyncratic Perceptual Switching Patterns, Executive Functions and Personality Traits.

    Directory of Open Access Journals (Sweden)

    Dávid Farkas

    Full Text Available Multi-stability refers to the phenomenon of perception stochastically switching between possible interpretations of an unchanging stimulus. Despite considerable variability, individuals show stable idiosyncratic patterns of switching between alternative perceptions in the auditory streaming paradigm. We explored correlates of the individual switching patterns with executive functions, personality traits, and creativity. The main dimensions on which individual switching patterns differed from each other were identified using multidimensional scaling. Individuals with high scores on the dimension explaining the largest portion of the inter-individual variance switched more often between the alternative perceptions than those with low scores. They also perceived the most unusual interpretation more often, and experienced all perceptual alternatives with a shorter delay from stimulus onset. The ego-resiliency personality trait, which reflects a tendency for adaptive flexibility and experience seeking, was significantly positively related to this dimension. Taking these results together we suggest that this dimension may reflect the individual's tendency for exploring the auditory environment. Executive functions were significantly related to some of the variables describing global properties of the switching patterns, such as the average number of switches. Thus individual patterns of perceptual switching in the auditory streaming paradigm are related to some personality traits and executive functions.

  9. Perceptual Organization of Visual Structure Requires a Flexible Learning Mechanism

    Science.gov (United States)

    Aslin, Richard N.

    2011-01-01

    Bhatt and Quinn (2011) provide a compelling and comprehensive review of empirical evidence that supports the operation of principles of perceptual organization in young infants. They also have provided a comprehensive list of experiences that could serve to trigger the learning of at least some of these principles of perceptual organization, and…

  10. Perceptual-Auditory and Acoustical Analysis of the Voices of Transgender Women.

    Science.gov (United States)

    Schwarz, Karine; Fontanari, Anna Martha Vaitses; Costa, Angelo Brandelli; Soll, Bianca Machado Borba; da Silva, Dhiordan Cardoso; de Sá Villas-Bôas, Anna Paula; Cielo, Carla Aparecida; Bastilha, Gabriele Rodrigues; Ribeiro, Vanessa Veis; Dorfman, Maria Elza Kazumi Yamaguti; Lobato, Maria Inês Rodrigues

    2017-09-28

    Voice is an important gender marker in the transition process as a transgender individual accepts a new gender identity. The objectives of this study were to describe and relate aspects of a perceptual-auditory analysis and the fundamental frequency (F0) of male-to-female (MtF) transsexual individuals. A case-control study was carried out with individuals aged 19-52 years who attended the Gender Identity Program of the Hospital de Clínicas of Porto Alegre. Vocal recordings from the MtF transgender and cisgender individuals (vowel /a:/ and six phrases of Consensus Auditory Perceptual Evaluation Voice [CAPE-V]) were edited and randomly coded before storage in a Dropbox folder. The voices (vowel /a:/) were analyzed by consensus on the same day by two judge speech therapists who had more than 10 years of experience in the voice area using the GRBASI perceptual-auditory vocal evaluation scale. Acoustic analysis of the voices was performed using the advanced Multi-Dimensional Voice Program software. The resonance focus and the degrees of masculinity and femininity for each voice recording were determined by listening to the CAPE-V phrases, for the same judges. There were significant differences between the groups regarding a greater frequency of subjects with F0 between 80 and 150 Hz (P = 0.003), and a greater frequency of hypernasal resonant focus (P < 0.001) in the MtF cases and greater frequency of subjects with absence of roughness (P = 0.031) in the control group. The MtF group of individuals showed altered vertical resonant focus, more masculine voices, and lower fundamental frequencies. The control group showed a significant absence of roughness. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  12. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  13. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  14. [Design of standard voice sample text for subjective auditory perceptual evaluation of voice disorders].

    Science.gov (United States)

    Li, Jin-rang; Sun, Yan-yan; Xu, Wen

    2010-09-01

    To design a speech voice sample text with all phonemes in Mandarin for subjective auditory perceptual evaluation of voice disorders. The principles for design of a speech voice sample text are: The short text should include the 21 initials and 39 finals, this may cover all the phonemes in Mandarin. Also, the short text should have some meanings. A short text was made out. It had 155 Chinese words, and included 21 initials and 38 finals (the final, ê, was not included because it was rarely used in Mandarin). Also, the text covered 17 light tones and one "Erhua". The constituent ratios of the initials and finals presented in this short text were statistically similar as those in Mandarin according to the method of similarity of the sample and population (r = 0.742, P text were statistically not similar as those in Mandarin (r = 0.731, P > 0.05). A speech voice sample text with all phonemes in Mandarin was made out. The constituent ratios of the initials and finals presented in this short text are similar as those in Mandarin. Its value for subjective auditory perceptual evaluation of voice disorders need further study.

  15. Effects of consensus training on the reliability of auditory perceptual ratings of voice quality.

    Science.gov (United States)

    Iwarsson, Jenny; Reinholt Petersen, Niels

    2012-05-01

    This study investigates the effect of consensus training of listeners on intrarater and interrater reliability and agreement of perceptual voice analysis. The use of such training, including a reference voice sample, could be assumed to make the internal standards held in memory common and more robust, which is of great importance to reduce the variability of auditory perceptual ratings. A prospective design with testing before and after training. Thirteen students of audiologopedics served as listening subjects. The ratings were made using a multidimensional protocol with four-point equal-appearing interval scales. The stimuli consisted of text reading by authentic dysphonic patients. The consensus training for each perceptual voice parameter included (1) definition, (2) underlying physiology, (3) presentation of carefully selected sound examples representing the parameter in three different grades followed by group discussions of perceived characteristics, and (4) practical exercises including imitation to make use of the listeners' proprioception. Intrarater reliability and agreement showed a marked improvement for intermittent aphonia but not for vocal fry. Interrater reliability was high for most parameters before training with a slight increase after training. Interrater agreement showed marked increases for most voice quality parameters as a result of the training. The results support the recommendation of specific consensus training, including use of a reference voice sample material, to calibrate, equalize, and stabilize the internal standards held in memory by the listeners. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  16. Using Auditory Cues to Perceptually Extract Visual Data in Collaborative, Immersive Big-Data Display Systems

    Science.gov (United States)

    Lee, Wendy

    The advent of multisensory display systems, such as virtual and augmented reality, has fostered a new relationship between humans and space. Not only can these systems mimic real-world environments, they have the ability to create a new space typology made solely of data. In these spaces, two-dimensional information is displayed in three dimensions, requiring human senses to be used to understand virtual, attention-based elements. Studies in the field of big data have predominately focused on visual representations and extractions of information with little focus on sounds. The goal of this research is to evaluate the most efficient methods of perceptually extracting visual data using auditory stimuli in immersive environments. Using Rensselaer's CRAIVE-Lab, a virtual reality space with 360-degree panorama visuals and an array of 128 loudspeakers, participants were asked questions based on complex visual displays using a variety of auditory cues ranging from sine tones to camera shutter sounds. Analysis of the speed and accuracy of participant responses revealed that auditory cues that were more favorable for localization and were positively perceived were best for data extraction and could help create more user-friendly systems in the future.

  17. Visuo-perceptual capabilities predict sensitivity for coinciding auditory and visual transients in multi-element displays.

    Science.gov (United States)

    Meyerhoff, Hauke S; Gehrer, Nina A

    2017-01-01

    In order to obtain a coherent representation of the outside world, auditory and visual information are integrated during human information processing. There is remarkable variance among observers in the capability to integrate auditory and visual information. Here, we propose that visuo-perceptual capabilities predict detection performance for audiovisually coinciding transients in multi-element displays due to severe capacity limitations in audiovisual integration. In the reported experiment, we employed an individual differences approach in order to investigate this hypothesis. Therefore, we measured performance in a useful-field-of-view task that captures detection performance for briefly presented stimuli across a large perceptual field. Furthermore, we measured sensitivity for visual direction changes that coincide with tones within the same participants. Our results show that individual differences in visuo-perceptual capabilities predicted sensitivity for the presence of audiovisually synchronous events among competing visual stimuli. To ensure that this correlation does not stem from superordinate factors, we also tested performance in an unrelated working memory task. Performance in this task was independent of sensitivity for the presence of audiovisually synchronous events. Our findings strengthen the proposed link between visuo-perceptual capabilities and audiovisual integration. The results also suggest that basic visuo-perceptual capabilities provide the basis for the subsequent integration of auditory and visual information.

  18. Visual perceptual load reduces auditory detection in typically developing individuals but not in individuals with autism spectrum disorders.

    Science.gov (United States)

    Tillmann, Julian; Swettenham, John

    2017-02-01

    Previous studies examining selective attention in individuals with autism spectrum disorder (ASD) have yielded conflicting results, some suggesting superior focused attention (e.g., on visual search tasks), others demonstrating greater distractibility. This pattern could be accounted for by the proposal (derived by applying the Load theory of attention, e.g., Lavie, 2005) that ASD is characterized by an increased perceptual capacity (Remington, Swettenham, Campbell, & Coleman, 2009). Recent studies in the visual domain support this proposal. Here we hypothesize that ASD involves an enhanced perceptual capacity that also operates across sensory modalities, and test this prediction, for the first time using a signal detection paradigm. Seventeen neurotypical (NT) and 15 ASD adolescents performed a visual search task under varying levels of visual perceptual load while simultaneously detecting presence/absence of an auditory tone embedded in noise. Detection sensitivity (d') for the auditory stimulus was similarly high for both groups in the low visual perceptual load condition (e.g., 2 items: p = .391, d = 0.31, 95% confidence interval [CI] [-0.39, 1.00]). However, at a higher level of visual load, auditory d' reduced for the NT group but not the ASD group, leading to a group difference (p = .002, d = 1.2, 95% CI [0.44, 1.96]). As predicted, when visual perceptual load was highest, both groups then showed a similarly low auditory d' (p = .9, d = 0.05, 95% CI [-0.65, 0.74]). These findings demonstrate that increased perceptual capacity in ASD operates across modalities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. The Effects of Meaning-Based Auditory Training on Behavioral Measures of Perceptual Effort in Individuals with Impaired Hearing.

    Science.gov (United States)

    Sommers, Mitchell S; Tye-Murray, Nancy; Barcroft, Joe; Spehar, Brent P

    2015-11-01

    There has been considerable interest in measuring the perceptual effort required to understand speech, as well as to identify factors that might reduce such effort. In the current study, we investigated whether, in addition to improving speech intelligibility, auditory training also could reduce perceptual or listening effort. Perceptual effort was assessed using a modified version of the n-back memory task in which participants heard lists of words presented without background noise and were asked to continually update their memory of the three most recently presented words. Perceptual effort was indexed by memory for items in the three-back position immediately before, immediately after, and 3 months after participants completed the Computerized Learning Exercises for Aural Rehabilitation (clEAR), a 12-session computerized auditory training program. Immediate posttraining measures of perceptual effort indicated that participants could remember approximately one additional word compared to pretraining. Moreover, some training gains were retained at the 3-month follow-up, as indicated by significantly greater recall for the three-back item at the 3-month measurement than at pretest. There was a small but significant correlation between gains in intelligibility and gains in perceptual effort. The findings are discussed within the framework of a limited-capacity speech perception system.

  20. Auditory Stream Segregation in Autism Spectrum Disorder: Benefits and Downsides of Superior Perceptual Processes

    Science.gov (United States)

    Bouvet, Lucie; Mottron, Laurent; Valdois, Sylviane; Donnadieu, Sophie

    2016-01-01

    Auditory stream segregation allows us to organize our sound environment, by focusing on specific information and ignoring what is unimportant. One previous study reported difficulty in stream segregation ability in children with Asperger syndrome. In order to investigate this question further, we used an interleaved melody recognition task with…

  1. Auditory-Perceptual and Acoustic Methods in Measuring Dysphonia Severity of Korean Speech.

    Science.gov (United States)

    Maryn, Youri; Kim, Hyung-Tae; Kim, Jaeock

    2016-09-01

    The purpose of this study was to explore the criterion-related concurrent validity of two standardized auditory-perceptual rating protocols and the Acoustic Voice Quality Index (AVQI) for measuring dysphonia severity in Korean speech. Sixty native Korean subjects with various voice disorders were asked to sustain the vowel [a:] and to read aloud the Korean text "Walk." A 3-second midvowel portion of the sustained vowel and two sentences (with 25 syllables) were edited, concatenated, and analyzed according to methods described elsewhere. From 56 participants, both continuous speech and sustained vowel recordings had sufficiently high signal-to-noise ratios (35.5 dB and 37 dB on average, respectively) and were therefore subjected to further dysphonia severity analysis with (1) "G" or Grade from the GRBAS protocol, (2) "OS" or Overall Severity from the Consensus Auditory-Perceptual Evaluation of Voice protocol, and (3) AVQI. First, high correlations were found between G and OS (rS = 0.955 for sustained vowels; rS = 0.965 for continuous speech). Second, the AVQI showed a strong correlation with G (rS = 0.911) as well as OS (rP = 0.924). These findings are in agreement with similar studies dealing with continuous speech in other languages. The present study highlights the criterion-related concurrent validity of these methods in Korean speech. Furthermore, it supports the cross-linguistic robustness of the AVQI as a valid and objective marker of overall dysphonia severity. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Perceptual organization at attended and unattended locations

    Institute of Scientific and Technical Information of China (English)

    HAN Shihui; Glyn W. Humphreys

    2005-01-01

    This study examined the effects of attention on forming perceptual units by proximity grouping and by uniform connectedness (UC). In Experiment 1 a row of three global letters defined by either proximity or UC was presented at the center of the visual field. Participants were asked to identify the letter in the middle of stimulus arrays while ignoring the flankers. The stimulus onset asynchrony (SOA) between stimulus arrays and masks varied between 180 and 500 ms. We found that responses to targets defined by proximity grouping were slower than to those defined by UC at median SOAs but there were no differences at short or long SOAs. Incongruent flankers slowed responses to targets and this flanker compatibility effect was larger for UC than for proximity-defined flankers. Experiment 2 examined the effects of spatial precueing on discrimination responses to proximity- and UC-defined targets. The advantage for targets defined by UC over targets defined by proximity grouping was greater at uncued relative to cued locations. The results suggest that the advantage for UC over proximity grouping in forming perceptual units is contingent on the stimuli not being fully attended, and that paying attention to the stimuli differentially benefits proximity grouping.

  3. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  4. Human visual perceptual organization beats thinking on speed.

    Science.gov (United States)

    van der Helm, Peter A

    2017-05-01

    What is the degree to which knowledge influences visual perceptual processes? This question, which is central to the seeing-versus-thinking debate in cognitive science, is often discussed using examples claimed to be proof of one stance or another. It has, however, also been muddled by the usage of different and unclear definitions of perception. Here, for the well-defined process of perceptual organization, I argue that including speed (or efficiency) into the equation opens a new perspective on the limits of top-down influences of thinking on seeing. While the input of the perceptual organization process may be modifiable and its output enrichable, the process itself seems so fast (or efficient) that thinking hardly has time to intrude and is effective mostly after the fact.

  5. Auditory-visual stimulus pairing enhances perceptual learning in a songbird.

    Science.gov (United States)

    Hultsch; Schleuss; Todt

    1999-07-01

    In many oscine birds, song learning is affected by social variables, for example the behaviour of a tutor. This implies that both auditory and visual perceptual systems should be involved in the acquisition process. To examine whether and how particular visual stimuli can affect song acquisition, we tested the impact of a tutoring design in which the presentation of auditory stimuli (i.e. species-specific master songs) was paired with a well-defined nonauditory stimulus (i.e. stroboscope light flashes: Strobe regime). The subjects were male hand-reared nightingales, Luscinia megarhynchos. For controls, males were exposed to tutoring without a light stimulus (Control regime). The males' singing recorded 9 months later showed that the Strobe regime had enhanced the acquisition of song patterns. During this treatment birds had acquired more songs than during the Control regime; the observed increase in repertoire size was from 20 to 30% in most cases. Furthermore, the copy quality of imitations acquired during the Strobe regime was better than that of imitations developed from the Control regime, and this was due to a significant increase in the number of 'perfect' song copies. We conclude that these effects were mediated by an intrinsic component (e.g. attention or arousal) which specifically responded to the Strobe regime. Our findings also show that mechanisms of song learning are well prepared to process information from cross-modal perception. Thus, more detailed enquiries into stimulus complexes that are usually referred to as social variables are promising. Copyright 1999 The Association for the Study of Animal Behaviour.

  6. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    Science.gov (United States)

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  7. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

    Science.gov (United States)

    Molloy, Katharine; Moore, David R; Sohoglu, Ediz; Amitay, Sygal

    2012-01-01

    The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session. We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased. Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

  8. Perceptual organization, visual attention, and objecthood.

    Science.gov (United States)

    Kimchi, Ruth; Yeshurun, Yaffa; Spehar, Branka; Pirkner, Yossef

    2016-09-01

    We have previously demonstrated that the mere organization of some elements in the visual field into an object attracts attention automatically. Here, we explored three different aspects of this automatic attentional capture: (a) Does the attentional capture by an object involve a spatial component? (b) Which Gestalt organization factors suffice for an object to capture attention? (c) Does the strength of organization affect the object's ability to capture attention? Participants viewed multi-elements displays and either identified the color of one element or responded to a Vernier target. On some trials, a subset of the elements grouped by Gestalt factors into an object that was irrelevant to the task and not predictive of the target. An object effect - faster performance for targets within the object than for targets outside the object - was found even when the target appeared after the object offset, and was sensitive to target-object distance, suggesting that the capture of attention by an object is accompanied by a deployment of attention to the object location. Object effects of similar magnitude were found for objects grouped by a combination of factors (collinearity, closure, and symmetry, or closure and symmetry) or by a single factor when it was collinearity, but not symmetry, suggesting that collinearity, or closure combined with symmetry, suffices for automatic capture of attention by an object, but symmetry does not. Finally, the strength of grouping in modal completion, manipulated by varying contrast polarity between and within elements, affected the effectiveness of the attentional capture by the induced object. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Loud Music Exposure and Cochlear Synaptopathy in Young Adults: Isolated Auditory Brainstem Response Effects but No Perceptual Consequences.

    Science.gov (United States)

    Grose, John H; Buss, Emily; Hall, Joseph W

    2017-01-01

    The purpose of this study was to test the hypothesis that listeners with frequent exposure to loud music exhibit deficits in suprathreshold auditory performance consistent with cochlear synaptopathy. Young adults with normal audiograms were recruited who either did ( n = 31) or did not ( n = 30) have a history of frequent attendance at loud music venues where the typical sound levels could be expected to result in temporary threshold shifts. A test battery was administered that comprised three sets of procedures: (a) electrophysiological tests including distortion product otoacoustic emissions, auditory brainstem responses, envelope following responses, and the acoustic change complex evoked by an interaural phase inversion; (b) psychoacoustic tests including temporal modulation detection, spectral modulation detection, and sensitivity to interaural phase; and (c) speech tests including filtered phoneme recognition and speech-in-noise recognition. The results demonstrated that a history of loud music exposure can lead to a profile of peripheral auditory function that is consistent with an interpretation of cochlear synaptopathy in humans, namely, modestly abnormal auditory brainstem response Wave I/Wave V ratios in the presence of normal distortion product otoacoustic emissions and normal audiometric thresholds. However, there were no other electrophysiological, psychophysical, or speech perception effects. The absence of any behavioral effects in suprathreshold sound processing indicated that, even if cochlear synaptopathy is a valid pathophysiological condition in humans, its perceptual sequelae are either too diffuse or too inconsequential to permit a simple differential diagnosis of hidden hearing loss.

  10. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    2016-10-01

    Full Text Available In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release has not been well characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus as well as a broad P3b-like potential (between ~300 and 600 ms with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  11. The effects of interstimulus interval on event-related indices of attention: an auditory selective attention test of perceptual load theory.

    Science.gov (United States)

    Gomes, Hilary; Barrett, Sophia; Duff, Martin; Barnhardt, Jack; Ritter, Walter

    2008-03-01

    We examined the impact of perceptual load by manipulating interstimulus interval (ISI) in two auditory selective attention studies that varied in the difficulty of the target discrimination. In the paradigm, channels were separated by frequency and target/deviant tones were softer in intensity. Three ISI conditions were presented: fast (300ms), medium (600ms) and slow (900ms). Behavioral (accuracy and RT) and electrophysiological measures (Nd, P3b) were observed. In both studies, participants evidenced poorer accuracy during the fast ISI condition than the slow suggesting that ISI impacted task difficulty. However, none of the three measures of processing examined, Nd amplitude, P3b amplitude elicited by unattended deviant stimuli, or false alarms to unattended deviants, were impacted by ISI in the manner predicted by perceptual load theory. The prediction based on perceptual load theory, that there would be more processing of irrelevant stimuli under conditions of low as compared to high perceptual load, was not supported in these auditory studies. Task difficulty/perceptual load impacts the processing of irrelevant stimuli in the auditory modality differently than predicted by perceptual load theory, and perhaps differently than in the visual modality.

  12. A crossmodal crossover: opposite effects of visual and auditory perceptual load on steady-state evoked potentials to irrelevant visual stimuli.

    Science.gov (United States)

    Jacoby, Oscar; Hall, Sarah E; Mattingley, Jason B

    2012-07-16

    Mechanisms of attention are required to prioritise goal-relevant sensory events under conditions of stimulus competition. According to the perceptual load model of attention, the extent to which task-irrelevant inputs are processed is determined by the relative demands of discriminating the target: the more perceptually demanding the target task, the less unattended stimuli will be processed. Although much evidence supports the perceptual load model for competing stimuli within a single sensory modality, the effects of perceptual load in one modality on distractor processing in another is less clear. Here we used steady-state evoked potentials (SSEPs) to measure neural responses to irrelevant visual checkerboard stimuli while participants performed either a visual or auditory task that varied in perceptual load. Consistent with perceptual load theory, increasing visual task load suppressed SSEPs to the ignored visual checkerboards. In contrast, increasing auditory task load enhanced SSEPs to the ignored visual checkerboards. This enhanced neural response to irrelevant visual stimuli under auditory load suggests that exhausting capacity within one modality selectively compromises inhibitory processes required for filtering stimuli in another. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization.

    Science.gov (United States)

    Billig, Alexander J; Davis, Matthew H; Carlyon, Robert P

    2018-03-14

    Auditory signals arrive at the ear as a mixture that the brain must decompose into distinct sources based to a large extent on acoustic properties of the sounds. An important question concerns whether listeners have voluntary control over how many sources they perceive. This has been studied using pure high (H) and low (L) tones presented in the repeating pattern HLH-HLH-, which can form a bistable percept heard either as an integrated whole (HLH-) or as segregated into high (H-H-) and low (-L-) sequences. Although instructing listeners to try to integrate or segregate sounds affects reports of what they hear, this could reflect a response bias rather than a perceptual effect. We had human listeners (15 males, 12 females) continuously report their perception of such sequences and recorded neural activity using MEG. During neutral listening, a classifier trained on patterns of neural activity distinguished between periods of integrated and segregated perception. In other conditions, participants tried to influence their perception by allocating attention either to the whole sequence or to a subset of the sounds. They reported hearing the desired percept for a greater proportion of time than when listening neutrally. Critically, neural activity supported these reports; stimulus-locked brain responses in auditory cortex were more likely to resemble the signature of segregation when participants tried to hear segregation than when attempting to perceive integration. These results indicate that listeners can influence how many sound sources they perceive, as reflected in neural responses that track both the input and its perceptual organization. SIGNIFICANCE STATEMENT Can we consciously influence our perception of the external world? We address this question using sound sequences that can be heard either as coming from a single source or as two distinct auditory streams. Listeners reported spontaneous changes in their perception between these two interpretations while

  14. Perceptual organization in computer vision - A review and a proposal for a classificatory structure

    Science.gov (United States)

    Sarkar, Sudeep; Boyer, Kim L.

    1993-01-01

    The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.

  15. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    Science.gov (United States)

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  16. Vocal Acoustic and Auditory-Perceptual Characteristics During Fluctuations in Estradiol Levels During the Menstrual Cycle: A Longitudinal Study.

    Science.gov (United States)

    Arruda, Polyanna; Diniz da Rosa, Marine Raquel; Almeida, Larissa Nadjara Alves; de Araujo Pernambuco, Leandro; Almeida, Anna Alice

    2018-03-07

    Estradiol production varies cyclically, changes in levels are hypothesized to affect the voice. The main objective of this study was to investigate vocal acoustic and auditory-perceptual characteristics during fluctuations in the levels of the hormone estradiol during the menstrual cycle. A total of 44 volunteers aged between 18 and 45 were selected. Of these, 27 women with regular menstrual cycles comprised the test group (TG) and 17 combined oral contraceptive users comprised the control group (CG). The study was performed in two phases. In phase 1, anamnesis was performed. Subsequently, the TG underwent blood sample collection for measurement of estradiol levels and voice recording for later acoustic and auditory-perceptual analysis. The CG underwent only voice recording. Phase 2 involved the same measurements as phase 1 for each group. Variables were evaluated using descriptive and inferential analysis to compare groups and phases and to determine relationships between variables. Voice changes were found during the menstrual cycle, and such changes were determined to be related to variations in estradiol levels. Impaired voice quality was observed to be associated with decreased levels of estradiol. The CG did not demonstrate significant vocal changes during phases 1 and 2. The TG showed significant increases in vocal parameters of roughness, tension, and instability during phase 2 (the period of low estradiol levels) when compared with the CG. Low estradiol levels were also found to be negatively correlated with the parameters of tension, instability, and jitter and positively correlated with fundamental voice frequency. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Effects of Consensus Training on the Reliability of Auditory Perceptual Ratings of Voice Quality

    DEFF Research Database (Denmark)

    Iwarsson, Jenny; Petersen, Niels Reinholt

    2012-01-01

    Objectives/Hypothesis: This study investigates the effect of consensus training of listeners on intrarater and interrater reliability and agreement of perceptual voice analysis. The use of such training, including a reference voice sample, could be assumed to make the internal standards held in m...

  18. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  19. Hearing illusory sounds in noise: sensory-perceptual transformations in primary auditory cortex.

    NARCIS (Netherlands)

    Riecke, L.; Opstal, A.J. van; Goebel, R.; Formisano, E.

    2007-01-01

    A sound that is interrupted by silence is perceived as discontinuous. However, when the silence is replaced by noise, the target sound may be heard as uninterrupted. Understanding the neural basis of this continuity illusion may elucidate the ability to track sounds of interest in noisy auditory

  20. Vocal Function Exercises for Muscle Tension Dysphonia: Auditory-Perceptual Evaluation and Self-Assessment Rating.

    Science.gov (United States)

    Jafari, Narges; Salehi, Abolfazl; Izadi, Farzad; Talebian Moghadam, Saeed; Ebadi, Abbas; Dabirmoghadam, Payman; Faham, Maryam; Shahbazi, Mehdi

    2017-07-01

    Muscle tension dysphonia (MTD) is a functional dysphonia, which appears with an excessive tension in the intrinsic and extrinsic laryngeal musculatures. MTD can affect voice quality and quality of life. The purpose of the present study was to assess the effectiveness of vocal function exercises (VFEs) on perceptual and self-assessment ratings in a group of 15 subjects with MTD. The study comprised 15 subjects with MTD (8 men and 7 women, mean age 39.8 years, standard deviation 10.6, age range 24-62 years). All participants were native Persian speakers who underwent a 6-week course of VFEs. The Voice Handicap Index (VHI) (the self-assessment scale) and Grade, Roughness, Breathiness, Asthenia, Strain (GRBAS) scale (perceptual rating of voice quality) were used to compare pre- and post-VFEs. GRBAS data of patients before and after VFEs were compared using Wilcoxon signed-rank test, and VHI data of patients pre- and post-VFEs were compared using Student paired t test. These perceptual parameters showed a statistically significant improvement in subjects with MTD after voice therapy (significant at P self-assessment ratings measurements (with the VHI). As a result, the data provide evidence regarding the efficacy of VFEs in the treatment of patients with MTD. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. From Hearing Sounds to Recognizing Phonemes: Primary Auditory Cortex is A Truly Perceptual Language Area

    Directory of Open Access Journals (Sweden)

    Byron Bernal

    2016-11-01

    Full Text Available The aim of this article is to present a systematic review about the anatomy, function, connectivity, and functional activation of the primary auditory cortex (PAC (Brodmann areas 41/42 when involved in language paradigms. PAC activates with a plethora of diverse basic stimuli including but not limited to tones, chords, natural sounds, consonants, and speech. Nonetheless, the PAC shows specific sensitivity to speech. Damage in the PAC is associated with so-called “pure word-deafness” (“auditory verbal agnosia”. BA41, and to a lesser extent BA42, are involved in early stages of phonological processing (phoneme recognition. Phonological processing may take place in either the right or left side, but customarily the left exerts an inhibitory tone over the right, gaining dominance in function. BA41/42 are primary auditory cortices harboring complex phoneme perception functions with asymmetrical expression, making it possible to include them as core language processing areas (Wernicke’s area.

  2. Evolution of tonal organization in music mirrors symbolic representation of perceptual reality. Part-1: Prehistoric.

    Science.gov (United States)

    Nikolsky, Aleksey

    2015-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. The evidence from music theory, ethnography, archeology, organology, anthropology, psychoacoustics, and evolutionary biology is plotted against experimental evidence. Much of the methodology for this investigation comes from studies conducted within the territory of the former USSR. To date, this methodology has remained solely confined to Russian speaking scholars. A brief overview of pitch-set theory demonstrates the need to distinguish between vertical and horizontal harmony, laying out the framework for virtual music space that operates according to the perceptual laws of tonal gravity. Brought to life by bifurcation of music and speech, tonal gravity passed through eleven discrete stages of development until the onset of tonality in the seventeenth century. Each stage presents its own method of integration of separate musical tones into an auditory-cognitive unity. The theory of "melodic intonation" is set forth as a counterpart to harmonic theory of chords. Notions of tonality, modality, key, diatonicity, chromaticism, alteration, and modulation are defined in terms of their perception, and categorized according to the way in which they have developed historically. Tonal organization in music, and perspective organization in fine arts are explained as products of the same underlying mental process. Music seems to act as a unique medium of symbolic representation of reality through the concept of pitch. Tonal organization of pitch reflects the culture of thinking, adopted as a standard within a community of music users. Tonal organization might be a naturally formed system of optimizing individual perception of reality within a social group and its immediate environment, setting conventional standards of intellectual and emotional

  3. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  4. Role of serial order in the impact of talker variability on short-term memory: testing a perceptual organization-based account.

    Science.gov (United States)

    Hughes, Robert W; Marsh, John E; Jones, Dylan M

    2011-11-01

    In two experiments, we examined the impact of the degree of match between sequential auditory perceptual organization processes and the demands of a short-term memory task (memory for order vs. item information). When a spoken sequence of digits was presented so as to promote its perceptual partitioning into two distinct streams by conveying it in alternating female (F) and male (M) voices (FMFMFMFM)--thereby disturbing the perception of true temporal order--recall of item order was greatly impaired (as compared to recall of item identity). Moreover, an order error type consistent with the formation of voice-based streams was committed more quickly in the alternating-voice condition (Exp. 1). In contrast, when the perceptual organization of the sequence mapped well onto an optimal two-group serial rehearsal strategy--by presenting the two voices in discrete clusters (FFFFMMMM)--order, but not item, recall was enhanced (Exp. 2). The results are consistent with the view that the degree of compatibility between perceptual and deliberate sequencing processes is a key determinant of serial short-term memory performance. Alternative accounts of talker variability effects in short-term memory, based on the concept of a dedicated phonological short-term store and a capacity-limited focus of attention, are also reviewed.

  5. Comparação entre as análises auditiva e acústica nas disartrias Comparison between auditory-perceptual and acoustic analyses in dysarthrias

    Directory of Open Access Journals (Sweden)

    Karin Zazo Ortiz

    2008-01-01

    Full Text Available OBJETIVO: Comparar os dados da análise perceptivo-auditiva (subjetiva com os dados da análise acústica (objetiva. MÉTODOS: Quarenta e dois pacientes disártricos, com diagnósticos neurológicos definidos, 21 do sexo masculino e 21 do sexo feminino foram submetidos à análise perceptual-auditiva e acústica. Todos os pacientes foram submetidos à gravação da voz, tendo sido avaliados, na análise auditiva, tipo de voz, ressonância (equilibrada, hipernasal ou laringo-faríngea, loudness (adequado, diminuído ou aumentado, pitch (adequado, grave, agudo ataque vocal (isocrônico, brusco ou soproso, e estabilidade (estável ou instável. Para a análise acústica foram utilizados os programas GRAM 5.1.7; para a análise da qualidade vocal e comportamento dos harmônicos na espectrografia e o Programa Vox Metria, para a obtenção das medidas objetivas. RESULTADOS: A comparação entre os achados das análises auditiva e acústica em sua maioria não foi significante, ou seja, não houve uma relação direta entre os achados subjetivos e os dados objetivos. Houve diferença estatisticamente significante apenas entre voz soprosa e Shimmer alterado (p=0,048 e entre a definição dos harmônicos e voz soprosa (p=0,040, sendo assim, observou-se correlação entre a presença de ruído à emissão e soprosidade. CONCLUSÕES: As análises perceptual-auditiva e acústica forneceram dados diferentes, porém complementares, auxiliando, de forma conjunta, no diagnóstico clínico das disartrias.PURPOSE: To compare data found in auditory-perceptual analyses (subjective and acoustic analyses (objective in dysarthric patients. METHODS: Forty-two patients with well defined neurological diagnosis, 21 male and 21 female, were evaluated in auditory-perceptual parameters and acoustic measures. All patients had their voices recorded. Auditory-perceptual voice analyses were made considering type of voice, resonance (balanced, hipernasal or laryngopharyngeal

  6. Correlation of the Dysphonia Severity Index (DSI), Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V), and Gender in Brazilians With and Without Voice Disorders.

    Science.gov (United States)

    Nemr, Katia; Simões-Zenari, Marcia; de Souza, Glaucia S; Hachiya, Adriana; Tsuji, Domingos H

    2016-11-01

    This study aims to analyze the Dysphonia Severity Index (DSI) in Brazilians with or without voice disorders and investigate DSI's correlation with gender and auditory-perceptual evaluation data obtained via the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) protocol. A total of 66 Brazilian adults from both genders participated in the study, including 24 patients with dysphonia confirmed on laryngeal examination (dysphonic group [DG]) and 42 volunteers without voice or hearing complaints and without auditory-perceptual voice disorders (nondysphonic group [NDG]). The vocal tasks included in CAPE-V and DSI were performed and recorded. Data were analyzed by means of the independent t test, the Mann-Whitney U test, and Pearson correlation at the 5% significance level. Differences were found in the mean DSI values between the DG and the NDG. Differences were also found in all DSI items between the groups, except for the highest frequency parameter. In the DG, a moderate negative correlation was detected between overall dysphonia severity (CAPE-V) and DSI value, and between breathiness and DSI value, and a weak negative correlation was detected between DSI value and roughness. In the NDG, the maximum phonation time was higher among males. In both groups, the highest frequency parameter was higher among females. The DSI discriminated among Brazilians with or without voice disorders. A correlation was found between some aspects of the DSI and the CAPE-V but not between DSI and gender. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Audiovisual spoken word training can promote or impede auditory-only perceptual learning: prelingually deafened adults with late-acquired cochlear implants versus normal hearing adults.

    Science.gov (United States)

    Bernstein, Lynne E; Eberhardt, Silvio P; Auer, Edward T

    2014-01-01

    Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We

  8. Specialized prefrontal auditory fields: organization of primate prefrontal-temporal pathways

    Directory of Open Access Journals (Sweden)

    Maria eMedalla

    2014-04-01

    Full Text Available No other modality is more frequently represented in the prefrontal cortex than the auditory, but the role of auditory information in prefrontal functions is not well understood. Pathways from auditory association cortices reach distinct sites in the lateral, orbital, and medial surfaces of the prefrontal cortex in rhesus monkeys. Among prefrontal areas, frontopolar area 10 has the densest interconnections with auditory association areas, spanning a large antero-posterior extent of the superior temporal gyrus from the temporal pole to auditory parabelt and belt regions. Moreover, auditory pathways make up the largest component of the extrinsic connections of area 10, suggesting a special relationship with the auditory modality. Here we review anatomic evidence showing that frontopolar area 10 is indeed the main frontal auditory field as the major recipient of auditory input in the frontal lobe and chief source of output to auditory cortices. Area 10 is thought to be the functional node for the most complex cognitive tasks of multitasking and keeping track of information for future decisions. These patterns suggest that the auditory association links of area 10 are critical for complex cognition. The first part of this review focuses on the organization of prefrontal-auditory pathways at the level of the system and the synapse, with a particular emphasis on area 10. Then we explore ideas on how the elusive role of area 10 in complex cognition may be related to the specialized relationship with auditory association cortices.

  9. Perceptual Organization and Operative Thought: A Study of Coherence in Memory.

    Science.gov (United States)

    Heindel, Patricia; Kose, Gary

    Examined in three studies were the influence of perceptual organization on children's memory and the relationship between operational thought and memory performance. In the first study, 72 children at 5, 7, and 9 years of age were given a series of Piagetian tasks and a memory task. Subjects were presented with 10 color-shape pairs depicted in…

  10. Tensor Voting A Perceptual Organization Approach to Computer Vision and Machine Learning

    CERN Document Server

    Mordohai, Philippos

    2006-01-01

    This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organiza

  11. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  12. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    Science.gov (United States)

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  13. A Measure of the Auditory-perceptual Quality of Strain from Electroglottographic Analysis of Continuous Dysphonic Speech: Application to Adductor Spasmodic Dysphonia.

    Science.gov (United States)

    Somanath, Keerthan; Mau, Ted

    2016-11-01

    (1) To develop an automated algorithm to analyze electroglottographic (EGG) signal in continuous dysphonic speech, and (2) to identify EGG waveform parameters that correlate with the auditory-perceptual quality of strain in the speech of patients with adductor spasmodic dysphonia (ADSD). Software development with application in a prospective controlled study. EGG was recorded from 12 normal speakers and 12 subjects with ADSD reading excerpts from the Rainbow Passage. Data were processed by a new algorithm developed with the specific goal of analyzing continuous dysphonic speech. The contact quotient, pulse width, a new parameter peak skew, and various contact closing slope quotient and contact opening slope quotient measures were extracted. EGG parameters were compared between normal and ADSD speech. Within the ADSD group, intra-subject comparison was also made between perceptually strained syllables and unstrained syllables. The opening slope quotient SO7525 distinguished strained syllables from unstrained syllables in continuous speech within individual subjects with ADSD. The standard deviations, but not the means, of contact quotient, EGGW50, peak skew, and SO7525 were different between normal and ADSD speakers. The strain-stress pattern in continuous speech can be visualized as color gradients based on the variation of EGG parameter values. EGG parameters may provide a within-subject measure of vocal strain and serve as a marker for treatment response. The addition of EGG to multidimensional assessment may lead to improved characterization of the voice disturbance in ADSD. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. The objects of visuospatial short-term memory: Perceptual organization and change detection.

    Science.gov (United States)

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy.

  15. The interplay between perceptual organization and object recognition: Temporal dynamics and neuropsychology

    OpenAIRE

    Torfs, Katrien

    2012-01-01

    The ease and efficiency with which we perceive objects in daily life masks the complexity of the processes involved. The main goal of my doctoral research was to enhance our understanding of the complex interplay between perceptual organization and object recognition. To this end, we investigated the dynamic interplay between different component processes of object recognition, and their temporal dynamics. In the first part of this thesis, I present three behavioral studies focusing on the ro...

  16. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  17. Organization of Estrogen-Associated Circuits in the Mouse Primary Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available Sex steroid hormones influence the perceptual processing of sensory signals in vertebrates. In particular, decades of research have shown that circulating levels of estrogen correlate with hearing function. The mechanisms and sites of action supporting this sensory-neuroendocrine modulation, however, remain unknown. Here we combined a molecular cloning strategy, fluorescence in-situ hybridization and unbiased quantification methods to show that estrogen-producing and -sensitive neurons heavily populate the adult mouse primary auditory cortex (AI. We also show that auditory experience in freely-behaving animals engages estrogen-producing and -sensitive neurons in AI. These estrogen-associated networks are greatly stable, and do not quantitatively change as a result of acute episodes of sensory experience. We further demonstrate the neurochemical identity of estrogen-producing and estrogen-sensitive neurons in AI and show that these cell populations are phenotypically distinct. Our findings provide the first direct demonstration that estrogen-associated circuits are highly prevalent and engaged by sensory experience in the mouse auditory cortex, and suggest that previous correlations between estrogen levels and hearing function may be related to brain-generated hormone production. Finally, our findings suggest that estrogenic modulation may be a central component of the operational framework of central auditory networks.

  18. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  19. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2012-06-07

    In the absence of sensory stimuli, spontaneous activity in the brain has been shown to exhibit organization at multiple spatiotemporal scales. In the macaque auditory cortex, responses to acoustic stimuli are tonotopically organized within multiple, adjacent frequency maps aligned in a caudorostral direction on the supratemporal plane (STP) of the lateral sulcus. Here, we used chronic microelectrocorticography to investigate the correspondence between sensory maps and spontaneous neural fluctuations in the auditory cortex. We first mapped tonotopic organization across 96 electrodes spanning approximately two centimeters along the primary and higher auditory cortex. In separate sessions, we then observed that spontaneous activity at the same sites exhibited spatial covariation that reflected the tonotopic map of the STP. This observation demonstrates a close relationship between functional organization and spontaneous neural activity in the sensory cortex of the awake monkey. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Temporal Organization of Sound Information in Auditory Memory

    OpenAIRE

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed ...

  1. Auditory-perceptual speech analysis in children with cerebellar tumours: a long-term follow-up study.

    Science.gov (United States)

    De Smet, Hyo Jung; Catsman-Berrevoets, Coriene; Aarsen, Femke; Verhoeven, Jo; Mariën, Peter; Paquier, Philippe F

    2012-09-01

    Mutism and Subsequent Dysarthria (MSD) and the Posterior Fossa Syndrome (PFS) have become well-recognized clinical entities which may develop after resection of cerebellar tumours. However, speech characteristics following a period of mutism have not been documented in much detail. This study carried out a perceptual speech analysis in 24 children and adolescents (of whom 12 became mute in the immediate postoperative phase) 1-12.2 years after cerebellar tumour resection. The most prominent speech deficits in this study were distorted vowels, slow rate, voice tremor, and monopitch. Factors influencing long-term speech disturbances are presence or absence of postoperative PFS, the localisation of the surgical lesion and the type of adjuvant treatment. Long-term speech deficits may be present up to 12 years post-surgery. The speech deficits found in children and adolescents with cerebellar lesions following cerebellar tumour surgery do not necessarily resemble adult speech characteristics of ataxic dysarthria. Copyright © 2012 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Gestalt perceptual organization of visual stimuli captures attention automatically: Electrophysiological evidence

    Directory of Open Access Journals (Sweden)

    Francesco Marini

    2016-08-01

    Full Text Available The visual system leverages organizational regularities of perceptual elements to create meaningful representations of the world. One clear example of such function, which has been formalized in the Gestalt psychology principles, is the perceptual grouping of simple visual elements (e.g., lines and arcs into unitary objects (e.g., forms and shapes. The present study sought to characterize automatic attentional capture and related cognitive processing of Gestalt-like visual stimuli at the psychophysiological level by using event-related potentials (ERPs. We measured ERPs during a simple visual reaction time task with bilateral presentations of physically matched elements with or without a Gestalt organization. Results showed that Gestalt (vs. non-Gestalt stimuli are characterized by a larger N2pc together with enhanced ERP amplitudes of non-lateralized components (N1, N2, P3 starting around 150ms post-stimulus onset. Thus, we conclude that Gestalt stimuli capture attention automatically and entail characteristic psychophysiological signatures at both early and late processing stages.

  3. A Residential Area Extraction Method for High Resolution Remote Sensing Imagery by Using Visual Saliency and Perceptual Organization

    Directory of Open Access Journals (Sweden)

    CHEN Yixiang

    2017-12-01

    Full Text Available Inspired by human visual cognitive mechanism,a method of residential area extraction from high-resolution remote sensing images was proposed based on visual saliency and perceptual organization. Firstly,the data field theory of cognitive physics was introduced to model the visual saliency and the candidate residential areas were produced by adaptive thresholding. Then,the exact residential areas were obtained and refined by perceptual organization based on the high-frequency features of multi-scale wavelet transform. Finally,the validity of the proposed method was verified by experiments conducted on ZY-3 and Quickbird image data sets.

  4. Interconnected growing self-organizing maps for auditory and semantic acquisition modeling

    Directory of Open Access Journals (Sweden)

    Mengxue eCao

    2014-03-01

    Full Text Available Based on the incremental nature of knowledge acquisition, in this study we propose a growing self-organizing neural network approach for modeling the acquisition of auditory and semantic categories. We introduce an Interconnected Growing Self-Organizing Maps (I-GSOM algorithm, which takes associations between auditory information and semantic information into consideration, in this paper. Direct phonetic--semantic association is simulated in order to model the language acquisition in early phases, such as the babbling and imitation stages, in which no phonological representations exist. Based on the I-GSOM algorithm, we conducted experiments using paired acoustic and semantic training data. We use a cyclical reinforcing and reviewing training procedure to model the teaching and learning process between children and their communication partners; a reinforcing-by-link training procedure and a link-forgetting procedure are introduced to model the acquisition of associative relations between auditory and semantic information. Experimental results indicate that (1 I-GSOM has good ability to learn auditory and semantic categories presented within the training data; (2 clear auditory and semantic boundaries can be found in the network representation; (3 cyclical reinforcing and reviewing training leads to a detailed categorization as well as to a detailed clustering, while keeping the clusters that have already been learned and the network structure that has already been developed stable; and (4 reinforcing-by-link training leads to well-perceived auditory--semantic associations. Our I-GSOM model suggests that it is important to associate auditory information with semantic information during language acquisition. Despite its high level of abstraction, our I-GSOM approach can be interpreted as a biologically-inspired neurocomputational model.

  5. From Grouping to Coupling: A New Perceptual Organization in Vision, Psychology, and Biology

    Science.gov (United States)

    Pinna, Baingio; Porcheddu, Daniele; Deiana, Katia

    2016-01-01

    In this work, perceptual organization has been studied with the same spirit and phenomenological methods used by Gestalt psychologists. This was accomplished through new conditions that cannot be explained in terms of the classical principles of grouping. Perceptual grouping represents the way through which our visual system builds integrated elements on the basis of the maximal homogeneity among the components of the stimulus pattern. Our results demonstrated the inconsistency of organization by grouping, and more importantly, the inconsistency of the principle of similarity. On the contrary, they suggested the unique role played by the principle of dissimilarity among elements that behaves like an accent or a visual emphasis within a whole. The principle of accentuation was here considered as imparting a directional structure to the elements and to the whole object thus creating new phenomena. The salience of the resulting phenomena reveals the supremacy of dissimilarity in relation to similarity and the fact that it belongs to a further organization dynamics that we called “coupling.” In biology, coupling and its principle of accentuation are very strongly related to disruptive camouflage. Moreover, they are source of sexual attraction. They advertise the presence and elicit species identification/communication. In human beings accentuation is needed to show ourselves to others, to understand the way we dress, choose, and create clothes or invent fashion, the way we change our body accentuating several parts and hiding some others, the way we use maquillage. The existence of maquillage itself is derived from the need to accentuate something with the purpose to increase sexual attraction, to exhibit physical strength and beauty, to show or hide social status (e.g., being the king, a warrior, a priest, etc.). Last but not least, accentuation plays a basic role also in making it easier or difficult to read and understand written words. PMID:27471483

  6. Discovering Structure in Auditory Input: Evidence from Williams Syndrome

    Science.gov (United States)

    Elsabbagh, Mayada; Cohen, Henri; Karmiloff-Smith, Annette

    2010-01-01

    We examined auditory perception in Williams syndrome by investigating strategies used in organizing sound patterns into coherent units. In Experiment 1, we investigated the streaming of sound sequences into perceptual units, on the basis of pitch cues, in a group of children and adults with Williams syndrome compared to typical controls. We showed…

  7. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei

    DEFF Research Database (Denmark)

    Tang, Y. Z.; Christensen-Dalsgaard, J.; Carr, C. E.

    2012-01-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of lo...... of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. J. Comp. Neurol. 520:17841799, 2012. (C) 2011 Wiley Periodicals, Inc...

  8. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  9. Perceptual organization of speech signals by children with and without dyslexia

    Science.gov (United States)

    Nittrouer, Susan; Lowenstein, Joanna H.

    2013-01-01

    Developmental dyslexia is a condition in which children encounter difficulty learning to read in spite of adequate instruction. Although considerable effort has been expended trying to identify the source of the problem, no single solution has been agreed upon. The current study explored a new hypothesis, that developmental dyslexia may be due to faulty perceptual organization of linguistically relevant sensory input. To test that idea, sentence-length speech signals were processed to create either sine-wave or noise-vocoded analogs. Seventy children between 8 and 11 years of age, with and without dyslexia participated. Children with dyslexia were selected to have phonological awareness deficits, although those without such deficits were retained in the study. The processed sentences were presented for recognition, and measures of reading, phonological awareness, and expressive vocabulary were collected. Results showed that children with dyslexia, regardless of phonological subtype, had poorer recognition scores than children without dyslexia for both kinds of degraded sentences. Older children with dyslexia recognized the sine-wave sentences better than younger children with dyslexia, but no such effect of age was found for the vocoded materials. Recognition scores were used as predictor variables in regression analyses with reading, phonological awareness, and vocabulary measures used as dependent variables. Scores for both sorts of sentence materials were strong predictors of performance on all three dependent measures when all children were included, but only performance for the sine-wave materials explained significant proportions of variance when only children with dyslexia were included. Finally, matching young, typical readers with older children with dyslexia on reading abilities did not mitigate the group difference in recognition of vocoded sentences. Conclusions were that children with dyslexia have difficulty organizing linguistically relevant sensory

  10. A Century of Gestalt Psychology in Visual Perception I. Perceptual Grouping and Figure-Ground Organization

    Science.gov (United States)

    Wagemans, Johan; Elder, James H.; Kubovy, Michael; Palmer, Stephen E.; Peterson, Mary A.; Singh, Manish; von der Heydt, Rüdiger

    2012-01-01

    In 1912, Max Wertheimer published his paper on phi motion, widely recognized as the start of Gestalt psychology. Because of its continued relevance in modern psychology, this centennial anniversary is an excellent opportunity to take stock of what Gestalt psychology has offered and how it has changed since its inception. We first introduce the key findings and ideas in the Berlin school of Gestalt psychology, and then briefly sketch its development, rise, and fall. Next, we discuss its empirical and conceptual problems, and indicate how they are addressed in contemporary research on perceptual grouping and figure-ground organization. In particular, we review the principles of grouping, both classical (e.g., proximity, similarity, common fate, good continuation, closure, symmetry, parallelism) and new (e.g., synchrony, common region, element and uniform connectedness), and their role in contour integration and completion. We then review classic and new image-based principles of figure-ground organization, how it is influenced by past experience and attention, and how it relates to shape and depth perception. After an integrated review of the neural mechanisms involved in contour grouping, border-ownership, and figure-ground perception, we conclude by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether we can speak of a Gestalt revival, and where the remaining limitations and challenges lie. A better integration of this research tradition with the rest of vision science requires further progress regarding the conceptual and theoretical foundations of the Gestalt approach, which will be the focus of a second review paper. PMID:22845751

  11. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization.

    Science.gov (United States)

    Wagemans, Johan; Elder, James H; Kubovy, Michael; Palmer, Stephen E; Peterson, Mary A; Singh, Manish; von der Heydt, Rüdiger

    2012-11-01

    In 1912, Max Wertheimer published his paper on phi motion, widely recognized as the start of Gestalt psychology. Because of its continued relevance in modern psychology, this centennial anniversary is an excellent opportunity to take stock of what Gestalt psychology has offered and how it has changed since its inception. We first introduce the key findings and ideas in the Berlin school of Gestalt psychology, and then briefly sketch its development, rise, and fall. Next, we discuss its empirical and conceptual problems, and indicate how they are addressed in contemporary research on perceptual grouping and figure-ground organization. In particular, we review the principles of grouping, both classical (e.g., proximity, similarity, common fate, good continuation, closure, symmetry, parallelism) and new (e.g., synchrony, common region, element and uniform connectedness), and their role in contour integration and completion. We then review classic and new image-based principles of figure-ground organization, how it is influenced by past experience and attention, and how it relates to shape and depth perception. After an integrated review of the neural mechanisms involved in contour grouping, border ownership, and figure-ground perception, we conclude by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether we can speak of a Gestalt revival, and where the remaining limitations and challenges lie. A better integration of this research tradition with the rest of vision science requires further progress regarding the conceptual and theoretical foundations of the Gestalt approach, which is the focus of a second review article.

  12. Análise de parâmetros perceptivo-auditivos e acústicos em indivíduos gagos Analysis of acoustic and auditory-perceptual parameters in stutterers

    Directory of Open Access Journals (Sweden)

    Bruna Ferreira Valenzuela de Oliveira

    2009-01-01

    Full Text Available OBJETIVO: Analisar parâmetros perceptivo-auditivos e acústicos da voz em indivíduos adultos gagos. MÉTODOS: Foram analisados 15 indivíduos gagos do gênero masculino na faixa etária de 21 a 41 anos (média 26,6 anos, atendidos no Centro Clínico de Fonoaudiologia da instituição no período de fevereiro de 2005 a julho de 2007. Os parâmetros perceptivo-auditivos analisados envolveram a qualidade vocal, tipo de voz, ressonância, tensão vocal, velocidade de fala, coordenação pneumofônica, ataque vocal e gama tonal; quanto aos parâmetros acústicos, foram analisadas a frequência fundamental e sua variabilidade durante a fala espontânea. RESULTADOS: A análise perceptivo-auditiva mostrou que as características mais frequentes nos indivíduos gagos foram: qualidade vocal normal (60%, ressonância alterada (66%, tensão vocal (86%, ataque vocal alterado (73%, velocidade de fala normal (54%, gama tonal alterada (80% e coordenação pneumofônica alterada (100%. No entanto, a análise estatística revelou que apenas a presença de tensão vocal, coordenação pneumofônica e a gama tonal alteradas apresentaram-se estatisticamente significativas nos indivíduos gagos estudados. Na análise acústica, a frequência fundamental variou de 125,54 a 149,59 Hz e a variabilidade da frequência fundamental foi de 16 a 21 semitons ou 112,50 a 172,40 Hz. CONCLUSÃO: Os parâmetros perceptivo-auditivos analisados que tiveram frequência significativa nos indivíduos gagos estudados foram: presença de tensão vocal, alteração da gama tonal e na coordenação pneumofônica. Desta forma, é importante avaliar os aspectos vocais nesses pacientes, pois a desordem da fluência pode comprometer alguns parâmetros vocais podendo ocasionar disfonia.PURPOSE: To analyze auditory-perceptual and acoustic parameters of the voices of adult stutterers. METHODS: Fifteen male stutterers in the age range from 21 to 41 years (mean 26.6 years, attended at the

  13. An organization of visual and auditory fear conditioning in the lateral amygdala.

    Science.gov (United States)

    Bergstrom, Hadley C; Johnson, Luke R

    2014-12-01

    Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA. Copyright © 2014. Published by Elsevier Inc.

  14. Auditory-Visual Speech Perception in Three- and Four-Year-Olds and Its Relationship to Perceptual Attunement and Receptive Vocabulary

    Science.gov (United States)

    Erdener, Dogu; Burnham, Denis

    2018-01-01

    Despite the body of research on auditory-visual speech perception in infants and schoolchildren, development in the early childhood period remains relatively uncharted. In this study, English-speaking children between three and four years of age were investigated for: (i) the development of visual speech perception--lip-reading and visual…

  15. The Effect of Auditory and Visual Motion Picture Descriptive Modalities in Teaching Perceptual-Motor Skills Used in the Grading of Cereal Grains.

    Science.gov (United States)

    Hannemann, James William

    This study was designed to discover whether a student learns to imitate the skills demonstrated in a motion picture more accurately when the supportive descriptive terminology is presented in an auditory (spoken) form or in a visual (captions) form. A six-minute color 16mm film was produced--"Determining the Test Weight per Bushel of Yellow Corn".…

  16. Organization of the auditory brainstem in a lizard, Gekko gecko. I. Auditory nerve, cochlear nuclei, and superior olivary nuclei.

    Science.gov (United States)

    Tang, Yezhong; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2012-06-01

    We used tract tracing to reveal the connections of the auditory brainstem in the Tokay gecko (Gekko gecko). The auditory nerve has two divisions, a rostroventrally directed projection of mid- to high best-frequency fibers to the nucleus angularis (NA) and a more dorsal and caudal projection of low to middle best-frequency fibers that bifurcate to project to both the NA and the nucleus magnocellularis (NM). The projection to NM formed large somatic terminals and bouton terminals. NM projected bilaterally to the second-order nucleus laminaris (NL), such that the ipsilateral projection innervated the dorsal NL neuropil, whereas the contralateral projection crossed the midline and innervated the ventral dendrites of NL neurons. Neurons in NL were generally bitufted, with dorsoventrally oriented dendrites. NL projected to the contralateral torus semicircularis and to the contralateral ventral superior olive (SOv). NA projected to ipsilateral dorsal superior olive (SOd), sent a major projection to the contralateral SOv, and projected to torus semicircularis. The SOd projected to the contralateral SOv, which projected back to the ipsilateral NM, NL, and NA. These results suggest homologous patterns of auditory connections in lizards and archosaurs but also different processing of low- and high-frequency information in the brainstem. Copyright © 2011 Wiley Periodicals, Inc.

  17. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  18. Perceptual dimensions differentiate emotions.

    Science.gov (United States)

    Cavanaugh, Lisa A; MacInnis, Deborah J; Weiss, Allen M

    2015-08-26

    Individuals often describe objects in their world in terms of perceptual dimensions that span a variety of modalities; the visual (e.g., brightness: dark-bright), the auditory (e.g., loudness: quiet-loud), the gustatory (e.g., taste: sour-sweet), the tactile (e.g., hardness: soft vs. hard) and the kinaesthetic (e.g., speed: slow-fast). We ask whether individuals use perceptual dimensions to differentiate emotions from one another. Participants in two studies (one where respondents reported on abstract emotion concepts and a second where they reported on specific emotion episodes) rated the extent to which features anchoring 29 perceptual dimensions (e.g., temperature, texture and taste) are associated with 8 emotions (anger, fear, sadness, guilt, contentment, gratitude, pride and excitement). Results revealed that in both studies perceptual dimensions differentiate positive from negative emotions and high arousal from low arousal emotions. They also differentiate among emotions that are similar in arousal and valence (e.g., high arousal negative emotions such as anger and fear). Specific features that anchor particular perceptual dimensions (e.g., hot vs. cold) are also differentially associated with emotions.

  19. Audiovisual speech perception development at varying levels of perceptual processing

    OpenAIRE

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the le...

  20. A metaanalysis of perceptual organization in schizophrenia, schizotypy, and other high-risk groups based on variants of the Embedded Figures Task.

    Directory of Open Access Journals (Sweden)

    Kirsten Rebecca Panton

    2016-02-01

    Full Text Available Current research on perceptual organization in schizophrenia frequently employs shapes with regularly sampled contours (fragmented stimuli, in noise fields composed of similar elements, to elicit visual abnormalities. However, perceptual organization is multi-factorial and, in earlier studies, continuous contours have also been employed in tasks assessing the ability to extract shapes from a background. We conducted a systematic review and meta-analysis of studies using closed-contour stimuli, including the Embedded Figures Test (EFT and related tasks, both in people with schizophrenia and in healthy schizotypes and relatives, considered at increased risk for psychosis. Eleven studies met the selection criteria for inclusion in the meta-analysis, including six that used a between-groups study design (i.e. perceptual organization abilities of schizophrenia/high-risk groups were compared to healthy or clinical controls, and five that treated schizophrenia symptoms or schizotypy traits and indices of perceptual organization as continuous variables. Effect sizes and heterogeneity statistics were calculated, and the risk of publication bias was explored. A significant, moderate effect for EFT performance was found with studies that compared performance of schizophrenia/high-risk groups to a healthy or patient comparison group (d = -.523, p<.001. However, significant heterogeneity was also found amongst the schizotypy, but not schizophrenia studies, as well as studies using accuracy, but not reaction time as a measure of performance. A non-significant correlation was found for the studies that examined schizophrenia symptoms or schizotypy traits as continuous variables (r = .012, p = .825. These results suggest that deficits in perceptual organization of non-fragmented stimuli are found when differences between schizophrenia/high-risk groups and comparison groups are maximized. These findings should motivate further investigation of perceptual

  1. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  2. Perceptual learning.

    Science.gov (United States)

    Seitz, Aaron R

    2017-07-10

    Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.

  3. Visual unimodal grouping mediates auditory attentional bias in visuo-spatial working memory.

    Science.gov (United States)

    Botta, Fabiano; Lupiáñez, Juan; Sanabria, Daniel

    2013-09-01

    Audiovisual links in spatial attention have been reported in many previous studies. However, the effectiveness of auditory spatial cues in biasing the information encoding into visuo-spatial working memory (VSWM) is still relatively unknown. In this study, we addressed this issue by combining a cuing paradigm with a change detection task in VSWM. Moreover, we manipulated the perceptual organization of the to-be-remembered visual stimuli. We hypothesized that the auditory effect on VSWM would depend on the perceptual association between the auditory cue and the visual probe. Results showed, for the first time, a significant auditory attentional bias in VSWM. However, the effect was observed only when the to-be-remembered visual stimuli were organized in two distinctive visual objects. We propose that these results shed new light on audio-visual crossmodal links in spatial attention suggesting that, apart from the spatio-temporal contingency, the likelihood of perceptual association between the auditory cue and the visual target can have a large impact on crossmodal attentional biases. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.

    Science.gov (United States)

    Gnedeva, Ksenia; Hudspeth, A J; Segil, Neil

    2018-06-01

    The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.

  5. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  6. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    NARCIS (Netherlands)

    Posthuma, D.; Baare, W.F.C.; Hulshoff Pol, H.E.; Kahn, R.S.; Boomsma, D.I.; de Geus, E.J.C.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization,

  7. Perceptual learning: top to bottom.

    Science.gov (United States)

    Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R

    2014-06-01

    Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  8. Kölliker’s Organ and the Development of Spontaneous Activity in the Auditory System: Implications for Hearing Dysfunction

    Directory of Open Access Journals (Sweden)

    M. W. Nishani Dayaratne

    2014-01-01

    Full Text Available Prior to the “onset of hearing,” developing cochlear inner hair cells (IHCs and primary auditory neurons undergo experience-independent activity, which is thought to be important in retaining and refining neural connections in the absence of sound. One of the major hypotheses regarding the origin of such activity involves a group of columnar epithelial supporting cells forming Kölliker’s organ, which is only present during this critical period of auditory development. There is strong evidence for a purinergic signalling mechanism underlying such activity. ATP released through connexin hemichannels may activate P2 purinergic receptors in both Kölliker’s organ and the adjacent IHCs, leading to generation of electrical activity throughout the auditory system. However, recent work has suggested an alternative origin, by demonstrating the ability of IHCs to generate this spontaneous activity without activation by ATP. Regardless, developmental abnormalities of Kölliker’s organ may lead to congenital hearing loss, considering that mutations in ion channels (hemichannels, gap junctions, and calcium channels involved in Kölliker’s organ activity share strong links with such types of deafness.

  9. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.

    Science.gov (United States)

    Evans, Samuel; Davis, Matthew H

    2015-12-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. © The Author 2015. Published by Oxford University Press.

  10. Perceptual integration without conscious access

    NARCIS (Netherlands)

    Fahrenfort, Johannes J.; Van Leeuwen, Jonathan; Olivers, Christian N.L.; Hogendoorn, Hinze

    2017-01-01

    The visual system has the remarkable ability to integrate fragmentary visual input into a perceptually organized collection of surfaces and objects, a process we refer to as perceptual integration. Despite a long tradition of perception research, it is not known whether access to consciousness is

  11. Loss and persistence of implicit memory for sound: evidence from auditory stream segregation context effects.

    Science.gov (United States)

    Snyder, Joel S; Weintraub, David M

    2013-07-01

    An important question is the extent to which declines in memory over time are due to passive loss or active interference from other stimuli. The purpose of the present study was to determine the extent to which implicit memory effects in the perceptual organization of sound sequences are subject to loss and interference. Toward this aim, we took advantage of two recently discovered context effects in the perceptual judgments of sound patterns, one that depends on stimulus features of previous sounds and one that depends on the previous perceptual organization of these sounds. The experiments measured how listeners' perceptual organization of a tone sequence (test) was influenced by the frequency separation, or the perceptual organization, of the two preceding sequences (context1 and context2). The results demonstrated clear evidence for loss of context effects over time but little evidence for interference. However, they also revealed that context effects can be surprisingly persistent. The robust effects of loss, followed by persistence, were similar for the two types of context effects. We discuss whether the same auditory memories might contain information about basic stimulus features of sounds (i.e., frequency separation), as well as the perceptual organization of these sounds.

  12. On the Perceptual Organization of Image Databases Using Cognitive Discriminative Biplots

    Directory of Open Access Journals (Sweden)

    Spiros Fotopoulos

    2007-01-01

    Full Text Available A human-centered approach to image database organization is presented in this study. The management of a generic image database is pursued using a standard psychophysical experimental procedure followed by a well-suited data analysis methodology that is based on simple geometrical concepts. The end result is a cognitive discriminative biplot, which is a visualization of the intrinsic organization of the image database best reflecting the user's perception. The discriminating power of the introduced cognitive biplot constitutes an appealing tool for image retrieval and a flexible interface for visual data mining tasks. These ideas were evaluated in two ways. First, the separability of semantically distinct image classes was measured according to their reduced representations on the biplot. Then, a nearest-neighbor retrieval scheme was run on the emerged low-dimensional terrain to measure the suitability of the biplot for performing content-based image retrieval (CBIR. The achieved organization performance when compared with the performance of a contemporary system was found superior. This promoted the further discussion of packing these ideas into a realizable algorithmic procedure for an efficient and effective personalized CBIR system.

  13. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  14. Audiovisual speech perception development at varying levels of perceptual processing.

    Science.gov (United States)

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-04-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children.

  15. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed

    DEFF Research Database (Denmark)

    Posthuma, Daniëlle; Baare, Wim F.C.; Hulshoff Pol, Hilleke E.

    2003-01-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization......, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related...... to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related...

  16. Organization of ascending auditory pathways in the pigeon (Columba livia) as determined by autoradiographic methods

    International Nuclear Information System (INIS)

    Correia, M.J.; Eden, A.R.; Westlund, K.N.; Coulter, J.D.

    1982-01-01

    A mixture of tritiated proline and fucose was injected into the labyrinthine endolymphatic space of 5 white king pigeons (Columba livia). Using standard autoradiographic techniques, the authors observed transsynaptic labeling in ascending auditory pathways to the level of the mesencephalon. Auditory system structures, ipsilateral to the injection site, which labeled heavily were the cochlear nerve, the magnocellular and angular nuclei, and the superior olive. Those ipsilateral structures which were slightly labeled were the lateral lemniscus and the dorsal part of the lateral mesencephalic nucleus. Contralateral structures which labeled were the superior olive, lateral lemniscus, and dorsal part of the lateral mesencephalic nucleus. The results of this study suggest that ascending auditory pathways (to the level of mesencephalon) in the pigeon are more similar to those described for mammals in general than previously thought. (Auth.)

  17. Organization of ascending auditory pathways in the pigeon (Columba livia) as determined by autoradiographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Correia, M.J.; Eden, A.R.; Westlund, K.N.; Coulter, J.D. (Texas Univ., Galveston (USA). Medical Branch)

    1982-02-25

    A mixture of tritiated proline and fucose was injected into the labyrinthine endolymphatic space of 5 white king pigeons (Columba livia). Using standard autoradiographic techniques, the authors observed transsynaptic labeling in ascending auditory pathways to the level of the mesencephalon. Auditory system structures, ipsilateral to the injection site, which labeled heavily were the cochlear nerve, the magnocellular and angular nuclei, and the superior olive. Those ipsilateral structures which were slightly labeled were the lateral lemniscus and the dorsal part of the lateral mesencephalic nucleus. Contralateral structures which labeled were the superior olive, lateral lemniscus, and dorsal part of the lateral mesencephalic nucleus. The results of this study suggest that ascending auditory pathways (to the level of mesencephalon) in the pigeon are more similar to those described for mammals in general than previously thought.

  18. Multisensory Cues Capture Spatial Attention Regardless of Perceptual Load

    Science.gov (United States)

    Santangelo, Valerio; Spence, Charles

    2007-01-01

    We compared the ability of auditory, visual, and audiovisual (bimodal) exogenous cues to capture visuo-spatial attention under conditions of no load versus high perceptual load. Participants had to discriminate the elevation (up vs. down) of visual targets preceded by either unimodal or bimodal cues under conditions of high perceptual load (in…

  19. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  20. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  1. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    Science.gov (United States)

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  2. Linkages between organization climate and work outcomes: perceptual differences among health service professionals as a function of customer contact intensity.

    Science.gov (United States)

    Scotti, Dennis J; Harmon, Joel

    2014-01-01

    The delivery of high-quality service, rendered by health service professionals who interact with customers (patients), increases the likelihood that customers will form positive evaluations of the quality of their service encounters as well as high levels of customer satisfaction. Using linkage theory to develop our conceptual framework, we identify four clusters of variables which contribute to a chain of sequential events that connect organization climate to personal and operational work outcomes. We then examine the perceptual differences of service professionals, grouped by intensity of customer contact, with respect to these variables. National data for this project were obtained from multiple sources made available by the Veterans Healthcare Administration (VHA). Cross-group differences were tested using a series of variance analyses. The results indicate that level of customer-contact intensity plays a significant role in explaining variation in perceptions of support staff, clinical practitioners, and nurses at the multivariate and univariate levels of analysis. Contact intensity appears to be a core determinant of the nature of work performed by health service professionals as well as their psychological responses to organizational and customer-related dynamics. Health service professionals are important resources because of their specialized knowledge, labor expense, and scarcity. Based on findings from our research, managers are advised to survey employees' perceptions of their organizational environment and design practices that respond to the unique viewpoints of each of the professional groups identified in this study. Such tailoring should help executives maximize the value of investments in human resources by underwriting patient satisfaction and financial sustainability.

  3. Perceptual categories enable pattern generalization in songbirds.

    Science.gov (United States)

    Comins, Jordan A; Gentner, Timothy Q

    2013-08-01

    Since Chomsky's pioneering work on syntactic structures, comparative psychologists interested in the study of language evolution have targeted pattern complexity, using formal mathematical grammars, as the key to organizing language-relevant cognitive processes across species. This focus on formal syntactic complexity, however, often disregards the close interaction in real-world signals between the structure of a pattern and its constituent elements. Whether such features of natural auditory signals shape pattern generalization is unknown. In the present paper, we train birds to recognize differently patterned strings of natural signals (song motifs). Instead of focusing on the complexity of the overtly reinforced patterns, we ask how the perceptual groupings of pattern elements influence the generalization pattern knowledge. We find that learning and perception of training patterns is agnostic to the perceptual features of underlying elements. Surprisingly, however, these same features constrain the generalization of pattern knowledge, and thus its broader use. Our results demonstrate that the restricted focus of comparative language research on formal models of syntactic complexity is, at best, insufficient to understand pattern use. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Influência do contexto silábico da palavra no julgamento perceptivo-auditivo do ceceio produzido por pré-escolares Influence of syllabic context in auditory-perceptual ratings of lisping in school age children

    Directory of Open Access Journals (Sweden)

    Viviane Cristina de Castro Marino

    2012-01-01

    Full Text Available OBJETIVOS: investigar a ocorrência do ceceio em fricativas produzidas por crianças com alterações oclusais e analisar a influência do contexto silábico da fricativa no julgamento auditivo do ceceio. M ÉTODO: estudo prospectivo, em que as gravações de 428 palavras, produzidas por 15 crianças (idade média de 5 anos e 1 mês foram julgadas auditivamente por três fonoaudiólogos com experiência no julgamento de alterações de fala. As palavras utilizadas foram constituídas pelas consoantes fricativas não vozeadas, alveolar e pós-alveolar, inseridas em posição tônica, precedida das vogais [i, a, u]. Obteve-se concordância intra-juiz (quase perfeita e inter-juiz (total, 100% previamente à análise dos aspectos de interesse. RESULTADOS: embora presente na fala de todas as crianças, identificou-se ceceio em 25,23% do total das palavras. Houve aumento significante do ceceio para: (a fricativa alveolar em ataque inicial, (b fricativa alveolar em ataque inicial em relação à coda medial (p=0,001 e (c fricativa alveolar em relação à fricativa pós- alveolar (pPURPOSES: to investigate the occurrence of lisping during fricative sounds produced by children with malocclusal and to analyze the influence of the syllabic context of the fricative in the perceptual judgment of lisping. METHOD: this prospective study involved auditory perceptual identification of lisping by three experienced speech-language pathologists who judged 428 recorded words produced by 15 children (mean age of 5y1m. The words included alveolar and post-alveolar unvoiced fricative consonants, produced in initial word position followed by [i, a, u] vowels in the stressed position. Intra (almost perfect and inter (total, 100% judgments were obtained before analyzing the data. RESULTS: although all studied children presented lisping at least during one fricative production, it was identified in 25,23% of the recording analyzed words. A significant increase in lisping

  5. Perceptual inference.

    Science.gov (United States)

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  7. The role of the auditory brainstem in processing musically-relevant pitch

    Directory of Open Access Journals (Sweden)

    Gavin M. Bidelman

    2013-05-01

    Full Text Available Neuroimaging work has shed light on the cerebral architecture involved in processing the melodic and harmonic aspects of music. Here, recent evidence is reviewed illustrating that subcortical auditory structures contribute to the early formation and processing of musically-relevant pitch. Electrophysiological recordings from the human brainstem and population responses from the auditory nerve reveal that nascent features of tonal music (e.g., consonance/dissonance, pitch salience, harmonic sonority are evident at early, subcortical levels of the auditory pathway. The salience and harmonicity of brainstem activity is strongly correlated with listeners’ perceptual preferences and perceived consonance for the tonal relationships of music. Moreover, the hierarchical ordering of pitch intervals/chords described by the Western music practice and their perceptual consonance is well-predicted by the salience with which pitch combinations are encoded in subcortical auditory structures. While the neural correlates of consonance can be tuned and exaggerated with musical training, they persist even in the absence of musicianship or long-term enculturation. As such, it is posited that the structural foundations of musical pitch might result from innate processing performed by the central auditory system. A neurobiological predisposition for consonant, pleasant sounding pitch relationships may be one reason why these pitch combinations have been favored by composers and listeners for centuries. It is suggested that important perceptual dimensions of music emerge well before the auditory signal reaches cerebral cortex and prior to attentional engagement. While cortical mechanisms are no doubt critical to the perception, production, and enjoyment of music, the contribution of subcortical structures implicates a more integrated, hierarchically organized network underlying music processing within the brain.

  8. Estudo do comportamento vocal no ciclo menstrual: avaliação perceptivo-auditiva, acústica e auto-perceptiva Vocal behavior during menstrual cycle: perceptual-auditory, acoustic and self-perception analysis

    Directory of Open Access Journals (Sweden)

    Luciane C. de Figueiredo

    2004-06-01

    Full Text Available Durante o período pré-menstrual é comum a ocorrência de disfonia, e são poucas as mulheres que se dão conta dessa variação da voz dentro do ciclo menstrual (Quinteiro, 1989. OBJETIVO: Verificar se há diferença no padrão vocal de mulheres no período de ovulação em relação ao primeiro dia do ciclo menstrual, utilizando-se da análise perceptivo-auditiva, da espectrografia, dos parâmetros acústicos e quando esta diferença está presente, se é percebida pelas mulheres. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: A amostra coletada foi de 30 estudantes de Fonoaudiologia, na faixa etária de 18 a 25 anos, não-fumantes, com ciclo menstrual regular e sem o uso de contraceptivo oral. As vozes foram gravadas no primeiro dia de menstruação e no décimo-terceiro dia pós-menstruação (ovulação, para posterior comparação. RESULTADOS: Observou-se durante o período menstrual que as vozes estão rouco-soprosa de grau leve a moderado, instáveis, sem a presença de quebra de sonoridade, com pitch e loudness adequados e ressonância equilibrada. Há pior qualidade de definição dos harmônicos, maior quantidade de ruído entre eles e menor extensão dos harmônicos superiores. Encontramos uma f0 mais aguda, jitter e shimmer aumentados e PHR diminuída. CONCLUSÃO: No período menstrual há mudanças na qualidade vocal, no comportamento dos harmônicos e nos parâmetros vocais (f0,jitter, shimmer e PHR. Além disso, a maioria das estudantes de Fonoaudiologia não percebeu a variação da voz durante o ciclo menstrual.During the premenstruation period dysphonia often can be observed and only few women are aware of this voice variation (Quinteiro, 1989. AIM: To verify if there are vocal quality variations between the ovulation period and the first day of the menstrual cycle, by using perceptual-auditory and acoustic analysis, including spectrography, and the self perception of the vocal changes when it occurs. STUDY DESIGN: Case

  9. Genetic correlations between brain volumes and the WAIS-III dimensions of verbal comprehension, working memory, perceptual organization, and processing speed.

    Science.gov (United States)

    Posthuma, Daniëlle; Baaré, Wim F C; Hulshoff Pol, Hilleke E; Kahn, René S; Boomsma, Dorret I; De Geus, Eco J C

    2003-04-01

    We recently showed that the correlation of gray and white matter volume with full scale IQ and the Working Memory dimension are completely mediated by common genetic factors (Posthuma et al., 2002). Here we examine whether the other WAIS III dimensions (Verbal Comprehension, Perceptual Organization, Processing Speed) are also related to gray and white matter volume, and whether any of the dimensions are related to cerebellar volume. Two overlapping samples provided 135 subjects from 60 extended twin families for whom both MRI scans and WAIS III data were available. All three brain volumes are related to Working Memory capacity (r = 0.27). This phenotypic correlation is completely due to a common underlying genetic factor. Processing Speed was genetically related to white matter volume (r(g) = 0.39). Perceptual Organization was both genetically (r(g) = 0.39) and environmentally (r(e) = -0.71) related to cerebellar volume. Verbal Comprehension was not related to any of the three brain volumes. It is concluded that brain volumes are genetically related to intelligence which suggests that genes that influence brain volume may also be important for intelligence. It is also noted however, that the direction of causation (i.e., do genes influence brain volume which in turn influences intelligence, or alternatively, do genes influence intelligence which in turn influences brain volume), or the presence or absence of pleiotropy has not been resolved yet.

  10. Perceptual integration without conscious access.

    Science.gov (United States)

    Fahrenfort, Johannes J; van Leeuwen, Jonathan; Olivers, Christian N L; Hogendoorn, Hinze

    2017-04-04

    The visual system has the remarkable ability to integrate fragmentary visual input into a perceptually organized collection of surfaces and objects, a process we refer to as perceptual integration. Despite a long tradition of perception research, it is not known whether access to consciousness is required to complete perceptual integration. To investigate this question, we manipulated access to consciousness using the attentional blink. We show that, behaviorally, the attentional blink impairs conscious decisions about the presence of integrated surface structure from fragmented input. However, despite conscious access being impaired, the ability to decode the presence of integrated percepts remains intact, as shown through multivariate classification analyses of electroencephalogram (EEG) data. In contrast, when disrupting perception through masking, decisions about integrated percepts and decoding of integrated percepts are impaired in tandem, while leaving feedforward representations intact. Together, these data show that access consciousness and perceptual integration can be dissociated.

  11. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease

    OpenAIRE

    Benoit, C.; Dalla Bella, S.; Farrugia, N.; Obrig, H.; Mainka, S.; Kotz, S.

    2014-01-01

    It is well established that auditory cueing improves gait in patients with idiopathic Parkinson’s disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory ...

  12. Perceptual load interacts with stimulus processing across sensory modalities.

    Science.gov (United States)

    Klemen, J; Büchel, C; Rose, M

    2009-06-01

    According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.

  13. Neurophysiology of spectrotemporal cue organization of spoken language in auditory memory.

    Science.gov (United States)

    Moberly, Aaron C; Bhat, Jyoti; Welling, D Bradley; Shahin, Antoine J

    2014-03-01

    Listeners assign different weights to spectral dynamics, such as formant rise time (FRT), and temporal dynamics, such as amplitude rise time (ART), during phonetic judgments. We examined the neurophysiological basis of FRT and ART weighting in the /ba/-/wa/ contrast. Electroencephalography was recorded for thirteen adult English speakers during a mismatch negativity (MMN) design using synthetic stimuli: a /ba/ with /ba/-like FRT and ART; a /wa/ with /wa/-like FRT and ART; and a /ba/(wa) with /ba/-like FRT and /wa/-like ART. We hypothesized that because of stronger reliance on FRT, subjects would encode a stronger memory trace and exhibit larger MMN during the FRT than the ART contrast. Results supported this hypothesis. The effect was most robust in the later portion of MMN. Findings suggest that MMN is generated by multiple sources, differentially reflecting acoustic change detection (earlier MMN, bottom-up process) and perceptual weighting of ART and FRT (later MMN, top-down process). Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development

    Directory of Open Access Journals (Sweden)

    Chin Michael T

    2008-02-01

    Full Text Available Abstract Background During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5. Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene. Results We report that a putative Notch target gene, hairy-related basic helix-loop-helix (bHLH transcriptional factor Hey2, is expressed in the cochlear epithelium prior to terminal differentiation. Its expression is subsequently restricted to supporting cells, overlapping with the expression domains of two known Notch target genes, Hairy and enhancer of split homolog genes Hes1 and Hes5. In combination with the loss of Hes1 or Hes5, genetic inactivation of Hey2 leads to increased numbers of mis-patterned inner or outer hair cells, respectively. Surprisingly, the ectopic hair cells in Hey2 mutants are accompanied by ectopic supporting cells. Furthermore, Hey2-/-;Hes1-/- and Hey2-/-;Hes1+/- mutants show a complete penetrance of early embryonic lethality. Conclusion Our results indicate that Hey2 functions in parallel with Hes1 and Hes5 in patterning the organ of Corti, and interacts genetically with Hes1 for early embryonic development and survival. Our data implicates expansion of the progenitor pool and/or the boundaries of the developing sensory organ to account for patterning defects observed in Hey2 mutants.

  15. Activity in a premotor cortical nucleus of zebra finches is locally organized and exhibits auditory selectivity in neurons but not in glia.

    Directory of Open Access Journals (Sweden)

    Michael H Graber

    Full Text Available Motor functions are often guided by sensory experience, most convincingly illustrated by complex learned behaviors. Key to sensory guidance in motor areas may be the structural and functional organization of sensory inputs and their evoked responses. We study sensory responses in large populations of neurons and neuron-assistive cells in the songbird motor area HVC, an auditory-vocal brain area involved in sensory learning and in adult song production. HVC spike responses to auditory stimulation display remarkable preference for the bird's own song (BOS compared to other stimuli. Using two-photon calcium imaging in anesthetized zebra finches we measure the spatio-temporal structure of baseline activity and of auditory evoked responses in identified populations of HVC cells. We find strong correlations between calcium signal fluctuations in nearby cells of a given type, both in identified neurons and in astroglia. In identified HVC neurons only, auditory stimulation decorrelates ongoing calcium signals, less for BOS than for other sound stimuli. Overall, calcium transients show strong preference for BOS in identified HVC neurons but not in astroglia, showing diversity in local functional organization among identified neuron and astroglia populations.

  16. Psychophysical indices of perceptual functioning in dyslexia: A psychometric analysis

    OpenAIRE

    Heath, Steve M.; Bishop, Dorothy V. M.; Hogben, John H.; Roach, Neil W.

    2006-01-01

    An influential causal theory attributes dyslexia to visual and/or auditory perceptual deficits. This theory derives from group differences between individuals with dyslexia and controls on a range of psychophysical tasks, but there is substantial variation, both between individuals within a group and from task to task. We addressed two questions. First, do psychophysical measures have sufficient reliability to assess perceptual deficits in individuals? Second, do different psychophysical task...

  17. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  18. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    Science.gov (United States)

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  19. Auditory Emotional Cues Enhance Visual Perception

    Science.gov (United States)

    Zeelenberg, Rene; Bocanegra, Bruno R.

    2010-01-01

    Recent studies show that emotional stimuli impair performance to subsequently presented neutral stimuli. Here we show a cross-modal perceptual enhancement caused by emotional cues. Auditory cue words were followed by a visually presented neutral target word. Two-alternative forced-choice identification of the visual target was improved by…

  20. Auditory Training for Children with Processing Disorders.

    Science.gov (United States)

    Katz, Jack; Cohen, Carolyn F.

    1985-01-01

    The article provides an overview of central auditory processing (CAP) dysfunction and reviews research on approaches to improve perceptual skills; to provide discrimination training for communicative and reading disorders; to increase memory and analysis skills and dichotic listening; to provide speech-in-noise training; and to amplify speech as…

  1. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals.

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-06-22

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.

  2. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  3. The speed and accuracy of perceptual decisions in a random-tone pitch task

    NARCIS (Netherlands)

    Mulder, M.J.; Keuken, M.C.; van Maanen, L.; Boekel, W.E.; Forstmann, B.U.; Wagenmakers, E.J.

    2013-01-01

    Research in perceptual decision making is dominated by paradigms that tap the visual system, such as the random-dot motion (RDM) paradigm. In this study, we investigated whether the behavioral signature of perceptual decisions in the auditory domain is similar to those observed in the visual domain.

  4. Brief Daily Exposures to Asian Females Reverses Perceptual Narrowing for Asian Faces in Caucasian Infants

    Science.gov (United States)

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Heron-Delaney, Michelle; Tanaka, James W.; Lee, Kang

    2012-01-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate…

  5. Auditory, Visual and Audiovisual Speech Processing Streams in Superior Temporal Sulcus.

    Science.gov (United States)

    Venezia, Jonathan H; Vaden, Kenneth I; Rong, Feng; Maddox, Dale; Saberi, Kourosh; Hickok, Gregory

    2017-01-01

    The human superior temporal sulcus (STS) is responsive to visual and auditory information, including sounds and facial cues during speech recognition. We investigated the functional organization of STS with respect to modality-specific and multimodal speech representations. Twenty younger adult participants were instructed to perform an oddball detection task and were presented with auditory, visual, and audiovisual speech stimuli, as well as auditory and visual nonspeech control stimuli in a block fMRI design. Consistent with a hypothesized anterior-posterior processing gradient in STS, auditory, visual and audiovisual stimuli produced the largest BOLD effects in anterior, posterior and middle STS (mSTS), respectively, based on whole-brain, linear mixed effects and principal component analyses. Notably, the mSTS exhibited preferential responses to multisensory stimulation, as well as speech compared to nonspeech. Within the mid-posterior and mSTS regions, response preferences changed gradually from visual, to multisensory, to auditory moving posterior to anterior. Post hoc analysis of visual regions in the posterior STS revealed that a single subregion bordering the mSTS was insensitive to differences in low-level motion kinematics yet distinguished between visual speech and nonspeech based on multi-voxel activation patterns. These results suggest that auditory and visual speech representations are elaborated gradually within anterior and posterior processing streams, respectively, and may be integrated within the mSTS, which is sensitive to more abstract speech information within and across presentation modalities. The spatial organization of STS is consistent with processing streams that are hypothesized to synthesize perceptual speech representations from sensory signals that provide convergent information from visual and auditory modalities.

  6. Brain bases for auditory stimulus-driven figure-ground segregation.

    Science.gov (United States)

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  7. Biased and unbiased perceptual decision-making on vocal emotions.

    Science.gov (United States)

    Dricu, Mihai; Ceravolo, Leonardo; Grandjean, Didier; Frühholz, Sascha

    2017-11-24

    Perceptual decision-making on emotions involves gathering sensory information about the affective state of another person and forming a decision on the likelihood of a particular state. These perceptual decisions can be of varying complexity as determined by different contexts. We used functional magnetic resonance imaging and a region of interest approach to investigate the brain activation and functional connectivity behind two forms of perceptual decision-making. More complex unbiased decisions on affective voices recruited an extended bilateral network consisting of the posterior inferior frontal cortex, the orbitofrontal cortex, the amygdala, and voice-sensitive areas in the auditory cortex. Less complex biased decisions on affective voices distinctly recruited the right mid inferior frontal cortex, pointing to a functional distinction in this region following decisional requirements. Furthermore, task-induced neural connectivity revealed stronger connections between these frontal, auditory, and limbic regions during unbiased relative to biased decision-making on affective voices. Together, the data shows that different types of perceptual decision-making on auditory emotions have distinct patterns of activations and functional coupling that follow the decisional strategies and cognitive mechanisms involved during these perceptual decisions.

  8. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  9. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  10. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  11. The Role of Age and Executive Function in Auditory Category Learning

    Science.gov (United States)

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  12. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, III, Albert Louis [Univ. of California, Davis, CA (United States)

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  13. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Charles-Etienne eBenoit

    2014-07-01

    Full Text Available It is well established that auditory cueing improves gait in patients with Idiopathic Parkinson’s Disease (IPD. Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a four-week music training program with rhythmic auditory cueing. Long-term effects were assessed one month after the end of the training. Perceptual and motor timing was evaluated with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients’ performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts. The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  14. A comparison of several computational auditory scene analysis (CASA) techniques for monaural speech segregation.

    Science.gov (United States)

    Zeremdini, Jihen; Ben Messaoud, Mohamed Anouar; Bouzid, Aicha

    2015-09-01

    Humans have the ability to easily separate a composed speech and to form perceptual representations of the constituent sources in an acoustic mixture thanks to their ears. Until recently, researchers attempt to build computer models of high-level functions of the auditory system. The problem of the composed speech segregation is still a very challenging problem for these researchers. In our case, we are interested in approaches that are addressed to the monaural speech segregation. For this purpose, we study in this paper the computational auditory scene analysis (CASA) to segregate speech from monaural mixtures. CASA is the reproduction of the source organization achieved by listeners. It is based on two main stages: segmentation and grouping. In this work, we have presented, and compared several studies that have used CASA for speech separation and recognition.

  15. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  16. Prediction of kindergarteners' behavior on Metropolitan Readiness Tests from preschool perceptual and perceptual-motor performances: a validation study.

    Science.gov (United States)

    Belka, D E

    1981-06-01

    Multiple regression equations were generated to predict cognitive achievement for 40 children (ages 57 to 68 mo.) 1 yr. after administration of a battery of 6 perceptual and perceptual-motor tests to determine if previous results from Toledo could be replicated. Regression equations generated from maximum R2 improvement techniques indicated that performance at prekindergarten is useful for prediction of cognitive performance (total score and total score without the copying subtest on the Metropolitan Readiness Tests) 1 yr. later at the end of kindergarten. The optimal battery included scores on auditory perception, fine perceptual-motor, and gross perceptual-motor tasks. The moderate predictive power of the equations obtained was compared with high predictive power generated in the Toledo study.

  17. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  19. Language and short-term memory: the role of perceptual-motor affordance.

    Science.gov (United States)

    Macken, Bill; Taylor, John C; Jones, Dylan M

    2014-09-01

    The advantage for real words over nonwords in serial recall--the lexicality effect--is typically attributed to support for item-level phonology, either via redintegration, whereby partially degraded short-term traces are "cleaned up" via support from long-term representations of the phonological material or via the more robust temporary activation of long-term lexical phonological knowledge that derives from its combination with established lexical and semantic levels of representation. The much smaller effect of lexicality in serial recognition, where the items are re-presented in the recognition cue, is attributed either to the minimal role for redintegration from long-term memory or to the minimal role for item memory itself in such retrieval conditions. We show that the reduced lexicality effect in serial recognition is not a function of the retrieval conditions, but rather because previous demonstrations have used auditory presentation, and we demonstrate a robust lexicality effect for visual serial recognition in a setting where auditory presentation produces no such effect. Furthermore, this effect is abolished under conditions of articulatory suppression. We argue that linguistic knowledge affects the readiness with which verbal material is segmentally recoded via speech motor processes that support rehearsal and therefore affects tasks that involve recoding. On the other hand, auditory perceptual organization affords sequence matching in the absence of such a requirement for segmental recoding and therefore does not show such effects of linguistic knowledge.

  20. Top-down (Prior Knowledge) and Bottom-up (Perceptual Modality) Influences on Spontaneous Interpersonal Synchronization.

    Science.gov (United States)

    Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E

    2016-04-01

    Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present.

  1. Auditory conflict and congruence in frontotemporal dementia.

    Science.gov (United States)

    Clark, Camilla N; Nicholas, Jennifer M; Agustus, Jennifer L; Hardy, Christopher J D; Russell, Lucy L; Brotherhood, Emilie V; Dick, Katrina M; Marshall, Charles R; Mummery, Catherine J; Rohrer, Jonathan D; Warren, Jason D

    2017-09-01

    Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Auditory-Acoustic Basis of Consonant Perception. Attachments A thru I

    Science.gov (United States)

    1991-01-22

    conceptual model of the processes whereby the human listener converts the acoustic signal into a string of phonetic elements could be successfully implemented...perceptual aspect is implied. It is within the broad framwork described above that the auditory-perceptual theory will be considered. But before beginning...perceptual and not acoustic or sensory. For example, it is planned to conceptualize the target zones for stops as being physically unrealizable by letting

  3. Análise perceptivo-auditiva, acústica computadorizada e laringológica da voz de adultos jovens fumantes e não-fumantes Auditory perceptual, acoustic, computerized and laryngological analysis of young smokers' and nonsmokers' voice

    Directory of Open Access Journals (Sweden)

    Daniele C. de Figueiredo

    2003-12-01

    Full Text Available OBJETIVO: Realizar a avaliação laringológica, análise perceptivo-auditiva e acústica computadorizada das vozes de adultos jovens fumantes e não-fumantes, sem queixa vocal, compará-las e verificar a incidência de alterações laríngeas. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: Foram analisadas as vozes de 80 indivíduos com idades compreendidas entre 20 e 40 anos. Estes foram divididos em quatro grupos: 20 homens fumantes, 20 homens não-fumantes, 20 mulheres fumantes e 20 mulheres não-fumantes. Este estudo envolveu laringoscopia, realizada e interpretada por uma médica otorrinolaringologista, e gravação em fita cassete das vogais sustentadas /a/, /m/, /i/ e /u/, contagem dos números de 1 a 20, emissão dos dias da semana, dos meses do ano e da canção "Parabéns a você". A gravação em fita cassete foi editada para posterior análise espectrográfica e avaliação perceptiva auditiva por quatro avaliadores com experiência na área de voz. RESULTADOS: Após a análise, foi constatada uma discreta diminuição da freqüência fundamental da voz dos indivíduos fumantes de ambos os sexos, bem como maior incidência de rouquidão e de alterações laríngeas entre os tabagistas.AIM: The goal of this study was to make the laryngological, auditory perceptual and acoustic computer analyses of young adults' (smokers and non-smokers voices, without vocal complaint, compare them and verify the incidence of vocal alterations. STUDY DESIGN: Clinical comparative. MATERIAL AND METHOD: The voices of 80 individuals with age range from 20 to 40 years were analyzed. These individuals were divided in four groups: 20 male smokers, 20 male non-smokers, 20 female smokers and 20 female non-smokers. This analysis involved laryngoscopy, which was performed and interpreted by an otolaryngologist, and cassette tape recordings of the sustained vowels /a/, /m/, /i/ e /u/, number counting from 1 to 20, speech of the days of the week, months of

  4. Representation of auditory-filter phase characteristics in the cortex of human listeners

    DEFF Research Database (Denmark)

    Rupp, A.; Sieroka, N.; Gutschalk, A.

    2008-01-01

    consistent with the perceptual data obtained with the same stimuli and with results from simulations of neural activity at the output of cochlear preprocessing. These findings demonstrate that phase effects in peripheral auditory processing are accurately reflected up to the level of the auditory cortex....

  5. Sinusoidal Analysis-Synthesis of Audio Using Perceptual Criteria

    Science.gov (United States)

    Painter, Ted; Spanias, Andreas

    2003-12-01

    This paper presents a new method for the selection of sinusoidal components for use in compact representations of narrowband audio. The method consists of ranking and selecting the most perceptually relevant sinusoids. The idea behind the method is to maximize the matching between the auditory excitation pattern associated with the original signal and the corresponding auditory excitation pattern associated with the modeled signal that is being represented by a small set of sinusoidal parameters. The proposed component-selection methodology is shown to outperform the maximum signal-to-mask ratio selection strategy in terms of subjective quality.

  6. Mechanism of Perceptual Attention

    National Research Council Canada - National Science Library

    Lu, Zhong-Lin

    2000-01-01

    .... Attention may affect the perceived clarity of visual displays and improve performance. In this project, a powerful external noise method was developed to identify and characterize the effect of attention on perceptual performance in visual tasks...

  7. Mechanisms of Perceptual Attention

    National Research Council Canada - National Science Library

    Dosher, Barbara

    2000-01-01

    .... Attention may affect the perceived clarity of visual displays and improve performance. In this project, a powerful external noise method was developed to identify and characterize the effect of attention on perceptual performance in visual tasks...

  8. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  9. The processing of visual and auditory information for reaching movements.

    Science.gov (United States)

    Glazebrook, Cheryl M; Welsh, Timothy N; Tremblay, Luc

    2016-09-01

    Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets.

  10. Perceptual Load Affects Eyewitness Accuracy & Susceptibility to Leading Questions

    Directory of Open Access Journals (Sweden)

    Gillian Murphy

    2016-08-01

    Full Text Available Load Theory (Lavie, 1995; 2005 states that the level of perceptual load in a task (i.e. the amount of information involved in processing task-relevant stimuli determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator, the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  11. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    Science.gov (United States)

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  12. Consensus paper: the role of the cerebellum in perceptual processes.

    Science.gov (United States)

    Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A

    2015-04-01

    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

  13. Auditory distraction and serial memory: The avoidable and the ineluctable

    Directory of Open Access Journals (Sweden)

    Dylan M Jones

    2010-01-01

    Full Text Available One mental activity that is very vulnerable to auditory distraction is serial recall. This review of the contemporary findings relating to serial recall charts the key determinants of distraction. It is evident that there is one form of distraction that is a joint product of the cognitive characteristics of the task and of the obligatory cognitive processing of the sound. For sequences of sound, distraction appears to be an ineluctable product of similarity-of-process, specifically, the serial order processing of the visually presented items and the serial order coding that is the by-product of the streaming of the sound. However, recently emerging work shows that the distraction from a single sound (one deviating from a prevailing sequence results in attentional capture and is qualitatively distinct from that of a sequence in being restricted in its action to encoding, not to rehearsal of list members. Capture is also sensitive to the sensory task load, suggesting that it is subject to top-down control and therefore avoidable. These two forms of distraction-conflict of process and attentional capture-may be two consequences of auditory perceptual organization processes that serve to strike the optimal balance between attentional selectivity and distractability.

  14. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences

    Directory of Open Access Journals (Sweden)

    Stanislava Knyazeva

    2018-01-01

    Full Text Available This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman’s population separation model of auditory streaming.

  15. Neuronal Correlates of Auditory Streaming in Monkey Auditory Cortex for Tone Sequences without Spectral Differences.

    Science.gov (United States)

    Knyazeva, Stanislava; Selezneva, Elena; Gorkin, Alexander; Aggelopoulos, Nikolaos C; Brosch, Michael

    2018-01-01

    This study finds a neuronal correlate of auditory perceptual streaming in the primary auditory cortex for sequences of tone complexes that have the same amplitude spectrum but a different phase spectrum. Our finding is based on microelectrode recordings of multiunit activity from 270 cortical sites in three awake macaque monkeys. The monkeys were presented with repeated sequences of a tone triplet that consisted of an A tone, a B tone, another A tone and then a pause. The A and B tones were composed of unresolved harmonics formed by adding the harmonics in cosine phase, in alternating phase, or in random phase. A previous psychophysical study on humans revealed that when the A and B tones are similar, humans integrate them into a single auditory stream; when the A and B tones are dissimilar, humans segregate them into separate auditory streams. We found that the similarity of neuronal rate responses to the triplets was highest when all A and B tones had cosine phase. Similarity was intermediate when the A tones had cosine phase and the B tones had alternating phase. Similarity was lowest when the A tones had cosine phase and the B tones had random phase. The present study corroborates and extends previous reports, showing similar correspondences between neuronal activity in the primary auditory cortex and auditory streaming of sound sequences. It also is consistent with Fishman's population separation model of auditory streaming.

  16. Auditory, Tactile, and Audiotactile Information Processing Following Visual Deprivation

    Science.gov (United States)

    Occelli, Valeria; Spence, Charles; Zampini, Massimiliano

    2013-01-01

    We highlight the results of those studies that have investigated the plastic reorganization processes that occur within the human brain as a consequence of visual deprivation, as well as how these processes give rise to behaviorally observable changes in the perceptual processing of auditory and tactile information. We review the evidence showing…

  17. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  18. Skilled deaf readers have an enhanced perceptual span in reading.

    Science.gov (United States)

    Bélanger, Nathalie N; Slattery, Timothy J; Mayberry, Rachel I; Rayner, Keith

    2012-07-01

    Recent evidence suggests that, compared with hearing people, deaf people have enhanced visual attention to simple stimuli viewed in the parafovea and periphery. Although a large part of reading involves processing the fixated words in foveal vision, readers also utilize information in parafoveal vision to preprocess upcoming words and decide where to look next. In the study reported here, we investigated whether auditory deprivation affects low-level visual processing during reading by comparing the perceptual span of deaf signers who were skilled and less-skilled readers with the perceptual span of skilled hearing readers. Compared with hearing readers, the two groups of deaf readers had a larger perceptual span than would be expected given their reading ability. These results provide the first evidence that deaf readers' enhanced attentional allocation to the parafovea is used during complex cognitive tasks, such as reading.

  19. Temporal expectation weights visual signals over auditory signals.

    Science.gov (United States)

    Menceloglu, Melisa; Grabowecky, Marcia; Suzuki, Satoru

    2017-04-01

    Temporal expectation is a process by which people use temporally structured sensory information to explicitly or implicitly predict the onset and/or the duration of future events. Because timing plays a critical role in crossmodal interactions, we investigated how temporal expectation influenced auditory-visual interaction, using an auditory-visual crossmodal congruity effect as a measure of crossmodal interaction. For auditory identification, an incongruent visual stimulus produced stronger interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. In contrast, for visual identification, an incongruent auditory stimulus produced weaker interference when the crossmodal stimulus was presented with an expected rather than an unexpected timing. The fact that temporal expectation made visual distractors more potent and visual targets less susceptible to auditory interference suggests that temporal expectation increases the perceptual weight of visual signals.

  20. Perceptual context and individual differences in the language proficiency of preschool children.

    Science.gov (United States)

    Banai, Karen; Yifat, Rachel

    2016-02-01

    Although the contribution of perceptual processes to language skills during infancy is well recognized, the role of perception in linguistic processing beyond infancy is not well understood. In the experiments reported here, we asked whether manipulating the perceptual context in which stimuli are presented across trials influences how preschool children perform visual (shape-size identification; Experiment 1) and auditory (syllable identification; Experiment 2) tasks. Another goal was to determine whether the sensitivity to perceptual context can explain part of the variance in oral language skills in typically developing preschool children. Perceptual context was manipulated by changing the relative frequency with which target visual (Experiment 1) and auditory (Experiment 2) stimuli were presented in arrays of fixed size, and identification of the target stimuli was tested. Oral language skills were assessed using vocabulary, word definition, and phonological awareness tasks. Changes in perceptual context influenced the performance of the majority of children on both identification tasks. Sensitivity to perceptual context accounted for 7% to 15% of the variance in language scores. We suggest that context effects are an outcome of a statistical learning process. Therefore, the current findings demonstrate that statistical learning can facilitate both visual and auditory identification processes in preschool children. Furthermore, consistent with previous findings in infants and in older children and adults, individual differences in statistical learning were found to be associated with individual differences in language skills of preschool children. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Perceptual elements in brain mechanisms of acoustic communication in humans and nonhuman primates.

    Science.gov (United States)

    Reser, David H; Rosa, Marcello

    2014-12-01

    Ackermann et al. outline a model for elaboration of subcortical motor outputs as a driving force for the development of the apparently unique behaviour of language in humans. They emphasize circuits in the striatum and midbrain, and acknowledge, but do not explore, the importance of the auditory perceptual pathway for evolution of verbal communication. We suggest that understanding the evolution of language will also require understanding of vocalization perception, especially in the auditory cortex.

  2. Predicting the Perceptual Consequences of Hidden Hearing Loss

    Directory of Open Access Journals (Sweden)

    Andrew J. Oxenham

    2016-12-01

    Full Text Available Recent physiological studies in several rodent species have revealed that permanent damage can occur to the auditory system after exposure to a noise that produces only a temporary shift in absolute thresholds. The damage has been found to occur in the synapses between the cochlea’s inner hair cells and the auditory nerve, effectively severing part of the connection between the ear and the brain. This synaptopathy has been termed hidden hearing loss because its effects are not thought to be revealed in standard clinical, behavioral, or physiological measures of absolute threshold. It is currently unknown whether humans suffer from similar deficits after noise exposure. Even if synaptopathy occurs in humans, it remains unclear what the perceptual consequences might be or how they should best be measured. Here, we apply a simple theoretical model, taken from signal detection theory, to provide some predictions for what perceptual effects could be expected for a given loss of synapses. Predictions are made for a number of basic perceptual tasks, including tone detection in quiet and in noise, frequency discrimination, level discrimination, and binaural lateralization. The model’s predictions are in line with the empirical observations that a 50% loss of synapses leads to changes in threshold that are too small to be reliably measured. Overall, the model provides a simple initial quantitative framework for understanding and predicting the perceptual effects of synaptopathy in humans.

  3. Steady-state signatures of visual perceptual load, multimodal distractor filtering, and neural competition.

    Science.gov (United States)

    Parks, Nathan A; Hilimire, Matthew R; Corballis, Paul M

    2011-05-01

    The perceptual load theory of attention posits that attentional selection occurs early in processing when a task is perceptually demanding but occurs late in processing otherwise. We used a frequency-tagged steady-state evoked potential paradigm to investigate the modality specificity of perceptual load-induced distractor filtering and the nature of neural-competitive interactions between task and distractor stimuli. EEG data were recorded while participants monitored a stream of stimuli occurring in rapid serial visual presentation (RSVP) for the appearance of previously assigned targets. Perceptual load was manipulated by assigning targets that were identifiable by color alone (low load) or by the conjunction of color and orientation (high load). The RSVP task was performed alone and in the presence of task-irrelevant visual and auditory distractors. The RSVP stimuli, visual distractors, and auditory distractors were "tagged" by modulating each at a unique frequency (2.5, 8.5, and 40.0 Hz, respectively), which allowed each to be analyzed separately in the frequency domain. We report three important findings regarding the neural mechanisms of perceptual load. First, we replicated previous findings of within-modality distractor filtering and demonstrated a reduction in visual distractor signals with high perceptual load. Second, auditory steady-state distractor signals were unaffected by manipulations of visual perceptual load, consistent with the idea that perceptual load-induced distractor filtering is modality specific. Third, analysis of task-related signals revealed that visual distractors competed with task stimuli for representation and that increased perceptual load appeared to resolve this competition in favor of the task stimulus.

  4. Distraction by deviance: comparing the effects of auditory and visual deviant stimuli on auditory and visual target processing.

    Science.gov (United States)

    Leiva, Alicia; Parmentier, Fabrice B R; Andrés, Pilar

    2015-01-01

    We report the results of oddball experiments in which an irrelevant stimulus (standard, deviant) was presented before a target stimulus and the modality of these stimuli was manipulated orthogonally (visual/auditory). Experiment 1 showed that auditory deviants yielded distraction irrespective of the target's modality while visual deviants did not impact on performance. When participants were forced to attend the distractors in order to detect a rare target ("target-distractor"), auditory deviants yielded distraction irrespective of the target's modality and visual deviants yielded a small distraction effect when targets were auditory (Experiments 2 & 3). Visual deviants only produced distraction for visual targets when deviant stimuli were not visually distinct from the other distractors (Experiment 4). Our results indicate that while auditory deviants yield distraction irrespective of the targets' modality, visual deviants only do so when attended and under selective conditions, at least when irrelevant and target stimuli are temporally and perceptually decoupled.

  5. Defining Auditory-Visual Objects: Behavioral Tests and Physiological Mechanisms.

    Science.gov (United States)

    Bizley, Jennifer K; Maddox, Ross K; Lee, Adrian K C

    2016-02-01

    Crossmodal integration is a term applicable to many phenomena in which one sensory modality influences task performance or perception in another sensory modality. We distinguish the term binding as one that should be reserved specifically for the process that underpins perceptual object formation. To unambiguously differentiate binding form other types of integration, behavioral and neural studies must investigate perception of a feature orthogonal to the features that link the auditory and visual stimuli. We argue that supporting true perceptual binding (as opposed to other processes such as decision-making) is one role for cross-sensory influences in early sensory cortex. These early multisensory interactions may therefore form a physiological substrate for the bottom-up grouping of auditory and visual stimuli into auditory-visual (AV) objects. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Visual Perceptual Learning and Models.

    Science.gov (United States)

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  7. Effect of perceptual load on conceptual processing: an extension of Vermeulen's theory.

    Science.gov (United States)

    Xie, Jiushu; Wang, Ruiming; Sun, Xun; Chang, Song

    2013-10-01

    The effect of color and shape load on conceptual processing was studied. Perceptual load effects have been found in visual and auditory conceptual processing, supporting the theory of embodied cognition. However, whether different types of visual concepts, such as color and shape, share the same perceptual load effects is unknown. In the current experiment, 32 participants were administered simultaneous perceptual and conceptual tasks to assess the relation between perceptual load and conceptual processing. Keeping color load in mind obstructed color conceptual processing. Hence, perceptual processing and conceptual load shared the same resources, suggesting embodied cognition. Color conceptual processing was not affected by shape pictures, indicating that different types of properties within vision were separate.

  8. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception.

    Science.gov (United States)

    Mottron, Laurent; Dawson, Michelle; Soulières, Isabelle; Hubert, Benedicte; Burack, Jake

    2006-01-01

    We propose an "Enhanced Perceptual Functioning" model encompassing the main differences between autistic and non-autistic social and non-social perceptual processing: locally oriented visual and auditory perception, enhanced low-level discrimination, use of a more posterior network in "complex" visual tasks, enhanced perception of first order static stimuli, diminished perception of complex movement, autonomy of low-level information processing toward higher-order operations, and differential relation between perception and general intelligence. Increased perceptual expertise may be implicated in the choice of special ability in savant autistics, and in the variability of apparent presentations within PDD (autism with and without typical speech, Asperger syndrome) in non-savant autistics. The overfunctioning of brain regions typically involved in primary perceptual functions may explain the autistic perceptual endophenotype.

  9. Adaptation and perceptual norms

    Science.gov (United States)

    Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole

    2007-02-01

    We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.

  10. Acetylcholine and Olfactory Perceptual Learning

    Science.gov (United States)

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  11. Perceptual Processing Affects Conceptual Processing

    Science.gov (United States)

    van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.

    2008-01-01

    According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…

  12. Otalgia and eschar in the external auditory canal in scrub typhus complicated by acute respiratory distress syndrome and multiple organ failure

    Directory of Open Access Journals (Sweden)

    Hu Sung-Yuan

    2011-03-01

    Full Text Available Abstract Background Scrub typhus, a mite-transmitted zoonosis caused by Orientia tsutsugamushi, is an endemic disease in Taiwan and may be potentially fatal if diagnosis is delayed. Case presentations We encountered a 23-year-old previously healthy Taiwanese male soldier presenting with the right ear pain after training in the jungle and an eleven-day history of intermittent high fever up to 39°C. Amoxicillin/clavulanate was prescribed for otitis media at a local clinic. Skin rash over whole body and abdominal cramping pain with watery diarrhea appeared on the sixth day of fever. He was referred due to progressive dyspnea and cough for 4 days prior to admission in our institution. On physical examination, there were cardiopulmonary distress, icteric sclera, an eschar in the right external auditory canal and bilateral basal rales. Laboratory evaluation revealed thrombocytopenia, elevation of liver function and acute renal failure. Chest x-ray revealed bilateral diffuse infiltration. Doxycycline was prescribed for scrub typhus with acute respiratory distress syndrome and multiple organ failure. Fever subsided dramatically the next day and he was discharged on day 7 with oral tetracycline for 7 days. Conclusion Scrub typhus should be considered in acutely febrile patients with multiple organ involvement, particularly if there is an eschar or a history of environmental exposure in endemic areas. Rapid and accurate diagnosis, timely administration of antibiotics and intensive supportive care are necessary to decrease mortality of serious complications of scrub typhus.

  13. Selective auditory grouping by zebra finches: testing the iambic-trochaic law.

    Science.gov (United States)

    Spierings, Michelle; Hubert, Jeroen; Ten Cate, Carel

    2017-07-01

    Humans have a strong tendency to spontaneously group visual or auditory stimuli together in larger patterns. One of these perceptual grouping biases is formulated as the iambic/trochaic law, where humans group successive tones alternating in pitch and intensity as trochees (high-low and loud-soft) and alternating in duration as iambs (short-long). The grouping of alternations in pitch and intensity into trochees is a human universal and is also present in one non-human animal species, rats. The perceptual grouping of sounds alternating in duration seems to be affected by native language in humans and has so far not been found among animals. In the current study, we explore to which extent these perceptual biases are present in a songbird, the zebra finch. Zebra finches were trained to discriminate between short strings of pure tones organized as iambs and as trochees. One group received tones that alternated in pitch, a second group heard tones alternating in duration, and for a third group, tones alternated in intensity. Those zebra finches that showed sustained correct discrimination were next tested with longer, ambiguous strings of alternating sounds. The zebra finches in the pitch condition categorized ambiguous strings of alternating tones as trochees, similar to humans. However, most of the zebra finches in the duration and intensity condition did not learn to discriminate between training stimuli organized as iambs and trochees. This study shows that the perceptual bias to group tones alternating in pitch as trochees is not specific to humans and rats, but may be more widespread among animals.

  14. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  15. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  16. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence.

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D; Chait, Maria

    2016-09-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence-the coincidence of sound elements in and across time-is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals ("stochastic figure-ground": SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as "figures" popping out of a stochastic "ground." Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the "figure" from the randomly varying "ground." Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the "classic" auditory system, is also involved in the early stages of auditory scene analysis." © The Author 2016. Published by Oxford University Press.

  17. Neural Correlates of Auditory Figure-Ground Segregation Based on Temporal Coherence

    Science.gov (United States)

    Teki, Sundeep; Barascud, Nicolas; Picard, Samuel; Payne, Christopher; Griffiths, Timothy D.; Chait, Maria

    2016-01-01

    To make sense of natural acoustic environments, listeners must parse complex mixtures of sounds that vary in frequency, space, and time. Emerging work suggests that, in addition to the well-studied spectral cues for segregation, sensitivity to temporal coherence—the coincidence of sound elements in and across time—is also critical for the perceptual organization of acoustic scenes. Here, we examine pre-attentive, stimulus-driven neural processes underlying auditory figure-ground segregation using stimuli that capture the challenges of listening in complex scenes where segregation cannot be achieved based on spectral cues alone. Signals (“stochastic figure-ground”: SFG) comprised a sequence of brief broadband chords containing random pure tone components that vary from 1 chord to another. Occasional tone repetitions across chords are perceived as “figures” popping out of a stochastic “ground.” Magnetoencephalography (MEG) measurement in naïve, distracted, human subjects revealed robust evoked responses, commencing from about 150 ms after figure onset that reflect the emergence of the “figure” from the randomly varying “ground.” Neural sources underlying this bottom-up driven figure-ground segregation were localized to planum temporale, and the intraparietal sulcus, demonstrating that this area, outside the “classic” auditory system, is also involved in the early stages of auditory scene analysis.” PMID:27325682

  18. Percepts, not acoustic properties, are the units of auditory short-term memory.

    Science.gov (United States)

    Mathias, Samuel R; von Kriegstein, Katharina

    2014-04-01

    For decades, researchers have sought to understand the organizing principles of auditory and visual short-term memory (STM). Previous work in audition has suggested that there are independent memory stores for different sound features, but the nature of the representations retained within these stores is currently unclear. Do they retain perceptual features, or do they instead retain representations of the sound's specific acoustic properties? In the present study we addressed this question by measuring listeners' abilities to keep one of three acoustic properties (interaural time difference [ITD], interaural level difference [ILD], or frequency) in memory when the target sound was followed by interfering sounds that varied randomly in one of the same properties. Critically, ITD and ILD evoked the same percept (spatial location), despite being acoustically different and having different physiological correlates, whereas frequency evoked a different percept (pitch). The results showed that listeners found it difficult to remember the percept of spatial location when the interfering tones varied either in ITD or ILD, but not when they varied in frequency. The study demonstrates that percepts are the units of auditory STM, and provides testable predictions for future neuroscientific work on both auditory and visual STM.

  19. Auditory Perception and Word Recognition in Cantonese-Chinese Speaking Children with and without Specific Language Impairment

    Science.gov (United States)

    Kidd, Joanna C.; Shum, Kathy K.; Wong, Anita M.-Y.; Ho, Connie S.-H.

    2017-01-01

    Auditory processing and spoken word recognition difficulties have been observed in Specific Language Impairment (SLI), raising the possibility that auditory perceptual deficits disrupt word recognition and, in turn, phonological processing and oral language. In this study, fifty-seven kindergarten children with SLI and fifty-three language-typical…

  20. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  1. Perceptual effects in auralization of virtual rooms

    Science.gov (United States)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  2. Factors of Predicted Learning Disorders and their Interaction with Attentional and Perceptual Training Procedures.

    Science.gov (United States)

    Friar, John T.

    Two factors of predicted learning disorders were investigated: (1) inability to maintain appropriate classroom behavior (BEH), (2) perceptual discrimination deficit (PERC). Three groups of first-graders (BEH, PERC, normal control) were administered measures of impulse control, distractability, auditory discrimination, and visual discrimination.…

  3. Model cortical responses for the detection of perceptual onsets and beat tracking in singing

    NARCIS (Netherlands)

    Coath, M.; Denham, S.L.; Smith, L.M.; Honing, H.; Hazan, A.; Holonowicz, P.; Purwins, H.

    2009-01-01

    We describe a biophysically motivated model of auditory salience based on a model of cortical responses and present results that show that the derived measure of salience can be used to identify the position of perceptual onsets in a musical stimulus successfully. The salience measure is also shown

  4. Temporal integration of consecutive tones into synthetic vowels demonstrates perceptual assembly in audition

    NARCIS (Netherlands)

    Saija, Jefta D.; Andringa, Tjeerd C.; Başkent, Deniz; Akyürek, Elkan G.

    Temporal integration is the perceptual process combining sensory stimulation over time into longer percepts that can span over 10 times the duration of a minimally detectable stimulus. Particularly in the auditory domain, such "long-term" temporal integration has been characterized as a relatively

  5. Understanding perceptual boundaries in laparoscopic surgery.

    Science.gov (United States)

    Lamata, Pablo; Gomez, Enrique J; Hernández, Félix Lamata; Oltra Pastor, Alfonso; Sanchez-Margallo, Francisco Miquel; Del Pozo Guerrero, Francisco

    2008-03-01

    Human perceptual capabilities related to the laparoscopic interaction paradigm are not well known. Its study is important for the design of virtual reality simulators, and for the specification of augmented reality applications that overcome current limitations and provide a supersensing to the surgeon. As part of this work, this article addresses the study of laparoscopic pulling forces. Two definitions are proposed to focalize the problem: the perceptual fidelity boundary, limit of human perceptual capabilities, and the Utile fidelity boundary, that encapsulates the perceived aspects actually used by surgeons to guide an operation. The study is then aimed to define the perceptual fidelity boundary of laparoscopic pulling forces. This is approached with an experimental design in which surgeons assess the resistance against pulling of four different tissues, which are characterized with both in vivo interaction forces and ex vivo tissue biomechanical properties. A logarithmic law of tissue consistency perception is found comparing subjective valorizations with objective parameters. A model of this perception is developed identifying what the main parameters are: the grade of fixation of the organ, the tissue stiffness, the amount of tissue bitten, and the organ mass being pulled. These results are a clear requirement analysis for the force feedback algorithm of a virtual reality laparoscopic simulator. Finally, some discussion is raised about the suitability of augmented reality applications around this surgical gesture.

  6. Topographic generalization of tactile perceptual learning.

    Science.gov (United States)

    Harrar, Vanessa; Spence, Charles; Makin, Tamar R

    2014-02-01

    Perceptual learning can improve our sensory abilities. Understanding its underlying mechanisms, in particular, when perceptual learning generalizes, has become a focus of research and controversy. Specifically, there is little consensus regarding the extent to which tactile perceptual learning generalizes across fingers. We measured tactile orientation discrimination abilities on 4 fingers (index and middle fingers of both hands), using psychophysical measures, before and after 4 training sessions on 1 finger. Given the somatotopic organization of the hand representation in the somatosensory cortex, the topography of the cortical areas underlying tactile perceptual learning can be inferred from the pattern of generalization across fingers; only fingers sharing cortical representation with the trained finger ought to improve with it. Following training, performance improved not only for the trained finger but also for its adjacent and homologous fingers. Although these fingers were not exposed to training, they nevertheless demonstrated similar levels of learning as the trained finger. Conversely, the performance of the finger that was neither adjacent nor homologous to the trained finger was unaffected by training, despite the fact that our procedure was designed to enhance generalization, as described in recent visual perceptual learning research. This pattern of improved performance is compatible with previous reports of neuronal receptive fields (RFs) in the primary somatosensory cortex (SI) spanning adjacent and homologous digits. We conclude that perceptual learning rooted in low-level cortex can still generalize, and suggest potential applications for the neurorehabilitation of syndromes associated with maladaptive plasticity in SI. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. Constraints on the Transfer of Perceptual Learning in Accented Speech

    Science.gov (United States)

    Eisner, Frank; Melinger, Alissa; Weber, Andrea

    2013-01-01

    The perception of speech sounds can be re-tuned through a mechanism of lexically driven perceptual learning after exposure to instances of atypical speech production. This study asked whether this re-tuning is sensitive to the position of the atypical sound within the word. We investigated perceptual learning using English voiced stop consonants, which are commonly devoiced in word-final position by Dutch learners of English. After exposure to a Dutch learner’s productions of devoiced stops in word-final position (but not in any other positions), British English (BE) listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with devoiced final stops (e.g., “seed”, pronounced [si:th]), facilitated recognition of visual targets with voiced final stops (e.g., SEED). In Experiment 1, this learning effect generalized to test pairs where the critical contrast was in word-initial position, e.g., auditory primes such as “town” facilitated recognition of visual targets like DOWN. Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The generalization to word-initial position did not occur when participants had also heard correctly voiced, word-initial stops during exposure (Experiment 2), and when the speaker was a native BE speaker who mimicked the word-final devoicing (Experiment 3). The readiness of the perceptual system to generalize a previously learned adjustment to other positions within the word thus appears to be modulated by distributional properties of the speech input, as well as by the perceived sociophonetic characteristics of the speaker. The results suggest that the transfer of pre-lexical perceptual adjustments that occur through lexically driven learning can be affected by a combination of acoustic, phonological, and sociophonetic factors. PMID:23554598

  8. Perceptual learning and human expertise.

    Science.gov (United States)

    Kellman, Philip J; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  9. Perceptual learning and human expertise

    Science.gov (United States)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  10. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    Science.gov (United States)

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  11. Varieties of perceptual learning.

    Science.gov (United States)

    Mackintosh, N J

    2009-05-01

    Although most studies of perceptual learning in human participants have concentrated on the changes in perception assumed to be occurring, studies of nonhuman animals necessarily measure discrimination learning and generalization and remain agnostic on the question of whether changes in behavior reflect changes in perception. On the other hand, animal studies do make it easier to draw a distinction between supervised and unsupervised learning. Differential reinforcement will surely teach animals to attend to some features of a stimulus array rather than to others. But it is an open question as to whether such changes in attention underlie the enhanced discrimination seen after unreinforced exposure to such an array. I argue that most instances of unsupervised perceptual learning observed in animals (and at least some in human animals) are better explained by appeal to well-established principles and phenomena of associative learning theory: excitatory and inhibitory associations between stimulus elements, latent inhibition, and habituation.

  12. Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology

    Science.gov (United States)

    Olsen, Kirk N.

    Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.

  13. Probing neural mechanisms underlying auditory stream segregation in humans by transcranial direct current stimulation (tDCS).

    Science.gov (United States)

    Deike, Susann; Deliano, Matthias; Brechmann, André

    2016-10-01

    One hypothesis concerning the neural underpinnings of auditory streaming states that frequency tuning of tonotopically organized neurons in primary auditory fields in combination with physiological forward suppression is necessary for the separation of representations of high-frequency A and low-frequency B tones. The extent of spatial overlap between the tonotopic activations of A and B tones is thought to underlie the perceptual organization of streaming sequences into one coherent or two separate streams. The present study attempts to interfere with these mechanisms by transcranial direct current stimulation (tDCS) and to probe behavioral outcomes reflecting the perception of ABAB streaming sequences. We hypothesized that tDCS by modulating cortical excitability causes a change in the separateness of the representations of A and B tones, which leads to a change in the proportions of one-stream and two-stream percepts. To test this, 22 subjects were presented with ambiguous ABAB sequences of three different frequency separations (∆F) and had to decide on their current percept after receiving sham, anodal, or cathodal tDCS over the left auditory cortex. We could confirm our hypothesis at the most ambiguous ∆F condition of 6 semitones. For anodal compared with sham and cathodal stimulation, we found a significant decrease in the proportion of two-stream perception and an increase in the proportion of one-stream perception. The results demonstrate the feasibility of using tDCS to probe mechanisms underlying auditory streaming through the use of various behavioral measures. Moreover, this approach allows one to probe the functions of auditory regions and their interactions with other processing stages. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Quadri-stability of a spatially ambiguous auditory illusion

    Directory of Open Access Journals (Sweden)

    Constance May Bainbridge

    2015-01-01

    Full Text Available In addition to vision, audition plays an important role in sound localization in our world. One way we estimate the motion of an auditory object moving towards or away from us is from changes in volume intensity. However, the human auditory system has unequally distributed spatial resolution, including difficulty distinguishing sounds in front versus behind the listener. Here, we introduce a novel quadri-stable illusion, the Transverse-and-Bounce Auditory Illusion, which combines front-back confusion with changes in volume levels of a nonspatial sound to create ambiguous percepts of an object approaching and withdrawing from the listener. The sound can be perceived as traveling transversely from front to back or back to front, or bouncing to remain exclusively in front of or behind the observer. Here we demonstrate how human listeners experience this illusory phenomenon by comparing ambiguous and unambiguous stimuli for each of the four possible motion percepts. When asked to rate their confidence in perceiving each sound’s motion, participants reported equal confidence for the illusory and unambiguous stimuli. Participants perceived all four illusory motion percepts, and could not distinguish the illusion from the unambiguous stimuli. These results show that this illusion is effectively quadri-stable. In a second experiment, the illusory stimulus was looped continuously in headphones while participants identified its perceived path of motion to test properties of perceptual switching, locking, and biases. Participants were biased towards perceiving transverse compared to bouncing paths, and they became perceptually locked into alternating between front-to-back and back-to-front percepts, perhaps reflecting how auditory objects commonly move in the real world. This multi-stable auditory illusion opens opportunities for studying the perceptual, cognitive, and neural representation of objects in motion, as well as exploring multimodal perceptual

  15. The acoustic and perceptual cues affecting melody segregation for listeners with a cochlear implant.

    Directory of Open Access Journals (Sweden)

    Jeremy eMarozeau

    2013-11-01

    Full Text Available Our ability to listen selectively to single sound sources in complex auditory environments is termed ‘auditory stream segregation.’ This ability is affected by peripheral disorders such as hearing loss, as well as plasticity in central processing such as occurs with musical training. Brain plasticity induced by musical training can enhance the ability to segregate sound, leading to improvements in a variety of auditory abilities. The melody segregation ability of 12 cochlear-implant recipients was tested using a new method to determine the perceptual distance needed to segregate a simple 4-note melody from a background of interleaved random-pitch distractor notes. In experiment 1, participants rated the difficulty of segregating the melody from distracter notes. Four physical properties of the distracter notes were changed. In experiment 2, listeners were asked to rate the dissimilarity between melody patterns whose notes differed on the four physical properties simultaneously. Multidimensional scaling analysis transformed the dissimilarity ratings into perceptual distances. Regression between physical and perceptual cues then derived the minimal perceptual distance needed to segregate the melody.The most efficient streaming cue for CI users was loudness. For the normal hearing listeners without musical backgrounds, a greater difference on the perceptual dimension correlated to the temporal envelope is needed for stream segregation in CI users. No differences in streaming efficiency were found between the perceptual dimensions linked to the F0 and the spectral envelope.Combined with our previous results in normally-hearing musicians and non-musicians, the results show that differences in training as well as differences in peripheral auditory processing (hearing impairment and the use of a hearing device influences the way that listeners use different acoustic cues for segregating interleaved musical streams.

  16. Comparison of Perceptual Signs of Voice before and after Vocal Hygiene Program in Adults with Dysphonia

    Directory of Open Access Journals (Sweden)

    Seyyedeh Maryam khoddami

    2011-12-01

    Full Text Available Background and Aim: Vocal abuse and misuse are the most frequent causes of voice disorders. Consequently some therapy is needed to stop or modify such behaviors. This research was performed to study the effectiveness of vocal hygiene program on perceptual signs of voice in people with dysphonia.Methods: A Vocal hygiene program was performed to 8 adults with dysphonia for 6 weeks. At first, Consensus Auditory- Perceptual Evaluation of Voice was used to assess perceptual signs. Then the program was delivered, Individuals were followed in second and forth weeks visits. In the last session, perceptual assessment was performed and individuals’ opinions were collected. Perceptual findings were compared before and after the therapy.Results: After the program, mean score of perceptual assessment decreased. Mean score of every perceptual sign revealed significant difference before and after the therapy (p≤0.0001. «Loudness» had maximum score and coordination between speech and respiration indicated minimum score. All participants confirmed efficiency of the therapy.Conclusion: The vocal hygiene program improves all perceptual signs of voice although not equally. This deduction is confirmed by both clinician-based and patient-based assessments. As a result, vocal hygiene program is necessary for a comprehensive voice therapy but is not solely effective to resolve all voice problems.

  17. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  18. Short-term memory stores organized by information domain.

    Science.gov (United States)

    Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C

    2016-04-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.

  19. Short-term memory stores organized by information domain

    Science.gov (United States)

    Noyce, Abigail L.; Cestero, Nishmar; Shinn-Cunningham, Barbara G.; Somers, David C.

    2016-01-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigate the relationships among visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations), or time (the sequence of inter-item intervals), and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (sequence 1 visual and sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: spatial performance was best on unimodal visual trials, while temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, there was no cost attributable to crossmodal comparison: in both tasks, performance on crossmodal trials was as good or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that temporal or spatial organization of STM may supersede sensory-specific organization. PMID:26791231

  20. Auditory hallucinations: A review of the ERC "VOICE" project.

    Science.gov (United States)

    Hugdahl, Kenneth

    2015-06-22

    In this invited review I provide a selective overview of recent research on brain mechanisms and cognitive processes involved in auditory hallucinations. The review is focused on research carried out in the "VOICE" ERC Advanced Grant Project, funded by the European Research Council, but I also review and discuss the literature in general. Auditory hallucinations are suggested to be perceptual phenomena, with a neuronal origin in the speech perception areas in the temporal lobe. The phenomenology of auditory hallucinations is conceptualized along three domains, or dimensions; a perceptual dimension, experienced as someone speaking to the patient; a cognitive dimension, experienced as an inability to inhibit, or ignore the voices, and an emotional dimension, experienced as the "voices" having primarily a negative, or sinister, emotional tone. I will review cognitive, imaging, and neurochemistry data related to these dimensions, primarily the first two. The reviewed data are summarized in a model that sees auditory hallucinations as initiated from temporal lobe neuronal hyper-activation that draws attentional focus inward, and which is not inhibited due to frontal lobe hypo-activation. It is further suggested that this is maintained through abnormal glutamate and possibly gamma-amino-butyric-acid transmitter mediation, which could point towards new pathways for pharmacological treatment. A final section discusses new methods of acquiring quantitative data on the phenomenology and subjective experience of auditory hallucination that goes beyond standard interview questionnaires, by suggesting an iPhone/iPod app.

  1. Resource allocation models of auditory working memory.

    Science.gov (United States)

    Joseph, Sabine; Teki, Sundeep; Kumar, Sukhbinder; Husain, Masud; Griffiths, Timothy D

    2016-06-01

    Auditory working memory (WM) is the cognitive faculty that allows us to actively hold and manipulate sounds in mind over short periods of time. We develop here a particular perspective on WM for non-verbal, auditory objects as well as for time based on the consideration of possible parallels to visual WM. In vision, there has been a vigorous debate on whether WM capacity is limited to a fixed number of items or whether it represents a limited resource that can be allocated flexibly across items. Resource allocation models predict that the precision with which an item is represented decreases as a function of total number of items maintained in WM because a limited resource is shared among stored objects. We consider here auditory work on sequentially presented objects of different pitch as well as time intervals from the perspective of dynamic resource allocation. We consider whether the working memory resource might be determined by perceptual features such as pitch or timbre, or bound objects comprising multiple features, and we speculate on brain substrates for these behavioural models. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Perceptual Audio Hashing Functions

    Directory of Open Access Journals (Sweden)

    Emin Anarım

    2005-07-01

    Full Text Available Perceptual hash functions provide a tool for fast and reliable identification of content. We present new audio hash functions based on summarization of the time-frequency spectral characteristics of an audio document. The proposed hash functions are based on the periodicity series of the fundamental frequency and on singular-value description of the cepstral frequencies. They are found, on one hand, to perform very satisfactorily in identification and verification tests, and on the other hand, to be very resilient to a large variety of attacks. Moreover, we address the issue of security of hashes and propose a keying technique, and thereby a key-dependent hash function.

  3. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  4. Music Genre Classification using an Auditory Memory Model

    DEFF Research Database (Denmark)

    Jensen, Kristoffer

    2011-01-01

    Audio feature estimation is potentially improved by including higher- level models. One such model is the Auditory Short Term Memory (STM) model. A new paradigm of audio feature estimation is obtained by adding the influence of notes in the STM. These notes are identified when the perceptual...... results, and an initial experiment with sensory dissonance has been undertaken with good results. The parameters obtained form the auditory memory model, along with the dissonance measure, are shown here to be of interest in genre classification....

  5. Interdisciplinary Adventures in Perceptual Ecology

    Science.gov (United States)

    Bocast, Christopher S.

    A portfolio dissertation that began as acoustic ecology and matured into perceptual ecology, centered on ecomusicology, bioacoustics, and translational audio-based media works with environmental perspectives. The place of music in Western eco-cosmology through time provides a basis for structuring an environmental history of human sound perception. That history suggests that music may stabilize human mental activity, and that an increased musical practice may be essential for the human project. An overview of recent antecedents preceding the emergence of acoustic ecology reveals structural foundations from 20th century culture that underpin modern sound studies. The contextual role that Aldo Leopold, Jacob von Uexkull, John Cage, Marshall McLuhan, and others played in anticipating the development of acoustic ecology as an interdiscipline is detailed. This interdisciplinary aspect of acoustic ecology is defined and defended, while new developments like soundscape ecology are addressed, though ultimately sound studies will need to embrace a broader concept of full-spectrum "sensory" or "perceptual" ecology. The bioacoustic fieldwork done on spawning sturgeon emphasized this necessity. That study yielded scientific recordings and spectrographic analyses of spawning sounds produced by lake sturgeon, Acipenser fulvescens, during reproduction in natural habitats in the Lake Winnebago watershed in Wisconsin. Recordings were made on the Wolf and Embarrass River during the 2011-2013 spawning seasons. Several specimens were dissected to investigate possible sound production mechanisms; no sonic musculature was found. Drumming sounds, ranging from 5 to 7 Hz fundamental frequency, verified the infrasonic nature of previously undocumented "sturgeon thunder". Other characteristic noises of sturgeon spawning including low-frequency rumbles and hydrodynamic sounds were identified. Intriguingly, high-frequency signals resembling electric organ discharges were discovered. These

  6. Missing a trick: Auditory load modulates conscious awareness in audition.

    Science.gov (United States)

    Fairnie, Jake; Moore, Brian C J; Remington, Anna

    2016-07-01

    In the visual domain there is considerable evidence supporting the Load Theory of Attention and Cognitive Control, which holds that conscious perception of background stimuli depends on the level of perceptual load involved in a primary task. However, literature on the applicability of this theory to the auditory domain is limited and, in many cases, inconsistent. Here we present a novel "auditory search task" that allows systematic investigation of the impact of auditory load on auditory conscious perception. An array of simultaneous, spatially separated sounds was presented to participants. On half the trials, a critical stimulus was presented concurrently with the array. Participants were asked to detect which of 2 possible targets was present in the array (primary task), and whether the critical stimulus was present or absent (secondary task). Increasing the auditory load of the primary task (raising the number of sounds in the array) consistently reduced the ability to detect the critical stimulus. This indicates that, at least in certain situations, load theory applies in the auditory domain. The implications of this finding are discussed both with respect to our understanding of typical audition and for populations with altered auditory processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. The effects of divided attention on auditory priming.

    Science.gov (United States)

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  8. Multisensory perceptual learning is dependent upon task difficulty.

    Science.gov (United States)

    De Niear, Matthew A; Koo, Bonhwang; Wallace, Mark T

    2016-11-01

    There has been a growing interest in developing behavioral tasks to enhance temporal acuity as recent findings have demonstrated changes in temporal processing in a number of clinical conditions. Prior research has demonstrated that perceptual training can enhance temporal acuity both within and across different sensory modalities. Although certain forms of unisensory perceptual learning have been shown to be dependent upon task difficulty, this relationship has not been explored for multisensory learning. The present study sought to determine the effects of task difficulty on multisensory perceptual learning. Prior to and following a single training session, participants completed a simultaneity judgment (SJ) task, which required them to judge whether a visual stimulus (flash) and auditory stimulus (beep) presented in synchrony or at various stimulus onset asynchronies (SOAs) occurred synchronously or asynchronously. During the training session, participants completed the same SJ task but received feedback regarding the accuracy of their responses. Participants were randomly assigned to one of three levels of difficulty during training: easy, moderate, and hard, which were distinguished based on the SOAs used during training. We report that only the most difficult (i.e., hard) training protocol enhanced temporal acuity. We conclude that perceptual training protocols for enhancing multisensory temporal acuity may be optimized by employing audiovisual stimuli for which it is difficult to discriminate temporal synchrony from asynchrony.

  9. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.

    Science.gov (United States)

    Noto, M; Nishikawa, J; Tateno, T

    2016-03-24

    A sound interrupted by silence is perceived as discontinuous. However, when high-intensity noise is inserted during the silence, the missing sound may be perceptually restored and be heard as uninterrupted. This illusory phenomenon is called auditory induction. Recent electrophysiological studies have revealed that auditory induction is associated with the primary auditory cortex (A1). Although experimental evidence has been accumulating, the neural mechanisms underlying auditory induction in A1 neurons are poorly understood. To elucidate this, we used both experimental and computational approaches. First, using an optical imaging method, we characterized population responses across auditory cortical fields to sound and identified five subfields in rats. Next, we examined neural population activity related to auditory induction with high temporal and spatial resolution in the rat auditory cortex (AC), including the A1 and several other AC subfields. Our imaging results showed that tone-burst stimuli interrupted by a silent gap elicited early phasic responses to the first tone and similar or smaller responses to the second tone following the gap. In contrast, tone stimuli interrupted by broadband noise (BN), considered to cause auditory induction, considerably suppressed or eliminated responses to the tone following the noise. Additionally, tone-burst stimuli that were interrupted by notched noise centered at the tone frequency, which is considered to decrease the strength of auditory induction, partially restored the second responses from the suppression caused by BN. To phenomenologically mimic the neural population activity in the A1 and thus investigate the mechanisms underlying auditory induction, we constructed a computational model from the periphery through the AC, including a nonlinear dynamical system. The computational model successively reproduced some of the above-mentioned experimental results. Therefore, our results suggest that a nonlinear, self

  10. Reactive agents and perceptual ambiguity

    NARCIS (Netherlands)

    Dartel, M. van; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.; Herik, H.J. van den

    2005-01-01

    Reactive agents are generally believed to be incapable of coping with perceptual ambiguity (i.e., identical sensory states that require different responses). However, a recent finding suggests that reactive agents can cope with perceptual ambiguity in a simple model (Nolfi, 2002). This paper

  11. Integrated approaches to perceptual learning.

    Science.gov (United States)

    Jacobs, Robert A

    2010-04-01

    New technologies and new ways of thinking have recently led to rapid expansions in the study of perceptual learning. We describe three themes shared by many of the nine articles included in this topic on Integrated Approaches to Perceptual Learning. First, perceptual learning cannot be studied on its own because it is closely linked to other aspects of cognition, such as attention, working memory, decision making, and conceptual knowledge. Second, perceptual learning is sensitive to both the stimulus properties of the environment in which an observer exists and to the properties of the tasks that the observer needs to perform. Moreover, the environmental and task properties can be characterized through their statistical regularities. Finally, the study of perceptual learning has important implications for society, including implications for science education and medical rehabilitation. Contributed articles relevant to each theme are summarized. Copyright © 2010 Cognitive Science Society, Inc.

  12. Audiomotor Perceptual Training Enhances Speech Intelligibility in Background Noise.

    Science.gov (United States)

    Whitton, Jonathon P; Hancock, Kenneth E; Shannon, Jeffrey M; Polley, Daniel B

    2017-11-06

    Sensory and motor skills can be improved with training, but learning is often restricted to practice stimuli. As an exception, training on closed-loop (CL) sensorimotor interfaces, such as action video games and musical instruments, can impart a broad spectrum of perceptual benefits. Here we ask whether computerized CL auditory training can enhance speech understanding in levels of background noise that approximate a crowded restaurant. Elderly hearing-impaired subjects trained for 8 weeks on a CL game that, like a musical instrument, challenged them to monitor subtle deviations between predicted and actual auditory feedback as they moved their fingertip through a virtual soundscape. We performed our study as a randomized, double-blind, placebo-controlled trial by training other subjects in an auditory working-memory (WM) task. Subjects in both groups improved at their respective auditory tasks and reported comparable expectations for improved speech processing, thereby controlling for placebo effects. Whereas speech intelligibility was unchanged after WM training, subjects in the CL training group could correctly identify 25% more words in spoken sentences or digit sequences presented in high levels of background noise. Numerically, CL audiomotor training provided more than three times the benefit of our subjects' hearing aids for speech processing in noisy listening conditions. Gains in speech intelligibility could be predicted from gameplay accuracy and baseline inhibitory control. However, benefits did not persist in the absence of continuing practice. These studies employ stringent clinical standards to demonstrate that perceptual learning on a computerized audio game can transfer to "real-world" communication challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  14. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to 17th century

    OpenAIRE

    Aleksey eNikolsky

    2016-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation.Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both dom...

  15. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to Seventeenth Century

    OpenAIRE

    Nikolsky, Aleksey

    2016-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both do...

  16. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  17. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Uncovering beat deafness: detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks.

    Science.gov (United States)

    Dalla Bella, Simone; Sowiński, Jakub

    2015-03-16

    A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).

  19. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to Seventeenth Century.

    Science.gov (United States)

    Nikolsky, Aleksey

    2016-01-01

    This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation. Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both domains, of tonal and social organization. Part-2, here, completes the line of historic development from Antiquity to seventeenth century. Vast archeological data is used to identify the perception of music structures that tells apart the temple/palace music of urban civilizations and the folk music of village cultures. The "mega-pitch-set" (MPS) organization is found to constitute the principal contribution of a math-based music theory to a new diatonic order. All ramifications for psychology of music are discussed in detail. "Non-octave hypermode" is identified as a peculiar homogenous type of MPS, typical for plainchant. The origin of chromaticism is thoroughly examined as an earmark of "art-music" that opposes earlier forms of folk music. The role of aesthetic emotions in formation of chromatic alteration is defined. The development of chromatic system is traced throughout history, highlighting its modern implementation in "hemiolic modes." The connection between tonal organization in music and spatial organization in pictorial art is established in the Baroque culture, and then tracked back to prehistoric times. Both are shown to present a form of abstraction of environmental topographic schemes, and music is proposed as the primary medium for its cultivation through the concept of pitch. The comparison of stages of tonal organization and typologies of musical texture is used to define the overall course of tonal evolution. Tonal organization of pitch reflects the culture of

  20. Evolution of Tonal Organization in Music Optimizes Neural Mechanisms in Symbolic Encoding of Perceptual Reality. Part-2: Ancient to 17th century

    Directory of Open Access Journals (Sweden)

    Aleksey eNikolsky

    2016-03-01

    Full Text Available This paper reveals the way in which musical pitch works as a peculiar form of cognition that reflects upon the organization of the surrounding world as perceived by majority of music users within a socio-cultural formation.Part-1 of this paper described the origin of tonal organization from verbal speech, its progress from indefinite to definite pitch, and the emergence of two main harmonic orders: heptatonic and pentatonic, each characterized by its own method of handling tension at both domains, of tonal and social organization. Part-2, here, completes the line of historic development from Antiquity to 17th century. Vast archeological data is used to identify the perception of music structures that tells apart the temple/palace music of urban civilizations and the folk music of village cultures. The mega-pitch-set (MPS organization is found to constitute the principal contribution of a math-based music theory to a new diatonic order. All ramifications for psychology of music are discussed in detail. Non-octave hypermode is identified as a peculiar homogenous type of MPS, typical for plainchant.The origin of chromaticism is thoroughly examined as an earmark of art-music that opposes earlier forms of folk music. The role of aesthetic emotions in formation of chromatic alteration is defined. The development of chromatic system is traced throughout history, highlighting its modern implementation in hemiolic modes.The connection between tonal organization in music and spatial organization in pictorial art is established in the Baroque culture, and then tracked back to prehistoric times. Both are shown to present a form of abstraction of environmental topographic schemes, and music is proposed as the primary medium for its cultivation through the concept of pitch. The comparison of stages of tonal organization and typologies of musical texture is used to define the overall course of tonal evolution. Tonal organization of pitch reflects the culture

  1. From sensation to percept: the neural signature of auditory event-related potentials.

    Science.gov (United States)

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  3. The Auditory Enhancement Effect is Not Reflected in the 80-Hz Auditory Steady-State Response

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.; Portron, Arthur; Semal, Catherine; Demany, Laurent

    2014-01-01

    The perceptual salience of a target tone presented in a multitone background is increased by the presentation of a precursor sound consisting of the multitone background alone. It has been proposed that this “enhancement” phenomenon results from an effective amplification of the neural response to the target tone. In this study, we tested this hypothesis in humans, by comparing the auditory steady-state response (ASSR) to a target tone that was enhanced by a precursor sound with the ASSR to a...

  4. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  7. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor). Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor), which may drive perceptual abilities differently in autistic and

  8. Autism-Specific Covariation in Perceptual Performances: “g” or “p” Factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S.; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Background Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. Methods We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. Results In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Conclusions Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or “g” factor). Instead, this residual covariation is accounted for by a common perceptual process (or “p” factor), which may drive

  9. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Directory of Open Access Journals (Sweden)

    Andrée-Anne S Meilleur

    Full Text Available Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination and mid-level (e.g., pattern matching tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals.We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ and Raven Progressive Matrices (RPM. We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence.In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism.Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor. Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor, which may drive perceptual abilities differently in

  10. Automaticity and primacy of auditory streaming: Concurrent subjective and objective measures.

    Science.gov (United States)

    Billig, Alexander J; Carlyon, Robert P

    2016-03-01

    Two experiments used subjective and objective measures to study the automaticity and primacy of auditory streaming. Listeners heard sequences of "ABA-" triplets, where "A" and "B" were tones of different frequencies and "-" was a silent gap. Segregation was more frequently reported, and rhythmically deviant triplets less well detected, for a greater between-tone frequency separation and later in the sequence. In Experiment 1, performing a competing auditory task for the first part of the sequence led to a reduction in subsequent streaming compared to when the tones were attended throughout. This is consistent with focused attention promoting streaming, and/or with attention switches resetting it. However, the proportion of segregated reports increased more rapidly following a switch than at the start of a sequence, indicating that some streaming occurred automatically. Modeling ruled out a simple "covert attention" account of this finding. Experiment 2 required listeners to perform subjective and objective tasks concurrently. It revealed superior performance during integrated compared to segregated reports, beyond that explained by the codependence of the two measures on stimulus parameters. We argue that listeners have limited access to low-level stimulus representations once perceptual organization has occurred, and that subjective and objective streaming measures partly index the same processes. (c) 2016 APA, all rights reserved).

  11. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  12. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  13. Auditory-Phonetic Projection and Lexical Structure in the Recognition of Sine-Wave Words

    Science.gov (United States)

    Remez, Robert E.; Dubowski, Kathryn R.; Broder, Robin S.; Davids, Morgana L.; Grossman, Yael S.; Moskalenko, Marina; Pardo, Jennifer S.; Hasbun, Sara Maria

    2011-01-01

    Speech remains intelligible despite the elimination of canonical acoustic correlates of phonemes from the spectrum. A portion of this perceptual flexibility can be attributed to modulation sensitivity in the auditory-to-phonetic projection, although signal-independent properties of lexical neighborhoods also affect intelligibility in utterances…

  14. Cortical potentials in an auditory oddball task reflect individual differences in working memory capacity.

    Science.gov (United States)

    Yurgil, Kate A; Golob, Edward J

    2013-12-01

    This study determined whether auditory cortical responses associated with mechanisms of attention vary with individual differences in working memory capacity (WMC) and perceptual load. The operation span test defined subjects with low versus high WMC, who then discriminated target/nontarget tones while EEG was recorded. Infrequent white noise distracters were presented at midline or ±90° locations, and perceptual load was manipulated by varying nontarget frequency. Amplitude of the N100 to distracters was negatively correlated with WMC. Relative to targets, only high WMC subjects showed attenuated N100 amplitudes to nontargets. In the higher WMC group, increased perceptual load was associated with decreased P3a amplitudes to distracters and longer-lasting negative slow wave to nontargets. Results show that auditory cortical processing is associated with multiple facets of attention related to WMC and possibly higher-level cognition. Copyright © 2013 Society for Psychophysiological Research.

  15. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  16. Auditory reafferences: The influence of real-time feedback on movement control

    Directory of Open Access Journals (Sweden)

    Christian eKennel

    2015-01-01

    Full Text Available Auditory reafferences are real-time auditory products created by a person’s own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with nonartificial auditory cues. Our results support the existing theoretical understanding of action–perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  17. Auditory reafferences: the influence of real-time feedback on movement control.

    Science.gov (United States)

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  18. Analysis of both perceptual and motor skills of children with dyslalia before their entering of the first grade of primary school

    OpenAIRE

    Pešlová, Markéta

    2015-01-01

    The thesis deals with an analysis of both perceptual and motor skills of children with dyslalia before their entering of the first grade of primary school. The aim of this thesis is to determine the level of perceptual and motor skills of both preschool children with dyslalia and intact children. The preschool age of a child is described in the theoretical part of the thesis. The thesis also defines dyslalia. Further chapters deal with auditory and visual perception. The area of motor skills ...

  19. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    Science.gov (United States)

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Perceptual Mapping Software as a Tool for Facilitating School-Based Consultation

    Science.gov (United States)

    Rush, S. Craig; Kalish, Ashley; Wheeler, Joanna

    2013-01-01

    Perceptual mapping is a systematic method for collecting, analyzing, and presenting group perceptions that is potentially useful in consultation. With input and feedback from a consultee group, perceptual mapping allows the consultant to capture the group's collective perceptions and display them as an organized image that may foster…

  1. Perceptual organization reconsidered in the light of the watercolor illusion: The problem of perception of holes and the object-hole effect.

    Science.gov (United States)

    Pinna, Baingio; Tanca, Maria

    2008-05-23

    The watercolor illusion is a long-range color assimilation (coloration effect) imparting a figure-ground segregation (figural effect) across large enclosed areas (B. Pinna, 1987; B. Pinna, G. Brelstaff, & L. Spillmann, 2001; B. Pinna, L. Spillmann, & J. S. Werner, 2003; B. Pinna, J. S. Werner, & L. Spillmann, 2003). The watercolored figure has a very poorly reversible or univocal figure-ground segregation and strongly enhances the unilateral belongingness of the boundaries (E. Rubin, 1915), a principle stating that the boundaries belong only to the figure and not to the background. The figural effect determines grouping and figure-ground segregation more strongly than the well-known Gestalt principles. Under watercolor conditions both the figure and the background assume new properties becoming respectively bulging object and hole both with a 3-D volumetric appearance (object-hole effect). Our purposes were: (i) to demonstrate that the hole induced by the watercolor illusion has unique figural properties comparable to those of the object and not present in the background induced by the known figure-ground principles; (ii) to demonstrate a dissociation of the object-hole effect from the coloration one; (iii) to demonstrate that the object-hole effect depends on a new principle. This was psychophysically tested by weakening (ungrouping) the whole figural organization of the watercolor illusion, i.e. by imparting motion to only some components of a stimulus, while other components remain stationary. The results showed that (i) subjects perceived moving holes more strongly than moving figures or objects enlarging and shrinking. (ii) Paradoxically, moving holes appear more as figures than the bulging surfaces. (iii) When motion was imparted to components that while stationary were perceived as objects, their figurality is further enhanced (summation effect). (iv) When object-hole and coloration effects were dissociated no significant difference compared to illusory

  2. Neuroanatomic organization of sound memory in humans.

    Science.gov (United States)

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  3. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis.

    Science.gov (United States)

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN.

  4. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis

    Science.gov (United States)

    Wiens, Stefan; Szychowska, Malina; Nilsson, Mats E.

    2016-01-01

    Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN. PMID:26741815

  5. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  6. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  7. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  8. Effect- and Performance-Based Auditory Feedback on Interpersonal Coordination

    Directory of Open Access Journals (Sweden)

    Tong-Hun Hwang

    2018-03-01

    Full Text Available When two individuals interact in a collaborative task, such as carrying a sofa or a table, usually spatiotemporal coordination of individual motor behavior will emerge. In many cases, interpersonal coordination can arise independently of verbal communication, based on the observation of the partners' movements and/or the object's movements. In this study, we investigate how social coupling between two individuals can emerge in a collaborative task under different modes of perceptual information. A visual reference condition was compared with three different conditions with new types of additional auditory feedback provided in real time: effect-based auditory feedback, performance-based auditory feedback, and combined effect/performance-based auditory feedback. We have developed a new paradigm in which the actions of both participants continuously result in a seamlessly merged effect on an object simulated by a tablet computer application. Here, participants should temporally synchronize their movements with a 90° phase difference and precisely adjust the finger dynamics in order to keep the object (a ball accurately rotating on a given circular trajectory on the tablet. Results demonstrate that interpersonal coordination in a joint task can be altered by different kinds of additional auditory information in various ways.

  9. A common source of attention for auditory and visual tracking.

    Science.gov (United States)

    Fougnie, Daryl; Cockhren, Jurnell; Marois, René

    2018-05-01

    Tasks that require tracking visual information reveal the severe limitations of our capacity to attend to multiple objects that vary in time and space. Although these limitations have been extensively characterized in the visual domain, very little is known about tracking information in other sensory domains. Does tracking auditory information exhibit characteristics similar to those of tracking visual information, and to what extent do these two tracking tasks draw on the same attention resources? We addressed these questions by asking participants to perform either single or dual tracking tasks from the same (visual-visual) or different (visual-auditory) perceptual modalities, with the difficulty of the tracking tasks being manipulated across trials. The results revealed that performing two concurrent tracking tasks, whether they were in the same or different modalities, affected tracking performance as compared to performing each task alone (concurrence costs). Moreover, increasing task difficulty also led to increased costs in both the single-task and dual-task conditions (load-dependent costs). The comparison of concurrence costs between visual-visual and visual-auditory dual-task performance revealed slightly greater interference when two visual tracking tasks were paired. Interestingly, however, increasing task difficulty led to equivalent costs for visual-visual and visual-auditory pairings. We concluded that visual and auditory tracking draw largely, though not exclusively, on common central attentional resources.

  10. Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex.

    Science.gov (United States)

    Sussman, Elyse; Steinschneider, Mitchell

    2006-02-23

    Attention biases the way in which sound information is stored in auditory memory. Little is known, however, about the contribution of stimulus-driven processes in forming and storing coherent sound events. An electrophysiological index of cortical auditory change detection (mismatch negativity [MMN]) was used to assess whether sensory memory representations could be biased toward one organization over another (one or two auditory streams) without attentional control. Results revealed that sound representations held in sensory memory biased the organization of subsequent auditory input. The results demonstrate that context-dependent sound representations modulate stimulus-dependent neural encoding at early stages of auditory cortical processing.

  11. Factors influencing individual variation in perceptual directional microphone benefit.

    Science.gov (United States)

    Keidser, Gitte; Dillon, Harvey; Convery, Elizabeth; Mejia, Jorge

    2013-01-01

    Large variations in perceptual directional microphone benefit, which far exceed the variation expected from physical performance measures of directional microphones, have been reported in the literature. The cause for the individual variation has not been systematically investigated. To determine the factors that are responsible for the individual variation in reported perceptual directional benefit. A correlational study. Physical performance measures of the directional microphones obtained after they had been fitted to individuals, cognitive abilities of individuals, and measurement errors were related to perceptual directional benefit scores. Fifty-nine hearing-impaired adults with varied degrees of hearing loss participated in the study. All participants were bilaterally fitted with a Motion behind-the-ear device (500 M, 501 SX, or 501 P) from Siemens according to the National Acoustic Laboratories' non-linear prescription, version two (NAL-NL2). Using the Bamford-Kowal-Bench (BKB) sentences, the perceptual directional benefit was obtained as the difference in speech reception threshold measured in babble noise (SRTn) with the devices in directional (fixed hypercardioid) and in omnidirectional mode. The SRTn measurements were repeated three times with each microphone mode. Physical performance measures of the directional microphone included the angle of the microphone ports to loudspeaker axis, the frequency range dominated by amplified sound, the in situ signal-to-noise ratio (SNR), and the in situ three-dimensional, articulation-index weighted directivity index (3D AI-DI). The cognitive tests included auditory selective attention, speed of processing, and working memory. Intraparticipant variation on the repeated SRTn's and the interparticipant variation on the average SRTn were used to determine the effect of measurement error. A multiple regression analysis was used to determine the effect of other factors. Measurement errors explained 52% of the variation

  12. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2015-12-01

    Full Text Available Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1 if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors, and (2 whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli. Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only

  13. Biases in Visual, Auditory, and Audiovisual Perception of Space

    Science.gov (United States)

    Odegaard, Brian; Wozny, David R.; Shams, Ladan

    2015-01-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  14. The Persian version of auditory word discrimination test (P-AWDT) for children: Development, validity, and reliability.

    Science.gov (United States)

    Hashemi, Nassim; Ghorbani, Ali; Soleymani, Zahra; Kamali, Mohmmad; Ahmadi, Zohreh Ziatabar; Mahmoudian, Saeid

    2018-07-01

    Auditory discrimination of speech sounds is an important perceptual ability and a precursor to the acquisition of language. Auditory information is at least partially necessary for the acquisition and organization of phonological rules. There are few standardized behavioral tests to evaluate phonemic distinctive features in children with or without speech and language disorders. The main objective of the present study was the development, validity, and reliability of the Persian version of auditory word discrimination test (P-AWDT) for 4-8-year-old children. A total of 120 typical children and 40 children with speech sound disorder (SSD) participated in the present study. The test comprised of 160 monosyllabic paired-words distributed in the Forms A-1 and the Form A-2 for the initial consonants (80 words) and the Forms B-1 and the Form B-2 for the final consonants (80 words). Moreover, the discrimination of vowels was randomly included in all forms. Content validity was calculated and 50 children repeated the test twice with two weeks of interval (test-retest reliability). Further analysis was also implemented including validity, intraclass correlation coefficient (ICC), Cronbach's alpha (internal consistency), age groups, and gender. The content validity index (CVI) and the test-retest reliability of the P-AWDT were achieved 63%-86% and 81%-96%, respectively. Moreover, the total Cronbach's alpha for the internal consistency was estimated relatively high (0.93). Comparison of the mean scores of the P-AWDT in the typical children and the children with SSD revealed a significant difference. The results revealed that the group with SSD had greater severity of deficit than the typical group in auditory word discrimination. In addition, the difference between the age groups was statistically significant, especially in 4-4.11-year-old children. The performance of the two gender groups was relatively same. The comparison of the P-AWDT scores between the typical children

  15. Practiced musical style shapes auditory skills.

    Science.gov (United States)

    Vuust, Peter; Brattico, Elvira; Seppänen, Miia; Näätänen, Risto; Tervaniemi, Mari

    2012-04-01

    Musicians' processing of sounds depends highly on instrument, performance practice, and level of expertise. Here, we measured the mismatch negativity (MMN), a preattentive brain response, to six types of musical feature change in musicians playing three distinct styles of music (classical, jazz, and rock/pop) and in nonmusicians using a novel, fast, and musical sounding multifeature MMN paradigm. We found MMN to all six deviants, showing that MMN paradigms can be adapted to resemble a musical context. Furthermore, we found that jazz musicians had larger MMN amplitude than all other experimental groups across all sound features, indicating greater overall sensitivity to auditory outliers. Furthermore, we observed a tendency toward shorter latency of the MMN to all feature changes in jazz musicians compared to band musicians. These findings indicate that the characteristics of the style of music played by musicians influence their perceptual skills and the brain processing of sound features embedded in music. © 2012 New York Academy of Sciences.

  16. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Directory of Open Access Journals (Sweden)

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  17. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  18. Perceptual incongruence influences bistability and cortical activation

    NARCIS (Netherlands)

    Brouwer, G.J.; Tong, F.; Hagoort, P.; van Ee, R.

    2009-01-01

    We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability

  19. Iterative perceptual learning for social behavior synthesis

    NARCIS (Netherlands)

    de Kok, I.A.; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We introduce Iterative Perceptual Learning (IPL), a novel approach to learn computational models for social behavior synthesis from corpora of human–human interactions. IPL combines perceptual evaluation with iterative model refinement. Human observers rate the appropriateness of synthesized

  20. Iterative Perceptual Learning for Social Behavior Synthesis

    NARCIS (Netherlands)

    de Kok, I.A.; Poppe, Ronald Walter; Heylen, Dirk K.J.

    We introduce Iterative Perceptual Learning (IPL), a novel approach for learning computational models for social behavior synthesis from corpora of human-human interactions. The IPL approach combines perceptual evaluation with iterative model refinement. Human observers rate the appropriateness of

  1. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  2. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  3. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses.

    Science.gov (United States)

    Molloy, Katharine; Griffiths, Timothy D; Chait, Maria; Lavie, Nilli

    2015-12-09

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying "inattentional deafness"--the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼ 100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 "awareness" response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory

  4. Perceptual learning modifies untrained pursuit eye movements

    OpenAIRE

    Szpiro, Sarit F. A.; Spering, Miriam; Carrasco, Marisa

    2014-01-01

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training...

  5. Comparison of congruence judgment and auditory localization tasks for assessing the spatial limits of visual capture.

    Science.gov (United States)

    Bosen, Adam K; Fleming, Justin T; Brown, Sarah E; Allen, Paul D; O'Neill, William E; Paige, Gary D

    2016-12-01

    Vision typically has better spatial accuracy and precision than audition and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small, visual capture is likely to occur, and when disparity is large, visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audiovisual disparities over which visual capture was likely to occur was narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner.

  6. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    Science.gov (United States)

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  7. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  8. Auditory memory can be object based.

    Science.gov (United States)

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  9. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  10. Psychoacoustic and cognitive aspects of auditory roughness: definitions, models, and applications

    Science.gov (United States)

    Vassilakis, Pantelis N.; Kendall, Roger A.

    2010-02-01

    The term "auditory roughness" was first introduced in the 19th century to describe the buzzing, rattling auditory sensation accompanying narrow harmonic intervals (i.e. two tones with frequency difference in the range of ~15-150Hz, presented simultaneously). A broader definition and an overview of the psychoacoustic correlates of the auditory roughness sensation, also referred to as sensory dissonance, is followed by an examination of efforts to quantify it over the past one hundred and fifty years and leads to the introduction of a new roughness calculation model and an application that automates spectral and roughness analysis of sound signals. Implementation of spectral and roughness analysis is briefly discussed in the context of two pilot perceptual experiments, designed to assess the relationship among cultural background, music performance practice, and aesthetic attitudes towards the auditory roughness sensation.

  11. Increased Early Processing of Task-Irrelevant Auditory Stimuli in Older Adults.

    Directory of Open Access Journals (Sweden)

    Erich S Tusch

    Full Text Available The inhibitory deficit hypothesis of cognitive aging posits that older adults' inability to adequately suppress processing of irrelevant information is a major source of cognitive decline. Prior research has demonstrated that in response to task-irrelevant auditory stimuli there is an age-associated increase in the amplitude of the N1 wave, an ERP marker of early perceptual processing. Here, we tested predictions derived from the inhibitory deficit hypothesis that the age-related increase in N1 would be 1 observed under an auditory-ignore, but not auditory-attend condition, 2 attenuated in individuals with high executive capacity (EC, and 3 augmented by increasing cognitive load of the primary visual task. ERPs were measured in 114 well-matched young, middle-aged, young-old, and old-old adults, designated as having high or average EC based on neuropsychological testing. Under the auditory-ignore (visual-attend task, participants ignored auditory stimuli and responded to rare target letters under low and high load. Under the auditory-attend task, participants ignored visual stimuli and responded to rare target tones. Results confirmed an age-associated increase in N1 amplitude to auditory stimuli under the auditory-ignore but not auditory-attend task. Contrary to predictions, EC did not modulate the N1 response. The load effect was the opposite of expectation: the N1 to task-irrelevant auditory events was smaller under high load. Finally, older adults did not simply fail to suppress the N1 to auditory stimuli in the task-irrelevant modality; they generated a larger response than to identical stimuli in the task-relevant modality. In summary, several of the study's findings do not fit the inhibitory-deficit hypothesis of cognitive aging, which may need to be refined or supplemented by alternative accounts.

  12. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment.

    Science.gov (United States)

    Frtusova, Jana B; Phillips, Natalie A

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed.

  13. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment

    Directory of Open Access Journals (Sweden)

    Jana B. Frtusova

    2016-04-01

    Full Text Available This study examined the effect of auditory-visual (AV speech stimuli on working memory in hearing impaired participants (HIP in comparison to age- and education-matched normal elderly controls (NEC. Participants completed a working memory n-back task (0- to 2-back in which sequences of digits were presented in visual-only (i.e., speech-reading, auditory-only (A-only, and AV conditions. Auditory event-related potentials (ERP were collected to assess the relationship between perceptual and working memory processing. The behavioural results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the HIP group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the HIP group showed a more robust AV benefit; however, the NECs showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the HIP to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed.

  14. State of the art in perceptual design of hearing aids

    Science.gov (United States)

    Edwards, Brent W.; van Tasell, Dianne J.

    2002-05-01

    Hearing aid capabilities have increased dramatically over the past six years, in large part due to the development of small, low-power digital signal processing chips suitable for hearing aid applications. As hearing aid signal processing capabilities increase, there will be new opportunities to apply perceptually based knowledge to technological development. Most hearing loss compensation techniques in today's hearing aids are based on simple estimates of audibility and loudness. As our understanding of the psychoacoustical and physiological characteristics of sensorineural hearing loss improves, the result should be improved design of hearing aids and fitting methods. The state of the art in hearing aids will be reviewed, including form factors, user requirements, and technology that improves speech intelligibility, sound quality, and functionality. General areas of auditory perception that remain unaddressed by current hearing aid technology will be discussed.

  15. Young Drivers Perceptual Learning Styles Preferences and Traffic Accidents

    Directory of Open Access Journals (Sweden)

    Svetlana Čičević

    2011-05-01

    Full Text Available Young drivers are over-represented in crash and fatality statistics. One way of dealing with this problem is to achieve primary prevention through driver education and training. Factors of traffic accidents related to gender, age, driving experience, and self-assessments of safety and their relationship to perceptual learning styles (LS preferences have been analyzed in this study. The results show that auditory is the most prominent LS. Drivers in general, as well as drivers without traffic accidents favour visual and tactile LS. Both inexperienced and highly experienced drivers show relatively high preference of kinaesthetic style. Yet, taking into account driving experience we could see that the role of kinaesthetic LS is reduced, since individual LS has become more important. Based on the results of this study it can be concluded that a multivariate and multistage approach to driver education, taking into account differences in LS preferences, would be highly beneficial for traffic safety.

  16. Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging.

    Science.gov (United States)

    Choi, Lark Kwon; You, Jaehee; Bovik, Alan Conrad

    2015-11-01

    We propose a referenceless perceptual fog density prediction model based on natural scene statistics (NSS) and fog aware statistical features. The proposed model, called Fog Aware Density Evaluator (FADE), predicts the visibility of a foggy scene from a single image without reference to a corresponding fog-free image, without dependence on salient objects in a scene, without side geographical camera information, without estimating a depth-dependent transmission map, and without training on human-rated judgments. FADE only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. Fog aware statistical features that define the perceptual fog density index derive from a space domain NSS model and the observed characteristics of foggy images. FADE not only predicts perceptual fog density for the entire image, but also provides a local fog density index for each patch. The predicted fog density using FADE correlates well with human judgments of fog density taken in a subjective study on a large foggy image database. As applications, FADE not only accurately assesses the performance of defogging algorithms designed to enhance the visibility of foggy images, but also is well suited for image defogging. A new FADE-based referenceless perceptual image defogging, dubbed DEnsity of Fog Assessment-based DEfogger (DEFADE) achieves better results for darker, denser foggy images as well as on standard foggy images than the state of the art defogging methods. A software release of FADE and DEFADE is available online for public use: http://live.ece.utexas.edu/research/fog/index.html.

  17. Test-retest reliability of the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA)

    NARCIS (Netherlands)

    Bégel, Valentin; Verga, Laura; Benoit, Charles-Etienne; Kotz, Sonja A; Bella, Simone Dalla

    2018-01-01

    Perceptual and sensorimotor timing skills can be comprehensively assessed with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). The battery has been used for testing rhythmic skills in healthy adults and patient populations (e.g., with Parkinson disease),

  18. Development of Attentional Control of Verbal Auditory Perception from Middle to Late Childhood: Comparisons to Healthy Aging

    Science.gov (United States)

    Passow, Susanne; Müller, Maike; Westerhausen, René; Hugdahl, Kenneth; Wartenburger, Isabell; Heekeren, Hauke R.; Lindenberger, Ulman; Li, Shu-Chen

    2013-01-01

    Multitalker situations confront listeners with a plethora of competing auditory inputs, and hence require selective attention to relevant information, especially when the perceptual saliency of distracting inputs is high. This study augmented the classical forced-attention dichotic listening paradigm by adding an interaural intensity manipulation…

  19. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music.

    Science.gov (United States)

    Bidelman, Gavin M; Hutka, Stefanie; Moreno, Sylvain

    2013-01-01

    Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language.

  20. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity.

    Science.gov (United States)

    Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica

    2014-12-15

    Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Tone Language Speakers and Musicians Share Enhanced Perceptual and Cognitive Abilities for Musical Pitch: Evidence for Bidirectionality between the Domains of Language and Music

    Science.gov (United States)

    Bidelman, Gavin M.; Hutka, Stefanie; Moreno, Sylvain

    2013-01-01

    Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language. PMID:23565267

  2. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: evidence for bidirectionality between the domains of language and music.

    Directory of Open Access Journals (Sweden)

    Gavin M Bidelman

    Full Text Available Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory. While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language.

  3. Perceptual learning modifies untrained pursuit eye movements.

    Science.gov (United States)

    Szpiro, Sarit F A; Spering, Miriam; Carrasco, Marisa

    2014-07-07

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. © 2014 ARVO.

  4. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  5. Relationship between perceptual learning in speech and statistical learning in younger and older adults

    Directory of Open Access Journals (Sweden)

    Thordis Marisa Neger

    2014-09-01

    Full Text Available Within a few sentences, listeners learn to understand severely degraded speech such as noise-vocoded speech. However, individuals vary in the amount of such perceptual learning and it is unclear what underlies these differences. The present study investigates whether perceptual learning in speech relates to statistical learning, as sensitivity to probabilistic information may aid identification of relevant cues in novel speech input. If statistical learning and perceptual learning (partly draw on the same general mechanisms, then statistical learning in a non-auditory modality using non-linguistic sequences should predict adaptation to degraded speech.In the present study, 73 older adults (aged over 60 years and 60 younger adults (aged between 18 and 30 years performed a visual artificial grammar learning task and were presented with sixty meaningful noise-vocoded sentences in an auditory recall task. Within age groups, sentence recognition performance over exposure was analyzed as a function of statistical learning performance, and other variables that may predict learning (i.e., hearing, vocabulary, attention switching control, working memory and processing speed. Younger and older adults showed similar amounts of perceptual learning, but only younger adults showed significant statistical learning. In older adults, improvement in understanding noise-vocoded speech was constrained by age. In younger adults, amount of adaptation was associated with lexical knowledge and with statistical learning ability. Thus, individual differences in general cognitive abilities explain listeners' variability in adapting to noise-vocoded speech. Results suggest that perceptual and statistical learning share mechanisms of implicit regularity detection, but that the ability to detect statistical regularities is impaired in older adults if visual sequences are presented quickly.

  6. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  7. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  8. Perceptual consciousness overflows cognitive access.

    Science.gov (United States)

    Block, Ned

    2011-12-01

    One of the most important issues concerning the foundations of conscious perception centers on the question of whether perceptual consciousness is rich or sparse. The overflow argument uses a form of 'iconic memory' to argue that perceptual consciousness is richer (i.e., has a higher capacity) than cognitive access: when observing a complex scene we are conscious of more than we can report or think about. Recently, the overflow argument has been challenged both empirically and conceptually. This paper reviews the controversy, arguing that proponents of sparse perception are committed to the postulation of (i) a peculiar kind of generic conscious representation that has no independent rationale and (ii) an unmotivated form of unconscious representation that in some cases conflicts with what we know about unconscious representation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Perceptual Color Characterization of Cameras

    Directory of Open Access Journals (Sweden)

    Javier Vazquez-Corral

    2014-12-01

    Full Text Available Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as \\(XYZ\\, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a \\(3 \\times 3\\ matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson al., to perform a perceptual color characterization. In particular, we search for the \\(3 \\times 3\\ matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE \\(\\Delta E\\ error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3for the \\(\\Delta E\\ error, 7& for the S-CIELAB error and 13% for the CID error measures.

  10. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Science.gov (United States)

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  11. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Directory of Open Access Journals (Sweden)

    Qingcui eWang

    2015-05-01

    Full Text Available Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ or ‘group motion’. In element motion, the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in group motion, both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside. Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of group motion as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps. The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  12. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  13. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  14. Divided attention disrupts perceptual encoding during speech recognition.

    Science.gov (United States)

    Mattys, Sven L; Palmer, Shekeila D

    2015-03-01

    Performing a secondary task while listening to speech has a detrimental effect on speech processing, but the locus of the disruption within the speech system is poorly understood. Recent research has shown that cognitive load imposed by a concurrent visual task increases dependency on lexical knowledge during speech processing, but it does not affect lexical activation per se. This suggests that "lexical drift" under cognitive load occurs either as a post-lexical bias at the decisional level or as a secondary consequence of reduced perceptual sensitivity. This study aimed to adjudicate between these alternatives using a forced-choice task that required listeners to identify noise-degraded spoken words with or without the addition of a concurrent visual task. Adding cognitive load increased the likelihood that listeners would select a word acoustically similar to the target even though its frequency was lower than that of the target. Thus, there was no evidence that cognitive load led to a high-frequency response bias. Rather, cognitive load seems to disrupt sublexical encoding, possibly by impairing perceptual acuity at the auditory periphery.

  15. INFLUENCE INTERHEMISPHERIC FUNCTIONAL ASYMMETRY BRAIN ON HUMAN PERCEPTUAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Eugene Gtnnadyevna Surovyatkina

    2017-11-01

    Full Text Available The goals of the work was to determine linkage between the dominant hemisphere of the brain and the occurrence of perceptual processes of the personality of students of the University of the Ministry of internal Affairs of Russia. Researching of relationship between characteristics of the nature of perceptual processes and lateralization of brain functions supplements the information about professional suitability and reliability of employees of enforcement structure within the individually-typological approach. The experimental psychological research of determination of motor and sensory asymmetries in the measurement system "hand-foot-ear-eye" (was performed by Homskay E.D., the leading channel of the auditory perception for the people with the left-hemispheric dominance, and kinesthetic channel for the people with right-hemispheric dominance were revealed. Features of functioning of system "FMPA-perception" in groups with different type of hemispheric dominance is recommended to consider in academic and professional activities of the cadets, and at the stage of professional selection.

  16. Minimalist approach to perceptual interactions.

    Science.gov (United States)

    Lenay, Charles; Stewart, John

    2012-01-01

    WORK AIMED AT STUDYING SOCIAL COGNITION IN AN INTERACTIONIST PERSPECTIVE OFTEN ENCOUNTERS SUBSTANTIAL THEORETICAL AND METHODOLOGICAL DIFFICULTIES: identifying the significant behavioral variables; recording them without disturbing the interaction; and distinguishing between: (a) the necessary and sufficient contributions of each individual partner for a collective dynamics to emerge; (b) features which derive from this collective dynamics and escape from the control of the individual partners; and (c) the phenomena arising from this collective dynamics which are subsequently appropriated and used by the partners. We propose a minimalist experimental paradigm as a basis for this conceptual discussion: by reducing the sensory inputs to a strict minimum, we force a spatial and temporal deployment of the perceptual activities, which makes it possible to obtain a complete recording and control of the dynamics of interaction. After presenting the principles of this minimalist approach to perception, we describe a series of experiments on two major questions in social cognition: recognizing the presence of another intentional subject; and phenomena of imitation. In both cases, we propose explanatory schema which render an interactionist approach to social cognition clear and explicit. Starting from our earlier work on perceptual crossing we present a new experiment on the mechanisms of reciprocal recognition of the perceptual intentionality of the other subject: the emergent collective dynamics of the perceptual crossing can be appropriated by each subject. We then present an experimental study of opaque imitation (when the subjects cannot see what they themselves are doing). This study makes it possible to characterize what a properly interactionist approach to imitation might be. In conclusion, we draw on these results, to show how an interactionist approach can contribute to a fully social approach to social cognition.

  17. Visual Input Enhances Selective Speech Envelope Tracking in Auditory Cortex at a ‘Cocktail Party’

    Science.gov (United States)

    Golumbic, Elana Zion; Cogan, Gregory B.; Schroeder, Charles E.; Poeppel, David

    2013-01-01

    Our ability to selectively attend to one auditory signal amidst competing input streams, epitomized by the ‘Cocktail Party’ problem, continues to stimulate research from various approaches. How this demanding perceptual feat is achieved from a neural systems perspective remains unclear and controversial. It is well established that neural responses to attended stimuli are enhanced compared to responses to ignored ones, but responses to ignored stimuli are nonetheless highly significant, leading to interference in performance. We investigated whether congruent visual input of an attended speaker enhances cortical selectivity in auditory cortex, leading to diminished representation of ignored stimuli. We recorded magnetoencephalographic (MEG) signals from human participants as they attended to segments of natural continuous speech. Using two complementary methods of quantifying the neural response to speech, we found that viewing a speaker’s face enhances the capacity of auditory cortex to track the temporal speech envelope of that speaker. This mechanism was most effective in a ‘Cocktail Party’ setting, promoting preferential tracking of the attended speaker, whereas without visual input no significant attentional modulation was observed. These neurophysiological results underscore the importance of visual input in resolving perceptual ambiguity in a noisy environment. Since visual cues in speech precede the associated auditory signals, they likely serve a predictive role in facilitating auditory processing of speech, perhaps by directing attentional resources to appropriate points in time when to-be-attended acoustic input is expected to arrive. PMID:23345218

  18. Changes in otoacoustic emissions during selective auditory and visual attention.

    Science.gov (United States)

    Walsh, Kyle P; Pasanen, Edward G; McFadden, Dennis

    2015-05-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing-the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2-3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater.

  19. Tuned with a tune: Talker normalization via general auditory processes

    Directory of Open Access Journals (Sweden)

    Erika J C Laing

    2012-06-01

    Full Text Available Voices have unique acoustic signatures, contributing to the acoustic variability listeners must contend with in perceiving speech, and it has long been proposed that listeners normalize speech perception to information extracted from a talker’s speech. Initial attempts to explain talker normalization relied on extraction of articulatory referents, but recent studies of context-dependent auditory perception suggest that general auditory referents such as the long-term average spectrum (LTAS of a talker’s speech similarly affect speech perception. The present study aimed to differentiate the contributions of articulatory/linguistic versus auditory referents for context-driven talker normalization effects and, more specifically, to identify the specific constraints under which such contexts impact speech perception. Synthesized sentences manipulated to sound like different talkers influenced categorization of a subsequent speech target only when differences in the sentences’ LTAS were in the frequency range of the acoustic cues relevant for the target phonemic contrast. This effect was true both for speech targets preceded by spoken sentence contexts and for targets preceded by nonspeech tone sequences that were LTAS-matched to the spoken sentence contexts. Specific LTAS characteristics, rather than perceived talker, predicted the results suggesting that general auditory mechanisms play an important role in effects considered to be instances of perceptual talker normalization.

  20. Changes in otoacoustic emissions during selective auditory and visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2015-01-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing—the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2–3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater. PMID:25994703

  1. Binaural auditory beats affect long-term memory.

    Science.gov (United States)

    Garcia-Argibay, Miguel; Santed, Miguel A; Reales, José M

    2017-12-08

    The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index d' in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.

  2. Binaural auditory beats affect vigilance performance and mood.

    Science.gov (United States)

    Lane, J D; Kasian, S J; Owens, J E; Marsh, G R

    1998-01-01

    When two tones of slightly different frequency are presented separately to the left and right ears the listener perceives a single tone that varies in amplitude at a frequency equal to the frequency difference between the two tones, a perceptual phenomenon known as the binaural auditory beat. Anecdotal reports suggest that binaural auditory beats within the electroencephalograph frequency range can entrain EEG activity and may affect states of consciousness, although few scientific studies have been published. This study compared the effects of binaural auditory beats in the EEG beta and EEG theta/delta frequency ranges on mood and on performance of a vigilance task to investigate their effects on subjective and objective measures of arousal. Participants (n = 29) performed a 30-min visual vigilance task on three different days while listening to pink noise containing simple tones or binaural beats either in the beta range (16 and 24 Hz) or the theta/delta range (1.5 and 4 Hz). However, participants were kept blind to the presence of binaural beats to control expectation effects. Presentation of beta-frequency binaural beats yielded more correct target detections and fewer false alarms than presentation of theta/delta frequency binaural beats. In addition, the beta-frequency beats were associated with less negative mood. Results suggest that the presentation of binaural auditory beats can affect psychomotor performance and mood. This technology may have applications for the control of attention and arousal and the enhancement of human performance.

  3. Auditory Scene Analysis and sonified visual images. Does consonance negatively impact on object formation when using complex sonified stimuli?

    Directory of Open Access Journals (Sweden)

    David J Brown

    2015-10-01

    Full Text Available A critical task for the brain is the sensory representation and identification of perceptual objects in the world. When the visual sense is impaired, hearing and touch must take primary roles and in recent times compensatory techniques have been developed that employ the tactile or auditory system as a substitute for the visual system. Visual-to-auditory sonifications provide a complex, feature-based auditory representation that must be decoded and integrated into an object-based representation by the listener. However, we don’t yet know what role the auditory system plays in the object integration stage and whether the principles of auditory scene analysis apply. Here we used coarse sonified images in a two-tone discrimination task to test whether auditory feature-based representations of visual objects would be confounded when their features conflicted with the principles of auditory consonance. We found that listeners (N = 36 performed worse in an object recognition task when the auditory feature-based representation was harmonically consonant. We also found that this conflict was not negated with the provision of congruent audio-visual information. The findings suggest that early auditory processes of harmonic grouping dominate the object formation process and that the complexity of the signal, and additional sensory information have limited effect on this.

  4. Temporal auditory processing in elders

    Directory of Open Access Journals (Sweden)

    Azzolini, Vanuza Conceição

    2010-03-01

    Full Text Available Introduction: In the trial of aging all the structures of the organism are modified, generating intercurrences in the quality of the hearing and of the comprehension. The hearing loss that occurs in consequence of this trial occasion a reduction of the communicative function, causing, also, a distance of the social relationship. Objective: Comparing the performance of the temporal auditory processing between elderly individuals with and without hearing loss. Method: The present study is characterized for to be a prospective, transversal and of diagnosis character field work. They were analyzed 21 elders (16 women and 5 men, with ages between 60 to 81 years divided in two groups, a group "without hearing loss"; (n = 13 with normal auditive thresholds or restricted hearing loss to the isolated frequencies and a group "with hearing loss" (n = 8 with neurosensory hearing loss of variable degree between light to moderately severe. Both the groups performed the tests of frequency (PPS and duration (DPS, for evaluate the ability of temporal sequencing, and the test Randon Gap Detection Test (RGDT, for evaluate the temporal resolution ability. Results: It had not difference statistically significant between the groups, evaluated by the tests DPS and RGDT. The ability of temporal sequencing was significantly major in the group without hearing loss, when evaluated by the test PPS in the condition "muttering". This result presented a growing one significant in parallel with the increase of the age group. Conclusion: It had not difference in the temporal auditory processing in the comparison between the groups.

  5. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia.

    Science.gov (United States)

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M; Vinogradov, Sophia

    2009-07-01

    Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach.

  6. Auditory Memory for Timbre

    Science.gov (United States)

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  7. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new

  8. The Processing of Biologically Plausible and Implausible forms in American Sign Language: Evidence for Perceptual Tuning.

    Science.gov (United States)

    Almeida, Diogo; Poeppel, David; Corina, David

    The human auditory system distinguishes speech-like information from general auditory signals in a remarkably fast and efficient way. Combining psychophysics and neurophysiology (MEG), we demonstrate a similar result for the processing of visual information used for language communication in users of sign languages. We demonstrate that the earliest visual cortical responses in deaf signers viewing American Sign Language (ASL) signs show specific modulations to violations of anatomic constraints that would make the sign either possible or impossible to articulate. These neural data are accompanied with a significantly increased perceptual sensitivity to the anatomical incongruity. The differential effects in the early visual evoked potentials arguably reflect an expectation-driven assessment of somatic representational integrity, suggesting that language experience and/or auditory deprivation may shape the neuronal mechanisms underlying the analysis of complex human form. The data demonstrate that the perceptual tuning that underlies the discrimination of language and non-language information is not limited to spoken languages but extends to languages expressed in the visual modality.

  9. The contribution of perceptual factors and training on varying audiovisual integration capacity.

    Science.gov (United States)

    Wilbiks, Jonathan M P; Dyson, Benjamin J

    2018-06-01

    The suggestion that the capacity of audiovisual integration has an upper limit of 1 was challenged in 4 experiments using perceptual factors and training to enhance the binding of auditory and visual information. Participants were required to note a number of specific visual dot locations that changed in polarity when a critical auditory stimulus was presented, under relatively fast (200-ms stimulus onset asynchrony [SOA]) and slow (700-ms SOA) rates of presentation. In Experiment 1, transient cross-modal congruency between the brightness of polarity change and pitch of the auditory tone was manipulated. In Experiment 2, sustained chunking was enabled on certain trials by connecting varying dot locations with vertices. In Experiment 3, training was employed to determine if capacity would increase through repeated experience with an intermediate presentation rate (450 ms). Estimates of audiovisual integration capacity (K) were larger than 1 during cross-modal congruency at slow presentation rates (Experiment 1), during perceptual chunking at slow and fast presentation rates (Experiment 2), and, during an intermediate presentation rate posttraining (Experiment 3). Finally, Experiment 4 showed a linear increase in K using SOAs ranging from 100 to 600 ms, suggestive of quantitative rather than qualitative changes in the mechanisms in audiovisual integration as a function of presentation rate. The data compromise the suggestion that the capacity of audiovisual integration is limited to 1 and suggest that the ability to bind sounds to sights is contingent on individual and environmental factors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. The auditory enhancement effect is not reflected in the 80-Hz auditory steady-state response.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J; Portron, Arthur; Semal, Catherine; Demany, Laurent

    2014-08-01

    The perceptual salience of a target tone presented in a multitone background is increased by the presentation of a precursor sound consisting of the multitone background alone. It has been proposed that this "enhancement" phenomenon results from an effective amplification of the neural response to the target tone. In this study, we tested this hypothesis in humans, by comparing the auditory steady-state response (ASSR) to a target tone that was enhanced by a precursor sound with the ASSR to a target tone that was not enhanced. In order to record neural responses originating in the brainstem, the ASSR was elicited by amplitude modulating the target tone at a frequency close to 80 Hz. The results did not show evidence of an amplified neural response to enhanced tones. In a control condition, we measured the ASSR to a target tone that, instead of being perceptually enhanced by a precursor sound, was acoustically increased in level. This level increase matched the magnitude of enhancement estimated psychophysically with a forward masking paradigm in a previous experimental phase. We found that the ASSR to the tone acoustically increased in level was significantly greater than the ASSR to the tone enhanced by the precursor sound. Overall, our results suggest that the enhancement effect cannot be explained by an amplified neural response at the level of the brainstem. However, an alternative possibility is that brainstem neurons with enhanced responses do not contribute to the scalp-recorded ASSR.

  11. Cerebellar tDCS dissociates the timing of perceptual decisions from perceptual change in speech

    NARCIS (Netherlands)

    Lametti, D.R.; Oostwoud Wijdenes, L.; Bonaiuto, J.; Bestmann, S.; Rothwell, J.C.

    2016-01-01

    Neuroimaging studies suggest that the cerebellum might play a role in both speech perception and speech perceptual learning. However, it remains unclear what this role is: does the cerebellum directly contribute to the perceptual decision? Or does it contribute to the timing of perceptual decisions?

  12. No Need for Templates in the Auditory Enhancement Effect.

    Science.gov (United States)

    Carcagno, Samuele; Semal, Catherine; Demany, Laurent

    2013-01-01

    The audibility of a target tone in a multitone background masker is enhanced by the presentation of a precursor sound consisting of the masker alone. There is evidence that precursor-induced neural adaptation plays a role in this perceptual enhancement. However, the precursor may also be strategically used by listeners as a spectral template of the following masker to better segregate it from the target. In the present study, we tested this hypothesis by measuring the audibility of a target tone in a multitone masker after the presentation of precursors which, in some conditions, were made dissimilar to the masker by gating their components asynchronously. The precursor and the following sound were presented either to the same ear or to opposite ears. In either case, we found no significant difference in the amount of enhancement produced by synchronous and asynchronous precursors. In a second experiment, listeners had to judge whether a synchronous multitone complex contained exactly the same tones as a preceding precursor complex or had one tone less. In this experiment, listeners performed significantly better with synchronous than with asynchronous precursors, showing that asynchronous precursors were poorer perceptual templates of the synchronous multitone complexes. Overall, our findings indicate that precursor-induced auditory enhancement cannot be fully explained by the strategic use of the precursor as a template of the following masker. Our results are consistent with an explanation of enhancement based on selective neural adaptation taking place at a central locus of the auditory system.

  13. A late-emerging auditory deficit in autism.

    Science.gov (United States)

    Erviti, Mayalen; Semal, Catherine; Wright, Beverly A; Amestoy, Anouck; Bouvard, Manuel P; Demany, Laurent

    2015-05-01

    Individuals with autism spectrum disorders (ASD) show enhanced perceptual and memory abilities in the domain of pitch, but also perceptual deficits in other auditory domains. The present study investigated their skills with respect to "echoic memory," a form of short-term sensory memory intimately tied to auditory perception, using a developmental perspective. We tested 23 high-functioning participants with ASD and 26 typically developing (TD) participants, distributed in two age groups (children vs. young adults; mean ages: ∼11 and ∼21 years). By means of an adaptive psychophysical procedure, we measured the longest period for which periodic (i.e., repeated) noise could be reliably discriminated from nonperiodic (i.e., plain random) noise. On each experimental trial, a single noise sample was presented to the participant, who had to classify this sound as periodic or nonperiodic. The TD adults performed, on average, much better than the other three groups, who performed similarly overall. As a function of practice, the measured thresholds improved for the TD participants, but did not change for the ASD participants. Thresholds were not correlated to performance in a test assessing verbal memory. The variance of the participants' response biases was larger among the ASD participants than among the TD participants. The results mainly suggest that echoic memory takes a long time to fully develop in TD humans, and that this development stops prematurely in persons with ASD. (c) 2015 APA, all rights reserved).

  14. No Need for Templates in the Auditory Enhancement Effect.

    Directory of Open Access Journals (Sweden)

    Samuele Carcagno

    Full Text Available The audibility of a target tone in a multitone background masker is enhanced by the presentation of a precursor sound consisting of the masker alone. There is evidence that precursor-induced neural adaptation plays a role in this perceptual enhancement. However, the precursor may also be strategically used by listeners as a spectral template of the following masker to better segregate it from the target. In the present study, we tested this hypothesis by measuring the audibility of a target tone in a multitone masker after the presentation of precursors which, in some conditions, were made dissimilar to the masker by gating their components asynchronously. The precursor and the following sound were presented either to the same ear or to opposite ears. In either case, we found no significant difference in the amount of enhancement produced by synchronous and asynchronous precursors. In a second experiment, listeners had to judge whether a synchronous multitone complex contained exactly the same tones as a preceding precursor complex or had one tone less. In this experiment, listeners performed significantly better with synchronous than with asynchronous precursors, showing that asynchronous precursors were poorer perceptual templates of the synchronous multitone complexes. Overall, our findings indicate that precursor-induced auditory enhancement cannot be fully explained by the strategic use of the precursor as a template of the following masker. Our results are consistent with an explanation of enhancement based on selective neural adaptation taking place at a central locus of the auditory system.

  15. Interactions of cognitive and auditory abilities in congenitally blind individuals.

    Science.gov (United States)

    Rokem, Ariel; Ahissar, Merav

    2009-02-01

    Congenitally blind individuals have been found to show superior performance in perceptual and memory tasks. In the present study, we asked whether superior stimulus encoding could account for performance in memory tasks. We characterized the performance of a group of congenitally blind individuals on a series of auditory, memory and executive cognitive tasks and compared their performance to that of sighted controls matched for age, education and musical training. As expected, we found superior verbal spans among congenitally blind individuals. Moreover, we found superior speech perception, measured by resilience to noise, and superior auditory frequency discrimination. However, when memory span was measured under conditions of equivalent speech perception, by adjusting the signal to noise ratio for each individual to the same level of perceptual difficulty (80% correct), the advantage in memory span was completely eliminated. Moreover, blind individuals did not possess any advantage in cognitive executive functions, such as manipulation of items in memory and math abilities. We propose that the short-term memory advantage of blind individuals results from better stimulus encoding, rather than from superiority at subsequent processing stages.

  16. Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode

    DEFF Research Database (Denmark)

    Marozeau, Jeremy; McKay, Colette M

    2016-01-01

    sequentially or simultaneously. The dissimilarity ratings were analyzed using a multidimensional scaling technique and three-dimensional stimulus perceptual spaces were produced. For all the conditions (mode and simultaneity), the first perceptual dimension was highly correlated with the position of the most...... apical activated electrode of the electrical stimulation and the second dimension with the position of the most basal electrode. In both sequential and simultaneous conditions, the monopolar and all-polar stimuli were significantly separated by a third dimension, which may indicate that all-polar stimuli....... It was designed to activate all the electrodes simultaneously with appropriate current levels and polarities to recruit narrower regions of auditory nerves at specific intracochlear electrode positions (denoted all-polar electrodes). In this study, the all-polar mode was compared with the current commercial...

  17. The role of convexity in perceptual completion: beyond good continuation.

    Science.gov (United States)

    Liu, Z; Jacobs, D W; Basri, R

    1999-01-01

    Since the seminal work of the Gestalt psychologists, there has been great interest in understanding what factors determine the perceptual organization of images. While the Gestaltists demonstrated the significance of grouping cues such as similarity, proximity and good continuation, it has not been well understood whether their catalog of grouping cues is complete--in part due to the paucity of effective methodologies for examining the significance of various grouping cues. We describe a novel, objective method to study perceptual grouping of planar regions separated by an occluder. We demonstrate that the stronger the grouping between two such regions, the harder it will be to resolve their relative stereoscopic depth. We use this new method to call into question many existing theories of perceptual completion (Ullman, S. (1976). Biological Cybernetics, 25, 1-6; Shashua, A., & Ullman, S. (1988). 2nd International Conference on Computer Vision (pp. 321-327); Parent, P., & Zucker, S. (1989). IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 823-839; Kellman, P. J., & Shipley, T. F. (1991). Cognitive psychology, Liveright, New York; Heitger, R., & von der Heydt, R. (1993). A computational model of neural contour processing, figure-ground segregation and illusory contours. In Internal Conference Computer Vision (pp. 32-40); Mumford, D. (1994). Algebraic geometry and its applications, Springer, New York; Williams, L. R., & Jacobs, D. W. (1997). Neural Computation, 9, 837-858) that are based on Gestalt grouping cues by demonstrating that convexity plays a strong role in perceptual completion. In some cases convexity dominates the effects of the well known Gestalt cue of good continuation. While convexity has been known to play a role in figure/ground segmentation (Rubin, 1927; Kanizsa & Gerbino, 1976), this is the first demonstration of its importance in perceptual completion.

  18. Dynamics of individual perceptual decisions

    Science.gov (United States)

    Clark, Torin K.; Lu, Yue M.; Karmali, Faisal

    2015-01-01

    Perceptual decision making is fundamental to a broad range of fields including neurophysiology, economics, medicine, advertising, law, etc. Although recent findings have yielded major advances in our understanding of perceptual decision making, decision making as a function of time and frequency (i.e., decision-making dynamics) is not well understood. To limit the review length, we focus most of this review on human findings. Animal findings, which are extensively reviewed elsewhere, are included when beneficial or necessary. We attempt to put these various findings and data sets, which can appear to be unrelated in the absence of a formal dynamic analysis, into context using published models. Specifically, by adding appropriate dynamic mechanisms (e.g., high-pass filters) to existing models, it appears that a number of otherwise seemingly disparate findings from the literature might be explained. One hypothesis that arises through this dynamic analysis is that decision making includes phasic (high pass) neural mechanisms, an evidence accumulator and/or some sort of midtrial decision-making mechanism (e.g., peak detector and/or decision boundary). PMID:26467513

  19. Building online brand perceptual map.

    Science.gov (United States)

    Chiang, I-Ping; Lin, Chih-Ying; Wang, Kaisheng M

    2008-10-01

    Many companies have launched their products or services online as a new business focus, but only a few of them have survived the competition and made profits. The most important key to an online business's success is to create "brand value" for the customers. Although the concept of online brand has been discussed in previous studies, there is no empirical study on the measurement of online branding. As Web 2.0 emerges to be critical to online branding, the purpose of this study was to measure Taiwan's major Web sites with a number of personality traits to build a perceptual map for online brands. A pretest identified 10 most representative online brand perceptions. The results of the correspondence analysis showed five groups in the perceptual map. This study provided a practical view of the associations and similarities among online brands for potential alliance or branding strategies. The findings also suggested that brand perceptions can be used with identified consumer needs and behaviors to better position online services. The brand perception map in the study also contributed to a better understanding of the online brands in Taiwan.

  20. Collapse models and perceptual processes

    International Nuclear Information System (INIS)

    Ghirardi, Gian Carlo; Romano, Raffaele

    2014-01-01

    Theories including a collapse mechanism have been presented various years ago. They are based on a modification of standard quantum mechanics in which nonlinear and stochastic terms are added to the evolution equation. Their principal merits derive from the fact that they are mathematically precise schemes accounting, on the basis of a unique universal dynamical principle, both for the quantum behavior of microscopic systems as well as for the reduction associated to measurement processes and for the classical behavior of macroscopic objects. Since such theories qualify themselves not as new interpretations but as modifications of the standard theory they can be, in principle, tested against quantum mechanics. Recently, various investigations identifying possible crucial test have been discussed. In spite of the extreme difficulty to perform such tests it seems that recent technological developments allow at least to put precise limits on the parameters characterizing the modifications of the evolution equation. Here we will simply mention some of the recent investigations in this direction, while we will mainly concentrate our attention to the way in which collapse theories account for definite perceptual process. The differences between the case of reductions induced by perceptions and those related to measurement procedures by means of standard macroscopic devices will be discussed. On this basis, we suggest a precise experimental test of collapse theories involving conscious observers. We make plausible, by discussing in detail a toy model, that the modified dynamics can give rise to quite small but systematic errors in the visual perceptual process.

  1. Computational spectrotemporal auditory model with applications to acoustical information processing

    Science.gov (United States)

    Chi, Tai-Shih

    A computational spectrotemporal auditory model based on neurophysiological findings in early auditory and cortical stages is described. The model provides a unified multiresolution representation of the spectral and temporal features of sound likely critical in the perception of timbre. Several types of complex stimuli are used to demonstrate the spectrotemporal information preserved by the model. Shown by these examples, this two stage model reflects the apparent progressive loss of temporal dynamics along the auditory pathway from the rapid phase-locking (several kHz in auditory nerve), to moderate rates of synchrony (several hundred Hz in midbrain), to much lower rates of modulations in the cortex (around 30 Hz). To complete this model, several projection-based reconstruction algorithms are implemented to resynthesize the sound from the representations with reduced dynamics. One particular application of this model is to assess speech intelligibility. The spectro-temporal Modulation Transfer Functions (MTF) of this model is investigated and shown to be consistent with the salient trends in the human MTFs (derived from human detection thresholds) which exhibit a lowpass function with respect to both spectral and temporal dimensions, with 50% bandwidths of about 16 Hz and 2 cycles/octave. Therefore, the model is used to demonstrate the potential relevance of these MTFs to the assessment of speech intelligibility in noise and reverberant conditions. Another useful feature is the phase singularity emerged in the scale space generated by this multiscale auditory model. The singularity is shown to have certain robust properties and carry the crucial information about the spectral profile. Such claim is justified by perceptually tolerable resynthesized sounds from the nonconvex singularity set. In addition, the singularity set is demonstrated to encode the pitch and formants at different scales. These properties make the singularity set very suitable for traditional

  2. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Directory of Open Access Journals (Sweden)

    Jason A Miranda

    Full Text Available Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  3. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Science.gov (United States)

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  4. Oscillatory Dynamics Underlying Perceptual Narrowing of Native Phoneme Mapping from 6 to 12 Months of Age.

    Science.gov (United States)

    Ortiz-Mantilla, Silvia; Hämäläinen, Jarmo A; Realpe-Bonilla, Teresa; Benasich, April A

    2016-11-30

    During the first months of life, human infants process phonemic elements from all languages similarly. However, by 12 months of age, as language-specific phonemic maps are established, infants respond preferentially to their native language. This process, known as perceptual narrowing, supports neural representation and thus efficient processing of the distinctive phonemes within the sound environment. Although oscillatory mechanisms underlying processing of native and non-native phonemic contrasts were recently delineated in 6-month-old infants, the maturational trajectory of these mechanisms remained unclear. A group of typically developing infants born into monolingual English families, were followed from 6 to 12 months and presented with English and Spanish syllable contrasts varying in voice-onset time. Brain responses were recorded with high-density electroencephalogram, and sources of event-related potential generators identified at right and left auditory cortices at 6 and 12 months and also at frontal cortex at 6 months. Time-frequency analyses conducted at source level found variations in both θ and γ ranges across age. Compared with 6-month-olds, 12-month-olds' responses to native phonemes showed smaller and faster phase synchronization and less spectral power in the θ range, and increases in left phase synchrony as well as induced high-γ activity in both frontal and left auditory sources. These results demonstrate that infants become more automatized and efficient in processing their native language as they approach 12 months of age via the interplay between θ and γ oscillations. We suggest that, while θ oscillations support syllable processing, γ oscillations underlie phonemic perceptual narrowing, progressively favoring mapping of native over non-native language across the first year of life. During early language acquisition, typically developing infants gradually construct phonemic maps of their native language in auditory cortex. It is well

  5. Perceptual Fusion in Humans and Machines

    NARCIS (Netherlands)

    A.A. Salah (Albert Ali); O. Tanrı dağ

    2008-01-01

    htmlabstractHumans perceive the world through different perceptual modalities, which are processed in the brain by modality-specific areas and structures. However, there also exist multimodal neurons and areas, specialized in integrating perceptual information to enhance or suppress brain response.

  6. Modelling the Perceptual Components of Loudspeaker Distortion

    DEFF Research Database (Denmark)

    Olsen, Sune L.; Agerkvist, Finn T.; MacDonald, Ewen

    2016-01-01

    While non-linear distortion in loudspeakers decreases audio quality, the perceptual consequences can vary substantially. This paper investigates the metric Rnonlin [1] which was developed to predict subjective measurements of sound quality in nonlinear systems. The generalisability of the metric...... the perceptual consequences of non-linear distortion....

  7. Semantic Representations in 3D Perceptual Space

    Directory of Open Access Journals (Sweden)

    Suncica Zdravkovic

    2011-05-01

    Full Text Available Barsalou's (1999 perceptual theory of knowledge echoes the pre-20th century tradition of conceptualizing all knowledge as inherently perceptual. Hence conceptual space has an infinite number of dimensions and heavily relies on perceptual experience. Osgood's (1952 semantic differential technique was developed as a bridge between perception and semantics. We updated Osgood's methodology in order to investigate current issues in visual cognition by: (1 using a 2D rather than a 1D space to place the concepts, (2 having dimensions that were perceptual while the targets were conceptual, (3 coupling visual experience with another two perceptual domains (audition and touch, (4 analyzing the data using MDS (not factor analysis. In three experiments, subjects (N = 57 judged five concrete and five abstract words on seven bipolar scales in three perceptual modalities. The 2D space led to different patterns of response compared to the classic 1D space. MDS revealed that perceptual modalities are not equally informative for mapping word-meaning distances (Mantel min = −.23; Mantel max = .88. There was no reliable differences due to test administration modality (paper vs. computer, nor scale orientation. The present findings are consistent with multidimensionality of conceptual space, a perceptual basis for knowledge, and dynamic characteristics of concepts discussed in contemporary theories.

  8. Constraints on Perceptual Learning: Objects and Dimensions.

    Science.gov (United States)

    Bedford, Felice L.

    1995-01-01

    Addresses two questions that may be unique to perceptual learning: What are the circumstances that produce learning? and What is the content of learning? Suggests a critical principle for each question. Provides a discussion of perceptual learning theory, how learning occurs, and what gets learned. Includes a 121-item bibliography. (DR)

  9. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  10. Sizing up the competition: quantifying the influence of the mental lexicon on auditory and visual spoken word recognition.

    Science.gov (United States)

    Strand, Julia F; Sommers, Mitchell S

    2011-09-01

    Much research has explored how spoken word recognition is influenced by the architecture and dynamics of the mental lexicon (e.g., Luce and Pisoni, 1998; McClelland and Elman, 1986). A more recent question is whether the processes underlying word recognition are unique to the auditory domain, or whether visually perceived (lipread) speech may also be sensitive to the structure of the mental lexicon (Auer, 2002; Mattys, Bernstein, and Auer, 2002). The current research was designed to test the hypothesis that both aurally and visually perceived spoken words are isolated in the mental lexicon as a function of their modality-specific perceptual similarity to other words. Lexical competition (the extent to which perceptually similar words influence recognition of a stimulus word) was quantified using metrics that are well-established in the literature, as well as a statistical method for calculating perceptual confusability based on the phi-square statistic. Both auditory and visual spoken word recognition were influenced by modality-specific lexical competition as well as stimulus word frequency. These findings extend the scope of activation-competition models of spoken word recognition and reinforce the hypothesis (Auer, 2002; Mattys et al., 2002) that perceptual and cognitive properties underlying spoken word recognition are not specific to the auditory domain. In addition, the results support the use of the phi-square statistic as a better predictor of lexical competition than metrics currently used in models of spoken word recognition. © 2011 Acoustical Society of America

  11. The spectrotemporal filter mechanism of auditory selective attention

    Science.gov (United States)

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  12. Cross-modal perceptual load: the impact of modality and individual differences.

    Science.gov (United States)

    Sandhu, Rajwant; Dyson, Benjamin James

    2016-05-01

    Visual distractor processing tends to be more pronounced when the perceptual load (PL) of a task is low compared to when it is high [perpetual load theory (PLT); Lavie in J Exp Psychol Hum Percept Perform 21(3):451-468, 1995]. While PLT is well established in the visual domain, application to cross-modal processing has produced mixed results, and the current study was designed in an attempt to improve previous methodologies. First, we assessed PLT using response competition, a typical metric from the uni-modal domain. Second, we looked at the impact of auditory load on visual distractors, and of visual load on auditory distractors, within the same individual. Third, we compared individual uni- and cross-modal selective attention abilities, by correlating performance with the visual Attentional Network Test (ANT). Fourth, we obtained a measure of the relative processing efficiency between vision and audition, to investigate whether processing ease influences the extent of distractor processing. Although distractor processing was evident during both attend auditory and attend visual conditions, we found that PL did not modulate processing of either visual or auditory distractors. We also found support for a correlation between the uni-modal (visual) ANT and our cross-modal task but only when the distractors were visual. Finally, although auditory processing was more impacted by visual distractors, our measure of processing efficiency only accounted for this asymmetry in the auditory high-load condition. The results are discussed with respect to the continued debate regarding the shared or separate nature of processing resources across modalities.

  13. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    Science.gov (United States)

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  14. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  15. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  16. Empirical Support for Perceptual Conceptualism

    Directory of Open Access Journals (Sweden)

    Nicolás Alejandro Serrano

    2018-03-01

    Full Text Available The main objective of this paper is to show that perceptual conceptualism can be understood as an empirically meaningful position and, furthermore, that there is some degree of empirical support for its main theses. In order to do this, I will start by offering an empirical reading of the conceptualist position, and making three predictions from it. Then, I will consider recent experimental results from cognitive sciences that seem to point towards those predictions. I will conclude that, while the evidence offered by those experiments is far from decisive, it is enough not only to show that conceptualism is an empirically meaningful position but also that there is empirical support for it.

  17. Continuous spatial representations in the olfactory bulb may reflect perceptual categories

    Directory of Open Access Journals (Sweden)

    Benjamin eAuffarth

    2011-10-01

    Full Text Available In sensory processing of odors, the olfactory bulb is an important relay station, where odor representations are noise-filtered, sharpened, and possibly re-organized. An organization by perceptual qualities has been found previously in the piriform cortex, however several recent studies indicate that the olfactory bulb code reflects behaviorally relevant dimensions spatially as well as at the population level. We apply a statistical analysis on 2-deoxyglucose images, taken over the entire bulb of glomerular layer of the rat, in order to see how the recognition of odors in the nose is translated into a map of odor quality in the brain. We first confirm previous studies that the first principal component could be related to pleasantness, however the next higher principal components are not directly clear. We then find mostly continuous spatial representations for perceptual categories. We compare the space spanned by spatial and population codes to human reports of perceptual similarity between odors and our results suggest that perceptual categories could be already embedded in glomerular activations and that spatial representations give a better match than population codes. This suggests that human and rat perceptual dimensions of odorant coding are related and indicates that perceptual qualities could be represented as continuous spatial codes of the olfactory bulb glomerulus population.

  18. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  19. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  20. Auditory changes in acromegaly.

    Science.gov (United States)

    Tabur, S; Korkmaz, H; Baysal, E; Hatipoglu, E; Aytac, I; Akarsu, E

    2017-06-01

    The aim of this study is to determine the changes involving auditory system in cases with acromegaly. Otological examinations of 41 cases with acromegaly (uncontrolled n = 22, controlled n = 19) were compared with those of age and gender-matched 24 healthy subjects. Whereas the cases with acromegaly underwent examination with pure tone audiometry (PTA), speech audiometry for speech discrimination (SD), tympanometry, stapedius reflex evaluation and otoacoustic emission tests, the control group did only have otological examination and PTA. Additionally, previously performed paranasal sinus-computed tomography of all cases with acromegaly and control subjects were obtained to measure the length of internal acoustic canal (IAC). PTA values were higher (p acromegaly group was narrower compared to that in control group (p = 0.03 for right ears and p = 0.02 for left ears). When only cases with acromegaly were taken into consideration, PTA values in left ears had positive correlation with growth hormone and insulin-like growth factor-1 levels (r = 0.4, p = 0.02 and r = 0.3, p = 0.03). Of all cases with acromegaly 13 (32%) had hearing loss in at least one ear, 7 (54%) had sensorineural type and 6 (46%) had conductive type hearing loss. Acromegaly may cause certain changes in the auditory system in cases with acromegaly. The changes in the auditory system may be multifactorial causing both conductive and sensorioneural defects.

  1. Congenital Deafness Reduces, But Does Not Eliminate Auditory Responsiveness in Cat Extrastriate Visual Cortex.

    Science.gov (United States)

    Land, Rüdiger; Radecke, Jan-Ole; Kral, Andrej

    2018-04-01

    Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Distinction of neurochemistry between the cores and their shells of auditory nuclei in tetrapod species.

    Science.gov (United States)

    Zeng, ShaoJu; Li, Jia; Zhang, XinWen; Zuo, MingXue

    2007-01-01

    The distribution of Met-enkephalin (ENK), substance P (SP) and serotonin (5-HT) differs between the core and shell regions of the mesencephalic and diencephalic auditory nuclei of the turtle [Belekhova et al., 2002]. These neurochemical distinctions are also found in other tetrapods (mammals, birds and amphibians). The distribution of ENK, SP and 5-HT was examined in the core and shell regions of both mesencephalic and diencephalic auditory nuclei, and in the telencephalic auditory areas of Bengalese finches (Lonchura striata) and mice (Mus musculus), as well as in corresponding auditory areas in toads (Bufo bufo). ENK, SP and 5-HT immunoreactive fibers and perikarya were largely absent from the core regions of both mesencephalic and diencephalic auditory nuclei, in comparison with the shell regions of mice and Bengalese finches. In the toad, however, this pattern was observed in the mesencephalic auditory nucleus, but not in the diencephalic auditory areas. ENK and SP immunoreactive perikarya were detected in the telencephalic auditory area of mice, whereas no ENK, SP or 5-HT immunolabeling was observed in the telencephalic auditory area (Field L) of Bengalese finches. These findings are discussed in terms of the evolution of the core-and-shell organization of auditory nuclei of tetrapods. Copyright 2007 S. Karger AG, Basel.

  3. Attentional capture under high perceptual load.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-12-01

    Attentional capture by abrupt onsets can be modulated by several factors, including the complexity, or perceptual load, of a scene. We have recently demonstrated that observers are less likely to be captured by abruptly appearing, task-irrelevant stimuli when they perform a search that is high, as opposed to low, in perceptual load (Cosman & Vecera, 2009), consistent with perceptual load theory. However, recent results indicate that onset frequency can influence stimulus-driven capture, with infrequent onsets capturing attention more often than did frequent onsets. Importantly, in our previous task, an abrupt onset was present on every trial, and consequently, attentional capture might have been affected by both onset frequency and perceptual load. In the present experiment, we examined whether onset frequency influences attentional capture under conditions of high perceptual load. When onsets were presented frequently, we replicated our earlier results; attentional capture by onsets was modulated under conditions of high perceptual load. Importantly, however, when onsets were presented infrequently, we observed robust capture effects. These results conflict with a strong form of load theory and, instead, suggest that exposure to the elements of a task (e.g., abrupt onsets) combines with high perceptual load to modulate attentional capture by task-irrelevant information.

  4. Partial Epilepsy with Auditory Features

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The clinical characteristics of 53 sporadic (S cases of idiopathic partial epilepsy with auditory features (IPEAF were analyzed and compared to previously reported familial (F cases of autosomal dominant partial epilepsy with auditory features (ADPEAF in a study at the University of Bologna, Italy.

  5. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  6. Psychophysical evidence for auditory motion parallax.

    Science.gov (United States)

    Genzel, Daria; Schutte, Michael; Brimijoin, W Owen; MacNeilage, Paul R; Wiegrebe, Lutz

    2018-04-17

    Distance is important: From an ecological perspective, knowledge about the distance to either prey or predator is vital. However, the distance of an unknown sound source is particularly difficult to assess, especially in anechoic environments. In vision, changes in perspective resulting from observer motion produce a reliable, consistent, and unambiguous impression of depth known as motion parallax. Here we demonstrate with formal psychophysics that humans can exploit auditory motion parallax, i.e., the change in the dynamic binaural cues elicited by self-motion, to assess the relative depths of two sound sources. Our data show that sensitivity to relative depth is best when subjects move actively; performance deteriorates when subjects are moved by a motion platform or when the sound sources themselves move. This is true even though the dynamic binaural cues elicited by these three types of motion are identical. Our data demonstrate a perceptual strategy to segregate intermittent sound sources in depth and highlight the tight interaction between self-motion and binaural processing that allows assessment of the spatial layout of complex acoustic scenes.

  7. The perceptual nature of the cross-modal priming effect: arguments in favor of a sensory-based conception of memory.

    Science.gov (United States)

    Vallet, Guillaume; Brunel, Lionel; Versace, Rémy

    2010-01-01

    The aim of this study was to demonstrate that the cross-modal priming effect is perceptual and therefore consistent with the idea that knowledge is modality dependent. We used a two-way cross-modal priming paradigm in two experiments. These experiments were constructed on the basis of a two-phase priming paradigm. In the study phase of Experiment 1, participants had to categorize auditory primes as "animal" or "artifact". In the test phase, they had to perform the same categorization task with visual targets which corresponded either to the auditory primes presented in the study phase (old items) or to new stimuli (new items). To demonstrate the perceptual nature of the cross-modal priming effect, half of the auditory primes were presented with a visual mask (old-masked items). In the second experiment, the visual stimuli were used as primes and the auditory stimuli as targets, and half of the visual primes were presented with an auditory mask (a white noise). We hypothesized that if the cross-modal priming effect results from an activation of modality-specific representations, then the mask should interfere with the priming effect. In both experiments, the results corroborated our predictions. In addition, we observed a cross-modal priming effect from pictures to sounds in a long-term paradigm for the first time.

  8. Hearing after congenital deafness: central auditory plasticity and sensory deprivation.

    Science.gov (United States)

    Kral, A; Hartmann, R; Tillein, J; Heid, S; Klinke, R

    2002-08-01

    The congenitally deaf cat suffers from a degeneration of the inner ear. The organ of Corti bears no hair cells, yet the auditory afferents are preserved. Since these animals have no auditory experience, they were used as a model for congenital deafness. Kittens were equipped with a cochlear implant at different ages and electro-stimulated over a period of 2.0-5.5 months using a monopolar single-channel compressed analogue stimulation strategy (VIENNA-type signal processor). Following a period of auditory experience, we investigated cortical field potentials in response to electrical biphasic pulses applied by means of the cochlear implant. In comparison to naive unstimulated deaf cats and normal hearing cats, the chronically stimulated animals showed larger cortical regions producing middle-latency responses at or above 300 microV amplitude at the contralateral as well as the ipsilateral auditory cortex. The cortex ipsilateral to the chronically stimulated ear did not show any signs of reduced responsiveness when stimulating the 'untrained' ear through a second cochlear implant inserted in the final experiment. With comparable duration of auditory training, the activated cortical area was substantially smaller if implantation had been performed at an older age of 5-6 months. The data emphasize that young sensory systems in cats have a higher capacity for plasticity than older ones and that there is a sensitive period for the cat's auditory system.

  9. Exploring the Perceptual Spaces of Faces, Cars and Birds in Children and Adults

    Science.gov (United States)

    Tanaka, James W.; Meixner, Tamara L.; Kantner, Justin

    2011-01-01

    While much developmental research has focused on the strategies that children employ to recognize faces, less is known about the principles governing the organization of face exemplars in perceptual memory. In this study, we tested a novel, child-friendly paradigm for investigating the organization of face, bird and car exemplars. Children ages…

  10. Assessing cross-modal target transition effects with a visual-auditory oddball.

    Science.gov (United States)

    Kiat, John E

    2018-04-30

    Prior research has shown contextual manipulations involving temporal and sequence related factors significantly moderate attention-related responses, as indexed by the P3b event-related-potential, towards infrequent (i.e., deviant) target oddball stimuli. However, significantly less research has looked at the influence of cross-modal switching on P3b responding, with the impact of target-to-target cross-modal transitions being virtually unstudied. To address this gap, this study recorded high-density (256 electrodes) EEG data from twenty-five participants as they completed a cross-modal visual-auditory oddball task. This task was comprised of unimodal visual (70% Nontargets: 30% Deviant-targets) and auditory (70% Nontargets: 30% Deviant-targets) oddballs presented in fixed alternating order (i.e., visual-auditory-visual-auditory, etc.) with participants being tasked with detecting deviant-targets in both modalities. Differences in the P3b response towards deviant-targets as a function of preceding deviant-target's presentation modality was analyzed using temporal-spatial PCA decomposition. In line with predictions, the results indicate that the ERP response to auditory deviant-targets preceded by visual deviant-targets exhibits an elevated P3b, relative to the processing of auditory deviant-targets preceded by auditory deviant-targets. However, the processing of visual deviant-targets preceded by auditory deviant-targets exhibited a reduced P3b response, relative to the P3b response towards visual deviant-targets preceded by visual deviant-targets. These findings provide the first demonstration of temporally and perceptually decoupled target-to-target cross-modal transitions moderating P3b responses on the oddball paradigm, generally providing support for the context-updating interpretation of the P3b response. Copyright © 2017. Published by Elsevier B.V.

  11. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    Science.gov (United States)

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the

  12. The function of BDNF in the adult auditory system.

    Science.gov (United States)

    Singer, Wibke; Panford-Walsh, Rama; Knipper, Marlies

    2014-01-01

    The inner ear of vertebrates is specialized to perceive sound, gravity and movements. Each of the specialized sensory organs within the cochlea (sound) and vestibular system (gravity, head movements) transmits information to specific areas of the brain. During development, brain-derived neurotrophic factor (BDNF) orchestrates the survival and outgrowth of afferent fibers connecting the vestibular organ and those regions in the cochlea that map information for low frequency sound to central auditory nuclei and higher-auditory centers. The role of BDNF in the mature inner ear is less understood. This is mainly due to the fact that constitutive BDNF mutant mice are postnatally lethal. Only in the last few years has the improved technology of performing conditional cell specific deletion of BDNF in vivo allowed the study of the function of BDNF in the mature developed organ. This review provides an overview of the current knowledge of the expression pattern and function of BDNF in the peripheral and central auditory system from just prior to the first auditory experience onwards. A special focus will be put on the differential mechanisms in which BDNF drives refinement of auditory circuitries during the onset of sensory experience and in the adult brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    Science.gov (United States)

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability

  14. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  15. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    Science.gov (United States)

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  16. Greater perceptual sensitivity to happy facial expression.

    Science.gov (United States)

    Maher, Stephen; Ekstrom, Tor; Chen, Yue

    2014-01-01

    Perception of subtle facial expressions is essential for social functioning; yet it is unclear if human perceptual sensitivities differ in detecting varying types of facial emotions. Evidence diverges as to whether salient negative versus positive emotions (such as sadness versus happiness) are preferentially processed. Here, we measured perceptual thresholds for the detection of four types of emotion in faces--happiness, fear, anger, and sadness--using psychophysical methods. We also evaluated the association of the perceptual performances with facial morphological changes between neutral and respective emotion types. Human observers were highly sensitive to happiness compared with the other emotional expressions. Further, this heightened perceptual sensitivity to happy expressions can be attributed largely to the emotion-induced morphological change of a particular facial feature (end-lip raise).

  17. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  18. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  19. Studying Real-World Perceptual Expertise

    Directory of Open Access Journals (Sweden)

    Jianhong eShen

    2014-08-01

    Full Text Available Significant insights into visual cognition have come from studying real-world perceptual expertise. Many have previously reviewed empirical findings and theoretical developments from this work. Here we instead provide a brief perspective on approaches, considerations, and challenges to studying real-world perceptual expertise. We discuss factors like choosing to use real-world versus artificial object domains of expertise, selecting a target domain of real-world perceptual expertise, recruiting experts, evaluating their level of expertise, and experimentally testing experts in the lab and online. Throughout our perspective, we highlight expert birding (also called birdwatching as an example, as it has been used as a target domain for over two decades in the perceptual expertise literature.

  20. Animacy, perceptual load, and inattentional blindness.

    Science.gov (United States)

    Calvillo, Dustin P; Jackson, Russell E

    2014-06-01

    Inattentional blindness is the failure to notice unexpected objects in a visual scene while engaging in an attention-demanding task. We examined the effects of animacy and perceptual load on inattentional blindness. Participants searched for a category exemplar under low or high perceptual load. On the last trial, the participants were exposed to an unexpected object that was either animate or inanimate. Unexpected objects were detected more frequently when they were animate rather than inanimate, and more frequently with low than with high perceptual loads. We also measured working memory capacity and found that it predicted the detection of unexpected objects, but only with high perceptual loads. The results are consistent with the animate-monitoring hypothesis, which suggests that animate objects capture attention because of the importance of the detection of animate objects in ancestral hunter-gatherer environments.

  1. Automatic phoneme category selectivity in the dorsal auditory stream.

    Science.gov (United States)

    Chevillet, Mark A; Jiang, Xiong; Rauschecker, Josef P; Riesenhuber, Maximilian

    2013-03-20

    Debates about motor theories of speech perception have recently been reignited by a burst of reports implicating premotor cortex (PMC) in speech perception. Often, however, these debates conflate perceptual and decision processes. Evidence that PMC activity correlates with task difficulty and subject performance suggests that PMC might be recruited, in certain cases, to facilitate category judgments about speech sounds (rather than speech perception, which involves decoding of sounds). However, it remains unclear whether PMC does, indeed, exhibit neural selectivity that is relevant for speech decisions. Further, it is unknown whether PMC activity in such cases reflects input via the dorsal or ventral auditory pathway, and whether PMC processing of speech is automatic or task-dependent. In a novel modified categorization paradigm, we presented human subjects with paired speech sounds from a phonetic continuum but diverted their attention from phoneme category using a challenging dichotic listening task. Using fMRI rapid adaptation to probe neural selectivity, we observed acoustic-phonetic selectivity in left anterior and left posterior auditory cortical regions. Conversely, we observed phoneme-category selectivity in left PMC that correlated with explicit phoneme-categorization performance measured after scanning, suggesting that PMC recruitment can account for performance on phoneme-categorization tasks. Structural equation modeling revealed connectivity from posterior, but not anterior, auditory cortex to PMC, suggesting a dorsal route for auditory input to PMC. Our results provide evidence for an account of speech processing in which the dorsal stream mediates automatic sensorimotor integration of speech and may be recruited to support speech decision tasks.

  2. EEG signatures accompanying auditory figure-ground segregation.

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István

    2016-11-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. Copyright © 2016. Published by Elsevier Inc.

  3. EEG signatures accompanying auditory figure-ground segregation

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P.; Szerafin, Ágnes; Shinn-Cunningham, Barbara; Winkler, István

    2017-01-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased – i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. PMID:27421185

  4. Can Attention be Divided Between Perceptual Groups?

    Science.gov (United States)

    McCann, Robert S.; Foyle, David C.; Johnston, James C.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    Previous work using Head-Up Displays (HUDs) suggests that the visual system parses the HUD and the outside world into distinct perceptual groups, with attention deployed sequentially to first one group and then the other. New experiments show that both groups can be processed in parallel in a divided attention search task, even though subjects have just processed a stimulus in one perceptual group or the other. Implications for models of visual attention will be discussed.

  5. Effect of practice on perceptual load

    OpenAIRE

    Mejia-Ramirez, Manuel

    2013-01-01

    Within attention studies, Lavie's load theory (Lavie & Tsal, 1994; Lavie, Hirst, de Fockert, & Viding, 2004) presented an account that could settle the question whether attention selects stimuli to be processed at an early or late stage of cognitive processing. This theory relied on the concepts of "perceptual load" and "attentional capacity", proposing that attentional resources are automatically allocated to stimuli, but when the perceptual load of the stimuli exceeds person's capacity, tas...

  6. A perceptual study of Scottish dialects

    OpenAIRE

    Tichenor, Sydney

    2012-01-01

    Perceptual dialectology is dedicated to the formal study of folk linguistic perceptions. Through an amalgamation of social psychology, ethnography, dialectology, sociolinguistics, cultural geography and myriad other fields, perceptual dialectology provides a methodology to gain insight to overt folk language attitudes, knowledge of regional distribution, and the importance of language variation and change (Preston 1989, 1999a). This study conducts the first investigation of folk percept...

  7. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  8. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  9. Evaluative pressure overcomes perceptual load effects.

    Science.gov (United States)

    Normand, Alice; Autin, Frédérique; Croizet, Jean-Claude

    2015-06-01

    Perceptual load has been found to be a powerful bottom-up determinant of distractibility, with high perceptual load preventing distraction by any irrelevant information. However, when under evaluative pressure, individuals exert top-down attentional control by giving greater weight to task-relevant features, making them more distractible from task-relevant distractors. One study tested whether the top-down modulation of attention under evaluative pressure overcomes the beneficial bottom-up effect of high perceptual load on distraction. Using a response-competition task, we replicated previous findings that high levels of perceptual load suppress task-relevant distractor response interference, but only for participants in a control condition. Participants under evaluative pressure (i.e., who believed their intelligence was assessed) showed interference from task-relevant distractor at all levels of perceptual load. This research challenges the assumptions of the perceptual load theory and sheds light on a neglected determinant of distractibility: the self-relevance of the performance situation in which attentional control is solicited.

  10. Objective assessment of stream segregation abilities of CI users as a function of electrode separation

    DEFF Research Database (Denmark)

    Paredes Gallardo, Andreu; Madsen, Sara Miay Kim; Dau, Torsten

    Auditory streaming is a perceptual process by which the human auditory system organizes sounds from different sources into perceptually meaningful elements. Segregation of sound sources is important, among others, for understanding speech in noisy environments, which is especially challenging...

  11. Effects of perceptual load and socially meaningful stimuli on crossmodal selective attention in Autism Spectrum Disorder and neurotypical samples.

    Science.gov (United States)

    Tyndall, Ian; Ragless, Liam; O'Hora, Denis

    2018-04-01

    The present study examined whether increasing visual perceptual load differentially affected both Socially Meaningful and Non-socially Meaningful auditory stimulus awareness in neurotypical (NT, n = 59) adults and Autism Spectrum Disorder (ASD, n = 57) adults. On a target trial, an unexpected critical auditory stimulus (CAS), either a Non-socially Meaningful ('beep' sound) or Socially Meaningful ('hi') stimulus, was played concurrently with the presentation of the visual task. Under conditions of low visual perceptual load both NT and ASD samples reliably noticed the CAS at similar rates (77-81%), whether the CAS was Socially Meaningful or Non-socially Meaningful. However, during high visual perceptual load NT and ASD participants reliably noticed the meaningful CAS (NT = 71%, ASD = 67%), but NT participants were unlikely to notice the Non-meaningful CAS (20%), whereas ASD participants reliably noticed it (80%), suggesting an inability to engage selective attention to ignore non-salient irrelevant distractor stimuli in ASD. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  13. Auditory short-term memory in the primate auditory cortex

    OpenAIRE

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ���working memory��� bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive sho...

  14. The perceptual enhancement of tones by frequency shifts.

    Science.gov (United States)

    Demany, Laurent; Carcagno, Samuele; Semal, Catherine

    2013-04-01

    In a chord of pure tones with a flat spectral profile, one tone can be perceptually enhanced relative to the other tones by the previous presentation of a slightly different chord. "Intensity enhancement" (IE) is obtained when the component tones of the two chords have the same frequencies, but in the first chord the target of enhancement is attenuated relative to the other tones. "Frequency enhancement" (FE) is obtained when both chords have a flat spectral profile, but the target of enhancement shifts in frequency from the first to the second chord. We report here an experiment in which IE and FE were measured using a task requiring the listener to indicate whether or not the second chord included a tone identical to a subsequent probe tone. The results showed that a global attenuation of the first chord relative to the second chord disrupted IE more than FE. This suggests that the mechanisms of IE and FE are not the same. In accordance with this suggestion, computations of the auditory excitation patterns produced by the chords indicate that the mechanism of IE is not sufficient to explain FE for small frequency shifts. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  16. Auditory Brain Stem Processing in Reptiles and Amphibians: Roles of Coupled Ears

    DEFF Research Database (Denmark)

    Willis, Katie L.; Christensen-Dalsgaard, Jakob; Carr, Catherine

    2014-01-01

    Comparative approaches to the auditory system have yielded great insight into the evolution of sound localization circuits, particularly within the nonmammalian tetrapods. The fossil record demonstrates multiple appearances of tympanic hearing, and examination of the auditory brain stem of various...... groups can reveal the organizing effects of the ear across taxa. If the peripheral structures have a strongly organizing influence on the neural structures, then homologous neural structures should be observed only in groups with a homologous tympanic ear. Therefore, the central auditory systems...... of anurans (frogs), reptiles (including birds), and mammals should all be more similar within each group than among the groups. Although there is large variation in the peripheral auditory system, there is evidence that auditory brain stem nuclei in tetrapods are homologous and have similar functions among...

  17. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    Science.gov (United States)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  18. Disruptive colouration and perceptual grouping.

    Science.gov (United States)

    Espinosa, Irene; Cuthill, Innes C

    2014-01-01

    Camouflage is the primary defence of many animals and includes multiple strategies that interfere with figure-ground segmentation and object recognition. While matching background colours and textures is widespread and conceptually straightforward, less well explored are the optical 'tricks', collectively called disruptive colouration, that exploit perceptual grouping mechanisms. Adjacent high contrast colours create false edges, but this is not sufficient for an object's shape to be broken up; some colours must blend with the background. We test the novel hypothesis that this will be particularly effective when the colour patches on the animal appear to belong to, not merely different background colours, but different background objects. We used computer-based experiments where human participants had to find cryptic targets on artificial backgrounds. Creating what appeared to be bi-coloured foreground objects on bi-coloured backgrounds, we generated colour boundaries that had identical local contrast but either lay within or between (illusory) objects. As predicted, error rates for targets matching what appeared to be different background objects were higher than for targets which had otherwise identical local contrast to the background but appeared to belong to single background objects. This provides evidence for disruptive colouration interfering with higher-level feature integration in addition to previously demonstrated low-level effects involving contour detection. In addition, detection was impeded in treatments where targets were on or in close proximity to multiple background colour or tone boundaries. This is consistent with other studies which show a deleterious influence of visual 'clutter' or background complexity on search.

  19. Disruptive colouration and perceptual grouping.

    Directory of Open Access Journals (Sweden)

    Irene Espinosa

    Full Text Available Camouflage is the primary defence of many animals and includes multiple strategies that interfere with figure-ground segmentation and object recognition. While matching background colours and textures is widespread and conceptually straightforward, less well explored are the optical 'tricks', collectively called disruptive colouration, that exploit perceptual grouping mechanisms. Adjacent high contrast colours create false edges, but this is not sufficient for an object's shape to be broken up; some colours must blend with the background. We test the novel hypothesis that this will be particularly effective when the colour patches on the animal appear to belong to, not merely different background colours, but different background objects. We used computer-based experiments where human participants had to find cryptic targets on artificial backgrounds. Creating what appeared to be bi-coloured foreground objects on bi-coloured backgrounds, we generated colour boundaries that had identical local contrast but either lay within or between (illusory objects. As predicted, error rates for targets matching what appeared to be different background objects were higher than for targets which had otherwise identical local contrast to the background but appeared to belong to single background objects. This provides evidence for disruptive colouration interfering with higher-level feature integration in addition to previously demonstrated low-level effects involving contour detection. In addition, detection was impeded in treatments where targets were on or in close proximity to multiple background colour or tone boundaries. This is consistent with other studies which show a deleterious influence of visual 'clutter' or background complexity on search.

  20. Perceptual Image Compression in Telemedicine

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  1. ERP evidence that auditory-visual speech facilitates working memory in younger and older adults.

    Science.gov (United States)

    Frtusova, Jana B; Winneke, Axel H; Phillips, Natalie A

    2013-06-01

    Auditory-visual (AV) speech enhances speech perception and facilitates auditory processing, as measured by event-related brain potentials (ERPs). Considering a perspective of shared resources between perceptual and cognitive processes, facilitated speech perception may render more resources available for higher-order functions. This study examined whether AV speech facilitation leads to better working memory (WM) performance in 23 younger and 20 older adults. Participants completed an n-back task (0- to 3-back) under visual-only (V-only), auditory-only (A-only), and AV conditions. The results showed faster responses across all memory loads and improved accuracy in the most demanding conditions (2- and 3-back) during AV compared with unisensory conditions. Older adults benefited from the AV presentation to the same extent as younger adults. WM performance of older adults during the AV presentation did not differ from that of younger adults in the A-only condition, suggesting that an AV presentation can help to counteract some of the age-related WM decline. The ERPs showed a decrease in the auditory N1 amplitude during the AV compared with A-only presentation in older adults, suggesting that the facilitation of perceptual processing becomes especially beneficial with aging. Additionally, the N1 occurred earlier in the AV than in the A-only condition for both age groups. These AV-induced modulations of auditory processing correlated with improvement in certain behavioral and ERP measures of WM. These results support an integrated model between perception and cognition, and suggest that processing speech under AV conditions enhances WM performance of both younger and older adults. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. Maps of the Auditory Cortex.

    Science.gov (United States)

    Brewer, Alyssa A; Barton, Brian

    2016-07-08

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

  3. Demodulation Processes in Auditory Perception

    National Research Council Canada - National Science Library

    Feth, Lawrence

    1997-01-01

    The long range goal of this project was the understanding of human auditory processing of information conveyed by complex, time varying signals such as speech, music or important environmental sounds...

  4. Visual and auditory socio-cognitive perception in unilateral temporal lobe epilepsy in children and adolescents: a prospective controlled study.

    Science.gov (United States)

    Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania

    2014-12-01

    A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re

  5. Generation and Perceptual Implicit Memory: Different Generation Tasks Produce Different Effects on Perceptual Priming

    Science.gov (United States)

    Mulligan, Neil W.; Dew, Ilana T. Z.

    2009-01-01

    The generation manipulation has been critical in delineating differences between implicit and explicit memory. In contrast to past research, the present experiments indicate that generating from a rhyme cue produces as much perceptual priming as does reading. This is demonstrated for 3 visual priming tasks: perceptual identification, word-fragment…

  6. Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise

    Science.gov (United States)

    Parbery-Clark, Alexandra; Strait, Dana L.; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-01-01

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18–30), we asked whether musical experience benefits an older cohort of musicians (ages 45–65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline. PMID:21589653

  7. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise.

    Directory of Open Access Journals (Sweden)

    Alexandra Parbery-Clark

    Full Text Available Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30, we asked whether musical experience benefits an older cohort of musicians (ages 45-65, potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory. Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.

  8. Bottom-up influences of voice continuity in focusing selective auditory attention.

    Science.gov (United States)

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the "unit" on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings.

  9. Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise.

    Science.gov (United States)

    Parbery-Clark, Alexandra; Strait, Dana L; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2011-05-11

    Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30), we asked whether musical experience benefits an older cohort of musicians (ages 45-65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.

  10. Pupil size tracks perceptual content and surprise.

    Science.gov (United States)

    Kloosterman, Niels A; Meindertsma, Thomas; van Loon, Anouk M; Lamme, Victor A F; Bonneh, Yoram S; Donner, Tobias H

    2015-04-01

    Changes in pupil size at constant light levels reflect the activity of neuromodulatory brainstem centers that control global brain state. These endogenously driven pupil dynamics can be synchronized with cognitive acts. For example, the pupil dilates during the spontaneous switches of perception of a constant sensory input in bistable perceptual illusions. It is unknown whether this pupil dilation only indicates the occurrence of perceptual switches, or also their content. Here, we measured pupil diameter in human subjects reporting the subjective disappearance and re-appearance of a physically constant visual target surrounded by a moving pattern ('motion-induced blindness' illusion). We show that the pupil dilates during the perceptual switches in the illusion and a stimulus-evoked 'replay' of that illusion. Critically, the switch-related pupil dilation encodes perceptual content, with larger amplitude for disappearance than re-appearance. This difference in pupil response amplitude enables prediction of the type of report (disappearance vs. re-appearance) on individual switches (receiver-operating characteristic: 61%). The amplitude difference is independent of the relative durations of target-visible and target-invisible intervals and subjects' overt behavioral report of the perceptual switches. Further, we show that pupil dilation during the replay also scales with the level of surprise about the timing of switches, but there is no evidence for an interaction between the effects of surprise and perceptual content on the pupil response. Taken together, our results suggest that pupil-linked brain systems track both the content of, and surprise about, perceptual events. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Frequent video game players resist perceptual interference.

    Directory of Open Access Journals (Sweden)

    Aaron V Berard

    Full Text Available Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT, a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  12. Frequent video game players resist perceptual interference.

    Science.gov (United States)

    Berard, Aaron V; Cain, Matthew S; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Playing certain types of video games for a long time can improve a wide range of mental processes, from visual acuity to cognitive control. Frequent gamers have also displayed generalized improvements in perceptual learning. In the Texture Discrimination Task (TDT), a widely used perceptual learning paradigm, participants report the orientation of a target embedded in a field of lines and demonstrate robust over-night improvement. However, changing the orientation of the background lines midway through TDT training interferes with overnight improvements in overall performance on TDT. Interestingly, prior research has suggested that this effect will not occur if a one-hour break is allowed in between the changes. These results have suggested that after training is over, it may take some time for learning to become stabilized and resilient against interference. Here, we tested whether frequent gamers have faster stabilization of perceptual learning compared to non-gamers and examined the effect of daily video game playing on interference of training of TDT with one background orientation on perceptual learning of TDT with a different background orientation. As a result, we found that non-gamers showed overnight performance improvement only on one background orientation, replicating previous results with the interference in TDT. In contrast, frequent gamers demonstrated overnight improvements in performance with both background orientations, suggesting that they are better able to overcome interference in perceptual learning. This resistance to interference suggests that video game playing not only enhances the amplitude and speed of perceptual learning but also leads to faster and/or more robust stabilization of perceptual learning.

  13. Adaptive and Selective Time Averaging of Auditory Scenes

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; McDermott, Josh H.

    2018-01-01

    longer than previously reported integration times in the auditory system. Integration also showed signs of being restricted to sound elements attributed to a common source. The results suggest an integration process that depends on stimulus characteristics, integrating over longer extents when......To overcome variability, estimate scene characteristics, and compress sensory input, perceptual systems pool data into statistical summaries. Despite growing evidence for statistical representations in perception, the underlying mechanisms remain poorly understood. One example...... it benefits statistical estimation of variable signals and selectively integrating stimulus components likely to have a common cause in the world. Our methodology could be naturally extended to examine statistical representations of other types of sensory signals. Sound texture perception is thought...

  14. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dissociation of Detection and Discrimination of Pure Tones following Bilateral Lesions of Auditory Cortex

    Science.gov (United States)

    Dykstra, Andrew R.; Koh, Christine K.; Braida, Louis D.; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5±2.1 dB in the left ear and 6.5±1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6±0.22 dB; right ear: 1.7±0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed. PMID:22957087

  16. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Dykstra, Andrew R; Koh, Christine K; Braida, Louis D; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  17. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    Full Text Available It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB. The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  18. External auditory canal leech: a rare case report of paediatric ...

    African Journals Online (AJOL)

    Leeches are blood sucking organism feed on human blood. While human bites are common, they rarely cause human internal infestation. We describe a rare case of a parasitic leech infestation of the External Auditory Canal (EAC). A two month old child presented to the Emergency department with a seven day history of ...

  19. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    Science.gov (United States)

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-01-01

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. PMID:12639334

  20. Investigating the role of auditory and tactile modalities in violin quality evaluation.

    Science.gov (United States)

    Wollman, Indiana; Fritz, Claudia; Poitevineau, Jacques; McAdams, Stephen

    2014-01-01

    The role of auditory and tactile modalities involved in violin playing and evaluation was investigated in an experiment employing a blind violin evaluation task under different conditions: i) normal playing conditions, ii) playing with auditory masking, and iii) playing with vibrotactile masking. Under each condition, 20 violinists evaluated five violins according to criteria related to violin playing and sound characteristics and rated their overall quality and relative preference. Results show that both auditory and vibrotactile feedback are important in the violinists' evaluations but that their relative importance depends on the violinist, the violin and the type of evaluation (different criteria ratings or preference). In this way, the overall quality ratings were found to be accurately predicted by the rating criteria, which also proved to be perceptually relevant to violinists, but were poorly correlated with the preference ratings; this suggests that the two types of ratings (overall quality vs preference) may stem from different decision-making strategies. Furthermore, the experimental design confirmed that violinists agree more on the importance of criteria in their overall evaluation than on their actual ratings for different violins. In particular, greater agreement was found on the importance of criteria related to the sound of the violin. Nevertheless, this study reveals that there are fundamental differences in the way players interpret and evaluate each criterion, which may explain why correlating physical properties with perceptual properties has been challenging so far in the field of musical acoustics.

  1. Task-relevant perceptual features can define categories in visual memory too.

    Science.gov (United States)

    Antonelli, Karla B; Williams, Carrick C

    2017-11-01

    Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.

  2. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. ViA: a perceptual visualization assistant

    Science.gov (United States)

    Healey, Chris G.; St. Amant, Robert; Elhaddad, Mahmoud S.

    2000-05-01

    This paper describes an automated visualized assistant called ViA. ViA is designed to help users construct perceptually optical visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual system, we can support our dual goals of rapid and accurate visualization. Perceptual guidelines that we have built using psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial intelligence to search of perceptually optical data attribute to visual feature mappings. Our perceptual guidelines are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient, but that also respect the context of the dataset and users' preferences about how they want to visualize their data.

  4. Comparing perceptual and preferential decision making.

    Science.gov (United States)

    Dutilh, Gilles; Rieskamp, Jörg

    2016-06-01

    Perceptual and preferential decision making have been studied largely in isolation. Perceptual decisions are considered to be at a non-deliberative cognitive level and have an outside criterion that defines the quality of decisions. Preferential decisions are considered to be at a higher cognitive level and the quality of decisions depend on the decision maker's subjective goals. Besides these crucial differences, both types of decisions also have in common that uncertain information about the choice situation has to be processed before a decision can be made. The present work aims to acknowledge the commonalities of both types of decision making to lay bare the crucial differences. For this aim we examine perceptual and preferential decisions with a novel choice paradigm that uses the identical stimulus material for both types of decisions. This paradigm allows us to model the decisions and response times of both types of decisions with the same sequential sampling model, the drift diffusion model. The results illustrate that the different incentive structure in both types of tasks changes people's behavior so that they process information more efficiently and respond more cautiously in the perceptual as compared to the preferential task. These findings set out a perspective for further integration of perceptual and preferential decision making in a single ramework.

  5. The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Lohmann, Gabriele

    2018-01-01

    Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with "small-world" properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex-and sensory systems in general-in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions.

  6. Auditory orientation in crickets: Pattern recognition controls reactive steering

    Science.gov (United States)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  7. Perceptual Grouping via Untangling Gestalt Principles

    DEFF Research Database (Denmark)

    Qi, Yonggang; Guo, Jun; Li, Yi

    2013-01-01

    the importance of Gestalt rules by solving a learning to rank problem, and formulate a multi-label graph-cuts algo- rithm to group image primitives while taking into account the learned Gestalt confliction. Our experiment results confirm the existence of Gestalt confliction in perceptual grouping and demonstrate...... confliction, i.e., the relative importance of each rule compared with another, remains unsolved. In this paper, we investigate the problem of perceptual grouping by quantifying the confliction among three commonly used rules: similarity, continuity and proximity. More specifically, we propose to quantify...... an improved performance when such a conflic- tion is accounted for via the proposed grouping algorithm. Finally, a novel cross domain image classification method is proposed by exploiting perceptual grouping as representation....

  8. Visible digital watermarking system using perceptual models

    Science.gov (United States)

    Cheng, Qiang; Huang, Thomas S.

    2001-03-01

    This paper presents a visible watermarking system using perceptual models. %how and why A watermark image is overlaid translucently onto a primary image, for the purposes of immediate claim of copyright, instantaneous recognition of owner or creator, or deterrence to piracy of digital images or video. %perceptual The watermark is modulated by exploiting combined DCT-domain and DWT-domain perceptual models. % so that the watermark is visually uniform. The resulting watermarked image is visually pleasing and unobtrusive. The location, size and strength of the watermark vary randomly with the underlying image. The randomization makes the automatic removal of the watermark difficult even though the algorithm is known publicly but the key to the random sequence generator. The experiments demonstrate that the watermarked images have pleasant visual effect and strong robustness. The watermarking system can be used in copyright notification and protection.

  9. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain.

    Science.gov (United States)

    Lamas, Verónica; Estévez, Sheila; Pernía, Marianni; Plaza, Ignacio; Merchán, Miguel A

    2017-10-11

    The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.

  10. Reproducibility of somatosensory spatial perceptual maps.

    Science.gov (United States)

    Steenbergen, Peter; Buitenweg, Jan R; Trojan, Jörg; Veltink, Peter H

    2013-02-01

    Various studies have shown subjects to mislocalize cutaneous stimuli in an idiosyncratic manner. Spatial properties of individual localization behavior can be represented in the form of perceptual maps. Individual differences in these maps may reflect properties of internal body representations, and perceptual maps may therefore be a useful method for studying these representations. For this to be the case, individual perceptual maps need to be reproducible, which has not yet been demonstrated. We assessed the reproducibility of localizations measured twice on subsequent days. Ten subjects participated in the experiments. Non-painful electrocutaneous stimuli were applied at seven sites on the lower arm. Subjects localized the stimuli on a photograph of their own arm, which was presented on a tablet screen overlaying the real arm. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) for the mean localizations of each electrode site and the slope and offset of regression models of the localizations, which represent scaling and displacement of perceptual maps relative to the stimulated sites. The ICCs of the mean localizations ranged from 0.68 to 0.93; the ICCs of the regression parameters were 0.88 for the intercept and 0.92 for the slope. These results indicate a high degree of reproducibility. We conclude that localization patterns of non-painful electrocutaneous stimuli on the arm are reproducible on subsequent days. Reproducibility is a necessary property of perceptual maps for these to reflect properties of a subject's internal body representations. Perceptual maps are therefore a promising method for studying body representations.

  11. A PROPOSED TAXONOMY OF THE PERCEPTUAL DOMAIN AND SOME SUGGESTED APPLICATIONS.

    Science.gov (United States)

    MOORE, MAXINE R.

    THIS PROPOSAL FOR A PRELIMINARY TAXONOMY OF THE PERCEPTUAL DOMAIN, ORGANIZED ON THE PRINCIPLE OF INTEGRATION, DREW ON GUILFORD'S THEORETICAL AND FACTOR-ANALYTICAL WORK, ON WITKIN'S FIGURE-GROUND STUDIES, AND ON THE "TAXONOMY OF EDUCATIONAL OBJECTIVES" MODELS. THE TAXONOMY CATEGORIES ARE SENSATION, FIGURE PERCEPTION, SYMBOL PERCEPTION, PERCEPTION…

  12. A Perceptual Measure of the Degree of Development of Proprietary Equipment.

    Science.gov (United States)

    Cua, Kristy O.; Junttila, Mikko A.; Schroeder, Roger G.

    2002-01-01

    Evaluated the psychometric properties of a perceptual measure of the extent to which manufacturing organizations develop proprietary equipment, the Proprietary Equipment Scale (developed by the World Class Manufacturing study). Analysis of data from 164 manufacturing plants in 5 countries indicates that although method effects are present, the…

  13. Lexical Categorization Modalities in Pre-School Children: Influence of Perceptual and Verbal Tasks

    Science.gov (United States)

    Tallandini, Maria Anna; Roia, Anna

    2005-01-01

    This study investigates how categorical organization functions in pre-school children, focusing on the dichotomy between living and nonliving things. The variables of familiarity, frequency of word use and perceptual complexity were controlled. Sixty children aged between 4 years and 5 years 10 months were investigated. Three tasks were used: a…

  14. Invariance Detection within an Interactive System: A Perceptual Gateway to Language Development

    Science.gov (United States)

    Gogate, Lakshmi J.; Hollich, George

    2010-01-01

    In this article, we hypothesize that "invariance detection," a general perceptual phenomenon whereby organisms attend to relatively stable patterns or regularities, is an important means by which infants tune in to various aspects of spoken language. In so doing, we synthesize a substantial body of research on detection of regularities across the…

  15. Volitional Mechanisms Mediate the Cuing Effect of Pitch on Attention Orienting: The Influences of Perceptual Difficulty and Response Pressure.

    Science.gov (United States)

    Chiou, Rocco; Rich, Anina N

    2015-02-01

    Our cognitive system tends to link auditory pitch with spatial location in a specific manner (ie high-pitched sounds are usually associated with an upper location, and low sounds are associated with a lower location). Recent studies have demonstrated that this cross-modality association biases the allocation of visual attention and affects performance despite the auditory stimuli being irrelevant to the behavioural task. There is, however, a discrepancy between studies in their interpretation of the underlying mechanisms. Whereas we have previously claimed that the pitch-location mapping is mediated by volitional shifts of attention (Chiou & Rich, 2012, Perception, 41: , 339-353), other researchers suggest that this cross-modal effect reflects automatic shifts of attention (Mossbridge, Grabowecky, & Suzuki, 2011, Cognition, 121: , 133-139). Here we report a series of three experiments examining the effects of perceptual and response-related pressure on the ability of nonpredictive pitch to bias visual attention. We compare it with two control cues: a predictive pitch that triggers voluntary attention shifts and a salient peripheral flash that evokes involuntary shifts. The results show that the effect of nonpredictive pitch is abolished by pressure at either perceptual or response levels. By contrast, the effects of the two control cues remain significant, demonstrating the robustness of informative and perceptually salient stimuli in directing attention. This distinction suggests that, in contexts of high perceptual demand and response pressure, cognitive resources are primarily engaged by the task-relevant stimuli, which effectively prevents uninformative pitch from orienting attention to its cross-modally associated location. These findings are consistent with the hypothesis that the link between pitch and location affects attentional deployment via volitional rather than automatic mechanisms. © 2015 SAGE Publications.

  16. Perceptual Experience and Seeing-as

    Directory of Open Access Journals (Sweden)

    Daniel Enrique Kalpokas

    2015-07-01

    Full Text Available According to Rorty, Davidson and Brandom, to have an experience is to be caused by our senses to hold a perceptual belief. This article argues that the phenomenon of seeing-as cannot be explained by such a conception of perceptual experience. First, the notion of experience defended by the aforementioned authors is reconstructed. Second, the main features of what Wittgenstein called “seeing aspects” are briefly presented. Finally, several arguments are developed in order to support the main thesis of the article: seeing-as cannot be explained by the conception of experience defended by Rorty, Davidson and Brandom.

  17. Perceptual and Cognitive Impairments and Driving

    Science.gov (United States)

    Korner-Bitensky, Nicol; Coopersmith, Henry; Mayo, Nancy; Leblanc, Ginette; Kaizer, Franceen

    1990-01-01

    Perceptual and cognitive disorders that frequently accompany stroke and head injury influence an individual's ability to drive a motor vehicle. Canadian physicians are legally responsible for identifying patients who are potentially unsafe to drive and, if they fail to do so, may be held liable in a civil action suit. The authors review the guidelines for physicians evaluating a patient's fitness to drive after brain injury. They also examine the actions a physician should take when a patient with perceptual and cognitive problems wants to drive. Ultimately, by taking these actions, physicians will help to prevent driving accidents. PMID:21234047

  18. Influences of multiple memory systems on auditory mental image acuity.

    Science.gov (United States)

    Navarro Cebrian, Ana; Janata, Petr

    2010-05-01

    The influence of different memory systems and associated attentional processes on the acuity of auditory images, formed for the purpose of making intonation judgments, was examined across three experiments using three different task types (cued-attention, imagery, and two-tone discrimination). In experiment 1 the influence of implicit long-term memory for musical scale structure was manipulated by varying the scale degree (leading tone versus tonic) of the probe note about which a judgment had to be made. In experiments 2 and 3 the ability of short-term absolute pitch knowledge to develop was manipulated by presenting blocks of trials in the same key or in seven different keys. The acuity of auditory images depended on all of these manipulations. Within individual listeners, thresholds in the two-tone discrimination and cued-attention conditions were closely related. In many listeners, cued-attention thresholds were similar to thresholds in the imagery condition, and depended on the amount of training individual listeners had in playing a musical instrument. The results indicate that mental images formed at a sensory/cognitive interface for the purpose of making perceptual decisions are highly malleable.

  19. The effect of phasic auditory alerting on visual perception.

    Science.gov (United States)

    Petersen, Anders; Petersen, Annemarie Hilkjær; Bundesen, Claus; Vangkilde, Signe; Habekost, Thomas

    2017-08-01

    Phasic alertness refers to a short-lived change in the preparatory state of the cognitive system following an alerting signal. In the present study, we examined the effect of phasic auditory alerting on distinct perceptual processes, unconfounded by motor components. We combined an alerting/no-alerting design with a pure accuracy-based single-letter recognition task. Computational modeling based on Bundesen's Theory of Visual Attention was used to examine the effect of phasic alertness on visual processing speed and threshold of conscious perception. Results show that phasic auditory alertness affects visual perception by increasing the visual processing speed and lowering the threshold of conscious perception (Experiment 1). By manipulating the intensity of the alerting cue, we further observed a positive relationship between alerting intensity and processing speed, which was not seen for the threshold of conscious perception (Experiment 2). This was replicated in a third experiment, in which pupil size was measured as a physiological marker of alertness. Results revealed that the increase in processing speed was accompanied by an increase in pupil size, substantiating the link between alertness and processing speed (Experiment 3). The implications of these results are discussed in relation to a newly developed mathematical model of the relationship between levels of alertness and the speed with which humans process visual information. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Ineluctable Modality of the Audible: Perceptual Determinants of Auditory Verbal Short-Term Memory

    Science.gov (United States)

    Maidment, David W.; Macken, William J.

    2012-01-01

    Classical cognitive accounts of verbal short-term memory (STM) invoke an abstract, phonological level of representation which, although it may be derived differently via different modalities, is itself amodal. Key evidence for this view is that serial recall of phonologically similar verbal items (e.g., the letter sounds "b",…

  1. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  2. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    Science.gov (United States)

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.

  3. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    Directory of Open Access Journals (Sweden)

    Léo Varnet

    Full Text Available Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.

  4. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  5. Auditory Hallucinations in Acute Stroke

    Directory of Open Access Journals (Sweden)

    Yair Lampl

    2005-01-01

    Full Text Available Auditory hallucinations are uncommon phenomena which can be directly caused by acute stroke, mostly described after lesions of the brain stem, very rarely reported after cortical strokes. The purpose of this study is to determine the frequency of this phenomenon. In a cross sectional study, 641 stroke patients were followed in the period between 1996–2000. Each patient underwent comprehensive investigation and follow-up. Four patients were found to have post cortical stroke auditory hallucinations. All of them occurred after an ischemic lesion of the right temporal lobe. After no more than four months, all patients were symptom-free and without therapy. The fact the auditory hallucinations may be of cortical origin must be taken into consideration in the treatment of stroke patients. The phenomenon may be completely reversible after a couple of months.

  6. The influence of signal type on the internal auditory representation of a room

    Science.gov (United States)

    Teret, Elizabeth

    Currently, architectural acousticians make no real distinction between a room impulse response and the auditory system's internal representation of a room. With this lack of a good model for the auditory representation of a room, it is indirectly assumed that our internal representation of a room is independent of the sound source needed to make the room characteristics audible. The extent to which this assumption holds true is examined with perceptual tests. Listeners are presented with various pairs of signals (music, speech, and noise) convolved with synthesized impulse responses of different reverberation times. They are asked to adjust the reverberation of one of the signals to match the other. Analysis of the data show that the source signal significantly influences perceived reverberance. Listeners are less accurate when matching reverberation times of varied signals than they are with identical signals. Additional testing shows that perception of reverberation can be linked to the existence of transients in the signal.

  7. Dissecting auditory verbal hallucinations into two components: audibility (Gedankenlautwerden) and alienation (thought insertion).

    Science.gov (United States)

    Sommer, Iris E; Selten, Jean-Paul; Diederen, Kelly M; Blom, Jan Dirk

    2010-01-01

    This study proposes a theoretical framework which dissects auditory verbal hallucinations (AVH) into 2 essential components: audibility and alienation. Audibility, the perceptual aspect of AVH, may result from a disinhibition of the auditory cortex in response to self-generated speech. In isolation, this aspect leads to audible thoughts: Gedankenlautwerden. The second component is alienation, which is the failure to recognize the content of AVH as self-generated. This failure may be related to the fact that cerebral activity associated with AVH is predominantly present in the speech production area of the right hemisphere. Since normal inner speech is derived from the left speech area, an aberrant source may lead to confusion about the origin of the language fragments. When alienation is not accompanied by audibility, it will result in the experience of thought insertion. The 2 hypothesized components are illustrated using case vignettes. Copyright 2010 S. Karger AG, Basel.

  8. Resistance to Interference of Olfactory Perceptual Learning

    Science.gov (United States)

    Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline

    2007-01-01

    Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…

  9. Infant Memory for Primitive Perceptual Features.

    Science.gov (United States)

    Adler, Scott A.

    Textons are elongated blobs of specific color, angular orientation, ends of lines, and crossings of line segments that are proposed to be the perceptual building blocks of the visual system. A study was conducted to explore the relative memorability of different types and arrangements of textons, exploring the time course for the discrimination…

  10. Well-Founded Belief and Perceptual Justification

    DEFF Research Database (Denmark)

    Broncano-Berrocal, Fernando

    2016-01-01

    According to Alan Millar, justified beliefs are well-founded beliefs. Millar cashes out the notion of well-foundedness in terms of having an adequate reason to believe something and believing it for that reason. To make his account of justified belief compatible with perceptual justification he...

  11. Prior expectations facilitate metacognition for perceptual decision.

    Science.gov (United States)

    Sherman, M T; Seth, A K; Barrett, A B; Kanai, R

    2015-09-01

    The influential framework of 'predictive processing' suggests that prior probabilistic expectations influence, or even constitute, perceptual contents. This notion is evidenced by the facilitation of low-level perceptual processing by expectations. However, whether expectations can facilitate high-level components of perception remains unclear. We addressed this question by considering the influence of expectations on perceptual metacognition. To isolate the effects of expectation from those of attention we used a novel factorial design: expectation was manipulated by changing the probability that a Gabor target would be presented; attention was manipulated by instructing participants to perform or ignore a concurrent visual search task. We found that, independently of attention, metacognition improved when yes/no responses were congruent with expectations of target presence/absence. Results were modeled under a novel Bayesian signal detection theoretic framework which integrates bottom-up signal propagation with top-down influences, to provide a unified description of the mechanisms underlying perceptual decision and metacognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Fusion of perceptions for perceptual robotics

    NARCIS (Netherlands)

    Ciftcioglu, O.; Bittermann, M.S.; Sariyildiz, I.S.

    2006-01-01

    Fusion of perception information for perceptual robotics is described. The visual perception is mathematically modelled as a probabilistic process obtaining and interpreting visual data from an environment. The visual data is processed in a multiresolutional form via wavelet transform and optimally

  13. Lexically guided perceptual learning in Mandarin Chinese

    NARCIS (Netherlands)

    Burchfield, L.A.; Luk, S.H.K.; Antoniou, M.; Cutler, A.

    2017-01-01

    Lexically guided perceptual learni ng refers to the use of lexical knowledge to retune sp eech categories and thereby adapt to a novel talker's pronunciation. This adaptation has been extensively documented, but primarily for segmental-based learning in English and Dutch. In languages with lexical

  14. Perceptual Load Influences Selective Attention across Development

    Science.gov (United States)

    Couperus, Jane W.

    2011-01-01

    Research suggests that visual selective attention develops across childhood. However, there is relatively little understanding of the neurological changes that accompany this development, particularly in the context of adult theories of selective attention, such as N. Lavie's (1995) perceptual load theory of attention. This study examined visual…

  15. Comparison and Contrast in Perceptual Categorization

    Science.gov (United States)

    Hampton, James A.; Estes, Zachary; Simmons, Claire L.

    2005-01-01

    People categorized pairs of perceptual stimuli that varied in both category membership and pairwise similarity. Experiments 1 and 2 showed categorization of 1 color of a pair to be reliably contrasted from that of the other. This similarity-based contrast effect occurred only when the context stimulus was relevant for the categorization of the…

  16. Perceptual Articulation in Three Middle Eastern Culture

    Science.gov (United States)

    Amir, Yehuda

    1975-01-01

    Noting that one would expect that members of cultural groups whose modes of child rearing foster individual autonomy would achieve more articulated perceptual functioning rather than persons reared in societies where conformity and emotional dependence are stressed, this article discusses a study which compared two Israeli sub-groups and two…

  17. Reliability in perceptual analysis of voice quality.

    Science.gov (United States)

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions.

  18. Perceptual evaluation of different image fusion schemes

    NARCIS (Netherlands)

    Toet, A.; IJspeert, J.K.

    2001-01-01

    Human perceptual performance was tested with images of nighttime outdoor scenes. The scenes were registered both with a dual band (visual and near infrared) image intensified low-light CCD camera (DII) and with a thermal middle wavelength band (3-5 μm) infrared (IR) camera. Fused imagery was

  19. Grey scale, the 'crispening effect', and perceptual linearization

    NARCIS (Netherlands)

    Belaïd, N.; Martens, J.B.

    1998-01-01

    One way of optimizing a display is to maximize the number of distinguishable grey levels, which in turn is equivalent to perceptually linearizing the display. Perceptual linearization implies that equal steps in grey value evoke equal steps in brightness sensation. The key to perceptual

  20. Pre-Attentive Auditory Processing of Lexicality

    Science.gov (United States)

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  1. Feature Assignment in Perception of Auditory Figure

    Science.gov (United States)

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  2. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    Science.gov (United States)

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Auditory and visual sustained attention in children with speech sound disorder.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Although research has demonstrated that children with specific language impairment (SLI and reading disorder (RD exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD. Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231 and 37 typically developing children (8.76 ± 1.461 were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  4. Auditory Training for Adults Who Have Hearing Loss: A Comparison of Spaced Versus Massed Practice Schedules.

    Science.gov (United States)

    Tye-Murray, Nancy; Spehar, Brent; Barcroft, Joe; Sommers, Mitchell

    2017-08-16

    The spacing effect in human memory research refers to situations in which people learn items better when they study items in spaced intervals rather than massed intervals. This investigation was conducted to compare the efficacy of meaning-oriented auditory training when administered with a spaced versus massed practice schedule. Forty-seven adult hearing aid users received 16 hr of auditory training. Participants in a spaced group (mean age = 64.6 years, SD = 14.7) trained twice per week, and participants in a massed group (mean age = 69.6 years, SD = 17.5) trained for 5 consecutive days each week. Participants completed speech perception tests before training, immediately following training, and then 3 months later. In line with transfer appropriate processing theory, tests assessed both trained tasks and an untrained task. Auditory training improved the speech recognition performance of participants in both groups. Benefits were maintained for 3 months. No effect of practice schedule was found on overall benefits achieved, on retention of benefits, nor on generalizability of benefits to nontrained tasks. The lack of spacing effect in otherwise effective auditory training suggests that perceptual learning may be subject to different influences than are other types of learning, such as vocabulary learning. Hence, clinicians might have latitude in recommending training schedules to accommodate patients' schedules.

  5. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  6. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  7. Supramodal processing optimizes visual perceptual learning and plasticity.

    Science.gov (United States)

    Zilber, Nicolas; Ciuciu, Philippe; Gramfort, Alexandre; Azizi, Leila; van Wassenhove, Virginie

    2014-06-01

    Multisensory interactions are ubiquitous in cortex and it has been suggested that sensory cortices may be supramodal i.e. capable of functional selectivity irrespective of the sensory modality of inputs (Pascual-Leone and Hamilton, 2001; Renier et al., 2013; Ricciardi and Pietrini, 2011; Voss and Zatorre, 2012). Here, we asked whether learning to discriminate visual coherence could benefit from supramodal processing. To this end, three groups of participants were briefly trained to discriminate which of a red or green intermixed population of random-dot-kinematograms (RDKs) was most coherent in a visual display while being recorded with magnetoencephalography (MEG). During training, participants heard no sound (V), congruent acoustic textures (AV) or auditory noise (AVn); importantly, congruent acoustic textures shared the temporal statistics - i.e. coherence - of visual RDKs. After training, the AV group significantly outperformed participants trained in V and AVn although they were not aware of their progress. In pre- and post-training blocks, all participants were tested without sound and with the same set of RDKs. When contrasting MEG data collected in these experimental blocks, selective differences were observed in the dynamic pattern and the cortical loci responsive to visual RDKs. First and common to all three groups, vlPFC showed selectivity to the learned coherence levels whereas selectivity in visual motion area hMT+ was only seen for the AV group. Second and solely for the AV group, activity in multisensory cortices (mSTS, pSTS) correlated with post-training performances; additionally, the latencies of these effects suggested feedback from vlPFC to hMT+ possibly mediated by temporal cortices in AV and AVn groups. Altogether, we interpret our results in the context of the Reverse Hierarchy Theory of learning (Ahissar and Hochstein, 2004) in which supramodal processing optimizes visual perceptual learning by capitalizing on sensory

  8. c-Fos and Arc/Arg3.1 expression in auditory and visual cortices after hearing loss: Evidence of sensory crossmodal reorganization in adult rats.

    Science.gov (United States)

    Pernia, M; Estevez, S; Poveda, C; Plaza, I; Carro, J; Juiz, J M; Merchan, M A

    2017-08-15

    Cross-modal reorganization in the auditory and visual cortices has been reported after hearing and visual deficits mostly during the developmental period, possibly underlying sensory compensation mechanisms. However, there are very few data on the existence or nature and timeline of such reorganization events during sensory deficits in adulthood. In this study, we assessed long-term changes in activity-dependent immediate early genes c-Fos and Arc/Arg3.1 in auditory and neighboring visual cortical areas after bilateral deafness in young adult rats. Specifically, we analyzed qualitatively and quantitatively c-Fos and Arc/Arg3.1 immunoreactivity at 15 and 90 days after cochlea removal. We report extensive, global loss of c-Fos and Arc/Arg3.1 immunoreactive neurons in the auditory cortex 15 days after permanent auditory deprivation in adult rats, which is partly reversed 90 days after deafness. Simultaneously, the number and labeling intensity of c-Fos- and Arc/Arg3.1-immunoreactive neurons progressively increase in neighboring visual cortical areas from 2 weeks after deafness and these changes stabilize three months after inducing the cochlear lesion. These findings support plastic, compensatory, long-term changes in activity in the auditory and visual cortices after auditory deprivation in the adult rats. Further studies may clarify whether those changes result in perceptual potentiation of visual drives on auditory regions of the adult cortex. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  9. Is conscious stimulus identification dependent on knowledge of the perceptual modality? Testing the "source misidentification hypothesis"

    DEFF Research Database (Denmark)

    Overgaard, Morten; Lindeløv, Jonas Kristoffer; Svejstrup, Stinna

    2013-01-01

    This paper reports an experiment intended to test a particular hypothesis derived from blindsight research, which we name the “source misidentification hypothesis.” According to this hypothesis, a subject may be correct about a stimulus without being correct about how she had access...... to this knowledge (whether the stimulus was visual, auditory, or something else). We test this hypothesis in healthy subjects, asking them to report whether a masked stimulus was presented auditorily or visually, what the stimulus was, and how clearly they experienced the stimulus using the Perceptual Awareness...... experience of the stimulus. To demonstrate that particular levels of reporting accuracy are obtained, we employ a statistical strategy, which operationally tests the hypothesis of non-equality, such that the usual rejection of the null-hypothesis admits the conclusion of equivalence....

  10. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks

    Science.gov (United States)

    Oei, Adam C.; Patterson, Michael D.

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551

  11. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks.

    Science.gov (United States)

    Oei, Adam C; Patterson, Michael D

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis.

  12. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks

    Directory of Open Access Journals (Sweden)

    Adam C Oei

    2015-02-01

    Full Text Available Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for twenty hours. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis

  13. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Delayed Auditory Feedback and Movement

    Science.gov (United States)

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  15. Molecular approach of auditory neuropathy.

    Science.gov (United States)

    Silva, Magali Aparecida Orate Menezes da; Piatto, Vânia Belintani; Maniglia, Jose Victor

    2015-01-01

    Mutations in the otoferlin gene are responsible for auditory neuropathy. To investigate the prevalence of mutations in the mutations in the otoferlin gene in patients with and without auditory neuropathy. This original cross-sectional case study evaluated 16 index cases with auditory neuropathy, 13 patients with sensorineural hearing loss, and 20 normal-hearing subjects. DNA was extracted from peripheral blood leukocytes, and the mutations in the otoferlin gene sites were amplified by polymerase chain reaction/restriction fragment length polymorphism. The 16 index cases included nine (56%) females and seven (44%) males. The 13 deaf patients comprised seven (54%) males and six (46%) females. Among the 20 normal-hearing subjects, 13 (65%) were males and seven were (35%) females. Thirteen (81%) index cases had wild-type genotype (AA) and three (19%) had the heterozygous AG genotype for IVS8-2A-G (intron 8) mutation. The 5473C-G (exon 44) mutation was found in a heterozygous state (CG) in seven (44%) index cases and nine (56%) had the wild-type allele (CC). Of these mutants, two (25%) were compound heterozygotes for the mutations found in intron 8 and exon 44. All patients with sensorineural hearing loss and normal-hearing individuals did not have mutations (100%). There are differences at the molecular level in patients with and without auditory neuropathy. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  17. Cinematic innervation: the intuitive form of perception in the distracted perceptual field

    Directory of Open Access Journals (Sweden)

    Sungyong Ahn

    2013-09-01

    Full Text Available In “The Work of Art in the Age of Its Technological Reproducibility,” Walter Benjamin alluded that the human perceptual field in his time would become more distracted by the intervention of technologies, and so masses’ tactility activated by distraction would be more important in the mechanized perception. Regarding this historical situation, Benjamin anticipated that the new mode of mass perception would be organized through people's collective “innervation” to technologies. This article aims to contextualize this physiological term's cultural, technical, and political implications within various discourses about perception from the late 19th century physiologies to early 20th century film theories. Benjamin considers the tactility of people's potential to reconstruct the optical scheme of perception from the “flatness of screen” in which distances between viewers and perceived objects collapse. In a similar vein, the late 19th century's physiology reconceptualized perception in its relation not so much to the transcendental division of subject/object as to the sensual condition of a retina as “a single immanent plane.” From this perspective, perception is phenomena entailed by a body's contact to a sensual environment, so how sense inputs circulate in a neural network is a determinant for explaining perceptual processes. With regard to this paradigm change, the invention of cinema in the late 19th century was significant because it radically changed the composition of the perceptual field in two directions. Cinema introduced the virtualized perceptual fields on which sense circulations were completely controlled by the operation of camera. At the same time, the mediation of projectors in theaters reorganized viewers’ neural paths for perceptual innervation. As Hugo Münsterberg and Sergei Eisenstein's theories reflect, cinematic media's intervention in the perceptual field made it possible for masses’ collective

  18. Monocular depth effects on perceptual fading.

    Science.gov (United States)

    Hsu, Li-Chuan; Kramer, Peter; Yeh, Su-Ling

    2010-08-06

    After prolonged viewing, a static target among moving non-targets is perceived to repeatedly disappear and reappear. An uncrossed stereoscopic disparity of the target facilitates this Motion-Induced Blindness (MIB). Here we test whether monocular depth cues can affect MIB too, and whether they can also affect perceptual fading in static displays. Experiment 1 reveals an effect of interposition: more MIB when the target appears partially covered by, than when it appears to cover, its surroundings. Experiment 2 shows that the effect is indeed due to interposition and not to the target's contours. Experiment 3 induces depth with the watercolor illusion and replicates Experiment 1. Experiments 4 and 5 replicate Experiments 1 and 3 without the use of motion. Since almost any stimulus contains a monocular depth cue, we conclude that perceived depth affects perceptual fading in almost any stimulus, whether dynamic or static. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. A perceptual metric for photo retouching.

    Science.gov (United States)

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  20. From Perceptual Categories to Concepts: What Develops?

    Science.gov (United States)

    Sloutsky, Vladimir M.

    2010-01-01

    People are remarkably smart: they use language, possess complex motor skills, make non-trivial inferences, develop and use scientific theories, make laws, and adapt to complex dynamic environments. Much of this knowledge requires concepts and this paper focuses on how people acquire concepts. It is argued that conceptual development progresses from simple perceptual grouping to highly abstract scientific concepts. This proposal of conceptual development has four parts. First, it is argued that categories in the world have different structure. Second, there might be different learning systems (sub-served by different brain mechanisms) that evolved to learn categories of differing structures. Third, these systems exhibit differential maturational course, which affects how categories of different structures are learned in the course of development. And finally, an interaction of these components may result in the developmental transition from perceptual groupings to more abstract concepts. This paper reviews a large body of empirical evidence supporting this proposal. PMID:21116483

  1. Crossmodal Perceptual Learning and Sensory Substitution

    Directory of Open Access Journals (Sweden)

    Michael J Proulx

    2011-10-01

    Full Text Available A sensory substitution device for blind persons aims to provide the missing visual input by converting images into a form that another modality can perceive, such as sound. Here I will discuss the perceptual learning and attentional mechanisms necessary for interpreting sounds produced by a device (The vOICe in a visuospatial manner. Although some aspects of the conversion, such as relating vertical location to pitch, rely on natural crossmodal mappings, the extensive training required suggests that synthetic mappings are required to generalize perceptual learning to new objects and environments, and ultimately to experience visual qualia. Here I will discuss the effects of the conversion and training on perception and attention that demonstrate the synthetic nature of learning the crossmodal mapping. Sensorimotor experience may be required to facilitate learning, develop expertise, and to develop a form of synthetic synaesthesia.

  2. Brain correlates of the orientation of auditory spatial attention onto speaker location in a "cocktail-party" situation.

    Science.gov (United States)

    Lewald, Jörg; Hanenberg, Christina; Getzmann, Stephan

    2016-10-01

    Successful speech perception in complex auditory scenes with multiple competing speakers requires spatial segregation of auditory streams into perceptually distinct and coherent auditory objects and focusing of attention toward the speaker of interest. Here, we focused on the neural basis of this remarkable capacity of the human auditory system and investigated the spatiotemporal sequence of neural activity within the cortical network engaged in solving the "cocktail-party" problem. Twenty-eight subjects localized a target word in the presence of three competing sound sources. The analysis of the ERPs revealed an anterior contralateral subcomponent of the N2 (N2ac), computed as the difference waveform for targets to the left minus targets to the right. The N2ac peaked at about 500 ms after stimulus onset, and its amplitude was correlated with better localization performance. Cortical source localization for the contrast of left versus right targets at the time of the N2ac revealed a maximum in the region around left superior frontal sulcus and frontal eye field, both of which are known to be involved in processing of auditory spatial information. In addition, a posterior-contralateral late positive subcomponent (LPCpc) occurred at a latency of about 700 ms. Both these subcomponents are potential correlates of allocation of spatial attention to the target under cocktail-party conditions. © 2016 Society for Psychophysiological Research.

  3. Top-down modulation of the auditory steady-state response in a task-switch paradigm

    Directory of Open Access Journals (Sweden)

    Nadia Müller

    2009-02-01

    Full Text Available Auditory selective attention is an important mechanism for top-down selection of the vast amount of auditory information our perceptual system is exposed to. In the present study, the impact of attention on auditory steady-state responses - previously shown to be generated in primary auditory regions - was investigated. This issue is still a matter of debate and recent findings point to a complex pattern of attentional effects on the aSSR. The present study aimed at shedding light on the involvement of ipsilateral and contralateral activations to the attended sound taking into account hemispheric differences and a possible dependency on modulation frequency. In aid of this, a dichotic listening experiment was designed using amplitude-modulated tones that were presented to the left and right ear simultaneously. Participants had to detect target tones in a cued ear while their brain activity was assessed using MEG. Thereby, a modulation of the aSSR by attention could be revealed, interestingly restricted to the left hemisphere and 20 Hz responses: Contralateral activations were enhanced while ipsilateral activations turned out to be reduced. Thus, our findings support and extend recent findings, showing that auditory attention can influence the aSSR, but only under specific circumstances and in a complex pattern regarding the different effects for ipsilateral and contralateral activations.

  4. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines

    Directory of Open Access Journals (Sweden)

    Ruijie Li

    2018-04-01

    Full Text Available In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs, we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.

  5. The brain dynamics of rapid perceptual adaptation to adverse listening conditions.

    Science.gov (United States)

    Erb, Julia; Henry, Molly J; Eisner, Frank; Obleser, Jonas

    2013-06-26

    Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an "executive" network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic "language" areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.

  6. Visual speech information: a help or hindrance in perceptual processing of dysarthric speech.

    Science.gov (United States)

    Borrie, Stephanie A

    2015-03-01

    This study investigated the influence of visual speech information on perceptual processing of neurologically degraded speech. Fifty listeners identified spastic dysarthric speech under both audio (A) and audiovisual (AV) conditions. Condition comparisons revealed that the addition of visual speech information enhanced processing of the neurologically degraded input in terms of (a) acuity (percent phonemes correct) of vowels and consonants and (b) recognition (percent words correct) of predictive and nonpredictive phrases. Listeners exploited stress-based segmentation strategies more readily in AV conditions, suggesting that the perceptual benefit associated with adding visual speech information to the auditory signal-the AV advantage-has both segmental and suprasegmental origins. Results also revealed that the magnitude of the AV advantage can be predicted, to some degree, by the extent to which an individual utilizes syllabic stress cues to inform word recognition in AV conditions. Findings inform the development of a listener-specific model of speech perception that applies to processing of dysarthric speech in everyday communication contexts.

  7. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  8. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  9. Implicit Recognition Based on Lateralized Perceptual Fluency

    OpenAIRE

    Vargas, Iliana M.; Voss, Joel L.; Paller, Ken A.

    2012-01-01

    In some circumstances, accurate recognition of repeated images in an explicit memory test is driven by implicit memory. We propose that this “implicit recognition” results from perceptual fluency that influences responding without awareness of memory retrieval. Here we examined whether recognition would vary if images appeared in the same or different visual hemifield during learning and testing. Kaleidoscope images were briefly presented left or right of fixation during divided-attention enc...

  10. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.

    Science.gov (United States)

    Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L

    2017-12-13

    Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation-acoustic frequency-might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R 1 -estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although

  11. The organization and reorganization of audiovisual speech perception in the first year of life.

    Science.gov (United States)

    Danielson, D Kyle; Bruderer, Alison G; Kandhadai, Padmapriya; Vatikiotis-Bateson, Eric; Werker, Janet F

    2017-04-01

    The period between six and 12 months is a sensitive period for language learning during which infants undergo auditory perceptual attunement, and recent results indicate that this sensitive period may exist across sensory modalities. We tested infants at three stages of perceptual attunement (six, nine, and 11 months) to determine 1) whether they were sensitive to the congruence between heard and seen speech stimuli in an unfamiliar language, and 2) whether familiarization with congruent audiovisual speech could boost subsequent non-native auditory discrimination. Infants at six- and nine-, but not 11-months, detected audiovisual congruence of non-native syllables. Familiarization to incongruent, but not congruent, audiovisual speech changed auditory discrimination at test for six-month-olds but not nine- or 11-month-olds. These results advance the proposal that speech perception is audiovisual from early in ontogeny, and that the sensitive period for audiovisual speech perception may last somewhat longer than that for auditory perception alone.

  12. Space and time in perceptual causality

    Directory of Open Access Journals (Sweden)

    Benjamin Straube

    2010-04-01

    Full Text Available Inferring causality is a fundamental feature of human cognition that allows us to theorize about and predict future states of the world. Michotte suggested that humans automatically perceive causality based on certain perceptual features of events. However, individual differences in judgments of perceptual causality cast doubt on Michotte’s view. To gain insights in the neural basis of individual difference in the perception of causality, our participants judged causal relationships in animations of a blue ball colliding with a red ball (a launching event while fMRI-data were acquired. Spatial continuity and temporal contiguity were varied parametrically in these stimuli. We did not f