WorldWideScience

Sample records for auditory perceptual disorders

  1. Auditory-perceptual evaluation of disordered voice quality: pros, cons and future directions.

    Science.gov (United States)

    Oates, Jennifer

    2009-01-01

    Auditory-perceptual evaluation is the most commonly used clinical voice assessment method, and is often considered a gold standard for documentation of voice disorders. This view has arisen for many reasons, including the fact that voice quality is perceptual in nature and that the perceptual characteristics of voice have greater intuitive meaning and shared reality among listeners than do many instrumental measures. Other factors include limitations in the validity and reliability of instrumental methods and lack of agreement as to the most sensitive and specific instrumental measures of voice quality. Perceptual evaluation has, however, been heavily criticised because it is subjective. As a result, listener reliability is not always adequate and auditory-perceptual ratings can be confounded by factors such as the listener's shifting internal standards, listener experience, type of rating scale used and the voice sample being evaluated. This paper discusses these pros and cons of perceptual evaluation, and outlines clinical strategies and research approaches that may lead to improvements in the assessment of voice quality. In particular, clinicians are advised to use multiple methods of voice quality evaluation, and to include both subjective and objective evaluation tools. Copyright 2009 S. Karger AG, Basel.

  2. [Design of standard voice sample text for subjective auditory perceptual evaluation of voice disorders].

    Science.gov (United States)

    Li, Jin-rang; Sun, Yan-yan; Xu, Wen

    2010-09-01

    To design a speech voice sample text with all phonemes in Mandarin for subjective auditory perceptual evaluation of voice disorders. The principles for design of a speech voice sample text are: The short text should include the 21 initials and 39 finals, this may cover all the phonemes in Mandarin. Also, the short text should have some meanings. A short text was made out. It had 155 Chinese words, and included 21 initials and 38 finals (the final, ê, was not included because it was rarely used in Mandarin). Also, the text covered 17 light tones and one "Erhua". The constituent ratios of the initials and finals presented in this short text were statistically similar as those in Mandarin according to the method of similarity of the sample and population (r = 0.742, P text were statistically not similar as those in Mandarin (r = 0.731, P > 0.05). A speech voice sample text with all phonemes in Mandarin was made out. The constituent ratios of the initials and finals presented in this short text are similar as those in Mandarin. Its value for subjective auditory perceptual evaluation of voice disorders need further study.

  3. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  4. Successful treatment of auditory perceptual disorder in individuals with Friedreich ataxia.

    Science.gov (United States)

    Rance, G; Corben, L A; Du Bourg, E; King, A; Delatycki, M B

    2010-12-01

    Friedreich ataxia (FRDA) is a neurodegenerative disease affecting motor and sensory systems. This study aimed to investigate the presence and perceptual consequences of auditory neuropathy (AN) in affected individuals and examine the use of personal-FM systems to ameliorate the resulting communication difficulties. Ten individuals with FRDA underwent a battery of auditory function tests and their results were compared with a cohort of matched controls. Friedreich ataxia subjects were then fit with personal FM-listening devices and evaluated over a 6 week period. Basic auditory processing was affected with each FRDA individual showing poorer temporal processing and figure/ground discrimination than their matched control. Speech perception in the presence of background noise was also impaired, with FRDA listeners typically able to access only around 50% of the information available to their normal peers. The use of personal FM-listening devices did however, dramatically improve their ability to hear and communicate in everyday listening situations. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  6. Perceptual Plasticity for Auditory Object Recognition

    Science.gov (United States)

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  7. Perceptual Plasticity for Auditory Object Recognition

    Directory of Open Access Journals (Sweden)

    Shannon L. M. Heald

    2017-05-01

    Full Text Available In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument, speaking (or playing rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we

  8. Auditory-perceptual learning improves speech motor adaptation in children.

    Science.gov (United States)

    Shiller, Douglas M; Rochon, Marie-Lyne

    2014-08-01

    Auditory feedback plays an important role in children's speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback; however, it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5- to 7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children's ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation.

  9. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    Science.gov (United States)

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2015-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it is not known whether their capacity for motor learning is limited by immature auditory-perceptual abilities. Here, the link between speech perceptual ability and the capacity for motor learning was explored in two groups of 5–7-year-old children who underwent a period of auditory perceptual training followed by tests of speech motor adaptation to altered auditory feedback. One group received perceptual training on a speech acoustic property relevant to the motor task while a control group received perceptual training on an irrelevant speech contrast. Learned perceptual improvements led to an enhancement in speech motor adaptation (proportional to the perceptual change) only for the experimental group. The results indicate that children’s ability to perceive relevant speech acoustic properties has a direct influence on their capacity for sensory-based speech motor adaptation. PMID:24842067

  10. Validity and rater reliability of Persian version of the Consensus Auditory Perceptual Evaluation of Voice

    Directory of Open Access Journals (Sweden)

    Nazila Salary Majd

    2014-08-01

    Full Text Available Background and Aim: Auditory-perceptual assessment of voice a main approach in the diagnosis and therapy improvement of voice disorders. Despite, there are few Iranian studies about auditory-perceptual assessment of voice. The aim of present study was development and determination of validity and rater reliability of Persian version of the Consensus Auditory Perceptual Evaluation of Voice (CAPE -V.Methods: The qualitative content validity was detected by collecting 10 questionnaires from 9 experienced speech and language pathologists and a linguist. For reliability purposes, the voice samples of 40 dysphonic (neurogenic, functional with and without laryngeal lesions adults (20-45 years of age and 10 normal healthy speakers were recorded. The samples included sustain of vowels and reading the 6 sentences of Persian version of the consensus auditory perceptual evaluation of voice called the ATSHA.Results: The qualitative content validity was proved for developed Persian version of the consensus auditory perceptual evaluation of voice. Cronbach’s alpha was high (0.95. Intra-rater reliability coefficients ranged from 0.86 for overall severity to 0.42 for pitch; inter-rater reliability ranged from 0.85 for overall severity to 0.32 for pitch (p<0.05.Conclusion: The ATSHA can be used as a valid and reliable Persian scale for auditory perceptual assessment of voice in adults.

  11. Asymmetric transfer of auditory perceptual learning

    Directory of Open Access Journals (Sweden)

    Sygal eAmitay

    2012-11-01

    Full Text Available Perceptual skills can improve dramatically even with minimal practice. A major and practical benefit of learning, however, is in transferring the improvement on the trained task to untrained tasks or stimuli, yet the mechanisms underlying this process are still poorly understood. Reduction of internal noise has been proposed as a mechanism of perceptual learning, and while we have evidence that frequency discrimination (FD learning is due to a reduction of internal noise, the source of that noise was not determined. In this study, we examined whether reducing the noise associated with neural phase locking to tones can explain the observed improvement in behavioural thresholds. We compared FD training between two tone durations (15 and 100 ms that straddled the temporal integration window of auditory nerve fibers upon which computational modeling of phase locking noise was based. Training on short tones resulted in improved FD on probe tests of both the long and short tones. Training on long tones resulted in improvement only on the long tones. Simulations of FD learning, based on the computational model and on signal detection theory, were compared with the behavioral FD data. We found that improved fidelity of phase locking accurately predicted transfer of learning from short to long tones, but also predicted transfer from long to short tones. The observed lack of transfer from long to short tones suggests the involvement of a second mechanism. Training may have increased the temporal integration window which could not transfer because integration time for the short tone is limited by its duration. Current learning models assume complex relationships between neural populations that represent the trained stimuli. In contrast, we propose that training-induced enhancement of the signal-to-noise ratio offers a parsimonious explanation of learning and transfer that easily accounts for asymmetric transfer of learning.

  12. Establishing Validity of the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V)

    Science.gov (United States)

    Zraick, Richard I.; Kempster, Gail B.; Connor, Nadine P.; Thibeault, Susan; Klaben, Bernice K.; Bursac, Zoran; Thrush, Carol R.; Glaze, Leslie E.

    2011-01-01

    Purpose: The Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) was developed to provide a protocol and form for clinicians to use when assessing the voice quality of adults with voice disorders (Kempster, Gerratt, Verdolini Abbott, Barkmeier-Kramer, & Hillman, 2009). This study examined the reliability and the empirical validity of the…

  13. Relationships between Visual and Auditory Perceptual Skills and Comprehension Independent of Decoding.

    Science.gov (United States)

    Weaver, Phyllis A.; Rosner, Jerome

    This paper reports the outcomes of a correlational study that examined the relationships between visual and auditory perceptual skills, on the one hand, and comprehension that is independent of decoding, on the other. Five sets of test scores--a visual perceptual test (Coloured Progressive Matrices), an auditory perceptual test (Auditory Motor…

  14. Listener Agreement for Auditory-Perceptual Ratings of Dysarthria

    Science.gov (United States)

    Bunton, Kate; Kent, Raymond D.; Duffy, Joseph R.; Rosenbek, John C.; Kent, Jane F.

    2007-01-01

    Purpose: Darley, Aronson, and Brown (1969a, 1969b) detailed methods and results of auditory-perceptual assessment for speakers with dysarthrias of varying etiology. They reported adequate listener reliability for use of the rating system as a tool for differential diagnosis, but several more recent studies have raised concerns about listener…

  15. Auditory Processing Disorders (APD): a distinct clinical disorder or not?

    NARCIS (Netherlands)

    Ellen de Wit

    2015-01-01

    Presentatie CPLOL congres Florence In this systematic review, six electronic databases were searched for peer-reviewed studies using the key words auditory processing, auditory diseases, central [Mesh], and auditory perceptual. Two reviewers independently assessed relevant studies by inclusion

  16. Motivation and intelligence drive auditory perceptual learning.

    Science.gov (United States)

    Amitay, Sygal; Halliday, Lorna; Taylor, Jenny; Sohoglu, Ediz; Moore, David R

    2010-03-23

    Although feedback on performance is generally thought to promote perceptual learning, the role and necessity of feedback remain unclear. We investigated the effect of providing varying amounts of positive feedback while listeners attempted to discriminate between three identical tones on learning frequency discrimination. Using this novel procedure, the feedback was meaningless and random in relation to the listeners' responses, but the amount of feedback provided (or lack thereof) affected learning. We found that a group of listeners who received positive feedback on 10% of the trials improved their performance on the task (learned), while other groups provided either with excess (90%) or with no feedback did not learn. Superimposed on these group data, however, individual listeners showed other systematic changes of performance. In particular, those with lower non-verbal IQ who trained in the no feedback condition performed more poorly after training. This pattern of results cannot be accounted for by learning models that ascribe an external teacher role to feedback. We suggest, instead, that feedback is used to monitor performance on the task in relation to its perceived difficulty, and that listeners who learn without the benefit of feedback are adept at self-monitoring of performance, a trait that also supports better performance on non-verbal IQ tests. These results show that 'perceptual' learning is strongly influenced by top-down processes of motivation and intelligence.

  17. Motivation and intelligence drive auditory perceptual learning.

    Directory of Open Access Journals (Sweden)

    Sygal Amitay

    Full Text Available BACKGROUND: Although feedback on performance is generally thought to promote perceptual learning, the role and necessity of feedback remain unclear. We investigated the effect of providing varying amounts of positive feedback while listeners attempted to discriminate between three identical tones on learning frequency discrimination. METHODOLOGY/PRINCIPAL FINDINGS: Using this novel procedure, the feedback was meaningless and random in relation to the listeners' responses, but the amount of feedback provided (or lack thereof affected learning. We found that a group of listeners who received positive feedback on 10% of the trials improved their performance on the task (learned, while other groups provided either with excess (90% or with no feedback did not learn. Superimposed on these group data, however, individual listeners showed other systematic changes of performance. In particular, those with lower non-verbal IQ who trained in the no feedback condition performed more poorly after training. CONCLUSIONS/SIGNIFICANCE: This pattern of results cannot be accounted for by learning models that ascribe an external teacher role to feedback. We suggest, instead, that feedback is used to monitor performance on the task in relation to its perceived difficulty, and that listeners who learn without the benefit of feedback are adept at self-monitoring of performance, a trait that also supports better performance on non-verbal IQ tests. These results show that 'perceptual' learning is strongly influenced by top-down processes of motivation and intelligence.

  18. The plastic ear and perceptual relearning in auditory spatial perception.

    Directory of Open Access Journals (Sweden)

    Simon eCarlile

    2014-08-01

    Full Text Available The auditory system of adult listeners has been shown to accommodate to altered spectral cues to sound location which presumably provides the basis for recalibration to changes in the shape of the ear over a life time. Here we review the role of auditory and non-auditory inputs to the perception of sound location and consider a range of recent experiments looking at the role of non-auditory inputs in the process of accommodation to these altered spectral cues. A number of studies have used small ear moulds to modify the spectral cues that result in significant degradation in localization performance. Following chronic exposure (10-60 days performance recovers to some extent and recent work has demonstrated that this occurs for both audio-visual and audio-only regions of space. This begs the questions as to the teacher signal for this remarkable functional plasticity in the adult nervous system. Following a brief review of influence of the motor state in auditory localisation, we consider the potential role of auditory-motor learning in the perceptual recalibration of the spectral cues. Several recent studies have considered how multi-modal and sensory-motor feedback might influence accommodation to altered spectral cues produced by ear moulds or through virtual auditory space stimulation using non-individualised spectral cues. The work with ear moulds demonstrates that a relatively short period of training involving sensory-motor feedback (5 – 10 days significantly improved both the rate and extent of accommodation to altered spectral cues. This has significant implications not only for the mechanisms by which this complex sensory information is encoded to provide a spatial code but also for adaptive training to altered auditory inputs. The review concludes by considering the implications for rehabilitative training with hearing aids and cochlear prosthesis.

  19. Perceptual Fluency, Auditory Generation, and Metamemory: Analyzing the Perceptual Fluency Hypothesis in the Auditory Modality

    Science.gov (United States)

    Besken, Miri; Mulligan, Neil W.

    2014-01-01

    Judgments of learning (JOLs) are sometimes influenced by factors that do not impact actual memory performance. One recent proposal is that perceptual fluency during encoding affects metamemory and is a basis of metacognitive illusions. In the present experiments, participants identified aurally presented words that contained inter-spliced silences…

  20. Relationships between Visual and Auditory Perceptual Skills and Comprehension in Students with Learning Disabilities.

    Science.gov (United States)

    Weaver, Phyllis A.; Rosner, Jerome

    1979-01-01

    Scores of 25 learning disabled students (aged 9 to 13) were compared on five tests: a visual-perceptual test (Coloured Progressive Matrices); an auditory-perceptual test (Auditory Motor Placement); a listening and reading comprehension test (Durrell Listening-Reading Series); and a word recognition test (Word Recognition subtest, Diagnostic…

  1. Auditory Processing Disorder in Children

    Science.gov (United States)

    ... Auditory Neuropathy Autism Spectrum Disorder: Communication Problems in Children Dysphagia Quick Statistics About Voice, Speech, Language Speech and Language Developmental Milestones What Is Voice? What Is Speech? What Is Language? ... communication provides better outcomes for children with cochlear implants University of Texas at Dallas ...

  2. Computational Auditory Scene Analysis Based Perceptual and Neural Principles

    National Research Council Canada - National Science Library

    Wang, DeLiang

    2004-01-01

    .... This fundamental process of auditory perception is called auditory scene analysis. of particular importance in auditory scene analysis is the separation of speech from interfering sounds, or speech segregation...

  3. Perceptual-auditory and orthographic performance of fricative consonants in writing acquisition.

    Science.gov (United States)

    Schier, Ana Cândida; Berti, Larissa Cristina; Chacon, Lourenço

    2013-01-01

    To investigate the perceptual-auditory and orthographic performances of students regarding identification of contrasts among the fricatives of Brazilian Portuguese, and to investigate the extent to which these two types of performances are related. Data from perceptual-auditory and orthographic performances of 20 children attending the two first grades of elementary education at a public school in Mallet (PR), Brazil, were analyzed. Data collection regarding auditory perception was based on the Assessment Tool in Speech Perception (PERCEFAL), using the software Perceval. Data collection regarding orthography was carried out through dictation of the same words used in the assessment tool PERCEFAL. We observed: more accuracy in perceptual-auditory than in orthographic skills; tendency of shorter response time and lesser variability in the perceptual-auditory hits than in the errors; mismatch of errors in orthographic and auditory perception, since, in perception, the highest percentage of errors involved the point of articulation of fricatives, while in orthography the highest percentage involved voicing. Although related to each other, perceptual-auditory and orthographic performances do not match term by term. Therefore, in clinical practice, attention should focus not only on the aspects that bring these two performances together, but also on the aspects that differentiate them.

  4. Sustained vowels and continuous speech in the auditory-perceptual evaluation of dysphonia severity.

    Science.gov (United States)

    Maryn, Youri; Roy, Nelson

    2012-01-01

    Auditory-perceptual evaluation of dysphonia may be influenced by the type of speech/voice task used to render judgements during the clinical evaluation, i.e., sustained vowels versus continuous speech. This study explored (a) differences in listener dysphonia severity ratings on the basis of speech/voice tasks, (b) the influence of speech/voice task on dysphonia severity ratings of stimuli that combined sustained vowels and continuous speech, and (c) the differences in inter-rater reliability of dysphonia severity ratings between both speech tasks. Five experienced listeners rated overall dysphonia severity in sustained vowels, continuous speech and concatenated speech samples elicited by 39 subjects with various voice disorders and degrees of hoarseness. Data confirmed that sustained vowels are rated significantly more dysphonic than continuous speech. Furthermore, dysphonia severity in concatenated speech samples is least determined by the sustained vowel. Finally, no significant difference was found in inter-rater reliability between dysphonia severity ratings of sustained vowels versus continuous speech. Based upon the results, both types of speech/voice tasks (i.e., sustained vowel and continuous speech) should be elicited and judged by clinicians in the auditory-perceptual rating of dysphonia severity.

  5. Reliability and Validity of the Turkish Version of the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V).

    Science.gov (United States)

    Özcebe, Esra; Aydinli, Fatma Esen; Tiğrak, Tuğçe Karahan; İncebay, Önal; Yilmaz, Taner

    2018-01-11

    The main purpose of this study was to culturally adapt the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) to Turkish and to evaluate its internal consistency, validity, and reliability. The Turkish version of CAPE-V was developed, and with the use of a prospective case-control design, the voice recordings of 130 participants were collected according to CAPE-V protocol. Auditory-perceptual evaluation was conducted according to CAPE-V and Grade, Roughness, Breathiness, Asthenia, and Strain (GRBAS) scale by two ear, nose, and throat specialists and two speech and language therapists. The different types of voice disorders, classified as organic and functional disorders, were compared in terms of their CAPE-V scores. The overall severity parameter had the highest intrarater and inter-reliability values for all the participants. For all four raters, the differences in the six CAPE-V parameters between the study and the control groups were found to be statistically significant. Among the correlations for the comparable parameters of the CAPE-V and the GRBAS scales, the highest correlation was found between the overall severity-grade parameters. There was no difference found between the organic and functional voice disorders in terms of the CAPE-V scores. The Turkish version of CAPE-V has been proven to be a reliable and valid instrument to use in the auditory-perceptual evaluation of voice. For the future application of this study, it would be important to investigate whether cepstral measures correlate with the auditory-perceptual judgments of dysphonia severity collected by a Turkish version of the CAPE-V. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Auditory Processing Disorders

    Science.gov (United States)

    ... APD is common in older adults, particularly when hearing loss is present. It is likely that many processes and problems contribute to APD in children. In adults, neurological disorders such as stroke, tumors, degenerative disease (such as ...

  7. Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming

    Science.gov (United States)

    Mill, Robert W.; Bőhm, Tamás M.; Bendixen, Alexandra; Winkler, István; Denham, Susan L.

    2013-01-01

    Many sound sources can only be recognised from the pattern of sounds they emit, and not from the individual sound events that make up their emission sequences. Auditory scene analysis addresses the difficult task of interpreting the sound world in terms of an unknown number of discrete sound sources (causes) with possibly overlapping signals, and therefore of associating each event with the appropriate source. There are potentially many different ways in which incoming events can be assigned to different causes, which means that the auditory system has to choose between them. This problem has been studied for many years using the auditory streaming paradigm, and recently it has become apparent that instead of making one fixed perceptual decision, given sufficient time, auditory perception switches back and forth between the alternatives—a phenomenon known as perceptual bi- or multi-stability. We propose a new model of auditory scene analysis at the core of which is a process that seeks to discover predictable patterns in the ongoing sound sequence. Representations of predictable fragments are created on the fly, and are maintained, strengthened or weakened on the basis of their predictive success, and conflict with other representations. Auditory perceptual organisation emerges spontaneously from the nature of the competition between these representations. We present detailed comparisons between the model simulations and data from an auditory streaming experiment, and show that the model accounts for many important findings, including: the emergence of, and switching between, alternative organisations; the influence of stimulus parameters on perceptual dominance, switching rate and perceptual phase durations; and the build-up of auditory streaming. The principal contribution of the model is to show that a two-stage process of pattern discovery and competition between incompatible patterns can account for both the contents (perceptual organisations) and the

  8. Factors of Predicted Learning Disorders and their Interaction with Attentional and Perceptual Training Procedures.

    Science.gov (United States)

    Friar, John T.

    Two factors of predicted learning disorders were investigated: (1) inability to maintain appropriate classroom behavior (BEH), (2) perceptual discrimination deficit (PERC). Three groups of first-graders (BEH, PERC, normal control) were administered measures of impulse control, distractability, auditory discrimination, and visual discrimination.…

  9. Auditory Discrimination and Auditory Sensory Behaviours in Autism Spectrum Disorders

    Science.gov (United States)

    Jones, Catherine R. G.; Happe, Francesca; Baird, Gillian; Simonoff, Emily; Marsden, Anita J. S.; Tregay, Jenifer; Phillips, Rebecca J.; Goswami, Usha; Thomson, Jennifer M.; Charman, Tony

    2009-01-01

    It has been hypothesised that auditory processing may be enhanced in autism spectrum disorders (ASD). We tested auditory discrimination ability in 72 adolescents with ASD (39 childhood autism; 33 other ASD) and 57 IQ and age-matched controls, assessing their capacity for successful discrimination of the frequency, intensity and duration…

  10. Auditory-Perceptual Learning Improves Speech Motor Adaptation in Children

    OpenAIRE

    Shiller, Douglas M.; Rochon, Marie-Lyne

    2014-01-01

    Auditory feedback plays an important role in children’s speech development by providing the child with information about speech outcomes that is used to learn and fine-tune speech motor plans. The use of auditory feedback in speech motor learning has been extensively studied in adults by examining oral motor responses to manipulations of auditory feedback during speech production. Children are also capable of adapting speech motor patterns to perceived changes in auditory feedback, however it...

  11. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  12. Data Collection and Analysis Techniques for Evaluating the Perceptual Qualities of Auditory Stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Bonebright, T.L.; Caudell, T.P.; Goldsmith, T.E.; Miner, N.E.

    1998-11-17

    This paper describes a general methodological framework for evaluating the perceptual properties of auditory stimuli. The framework provides analysis techniques that can ensure the effective use of sound for a variety of applications including virtual reality and data sonification systems. Specifically, we discuss data collection techniques for the perceptual qualities of single auditory stimuli including identification tasks, context-based ratings, and attribute ratings. In addition, we present methods for comparing auditory stimuli, such as discrimination tasks, similarity ratings, and sorting tasks. Finally, we discuss statistical techniques that focus on the perceptual relations among stimuli, such as Multidimensional Scaling (MDS) and Pathfinder Analysis. These methods are presented as a starting point for an organized and systematic approach for non-experts in perceptual experimental methods, rather than as a complete manual for performing the statistical techniques and data collection methods. It is our hope that this paper will help foster further interdisciplinary collaboration among perceptual researchers, designers, engineers, and others in the development of effective auditory displays.

  13. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  14. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  15. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  16. [Symptoms and diagnosis of auditory processing disorder].

    Science.gov (United States)

    Keilmann, A; Läßig, A K; Nospes, S

    2013-08-01

    The definition of an auditory processing disorder (APD) is based on impairments of auditory functions. APDs are disturbances in processes central to hearing that cannot be explained by comorbidities such as attention deficit or language comprehension disorders. Symptoms include difficulties in differentiation and identification of changes in time, structure, frequency and intensity of sounds; problems with sound localization and lateralization, as well as poor speech comprehension in adverse listening environments and dichotic situations. According to the German definition of APD (as opposed to central auditory processing disorder, CAPD), peripheral hearing loss or cognitive impairment also exclude APD. The diagnostic methodology comprises auditory function tests and the required diagnosis of exclusion. APD is diagnosed if a patient's performance is two standard deviations below the normal mean in at least two areas of auditory processing. The treatment approach for an APD depends on the patient's particular deficits. Training, compensatory strategies and improvement of the listening conditions can all be effective.

  17. Auditory Perceptual Learning for Speech Perception Can Be Enhanced by Audiovisual Training

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2013-03-01

    Full Text Available Speech perception under audiovisual conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how audiovisual training might benefit or impede auditory perceptual learning speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures in a protocol with a fixed number of trials. In Experiment 1, paired-associates (PA audiovisual (AV training of one group of participants was compared with audio-only (AO training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct. PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early audiovisual speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  18. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    Science.gov (United States)

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  19. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training

    Science.gov (United States)

    Bernstein, Lynne E.; Auer, Edward T.; Eberhardt, Silvio P.; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called “reverse hierarchy theory” of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning. PMID:23515520

  20. Auditory Pattern Recognition and Brief Tone Discrimination of Children with Reading Disorders

    Science.gov (United States)

    Walker, Marianna M.; Givens, Gregg D.; Cranford, Jerry L.; Holbert, Don; Walker, Letitia

    2006-01-01

    Auditory pattern recognition skills in children with reading disorders were investigated using perceptual tests involving discrimination of frequency and duration tonal patterns. A behavioral test battery involving recognition of the pattern of presentation of tone triads was used in which individual components differed in either frequency or…

  1. Testing an auditory illusion in frogs: Perceptual restoration or sensory bias?

    Science.gov (United States)

    Seeba, Folkert; Schwartz, Joshua J.; Bee, Mark A.

    2010-01-01

    The human auditory system perceptually restores short deleted segments of speech and other sounds (e.g. tones) when the resulting silent gaps are filled by a potential masking noise. When this phenomenon, known as ‘auditory induction’, occurs, listeners experience the illusion of hearing an ongoing sound continuing through the interrupting noise even though the perceived sound is not physically present. Such illusions suggest that a key function of the auditory system is to allow listeners to perceive complete auditory objects with incomplete acoustic information, as may often be the case in multisource acoustic environments. At present, however, we know little about the possible functions of auditory induction in the sound-mediated behaviours of animals. The present study used two-choice phonotaxis experiments to test the hypothesis that female grey treefrogs, Hyla chrysoscelis, experience the illusory perceptual restoration of discrete pulses in the male advertisement call when pulses are deleted and replaced by a potential masking noise. While added noise restored some attractiveness to calls with missing pulses, there was little evidence to suggest that the frogs actually experienced the illusion of perceiving the missing pulses. Instead, the added noise appeared to function as an acoustic appendage that made some calls more attractive than others as a result of sensory biases, the expression of which depended on the temporal order and acoustic structure of the added appendages. PMID:20514342

  2. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    OpenAIRE

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R.; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris p...

  3. Effects of Consensus Training on the Reliability of Auditory Perceptual Ratings of Voice Quality

    DEFF Research Database (Denmark)

    Iwarsson, Jenny; Petersen, Niels Reinholt

    2012-01-01

    Objectives/Hypothesis: This study investigates the effect of consensus training of listeners on intrarater and interrater reliability and agreement of perceptual voice analysis. The use of such training, including a reference voice sample, could be assumed to make the internal standards held...... in memory common and more robust, which is of great importance to reduce the variability of auditory perceptual ratings. Study Design: A prospective design with testing before and after training. Methods: Thirteen students of audiologopedics served as listening subjects. The ratings were made using...... a multidimensional protocol with four-point equal-appearing interval scales. The stimuli consisted of text reading by authentic dysphonic patients. The consensus training for each perceptual voice parameter included (1) definition, (2) underlying physiology, (3) presentation of carefully selected sound examples...

  4. The Influence of Native Language on Auditory-Perceptual Evaluation of Vocal Samples Completed by Brazilian and Canadian SLPs.

    Science.gov (United States)

    Chaves, Cristiane Ribeiro; Campbell, Melanie; Côrtes Gama, Ana Cristina

    2017-03-01

    This study aimed to determine the influence of native language on the auditory-perceptual assessment of voice, as completed by Brazilian and Anglo-Canadian listeners using Brazilian vocal samples and the grade, roughness, breathiness, asthenia, strain (GRBAS) scale. This is an analytical, observational, comparative, and transversal study conducted at the Speech Language Pathology Department of the Federal University of Minas Gerais in Brazil, and at the Communication Sciences and Disorders Department of the University of Alberta in Canada. The GRBAS scale, connected speech, and a sustained vowel were used in this study. The vocal samples were drawn randomly from a database of recorded speech of Brazilian adults, some with healthy voices and some with voice disorders. The database is housed at the Federal University of Minas Gerais. Forty-six samples of connected speech (recitation of days of the week), produced by 35 women and 11 men, and 46 samples of the sustained vowel /a/, produced by 37 women and 9 men, were used in this study. The listeners were divided into two groups of three speech therapists, according to nationality: Brazilian or Anglo-Canadian. The groups were matched according to the years of professional experience of participants. The weighted kappa was used to calculate the intra- and inter-rater agreements, with 95% confidence intervals, respectively. An analysis of the intra-rater agreement showed that Brazilians and Canadians had similar results in auditory-perceptual evaluation of sustained vowel and connected speech. The results of the inter-rater agreement of connected speech and sustained vowel indicated that Brazilians and Canadians had, respectively, moderate agreement on the overall severity (0.57 and 0.50), breathiness (0.45 and 0.45), and asthenia (0.50 and 0.46); poor correlation on roughness (0.19 and 0.007); and weak correlation on strain to connected speech (0.22), and moderate correlation to sustained vowel (0.50). In general

  5. Auditory Neuropathy Spectrum Disorder: A Review

    Science.gov (United States)

    Norrix, Linda W.; Velenovsky, David S.

    2014-01-01

    Purpose: Auditory neuropathy spectrum disorder, or ANSD, can be a confusing diagnosis to physicians, clinicians, those diagnosed, and parents of children diagnosed with the condition. The purpose of this review is to provide the reader with an understanding of the disorder, the limitations in current tools to determine site(s) of lesion, and…

  6. Perceptual grouping over time within and across auditory and tactile modalities.

    Directory of Open Access Journals (Sweden)

    I-Fan Lin

    Full Text Available In auditory scene analysis, population separation and temporal coherence have been proposed to explain how auditory features are grouped together and streamed over time. The present study investigated whether these two theories can be applied to tactile streaming and whether temporal coherence theory can be applied to crossmodal streaming. The results show that synchrony detection between two tones/taps at different frequencies/locations became difficult when one of the tones/taps was embedded in a perceptual stream. While the taps applied to the same location were streamed over time, the taps applied to different locations were not. This observation suggests that tactile stream formation can be explained by population-separation theory. On the other hand, temporally coherent auditory stimuli at different frequencies were streamed over time, but temporally coherent tactile stimuli applied to different locations were not. When there was within-modality streaming, temporally coherent auditory stimuli and tactile stimuli were not streamed over time, either. This observation suggests the limitation of temporal coherence theory when it is applied to perceptual grouping over time.

  7. Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2017-07-01

    The two-tone sequence (ABA_), which comprises two different sounds (A and B) and a silent gap, has been used to investigate how the auditory system organizes sequential sounds depending on various stimulus conditions or brain states. Auditory streaming can be evoked by differences not only in the tone frequency ("spectral cue": ΔFTONE, TONE condition) but also in the amplitude modulation rate ("AM cue": ΔFAM, AM condition). The aim of the present study was to explore the relationship between the perceptual properties of auditory streaming for the TONE and AM conditions. A sequence with a long duration (400 repetitions of ABA_) was used to examine the property of the bistability of streaming. The ratio of feature differences that evoked an equivalent probability of the segregated percept was close to the ratio of the Q-values of the auditory and modulation filters, consistent with a "channeling theory" of auditory streaming. On the other hand, for values of ΔFAM and ΔFTONE evoking equal probabilities of the segregated percept, the number of perceptual switches was larger for the TONE condition than for the AM condition, indicating that the mechanism(s) that determine the bistability of auditory streaming are different between or sensitive to the two domains. Nevertheless, the number of switches for individual listeners was positively correlated between the spectral and AM domains. The results suggest a possibility that the neural substrates for spectral and AM processes share a common switching mechanism but differ in location and/or in the properties of neural activity or the strength of internal noise at each level. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Differential responses of primary auditory cortex in autistic spectrum disorder with auditory hypersensitivity.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Goto, Tetsu; Sanefuji, Wakako; Yamamoto, Tomoka; Sakai, Saeko; Uchida, Hiroyuki; Hirata, Masayuki; Mohri, Ikuko; Yorifuji, Shiro; Taniike, Masako

    2012-01-25

    The aim of this study was to investigate the differential responses of the primary auditory cortex to auditory stimuli in autistic spectrum disorder with or without auditory hypersensitivity. Auditory-evoked field values were obtained from 18 boys (nine with and nine without auditory hypersensitivity) with autistic spectrum disorder and 12 age-matched controls. Autistic disorder with hypersensitivity showed significantly more delayed M50/M100 peak latencies than autistic disorder without hypersensitivity or the control. M50 dipole moments in the hypersensitivity group were larger than those in the other two groups [corrected]. M50/M100 peak latencies were correlated with the severity of auditory hypersensitivity; furthermore, severe hypersensitivity induced more behavioral problems. This study indicates auditory hypersensitivity in autistic spectrum disorder as a characteristic response of the primary auditory cortex, possibly resulting from neurological immaturity or functional abnormalities in it. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  9. Age Differences in Voice Evaluation: From Auditory-Perceptual Evaluation to Social Interactions.

    Science.gov (United States)

    Lortie, Catherine L; Deschamps, Isabelle; Guitton, Matthieu J; Tremblay, Pascale

    2018-02-15

    The factors that influence the evaluation of voice in adulthood, as well as the consequences of such evaluation on social interactions, are not well understood. Here, we examined the effect of listeners' age and the effect of talker age, sex, and smoking status on the auditory-perceptual evaluation of voice, voice-related psychosocial attributions, and perceived speech tempo. We also examined the voice dimensions affecting the propensity to engage in social interactions. Twenty-five younger (age 19-37 years) and 25 older (age 51-74 years) healthy adults participated in this cross-sectional study. Their task was to evaluate the voice of 80 talkers. Statistical analyses revealed limited effects of the age of the listener on voice evaluation. Specifically, older listeners provided relatively more favorable voice ratings than younger listeners, mainly in terms of roughness. In contrast, the age of the talker had a broader impact on voice evaluation, affecting auditory-perceptual evaluations, psychosocial attributions, and perceived speech tempo. Some of these talker differences were dependent upon the sex of the talker and his or her smoking status. Finally, the results also show that voice-related psychosocial attribution was more strongly associated with the propensity of the listener to engage in social interactions with a person than auditory-perceptual dimensions and perceived speech tempo, especially for the younger adults. These results suggest that age has a broad influence on voice evaluation, with a stronger impact for talker age compared with listener age. While voice-related psychosocial attributions may be an important determinant of social interactions, perceived voice quality and speech tempo appear to be less influential. https://doi.org/10.23641/asha.5844102.

  10. Effects of sound pressure level and visual perceptual load on the auditory mismatch negativity.

    Science.gov (United States)

    Szychowska, Malina; Eklund, Rasmus; Nilsson, Mats E; Wiens, Stefan

    2017-02-15

    Auditory change detection has been studied extensively with mismatch negativity (MMN), an event-related potential. Because it is unresolved if the duration MMN depends on sound pressure level (SPL), we studied effects of different SPLs (56, 66, and 76dB) on the duration MMN. Further, previous research suggests that the MMN is reduced by a concurrent visual task. Because a recent behavioral study found that high visual perceptual load strongly reduced detection sensitivity to irrelevant sounds, we studied if the duration MMN is reduced by load, and if this reduction is stronger at low SPLs. Although a duration MMN was observed for all SPLs, the MMN was apparently not moderated strongly by SPL, perceptual load, or their interaction, because all 95% CIs overlapped zero. In a contrast analysis of the MMN (across loads) between the 56-dB and 76-dB groups, evidence (BF=0.31) favored the null hypothesis that duration MMN is unaffected by a 20-dB increase in SPL. Similarly, evidence (BF=0.19) favored the null hypothesis that effects of perceptual load on the duration MMN do not change with a 20-dB increase in SPL. However, evidence (BF=3.12) favored the alternative hypothesis that the effect of perceptual load in the present study resembled the overall effect in a recent meta-analysis. When the present findings were combined with the meta-analysis, the effect of load (low minus high) was -0.43μV, 95% CI [-0.64, -0.22] suggesting that the duration MMN decreases with load. These findings provide support for a sensitive monitoring system of the auditory environment. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  12. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  13. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R.; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training. PMID:28701989

  14. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  15. Noise Robust Feature Scheme for Automatic Speech Recognition Based on Auditory Perceptual Mechanisms

    Science.gov (United States)

    Cai, Shang; Xiao, Yeming; Pan, Jielin; Zhao, Qingwei; Yan, Yonghong

    Mel Frequency Cepstral Coefficients (MFCC) are the most popular acoustic features used in automatic speech recognition (ASR), mainly because the coefficients capture the most useful information of the speech and fit well with the assumptions used in hidden Markov models. As is well known, MFCCs already employ several principles which have known counterparts in the peripheral properties of human hearing: decoupling across frequency, mel-warping of the frequency axis, log-compression of energy, etc. It is natural to introduce more mechanisms in the auditory periphery to improve the noise robustness of MFCC. In this paper, a k-nearest neighbors based frequency masking filter is proposed to reduce the audibility of spectra valleys which are sensitive to noise. Besides, Moore and Glasberg's critical band equivalent rectangular bandwidth (ERB) expression is utilized to determine the filter bandwidth. Furthermore, a new bandpass infinite impulse response (IIR) filter is proposed to imitate the temporal masking phenomenon of the human auditory system. These three auditory perceptual mechanisms are combined with the standard MFCC algorithm in order to investigate their effects on ASR performance, and a revised MFCC extraction scheme is presented. Recognition performances with the standard MFCC, RASTA perceptual linear prediction (RASTA-PLP) and the proposed feature extraction scheme are evaluated on a medium-vocabulary isolated-word recognition task and a more complex large vocabulary continuous speech recognition (LVCSR) task. Experimental results show that consistent robustness against background noise is achieved on these two tasks, and the proposed method outperforms both the standard MFCC and RASTA-PLP.

  16. Crossmodal constraints on human perceptual awareness: Auditory semantic modulation of binocular rivalry

    Directory of Open Access Journals (Sweden)

    Yi-Chuan eChen

    2011-09-01

    Full Text Available We report a series of experiments utilizing the binocular rivalry paradigm designed to investigate whether auditory semantic context modulates visual awareness. Binocular rivalry refers to the phenomenon whereby when two different figures are presented to each eye, observers perceive each figure as being dominant in alternation over time. The results demonstrate that participants report a particular percept as being dominant for less of the time when listening to an auditory soundtrack that happens to be semantically congruent with the other alternative (i.e., the competing percept, as compared to when listening to an auditory soundtrack that is irrelevant to both visual figures (Experiment 1A. When a visually-presented word was provided as a semantic cue, no such semantic modulatory effect was observed (Experiment 1B. We also demonstrate that the crossmodal semantic modulation of binocular rivalry was robustly observed irrespective of participants’ attentional control over the dichoptic figures and the relative luminance contrast between the figures (Experiments 2A and 2B. The pattern of crossmodal semantic effects reported here cannot simply be attributed to the meaning of the soundtrack guiding participants’ attention or biasing their behavioral responses. Hence, these results support the claim that crossmodal perceptual information can serve as a constraint on human visual awareness in terms of their semantic congruency.

  17. Crossmodal constraints on human perceptual awareness: auditory semantic modulation of binocular rivalry.

    Science.gov (United States)

    Chen, Yi-Chuan; Yeh, Su-Ling; Spence, Charles

    2011-01-01

    We report a series of experiments utilizing the binocular rivalry paradigm designed to investigate whether auditory semantic context modulates visual awareness. Binocular rivalry refers to the phenomenon whereby when two different figures are presented to each eye, observers perceive each figure as being dominant in alternation over time. The results demonstrate that participants report a particular percept as being dominant for less of the time when listening to an auditory soundtrack that happens to be semantically congruent with the other alternative (i.e., the competing) percept, as compared to when listening to an auditory soundtrack that was irrelevant to both visual figures (Experiment 1A). When a visually presented word was provided as a semantic cue, no such semantic modulatory effect was observed (Experiment 1B). We also demonstrate that the crossmodal semantic modulation of binocular rivalry was robustly observed irrespective of participants' attentional control over the dichoptic figures and the relative luminance contrast between the figures (Experiments 2A and 2B). The pattern of crossmodal semantic effects reported here cannot simply be attributed to the meaning of the soundtrack guiding participants' attention or biasing their behavioral responses. Hence, these results support the claim that crossmodal perceptual information can serve as a constraint on human visual awareness in terms of their semantic congruency.

  18. Validity of auditory perceptual assessment of velopharyngeal function and dysfunction - the VPC-Sum and the VPC-Rate

    DEFF Research Database (Denmark)

    Lohmander, Anette; Hagberg, Emilie; Persson, Christina

    2017-01-01

    -Sum) and of auditory perceptual ratings of velopharyngeal competence (VPC-Rate). Available VPC-Sum scores and judgments of associated variables (hypernasality, audible nasal air leakage, weak pressure consonants, and non-oral articulation) from 391 5-year olds with repaired cleft palate (the Scandcleft project) were...

  19. Should Children with Auditory Processing Disorders Receive Services in Schools?

    Science.gov (United States)

    Lucker, Jay R.

    2012-01-01

    Many children with problems learning in school can have educational deficits due to underlying auditory processing disorders (APD). For these children, they can be identified as having auditory learning disabilities. Furthermore, auditory learning disabilities is identified as a specific learning disability (SLD) in the IDEA. Educators and…

  20. Common Misconceptions Regarding Pediatric Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Vasiliki Iliadou

    2018-01-01

    Full Text Available Pediatric hearing evaluation based on pure tone audiometry does not always reflect how a child hears in everyday life. This practice is inappropriate when evaluating the difficulties children experiencing auditory processing disorder (APD in school or on the playground. Despite the marked increase in research on pediatric APD, there remains limited access to proper evaluation worldwide. This perspective article presents five common misconceptions of APD that contribute to inappropriate or limited management in children experiencing these deficits. The misconceptions discussed are (1 the disorder cannot be diagnosed due to the lack of a gold standard diagnostic test; (2 making generalizations based on profiles of children suspected of APD and not diagnosed with the disorder; (3 it is best to discard an APD diagnosis when another disorder is present; (4 arguing that the known link between auditory perception and higher cognition function precludes the validity of APD as a clinical entity; and (5 APD is not a clinical entity. These five misconceptions are described and rebutted using published data as well as critical thinking on current available knowledge on APD.

  1. Auditory Perceptual and Visual-Spatial Characteristics of Gaze-Evoked Tinnitus

    Directory of Open Access Journals (Sweden)

    Jamileh Fattahi

    1996-09-01

    Full Text Available Auditory perceptual and visual-spatial characteristics of subjective tinnitus evoked by eye gaze were studied in two adult human subjects. This uncommon form of tinnitus occurred approximately 4-6 weeks following neurosurgery for gross total excision of space Occupying lesions of the cerebellopontine angle and hearing was lost in the operated ear. In both cases, the gaze evoked tinnitus was characterized as being tonal in nature, with pitch and loudness percepts remaining constant as long as the same horizontal or vertical eye directions were maintained. Tinnitus was absent when the eyes were in a neutral head referenced position with subjects looking straight ahead. The results and implications of ophthalmological, standard and modified visual field assessment, pure tone audio metric assessment, spontaneous otoacoustic emission testing and detailed psychophysical assessment of pitch and loudness are discussed

  2. I "hear" what you're "saying": Auditory perceptual simulation, reading speed, and reading comprehension.

    Science.gov (United States)

    Zhou, Peiyun; Christianson, Kiel

    2016-01-01

    Auditory perceptual simulation (APS) during silent reading refers to situations in which the reader actively simulates the voice of a character or other person depicted in a text. In three eye-tracking experiments, APS effects were investigated as people read utterances attributed to a native English speaker, a non-native English speaker, or no speaker at all. APS effects were measured via online eye movements and offline comprehension probes. Results demonstrated that inducing APS during silent reading resulted in observable differences in reading speed when readers simulated the speech of faster compared to slower speakers and compared to silent reading without APS. Social attitude survey results indicated that readers' attitudes towards the native and non-native speech did not consistently influence APS-related effects. APS of both native speech and non-native speech increased reading speed, facilitated deeper, less good-enough sentence processing, and improved comprehension compared to normal silent reading.

  3. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  4. Visual Magnocellular Function in Perceptual Disorders

    Directory of Open Access Journals (Sweden)

    David P. Crewther

    2011-05-01

    Full Text Available Developmental disorders such as autism spectrum disorders (ASD, dyslexia, schizophrenia and dyscalculia have also been reported to show abnormal visual perception. Central to the four disorders are observations of altered global/local perception, motion sensation and grouping that are suggestive of a magnocellular abnormality(s. Such psychophysical observations do not easily yield neurophysiological mechanisms that can explain the altered perception/vision. Nonlinear visual evoked potentials have allowed the separation of magnocellular (M and parvocellular (P contributions to the VEP (Klistorner et al., 1997. Using these tools we compare the patterns of abnormality in groups with visual disorders. The second order kernel responses of the VEP in autistic tendency show interference between P and M nonlinearities at high contrast (Sutherland & Crewther, 2010 resulting in a delay of completion of firing. While afferent latencies of M and P cortical activation are not different in ASD, the delay in completion may allow a revision of the ideas surrounding the “magnocellular advantage” which relate to the alterations observed in global and local perception.

  5. Effects of an Auditory Lateralization Training in Children Suspected to Central Auditory Processing Disorder

    OpenAIRE

    Lotfi, Yones; Moosavi, Abdollah; Abdollahi, Farzaneh Zamiri; BAKHSHI, Enayatollah; Sadjedi, Hamed

    2016-01-01

    Background and Objectives Central auditory processing disorder [(C)APD] refers to a deficit in auditory stimuli processing in nervous system that is not due to higher-order language or cognitive factors. One of the problems in children with (C)APD is spatial difficulties which have been overlooked despite their significance. Localization is an auditory ability to detect sound sources in space and can help to differentiate between the desired speech from other simultaneous sound sources. Aim o...

  6. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  7. Comorbid auditory processing disorder in developmental dyslexia.

    Science.gov (United States)

    King, Wayne M; Lombardino, Linda J; Crandell, Carl C; Leonard, Christiana M

    2003-10-01

    The primary objective of this study was to investigate the extent of comorbid auditory processing disorder (APD) in a group of adults with developmental dyslexia. An additional objective was to compare performance on auditory tasks to results from standardized tests of reading in an attempt to generate a clinically useful profile of developmental dyslexics with comorbid APD. A group of eleven persons with developmental dyslexia and 14 age- and intelligence-matched controls participated in the study. Behavioral audiograms, 226-Hz tympanograms, and word recognition scores were obtained binaurally from all subjects. Both groups were administered the frequency-pattern test (FPT) and duration-pattern test (DPT) monaurally (30 items per ear) in both the left and right ear. Gap detection results were obtained in both groups (binaural presentation) using narrowband noise centered at 1 kHz in an adaptive two-alternative forced-choice (2-AFC) paradigm. The FPT, DPT, and gap detection results were analyzed for interaural (where applicable), intergroup, and intragroup differences. Correlations between performance on the auditory tasks and the standardized tests of reading were examined. Additive logistic regression models were fit to the data to determine which auditory tests proved to be the best predictors of group membership. The persons with developmental dyslexia as a group performed significantly poorer than controls on both the FPT and DPT. Furthermore, the group differences were significant in both monaural conditions. On the FPT and DPT, five of the eleven participants with dyslexia performed below the widely used clinical criterion for APD of 70% correct in either ear. All five of these participants performed below criterion on the FPT, whereas four of the five additionally performed below 70% on the DPT. The data also were analyzed by fitting a series of stepwise logistic regression models, which indicated that gap detection did not significantly predict group

  8. Multisensory Training can Promote or Impede Visual Perceptual Learning of Speech Stimuli: Visual-Tactile versus Visual-Auditory Training

    Directory of Open Access Journals (Sweden)

    Silvio P Eberhardt

    2014-10-01

    Full Text Available In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that Aaudiovisual training with speech stimuli can promote auditory-only perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded auditory-only (AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning in participants whose training scores were similar. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1 Stimuli presented to the trainee’s primary perceptual pathway will impede learning by a lower-rank pathway. (2 Stimuli presented to the trainee’s lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory.

  9. On the correlation between perceptual inundation caused by realistic immersive environmental auditory scenes and the sensory gating inventory in schizophrenia.

    Science.gov (United States)

    El-Kaim, A; Aramaki, M; Ystad, S; Kronland-Martinet, R; Cermolacce, M; Naudin, J; Vion-Dury, J; Micoulaud-Franchi, J-A

    2015-07-01

    In schizophrenia, perceptual inundation related to sensory gating deficit can be evaluated "off-line" with the sensory gating inventory (SGI) and "on-line" during listening tests. However, no study investigated the relation between "off-line evaluation" and "on-line evaluation". The present study investigates this relationship. A sound corpus of 36 realistic environmental auditory scenes was obtained from a 3D immersive synthesizer. Twenty schizophrenic patients and twenty healthy subjects completed the SGI and evaluated the feeling of "inundation" from 1 ("null") to 5 ("maximum") for each auditory scene. Sensory gating deficit was evaluated in half of each population group with P50 suppression electrophysiological measure. Evaluation of inundation during sound listening was significantly higher in schizophrenia (3.25) compared to the control group (2.40, P<.001). The evaluation of inundation during the listening test correlated significantly with the perceptual modulation (n=20, rho=.52, P=.029) and the over-inclusion dimensions (n=20, rho=.59, P=.01) of the SGI in schizophrenic patients and with the P50 suppression for the entire group of controls and patients who performed ERP recordings (n=20, rho=-.49, P=.027). An evaluation of the external validity of the SGI was obtained through listening tests. The ability to control acoustic parameters of each of the realistic immersive environmental auditory scenes might in future research make it possible to identify acoustic triggers related to perceptual inundation in schizophrenia. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    Science.gov (United States)

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  11. Auditory and visual sustained attention in children with speech sound disorder.

    Science.gov (United States)

    Murphy, Cristina F B; Pagan-Neves, Luciana O; Wertzner, Haydée F; Schochat, Eliane

    2014-01-01

    Although research has demonstrated that children with specific language impairment (SLI) and reading disorder (RD) exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD). Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD) and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231) and 37 typically developing children (8.76 ± 1.461)) were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  12. Auditory and visual sustained attention in children with speech sound disorder.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Although research has demonstrated that children with specific language impairment (SLI and reading disorder (RD exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD. Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231 and 37 typically developing children (8.76 ± 1.461 were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  13. Auditory processing in autism spectrum disorder : Mismatch negativity deficits

    NARCIS (Netherlands)

    Vlaskamp, Chantal|info:eu-repo/dai/nl/413985679; Oranje, Bob|info:eu-repo/dai/nl/217177409; Madsen, Gitte Falcher; Møllegaard Jepsen, Jens Richardt; Durston, Sarah|info:eu-repo/dai/nl/243083912; Cantio, Cathriona; Glenthøj, Birte; Bilenberg, Niels

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism are

  14. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to

  15. Characteristics of Auditory Processing Disorders: A Systematic Review

    Science.gov (United States)

    de Wit, Ellen; Visser-Bochane, Margot I.; Steenbergen, Bert; van Dijk, Pim; van der Schans, Cees P.; Luinge, Margreet R.

    2016-01-01

    Purpose: The purpose of this review article is to describe characteristics of auditory processing disorders (APD) by evaluating the literature in which children with suspected or diagnosed APD were compared with typically developing children and to determine whether APD must be regarded as a deficit specific to the auditory modality or as a…

  16. Auditory Processing Theories of Language Disorders: Past, Present, and Future

    Science.gov (United States)

    Miller, Carol A.

    2011-01-01

    Purpose: The purpose of this article is to provide information that will assist readers in understanding and interpreting research literature on the role of auditory processing in communication disorders. Method: A narrative review was used to summarize and synthesize the literature on auditory processing deficits in children with auditory…

  17. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    Science.gov (United States)

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  18. Contribution of psychoacoustics and neuroaudiology in revealing correlation of mental disorders with central auditory processing disorders

    Science.gov (United States)

    Iliadou, V; Iakovides, S

    2003-01-01

    Background Psychoacoustics is a fascinating developing field concerned with the evaluation of the hearing sensation as an outcome of a sound or speech stimulus. Neuroaudiology with electrophysiologic testing, records the electrical activity of the auditory pathways, extending from the 8th cranial nerve up to the cortical auditory centers as a result of external auditory stimuli. Central Auditory Processing Disorders may co-exist with mental disorders and complicate diagnosis and outcome. Design A MEDLINE search was conducted to search for papers concerning the association between Central Auditory Processing Disorders and mental disorders. The research focused on the diagnostic methods providing the inter-connection of various mental disorders and central auditory deficits. Measurements and Main Results The medline research revealed 564 papers when using the keywords 'auditory deficits' and 'mental disorders'. 79 papers were referring specifically to Central Auditory Processing Disorders in connection with mental disorders. 175 papers were related to Schizophrenia, 126 to learning disabilities, 29 to Parkinson's disease, 88 to dyslexia and 39 to Alzheimer's disease. Assessment of the Central Auditory System is carried out through a great variety of tests that fall into two main categories: psychoacoustic and electrophysiologic testing. Different specialties are involved in the diagnosis and management of Central Auditory Processing Disorders as well as the mental disorders that may co-exist with them. As a result it is essential that they are all aware of the possibilities in diagnostic procedures. Conclusions Considerable evidence exists that mental disorders may correlate with CAPD and this correlation could be revealed through psychoacoustics and neuroaudiology. Mental disorders that relate to Central Auditory Processing Disorders are: Schizophrenia, attention deficit disorders, Alzheimer's disease, learning disabilities, dyslexia, depression, auditory

  19. Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording

    Directory of Open Access Journals (Sweden)

    de Souza Ana Cláudia Silva

    2013-01-01

    Full Text Available Abstract Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning.

  20. Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning.

    Science.gov (United States)

    Lametti, Daniel R; Krol, Sonia A; Shiller, Douglas M; Ostry, David J

    2014-07-01

    The perception of speech is notably malleable in adults, yet alterations in perception seem to have little impact on speech production. However, we hypothesized that speech perceptual training might immediately influence speech motor learning. To test this, we paired a speech perceptual-training task with a speech motor-learning task. Subjects performed a series of perceptual tests designed to measure and then manipulate the perceptual distinction between the words head and had. Subjects then produced head with the sound of the vowel altered in real time so that they heard themselves through headphones producing a word that sounded more like had. In support of our hypothesis, the amount of motor learning in response to the voice alterations depended on the perceptual boundary acquired through perceptual training. The studies show that plasticity in adults' speech perception can have immediate consequences for speech production in the context of speech learning. © The Author(s) 2014.

  1. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. A hierarchy of event-related potential markers of auditory processing in disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Steve Beukema

    2016-01-01

    Full Text Available Functional neuroimaging of covert perceptual and cognitive processes can inform the diagnoses and prognoses of patients with disorders of consciousness, such as the vegetative and minimally conscious states (VS;MCS. Here we report an event-related potential (ERP paradigm for detecting a hierarchy of auditory processes in a group of healthy individuals and patients with disorders of consciousness. Simple cortical responses to sounds were observed in all 16 patients; 7/16 (44% patients exhibited markers of the differential processing of speech and noise; and 1 patient produced evidence of the semantic processing of speech (i.e. the N400 effect. In several patients, the level of auditory processing that was evident from ERPs was higher than the abilities that were evident from behavioural assessment, indicating a greater sensitivity of ERPs in some cases. However, there were no differences in auditory processing between VS and MCS patient groups, indicating a lack of diagnostic specificity for this paradigm. Reliably detecting semantic processing by means of the N400 effect in passively listening single-subjects is a challenge. Multiple assessment methods are needed in order to fully characterise the abilities of patients with disorders of consciousness.

  3. Perceptual distortions in pitch and time reveal active prediction and support for an auditory pitch-motion hypothesis.

    Directory of Open Access Journals (Sweden)

    Molly J Henry

    Full Text Available A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration or pitch change of a comparison frequency glide relative to a standard (referent glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners' judgments along the task-relevant dimension (pitch or time were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.

  4. Perceptual and conceptual priming in patients with dissociative identity disorder.

    Science.gov (United States)

    Huntjens, Rafaële J C; Postma, Albert; Hamaker, Ellen L; Woertman, Liesbeth; van der Hart, Onno; Peters, Madelon

    2002-10-01

    The present study examined implicit memory transfer in patients with dissociative identity disorder (DID). To determine priming impairments in DID, we included both several perceptual priming tasks and a conceptual priming task using neutral material. We tested a large sample of DID patients (n = 31), in addition to 25 controls and 25 DID simulators, comparable on sex, age, and education. Controls replicated conceptual priming results of Vriezen, Moscovitch, and Bellos (1995) by showing that conceptual priming seems to require the formation of domain-specific semantic representations, denoting either sensory or functional object attributes. We extended a study performed by Schacter, Cooper, and Delaney (1990) by demonstrating priming for impossible object using the sensitive priming index of response times. The simulators in the study were not able to simulate interidentity amnesia on the implicit memory tasks employed. Partly in contrast to participants in previous studies, DID patients showed evidence of perceptual priming as well as conceptual priming comparable to that of controls. DID patients thus displayed normal implicit memory performance.

  5. Auditory Neuropathy Spectrum Disorder (ANSD) (For Parents)

    Science.gov (United States)

    ... to the inner row of hair cells or synapses between the inner hair cells and the auditory ... any other nerve-related problems. Ongoing speech and language testing . A child with ANSD needs regular visits ...

  6. Auditory Display

    DEFF Research Database (Denmark)

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...... auditory display creation; data handling for auditory display systems; applications of auditory display....

  7. Atypical brain responses to auditory spatial cues in adults with autism spectrum disorder.

    Science.gov (United States)

    Lodhia, Veema; Hautus, Michael J; Johnson, Blake W; Brock, Jon

    2017-09-09

    The auditory processing atypicalities experienced by many individuals on the autism spectrum disorder might be understood in terms of difficulties parsing the sound energy arriving at the ears into discrete auditory 'objects'. Here, we asked whether autistic adults are able to make use of two important spatial cues to auditory object formation - the relative timing and amplitude of sound energy at the left and right ears. Using electroencephalography, we measured the brain responses of 15 autistic adults and 15 age- and verbal-IQ-matched control participants as they listened to dichotic pitch stimuli - white noise stimuli in which interaural timing or amplitude differences applied to a narrow frequency band of noise typically lead to the perception of a pitch sound that is spatially segregated from the noise. Responses were contrasted with those to stimuli in which timing and amplitude cues were removed. Consistent with our previous studies, autistic adults failed to show a significant object-related negativity (ORN) for timing-based pitch, although their ORN was not significantly smaller than that of the control group. Autistic participants did show an ORN to amplitude cues, indicating that they do not experience a general impairment in auditory object formation. However, their P400 response - thought to indicate the later attention-dependent aspects of auditory object formation - was missing. These findings provide further evidence of atypical auditory object processing in autism with potential implications for understanding the perceptual and communication difficulties associated with the condition. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Auditory processing disorder and speech perception problems in noise: finding the underlying origin.

    Science.gov (United States)

    Lagacé, Josée; Jutras, Benoît; Gagné, Jean-Pierre

    2010-06-01

    A hallmark listening problem of individuals presenting with auditory processing disorder (APD) is their poor recognition of speech in noise. The underlying perceptual problem of the listening difficulties in unfavorable listening conditions is unknown. The objective of this article was to demonstrate theoretically how to determine whether the speech recognition problems are related to an auditory dysfunction, a language-based dysfunction, or a combination of both. Tests such as the Speech Perception in Noise (SPIN) test allow the exploration of the auditory and language-based functions involved in speech perception in noise, which is not possible with most other speech-in-noise tests. Psychometric functions illustrating results from hypothetical groups of individuals with APD on the SPIN test are presented. This approach makes it possible to postulate about the origin of the speech perception problems in noise. APD is a complex and heterogeneous disorder for which the underlying deficit is currently unclear. Because of their design, SPIN-like tests can potentially be used to identify the nature of the deficits underlying problems with speech perception in noise for this population. A better understanding of the difficulties with speech perception in noise experienced by many listeners with APD should lead to more efficient intervention programs.

  9. A study on the influence of headphones in auditory perceptual function.

    Science.gov (United States)

    Horie, Yoshinori; Toriizuka, Takashi

    2012-01-01

    The focus of this study is a human's ability to make full use of listening and hearing. This ability consists of dividing auditory information into a signal and a noise. To evaluate the risk of using headphones, the study investigated the auditory perception when a warning sound is given in the presence of environmental noise.

  10. [Disturbance in processing auditory impulses from the ears: auditory processing disorder].

    Science.gov (United States)

    Koefoed-Nielsen, Birger; Andersen, Svend Erik Søgaard

    2007-04-30

    Over the last decade evidence on the existence of auditory processing disorder (APD) has increased. Therefore, it is now time to deal with the phenomenon in daily clinical work. This article gives information about APD, especially about problems with the definition of APD, diagnosing APD and the treatment.

  11. [Auditory processing in specific language disorder].

    Science.gov (United States)

    Idiazábal-Aletxa, M A; Saperas-Rodríguez, M

    2008-01-01

    Specific language impairment (SLI) is diagnosed when a child has difficulty in producing or understanding spoken language for no apparent reason. The diagnosis in made when language development is out of keeping with other aspects of development, and possible explanatory causes have been excluded. During the last years neurosciences have approached to the study of SLI. The ability to process two or more rapidly presented, successive, auditory stimuli is believed to underlie successful language acquisition. It has been proposed that SLI is the consequence of low-level abnormalities in auditory perception. Too, children with SLI show a specific deficit in automatic discrimination of syllables. Electrophysiological methods may reveal underlying immaturity or other abnormality of auditory processing even when behavioural thresholds look normal. There is much controversy about the role of such deficits in causing their language problems, and it has been difficult to establish solid, replicable findings in this area because of the heterogeneity in the population and because insufficient attention has been paid to maturational aspects of auditory processing.

  12. Auditory processing in high-functioning adolescents with Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Anne-Marie R DePape

    Full Text Available Autism Spectrum Disorder (ASD is a pervasive developmental disorder including abnormalities in perceptual processing. We measure perception in a battery of tests across speech (filtering, phoneme categorization, multisensory integration and music (pitch memory, meter categorization, harmonic priming. We found that compared to controls, the ASD group showed poorer filtering, less audio-visual integration, less specialization for native phonemic and metrical categories, and a higher instance of absolute pitch. No group differences were found in harmonic priming. Our results are discussed in a developmental framework where culture-specific knowledge acquired early compared to late in development is most impaired, perhaps because of early-accelerated brain growth in ASD. These results suggest that early auditory remediation is needed for good communication and social functioning.

  13. Characteristics of Auditory Processing Disorders: A Systematic Review

    NARCIS (Netherlands)

    Wit, E. de; Visser-Bochane, M.I.; Steenbergen, B.; Dijk, P. van; Schans, C.P. van der; Luinge, M.R.

    2016-01-01

    PURPOSE: The purpose of this review article is to describe characteristics of auditory processing disorders (APD) by evaluating the literature in which children with suspected or diagnosed APD were compared with typically developing children and to determine whether APD must be regarded as a deficit

  14. Characteristics of Auditory Processing Disorders : A Systematic Review

    NARCIS (Netherlands)

    de Wit, Ellen; Visser-Bochane, Margot I.; Steenbergen, Bert; van Dijk, Pim; Schans, van der Cees P.; Luinge, Margreet R.

    Purpose: The purpose of this review article is to describe characteristics of auditory processing disorders (APD) by evaluating the literature in which children with suspected or diagnosed APD were compared with typically developing children and to determine whether APD must be regarded as a deficit

  15. Characteristics of auditory processing disorders: A systematic review

    NARCIS (Netherlands)

    Wit, E. de; Visser-Bochane, M.I.; Steenbergen, B.; Dijk, P. van; Schans, C.P. van der; Luinge, M.R.

    2016-01-01

    Purpose: The purpose of this review article is to describe characteristics of auditory processing disorders (APD) by evaluating the literature in which children with suspected or diagnosed APD were compared with typically developing children and to determine whether APD must be regarded as a deficit

  16. The auditory startle response in post-traumatic stress disorder

    NARCIS (Netherlands)

    Siegelaar, S. E.; Olff, M.; Bour, L. J.; Veelo, D.; Zwinderman, A. H.; van Bruggen, G.; de Vries, G. J.; Raabe, S.; Cupido, C.; Koelman, J. H. T. M.; Tijssen, M. A. J.

    Post-traumatic stress disorder (PTSD) patients are considered to have excessive EMG responses in the orbicularis oculi (OO) muscle and excessive autonomic responses to startling stimuli. The aim of the present study was to gain more insight into the pattern of the generalized auditory startle reflex

  17. Auditory and Respiratory Health Disorders Among Workers in an ...

    African Journals Online (AJOL)

    Background: Iron is the world's most commonly used metal and can usually be found with other elements in the form of steel. The frequently recorded health disorders between iron and steel industry workers includes: respiratory and skin problems as well as noise-related hearing impairment. Objectives: Study auditory and ...

  18. Can Children with (Central) Auditory Processing Disorders Ignore Irrelevant Sounds?

    Science.gov (United States)

    Elliott, Emily M.; Bhagat, Shaum P.; Lynn, Sharon D.

    2007-01-01

    This study investigated the effects of irrelevant sounds on the serial recall performance of visually presented digits in a sample of children diagnosed with (central) auditory processing disorders [(C)APD] and age- and span-matched control groups. The irrelevant sounds used were samples of tones and speech. Memory performance was significantly…

  19. Association between language development and auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2014-06-01

    Full Text Available INTRODUCTION: It is crucial to understand the complex processing of acoustic stimuli along the auditory pathway ;comprehension of this complex processing can facilitate our understanding of the processes that underlie normal and altered human communication. AIM: To investigate the performance and lateralization effects on auditory processing assessment in children with specific language impairment (SLI, relating these findings to those obtained in children with auditory processing disorder (APD and typical development (TD. MATERIAL AND METHODS: Prospective study. Seventy-five children, aged 6-12 years, were separated in three groups: 25 children with SLI, 25 children with APD, and 25 children with TD. All went through the following tests: speech-in-noise test, Dichotic Digit test and Pitch Pattern Sequencing test. RESULTS: The effects of lateralization were observed only in the SLI group, with the left ear presenting much lower scores than those presented to the right ear. The inter-group analysis has shown that in all tests children from APD and SLI groups had significantly poorer performance compared to TD group. Moreover, SLI group presented worse results than APD group. CONCLUSION: This study has shown, in children with SLI, an inefficient processing of essential sound components and an effect of lateralization. These findings may indicate that neural processes (required for auditory processing are different between auditory processing and speech disorders.

  20. The influence of (central auditory processing disorder in speech sound disorders

    Directory of Open Access Journals (Sweden)

    Tatiane Faria Barrozo

    2016-02-01

    Full Text Available ABSTRACT INTRODUCTION: Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. OBJECTIVE: To study phonological measures and (central auditory processing of children with speech sound disorder. METHODS: Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. RESULTS: The group with (central auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. CONCLUSION: The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder.

  1. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  2. Prelingual auditory-perceptual skills as indicators of initial oral language development in deaf children with cochlear implants.

    Science.gov (United States)

    Pianesi, Federica; Scorpecci, Alessandro; Giannantonio, Sara; Micardi, Mariella; Resca, Alessandra; Marsella, Pasquale

    2016-03-01

    To assess when prelingually deaf children with a cochlear implant (CI) achieve the First Milestone of Oral Language, to study the progression of their prelingual auditory skills in the first year after CI and to investigate a possible correlation between such skills and the timing of initial oral language development. The sample included 44 prelingually deaf children (23 M and 21 F) from the same tertiary care institution, who received unilateral or bilateral cochlear implants. Achievement of the First Milestone of Oral Language (FMOL) was defined as speech comprehension of at least 50 words and speech production of a minimum of 10 words, as established by administration of a validated Italian test for the assessment of initial language competence in infants. Prelingual auditory-perceptual skills were assessed over time by means of a test battery consisting of: the Infant Toddler Meaningful Integration Scale (IT-MAIS); the Infant Listening Progress Profile (ILiP) and the Categories of Auditory Performance (CAP). On average, the 44 children received their CI at 24±9 months and experienced FMOL after 8±4 months of continuous CI use. The IT-MAIS, ILiP and CAP scores increased significantly over time, the greatest improvement occurring between baseline and six months of CI use. On multivariate regression analysis, age at diagnosis and age at CI did not appear to bear correlation with FMOL timing; instead, the only variables contributing to its variance were IT-MAIS and ILiP scores after six months of CI use, accounting for 43% and 55%, respectively. Prelingual auditory skills of implanted children assessed via a test battery six months after CI treatment, can act as indicators of the timing of initial oral language development. Accordingly, the period from CI switch-on to six months can be considered as a window of opportunity for appropriate intervention in children failing to show the expected progression of their auditory skills and who would have higher risk of

  3. Perceptual context effects of speech and nonspeech sounds: the role of auditory categories.

    Science.gov (United States)

    Aravamudhan, Radhika; Lotto, Andrew J; Hawks, John W

    2008-09-01

    Williams [(1986). "Role of dynamic information in the perception of coarticulated vowels," Ph.D. thesis, University of Connecticut, Standford, CT] demonstrated that nonspeech contexts had no influence on pitch judgments of nonspeech targets, whereas context effects were obtained when instructed to perceive the sounds as speech. On the other hand, Holt et al. [(2000). "Neighboring spectral content influences vowel identification," J. Acoust. Soc. Am. 108, 710-722] showed that nonspeech contexts were sufficient to elicit context effects in speech targets. The current study was to test a hypothesis that could explain the varying effectiveness of nonspeech contexts: Context effects are obtained only when there are well-established perceptual categories for the target stimuli. Experiment 1 examined context effects in speech and nonspeech signals using four series of stimuli: steady-state vowels that perceptually spanned from /inverted ohm/-/I/ in isolation and in the context of /w/ (with no steady-state portion) and two nonspeech sine-wave series that mimicked the acoustics of the speech series. In agreement with previous work context effects were obtained for speech contexts and targets but not for nonspeech analogs. Experiment 2 tested predictions of the hypothesis by testing for nonspeech context effects after the listeners had been trained to categorize the sounds. Following training, context-dependent categorization was obtained for nonspeech stimuli in the training group. These results are presented within a general perceptual-cognitive framework for speech perception research.

  4. Differential diagnosis and management of central auditory processing disorder and attention deficit hyperactivity disorder.

    Science.gov (United States)

    Chermak, G D; Hall, J W; Musiek, F E

    1999-06-01

    Children diagnosed with attention deficit hyperactivity disorder (ADHD) frequently present difficulties performing tasks that challenge the central auditory nervous system. The relationship between ADHD and central auditory processing disorder (CAPD) is examined from the perspectives of cognitive neuroscience, audiology, and neuropsychology. The accumulating evidence provides a basis for the overlapping clinical profiles yet differentiates CAPD and ADHD as clinically distinct entities. Common and distinctive management strategies are outlined.

  5. Increased whole-body auditory startle reflex and autonomic reactivity in children with anxiety disorders

    NARCIS (Netherlands)

    Bakker, Mirte J; Tijssen, Marina A J; van der Meer, Johan N; Koelman, Johannes H T M; Boer, Frits

    Background: Young patients with anxiety disorders are thought to have a hypersensitive fear system, including alterations of the early sensorimotor processing of threatening information. However, there is equivocal support in auditory blink response studies for an enlarged auditory startle reflex

  6. From Hearing Sounds to Recognizing Phonemes: Primary Auditory Cortex is A Truly Perceptual Language Area

    Directory of Open Access Journals (Sweden)

    Byron Bernal

    2016-11-01

    Full Text Available The aim of this article is to present a systematic review about the anatomy, function, connectivity, and functional activation of the primary auditory cortex (PAC (Brodmann areas 41/42 when involved in language paradigms. PAC activates with a plethora of diverse basic stimuli including but not limited to tones, chords, natural sounds, consonants, and speech. Nonetheless, the PAC shows specific sensitivity to speech. Damage in the PAC is associated with so-called “pure word-deafness” (“auditory verbal agnosia”. BA41, and to a lesser extent BA42, are involved in early stages of phonological processing (phoneme recognition. Phonological processing may take place in either the right or left side, but customarily the left exerts an inhibitory tone over the right, gaining dominance in function. BA41/42 are primary auditory cortices harboring complex phoneme perception functions with asymmetrical expression, making it possible to include them as core language processing areas (Wernicke’s area.

  7. Same or different: The overlap between children with auditory processing disorders and children with other developmental disorders: A systematic review

    NARCIS (Netherlands)

    Wit, E. de; Dijk, P. van; Hanekamp, S.; Visser-Bochane, M.I.; Steenbergen, B.; Schans, C.P. van der; Luinge, M.R.

    2018-01-01

    Objectives: Children diagnosed with auditory processing disorders (APD) experience difficulties in auditory functioning and with memory, attention, language, and reading tasks. However, it is not clear whether the behavioral characteristics of these children are distinctive from the behavioral

  8. Auditory perceptual efficacy of nonlinear frequency compression used in hearing aids: A review

    Directory of Open Access Journals (Sweden)

    Yitao Mao

    2017-09-01

    Full Text Available Many patients with sensorineural hearing loss have a precipitous high-frequency loss with relatively good thresholds in the low frequencies. This present paper briefly introduces and compares the basic principles of four types of frequency lowering algorithms with emphasis on nonlinear frequency compression (NLFC. A review of the effects of the NLFC algorithm on speech and music perception and sound quality appraisal is then provided. For vowel perception, it seems that the benefits provided by NLFC are limited, which are probably related to the parameter settings of the compression. For consonant perception, several studies have shown that NLFC provides improved perception of high-frequency consonants such as /s/ and /z/. However, a few other studies have demonstrated negative results in consonant perception. In terms of sentence recognition, persistent use of NLFC might provide improved performance. Compared to the conventional processing, NLFC does not alter the speech sound quality appraisal and music perception as long as the compression setting is not too aggressive. In the subsequent section, the relevant factors with regard to NLFC settings, time-course of acclimatization, listener characteristics, and perceptual tasks are discussed. Although the literature shows mixed results on the perceptual efficacy of NLFC, this technique improved certain aspects of speech understanding in certain hearing-impaired listeners. Little research is available on speech perception outcomes in languages other than English. More clinical data are needed to verify the perceptual efficacy of NLFC in patients with precipitous high-frequency hearing loss. Such knowledge will help guide clinical rehabilitation of those patients.

  9. The memory systems of children with (central) auditory disorder.

    Science.gov (United States)

    Pires, Mayra Monteiro; Mota, Mailce Borges; Pinheiro, Maria Madalena Canina

    2015-01-01

    This study aims to investigate working, declarative, and procedural memory in children with (central) auditory processing disorder who showed poor phonological awareness. Thirty 9- and 10-year-old children participated in the study and were distributed into two groups: a control group consisting of 15 children with typical development, and an experimental group consisting of 15 children with (central) auditory processing disorder who were classified according to three behavioral tests and who showed poor phonological awareness in the CONFIAS test battery. The memory systems were assessed through the adapted tests in the program E-PRIME 2.0. The working memory was assessed by the Working Memory Test Battery for Children (WMTB-C), whereas the declarative memory was assessed by a picture-naming test and the procedural memory was assessed by means of a morphosyntactic processing test. The results showed that, when compared to the control group, children with poor phonological awareness scored lower in the working, declarative, and procedural memory tasks. The results of this study suggest that in children with (central) auditory processing disorder, phonological awareness is associated with the analyzed memory systems.

  10. Auditory-visual speech perception in three- and four-year-olds and its relationship to perceptual attunement and receptive vocabulary.

    Science.gov (United States)

    Erdener, Doğu; Burnham, Denis

    2017-06-06

    Despite the body of research on auditory-visual speech perception in infants and schoolchildren, development in the early childhood period remains relatively uncharted. In this study, English-speaking children between three and four years of age were investigated for: (i) the development of visual speech perception - lip-reading and visual influence in auditory-visual integration; (ii) the development of auditory speech perception and native language perceptual attunement; and (iii) the relationship between these and a language skill relevant at this age, receptive vocabulary. Visual speech perception skills improved even over this relatively short time period. However, regression analyses revealed that vocabulary was predicted by auditory-only speech perception, and native language attunement, but not by visual speech perception ability. The results suggest that, in contrast to infants and schoolchildren, in three- to four-year-olds the relationship between speech perception and language ability is based on auditory and not visual or auditory-visual speech perception ability. Adding these results to existing findings allows elaboration of a more complete account of the developmental course of auditory-visual speech perception.

  11. Cortical development and neuroplasticity in Auditory Neuropathy Spectrum Disorder.

    Science.gov (United States)

    Sharma, Anu; Cardon, Garrett

    2015-12-01

    Cortical development is dependent to a large extent on stimulus-driven input. Auditory Neuropathy Spectrum Disorder (ANSD) is a recently described form of hearing impairment where neural dys-synchrony is the predominant characteristic. Children with ANSD provide a unique platform to examine the effects of asynchronous and degraded afferent stimulation on cortical auditory neuroplasticity and behavioral processing of sound. In this review, we describe patterns of auditory cortical maturation in children with ANSD. The disruption of cortical maturation that leads to these various patterns includes high levels of intra-individual cortical variability and deficits in cortical phase synchronization of oscillatory neural responses. These neurodevelopmental changes, which are constrained by sensitive periods for central auditory maturation, are correlated with behavioral outcomes for children with ANSD. Overall, we hypothesize that patterns of cortical development in children with ANSD appear to be markers of the severity of the underlying neural dys-synchrony, providing prognostic indicators of success of clinical intervention with amplification and/or electrical stimulation. This article is part of a Special Issue entitled . Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in

  13. Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations.

    Science.gov (United States)

    Winkler, István; Czigler, István

    2012-02-01

    Predictive coding theories posit that the perceptual system is structured as a hierarchically organized set of generative models with increasingly general models at higher levels. The difference between model predictions and the actual input (prediction error) drives model selection and adaptation processes minimizing the prediction error. Event-related brain potentials elicited by sensory deviance are thought to reflect the processing of prediction error at an intermediate level in the hierarchy. We review evidence from auditory and visual studies of deviance detection suggesting that the memory representations inferred from these studies meet the criteria set for perceptual object representations. Based on this evidence we then argue that these perceptual object representations are closely related to the generative models assumed by predictive coding theories. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Fragile Spectral and Temporal Auditory Processing in Adolescents with Autism Spectrum Disorder and Early Language Delay

    Science.gov (United States)

    Boets, Bart; Verhoeven, Judith; Wouters, Jan; Steyaert, Jean

    2015-01-01

    We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM)…

  15. Speech discrimination difficulties in High-Functioning Autism Spectrum Disorder are likely independent of auditory hypersensitivity.

    Directory of Open Access Journals (Sweden)

    William Andrew Dunlop

    2016-08-01

    Full Text Available Autism Spectrum Disorder (ASD, characterised by impaired communication skills and repetitive behaviours, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants.

  16. Speech Discrimination Difficulties in High-Functioning Autism Spectrum Disorder Are Likely Independent of Auditory Hypersensitivity

    Science.gov (United States)

    Dunlop, William A.; Enticott, Peter G.; Rajan, Ramesh

    2016-01-01

    Autism Spectrum Disorder (ASD), characterized by impaired communication skills and repetitive behaviors, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD) individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants. PMID:27555814

  17. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    Science.gov (United States)

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Auditory-prosodic processing in bipolar disorder; from sensory perception to emotion.

    Science.gov (United States)

    Van Rheenen, Tamsyn E; Rossell, Susan L

    2013-12-01

    Accurate emotion processing is critical to understanding the social world. Despite growing evidence of facial emotion processing impairments in patients with bipolar disorder (BD), comprehensive investigations of emotional prosodic processing is limited. The existing (albeit sparse) literature is inconsistent at best, and confounded by failures to control for the effects of gender or low level sensory-perceptual impairments. The present study sought to address this paucity of research by utilizing a novel behavioural battery to comprehensively investigate the auditory-prosodic profile of BD. Fifty BD patients and 52 healthy controls completed tasks assessing emotional and linguistic prosody, and sensitivity for discriminating tones that deviate in amplitude, duration and pitch. BD patients were less sensitive than their control counterparts in discriminating amplitude and durational cues but not pitch cues or linguistic prosody. They also demonstrated impaired ability to recognize happy intonations; although this was specific to male's with the disorder. The recognition of happy in the patient group was correlated with pitch and amplitude sensitivity in female patients only. The small sample size of patients after stratification by current mood state prevented us from conducting subgroup comparisons between symptomatic, euthymic and control participants to explicitly examine the effects of mood. Our findings indicate the existence of a female advantage for the processing of emotional prosody in BD, specifically for the processing of happy. Although male BD patients were impaired in their ability to recognize happy prosody, this was unrelated to reduced tone discrimination sensitivity. This study indicates the importance of examining both gender and low order sensory perceptual capacity when examining emotional prosody. © 2013 Elsevier B.V. All rights reserved.

  19. Schizophrenia as a self-disorder due to perceptual incoherence

    NARCIS (Netherlands)

    Postmes, L.; Sno, H. N.; Goedhart, S.; van der Stel, J.; Heering, H. D.; de Haan, L.

    2014-01-01

    The aim of this review is to describe the potential relationship between multisensory disintegration and self-disorders in schizophrenia spectrum disorders. Sensory processing impairments affecting multisensory integration have been demonstrated in schizophrenia. From a developmental perspective

  20. The Effect of Perceptual-Motor Training on Attention in the Children with Autism Spectrum Disorders

    Science.gov (United States)

    Afshari, Javad

    2012-01-01

    The present study attempted to investigate the effect of perceptual-motor training on attention in children with autism spectrum disorders. The participants (20 girls and 20 boys) were divided into experimental and control groups. They were selected from among 85 subjects after primary tests to be matched. The design of the study was…

  1. Conceptual and Perceptual Priming and Dissociation in Chronic Posttraumatic Stress Disorder

    NARCIS (Netherlands)

    Lyttle, Nigel; Dorahy, Martin J.; Hanna, Donncha; Huntjens, Rafaele J. C.

    2010-01-01

    Cognitive models of posttraumatic stress disorder (PTSD) assert that memory processes play a significant role in PTSD (see e.g., Ehlers & Clark, 2000). Intrusive reexperiencing in PTSD has been linked to perceptual processing of trauma-related material with a corresponding hypothesized lack of

  2. Basic auditory processing and sensitivity to prosodic structure in children with specific language impairments: a new look at a perceptual hypothesis.

    Science.gov (United States)

    Cumming, Ruth; Wilson, Angela; Goswami, Usha

    2015-01-01

    Children with specific language impairments (SLIs) show impaired perception and production of spoken language, and can also present with motor, auditory, and phonological difficulties. Recent auditory studies have shown impaired sensitivity to amplitude rise time (ART) in children with SLIs, along with non-speech rhythmic timing difficulties. Linguistically, these perceptual impairments should affect sensitivity to speech prosody and syllable stress. Here we used two tasks requiring sensitivity to prosodic structure, the DeeDee task and a stress misperception task, to investigate this hypothesis. We also measured auditory processing of ART, rising pitch and sound duration, in both speech ("ba") and non-speech (tone) stimuli. Participants were 45 children with SLI aged on average 9 years and 50 age-matched controls. We report data for all the SLI children (N = 45, IQ varying), as well as for two independent SLI subgroupings with intact IQ. One subgroup, "Pure SLI," had intact phonology and reading (N = 16), the other, "SLI PPR" (N = 15), had impaired phonology and reading. Problems with syllable stress and prosodic structure were found for all the group comparisons. Both sub-groups with intact IQ showed reduced sensitivity to ART in speech stimuli, but the PPR subgroup also showed reduced sensitivity to sound duration in speech stimuli. Individual differences in processing syllable stress were associated with auditory processing. These data support a new hypothesis, the "prosodic phrasing" hypothesis, which proposes that grammatical difficulties in SLI may reflect perceptual difficulties with global prosodic structure related to auditory impairments in processing amplitude rise time and duration.

  3. What Speech-Language Pathologists Need to Know about Auditory Processing Disorder

    Science.gov (United States)

    Kamhi, Alan G.

    2011-01-01

    Purpose: To consider whether auditory processing disorder (APD) is truly a distinct clinical entity or whether auditory problems are more appropriately viewed as a processing deficit that may occur with various developmental disorders. Method: Theoretical and clinical factors associated with APD are critically evaluated. Results: There are…

  4. Episodic memory, perceptual memory, and their interaction: foundations for a theory of posttraumatic stress disorder.

    Science.gov (United States)

    Brewin, Chris R

    2014-01-01

    A number of autobiographical memory theories and clinical theories of posttraumatic stress disorder (PTSD) make claims that are different from standard views of memory and have been the subject of controversy. These claims include the existence of a long-term perceptual memory system supporting conscious experience separate to episodic memory; greater involvement of perceptual memory in the response to emotion-laden and personally meaningful events; increased perceptual memory intrusions accompanied by impaired episodic memory for the traumatic event among PTSD patients; and a lack of association, or inverse association, between indices of voluntary recall and involuntary images relating to the same traumatic materials. In this article I review current research on perceptual memory, which supports the presence of long-term representations that are selective or incomplete reflections of sensory input. The functional independence of perceptual and episodic memory is illustrated by research on verbal overshadowing but is most clearly exemplified by the strong evidence in favor of enhanced perceptual memory and impaired episodic memory in PTSD. Theoretical predictions concerning the relation between perceptual priming and the development of intrusive images, the effect of verbal versus visuospatial secondary tasks on intrusive trauma images, and the independence of voluntary and involuntary memory for the same materials have garnered widespread support. Reasons for the continuing controversy over traumatic memory are discussed, and some implications of the review for general theories of recall and recognition, clinical theories of PTSD, and "special mechanism" views of memory are set out. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  5. Perceptual and cognitive biases in individuals with body dysmorphic disorder symptoms

    Science.gov (United States)

    Clerkin, Elise M.; Teachman, Bethany A.

    2012-01-01

    Given the extreme focus on perceived physical defects in body dysmorphic disorder (BDD), we expected that perceptual and cognitive biases related to physical appearance would be associated with BDD symptomology. To examine these hypotheses, participants (N = 70) high and low in BDD symptoms completed tasks assessing visual perception and cognition. As expected, there were significant group differences in self-, but not other-, relevant cognitive biases. Perceptual bias results were mixed, with some evidence indicating that individuals high (versus low) in BDD symptoms literally see themselves in a less positive light. Further, individuals high in BDD symptoms failed to demonstrate a normative self-enhancement bias. Overall, this research points to the importance of assessing both cognitive and perceptual biases associated with BDD symptoms, and suggests that visual perception may be influenced by non-visual factors. PMID:25125771

  6. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children.

    Science.gov (United States)

    Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-02-01

    To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  7. The influence of (central auditory processing disorder on the severity of speech-sound disorders in children

    Directory of Open Access Journals (Sweden)

    Nadia Vilela

    2016-02-01

    Full Text Available OBJECTIVE: To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central auditory processing disorder. METHODS: Language, audiological and (central auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central auditory processing evaluation results. RESULTS: When a (central auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central auditory processing disorder. CONCLUSIONS: The severity of speech-sound disorder in children was influenced by the presence of (central auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  8. Comparação entre as análises auditiva e acústica nas disartrias Comparison between auditory-perceptual and acoustic analyses in dysarthrias

    Directory of Open Access Journals (Sweden)

    Karin Zazo Ortiz

    2008-01-01

    Full Text Available OBJETIVO: Comparar os dados da análise perceptivo-auditiva (subjetiva com os dados da análise acústica (objetiva. MÉTODOS: Quarenta e dois pacientes disártricos, com diagnósticos neurológicos definidos, 21 do sexo masculino e 21 do sexo feminino foram submetidos à análise perceptual-auditiva e acústica. Todos os pacientes foram submetidos à gravação da voz, tendo sido avaliados, na análise auditiva, tipo de voz, ressonância (equilibrada, hipernasal ou laringo-faríngea, loudness (adequado, diminuído ou aumentado, pitch (adequado, grave, agudo ataque vocal (isocrônico, brusco ou soproso, e estabilidade (estável ou instável. Para a análise acústica foram utilizados os programas GRAM 5.1.7; para a análise da qualidade vocal e comportamento dos harmônicos na espectrografia e o Programa Vox Metria, para a obtenção das medidas objetivas. RESULTADOS: A comparação entre os achados das análises auditiva e acústica em sua maioria não foi significante, ou seja, não houve uma relação direta entre os achados subjetivos e os dados objetivos. Houve diferença estatisticamente significante apenas entre voz soprosa e Shimmer alterado (p=0,048 e entre a definição dos harmônicos e voz soprosa (p=0,040, sendo assim, observou-se correlação entre a presença de ruído à emissão e soprosidade. CONCLUSÕES: As análises perceptual-auditiva e acústica forneceram dados diferentes, porém complementares, auxiliando, de forma conjunta, no diagnóstico clínico das disartrias.PURPOSE: To compare data found in auditory-perceptual analyses (subjective and acoustic analyses (objective in dysarthric patients. METHODS: Forty-two patients with well defined neurological diagnosis, 21 male and 21 female, were evaluated in auditory-perceptual parameters and acoustic measures. All patients had their voices recorded. Auditory-perceptual voice analyses were made considering type of voice, resonance (balanced, hipernasal or laryngopharyngeal

  9. [Application of Brain-Boy Universal Professional in preliminary assessment of auditory processing disorder].

    Science.gov (United States)

    Rutkowska, Joanna; Łobaczuk-Sitnik, Anna; Kosztyła-Hojna, Bożena

    2017-09-29

    Increasing numbers of hearing pathology is auditory processing disorders. Auditory Processing Disorders (APD) are defined as difficulty in using auditory information to communicate and learn in the presence of normal peripheral hearing. It may be recognized as a problem with understanding of speech in noise and perception disorder of distorted speech. APD may accompany to articulation disorders, language problems and difficulties in reading and writing. The diagnosis of auditory processing disorders causes many difficulties primarily due to the lack of common testing procedures, precise criteria for qualification to the group of norm and pathology. The Brain-Boy Universal Professional (BUP) is one of diagnostics tools. It enables to assess the higher auditory functions. The aim of the study was preliminary assessment of hearing difficulties that may suggest the occurrence of auditory processing disorders in children. The questionnaire of hearing difficulties and BUP was used. Study includes 20 participants 2nd grade students of elementary school. The examination of the basic central functions was carried out with BUP. The parents and teacher complete the questionnaire to evaluate the hearing problems. Studies carried out indicate that the 40% schoolchild have hearing difficulties. The high percentage of deficits in auditory functions was confirmed with research results of medical device and the questionnaire for teacher. On the basis of the studies conducted may establish that the Warnke Method can serve as preliminary assessment of hearing difficulties that may suggest the occurrence of auditory processing disorders in children.

  10. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  11. Altered auditory and multisensory temporal processing in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Leslie D Kwakye

    2011-01-01

    Full Text Available Autism spectrum disorders (ASD are characterized by deficits in social reciprocity and communication, as well as repetitive behaviors and restricted interests. Unusual responses to sensory input and disruptions in the processing of both unisensory and multisensory stimuli have also frequently been reported. However, the specific aspects of sensory processing that are disrupted in ASD have yet to be fully elucidated. Recent published work has shown that children with ASD can integrate low-level audiovisual stimuli, but do so over an extended range of time when compared with typically-developing (TD children. However, the possible contributions of altered unisensory temporal processes to the demonstrated changes in multisensory function are yet unknown. In the current study, unisensory temporal acuity was measured by determining individual thresholds on visual and auditory temporal order judgment (TOJ tasks, and multisensory temporal function was assessed through a cross-modal version of the TOJ task. Whereas no differences in thresholds for the visual TOJ task were seen between children with ASD and TD, thresholds were higher in ASD on the auditory TOJ task, providing preliminary evidence for impairment in auditory temporal processing. On the multisensory TOJ task, children with ASD showed performance improvements over a wider range of temporal intervals than TD children, reinforcing prior work showing an extended temporal window of multisensory integration in ASD. These findings contribute to a better understanding of basic sensory processing differences, which may be critical for understanding more complex social and cognitive deficits in ASD, and ultimately may contribute to more effective diagnostic and interventional strategies.

  12. Altered Auditory and Multisensory Temporal Processing in Autism Spectrum Disorders

    Science.gov (United States)

    Kwakye, Leslie D.; Foss-Feig, Jennifer H.; Cascio, Carissa J.; Stone, Wendy L.; Wallace, Mark T.

    2011-01-01

    Autism spectrum disorders (ASD) are characterized by deficits in social reciprocity and communication, as well as by repetitive behaviors and restricted interests. Unusual responses to sensory input and disruptions in the processing of both unisensory and multisensory stimuli also have been reported frequently. However, the specific aspects of sensory processing that are disrupted in ASD have yet to be fully elucidated. Recent published work has shown that children with ASD can integrate low-level audiovisual stimuli, but do so over an extended range of time when compared with typically developing (TD) children. However, the possible contributions of altered unisensory temporal processes to the demonstrated changes in multisensory function are yet unknown. In the current study, unisensory temporal acuity was measured by determining individual thresholds on visual and auditory temporal order judgment (TOJ) tasks, and multisensory temporal function was assessed through a cross-modal version of the TOJ task. Whereas no differences in thresholds for the visual TOJ task were seen between children with ASD and TD, thresholds were higher in ASD on the auditory TOJ task, providing preliminary evidence for impairment in auditory temporal processing. On the multisensory TOJ task, children with ASD showed performance improvements over a wider range of temporal intervals than TD children, reinforcing prior work showing an extended temporal window of multisensory integration in ASD. These findings contribute to a better understanding of basic sensory processing differences, which may be critical for understanding more complex social and cognitive deficits in ASD, and ultimately may contribute to more effective diagnostic and interventional strategies. PMID:21258617

  13. Auditory processing disorder in children diagnosed with nonverbal learning disability.

    Science.gov (United States)

    Keller, Warren D; Tillery, Kim L; McFadden, Sandra L

    2006-12-01

    To determine whether children with a nonverbal learning disability (NVLD) have a higher incidence of auditory processing disorder (APD), especially in the tolerance-fading memory type of APD, and what associations could be found between performance on neuropsychological, intellectual, memory, and academic measures and APD. Eighteen children with NVLD ranging in age from 6 to 18 years received a central auditory processing test battery to determine incidence and subtype of APD. Psychological measures for assessment of NVLD included the Wechsler Scales, Wide Range Assessment of Memory and Learning, and Wechsler Individual Achievement Test. Neuropsychological measures included the Category Test, Trails A and B, the Tactual Performance Test, Grooved Pegs, and the Speech Sounds Perception Test. Neuropsychological test scores of the NVLD+APD and NVLD groups were compared using analysis of covariance procedures, with Verbal IQ and Performance IQ as covariates. Sixty-one percent of the children were diagnosed with APD, primarily in the tolerance-fading memory subtype. The group of children with APD and NVLD had significantly lower scores on Verbal IQ, Digit Span, Sentence Memory, Block Design, and Speech Sounds Perception than children without APD. An ancillary finding was that the incidence of attention deficit/hyperactivity disorder was significantly higher in children with NVLD (with and without APD) than in the general population. The results indicate that children with NVLD are at risk for APD and that there are several indicators on neuropsychological assessment suggestive of APD. Collaborative, interdisciplinary evaluation of children with learning disorders is needed in order to provide effective therapeutic interventions.

  14. Audiovisual spoken word training can promote or impede auditory-only perceptual learning: prelingually deafened adults with late-acquired cochlear implants versus normal hearing adults

    Science.gov (United States)

    Bernstein, Lynne E.; Eberhardt, Silvio P.; Auer, Edward T.

    2014-01-01

    Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We

  15. [Münchner screening of auditory perception disorders (MAUS)].

    Science.gov (United States)

    Nickisch, A; Heuckmann, C; Burger, T; Massinger, C

    2006-04-01

    The diagnosis of APD (Auditory Perception Disorder) is a time consuming procedure. In Germany at the present, no screening test for APD exists which makes it possible to differentiate between children who are not likely to suffer from an APD and those who need to be diagnosed in detail. The Munich Auditory Screening of Perception Disorders (MAUS) contains the following subtests: Series of Syllables, Words in Noise and Identification and Differentiation of Phonemes (test duration: 15 minutes). The MAUS was standardized using 359 primary school children between 6 and 11 years of age. Furthermore, the MAUS was used in addition to the complete, extensive APD-diagnostics in testing 52 children (36 with APD and 16 without APD) within the age group mentioned. T-scores for each subtest were established by the standardization of the MAUS. The internal consistency of the test was sufficient. The intercorrelation between subtests was very slight. Therefore, each subtest seems to play an independent part in defining the construct of APD. Because of the results of the pilot study which formed the basis for the development of the screening instrument used, and because of the sensitivity scores reached in testing a group of 36 children with diagnosed APD, it can be expected that the MAUS will show a high sensitivity with regard to APD. Using the MAUS, it can be determined if and to what extent the test results of an individual deviate from those of the normal primary school population. The MAUS can identify children at risk of having an APD and can differentiate these children from those who are unlikely to suffer from an APD.

  16. Perceptual skills of children with developmental coordination disorder

    NARCIS (Netherlands)

    Schoemaker, M.M.; van der Wees, M.; Flapper, B.; Verheij-Jansen, N.; Scholten-Jaegers, S.; Geuze, R.H.

    The aim of this study was to investigate whether children with a Developmental Coordination Disorder (DCD) experience problems in the processing of visual, proprioceptive or tactile information. Different aspects of visual perception were tested with the Developmental Test of Visual Perception

  17. Mismatch negativity in children with specific language impairment and auditory processing disorder

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2015-08-01

    Full Text Available INTRODUCTION: Mismatch negativity, an electrophysiological measure, evaluates the brain's capacity to discriminate sounds, regardless of attentional and behavioral capacity. Thus, this auditory event-related potential is promising in the study of the neurophysiological basis underlying auditory processing.OBJECTIVE: To investigate complex acoustic signals (speech encoded in the auditory nervous system of children with specific language impairment and compare with children with auditory processing disorders and typical development through the mismatch negativity paradigm.METHODS: It was a prospective study. 75 children (6-12 years participated in this study: 25 children with specific language impairment, 25 with auditory processing disorders, and 25 with typical development. Mismatch negativity was obtained by subtracting from the waves obtained by the stimuli /ga/ (frequent and /da/ (rare. Measures of mismatch negativity latency and two amplitude measures were analyzed.RESULTS: It was possible to verify an absence of mismatch negativity in 16% children with specific language impairment and 24% children with auditory processing disorders. In the comparative analysis, auditory processing disorders and specific language impairment showed higher latency values and lower amplitude values compared to typical development.CONCLUSION: These data demonstrate changes in the automatic discrimination of crucial acoustic components of speech sounds in children with specific language impairment and auditory processing disorders. It could indicate problems in physiological processes responsible for ensuring the discrimination of acoustic contrasts in pre-attentional and pre-conscious levels, contributing to poor perception.

  18. Mismatch negativity in children with specific language impairment and auditory processing disorder.

    Science.gov (United States)

    Rocha-Muniz, Caroline Nunes; Befi-Lopes, Débora Maria; Schochat, Eliane

    2015-01-01

    Mismatch negativity, an electrophysiological measure, evaluates the brain's capacity to discriminate sounds, regardless of attentional and behavioral capacity. Thus, this auditory event-related potential is promising in the study of the neurophysiological basis underlying auditory processing. To investigate complex acoustic signals (speech) encoded in the auditory nervous system of children with specific language impairment and compare with children with auditory processing disorders and typical development through the mismatch negativity paradigm. It was a prospective study. 75 children (6-12 years) participated in this study: 25 children with specific language impairment, 25 with auditory processing disorders, and 25 with typical development. Mismatch negativity was obtained by subtracting from the waves obtained by the stimuli /ga/ (frequent) and /da/ (rare). Measures of mismatch negativity latency and two amplitude measures were analyzed. It was possible to verify an absence of mismatch negativity in 16% children with specific language impairment and 24% children with auditory processing disorders. In the comparative analysis, auditory processing disorders and specific language impairment showed higher latency values and lower amplitude values compared to typical development. These data demonstrate changes in the automatic discrimination of crucial acoustic components of speech sounds in children with specific language impairment and auditory processing disorders. It could indicate problems in physiological processes responsible for ensuring the discrimination of acoustic contrasts in pre-attentional and pre-conscious levels, contributing to poor perception. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children

    OpenAIRE

    Nadia Vilela; Tatiane Faria Barrozo; Luciana de Oliveira Pagan-Neves; Seisse Gabriela Gandolfi Sanches; Haydée Fiszbein Wertzner; Renata Mota Mamede Carvallo

    2016-01-01

    OBJECTIVE: To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . METHODS: Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) audi...

  20. Conceptual and perceptual priming and dissociation in chronic posttraumatic stress disorder.

    Science.gov (United States)

    Lyttle, Nigel; Dorahy, Martin J; Hanna, Donncha; Huntjens, Rafaële J C

    2010-11-01

    Cognitive models of posttraumatic stress disorder (PTSD) assert that memory processes play a significant role in PTSD (see e.g., Ehlers & Clark, 2000). Intrusive reexperiencing in PTSD has been linked to perceptual processing of trauma-related material with a corresponding hypothesized lack of conceptual processing. In an experimental study that included clinical participants with and without PTSD (N = 50), perceptual priming and conceptual priming for trauma-related, general threat, and neutral words were investigated in a population with chronic trauma-induced complaints as a result of the Troubles in Northern Ireland. The study used a new version of the word-stem completion task (Michael, Ehlers, & Halligan, 2005) and a word-cue association task. It also assessed the role of dissociation in threat processing. Further evidence of enhanced perceptual priming in PTSD for trauma stimuli was found, along with evidence of lack of conceptual priming for such stimuli. Furthermore, this pattern of priming for trauma-related words was associated with PTSD severity, and state dissociation and PTSD group made significant contributions to predicting perceptual priming for trauma words. The findings shed light on the importance of state dissociation in trauma-related information processing and posttraumatic symptoms. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  1. The Relationship between Auditory Processing and Restricted, Repetitive Behaviors in Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Kargas, Niko; López, Beatriz; Reddy, Vasudevi; Morris, Paul

    2015-01-01

    Current views suggest that autism spectrum disorders (ASDs) are characterised by enhanced low-level auditory discrimination abilities. Little is known, however, about whether enhanced abilities are universal in ASD and how they relate to symptomatology. We tested auditory discrimination for intensity, frequency and duration in 21 adults with ASD…

  2. Auditory processing in autism spectrum disorder: Mismatch negativity deficits.

    Science.gov (United States)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher; Møllegaard Jepsen, Jens Richardt; Durston, Sarah; Cantio, Cathriona; Glenthøj, Birte; Bilenberg, Niels

    2017-06-22

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism are highly inconsistent, partly due to small sample sizes in the studies and differences in MMN paradigms. Therefore, in the current study, MMN and P3a amplitude were assessed in a relatively large sample of children with ASD, using a more extensive MMN paradigm and compared with that of typically developing children (TDC). Thirty-five children (aged 8-12 years) with ASD and 38 age and gender matched TDC were assessed with a MMN paradigm with three types of deviants, i.e., frequency, duration and a combination of these two. MMN elicited by duration and frequency-duration deviants was significantly reduced in the ASD group. P3a-amplitude elicited by duration deviants was significantly increased in the ASD group. Reduced MMN in children with ASD suggests that children with ASD may be less responsive to environmentally deviant stimuli at an early (sensory) level. P3a-amplitude was increased in ASD, implying a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Medial efferent mechanisms in children with auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Srikanta eMishra

    2014-10-01

    Full Text Available Auditory processing disorder (APD affects about 2 to 5% of children. However, the nature of this disorder is poorly understood. Children with APD typically have difficulties in complex listening situations. One mechanism thought to aid in listening-in-noise is the medial olivocochlear (MOC inhibition. The purpose of this review was to critically analyze the published data on MOC inhibition in children with APD to determine whether the MOC efferents are involved in these individuals. The otoacoustic emission (OAE methods used to assay MOC reflex were examined in the context of the current understanding of OAE generation mechanisms. Relevant literature suggests critical differences in the study population and OAE methods. Variables currently known to influence MOC reflex measurements, for example, middle-ear muscle reflexes or OAE signal-to-noise ratio, were not controlled by most studies. The use of potentially weaker OAE methods and the remarkable heterogeneity across studies does not allow for a definite conclusion whether or not the MOC reflex is altered in children with APD. Further carefully designed studies are needed. Knowledge of efferent functioning in children with APD would be mechanistically and clinically beneficial.

  4. Análise de parâmetros perceptivo-auditivos e acústicos em indivíduos gagos Analysis of acoustic and auditory-perceptual parameters in stutterers

    Directory of Open Access Journals (Sweden)

    Bruna Ferreira Valenzuela de Oliveira

    2009-01-01

    institution's Speech-Language Pathology Clinical Center in the period from February 2005 to July 2007, were analyzed. The auditory-perceptual parameters analyzed were vocal quality, type of voice, resonance, vocal tension, speech rate, pneumo-phonic coordination, vocal attack and pitch range; the acoustic parameters analyzed were fundamental frequency and its variability during spontaneous speech. RESULTS: The auditory-perceptual analysis showed that the most frequent characteristics among the subjects were normal vocal quality (60%, altered resonance (66%, vocal tension (86%, altered vocal attack (73%, normal speech rate (54%, altered pitch range (80% and altered pneumo-phonic coordination (100%. However, only the presence of vocal tension and the altered pneumo-phonic coordination and pitch range were statistically significant in the stutterers studied. In the acoustic analysis, fundamental frequency varied from 125,54 to 149,59 Hz, and the variability of the fundamental frequency ranged from 16 to 21 halftones, or from 112,50 to 172,40 Hz. CONCLUSION: The auditory-perceptual parameters that were significantly frequent among stutterers were: presence of vocal tension, altered pneumo-phonic coordination, and altered pitch range. Therefore, it is important to evaluate the vocal aspects of these patients, for the fluency disorders might undermine some vocals parameters, causing dysphonia.

  5. Neurological associations in auditory neuropathy spectrum disorder: Results from a tertiary hospital in South India

    Directory of Open Access Journals (Sweden)

    Anjali Lepcha

    2015-01-01

    Full Text Available Aims: To find out the prevalence and types of neurological abnormalities associated in auditory neuropathy spectrum disorder in a large tertiary referral center. Settings and Design: A prospective clinical study was conducted on all patients diagnosed with auditory neuropathy spectrum disorder in the ear, nose, and throat (ENT and neurology departments during a 17-month period. Patients with neurological abnormalities on history and examination were further assessed by a neurologist to determine the type of disorder present. Results: The frequency of auditory neuropathy spectrum disorder was 1.12%. Sixty percent were found to have neurological involvement. This included cerebral palsy in children, peripheral neuropathy (PN, spinocerebellar ataxia, hereditary motor-sensory neuropathy, spastic paresis, and ponto-bulbar palsy. Neurological lesions did not present simultaneously with hearing loss in most patients. Sixty-six percent of patients with auditory neuropathy spectrum disorder were born of consanguineous marriages. Conclusions: There is a high prevalence of neurological lesions in auditory neuropathy spectrum disorder which has to be kept in mind while evaluating such patients. Follow-up and counselling regarding the appearance of neuropathies is therefore important in such patients. A hereditary etiology is indicated in a majority of cases of auditory neuropathy spectrum disorder.

  6. Auditory Processing Factors in Language Disorders: The View From Procrustes' Bed

    Science.gov (United States)

    Ress, Norma S.

    1973-01-01

    Reviewed is research which has investigated failure in auditory processing as a cause of language and learning disorders (including defective articulation, aphasia, dyslexia, and specific learning disability) in children and adults. (Author/LS)

  7. Severe auditory processing disorder secondary to viral meningoencephalitis.

    Science.gov (United States)

    Pillion, Joseph P; Shiffler, Dorothy E; Hoon, Alexander H; Lin, Doris D M

    2014-06-01

    To describe auditory function in an individual with bilateral damage to the temporal and parietal cortex. Case report. A previously healthy 17-year old male is described who sustained extensive cortical injury following an episode of viral meningoencephalitis. He developed status epilepticus and required intubation and multiple anticonvulsants. Serial brain MRIs showed bilateral temporoparietal signal changes reflecting extensive damage to language areas and the first transverse gyrus of Heschl on both sides. The patient was referred for assessment of auditory processing but was so severely impaired in speech processing that he was unable to complete any formal tests of his speech processing abilities. Audiological assessment utilizing objective measures of auditory function established the presence of normal peripheral auditory function and illustrates the importance of the use of objective measures of auditory function in patients with injuries to the auditory cortex. Use of objective measures of auditory function is essential in establishing the presence of normal peripheral auditory function in individuals with cortical damage who may not be able to cooperate sufficiently for assessment utilizing behavioral measures of auditory function.

  8. Application of Neural Network Modeling to Identify Auditory Processing Disorders in School-Age Children

    Directory of Open Access Journals (Sweden)

    Sridhar Krishnamurti

    2015-01-01

    Full Text Available P300 Auditory Event-Related Potentials (P3AERPs were recorded in nine school-age children with auditory processing disorders and nine age- and gender-matched controls in response to tone burst stimuli presented at varying rates (1/second or 3/second under varying levels of competing noise (0 dB, 40 dB, or 60 dB SPL. Neural network modeling results indicated that speed of information processing and task-related demands significantly influenced P3AERP latency in children with auditory processing disorders. Competing noise and rapid stimulus rates influenced P3AERP amplitude in both groups.

  9. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study

    Directory of Open Access Journals (Sweden)

    Junko Matsuzaki

    2017-09-01

    Full Text Available Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD, the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years and 13 typically developing boys (mean age, 9.45 ± 1.51 years. We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  10. Heterogeneity in Perceptual Category Learning by High Functioning Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Eduardo eMercado

    2015-06-01

    Full Text Available Previous research suggests that high functioning children with Autism Spectrum Disorder (ASD sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally-based theories account for atypical perceptual category learning shown by high functioning children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets.

  11. Comparison of visual perceptual organization in schizophrenia and body dysmorphic disorder.

    Science.gov (United States)

    Silverstein, Steven M; Elliott, Corinna M; Feusner, Jamie D; Keane, Brian P; Mikkilineni, Deepthi; Hansen, Natasha; Hartmann, Andrea; Wilhelm, Sabine

    2015-09-30

    People with schizophrenia are impaired at organizing potentially ambiguous visual information into well-formed shape and object representations. This perceptual organization (PO) impairment has not been found in other psychiatric disorders. However, recent data on body dysmorphic disorder (BDD), suggest that BDD may also be characterized by reduced PO. Similarities between these groups could have implications for understanding the RDoC dimension of visual perception in psychopathology, and for modeling symptom formation across these two conditions. We compared patients with SCZ (n=24) to those with BDD (n=20), as well as control groups of obsessive-compulsive disorder (OCD) patients (n=20) and healthy controls (n=20), on two measures of PO that have been reliably associated with schizophrenia-related performance impairment. On both the contour integration and Ebbinghaus illusion tests, only the SCZ group demonstrated abnormal performance relative to controls; the BDD group performed similarly to the OCD and CON groups. In addition, on both tasks, the SCZ group performed more abnormally than the BDD group. Overall, these data suggest that PO reductions observed in SCZ are not present in BDD. Visual processing impairments in BDD may arise instead from other perceptual disturbances or attentional biases related to emotional factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  13. Cortical Maturation and Behavioral Outcomes in Children with Auditory Neuropathy Spectrum Disorder

    Science.gov (United States)

    Sharma, Anu; Cardon, Garrett; Martin, Kathryn; Roland, Peter

    2013-01-01

    Objective Auditory Neuropathy Spectrum Disorder (ANSD) affects nearly 10% of patients with sensorineural hearing loss. While many studies report abnormalities at the level of the cochlea, auditory nerve and brainstem in children with ANSD, much less is known about their cortical development. We examined central auditory maturation in 21 children with ANSD. Design Morphology, latency and amplitude of the P1 Cortical Auditory Evoked Potential (CAEP) were used to assess auditory cortical maturation. Children’s scores on a measure of auditory skill development (IT-MAIS) were correlated with CAEPs. Study Sample Participants were 21 children with ANSD. All were hearing aid users. Results Children with ANSD exhibited differences in central auditory maturation. Overall, two-thirds of children revealed present P1 CAEP responses. Of these, approximately one third (38%) showed normal P1 response morphology, latency and amplitude, while another third (33%) showed delayed P1 response latencies and significantly smaller amplitudes. The remaining children (29%) revealed abnormal or absent P1 responses. Overall, P1 responses were significantly correlated with auditory skill development. Conclusions Our results suggest that P1 CAEP responses may be: (i) a useful indicator of the extent to which neural dys-synchrony disrupts cortical development, (ii) a good predictor of behavioral outcome in children with ANSD. PMID:21265637

  14. Plasticity in the developing auditory cortex: evidence from children with sensorineural hearing loss and auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Cardon, Garrett; Campbell, Julia; Sharma, Anu

    2012-06-01

    The developing auditory cortex is highly plastic. As such, the cortex is both primed to mature normally and at risk for reorganizing abnormally, depending upon numerous factors that determine central maturation. From a clinical perspective, at least two major components of development can be manipulated: (1) input to the cortex and (2) the timing of cortical input. Children with sensorineural hearing loss (SNHL) and auditory neuropathy spectrum disorder (ANSD) have provided a model of early deprivation of sensory input to the cortex and demonstrated the resulting plasticity and development that can occur upon introduction of stimulation. In this article, we review several fundamental principles of cortical development and plasticity and discuss the clinical applications in children with SNHL and ANSD who receive intervention with hearing aids and/or cochlear implants. American Academy of Audiology.

  15. Auditory Cortex Responses to Clicks and Sensory Modulation Difficulties in Children with Autism Spectrum Disorders (ASD)

    OpenAIRE

    Orekhova, Elena V.; Tsetlin, Marina M.; Butorina, Anna V.; Novikova, Svetlana I.; Gratchev, Vitaliy V.; Sokolov, Pavel A.; Elam, Mikael; Stroganova, Tatiana A.

    2012-01-01

    Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD) and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD) children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and ma...

  16. The utility of visual analogs of central auditory tests in the differential diagnosis of (central) auditory processing disorder and attention deficit hyperactivity disorder.

    Science.gov (United States)

    Bellis, Teri James; Billiet, Cassie; Ross, Jody

    2011-09-01

    Cacace and McFarland (2005) have suggested that the addition of cross-modal analogs will improve the diagnostic specificity of (C)APD (central auditory processing disorder) by ensuring that deficits observed are due to the auditory nature of the stimulus and not to supra-modal or other confounds. Others (e.g., Musiek et al, 2005) have expressed concern about the use of such analogs in diagnosing (C)APD given the uncertainty as to the degree to which cross-modal measures truly are analogous and emphasize the nonmodularity of the CANs (central auditory nervous system) and its function, which precludes modality specificity of (C)APD. To date, no studies have examined the clinical utility of cross-modal (e.g., visual) analogs of central auditory tests in the differential diagnosis of (C)APD. This study investigated performance of children diagnosed with (C)APD, children diagnosed with ADHD (attention deficit hyperactivity disorder), and typically developing children on three diagnostic tests of central auditory function and their corresponding visual analogs. The study sought to determine whether deficits observed in the (C)APD group were restricted to the auditory modality and the degree to which the addition of visual analogs aids in the ability to differentiate among groups. An experimental repeated measures design was employed. Participants consisted of three groups of right-handed children (normal control, n=10; ADHD, n=10; (C)APD, n=7) with normal and symmetrical hearing sensitivity, normal or corrected-to-normal visual acuity, and no family or personal history of disorders unrelated to their primary diagnosis. Participants in Groups 2 and 3 met current diagnostic criteria for ADHD and (C)APD. Visual analogs of three tests in common clinical use for the diagnosis of (C)APD were used (Dichotic Digits [Musiek, 1983]; Frequency Patterns [Pinheiro and Ptacek, 1971]; and Duration Patterns [Pinheiro and Musiek, 1985]). Participants underwent two 1 hr test sessions

  17. Auditory hallucinations in schizophrenic and affective disorder Nigerian patients: phenomenological comparison.

    Science.gov (United States)

    Okulate, G T; Jones, O B E

    2003-12-01

    Although auditory hallucinations are universal phenomena, they show cultural and ethnic variation. We set out to study some differences between auditory hallucinations in Nigerian patients and their foreign counterparts. We also investigated the usefulness of auditory hallucinations in distinguishing between schizophrenia and affective disorders. A semi-structured interview was used to obtain information from 89 patients with auditory hallucinations who met ICD-10 criteria for either schizophrenia or affective psychoses and 10 others with organic mental disorders. Responses were compared with respect to the frequency, form and content of the hallucinatory voices as well as the languages spoken. In this sample, voices speaking exclusively in a foreign language were uncommon. Voices commanding and those discussing patients in the third person were the commonest in schizophrenic patients but not as frequent as in a similar group of patients in the UK studied by other authors. In patients with schizophrenia, voices were more likely to discuss the patient, whereas in affective disorders, voices were more likely to evoke fear, and patients were more likely to carry out commands. In conclusion, only three features of auditory hallucinations distinguished between schizophrenic and affective psychoses patients. Auditory hallucinations may be less harassing in Nigerian schizophrenic patients than in their UK counterparts. These hallucinations are most often perceived in the individual's mother tongue, with or without additional use of English, even when the patients have been 'westernized' through education and religion.

  18. Auditory Processing Disorder in Relation to Developmental Disorders of Language, Communication and Attention: A Review and Critique

    Science.gov (United States)

    Dawes, Piers; Bishop, Dorothy

    2009-01-01

    Background: Auditory Processing Disorder (APD) does not feature in mainstream diagnostic classifications such as the "Diagnostic and Statistical Manual of Mental Disorders, 4th Edition" (DSM-IV), but is frequently diagnosed in the United States, Australia and New Zealand, and is becoming more frequently diagnosed in the United Kingdom. Aims: To…

  19. Audiovisual Spoken Word Training can Promote or Impede Auditory-only Perceptual Learning: Results from Prelingually Deafened Adults with Late-Acquired Cochlear Implants and Normal-Hearing Adults

    Directory of Open Access Journals (Sweden)

    Lynne E Bernstein

    2014-08-01

    Full Text Available Training with audiovisual (AO speech can promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. Pre-/perilingually deafened adults rely on visual speech even when they also use a cochlear implant. This study investigated whether visual speech promotes auditory perceptual learning in these cochlear implant users. In Experiment 1, 28 prelingually deafened adults with late-acquired cochlear implants were assigned to learn paired associations between spoken disyllabic C(=consonantV(=vowelCVC nonsense words and nonsense pictures (fribbles, under AV and then under auditory-only (AO (or counter-balanced AO then AV training conditions. After training on each list of paired-associates (PA, testing was carried out AO. Across AV and AO training, AO PA test scores improved as did identification of consonants in untrained CVCVC stimuli. However, whenever PA training was carried out with AV stimuli, AO test scores were steeply reduced. Experiment 2 repeated the experiment with 43 normal-hearing adults. Their AO tests scores did not drop following AV PA training and even increased relative to scores following AO training. Normal-hearing participants' consonant identification scores improved also but with a pattern that contrasted with cochlear implant users’: Normal hearing adults were most accurate for medial consonants, and in contrast cochlear implant users were most accurate for initial consonants. The results are interpreted within a multisensory reverse hierarchy theory, which predicts that perceptual tasks are carried out whenever possible based on immediate high-level perception without scrutiny of lower-level features. The theory implies that, based on their bias towards visual speech, cochlear implant participants learned the PAs with greater reliance on vision to the detriment of auditory perceptual learning. Normal-hearing participants' learning took advantage of the concurrence between auditory and visual

  20. Impaired downregulation of visual cortex during auditory processing is associated with autism symptomatology in children and adolescents with autism spectrum disorder.

    Science.gov (United States)

    Jao Keehn, R Joanne; Sanchez, Sandra S; Stewart, Claire R; Zhao, Weiqi; Grenesko-Stevens, Emily L; Keehn, Brandon; Müller, Ralph-Axel

    2017-01-01

    Autism spectrum disorders (ASD) are pervasive developmental disorders characterized by impairments in language development and social interaction, along with restricted and stereotyped behaviors. These behaviors often include atypical responses to sensory stimuli; some children with ASD are easily overwhelmed by sensory stimuli, while others may seem unaware of their environment. Vision and audition are two sensory modalities important for social interactions and language, and are differentially affected in ASD. In the present study, 16 children and adolescents with ASD and 16 typically developing (TD) participants matched for age, gender, nonverbal IQ, and handedness were tested using a mixed event-related/blocked functional magnetic resonance imaging paradigm to examine basic perceptual processes that may form the foundation for later-developing cognitive abilities. Auditory (high or low pitch) and visual conditions (dot located high or low in the display) were presented, and participants indicated whether the stimuli were "high" or "low." Results for the auditory condition showed downregulated activity of the visual cortex in the TD group, but upregulation in the ASD group. This atypical activity in visual cortex was associated with autism symptomatology. These findings suggest atypical crossmodal (auditory-visual) modulation linked to sociocommunicative deficits in ASD, in agreement with the general hypothesis of low-level sensorimotor impairments affecting core symptomatology. Autism Res 2017, 10: 130-143. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Experience-dependent learning of auditory temporal resolution: evidence from Carnatic-trained musicians.

    Science.gov (United States)

    Mishra, Srikanta K; Panda, Manasa R

    2014-01-22

    Musical training and experience greatly enhance the cortical and subcortical processing of sounds, which may translate to superior auditory perceptual acuity. Auditory temporal resolution is a fundamental perceptual aspect that is critical for speech understanding in noise in listeners with normal hearing, auditory disorders, cochlear implants, and language disorders, yet very few studies have focused on music-induced learning of temporal resolution. This report demonstrates that Carnatic musical training and experience have a significant impact on temporal resolution assayed by gap detection thresholds. This experience-dependent learning in Carnatic-trained musicians exhibits the universal aspects of human perception and plasticity. The present work adds the perceptual component to a growing body of neurophysiological and imaging studies that suggest plasticity of the peripheral auditory system at the level of the brainstem. The present work may be intriguing to researchers and clinicians alike interested in devising cross-cultural training regimens to alleviate listening-in-noise difficulties.

  2. Auditory integration training and other sound therapies for autism spectrum disorders (ASD).

    Science.gov (United States)

    Sinha, Yashwant; Silove, Natalie; Hayen, Andrew; Williams, Katrina

    2011-12-07

    Auditory integration therapy was developed as a technique for improving abnormal sound sensitivity in individuals with behavioural disorders including autism spectrum disorders. Other sound therapies bearing similarities to auditory integration therapy include the Tomatis Method and Samonas Sound Therapy. To determine the effectiveness of auditory integration therapy or other methods of sound therapy in individuals with autism spectrum disorders. For this update, we searched the following databases in September 2010: CENTRAL (2010, Issue 2), MEDLINE (1950 to September week 2, 2010), EMBASE (1980 to Week 38, 2010), CINAHL (1937 to current), PsycINFO (1887 to current), ERIC (1966 to current), LILACS (September 2010) and the reference lists of published papers. One new study was found for inclusion. Randomised controlled trials involving adults or children with autism spectrum disorders. Treatment was auditory integration therapy or other sound therapies involving listening to music modified by filtering and modulation. Control groups could involve no treatment, a waiting list, usual therapy or a placebo equivalent. The outcomes were changes in core and associated features of autism spectrum disorders, auditory processing, quality of life and adverse events. Two independent review authors performed data extraction. All outcome data in the included papers were continuous. We calculated point estimates and standard errors from t-test scores and post-intervention means. Meta-analysis was inappropriate for the available data. We identified six randomised comtrolled trials of auditory integration therapy and one of Tomatis therapy, involving a total of 182 individuals aged three to 39 years. Two were cross-over trials. Five trials had fewer than 20 participants. Allocation concealment was inadequate for all studies. Twenty different outcome measures were used and only two outcomes were used by three or more studies. Meta-analysis was not possible due to very high

  3. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus

    Science.gov (United States)

    Iliadou, Vasiliki (Vivian); Ptok, Martin; Grech, Helen; Pedersen, Ellen Raben; Brechmann, André; Deggouj, Naïma; Kiese-Himmel, Christiane; Śliwińska-Kowalska, Mariola; Nickisch, Andreas; Demanez, Laurent; Veuillet, Evelyne; Thai-Van, Hung; Sirimanna, Tony; Callimachou, Marina; Santarelli, Rosamaria; Kuske, Sandra; Barajas, Jose; Hedjever, Mladen; Konukseven, Ozlem; Veraguth, Dorothy; Stokkereit Mattsson, Tone; Martins, Jorge Humberto; Bamiou, Doris-Eva

    2017-01-01

    Current notions of “hearing impairment,” as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as “Auditory Processing Disorder” (APD) or “Central Auditory Processing Disorder” is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimum diagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus.

  4. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus

    Directory of Open Access Journals (Sweden)

    Vasiliki (Vivian Iliadou

    2017-11-01

    Full Text Available Current notions of “hearing impairment,” as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as “Auditory Processing Disorder” (APD or “Central Auditory Processing Disorder” is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimum diagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus.

  5. Clinical Application of the P1 Cortical Auditory Evoked Potential Biomarker in Children with Sensorineural Hearing Loss and Auditory Neuropathy Spectrum Disorder.

    Science.gov (United States)

    Campbell, Julia Dee; Cardon, Garrett; Sharma, Anu

    2011-05-01

    The P1 component of the cortical auditory evoked potential (CAEP) shows clearly documented age-related decreases in latency and changes in morphology in normal hearing children, providing a biomarker for development of the auditory cortical pathways in humans. In hearing-impaired children, auditory deprivation may affect the normal age-related changes in central auditory maturation. Appropriate early intervention with amplification and/or electrical stimulation can provide the necessary stimulation needed to drive progress in central auditory maturation and auditory skill development, however objective measures are needed to evaluate the effectiveness of these treatments in infants and young children. We describe three pediatric cases, where we explored the clinical utility of the P1 as an objective biomarker of auditory cortical development after early intervention. We assessed development of P1 CAEP latency and morphology in two children with sensorineural hearing loss (SNHL) who received intervention with hearing aids (case 1) and cochlear implants (case 2) and a child with Auditory Neuropathy Spectrum Disorder (ANSD) (case 3). Overall, we find that the P1 CAEP serves as useful tool for assessing the effectiveness of early intervention treatment and clinical management of pediatric hearing- impaired patients.

  6. Auditory Processing in Infancy: Do Early Abnormalities Predict Disorders of Language and Cognitive Development?

    Science.gov (United States)

    Guzzetta, Francesco; Conti, Guido; Mercuri, Eugenio

    2011-01-01

    Increasing attention has been devoted to the maturation of sensory processing in the first year of life. While the development of cortical visual function has been thoroughly studied, much less information is available on auditory processing and its early disorders. The aim of this paper is to provide an overview of the assessment techniques for…

  7. Sensory Symptoms and Processing of Nonverbal Auditory and Visual Stimuli in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel

    2016-01-01

    Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…

  8. Peeling the Onion of Auditory Processing Disorder: A Language/Curricular-Based Perspective

    Science.gov (United States)

    Wallach, Geraldine P.

    2011-01-01

    Purpose: This article addresses auditory processing disorder (APD) from a language-based perspective. The author asks speech-language pathologists to evaluate the functionality (or not) of APD as a diagnostic category for children and adolescents with language-learning and academic difficulties. Suggestions are offered from a…

  9. Auditory verbal hallucinations in patients with borderline personality disorder are similar to those in schizophrenia

    NARCIS (Netherlands)

    Slotema, C. W.; Daalman, K.; Blom, J. D.; Diederen, K. M.; Hoek, H. W.; Sommer, I. E. C.

    Background. Auditory verbal hallucinations (AVH) in patients with borderline personality disorder (BPD) are frequently claimed to be brief, less severe and qualitatively different from those in schizophrenia, hence the term 'pseudohallucinations'. AVH in BPD may be more similar to those experienced

  10. The Impacts of Language Background and Language-Related Disorders in Auditory Processing Assessment

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Rosen, Stuart

    2013-01-01

    Purpose: To examine the impact of language background and language-related disorders (LRDs--dyslexia and/or language impairment) on performance in English speech and nonspeech tests of auditory processing (AP) commonly used in the clinic. Method: A clinical database concerning 133 multilingual children (mostly with English as an additional…

  11. Short-Term Memory and Auditory Processing Disorders: Concurrent Validity and Clinical Diagnostic Markers

    Science.gov (United States)

    Maerlender, Arthur

    2010-01-01

    Auditory processing disorders (APDs) are of interest to educators and clinicians, as they impact school functioning. Little work has been completed to demonstrate how children with APDs perform on clinical tests. In a series of studies, standard clinical (psychometric) tests from the Wechsler Intelligence Scale for Children, Fourth Edition…

  12. Modality Specificity as a Criterion for Diagnosing Central Auditory Processing Disorders.

    Science.gov (United States)

    McFarland, Dennis J.; Cacace, Anthony T.

    1995-01-01

    This paper examines the case for modality specificity as a criterion for improving the specificity of diagnosing central auditory processing disorders. Demonstrating the modality-specific nature of sensory processing deficits is seen as one way to rule out nonperceptual factors as explanations for observed dysfunction. (Author)

  13. Auditory temporal processing deficits and language disorders in patients with neurofibromatosis type 1.

    Science.gov (United States)

    Batista, Pollyanna Barros; Lemos, Stela Maris Aguiar; Rodrigues, Luiz Oswaldo Carneiro; de Rezende, Nilton Alves

    2014-01-01

    Previous findings from a case report led to the argument of whether other patients with neurofibromatosis type 1 (NF1) may have abnormal central auditory function, particularly auditory temporal processing. We hypothesized that it is associated with language and learning disabilities in this population. The aim of this study was to measure central auditory temporal function in NF1 patients and correlate it with the results of language evaluation tests. A descriptive/comparative study including 25 NF1 individuals and 22 healthy controls compared their performances on audiometric evaluation and auditory behavioral testing (Sequential Verbal Memory, Sequential Non-Verbal Memory, Frequency Pattern, Duration Pattern, and Gaps in Noise Tests). To assess language performance, two tests (phonological and syntactic awareness) were also conducted. The study showed that all participants had normal peripheral acoustic hearing. Differences were found between the NF1 and control groups in the temporal auditory processing tests [Sequential Verbal Memory (P=0.009), Sequential Non-Verbal Memory (P=0.028), Frequency Patterns (P=0.001), Duration Patterns (P=0.000), and Gaps in Noise (P=0.000)] and in language tests. The results of Pearson correlation analysis demonstrated the presence of positive correlations between the phonological awareness test and Frequency Patterns humming (r=0.560, P=0.001), Frequency Patterns labeling (r=0.415, P=0.022) and Duration Pattern humming (r=0.569, P=0.001). These results suggest that the neurofibromin deficiency found in NF1 patients is associated with auditory temporal processing deficits, which may contribute to the cognitive impairment, learning disabilities, and attention deficits that are common in this disorder. The reader will be able to: (1) describe the auditory temporal processing in patients with neurofibromatosis type 1; and (2) describe the impact of the auditory temporal deficits in language in this population. Copyright © 2014

  14. Visual abilities are important for auditory-only speech recognition: evidence from autism spectrum disorder.

    Science.gov (United States)

    Schelinski, Stefanie; Riedel, Philipp; von Kriegstein, Katharina

    2014-12-01

    In auditory-only conditions, for example when we listen to someone on the phone, it is essential to fast and accurately recognize what is said (speech recognition). Previous studies have shown that speech recognition performance in auditory-only conditions is better if the speaker is known not only by voice, but also by face. Here, we tested the hypothesis that such an improvement in auditory-only speech recognition depends on the ability to lip-read. To test this we recruited a group of adults with autism spectrum disorder (ASD), a condition associated with difficulties in lip-reading, and typically developed controls. All participants were trained to identify six speakers by name and voice. Three speakers were learned by a video showing their face and three others were learned in a matched control condition without face. After training, participants performed an auditory-only speech recognition test that consisted of sentences spoken by the trained speakers. As a control condition, the test also included speaker identity recognition on the same auditory material. The results showed that, in the control group, performance in speech recognition was improved for speakers known by face in comparison to speakers learned in the matched control condition without face. The ASD group lacked such a performance benefit. For the ASD group auditory-only speech recognition was even worse for speakers known by face compared to speakers not known by face. In speaker identity recognition, the ASD group performed worse than the control group independent of whether the speakers were learned with or without face. Two additional visual experiments showed that the ASD group performed worse in lip-reading whereas face identity recognition was within the normal range. The findings support the view that auditory-only communication involves specific visual mechanisms. Further, they indicate that in ASD, speaker-specific dynamic visual information is not available to optimize auditory

  15. Auditory rehabilitation after stroke: treatment of auditory processing disorders in stroke patients with personal frequency-modulated (FM) systems.

    Science.gov (United States)

    Koohi, Nehzat; Vickers, Deborah; Chandrashekar, Hoskote; Tsang, Benjamin; Werring, David; Bamiou, Doris-Eva

    2017-03-01

    Auditory disability due to impaired auditory processing (AP) despite normal pure-tone thresholds is common after stroke, and it leads to isolation, reduced quality of life and physical decline. There are currently no proven remedial interventions for AP deficits in stroke patients. This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. Fifty stroke patients had baseline audiological assessments, AP tests and completed the (modified) Amsterdam Inventory for Auditory Disability and Hearing Handicap Inventory for Elderly questionnaires. Nine out of these 50 patients were diagnosed with disordered AP based on severe deficits in understanding speech in background noise but with normal pure-tone thresholds. These nine patients underwent spatial speech-in-noise testing in a sound-attenuating chamber (the "crescent of sound") with and without FM systems. The signal-to-noise ratio (SNR) for 50% correct speech recognition performance was measured with speech presented from 0° azimuth and competing babble from ±90° azimuth. Spatial release from masking (SRM) was defined as the difference between SNRs measured with co-located speech and babble and SNRs measured with spatially separated speech and babble. The SRM significantly improved when babble was spatially separated from target speech, while the patients had the FM systems in their ears compared to without the FM systems. Personal FM systems may substantially improve speech-in-noise deficits in stroke patients who are not eligible for conventional hearing aids. FMs are feasible in stroke patients and show promise to address impaired AP after stroke. Implications for Rehabilitation This is the first study to investigate the benefits of personal frequency-modulated (FM) systems in stroke patients with disordered AP. All cases significantly improved speech perception in noise with the FM systems, when noise was spatially separated from the

  16. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder.

    Science.gov (United States)

    Baum, Sarah H; Stevenson, Ryan A; Wallace, Mark T

    2015-11-01

    Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Gray colored glasses: is major depression partially a sensory perceptual disorder?

    Science.gov (United States)

    Fitzgerald, Paul J

    2013-11-01

    Major depression is a neuropsychiatric disorder that can involve profound dysregulation of mood. While depression is associated with additional abnormalities besides reduced mood, such as cognitive dysfunction, it is not well established that sensory perception is also altered in this disorder (aside from in psychotic depression). Recent studies have shown that visual processing, in as early a stage as the retina, is impaired in depression. This paper examines the hypothesis that major depression can involve alterations in sensory perception. A Pubmed literature search investigated several lines of evidence: innervation of sensory cortex by serotonin and norepinephrine; antidepressant drugs and depression itself affecting processing of facial expressions of emotion; electroencephalography (EEG) studies of depressed persons and antidepressant drugs; involvement of the serotonergic 5HT2A receptor in both depression and hallucinogenic drug action; psychotic depression involving sensory distortions; dopamine possibly playing a role in depression; and the antidepressant effect of blocking the NMDA receptor with ketamine. Data from each of these lines of evidence support the hypothesis that major depression can involve sensory perceptual alterations. Loss of interest in one's daily activities and inability to experience pleasure, also known as anhedonia, in major depression may in part be mediated by sensory abnormalities, whereby normal sensory perceptions are no longer present to activate reward circuitry. The data supporting the hypothesis tend to be associative, so further confirmation of the hypothesis awaits additional controlled experiments. © 2013 Elsevier B.V. All rights reserved.

  18. Acquired auditory neuropathy spectrum disorder after an attack of chikungunya: case study.

    Science.gov (United States)

    Prabhu, Prashanth

    2016-01-01

    Auditory neuropathy spectrum disorder (ANSD) is a retrocochlear disorder in which the cochlear functioning is normal but the transmission in the auditory neural pathway is affected. The present study reports of a 14-year-old teenager with acquired ANSD after an attack of chikungunya. He reported symptoms of difficulty in understanding speech, tinnitus and vertigo when exposed to loud sounds. The audiological characteristics suggested auditory neuropathy spectrum disorder with raising audiogram configuration. The results of tinnitus evaluation showed low-pitched tinnitus and it was persistent causing significant handicap to him based on self report tinnitus handicap questionnaire results. The results of depression, anxiety and stress scale also suggested symptoms of mild depression and anxiety. Chikungunya virus is suspected to be neurotropic in nature which can damage auditory nerve cells and may have caused ANSD. The result also shows presence of tullio's phenomenon and absence of cervical vestibular evoked myogenic potentials suggesting damage to the vestibular neuronal system. The possible pathophysiology of chikungunya virus causing ANSD and vestibular symptoms needs to be explored further in future studies.

  19. Auditory M50 and M100 sensory gating deficits in bipolar disorder: a MEG study.

    Science.gov (United States)

    Wang, Ying; Feng, Yigang; Jia, Yanbin; Wang, Wensheng; Xie, Yanping; Guan, Yufang; Zhong, Shuming; Zhu, Dan; Huang, Li

    2014-01-01

    Auditory sensory gating deficits have been reported in subjects with bipolar disorder, but the hemispheric and neuronal origins of this deficit are not well understood. Moreover, gating of the auditory evoked components reflecting early attentive stage of information processing has not been investigated in bipolar disorder. The objectives of this study were to investigate the right and left hemispheric auditory sensory gating of the M50 (preattentive processing) and M100 (early attentive processing) in patients diagnosed with bipolar I disorder by utilizing magnetoencephalography (MEG). Whole-head MEG data were acquired during the standard paired-click paradigm in 20 bipolar I disorder patients and 20 healthy controls. The M50 and the M100 responses were investigated, and dipole source localizations were also investigated. Sensory gating were determined by measuring the strength of the M50 and the M100 response to the second click divided by that of the first click (S2/S1). In every subject, M50 and M100 dipolar sources localized to the left and right posterior portion of superior temporal gyrus (STG). Bipolar I disorder patients showed bilateral gating deficits in M50 and M100. The bilateral M50 S2 source strengths were significantly higher in the bipolar I disorder group compared to the control group. The sample size was relatively small. More studies with larger sample sizes are warranted. Bipolar subjects were taking a wide range of medications that could not be readily controlled for. These findings suggest that bipolar I disorder patients have auditory gating deficits at both pre-attentive and early attentive levels, which might be related to STG structural abnormality. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Perceptual alternation in obsessive compulsive disorder--implications for a role of the cortico-striatal circuitry in mediating awareness.

    Science.gov (United States)

    Li, C S; Chen, M C; Yang, Y Y; Chang, H L; Liu, C Y; Shen, S; Chen, C Y

    2000-06-15

    Mounting evidence suggests that obsessive compulsive disorder (OCD) results from functional aberrations of the fronto-striatal circuitry. However, empirical studies of the behavioral manifestations of OCD have been relatively lacking. The present study employs a behavioral task that allows a quantitative measure of how alternative percepts are formed from one moment to another, a process mimicking the brain state in which different thoughts and imageries compete for access to awareness. Eighteen patients with OCD, 12 with generalized anxiety disorder, and 18 normal subjects participated in the experiment, in which they viewed one of the three Schröder staircases and responded by pressing a key to each perceptual reversal. The results demonstrate that the patients with OCD have a higher perceptual alternation rate than the normal controls. Moreover, the frequency of perceptual alternation is significantly correlated with the Yale-Brown obsessive compulsive and the Hamilton anxiety scores. The increase in the frequency of perceptual reversals cannot easily be accounted for by learning or by different patterns of eye fixations on the task. These results provide further evidence that an impairment of the inhibitory function of the cortico-striatal circuitry might underlie the etiology of OCD. The implications of the results for a general role of the cortico-striatal circuitry in mediating awareness are discussed.

  1. Hemispheric laterality assessment with dichotic digits testing in dyslexia and auditory processing disorder.

    Science.gov (United States)

    Iliadou, Vassiliki; Kaprinis, Stergios; Kandylis, Dimitrios; Kaprinis, George St

    2010-03-01

    One of the widely used tests to evaluate functional asymmetry of cerebral hemispheres is the dichotic listening test with the usually prevailing right ear advantage. The current study aims at assessing hemispheric laterality in an adult sample of individuals with dyslexia, with auditory processing disorder (APD), and adults experiencing comorbidity of the two mentioned disorders against a control group with normal hearing and absence of learning disabilities. Results exhibit a right hemispheric dominance for the control and APD group, a left hemispheric dominance for the group diagnosed with both dyslexia and APD, and absence of dominance for the dyslexia group. Assessment of laterality was repeatable and produced stable results, indicating a true deficit. A component of auditory processing, specifically the auditory performance in competing acoustic signals, seems to be deficient in all three groups, and laterality of hemispheric functions influenced at least for auditory-language stimuli in the two of the three groups, one being adults with dyslexia and the other being adults with comorbidity of dyslexia and APD.

  2. Auditory-verbal declarative and operating memory among patients suffering from depressive disorders - preliminary study.

    Science.gov (United States)

    Talarowska, M; Florkowski, A; Zboralski, K; Berent, D; Wierzbiński, P; Gałecki, P

    2010-01-01

    Dysfunctions of auditory-verbal declarative and working memory are observed in patients with depressive disorders (DD). The authors wanted to see, whether antidepressive therapy improved the efficiency of cognitive processes among patients suffering from DD and determine possible associations between auditory-verbal declarative and working memory performance, evaluated before treatment vs. remission degree after treatment. The study was carried out in 87 subjects, patients with depressive disorders (n=30, DD) and healthy subjects (n=57, CG, control group). The AVLT (Auditory Verbal Learning Test) and the Stroop Test were used. CG obtained higher results vs. DD-I (the evaluation started on the therapy onset) in the Stroop Test-RCNb (Reading Colour Names in Black)/time, NCWd (Naming Colour of Word - Different)/time, NCWd/errors, AVLT: the number of words after 30 minutes. CG demonstrated higher results than DD-II (following eight weeks of pharmacological treatment) in RCNb/time, NCWd/time, AVLT: the number of words in the first trial, the number of words after 30 minutes. Compared to DD-I, DD-II achieved better results in NCWd/errors. No statistically significant differences were observed in both tests between the patients with remission and without remission. Statistical analysis revealed the lack of significant dependences among HDRS after treatment and cognitive functions before treatment. Depressive disorders are associated with deteriorated efficiency of auditory-verbal declarative and working memory. No improvement was observed in the efficiency of auditory-verbal declarative or working memory after 8-week therapy. The performance level of cognitive processes before pharmacotherapy has no effect on the intensity of depression symptoms after therapy.

  3. Electrophysiological assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate

    OpenAIRE

    Xiaoran Ma; Bradley McPherson; Lian Ma

    2016-01-01

    Objectives Cleft lip and/or palate is a common congenital craniofacial malformation found worldwide. A frequently associated disorder is conductive hearing loss, and this disorder has been thoroughly investigated in children with non-syndromic cleft lip and/or palate (NSCL/P). However, analysis of auditory processing function is rarely reported for this population, although this issue should not be ignored since abnormal auditory cortical structures have been found in populations with cleft ...

  4. Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age.

    Science.gov (United States)

    Dias, Karin Ziliotto; Jutras, Benoît; Acrani, Isabela Olszanski; Pereira, Liliane Desgualdo

    2012-02-01

    The aim of the present study was to assess the auditory temporal resolution ability in individuals with central auditory processing disorders, to examine the maturation effect and to investigate the relationship between the performance on a temporal resolution test with the performance on other central auditory tests. Participants were divided in two groups: 131 with Central Auditory Processing Disorder and 94 with normal auditory processing. They had pure-tone air-conduction thresholds no poorer than 15 dB HL bilaterally, normal admittance measures and presence of acoustic reflexes. Also, they were assessed with a central auditory test battery. Participants who failed at least one or more tests were included in the Central Auditory Processing Disorder group and those in the control group obtained normal performance on all tests. Following the auditory processing assessment, the Random Gap Detection Test was administered to the participants. A three-way ANOVA was performed. Correlation analyses were also done between the four Random Gap Detection Test subtests data as well as between Random Gap Detection Test data and the other auditory processing test results. There was a significant difference between the age-group performances in children with and without Central Auditory Processing Disorder. Also, 48% of children with Central Auditory Processing Disorder failed the Random Gap Detection Test and the percentage decreased as a function of age. The highest percentage (86%) was found in the 5-6 year-old children. Furthermore, results revealed a strong significant correlation between the four Random Gap Detection Test subtests. There was a modest correlation between the Random Gap Detection Test results and the dichotic listening tests. No significant correlation was observed between the Random Gap Detection Test data and the results of the other tests in the battery. Random Gap Detection Test should not be administered to children younger than 7 years old because

  5. Electrophysiological assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-01-01

    Cleft lip and/or palate is a common congenital craniofacial malformation found worldwide. A frequently associated disorder is conductive hearing loss, and this disorder has been thoroughly investigated in children with non-syndromic cleft lip and/or palate (NSCL/P). However, analysis of auditory processing function is rarely reported for this population, although this issue should not be ignored since abnormal auditory cortical structures have been found in populations with cleft disorders. The present study utilized electrophysiological tests to assess the auditory status of a large group of children with NSCL/P, and investigated whether this group had less robust central auditory processing abilities compared to craniofacially normal children. 146 children with NSCL/P who had normal peripheral hearing thresholds, and 60 craniofacially normal children aged from 6 to 15 years, were recruited. Electrophysiological tests, including auditory brainstem response (ABR), P1-N1-P2 complex, and P300 component recording, were conducted. ABR and N1 wave latencies were significantly prolonged in children with NSCL/P. An atypical developmental trend was found for long latency potentials in children with cleft compared to control group children. Children with unilateral cleft lip and palate showed a greater level of abnormal results compared with other cleft subgroups, whereas the cleft lip subgroup had the most robust responses for all tests. Children with NSCL/P may have slower than normal neural transmission times between the peripheral auditory nerve and brainstem. Possible delayed development of myelination and synaptogenesis may also influence auditory processing function in this population. Present research outcomes were consistent with previous, smaller sample size, electrophysiological studies on infants and children with cleft lip/palate disorders. In view of the these findings, and reports of educational disadvantage associated with cleft disorders, further research

  6. Electrophysiological assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate

    Directory of Open Access Journals (Sweden)

    Xiaoran Ma

    2016-08-01

    Full Text Available Objectives Cleft lip and/or palate is a common congenital craniofacial malformation found worldwide. A frequently associated disorder is conductive hearing loss, and this disorder has been thoroughly investigated in children with non-syndromic cleft lip and/or palate (NSCL/P. However, analysis of auditory processing function is rarely reported for this population, although this issue should not be ignored since abnormal auditory cortical structures have been found in populations with cleft disorders. The present study utilized electrophysiological tests to assess the auditory status of a large group of children with NSCL/P, and investigated whether this group had less robust central auditory processing abilities compared to craniofacially normal children. Methods 146 children with NSCL/P who had normal peripheral hearing thresholds, and 60 craniofacially normal children aged from 6 to 15 years, were recruited. Electrophysiological tests, including auditory brainstem response (ABR, P1-N1-P2 complex, and P300 component recording, were conducted. Results ABR and N1 wave latencies were significantly prolonged in children with NSCL/P. An atypical developmental trend was found for long latency potentials in children with cleft compared to control group children. Children with unilateral cleft lip and palate showed a greater level of abnormal results compared with other cleft subgroups, whereas the cleft lip subgroup had the most robust responses for all tests. Conclusion Children with NSCL/P may have slower than normal neural transmission times between the peripheral auditory nerve and brainstem. Possible delayed development of myelination and synaptogenesis may also influence auditory processing function in this population. Present research outcomes were consistent with previous, smaller sample size, electrophysiological studies on infants and children with cleft lip/palate disorders. In view of the these findings, and reports of educational

  7. The Relationship between Central Auditory Processing, Language, and Cognition in Children Being Evaluated for Central Auditory Processing Disorder.

    Science.gov (United States)

    Brenneman, Lauren; Cash, Elizabeth; Chermak, Gail D; Guenette, Linda; Masters, Gay; Musiek, Frank E; Brown, Mallory; Ceruti, Julianne; Fitzegerald, Krista; Geissler, Kristin; Gonzalez, Jennifer; Weihing, Jeffrey

    2017-09-01

    Pediatric central auditory processing disorder (CAPD) is frequently comorbid with other childhood disorders. However, few studies have examined the relationship between commonly used CAPD, language, and cognition tests within the same sample. The present study examined the relationship between diagnostic CAPD tests and "gold standard" measures of language and cognitive ability, the Clinical Evaluation of Language Fundamentals (CELF) and the Wechsler Intelligence Scale for Children (WISC). A retrospective study. Twenty-seven patients referred for CAPD testing who scored average or better on the CELF and low average or better on the WISC were initially included. Seven children who scored below the CELF and/or WISC inclusion criteria were then added to the dataset for a second analysis, yielding a sample size of 34. Participants were administered a CAPD battery that included at least the following three CAPD tests: Frequency Patterns (FP), Dichotic Digits (DD), and Competing Sentences (CS). In addition, they were administered the CELF and WISC. Relationships between scores on CAPD, language (CELF), and cognition (WISC) tests were examined using correlation analysis. DD and FP showed significant correlations with Full Scale Intelligence Quotient, and the DD left ear and the DD interaural difference measures both showed significant correlations with working memory. However, ∼80% or more of the variance in these CAPD tests was unexplained by language and cognition measures. Language and cognition measures were more strongly correlated with each other than were the CAPD tests with any CELF or WISC scale. Additional correlations with the CAPD tests were revealed when patients who scored in the mild-moderate deficit range on the CELF and/or in the borderline low intellectual functioning range on the WISC were included in the analysis. While both the DD and FP tests showed significant correlations with one or more cognition measures, the majority of the variance in these

  8. Deficits in auditory processing contribute to impairments in vocal affect recognition in autism spectrum disorders: A MEG study.

    Science.gov (United States)

    Demopoulos, Carly; Hopkins, Joyce; Kopald, Brandon E; Paulson, Kim; Doyle, Lauren; Andrews, Whitney E; Lewine, Jeffrey David

    2015-11-01

    The primary aim of this study was to examine whether there is an association between magnetoencephalography-based (MEG) indices of basic cortical auditory processing and vocal affect recognition (VAR) ability in individuals with autism spectrum disorder (ASD). MEG data were collected from 25 children/adolescents with ASD and 12 control participants using a paired-tone paradigm to measure quality of auditory physiology, sensory gating, and rapid auditory processing. Group differences were examined in auditory processing and vocal affect recognition ability. The relationship between differences in auditory processing and vocal affect recognition deficits was examined in the ASD group. Replicating prior studies, participants with ASD showed longer M1n latencies and impaired rapid processing compared with control participants. These variables were significantly related to VAR, with the linear combination of auditory processing variables accounting for approximately 30% of the variability after controlling for age and language skills in participants with ASD. VAR deficits in ASD are typically interpreted as part of a core, higher order dysfunction of the "social brain"; however, these results suggest they also may reflect basic deficits in auditory processing that compromise the extraction of socially relevant cues from the auditory environment. As such, they also suggest that therapeutic targeting of sensory dysfunction in ASD may have additional positive implications for other functional deficits. (c) 2015 APA, all rights reserved).

  9. Psychometric properties of Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit-hyperactivity disorder.

    Science.gov (United States)

    Soltanparast, Sanaz; Jafari, Zahra; Sameni, Seyed Jalal; Salehi, Masoud

    2014-01-01

    The purpose of the present study was to evaluate the psychometric properties (validity and reliability) of the Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit hyperactivity disorder. The Persian version of the Sustained Auditory Attention Capacity Test was constructed to assess sustained auditory attention using the method provided by Feniman and colleagues (2007). In this test, comments were provided to assess the child's attentional deficit by determining inattention and impulsiveness error, the total scores of the sustained auditory attention capacity test and attention span reduction index. In the present study for determining the validity and reliability of in both Rey Auditory Verbal Learning test and the Persian version of the Sustained Auditory Attention Capacity Test (SAACT), 46 normal children and 41 children with Attention Deficit Hyperactivity (ADHD), all right-handed and aged between 7 and 11 of both genders, were evaluated. In determining convergent validity, a negative significant correlation was found between the three parts of the Rey Auditory Verbal Learning test (first, fifth, and immediate recall) and all indicators of the SAACT except attention span reduction. By comparing the test scores between the normal and ADHD groups, discriminant validity analysis showed significant differences in all indicators of the test except for attention span reduction (pCapacity test has good validity and reliability, that matches other reliable tests, and it can be used for the identification of children with attention deficits and if they suspected to have Attention Deficit Hyperactivity Disorder.

  10. Atypical delayed auditory feedback effect and Lombard effect on speech production in high-functioning adults with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    I-Fan eLin

    2015-09-01

    Full Text Available Individuals with autism spectrum disorder (ASD show impaired social interaction and communication, which may be related to their difficulties in speech production. To investigate the mechanisms of atypical speech production in this population, we examined feedback control by delaying the auditory feedback of their own speech, which degraded speech fluency. We also examined feedforward control by adding loud pink noise to the auditory feedback, which led to increased vocal effort in producing speech. The results of Japanese speakers show that, compared with neurotypical individuals, high-functioning adults with ASD (including Asperger's disorder, autistic disorder, and pervasive developmental disorder not otherwise specified were more affected by delayed auditory feedback but less affected by external noise. These findings indicate that, in contrast to neurotypical individuals, those with ASD relied more on feedback control than on feedforward control in speech production, which is consistent with the hypothesis that this population exhibits attenuated Bayesian priors.

  11. Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD.

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    Full Text Available Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH. The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.

  12. Auditory cortex responses to clicks and sensory modulation difficulties in children with autism spectrum disorders (ASD).

    Science.gov (United States)

    Orekhova, Elena V; Tsetlin, Marina M; Butorina, Anna V; Novikova, Svetlana I; Gratchev, Vitaliy V; Sokolov, Pavel A; Elam, Mikael; Stroganova, Tatiana A

    2012-01-01

    Auditory sensory modulation difficulties are common in autism spectrum disorders (ASD) and may stem from a faulty arousal system that compromises the ability to regulate an optimal response. To study neurophysiological correlates of the sensory modulation difficulties, we recorded magnetic field responses to clicks in 14 ASD and 15 typically developing (TD) children. We further analyzed the P100m, which is the most prominent component of the auditory magnetic field response in children and may reflect preattentive arousal processes. The P100m was rightward lateralized in the TD, but not in the ASD children, who showed a tendency toward P100m reduction in the right hemisphere (RH). The atypical P100m lateralization in the ASD subjects was associated with greater severity of sensory abnormalities assessed by Short Sensory Profile, as well as with auditory hypersensitivity during the first two years of life. The absence of right-hemispheric predominance of the P100m and a tendency for its right-hemispheric reduction in the ASD children suggests disturbance of the RH ascending reticular brainstem pathways and/or their thalamic and cortical projections, which in turn may contribute to abnormal arousal and attention. The correlation of sensory abnormalities with atypical, more leftward, P100m lateralization suggests that reduced preattentive processing in the right hemisphere and/or its shift to the left hemisphere may contribute to abnormal sensory behavior in ASD.

  13. Speech perception in users of hearing aid with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Fernandes, Nayara Freitas; Yamaguti, Elisabete Honda; Morettin, Marina; Costa, Orozimbo Alves

    2016-01-01

    To analyze speech perception in children with pre-lingual hearing loss with auditory neuropathy spectrum disorder users of bilateral hearing aid. This is a descriptive and exploratory study carried out at the Research Center Audiological (HRAC/USP). The study included four children aged between 8 years and 3 months and 12 years and 2 months. Lists of monosyllabic words, two syllables, nonsense words and sentences, the Infant Toddler-Meaningful Auditory Integration Scale (IT-MAIS) and the Meaningful Use of Speech Scale (MUSS), hearing, and language categories were used. All lists were applied in acoustic booth, with speakers, in free field, in silence. The results showed an average 69.5% for the list of monosyllabic words, 87.75% for the list of two-syllable words, 89.92% for the list of nonsense syllables, and 92.5% for the list of sentences. The therapeutic process that includes the use of bilateral hearing aid was extremely satisfactory, since it allowed the maximum development of auditory skills.

  14. Auditory attention in autism spectrum disorder: An exploration of volumetric magnetic resonance imaging findings.

    Science.gov (United States)

    Lalani, Sanam J; Duffield, Tyler C; Trontel, Haley G; Bigler, Erin D; Abildskov, Tracy J; Froehlich, Alyson; Prigge, Molly B D; Travers, Brittany G; Anderson, Jeffrey S; Zielinski, Brandon A; Alexander, Andrew; Lange, Nicholas; Lainhart, Janet E

    2017-10-26

    Studies have shown that individuals with autism spectrum disorder (ASD) tend to perform significantly below typically developing individuals on standardized measures of attention, even when controlling for IQ. The current study sought to examine within ASD whether anatomical correlates of attention performance differed between those with average to above-average IQ (AIQ group) and those with low-average to borderline ability (LIQ group) as well as in comparison to typically developing controls (TDC). Using automated volumetric analyses, we examined regional volume of classic attention areas including the superior frontal gyrus, anterior cingulate cortex, and precuneus in ASD AIQ (n = 38) and LIQ (n = 18) individuals along with 30 TDC. Auditory attention performance was assessed using subtests of the Test of Memory and Learning (TOMAL) compared among the groups and then correlated with regional brain volumes. Analyses revealed group differences in attention. The three groups did not differ significantly on any auditory attention-related brain volumes; however, trends toward significant size-attention function interactions were observed. Negative correlations were found between the volume of the precuneus and auditory attention performance for the AIQ ASD group, indicating larger volume related to poorer performance. Implications for general attention functioning and dysfunctional neural connectivity in ASD are discussed.

  15. Intraoperative Electrocochleographic Characteristics of Auditory Neuropathy Spectrum Disorder in Cochlear Implant Subjects

    Directory of Open Access Journals (Sweden)

    William J. Riggs

    2017-07-01

    Full Text Available Auditory neuropathy spectrum disorder (ANSD is characterized by an apparent discrepancy between measures of cochlear and neural function based on auditory brainstem response (ABR testing. Clinical indicators of ANSD are a present cochlear microphonic (CM with small or absent wave V. Many identified ANSD patients have speech impairment severe enough that cochlear implantation (CI is indicated. To better understand the cochleae identified with ANSD that lead to a CI, we performed intraoperative round window electrocochleography (ECochG to tone bursts in children (n = 167 and adults (n = 163. Magnitudes of the responses to tones of different frequencies were summed to measure the “total response” (ECochG-TR, a metric often dominated by hair cell activity, and auditory nerve activity was estimated visually from the compound action potential (CAP and auditory nerve neurophonic (ANN as a ranked “Nerve Score”. Subjects identified as ANSD (45 ears in children, 3 in adults had higher values of ECochG-TR than adult and pediatric subjects also receiving CIs not identified as ANSD. However, nerve scores of the ANSD group were similar to the other cohorts, although dominated by the ANN to low frequencies more than in the non-ANSD groups. To high frequencies, the common morphology of ANSD cases was a large CM and summating potential, and small or absent CAP. Common morphologies in other groups were either only a CM, or a combination of CM and CAP. These results indicate that responses to high frequencies, derived primarily from hair cells, are the main source of the CM used to evaluate ANSD in the clinical setting. However, the clinical tests do not capture the wide range of neural activity seen to low frequency sounds.

  16. [(Central) Auditory Processing Disorders in Childhood--a Chimera or are Useful Clinical Diagnostic Tests Missing?].

    Science.gov (United States)

    Kiese-Himmel, C

    2008-11-01

    (Central) Auditory Processing Disorders (C)APD are becoming ever more diagnosed in children, though there is no agreement on diagnostic markers (gold standard for (C)APD diagnosis). In Germany, the diagnostics of (C)APD in the paediatric population is based on test measurements including phonological processing rather than on a valid theoretical model to guide clinicians. The evaluation of the clinical significance of central auditory functions as well as the number of the behavioural tests which should be performed are left to the diagnostician. The present study reviewed retrospectively test scores from a health care research database containing 167 children suspected of having a (C)APD. A total of 51 children participated in the study: 39 children identified with monosymptomatic (C)APD (on the basis of commonly used (C)APD tests with scores > or = 2 SDs below the mean on at least 2 tests) and 12 children who did not receive a (C)APD diagnosis (non-(C)APD). A stepwise discriminant analysis was performed with the five phonological measures of the psychological (C)APD-diagnostics in the German language: Nonword repetition by the Mottier-Test; the subtest "Recall of sentences" by the Heidelberger Sprachentwicklungstest for Language Development; "Digit Recall" by the German version of the K-ABC-subtest; "Auditory Closure" and "Sound Blending" by the subtests of the German version of the Illinois Test of Psycholinguistic Abilities. Next the discriminant function of the model was examined. Performance in the normed tests (K-ABC Digit Recall: T-score 44.2, p = 0.0029; Sentence Recall: T-score 42.4, p = 0.0002; Auditory Closure: T-score 49.9, p = 0.0130; Sound Blending: T-score 47.2 p = 0.0121) and in nonword repetition (Mottier: 15.9 raw scores, p diagnostic instruments.

  17. Auditory scene analysis in school-aged children with developmental language disorders.

    Science.gov (United States)

    Sussman, E; Steinschneider, M; Lee, W; Lawson, K

    2015-02-01

    Natural sound environments are dynamic, with overlapping acoustic input originating from simultaneously active sources. A key function of the auditory system is to integrate sensory inputs that belong together and segregate those that come from different sources. We hypothesized that this skill is impaired in individuals with phonological processing difficulties. There is considerable disagreement about whether phonological impairments observed in children with developmental language disorders can be attributed to specific linguistic deficits or to more general acoustic processing deficits. However, most tests of general auditory abilities have been conducted with a single set of sounds. We assessed the ability of school-aged children (7-15 years) to parse complex auditory non-speech input, and determined whether the presence of phonological processing impairments was associated with stream perception performance. A key finding was that children with language impairments did not show the same developmental trajectory for stream perception as typically developing children. In addition, children with language impairments required larger frequency separations between sounds to hear distinct streams compared to age-matched peers. Furthermore, phonological processing ability was a significant predictor of stream perception measures, but only in the older age groups. No such association was found in the youngest children. These results indicate that children with language impairments have difficulty parsing speech streams, or identifying individual sound events when there are competing sound sources. We conclude that language group differences may in part reflect fundamental maturational disparities in the analysis of complex auditory scenes. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Body image disturbance in binge eating disorder: a comparison of obese patients with and without binge eating disorder regarding the cognitive, behavioral and perceptual component of body image.

    Science.gov (United States)

    Lewer, Merle; Nasrawi, Nadia; Schroeder, Dorothea; Vocks, Silja

    2016-03-01

    Whereas the manifestation of body image disturbance in binge eating disorder (BED) has been intensively investigated concerning the cognitive-affective component, with regard to the behavioral and the perceptual components of body image disturbance in BED, research is limited and results are inconsistent. Therefore, the present study assessed body image disturbance in BED with respect to the different components of body image in a sample of obese females (n = 31) with BED compared to obese females without an eating disorder (n = 28). The Eating Disorder Inventory-2, the Eating Disorder Examination-Questionnaire, the Body Image Avoidance Questionnaire and the Body Checking Questionnaire as well as a Digital Photo Distortion Technique based on a picture of each participant taken under standardized conditions were employed. Using two-sample t tests, we found that the participants with BED displayed significantly greater impairments concerning the cognitive-affective component of body image than the control group. Concerning the behavioral component, participants with BED reported more body checking and avoidance behavior than the controls, but group differences failed to reach significance after the Bonferroni corrections. Regarding the perceptual component, a significant group difference was found for the perceived "ideal" figure, with the individuals suffering from BED displaying a greater wish for a slimmer ideal figure than the control group. These results support the assumption that body image disturbance is a relevant factor in BED, similar to other eating disorders.

  19. Results from a National Central Auditory Processing Disorder Service: A Real-World Assessment of Diagnostic Practices and Remediation for Central Auditory Processing Disorder.

    Science.gov (United States)

    Cameron, Sharon; Glyde, Helen; Dillon, Harvey; King, Alison; Gillies, Karin

    2015-11-01

    This article describes the development and evaluation of a national service to diagnose and remediate central auditory processing disorder (CAPD). Data were gathered from 38 participating Australian Hearing centers over an 18-month period from 666 individuals age 6, 0 (years, months) to 24, 8 (median 9, 0). A total of 408 clients were diagnosed with either a spatial processing disorder (n = 130), a verbal memory deficit (n = 174), or a binaural integration deficit (n = 104). A hierarchical test protocol was used so not all children were assessed on all tests in the battery. One hundred fifty clients decided to proceed with deficit-specific training (LiSN & Learn or Memory Booster) and/or be fitted with a frequency modulation system. Families were provided with communication strategies targeted to a child's specific listening difficulties and goals. Outcomes were measured using repeat assessment of the relevant diagnostic test, as well as the Client Oriented Scale of Improvement measure and Listening Inventories for Education teacher questionnaire. Group analyses revealed significant improvements postremediation for all training/management options. Individual posttraining performance and results of outcome measures also are discussed.

  20. Performance of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implant: a systematic review,

    Directory of Open Access Journals (Sweden)

    Nayara Freitas Fernandes

    2015-02-01

    Full Text Available Introduction: Currently, there are no doubts about the benefits of cochlear implants for the development of children with severe or profound hearing loss. However, there is still no consensus among researchers and professionals regarding the benefits for the improvement of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implants. Objective: Review the available evidence in the literature to answer the following: "What is the performance of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implants?" Methods: Systematic review of the literature through electronic database consultation, considering publications in the period 2002-2013. Results: Twenty-two studies met the criteria and were included in the systematic review. Conclusion: The analyzed studies demonstrated that after cochlear implant surgery, individuals with auditory neuropathy spectrum disorder improved their performance of hearing skills and had similar performance to that of children with sensorineural hearing loss using cochlear implant.

  1. Consensus paper: the role of the cerebellum in perceptual processes.

    Science.gov (United States)

    Baumann, Oliver; Borra, Ronald J; Bower, James M; Cullen, Kathleen E; Habas, Christophe; Ivry, Richard B; Leggio, Maria; Mattingley, Jason B; Molinari, Marco; Moulton, Eric A; Paulin, Michael G; Pavlova, Marina A; Schmahmann, Jeremy D; Sokolov, Arseny A

    2015-04-01

    Various lines of evidence accumulated over the past 30 years indicate that the cerebellum, long recognized as essential for motor control, also has considerable influence on perceptual processes. In this paper, we bring together experts from psychology and neuroscience, with the aim of providing a succinct but comprehensive overview of key findings related to the involvement of the cerebellum in sensory perception. The contributions cover such topics as anatomical and functional connectivity, evolutionary and comparative perspectives, visual and auditory processing, biological motion perception, nociception, self-motion, timing, predictive processing, and perceptual sequencing. While no single explanation has yet emerged concerning the role of the cerebellum in perceptual processes, this consensus paper summarizes the impressive empirical evidence on this problem and highlights diversities as well as commonalities between existing hypotheses. In addition to work with healthy individuals and patients with cerebellar disorders, it is also apparent that several neurological conditions in which perceptual disturbances occur, including autism and schizophrenia, are associated with cerebellar pathology. A better understanding of the involvement of the cerebellum in perceptual processes will thus likely be important for identifying and treating perceptual deficits that may at present go unnoticed and untreated. This paper provides a useful framework for further debate and empirical investigations into the influence of the cerebellum on sensory perception.

  2. Central Auditory Maturation and Behavioral Outcome in Children with Auditory Neuropathy Spectrum Disorder who Use Cochlear Implants

    Science.gov (United States)

    Cardon, Garrett; Sharma, Anu

    2013-01-01

    Objective We examined cortical auditory development and behavioral outcomes in children with ANSD fitted with cochlear implants (CI). Design Cortical maturation, measured by P1 cortical auditory evoked potential (CAEP) latency, was regressed against scores on the Infant Toddler Meaningful Auditory Integration Scale (IT-MAIS). Implantation age was also considered in relation to CAEP findings. Study Sample Cross-sectional and longitudinal samples of 24 and 11 children, respectively, with ANSD fitted with CIs. Result P1 CAEP responses were present in all children after implantation, though previous findings suggest that only 50-75% of ANSD children with hearing aids show CAEP responses. P1 CAEP latency was significantly correlated with participants' IT-MAIS scores. Furthermore, more children implanted before age two years showed normal P1 latencies, while those implanted later mainly showed delayed latencies. Longitudinal analysis revealed that most children showed normal or improved cortical maturation after implantation. Conclusion Cochlear implantation resulted in measureable cortical auditory development for all children with ANSD. Children fitted with CIs under age two years were more likely to show age-appropriate CAEP responses within 6 months after implantation, suggesting a possible sensitive period for cortical auditory development in ANSD. That CAEP responses were correlated with behavioral outcome highlights their clinical decision-making utility. PMID:23819618

  3. Central auditory maturation and behavioral outcome in children with auditory neuropathy spectrum disorder who use cochlear implants.

    Science.gov (United States)

    Cardon, Garrett; Sharma, Anu

    2013-09-01

    We examined cortical auditory development and behavioral outcomes in children with ANSD fitted with cochlear implants (CI). Cortical maturation, measured by P1 cortical auditory evoked potential (CAEP) latency, was regressed against scores on the infant toddler meaningful auditory integration scale (IT-MAIS). Implantation age was also considered in relation to CAEP findings. Cross-sectional and longitudinal samples of 24 and 11 children, respectively, with ANSD fitted with CIs. P1 CAEP responses were present in all children after implantation, though previous findings suggest that only 50-75% of ANSD children with hearing aids show CAEP responses. P1 CAEP latency was significantly correlated with participants' IT-MAIS scores. Furthermore, more children implanted before age two years showed normal P1 latencies, while those implanted later mainly showed delayed latencies. Longitudinal analysis revealed that most children showed normal or improved cortical maturation after implantation. Cochlear implantation resulted in measureable cortical auditory development for all children with ANSD. Children fitted with CIs under age two years were more likely to show age-appropriate CAEP responses within six months after implantation, suggesting a possible sensitive period for cortical auditory development in ANSD. That CAEP responses were correlated with behavioral outcome highlights their clinical decision-making utility.

  4. Auditory Processing Assessment in Children with Attention Deficit Hyperactivity Disorder: An Open Study Examining Methylphenidate Effects.

    Science.gov (United States)

    Lanzetta-Valdo, Bianca Pinheiro; Oliveira, Giselle Alves de; Ferreira, Jane Tagarro Correa; Palacios, Ester Miyuki Nakamura

    2017-01-01

    Introduction  Children with Attention Deficit Hyperactivity Disorder can present Auditory Processing (AP) Disorder. Objective  The study examined the AP in ADHD children compared with non-ADHD children, and before and after 3 and 6 months of methylphenidate (MPH) treatment in ADHD children. Methods  Drug-naive children diagnosed with ADHD combined subtype aging between 7 and 11 years, coming from public and private outpatient service or public and private school, and age-gender-matched non-ADHD children, participated in an open, non-randomized study from February 2013 to December 2013. They were submitted to a behavioral battery of AP tests comprising Speech with white Noise, Dichotic Digits (DD), and Pitch Pattern Sequence (PPS) and were compared with non-ADHD children. They were followed for 3 and 6 months of MPH treatment (0.5 mg/kg/day). Results  ADHD children presented larger number of errors in DD ( p  < 0.01), and less correct responses in the PPS ( p  < 0.0001) and in the SN ( p  < 0.05) tests when compared with non-ADHD children. The treatment with MPH, especially along 6 months, significantly decreased the mean errors in the DD ( p  < 0.01) and increased the correct response in the PPS ( p  < 0.001) and SN ( p  < 0.01) tests when compared with the performance before MPH treatment. Conclusions  ADHD children show inefficient AP in selected behavioral auditory battery suggesting impaired in auditory closure, binaural integration, and temporal ordering. Treatment with MPH gradually improved these deficiencies and completely reversed them by reaching a performance similar to non-ADHD children at 6 months of treatment.

  5. Psychometric profile of children with auditory processing disorder and children with dyslexia.

    Science.gov (United States)

    Dawes, Piers; Bishop, Dorothy V M

    2010-06-01

    The aim was to address the controversy that exists over the extent to which auditory processing disorder (APD) is a separate diagnostic category with a distinctive psychometric profile, rather than a reflection of a more general learning disability. Children with an APD diagnosis (N=25) were compared with children with dyslexia (N=19) on a battery of standardised auditory processing, language, literacy and non-verbal intelligence quotient measures as well as parental report measures of communicative skill and listening behaviour. A follow-up of a subset of children included a parent report screening questionnaire for Asperger syndrome (Childhood Asperger Syndrome Test). There were similarly high levels of attentional, reading and language problems in both groups. One peculiarity of the APD group was a discrepancy between parental report of poor communication and listening skill disproportionate to expectations based on standardised test performance. Follow-up assessment suggested high levels of previously unrecognised autistic features within the APD group. Children diagnosed by audiological experts as having APD are likely to have broader neurodevelopmental disorders and would benefit from evaluation by a multidisciplinary team.

  6. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    Science.gov (United States)

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups.

  7. Perceptual discrimination of vowels in aphasia.

    Science.gov (United States)

    Keller, E; Rothenberger, A; Göpfert, M

    1982-01-01

    In the present study 3 hypotheses were investigated: first, the notion that an aphasic impairment of vowel perception is not associated with particular aphasic syndromes or lesion sites, second, that it is a disorder comparable to a general impairment of perception in a normal speaker caused by some form of interference, and third, that perceptual phonemic discrimination is a separate process from the phonemic discriminative function necessary for speech production. The hypotheses were tested by means of a vowel discrimination test administered to 50 German-speaking aphasic patients (roughly equally divided between Broca's, mixed non-fluent, Wernicke's and mixed fluent groups); the same test, masked by white noise at -10 dB was also administered to 20 normal native speakers of German. Results were in support of all 3 hypotheses. First, aphasic patients' error patterns were similar across fluent and nonfluent groups and for all lesion sites. Second, the error distributions of aphasics with slight auditory impairment resembled those of normal subjects in the -10 dB white noise condition, while distributions of aphasics with severe auditory impairment were indicative of an added component of guessing behaviour. And third, the patients' performance on the discrimination task differed from that shown on a comparable repetition test. (It was argued that repetition involves a patient's expressive capacity in addition to his perceptual capacity). The differentiation of perceptual and expressive phonemic discrimination was further supported by an analysis of the speech errors occurring in the spontaneous (purely expressive) speech and in the repetition (expressive plus perceptual) tasks of 16 French Canadian and 5 English Canadian aphasics.

  8. Tinnitus, Diminished Sound-Level Tolerance, and Elevated Auditory Activity in Humans With Clinically Normal Hearing Sensitivity

    OpenAIRE

    Gu, Jianwen Wendy; Halpin, Christopher F; Nam, Eui-Cheol; Levine, Robert A.; Melcher, Jennifer R.

    2010-01-01

    Phantom sensations and sensory hypersensitivity are disordered perceptions that characterize a variety of intractable conditions involving the somatosensory, visual, and auditory modalities. We report physiological correlates of two perceptual abnormalities in the auditory domain: tinnitus, the phantom perception of sound, and hyperacusis, a decreased tolerance of sound based on loudness. Here, subjects with and without tinnitus, all with clinically normal hearing thresholds, underwent 1) beh...

  9. Behavioral Signs of (Central) Auditory Processing Disorder in Children With Nonsyndromic Cleft Lip and/or Palate: A Parental Questionnaire Approach.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-03-01

    Objective Children with nonsyndromic cleft lip and/or palate often have a high prevalence of middle ear dysfunction. However, there are also indications that they may have a higher prevalence of (central) auditory processing disorder. This study used Fisher's Auditory Problems Checklist for caregivers to determine whether children with nonsyndromic cleft lip and/or palate have potentially more auditory processing difficulties compared with craniofacially normal children. Methods Caregivers of 147 school-aged children with nonsyndromic cleft lip and/or palate were recruited for the study. This group was divided into three subgroups: cleft lip, cleft palate, and cleft lip and palate. Caregivers of 60 craniofacially normal children were recruited as a control group. Hearing health tests were conducted to evaluate peripheral hearing. Caregivers of children who passed this assessment battery completed Fisher's Auditory Problems Checklist, which contains 25 questions related to behaviors linked to (central) auditory processing disorder. Results Children with cleft palate showed the lowest scores on the Fisher's Auditory Problems Checklist questionnaire, consistent with a higher index of suspicion for (central) auditory processing disorder. There was a significant difference in the manifestation of (central) auditory processing disorder-linked behaviors between the cleft palate and the control groups. The most common behaviors reported in the nonsyndromic cleft lip and/or palate group were short attention span and reduced learning motivation, along with hearing difficulties in noise. Conclusion A higher occurrence of (central) auditory processing disorder-linked behaviors were found in children with nonsyndromic cleft lip and/or palate, particularly cleft palate. Auditory processing abilities should not be ignored in children with nonsyndromic cleft lip and/or palate, and it is necessary to consider assessment tests for (central) auditory processing disorder when an

  10. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    Full Text Available Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD. The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD children (mean age 10.4±2.4years and 95 children with ASD (mean age 10.2±2.6years. Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1 superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2 auditory vowel-contrast mismatch field (MMF latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  11. Functional MRI Evaluation of Multiple Neural Networks Underlying Auditory Verbal Hallucinations in Schizophrenia Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Robert J Thoma

    2016-03-01

    Full Text Available Functional MRI studies have identified a distributed set of brain activations to be associated with auditory verbal hallucinations (AVH. However, very little is known about how activated brain regions may be linked together into AVH-generating networks. Fifteen volunteers with schizophrenia or schizoaffective disorder pressed buttons to indicate on-set and off-set of AVH during fMRI scanning. When a general linear model (GLM was used to compare BOLD signals during periods in which subjects indicated that they were versus were not experiencing AVH (‘AVH-on’ versus ‘AVH-off’, it revealed AVH-related activity in bilateral inferior frontal and superior temporal regions; the right middle temporal gyrus; and the left insula, supramarginal gyrus, inferior parietal lobule and extra-nuclear white matter. In an effort to identify AVH-related networks, the raw data were also processed using independent component analyses (ICA. Four ICA components were spatially consistent with an a priori network framework based upon published meta-analyses of imaging correlates of AVH. Of these four components, only a network involving bilateral auditory cortices and posterior receptive language areas was significantly and positively correlated with the pattern of AVH-on versus AVH-off. The ICA also identified two additional networks (occipital-temporal and medial pre-frontal, not fully matching the meta-analysis framework, but nevertheless containing nodes reported as active in some studies of AVH. Both networks showed significant AVH-related profiles, but both were most active during AVH-off periods. Overall, the data suggest that AVH generation requires specific and selective activation of auditory cortical and posterior language regions, perhaps coupled to a release of indirect influence by occipital and medial frontal structures.

  12. Comparison of Perceptual Signs of Voice before and after Vocal Hygiene Program in Adults with Dysphonia

    Directory of Open Access Journals (Sweden)

    Seyyedeh Maryam khoddami

    2011-12-01

    Full Text Available Background and Aim: Vocal abuse and misuse are the most frequent causes of voice disorders. Consequently some therapy is needed to stop or modify such behaviors. This research was performed to study the effectiveness of vocal hygiene program on perceptual signs of voice in people with dysphonia.Methods: A Vocal hygiene program was performed to 8 adults with dysphonia for 6 weeks. At first, Consensus Auditory- Perceptual Evaluation of Voice was used to assess perceptual signs. Then the program was delivered, Individuals were followed in second and forth weeks visits. In the last session, perceptual assessment was performed and individuals’ opinions were collected. Perceptual findings were compared before and after the therapy.Results: After the program, mean score of perceptual assessment decreased. Mean score of every perceptual sign revealed significant difference before and after the therapy (p≤0.0001. «Loudness» had maximum score and coordination between speech and respiration indicated minimum score. All participants confirmed efficiency of the therapy.Conclusion: The vocal hygiene program improves all perceptual signs of voice although not equally. This deduction is confirmed by both clinician-based and patient-based assessments. As a result, vocal hygiene program is necessary for a comprehensive voice therapy but is not solely effective to resolve all voice problems.

  13. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  14. Auditory and Vestibular Issues Related to Human Spaceflight

    Science.gov (United States)

    Danielson, Richard W.; Wood, Scott J.

    2009-01-01

    Human spaceflight provides unique opportunities to study human vestibular and auditory systems. This session will discuss 1) vestibular adaptive processes reflected by pronounced perceptual and motor coordination problems during, and after, space missions; 2) vestibular diagnostic and rehabilitative techniques (used to promote recovery after living in altered gravity environments) that may be relevant to treatment of vestibular disorders on earth; and 3) unique acoustical challenges to hearing loss prevention and crew performance during spaceflight missions.

  15. Assessment of auditory processing disorder in children using an adaptive filtered speech test.

    Science.gov (United States)

    Rickard, Natalie A; Heidtke, Uta J; O'Beirne, Greg A

    2013-10-01

    One type of test commonly used to assess auditory processing disorder (APD) is the 'filtered words test' (FWT), in which a monaural, low-redundancy speech sample is distorted by using filtering to modify its frequency content. One limitation of the various existing FWTs is that they are performed using a constant level of low-pass filtering, making them prone to ceiling and floor effects that compromise their efficiency and accuracy. A recently developed computer-based test, the University of Canterbury Adaptive Speech Test- Filtered Words (UCAST-FW), uses an adaptive procedure intended to improve the efficiency and sensitivity of the test over its constant-level counterparts. The UCAST-FW was administered to school-aged children to investigate the ability of the test to distinguish between children with and without APD. Fifteen children aged 7-13 diagnosed with APD, and an aged-matched control group of 10 children with no history of listening difficulties. Data obtained demonstrates a significant difference between the UCAST-FW results obtained by children with APD and those with normal auditory processing. These findings provide evidence that the UCAST-FW may discriminate between children with and without APD with greater sensitivity than its constant-level counterparts.

  16. Communication, Listening, Cognitive and Speech Perception Skills in Children with Auditory Processing Disorder (APD) or Specific Language Impairment (SLI)

    Science.gov (United States)

    Ferguson, Melanie A.; Hall, Rebecca L.; Riley, Alison; Moore, David R.

    2011-01-01

    Purpose: Parental reports of communication, listening, and behavior in children receiving a clinical diagnosis of specific language impairment (SLI) or auditory processing disorder (APD) were compared with direct tests of intelligence, memory, language, phonology, literacy, and speech intelligibility. The primary aim was to identify whether there…

  17. Effects of Age and Attention on Auditory Global-Local Processing in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Foster, Nicholas E. V.; Ouimet, Tia; Tryfon, Ana; Doyle-Thomas, Krissy; Anagnostou, Evdokia; Hyde, Krista L.

    2016-01-01

    In vision, typically-developing (TD) individuals perceive "global" (whole) before "local" (detailed) features, whereas individuals with autism spectrum disorder (ASD) exhibit a local bias. However, auditory global-local distinctions are less clear in ASD, particularly in terms of age and attention effects. To these aims, here…

  18. Missing and delayed auditory responses in young and older children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    J. Christopher eEdgar

    2014-06-01

    Full Text Available Background: The development of left and right superior temporal gyrus (STG 50ms (M50 and 100ms (M100 auditory responses in typically developing children (TD and in children with autism spectrum disorder (ASD was examined. It was hypothesized that (1 M50 responses would be observed equally often in younger and older children, (2 M100 responses would be observed more often in older than younger children indicating later development of secondary auditory areas, and (3 M100 but not M50 would be observed less often in ASD than TD in both age groups, reflecting slower maturation of later developing auditory areas in ASD. Methods: 35 typically developing controls, 63 ASD without language impairment (ASD-LI, and 38 ASD with language impairment (ASD+LI were recruited.The presence or absence of a STG M50 and M100 was scored. Subjects were grouped into younger (6 to 10-years-old and older groups (11 to 15-years-old. Results: Although M50 responses were observed equally often in older and younger subjects and equally often in TD and ASD, left and right M50 responses were delayed in ASD-LI and ASD+LI. Group comparisons showed that in younger subjects M100 responses were observed more often in TD than ASD+LI (90% vs 66%, p=0.04, with no differences between TD and ASD-LI (90% vs 76% p=0.14 or between ASD-LI and ASD+LI (76% vs 66%, p=0.53. In older subjects, whereas no differences were observed between TD and ASD+LI, responses were observed more often in ASD-LI than ASD+LI. Conclusions: Although present in all groups, M50 responses were delayed in ASD, suggesting delayed development of earlier developing auditory areas. Examining the TD data, findings indicated that by 11 years a right M100 should be observed in 100% of subjects and a left M100 in 80% of subjects. Thus, by 11years, lack of a left and especially right M100 offers neurobiological insight into sensory processing that may underlie language or cognitive impairment.

  19. Altered white matter microstructure underlies listening difficulties in children suspected of auditory processing disorders: a DTI study.

    Science.gov (United States)

    Farah, Rola; Schmithorst, Vincent J; Keith, Robert W; Holland, Scott K

    2014-07-01

    The purpose of the present study was to identify biomarkers of listening difficulties by investigating white matter microstructure in children suspected of auditory processing disorder (APD) using diffusion tensor imaging (DTI). Behavioral studies have suggested that impaired cognitive and/or attention abilities rather than a pure sensory processing deficit underlie listening difficulties and auditory processing disorder (APD) in children. However, the neural signature of listening difficulties has not been investigated. Twelve children with listening difficulties and atypical left ear advantage (LEA) in dichotic listening and twelve age- and gender-matched typically developing children with typical right ear advantage (REA) were tested. Using voxel-based analysis, fractional anisotropy (FA), and mean, axial and radial diffusivity (MD, AD, RD) maps were computed and contrasted between the groups. Listening difficulties were associated with altered white matter microstructure, reflected by decreased FA in frontal multifocal white matter regions centered in prefrontal cortex bilaterally and left anterior cingulate. Increased RD and decreased AD accounted for the decreased FA, suggesting delayed myelination in frontal white matter tracts and disrupted fiber organization in the LEA group. Furthermore, listening difficulties were associated with increased MD (with increase in both RD and AD) in the posterior limb of the internal capsule (sublenticular part) at the auditory radiations where auditory input is transmitted between the thalamus and the auditory cortex. Our results provide direct evidence that listening difficulties in children are associated with altered white matter microstructure and that both sensory and supramodal deficits underlie the differences between the groups.

  20. The acoustic and perceptual cues affecting melody segregation for listeners with a cochlear implant.

    Directory of Open Access Journals (Sweden)

    Jeremy eMarozeau

    2013-11-01

    Full Text Available Our ability to listen selectively to single sound sources in complex auditory environments is termed ‘auditory stream segregation.’ This ability is affected by peripheral disorders such as hearing loss, as well as plasticity in central processing such as occurs with musical training. Brain plasticity induced by musical training can enhance the ability to segregate sound, leading to improvements in a variety of auditory abilities. The melody segregation ability of 12 cochlear-implant recipients was tested using a new method to determine the perceptual distance needed to segregate a simple 4-note melody from a background of interleaved random-pitch distractor notes. In experiment 1, participants rated the difficulty of segregating the melody from distracter notes. Four physical properties of the distracter notes were changed. In experiment 2, listeners were asked to rate the dissimilarity between melody patterns whose notes differed on the four physical properties simultaneously. Multidimensional scaling analysis transformed the dissimilarity ratings into perceptual distances. Regression between physical and perceptual cues then derived the minimal perceptual distance needed to segregate the melody.The most efficient streaming cue for CI users was loudness. For the normal hearing listeners without musical backgrounds, a greater difference on the perceptual dimension correlated to the temporal envelope is needed for stream segregation in CI users. No differences in streaming efficiency were found between the perceptual dimensions linked to the F0 and the spectral envelope.Combined with our previous results in normally-hearing musicians and non-musicians, the results show that differences in training as well as differences in peripheral auditory processing (hearing impairment and the use of a hearing device influences the way that listeners use different acoustic cues for segregating interleaved musical streams.

  1. Evaluation of Hearing Handicap in Adults with Auditory Neuropathy Spectrum Disorder.

    Science.gov (United States)

    Prabhu, Prashanth

    2017-08-01

    The present study attempted to evaluate hearing handicap in adults with auditory neuropathy spectrum disorder (ANSD). The study also attempted to determine if gender, pure tone average, speech identification scores (SIS), and reported duration of hearing loss could predict the hearing handicap in adults with ANSD. Hearing Handicap Inventory for Adults and Hearing Handicap Questionnaire were administered to 50 adults with ANSD. Using both the scales, there was a significant hearing handicap in both the social and emotional domains in adults with ANSD. SIS was a good predictor of hearing handicap compared to other variables. The poor SIS can affect communication skills leading to higher degree of social handicap. The ignorance regarding the exact cause for their hearing problems and lack of appropriate management strategies could lead to emotional problems in individuals with ANSD. However, further studies are essential for determining hearing handicap with the use of hearing aids and cochlear implants.

  2. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  3. Auditory-Visual Speech Perception in Three- and Four-Year-Olds and Its Relationship to Perceptual Attunement and Receptive Vocabulary

    Science.gov (United States)

    Erdener, Dogu; Burnham, Denis

    2018-01-01

    Despite the body of research on auditory-visual speech perception in infants and schoolchildren, development in the early childhood period remains relatively uncharted. In this study, English-speaking children between three and four years of age were investigated for: (i) the development of visual speech perception--lip-reading and visual…

  4. Auditory-motor interactions in pediatric motor speech disorders: Neurocomputational modeling of disordered development

    NARCIS (Netherlands)

    Terband, H.; Maassen, B.; Guenther, F. H.; Brumberg, J.

    2014-01-01

    BACKGROUND/PURPOSE: Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between

  5. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    NARCIS (Netherlands)

    Terband, H.R.|info:eu-repo/dai/nl/296302066; Maassen, B.A.M.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose: Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between

  6. Working memory predicts presence of auditory verbal hallucinations in schizophrenia and bipolar disorder with psychosis.

    Science.gov (United States)

    Jenkins, Lisanne M; Bodapati, Anjuli S; Sharma, Rajiv P; Rosen, Cherise

    2018-02-01

    The recent dramatic increase in research investigating auditory verbal hallucinations (AVHs) has broadened the former narrow focus on schizophrenia to incorporate additional populations that experience these symptoms. However, an understanding of potential shared mechanisms remains elusive. Based on theories suggesting a failure of top-down cognitive control, we aimed to compare the relationship between AVHs and cognition in two categorical diagnoses of psychosis, schizophrenia and psychotic bipolar disorder. A total of 124 adults aged 21-60 participated, of whom 76 had present-state psychosis (schizophrenia, n = 53; bipolar disorder with psychosis, n = 23), and 48 were non-clinical controls. Diagnosis and hallucination presence was determined using the Structured Clinical Diagnostic Interview for DSM-IV TR. AVHs severity was assessed using the Positive and Negative Syndrome Scale. Participants also completed the MATRICS cognitive battery. The bipolar disorder with psychosis group performed better than the schizophrenia group for cognitive domains of Processing speed, Attention, Working memory (WM), and Visual memory. Hierarchical binary logistic regression found that WM significantly predicted presence of AVHs in both psychotic groups, but diagnosis did not significantly increase the predictive value of the model. A hierarchical multiple linear regression found that schizophrenia diagnosis was the only significant predictor of hallucination severity. The findings of this study-the first, to our knowledge, to compare the relationship between AVHs and MATRICS domains across schizophrenia and bipolar disorder with psychosis-support theories that deficits in WM underly the genesis of AVHs. WM potentially represents a shared mechanism of AVHs across diagnoses, supporting dimensional classifications of these psychotic disorders. However, non-cognitive factors predictive of hallucination severity may be specific to schizophrenia.

  7. Assessment of Functional Hearing in Greek-Speaking Children Diagnosed with Central Auditory Processing Disorder.

    Science.gov (United States)

    Sidiras, Chris; Iliadou, Vasiliki Vivian; Chermak, Gail D; Nimatoudis, Ioannis

    2016-05-01

    Including speech recognition in noise testing in audiological evaluations may reveal functional hearing deficits that may otherwise remain undetected. The current study explored the potential utility of the Speech-in-Babble (SinB) test in the assessment of central auditory processing disorder (CAPD) in young children for whom diagnosis is challenging. A cross-sectional analysis. Forty-one Greek children 4-13 yr of age diagnosed with CAPD and exhibiting listening and academic problems (clinical group) and 20 age-matched controls with no listening or academic problems participated in the study. All participants' auditory processing was assessed using the same tests and instrumentation in a sound-treated room. Two equivalent lists of the SinB test, developed at the Psychoacoustic Laboratory of the Aristotle University of Thessaloniki, were administered monaurally in a counterbalanced order. SinB consists of lists of 50 phonetically balanced disyllabic words presented in background multitalker babble. Five signal-to-noise ratios (SNRs) were used in a fixed order. The children were instructed to repeat the word after each presentation. The SNR at which the child achieved 50% correct word identification served as the dependent variable or outcome measure, with higher SinB scores (measured in SNR dB) corresponding to poorer performance. SinB performance was better (lower SNR) for the normal control group versus the clinical group [F(1,35) = 43.03, p children with CAPD with and without comorbid conditions revealed no significant differences between groups [F(1,38) = 0.149, p > 0.05]. This study offers the first detailed presentation of the performance of Greek children on a Greek language SinB test. The main finding is that SinB scores improved as a function of age in a constant manner as represented by the slope of the linear regression line for both CAPD and control groups. Results suggest that this speech recognition in competition test holds promise for differentiating

  8. On Diagnostic Accuracy in Audiology: Central Site of Lesion and Central Auditory Processing Disorder Studies.

    Science.gov (United States)

    Vermiglio, Andrew J

    2016-02-01

    In the field of audiology a test protocol (index test) is used to determine the presence or absence of a target condition. The value of an index test rests in its diagnostic accuracy. Results from an index test must be verified through the use of a reference standard. The clinician and researcher should determine the quality and applicability of diagnostic accuracy studies. The Standards for Reporting of Diagnostic Accuracy (STARD) statement was published in response to the low quality of research conducted across many fields of study. It provides guidelines for the development and interpretation of diagnostic accuracy studies. The primary purpose of this article is to assess the degree to which the main principles of diagnostic accuracy studies are used for the detection of central auditory nervous system lesions and a central auditory processing disorder (CAPD). The secondary purpose is to compare the design of these studies to select key guidelines from the STARD statement. The third purpose of this article is to present an argument against the reassignment of diagnostic accuracy values of a particular index test for one target condition (e.g., a central site of lesion) to a different target condition (e.g., a CAPD). A review of diagnostic accuracy literature on the detection of a central site of lesion reveals the use of a reference standard for the independent verification of the index test results. However, diagnostic accuracy studies involving index tests for the detection of a CAPD show that independent verification of index test results is nonexistent or at best questionable. For a particular index test, while the diagnostic accuracy for detection of a central site of lesion may have been determined appropriately, it is inappropriate to reassign these diagnostic accuracy values to a different diagnostic target such as a CAPD. American Academy of Audiology.

  9. Rhythmic auditory stimulation influences syntactic processing in children with developmental language disorders.

    Science.gov (United States)

    Przybylski, Lauranne; Bedoin, Nathalie; Krifi-Papoz, Sonia; Herbillon, Vania; Roch, Didier; Léculier, Laure; Kotz, Sonja A; Tillmann, Barbara

    2013-01-01

    Children with developmental language disorders have been shown to be impaired not only in language processing (including syntax), but also in rhythm and meter perception. Our study tested the influence of external rhythmic auditory stimulation (i.e., musical rhythm) on syntax processing in children with specific language impairment (SLI; Experiment 1A) and dyslexia (Experiment 1B). Children listened to either regular or irregular musical prime sequences followed by blocks of grammatically correct and incorrect sentences. They were required to perform grammaticality judgments for each auditorily presented sentence. Performance of all children (SLI, dyslexia, and controls) in the grammaticality judgments was better after regular prime sequences than after irregular prime sequences, as shown by d' data. The benefit of the regular prime was stronger for SLI children (partial η2 = .34) than for dyslexic children (partial η2 = .14), who reached higher performance levels. Together with previous findings on deficits in temporal processing and sequencing, as well as with the recent proposition of a temporal sampling (oscillatory) framework for developmental language disorders (U. A. Goswami, 2011, Temporal sampling framework for developmental dyslexia, Trends in Cognitive Sciences, Vol. 15, pp. 3-10), our results point to potential avenues in using rhythmic structures (even in nonverbal materials) to boost linguistic structure processing.

  10. Arousal modulates auditory attention and awareness: insights from sleep, sedation and disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Srivas eChennu

    2012-03-01

    Full Text Available The interplay between top-down, bottom-up attention and consciousness is frequently tested in altered states of consciousness, including transitions between stages of sleep and sedation, and in pathological disorders of consciousness (the vegetative and minimally conscious states; VS and MCS. One of the most widely used tasks to assess cognitive processing in this context is the auditory oddball paradigm, where an infrequent change in a sequence of sounds elicits, in awake subjects, a characteristic EEG event-related potential (ERP called the mismatch negativity (MMN, followed by the classic P300 wave. The latter is further separable into the slightly earlier, anterior P3a and the later, posterior P3b, linked to bottom-up and top-down attention, respectively. We discuss here the putative dissociations between attention and awareness in disorders of consciousness, sedation and sleep, bearing in mind the recently emerging evidence from healthy volunteers and patients. These findings highlight the neurophysiological and cognitive parallels (and differences across these three distinct variations in levels of consciousness, and inform the theoretical framework for interpreting the role of attention therein.

  11. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  12. BioMARK as electrophysiological tool for assessing children at risk for (central) auditory processing disorders without reading deficits.

    Science.gov (United States)

    Kumar, Prawin; Singh, Niraj Kumar

    2015-06-01

    Biological Marker of auditory processing (BioMARK) is an electrophysiological test tool widely known as Speech-evoked ABR. Several previous investigations have shown the utility of speech-evoked ABR in the diagnosis of language based processing deficits like learning disability and specific language impairment; however missing from literature is a study that has ruled out the existence of comorbidity of such conditions and carefully delineated the efficacy of speech-evoked ABR in children with children with auditory processing disorders sans reading deficits. Hence, the present study aimed at investigating Speech-evoked ABR in children with auditory processing disorders without reading problems. A total of 336 school going children in the age range of 8-12 years were screened for presence of central auditory processing deficits. Among the 51 children who were identified as at risk, 15 were randomly selected and served as experimental group. The control group comprised of fifteen age matched children. The inter-group comparison was done using MANOVA, which revealed significant prolongations of latencies of waves V and A (p = 0.001) along with marginal reductions in V/A slope (p = 0.052) and amplitude of responses to first formant (p = 0.065). The responses to higher frequencies did not differ between the groups. Speech-evoked ABR are affected in children who are at risk of central auditory processing disorders sans reading deficits which probably indicates the presence of abnormal brainstem encoding of speech signal in this population. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Brainstem Auditory Evoked Potentials for diagnosing Autism Spectrum Disorder, ADHD and Schizophrenia Spectrum Disorders in adults. A blinded study.

    Science.gov (United States)

    Manouilenko, Irina; Humble, Mats B; Georgieva, Jeanette; Bejerot, Susanne

    2017-11-01

    The aim of the present study was to examine the clinical utility of complex auditory brainstem response (c-ABR) and investigate if c-ABR is helpful in the diagnostic procedure. Thirty-one adult psychiatric patients, thoroughly diagnosed with autism spectrum disorder (ASD) (n=16), ADHD (n=8), or schizophrenia spectrum disorder (SSD) (n=7) and 15 healthy controls (HC), were blindly assessed with SensoDetect BERA. This c-ABR correctly identified psychiatric diagnoses in 4 patients (13%) and provided partially correct diagnoses in 11 more patients. Of the 15 HC, 6 were misclassified as psychiatric patients. The Cohen´s kappa coefficient (κ) was substantial for HC (κ=0.67), fair for SSD (κ=0.37), slight for ADHD (κ=0.09) and without agreement in ASD (κ=-0.03). In conclusion, we found the c-ABR method unhelpful and unreliable as a tool in clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mental imagery of speech: linking motor and perceptual systems through internal simulation and estimation.

    Science.gov (United States)

    Tian, Xing; Poeppel, David

    2012-01-01

    The neural basis of mental imagery has been investigated by localizing the underlying neural networks, mostly in motor and perceptual systems, separately. However, how modality-specific representations are top-down induced and how the action and perception systems interact in the context of mental imagery is not well understood. Imagined speech production ("articulation imagery"), which induces the kinesthetic feeling of articulator movement and its auditory consequences, provides a new angle because of the concurrent involvement of motor and perceptual systems. On the basis of previous findings in mental imagery of speech, we argue for the following regarding the induction mechanisms of mental imagery and the interaction between motor and perceptual systems: (1) Two distinct top-down mechanisms, memory retrieval and motor simulation, exist to induce estimation in perceptual systems. (2) Motor simulation is sufficient to internally induce the representation of perceptual changes that would be caused by actual movement (perceptual associations); however, this simulation process only has modulatory effects on the perception of external stimuli, which critically depends on context and task demands. Considering the proposed simulation-estimation processes as common mechanisms for interaction between motor and perceptual systems, we outline how mental imagery (of speech) relates to perception and production, and how these hypothesized mechanisms might underpin certain neural disorders.

  15. Mental imagery of speech: linking motor and perceptual systems through internal simulation and estimation

    Directory of Open Access Journals (Sweden)

    Xing eTian

    2012-11-01

    Full Text Available The neural basis of mental imagery has been investigated by localizing the underlying neural networks, mostly in motor and perceptual systems, separately. However, how modality-specific representations are top-down induced and how the action and perception systems interact in the context of mental imagery is not well understood. Imagined speech production (‘articulation imagery’, which induces the kinesthetic feeling of articulator movement and its auditory consequences, provides a new angle because of the concurrent involvement of motor and perceptual systems. On the basis of previous findings in mental imagery of speech, we argue for the following regarding the induction mechanisms of mental imagery and the interaction between motor and perceptual systems: (1 Two distinct top-down mechanisms, memory retrieval and motor simulation, exist to induce estimation in perceptual systems. (2 Motor simulation is sufficient to internally induce the representation of perceptual changes that would be caused by actual movement (perceptual associations; however, this simulation process only has modulatory effects on the perception of external stimuli, which critically depends on context and task demands. Considering the proposed simulation-estimation processes as common mechanisms for interaction between motor and perceptual systems, we outline how mental imagery (of speech relates to perception and production, and how these hypothesized mechanisms might underpin certain neural disorders.

  16. The practices, challenges and recommendations of South African audiologists regarding managing children with auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Claire Fouché-Copley

    2016-06-01

    Full Text Available Audiologists managing children with auditory processing disorders (APD encounter challenges that include conflicting definitions, several classification profiles, problems with differential diagnosis and a lack of standardised guidelines. The heterogeneity of the disorder and its concomitant childhood disorders makes diagnosis difficult. Linguistic and cultural issues are additional challenges faced by South African audiologists. The study aimed to describe the practices, challenges and recommendations of South African audiologists managing children with APD. A quantitative, non-experimental descriptive survey was used to obtain data from 156 audiologists registered with the Health Professions of South Africa. Findings revealed that 67% screened for APD, 42% assessed while 43% provided intervention. A variety of screening and assessment procedures were being administered, with no standard test battery identified. A range of intervention strategies being used are discussed. When the relationship between the number of years of experience and the audiologists’ level of preparedness to practice in the field of APD was compared, a statistically significant difference (p = 0.049 was seen in that participants with more than 10 years of experience were more prepared to practice in this area. Those participants having qualified as speech-language therapists and audiologists were significantly more prepared (p = 0.03 to practice than the audiologists who comprised the sample. Challenges experienced by the participants included the lack of linguistically and culturally appropriate screening and assessment tools and limited normative data. Recommendations included reviewing the undergraduate audiology training programmes, reinstituting the South African APD Taskforce, developing linguistically and culturally appropriate normative data, creating awareness among educators and involving them in the multidisciplinary team. Keywords: Screening; assessment

  17. The practices, challenges and recommendations of South African audiologists regarding managing children with auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Claire Fouché-Copley

    2016-02-01

    Full Text Available Audiologists managing children with auditory processing disorders (APD encounter challenges that include conflicting definitions, several classification profiles, problems with differential diagnosis and a lack of standardised guidelines. The heterogeneity of the disorder and its concomitant childhood disorders makes diagnosis difficult. Linguistic and cultural issues are additional challenges faced by South African audiologists. The study aimed to describe the practices, challenges and recommendations of South African audiologists managing children with APD. A quantitative, non-experimental descriptive survey was used to obtain data from 156 audiologists registered with the Health Professions of South Africa. Findings revealed that 67% screened for APD, 42% assessed while 43% provided intervention. A variety of screening and assessment procedures were being administered, with no standard test battery identified. A range of intervention strategies being used are discussed. When the relationship between the number of years of experience and the audiologists’ level of preparedness to practice in the field of APD was compared, a statistically significant difference (p = 0.049 was seen in that participants with more than 10 years of experience were more prepared to practice in this area. Those participants having qualified as speech-language therapists and audiologists were significantly more prepared (p = 0.03 to practice than the audiologists who comprised the sample. Challenges experienced by the participants included the lack of linguistically and culturally appropriate screening and assessment tools and limited normative data. Recommendations included reviewing the undergraduate audiology training programmes, reinstituting the South African APD Taskforce, developing linguistically and culturally appropriate normative data, creating awareness among educators and involving them in the multidisciplinary team.Keywords: Screening; assessment

  18. A Perceptual-Motor Deficit Predicts Social and Communicative Impairments in Individuals With Autism Spectrum Disorders

    NARCIS (Netherlands)

    Linkenauger, S.A.; Lerner, M.D.; Ramenzoni, V.C.; Proffitt, D.R.

    2012-01-01

    Individuals with autism spectrum disorders (ASDs) have known impairments in social and motor skills. Identifying putative underlying mechanisms of these impairments could lead to improved understanding of the etiology of core social/communicative deficits in ASDs, and identification of novel

  19. Performance of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implant: a systematic review,

    OpenAIRE

    Fernandes, Nayara Freitas; Morettin,Marina; Yamaguti, Elisabete Honda; Costa, Orozimbo Alves; BEVILACQUA, Maria Cecilia

    2015-01-01

    Introduction: Currently, there are no doubts about the benefits of cochlear implants for the development of children with severe or profound hearing loss. However, there is still no consensus among researchers and professionals regarding the benefits for the improvement of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implants. Objective: Review the available evidence in the literature to answer the following: "What is the performance of hearing skills i...

  20. Performance of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implant: a systematic review.

    Science.gov (United States)

    Fernandes, Nayara Freitas; Morettin, Marina; Yamaguti, Elisabete Honda; Costa, Orozimbo Alves; Bevilacqua, Maria Cecilia

    2015-01-01

    Currently, there are no doubts about the benefits of cochlear implants for the development of children with severe or profound hearing loss. However, there is still no consensus among researchers and professionals regarding the benefits for the improvement of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implants. Review the available evidence in the literature to answer the following: "What is the performance of hearing skills in children with auditory neuropathy spectrum disorder using cochlear implants?" Systematic review of the literature through electronic database consultation, considering publications in the period 2002-2013. Twenty-two studies met the criteria and were included in the systematic review. The analyzed studies demonstrated that after cochlear implant surgery, individuals with auditory neuropathy spectrum disorder improved their performance of hearing skills and had similar performance to that of children with sensorineural hearing loss using cochlear implant. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.

    Science.gov (United States)

    Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng

    2015-01-01

    In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.

  2. Evaluation of Dizziness Handicap in Adolescents and Adults with Auditory Neuropathy Spectrum Disorder.

    Science.gov (United States)

    Prabhu, Prashanth; Jamuar, Pratyasha

    2018-01-01

    Introduction  Vestibular symptoms and damage to the vestibular branch of the eighth cranial nerve is reported in individuals with auditory neuropathy spectrum disorder (ANSD). However, the real life handicap caused by these vestibular problems in individuals with ANSD is not studied. Objective  The present study attempted to evaluate the dizziness-related handicap in adolescents and adults with ANSD. Method  The dizziness handicap inventory (DHI) was administered to 40 adolescents and adults diagnosed with ANSD. The study also attempted to determine if there is any gender effect on DHI scores and its correlation to the reported onset of hearing loss. Results  The results of the study showed that adolescents and adults with ANSD had a moderate degree of dizziness-related handicap. The dizziness affected their quality of life, causing emotional problems. There was no gender effect, and the level of the handicap was greater in the cases in which the onset of the hearing loss was reported soon after the diagnosis of ANSD. There could be a vestibular compensation that could have resulted in a reduction in symptoms in individuals in whom the onset of the hearing loss was reported later on. Conclusion  Thus, a detailed assessment of vestibular problems and their impact on quality of life is essential in adolescents and adults with ANSD. Appropriate management strategies should be considered to resolve their vestibular problems and improve their quality of life.

  3. Spatial hearing in a child with auditory neuropathy spectrum disorder and bilateral cochlear implants.

    Science.gov (United States)

    Johnstone, Patti M; Yeager, Kelly R; Noss, Emily

    2013-06-01

    The neural dys-synchrony associated with auditory neuropathy spectrum disorder (ANSD) causes a temporal impairment that could degrade spatial hearing, particularly sound localization accuracy (SLA) and spatial release from masking (SRM). Unilateral cochlear implantation has become an accepted treatment for ANSD but treatment options for the contralateral ear remain controversial. We report spatial hearing measures in a child with ANSD before and after receiving a second cochlear implant (CI). An 11-year-7-month old boy with ANSD and expressive and receptive language delay received a second CI eight years after his first implant. The SLA and SRM were measured four months before sequential bilateral CIs (with the contralateral ear plugged and unplugged), and after nine months using both CIs. Testing done before the second CI, with the first CI alone, suggested that residual hearing in the contralateral ear contributed to sound localization accuracy, but not word recognition in quiet or noise. Nine-months after receiving a second CI, SLA improved by 12.76° and SRM increased to 3.8-4.2 dB relative to pre-operative performance. Results were compared to published outcomes for children with bilateral CIs. The addition of a second CI in this child with ANSD improved spatial hearing.

  4. Rate of neural recovery in implanted children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Fulmer, Susan L; Runge, Christina L; Jensen, Jamie W; Friedland, David R

    2011-02-01

    The study objectives were to compare the rate of neural recovery and speech perception performance in children with auditory neuropathy spectrum disorder (ANSD) and children with sensorineural hearing loss (SNHL) from other etiologies. Cohort study. Academic hospital and cochlear implant center. Ten children with ANSD were matched based on type of implant and age at implantation with peers diagnosed with SNHL. Electrically evoked compound action potential (ECAP) recovery functions were obtained to measure neural refractory behaviors in response to stimulation from the cochlear implant. Speech perception performance was measured using speech recognition thresholds (SRTs) for monosyllable and spondee word stimuli. These outcome measures were compared between groups. There was no difference in average recovery function exponent in children with ANSD compared to children with SNHL. Similarly, there were no differences in average SRTs in quiet and in noise in children with ANSD compared to children with SNHL. Relationships between SRT and recovery rate were not present within groups or for all subjects for SRT in quiet, but a significant relationship was found for all subjects for SRT in noise (P = .04). Dyssynchronous neural activity in ANSD may affect temporal encoding of electrical stimulation from a cochlear implant. As a group, children with ANSD did not demonstrate slower neural recovery compared to those with SNHL, but there was slower neural recovery observed for some subjects. The utility of ECAP recovery functions on optimizing the stimulation rate for individual patients with ANSD requires further investigation.

  5. Psychometric evaluation of children with auditory processing disorder (APD): comparison with normal-hearing and clinical non-APD groups.

    Science.gov (United States)

    Iliadou, Vasiliki; Bamiou, Doris Eva

    2012-06-01

    To investigate the clinical utility of the Children's Auditory Processing Performance Scale (CHAPPS; Smoski, Brunt, & Tannahill, 1992) to evaluate listening ability in 12-year-old children referred for auditory processing assessment. This was a prospective case control study of 97 children (age range = 11;4 [years;months] to 12;7). Auditory processing disorder (APD) was diagnosed based on findings of deficits on at least 1 nonverbal test and on at least 2 tests of an auditory processing test battery. Clinically referred children were grouped as APD (n = 38) or non-APD (n = 20). The study found that (a) the APD group performed lower than the non-APD group on the Quiet, Ideal, Memory (p hearing on the Noise, Multiple Inputs, and Attention subscales (p .04) between Dichotic Digits, Duration Pattern tests, and the CHAPPS Attention, Memory, and total scores. The CHAPPS may be a clinically useful tool to evaluate listening ability in 12-year-old children suspected of having APD. Restricting use of the CHAPPS to older children may help address its limitations as reported by other studies.

  6. Dysfunctional information processing during an auditory event-related potential task in individuals with Internet gaming disorder.

    Science.gov (United States)

    Park, M; Choi, J-S; Park, S M; Lee, J-Y; Jung, H Y; Sohn, B K; Kim, S N; Kim, D J; Kwon, J S

    2016-01-26

    Internet gaming disorder (IGD) leading to serious impairments in cognitive, psychological and social functions has gradually been increasing. However, very few studies conducted to date have addressed issues related to the event-related potential (ERP) patterns in IGD. Identifying the neurobiological characteristics of IGD is important to elucidate the pathophysiology of this condition. P300 is a useful ERP component for investigating electrophysiological features of the brain. The aims of the present study were to investigate differences between patients with IGD and healthy controls (HCs), with regard to the P300 component of the ERP during an auditory oddball task, and to examine the relationship of this component to the severity of IGD symptoms in identifying the relevant neurophysiological features of IGD. Twenty-six patients diagnosed with IGD and 23 age-, sex-, education- and intelligence quotient-matched HCs participated in this study. During an auditory oddball task, participants had to respond to the rare, deviant tones presented in a sequence of frequent, standard tones. The IGD group exhibited a significant reduction in response to deviant tones compared with the HC group in the P300 amplitudes at the midline centro-parietal electrode regions. We also found a negative correlation between the severity of IGD and P300 amplitudes. The reduced amplitude of the P300 component in an auditory oddball task may reflect dysfunction in auditory information processing and cognitive capabilities in IGD. These findings suggest that reduced P300 amplitudes may be candidate neurobiological marker for IGD.

  7. Children with speech sound disorder: Comparing a non-linguistic auditory approach with a phonological intervention approach to improve phonological skills

    Directory of Open Access Journals (Sweden)

    Cristina eMurphy

    2015-02-01

    Full Text Available This study aimed to compare the effects of a non-linguistic auditory intervention approach with a phonological intervention approach on the phonological skills of children with speech sound disorder. A total of 17 children, aged 7-12 years, with speech sound disorder were randomly allocated to either the non-linguistic auditory temporal intervention group (n = 10, average age 7.7 ± 1.2 or phonological intervention group (n = 7, average age 8.6 ± 1.2. The intervention outcomes included auditory-sensory measures (auditory temporal processing skills and cognitive measures (attention, short-term memory, speech production and phonological awareness skills. The auditory approach focused on non-linguistic auditory training (eg. backward masking and frequency discrimination, whereas the phonological approach focused on speech sound training (eg. phonological organisation and awareness. Both interventions consisted of twelve 45-minute sessions delivered twice per week, for a total of nine hours. Intra-group analysis demonstrated that the auditory intervention group showed significant gains in both auditory and cognitive measures, whereas no significant gain was observed in the phonological intervention group. No significant improvement on phonological skills was observed in any of the groups. Inter-group analysis demonstrated significant differences between the improvement following training for both groups, with a more pronounced gain for the non-linguistic auditory temporal intervention in one of the visual attention measures and both auditory measures. Therefore, both analyses suggest that although the non-linguistic auditory intervention approach appeared to be the most effective intervention approach, it was not sufficient to promote the enhancement of phonological skills.

  8. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder

    Directory of Open Access Journals (Sweden)

    Veema Lodhia

    2014-02-01

    Full Text Available Auditory Scene Analysis provides a useful framework for understanding atypical auditory perception in autism. Specifically, a failure to segregate the incoming acoustic energy into distinct auditory objects might explain the aversive reaction autistic individuals have to certain auditory stimuli or environments. Previous research with non-autistic participants has demonstrated the presence of an Object Related Negativity (ORN in the auditory event related potential that indexes pre-attentive processes associated with auditory scene analysis. Also evident is a later P400 component that is attention dependent and thought to be related to decision-making about auditory objects. We sought to determine whether there are differences between individuals with and without autism in the levels of processing indexed by these components. Electroencephalography (EEG was used to measure brain responses from a group of 16 autistic adults, and 16 age- and verbal-IQ-matched typically-developing adults. Auditory responses were elicited using lateralized dichotic pitch stimuli in which inter-aural timing differences create the illusory perception of a pitch that is spatially separated from a carrier noise stimulus. As in previous studies, control participants produced an ORN in response to the pitch stimuli. However, this component was significantly reduced in the participants with autism. In contrast, processing differences were not observed between the groups at the attention-dependent level (P400. These findings suggest that autistic individuals have difficulty segregating auditory stimuli into distinct auditory objects, and that this difficulty arises at an early pre-attentive level of processing.

  9. Parents' perspectives on the dilemmas with intervention for infants with auditory neuropathy spectrum disorder: A qualitative study.

    Science.gov (United States)

    Uus, Kai; Young, Alys; Day, Marianne

    2015-08-01

    This paper explores parental experiences of choices surrounding auditory management and language and communication development for infants and children with auditory neuropathy spectrum disorder (ANSD) in the light of the heterogeneity of condition, a poor evidence base for best outcomes in relation to management options, and the scarcity of data rooted in parent and family experience. Qualitative narrative study. Twenty-five parents of 21 children (aged four months to six years) identified with ANSD through the newborn hearing screening programme. Families identify barriers to early management due to conflicting expert opinions and ANSD-specific challenges with diagnosis and prognosis in infants, and share their accounts on their own evaluations of intervention benefit in their children. The results are of relevance to the clinicians and other professionals involved in early intervention, management, and support of infants with ANSD.

  10. Schizophrenia and borderline personality disorder: similarities and differences in the experience of auditory hallucinations, paranoia, and childhood trauma.

    Science.gov (United States)

    Kingdon, David G; Ashcroft, Katie; Bhandari, Bharathi; Gleeson, Stefan; Warikoo, Nishchint; Symons, Matthew; Taylor, Lisa; Lucas, Eleanor; Mahendra, Ravi; Ghosh, Soumya; Mason, Anthony; Badrakalimuthu, Raja; Hepworth, Claire; Read, John; Mehta, Raj

    2010-06-01

    This study investigated similarities and differences in the experience of auditory hallucinations, paranoia, and childhood trauma in schizophrenia and borderline personality disorder (BPD). Patients with clinical diagnoses of schizophrenia or BPD were interviewed using the Structured Clinical Interviews for DSM-IV. Axes 1 and 2 and auditory hallucinations, paranoia, and childhood trauma were assessed. A total of 111 patients participated; 59 met criteria for schizophrenia, 33 for BPD, and 19 for both. The groups were similar in their experiences of voices, including the perceived location of them, but they differed in frequency of paranoid delusions. Those with a diagnosis of BPD, including those with schizophrenia comorbidity, reported more childhood trauma, especially emotional abuse. BPD and schizophrenia frequently coexist, and this comorbidity has implications for diagnostic classification and treatment. Levels of reported childhood trauma are especially high in those with a BPD diagnosis, whether they have schizophrenia or not, and this requires assessment and appropriate management.

  11. The Loudness Dependence of Auditory Evoked Potentials (LDAEP) in individuals at risk for developing bipolar disorders and schizophrenia.

    Science.gov (United States)

    Hagenmuller, Florence; Heekeren, Karsten; Meier, Magali; Theodoridou, Anastasia; Walitza, Susanne; Haker, Helene; Rössler, Wulf; Kawohl, Wolfram

    2016-02-01

    The Loudness Dependence of Auditory Evoked Potentials (LDAEP) is considered as an indicator of central serotonergic activity. Alteration of serotonergic neurotransmission was reported in bipolar disorders and schizophrenia. In line with previous reports on clinically manifest disorders, we expected a weaker LDAEP in subjects at risk for bipolar disorders and schizophrenia compared to healthy controls. We analyzed LDAEP of individuals at risk for developing bipolar disorders (n=27), with high-risk status (n=74) and ultra-high-risk status for schizophrenia (n=86) and healthy controls (n=47). The LDAEP did not differ between subjects at risk for schizophrenia or bipolar disorders and controls. Among subjects without medication (n=122), the at-risk-bipolar group showed a trend towards a weaker LDAEP than both the high-risk and the ultra-high-risk groups for schizophrenia. The LDAEP did not appear as a vulnerability marker for schizophrenia or bipolar disorders. This suggests that an altered LDAEP may not be measurable until the onset of clinically manifest disorder. However, the hypothesis that pathogenic mechanisms leading to bipolar disorders may differ from those leading to schizophrenia is supported. This is the first study investigating LDAEP in a population at risk for bipolar disorders. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Gap detection measured with electrically evoked auditory event-related potentials and speech-perception abilities in children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A

    2013-01-01

    This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech

  13. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  14. Central Auditory Processing Disorders: Is It a Meaningful Construct or a Twentieth Century Unicorn?

    Science.gov (United States)

    Kamhi, Alan G.; Beasley, Daniel S.

    1985-01-01

    The article demonstrates how professional and theoretical perspectives (including psycholinguistics, behaviorist, and information processing perspectives) significantly influence the manner in which central auditory processing is viewed, assessed, and remediated. (Author/CL)

  15. Effects of psycho-educational training and stimulant medication on visual perceptual skills in children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Antigone S Papavasiliou

    2007-01-01

    Full Text Available Antigone S Papavasiliou, Irene Nikaina, Ioanna Rizou, Stratos AlexandrouDepartment of Neurology, Pendeli Children’s Hospital, Athens, GreeceAbstract: Attention deficit hyperactivity disorder (ADHD is treated with stimulants and psycho-educational remedial programs despite limited literature support for the latter. This study aimed to examine changes in a “Test of Visual Perceptual Skills” (TVPS that has not been previously reported in children with ADHD enrolled in such a program.Methods: Sixteen children, 7–11 years old, with ADHD were involved in occupational therapy and special education geared towards attention training. Six months later methylphenidate 1 mg/kg/day was prescribed. It was not taken by eight children because of family choice. The TVPS was given twice, upon diagnosis, and 8 months post-intervention. The groups were compared by a repeated measures analysis of variance (ANOVA with medication as a between groups factor and test-retest scores as within factor.Results: All children demonstrated increases in total scores in the second measurement. Medicated children scored higher but ANOVA showed a nonsignificant F for the two groups, medicated and unmedicated (F = 0.0031, p = 0.9563, indicating a non-differential effect of the two levels of treatment. It revealed a significant F for the pre- and post-treatment total TVPS scores (F = 30.91, p < 0.0001 indicating a significant difference between pre- and post-treatment tests. The interaction between pre-post treatment and level of treatment (medicated–unmedicated was nonsignificant (F = 2.20, p = 0.1604.Conclusion: TVPS scores improved in all children following intervention. Medicated children did better, but differences were nonsignificant.Keywords: ADHD, stimulants, psycho-educational therapy, TVPS

  16. Children with speech sound disorder: comparing a non-linguistic auditory approach with a phonological intervention approach to improve phonological skills.

    Science.gov (United States)

    Murphy, Cristina F B; Pagan-Neves, Luciana O; Wertzner, Haydée F; Schochat, Eliane

    2015-01-01

    This study aimed to compare the effects of a non-linguistic auditory intervention approach with a phonological intervention approach on the phonological skills of children with speech sound disorder (SSD). A total of 17 children, aged 7-12 years, with SSD were randomly allocated to either the non-linguistic auditory temporal intervention group (n = 10, average age 7.7 ± 1.2) or phonological intervention group (n = 7, average age 8.6 ± 1.2). The intervention outcomes included auditory-sensory measures (auditory temporal processing skills) and cognitive measures (attention, short-term memory, speech production, and phonological awareness skills). The auditory approach focused on non-linguistic auditory training (e.g., backward masking and frequency discrimination), whereas the phonological approach focused on speech sound training (e.g., phonological organization and awareness). Both interventions consisted of 12 45-min sessions delivered twice per week, for a total of 9 h. Intra-group analysis demonstrated that the auditory intervention group showed significant gains in both auditory and cognitive measures, whereas no significant gain was observed in the phonological intervention group. No significant improvement on phonological skills was observed in any of the groups. Inter-group analysis demonstrated significant differences between the improvement following training for both groups, with a more pronounced gain for the non-linguistic auditory temporal intervention in one of the visual attention measures and both auditory measures. Therefore, both analyses suggest that although the non-linguistic auditory intervention approach appeared to be the most effective intervention approach, it was not sufficient to promote the enhancement of phonological skills.

  17. Behavioral assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2015-03-01

    Peripheral hearing disorders have been frequently described in children with non-syndromic cleft lip and/or palate (NSCL/P). However, auditory processing problems are rarely considered for children with NSCL/P despite their poor academic performance in general compared to their craniofacially normal peers. This study aimed to compare auditory processing skills, using behavioral assessment techniques, in school age children with and without NSCL/P. One hundred and forty one Mandarin-speaking children with NSCL/P aged from 6.00 to 15.67 years, and 60 age-matched, craniofacially normal children, were recruited. Standard hearing health tests were conducted to evaluate peripheral hearing. Behavioral auditory processing assessment included adaptive tests of temporal resolution (ATTR), and the Mandarin pediatric lexical tone and disyllabic-word picture identification test in noise (MAPPID-N). Age effects were found in children with cleft disorder but not in the control group for gap detection thresholds with ATTR narrow band noise in the across-channel stimuli condition, with a significant difference in test performance between the 6 to 8 year group and 12 to 15 year group of children with NSCL/P. For MAPPID-N, the bilateral cleft lip and palate subgroup showed significantly poorer SNR-50% scores than the control group in the condition where speech was spatially separated from noise. Also, the cleft palate participants showed a significantly smaller spatial separation advantage for speech recognition in noise compared to the control group children. ATTR gap detection test results indicated that maturation for temporal resolution abilities was not achieved in children with NSCL/P until approximately 8 years of age compared to approximately 6 years for craniofacially normal children. For speech recognition in noisy environments, poorer abilities to use timing and intensity cues were found in children with cleft palate and children with bilateral cleft lip and palate

  18. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    Science.gov (United States)

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  19. Sustained Perceptual Deficits from Transient Sensory Deprivation

    OpenAIRE

    Caras, Melissa L.; Sanes, Dan H.

    2015-01-01

    Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from ...

  20. Current state of knowledge: perceptual processing by children with hearing impairment.

    Science.gov (United States)

    Jerger, Susan

    2007-12-01

    Perception concerns the identification and interpretation of sensory stimuli in our external environment. The purpose of this review is to survey contemporary views about effects of mild to severe sensorineural hearing impairment (HI) in children on perceptual processing. The review is one of a series of papers resulting from a workshop on Outcomes Research in Children with Hearing Loss sponsored by The National Institute on Deafness and Other Communication Disorders/National Institutes of Health. Children with HI exhibit heterogeneous patterns of results. In general, however, perceptual processing of the (a) auditory properties of nonspeech reveals some problems in processing spectral information, but not temporal information; (b) auditory properties of speech reveals some problems in processing temporal sequences, variation in spatial location, and voice onset times, but not in processing talker-gender, weighting acoustic cues, or covertly orienting to the spatial location of sound; (c) linguistic properties of speech reveals some problems in processing general linguistic content, semantic content, and phonological content. The normalcy/abnormalcy of results varies as a function of degree of loss and task demands. As a general rule, children with severe HI have more abnormalities than children with mild to moderate HI. Auditory linguistic properties are also generally processed more abnormally than auditory nonverbal properties. This outcome implies that childhood HI has less effect on more physical, developmentally earlier properties that are characterized by less contingent processing. Some perceptual properties that are processed in a more automatic manner by normal listeners are processed in a more controlled manner by children with HI. This outcome implies that deliberate perceptual processing in the presence of childhood HI requires extra effort and more mental resources, thus limiting the availability of processing resources for other tasks.

  1. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  2. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  3. Habilitation and management of auditory processing disorders: overview of selected procedures.

    Science.gov (United States)

    Musiek, F

    1999-06-01

    This article describes three management approaches that can be used with children with auditory processing difficulties and learning disabilities. These approaches were selected because they can be applied in a variety of settings by a variety of professionals, as well as interested parents. The vocabulary building procedure is one that potentially can increase the ability to learn new words but also can provide training on contextual derivation of information, which is key to auditory closure processes. This procedure also helps increase language base, which can also enhance closure abilities. Auditory memory enhancement is a simple technique that involves many complex brain processes. This procedure reduces detailed information to a more gestalt representation and also integrates the motor and spatial processes of the brain. This, in turn, more fully uses working memory and helps in formulization and recall of important concepts of the sensory input. Finally, several informal auditory training techniques are discussed that can be readily employed in the school or home setting. These auditory training techniques are those that are most relevant to the kinds of deficits most often observed in our clinic.

  4. White Matter Microstructure is Associated with Auditory and Tactile Processing in Children with and without Sensory Processing Disorder.

    Science.gov (United States)

    Chang, Yi-Shin; Gratiot, Mathilde; Owen, Julia P; Brandes-Aitken, Anne; Desai, Shivani S; Hill, Susanna S; Arnett, Anne B; Harris, Julia; Marco, Elysa J; Mukherjee, Pratik

    2015-01-01

    Sensory processing disorders (SPDs) affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI) study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA), correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8-12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children (TDC), along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity - not just in children with SPD, but also

  5. White matter microstructure is associated with auditory and tactile processing in children with and without sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Yi Shin Chang

    2016-01-01

    Full Text Available Sensory processing disorders (SPD affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA, correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8 to 12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children, along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity -- not just in children with

  6. Reliability of the Functional Auditory Performance Indicators to monitor progress in 5-year-old children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Carlien Muller

    2016-12-01

    Full Text Available There is a need to dynamically monitor progress of functional auditory performance in young children with autism spectrum disorder (ASD. The Functional Auditory Performance Indicators (FAPI is a monitoring tool for children with hearing loss but has not yet been described in children with ASD. The aim was to describe the overall performance of 5-year-old children with ASD on the FAPI and to determine the test–retest reliability and inter-rater reliability of the tool. The study was exploratory with a descriptive within-subjects design incorporating repeated measures. Twelve participants with ASD were purposely selected. Pre- recorded sound and speech stimuli were used to elicit responses from participants in their familiar therapy rooms. For test–retest reliability, three data collection sessions per participant were conducted over a 2-week period. Video recordings were analysed by two independent raters, who were blind to the order of data sets. With an increase in complexity of auditory stimuli, a marked decrease in response was observed. The test–retest reliability was good, with a single difference in one category. Inter-rater reliability indicated a significant difference in two of the seven categories. These categories may be the most subjective in the tool. Despite subjectivity the FAPI was reliable to plot functional auditory difficulties in the sample group. Because the instrument relies on direct observation with limited demands to participate with the rater, it has potential for use in children with ASD. Further research is required to determine the tool’s performance using natural sound conditions to monitor children’s progress against themselves during intervention.

  7. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    Science.gov (United States)

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  8. Audiovisual speech perception development at varying levels of perceptual processing

    Science.gov (United States)

    Lalonde, Kaylah; Holt, Rachael Frush

    2016-01-01

    This study used the auditory evaluation framework [Erber (1982). Auditory Training (Alexander Graham Bell Association, Washington, DC)] to characterize the influence of visual speech on audiovisual (AV) speech perception in adults and children at multiple levels of perceptual processing. Six- to eight-year-old children and adults completed auditory and AV speech perception tasks at three levels of perceptual processing (detection, discrimination, and recognition). The tasks differed in the level of perceptual processing required to complete them. Adults and children demonstrated visual speech influence at all levels of perceptual processing. Whereas children demonstrated the same visual speech influence at each level of perceptual processing, adults demonstrated greater visual speech influence on tasks requiring higher levels of perceptual processing. These results support previous research demonstrating multiple mechanisms of AV speech processing (general perceptual and speech-specific mechanisms) with independent maturational time courses. The results suggest that adults rely on both general perceptual mechanisms that apply to all levels of perceptual processing and speech-specific mechanisms that apply when making phonetic decisions and/or accessing the lexicon. Six- to eight-year-old children seem to rely only on general perceptual mechanisms across levels. As expected, developmental differences in AV benefit on this and other recognition tasks likely reflect immature speech-specific mechanisms and phonetic processing in children. PMID:27106318

  9. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2015-01-01

    ’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent......The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects...

  10. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2016-01-01

    ’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent......The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects...

  11. Effectiveness of High-Intensity Interval Exercise on Serum Dopamine Level and Improvement of Perceptual-Motor Skills in Male Students with Hyperactivity/Attention Deficit Disorder

    Directory of Open Access Journals (Sweden)

    F. Torabi

    2017-01-01

    Full Text Available Aims: Known by hyperactivity, inattentiveness, and impulsiveness, the attention deficit hyperactivity disorder (ADHD is considered as a behavioral disorder in the children, as well as in the adolescents. The disorder might also damage their motor skill procedure. The aim of the study was to determine the effectiveness of 6-week high intensity interval exercise on the serum dopamine levels and the improvement of perceptual-motor performance in boys with ADHD. Materials & Methods: In the controlled pretest-posttest semi-experimental study, 20 adolescent male students with ADHD of the eastern Tehran schools were studied in 2015. The subjects, selected by random sampling method, were randomly divided into two groups including experimental (n=10 and control (n=10 groups. 6-week high intensity interval training (3 days a week was conducted in experimental group. The anthropometric indices, dopamine levels, and perceptual-motor performance scores were measured both at the beginning and at the end of the course. Data was analyzed by SPSS 16 software using paired T and independent T tests. Findings: In the experimental group, the dopamine levels significantly increased at the posttest stage compared to the pretest (p=0.01, while BMI (p=0.001 and body fat percentage (p=0.002 significantly decreased. In addition, the motor skill score significantly increased in experimental group (p=0.001. No variable was significantly changed in control group during the 6 weeks (p>0.05. Conclusion: 6-week high intensity interval exercise improves perceptual-motor performance and increases serum dopamine levels in boys with ADHD.

  12. Fluid and Crystallized Intelligence and Broad Perceptual Factors Among 11 to 12 Year Olds

    Science.gov (United States)

    Stankov, Lazar

    1978-01-01

    Thirty-six visual and auditory tests were given to 113 fifth and sixth grade students. Second-order analysis yielded two well-defined factors representing Fluid and Crystallized Intelligence and two perceptual factors corresponding to General Visualization and General Auditory Function. Perceptual factors were not clearly separated from broad…

  13. Verbal and musical short-term memory: Variety of auditory disorders after stroke.

    Science.gov (United States)

    Hirel, Catherine; Nighoghossian, Norbert; Lévêque, Yohana; Hannoun, Salem; Fornoni, Lesly; Daligault, Sébastien; Bouchet, Patrick; Jung, Julien; Tillmann, Barbara; Caclin, Anne

    2017-04-01

    Auditory cognitive deficits after stroke may concern language and/or music processing, resulting in aphasia and/or amusia. The aim of the present study was to assess the potential deficits of auditory short-term memory for verbal and musical material after stroke and their underlying cerebral correlates with a Voxel-based Lesion Symptom Mapping approach (VLSM). Patients with an ischemic stroke in the right (N=10) or left (N=10) middle cerebral artery territory and matched control participants (N=14) were tested with a detailed neuropsychological assessment including global cognitive functions, music perception and language tasks. All participants then performed verbal and musical auditory short-term memory (STM) tasks that were implemented in the same way for both materials. Participants had to indicate whether series of four words or four tones presented in pairs, were the same or different. To detect domain-general STM deficits, they also had to perform a visual STM task. Behavioral results showed that patients had lower performance for the STM tasks in comparison with control participants, regardless of the material (words, tones, visual) and the lesion side. The individual patient data showed a double dissociation between some patients exhibiting verbal deficits without musical deficits or the reverse. Exploratory VLSM analyses suggested that dorsal pathways are involved in verbal (phonetic), musical (melodic), and visual STM, while the ventral auditory pathway is involved in musical STM. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The effects of distraction and a brief intervention on auditory and visual-spatial working memory in college students with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Lineweaver, Tara T; Kercood, Suneeta; O'Keeffe, Nicole B; O'Brien, Kathleen M; Massey, Eric J; Campbell, Samantha J; Pierce, Jenna N

    2012-01-01

    Two studies addressed how young adult college students with attention deficit hyperactivity disorder (ADHD) (n = 44) compare to their nonaffected peers (n = 42) on tests of auditory and visual-spatial working memory (WM), are vulnerable to auditory and visual distractions, and are affected by a simple intervention. Students with ADHD demonstrated worse auditory WM than did controls. A near significant trend indicated that auditory distractions interfered with the visual WM of both groups and that, whereas controls were also vulnerable to visual distractions, visual distractions improved visual WM in the ADHD group. The intervention was ineffective. Limited correlations emerged between self-reported ADHD symptoms and objective test performances; students with ADHD who perceived themselves as more symptomatic often had better WM and were less vulnerable to distractions than their ADHD peers.

  15. Temporal Response Properties of the Auditory Nerve in Implanted Children with Auditory Neuropathy Spectrum Disorder and Implanted Children with Sensorineural Hearing Loss.

    Science.gov (United States)

    He, Shuman; Abbas, Paul J; Doyle, Danielle V; McFayden, Tyler C; Mulherin, Stephen

    2016-01-01

    This study aimed to (1) characterize temporal response properties of the auditory nerve in implanted children with auditory neuropathy spectrum disorder (ANSD), and (2) compare results recorded in implanted children with ANSD with those measured in implanted children with sensorineural hearing loss (SNHL). Participants included 28 children with ANSD and 29 children with SNHL. All subjects used cochlear nucleus devices in their test ears. Both ears were tested in 6 children with ANSD and 3 children with SNHL. For all other subjects, only one ear was tested. The electrically evoked compound action potential (ECAP) was measured in response to each of the 33 pulses in a pulse train (excluding the second pulse) for one apical, one middle-array, and one basal electrode. The pulse train was presented in a monopolar-coupled stimulation mode at 4 pulse rates: 500, 900, 1800, and 2400 pulses per second. Response metrics included the averaged amplitude, latencies of response components and response width, the alternating depth and the amount of neural adaptation. These dependent variables were quantified based on the last six ECAPs or the six ECAPs occurring within a time window centered around 11 to 12 msec. A generalized linear mixed model was used to compare these dependent variables between the 2 subject groups. The slope of the linear fit of the normalized ECAP amplitudes (re. amplitude of the first ECAP response) over the duration of the pulse train was used to quantify the amount of ECAP increment over time for a subgroup of 9 subjects. Pulse train-evoked ECAPs were measured in all but 8 subjects (5 with ANSD and 3 with SNHL). ECAPs measured in children with ANSD had smaller amplitude, longer averaged P2 latency and greater response width than children with SNHL. However, differences in these two groups were only observed for some electrodes. No differences in averaged N1 latency or in the alternating depth were observed between children with ANSD and children with

  16. Children with speech sound disorder: Comparing a non-linguistic auditory approach with a phonological intervention approach to improve phonological skills

    OpenAIRE

    Cristina eMurphy; Luciana ePagan-Neves; Haydee eWertzner; Eliane eSchochat

    2015-01-01

    This study aimed to compare the effects of a non-linguistic auditory intervention approach with a phonological intervention approach on the phonological skills of children with speech sound disorder. A total of 17 children, aged 7-12 years, with speech sound disorder were randomly allocated to either the non-linguistic auditory temporal intervention group (n = 10, average age 7.7 ± 1.2) or phonological intervention group (n = 7, average age 8.6 ± 1.2). The intervention outcomes included audit...

  17. Auditory Temporal Processing as a Specific Deficit among Dyslexic Readers

    Science.gov (United States)

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    The present study focuses on examining the hypothesis that auditory temporal perception deficit is a basic cause for reading disabilities among dyslexics. This hypothesis maintains that reading impairment is caused by a fundamental perceptual deficit in processing rapid auditory or visual stimuli. Since the auditory perception involves a number of…

  18. Auditory and visual P300 evoked potentials do not predict response to valproate treatment of aggression in patients with borderline and antisocial personality disorders.

    Science.gov (United States)

    Reeves, Roy R; Struve, Frederick A; Patrick, Gloria

    2005-01-01

    In this study of patients with borderline personality disorder (BPD) or antisocial personality disorder (ASPD) hospitalized because of aggressive behavior, auditory and visual P300 evoked potentials were obtained prior to treatment with valproate. Eight ASPD patients (8 males, 0 females) and 11 BPD patients (2 males, 9 females) showed improvement, while in 7 patients with ASPD (7 males, 0 females) and 10 patients with BPD (2 males, 8 females), aggression was not improved. Differences in auditory and visual P300 latencies and amplitudes were not significant for either diagnosis, or for both diagnoses combined. These findings suggest that auditory or visual P300 evoked potentials may not be useful for predicting response of aggressive behavior to valproate treatment in patients with BPD or ASPD.

  19. Perceptual transparency

    Science.gov (United States)

    Ripamonti, Caterina; Westland, Stephen

    2002-06-01

    We suggest that color constancy and perceptual transparency might be explained by the same underlying mechanism. For color constancy, Foster and Nascimento (1994) found that cone-excitation ratios between surfaces seen under one illuminant and cone-excitation ratios between the same surfaces seen under a different illuminant were almost constant. In the case of perceptual transparency we also found that cone-excitation ratios between surfaces illuminated directly and cone-excitation ratios between the same surfaces seen through a transparent filter were almost invariant (Westland and Ripamonti, 2000). We compare the ability of the cone-excitation-ratio invariance model to predict perceptual transparency with an alternative model based on convergence in color space (D'Zmura et al., 1997). Psychophysical data are reported from experiments where by subjects were asked to select which of two stimuli represented a Mondrian image partially covered by a homogeneous transparent filter. One of the stimuli was generated from the convergence model and the other was a modified version of the first stimulus such that the cone- excitation ratios were perfectly invariant. Subjects consistently selected the invariant stimulus confirming our hypothesis that perception of transparency is predicted by the degree of deviation frm an invariant ratio for the cone excitations.

  20. Development of an adaptive low-pass filtered speech test for the identification of auditory processing disorders.

    Science.gov (United States)

    O'Beirne, Greg A; McGaffin, Andrew J; Rickard, Natalie A

    2012-06-01

    One type of test commonly used to examine auditory processing disorders (APD) is the low-pass filtered speech test (LPFST), of which there are various versions. In LPFSTs, a monaural, low-redundancy speech sample is distorted by using filtering to modify its frequency content. Due to the richness of the neural pathways in the auditory system and the redundancy of acoustic information in spoken language, a normal listener is able to recognize speech even when parts of the signal are missing, whereas this ability is often impaired in listeners with APD. One limitation of the various versions of the LPFST is that they are carried out using a constant level of low-pass filtering (e.g. a fixed 1kHz corner frequency) which makes them prone to ceiling and floor effects. The purpose of this study was to counter these effects by modifying the LPFST using a computer-based adaptive procedure, and to evaluate the performance of normal-hearing participants of varying ages on the test. In this preliminary study, 33 adults and 30 children (aged 8-11 years) with no known history of listening difficulties were tested. The University of Canterbury Adaptive Speech Test (UCAST) platform was used to administer a four-alternative forced-choice adaptive test that altered a low-pass filter (LPF) to track the corner frequency at which participants correctly identified a certain percentage of the word stimuli. Findings on the University of Canterbury Adaptive Speech Test-Filtered Words (UCAST-FW) indicated a significant maturational effect. Adult participants performed significantly better on the UCAST-FW in comparison to the child participants. The UCAST-FW test was reliable over repeated administrations. An adaptive low-pass filtered speech test such as the UCAST-FW is sensitive to maturational changes in auditory processing ability. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Evaluation of cognitive disorders in multiple sclerosis patients by auditory event related potential

    Directory of Open Access Journals (Sweden)

    Parisa Rasoulifard

    2012-12-01

    Full Text Available Bachground and Aim: The involvement of central auditory nervous system is relatively prevalent in patients suffering from multiple sclerosis (MS. To understand cortex function and to investigate cognitive impairment, event related potential is considered as a valuable tool. This study was aimed to compare the amplitude and latency of the event related potentials of P300 in MS patients and normal individuals.Methods: This cross sectional study was conducted on 21 MS patients and 27 normal cases aged 18-50 years. Auditory P300 was recorded with oddball paradigm, using two tone burst stimuli (1000 and 2000.Results: In MS patients, mean latencies were significantly longer (p<0.001 and mean amplitude were significantly lower (p<0.001, in both males and females. Sex did not affect P300 latencies and amplitudes significantly.Conclusion: MS patients show some degree of event related potential abnormalities. Combination of auditory P300 and neuropsychological tests may be useful to investigate cognitive impairment in MS patients.

  2. Auditory Processing Training in Learning Disability

    OpenAIRE

    Nívea Franklin Chaves Martins; Hipólito Virgílio Magalhães Jr

    2006-01-01

    The aim of this case report was to promote a reflection about the importance of speech-therapy for stimulation a person with learning disability associated to language and auditory processing disorders. Data analysis considered the auditory abilities deficits identified in the first auditory processing test, held on April 30,2002 compared with the new auditory processing test done on May 13,2003,after one year of therapy directed to acoustic stimulation of auditory abilities disorders,in acco...

  3. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    Science.gov (United States)

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Understanding and Identifying the Child at Risk for Auditory Processing Disorders: A Case Method Approach in Examining the Interdisciplinary Role of the School Nurse

    Science.gov (United States)

    Neville, Kathleen; Foley, Marie; Gertner, Alan

    2011-01-01

    Despite receiving increased professional and public awareness since the initial American Speech Language Hearing Association (ASHA) statement defining Auditory Processing Disorders (APDs) in 1993 and the subsequent ASHA statement (2005), many misconceptions remain regarding APDs in school-age children among health and academic professionals. While…

  5. Daily Stress, Hearing-Specific Stress and Coping: Self-Reports from Deaf or Hard of Hearing Children and Children with Auditory Processing Disorder

    Science.gov (United States)

    Eschenbeck, Heike; Gillé, Vera; Heim-Dreger, Uwe; Schock, Alexandra; Schott, Andrea

    2017-01-01

    This study evaluated stressors and coping strategies in 70 children who are deaf or hard of hearing (D/HH) or with auditory processing disorder (APD) attending Grades 5 and 6 of a school for deaf and hard-of-hearing children. Everyday general stressors and more hearing-specific stressors were examined in a hearing-specific modified stress and…

  6. Sustained Perceptual Deficits from Transient Sensory Deprivation

    Science.gov (United States)

    Sanes, Dan H.

    2015-01-01

    Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development

  7. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  8. Central auditory processing disorder (CAPD) tests in a school-age hearing screening programme - analysis of 76,429 children.

    Science.gov (United States)

    Skarzynski, Piotr H; Wlodarczyk, Andrzej W; Kochanek, Krzysztof; Pilka, Adam; Jedrzejczak, Wiktor W; Olszewski, Lukasz; Bruski, Lukasz; Niedzielski, Artur; Skarzynski, Henryk

    2015-01-01

    Hearing disorders among school-age children are a current concern. Continuing studies have been performed in Poland since 2008, and on 2 December 2011 the EU Council adopted Conclusions on the Early Detection and Treatment of Communication Disorders in Children, Including the Use of e-Health Tools and innovative Solutions. The discussion now focuses not only on the efficacy of hearing screening programmes in schoolchildren, but what should be its general aim and what tests it should include? This paper makes the case that it is important to include central auditory processing disorder (CAPD) tests. One such test is the dichotic digits test (DDT). The aim of the presented study was to evaluate the usefulness of the DDT in detecting central hearing disorders in school-age children. During hearing screening programmes conducted in Poland in 2008-2010, exactly 235,664 children (7-12-years-old) were screened in 9,325 schools. Of this number, 7,642 were examined using the DDT test for CAPD. Screening programmes were conducted using the Sense Examination Platform. With the cut-off criterion set at the 5th percentile, results for the DDT applied in a divided attention mode were 11.4% positive for 7-year-olds and 11.3% for 12-year-olds. In the focused attention mode, the comparable result for 12-year-olds was 9.7%. There was a clear right ear advantage. In children with positive DDT results, a higher incidence of other disorders, such as dyslexia, was observed. A test for CAPD should be included in the hearing screening of school-age children. The results of this study form the basis for developing Polish standards in this area.

  9. Auditory object cognition in dementia

    Science.gov (United States)

    Goll, Johanna C.; Kim, Lois G.; Hailstone, Julia C.; Lehmann, Manja; Buckley, Aisling; Crutch, Sebastian J.; Warren, Jason D.

    2011-01-01

    The cognition of nonverbal sounds in dementia has been relatively little explored. Here we undertook a systematic study of nonverbal sound processing in patient groups with canonical dementia syndromes comprising clinically diagnosed typical amnestic Alzheimer's disease (AD; n = 21), progressive nonfluent aphasia (PNFA; n = 5), logopenic progressive aphasia (LPA; n = 7) and aphasia in association with a progranulin gene mutation (GAA; n = 1), and in healthy age-matched controls (n = 20). Based on a cognitive framework treating complex sounds as ‘auditory objects’, we designed a novel neuropsychological battery to probe auditory object cognition at early perceptual (sub-object), object representational (apperceptive) and semantic levels. All patients had assessments of peripheral hearing and general neuropsychological functions in addition to the experimental auditory battery. While a number of aspects of auditory object analysis were impaired across patient groups and were influenced by general executive (working memory) capacity, certain auditory deficits had some specificity for particular dementia syndromes. Patients with AD had a disproportionate deficit of auditory apperception but preserved timbre processing. Patients with PNFA had salient deficits of timbre and auditory semantic processing, but intact auditory size and apperceptive processing. Patients with LPA had a generalised auditory deficit that was influenced by working memory function. In contrast, the patient with GAA showed substantial preservation of auditory function, but a mild deficit of pitch direction processing and a more severe deficit of auditory apperception. The findings provide evidence for separable stages of auditory object analysis and separable profiles of impaired auditory object cognition in different dementia syndromes. PMID:21689671

  10. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These

  11. Perceptual consequences of "hidden" hearing loss.

    Science.gov (United States)

    Plack, Christopher J; Barker, Daphne; Prendergast, Garreth

    2014-09-09

    Dramatic results from recent animal experiments show that noise exposure can cause a selective loss of high-threshold auditory nerve fibers without affecting absolute sensitivity permanently. This cochlear neuropathy has been described as hidden hearing loss, as it is not thought to be detectable using standard measures of audiometric threshold. It is possible that hidden hearing loss is a common condition in humans and may underlie some of the perceptual deficits experienced by people with clinically normal hearing. There is some evidence that a history of noise exposure is associated with difficulties in speech discrimination and temporal processing, even in the absence of any audiometric loss. There is also evidence that the tinnitus experienced by listeners with clinically normal hearing is associated with cochlear neuropathy, as measured using Wave I of the auditory brainstem response. To date, however, there has been no direct link made between noise exposure, cochlear neuropathy, and perceptual difficulties. Animal experiments also reveal that the aging process itself, in the absence of significant noise exposure, is associated with loss of auditory nerve fibers. Evidence from human temporal bone studies and auditory brainstem response measures suggests that this form of hidden loss is common in humans and may have perceptual consequences, in particular, regarding the coding of the temporal aspects of sounds. Hidden hearing loss is potentially a major health issue, and investigations are ongoing to identify the causes and consequences of this troubling condition. © The Author(s) 2014.

  12. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease.

    Science.gov (United States)

    Benoit, Charles-Etienne; Dalla Bella, Simone; Farrugia, Nicolas; Obrig, Hellmuth; Mainka, Stefan; Kotz, Sonja A

    2014-01-01

    It is well established that auditory cueing improves gait in patients with idiopathic Parkinson's disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here, we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a 4-week music training program with rhythmic auditory cueing. Long-term effects were assessed 1 month after the end of the training. Perceptual and motor timing was evaluated with a battery for the assessment of auditory sensorimotor and timing abilities and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients' performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts). The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  13. Sex-related differences in auditory processing in adolescents with fetal alcohol spectrum disorder: A magnetoencephalographic study

    Directory of Open Access Journals (Sweden)

    Claudia D. Tesche

    2015-01-01

    Full Text Available Children exposed to substantial amounts of alcohol in utero display a broad range of morphological and behavioral outcomes, which are collectively referred to as fetal alcohol spectrum disorders (FASDs. Common to all children on the spectrum are cognitive and behavioral problems that reflect central nervous system dysfunction. Little is known, however, about the potential effects of variables such as sex on alcohol-induced brain damage. The goal of the current research was to utilize magnetoencephalography (MEG to examine the effect of sex on brain dynamics in adolescents and young adults with FASD during the performance of an auditory oddball task. The stimuli were short trains of 1 kHz “standard” tone bursts (80% randomly interleaved with 1.5 kHz “target” tone bursts (10% and “novel” digital sounds (10%. Participants made motor responses to the target tones. Results are reported for 44 individuals (18 males and 26 females ages 12 through 22 years. Nine males and 13 females had a diagnosis of FASD and the remainder were typically-developing age- and sex-matched controls. The main finding was widespread sex-specific differential activation of the frontal, medial and temporal cortex in adolescents with FASD compared to typically developing controls. Significant differences in evoked-response and time–frequency measures of brain dynamics were observed for all stimulus types in the auditory cortex, inferior frontal sulcus and hippocampus. These results underscore the importance of considering the influence of sex when analyzing neurophysiological data in children with FASD.

  14. Estudo do comportamento vocal no ciclo menstrual: avaliação perceptivo-auditiva, acústica e auto-perceptiva Vocal behavior during menstrual cycle: perceptual-auditory, acoustic and self-perception analysis

    Directory of Open Access Journals (Sweden)

    Luciane C. de Figueiredo

    2004-06-01

    Full Text Available Durante o período pré-menstrual é comum a ocorrência de disfonia, e são poucas as mulheres que se dão conta dessa variação da voz dentro do ciclo menstrual (Quinteiro, 1989. OBJETIVO: Verificar se há diferença no padrão vocal de mulheres no período de ovulação em relação ao primeiro dia do ciclo menstrual, utilizando-se da análise perceptivo-auditiva, da espectrografia, dos parâmetros acústicos e quando esta diferença está presente, se é percebida pelas mulheres. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: A amostra coletada foi de 30 estudantes de Fonoaudiologia, na faixa etária de 18 a 25 anos, não-fumantes, com ciclo menstrual regular e sem o uso de contraceptivo oral. As vozes foram gravadas no primeiro dia de menstruação e no décimo-terceiro dia pós-menstruação (ovulação, para posterior comparação. RESULTADOS: Observou-se durante o período menstrual que as vozes estão rouco-soprosa de grau leve a moderado, instáveis, sem a presença de quebra de sonoridade, com pitch e loudness adequados e ressonância equilibrada. Há pior qualidade de definição dos harmônicos, maior quantidade de ruído entre eles e menor extensão dos harmônicos superiores. Encontramos uma f0 mais aguda, jitter e shimmer aumentados e PHR diminuída. CONCLUSÃO: No período menstrual há mudanças na qualidade vocal, no comportamento dos harmônicos e nos parâmetros vocais (f0,jitter, shimmer e PHR. Além disso, a maioria das estudantes de Fonoaudiologia não percebeu a variação da voz durante o ciclo menstrual.During the premenstruation period dysphonia often can be observed and only few women are aware of this voice variation (Quinteiro, 1989. AIM: To verify if there are vocal quality variations between the ovulation period and the first day of the menstrual cycle, by using perceptual-auditory and acoustic analysis, including spectrography, and the self perception of the vocal changes when it occurs. STUDY DESIGN: Case

  15. Perceptual and acoustic parameters of vocal nodules in children.

    Science.gov (United States)

    Gramuglia, Andréa Cristina Joia; Tavares, Elaine L M; Rodrigues, Sérgio Augusto; Martins, Regina H G

    2014-02-01

    Vocal nodules constitute the major cause of dysphonia during childhood. Auditory-perceptual and acoustic vocal analyses have been used to differentiate vocal nodules from normal voice in children. To study the value of auditory-perceptual and acoustic vocal analyses in assessments of children with nodules. Diagnostic test study. A comparative study was carried out including 100 children with videolaryngoscopic diagnosis of vocal nodules (nodule group-NG); and 100 children without vocal symptoms and with normal videolaryngoscopic exams (control group-CG). The age range of both groups was between 4 and 11 years. All children underwent auditory-perceptual vocal analyses (GRBASI scale); maximum phonation time and s/z ratio were calculated, and acoustic vocal analysis (MDVP software) were carried out. There was no difference in the values of maximum phonation time and s/z ratio between groups. Auditory-perceptual analysis indicated greater compromising of voice parameters for NG, compared to CG: G (79 versus 24), R (53 versus 3), B (67 versus 23) and S (35 versus 1). The values of acoustic parameters jitter, PPQ, shimmer, APQ, NHR and SPI were higher for NG for CG. The parameter f0 did not differ between groups. Compromising of auditory-perceptual (G, R, B and S) and acoustic vocal parameters (jitter, PPQ, shimmer, APQ, NHR and SPI) was greater for children with nodules than for those of the control group, which makes them important methods for assessing child dysphonia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. The source dilemma hypothesis: Perceptual uncertainty contributes to musical emotion.

    Science.gov (United States)

    Bonin, Tanor L; Trainor, Laurel J; Belyk, Michel; Andrews, Paul W

    2016-09-01

    Music can evoke powerful emotions in listeners. Here we provide the first empirical evidence that the principles of auditory scene analysis and evolutionary theories of emotion are critical to a comprehensive theory of musical emotion. We interpret these data in light of a theoretical framework termed "the source dilemma hypothesis," which predicts that uncertainty in the number, identity or location of sound objects elicits unpleasant emotions by presenting the auditory system with an incoherent percept, thereby motivating listeners to resolve the auditory ambiguity. We describe two experiments in which source location and timbre were manipulated to change uncertainty in the auditory scene. In both experiments, listeners rated tonal and atonal melodies with congruent auditory scene cues as more pleasant than melodies with incongruent auditory scene cues. These data suggest that music's emotive capacity relies in part on the perceptual uncertainty it produces regarding the auditory scene. Copyright © 2016. Published by Elsevier B.V.

  17. Cognitive and Perceptual Selectivity and Target Regulation of Mental Activity in Personal Evaluation Situations of Social Anxiety Disorder

    Science.gov (United States)

    Sagalakova, Olga A.; Truevtsev, Dmitry V.; Sagalakov, Anatoly M.

    2016-01-01

    This article analyzes modern theoretical and conceptual models of social anxiety disorder (SAD) (cognitive, metacognitive, psychopathological) with a view to determine specific features of psychological mechanisms of disorders studied in various approaches, to identify similarities and differences in conceptual SAD models, their heuristic…

  18. The Identification of Children with Perceptual-Motor Dysfunction; A Study of Perceptual-Motor Dysfunction among Emotionally Disturbed, Educable Mentally Retarded and Normal Children in the Pittsburgh Public Schools.

    Science.gov (United States)

    Rosner, Jerome; And Others

    The Rosner Perceptual Survey (RPS) and the Rosner-Richman Perceptual Survey (RRPS) were developed for screening perceptual motor dysfunction. The RPS consisted of 17 subtests of visual motor and auditory motor functions, general motor skills, self awareness, and integrative function; the RRPS, intended for teacher or paraprofessional use, included…

  19. The encoding of auditory objects in auditory cortex: insights from magnetoencephalography.

    Science.gov (United States)

    Simon, Jonathan Z

    2015-02-01

    Auditory objects, like their visual counterparts, are perceptually defined constructs, but nevertheless must arise from underlying neural circuitry. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects listening to complex auditory scenes, we review studies that demonstrate that auditory objects are indeed neurally represented in auditory cortex. The studies use neural responses obtained from different experiments in which subjects selectively listen to one of two competing auditory streams embedded in a variety of auditory scenes. The auditory streams overlap spatially and often spectrally. In particular, the studies demonstrate that selective attentional gain does not act globally on the entire auditory scene, but rather acts differentially on the separate auditory streams. This stream-based attentional gain is then used as a tool to individually analyze the different neural representations of the competing auditory streams. The neural representation of the attended stream, located in posterior auditory cortex, dominates the neural responses. Critically, when the intensities of the attended and background streams are separately varied over a wide intensity range, the neural representation of the attended speech adapts only to the intensity of that speaker, irrespective of the intensity of the background speaker. This demonstrates object-level intensity gain control in addition to the above object-level selective attentional gain. Overall, these results indicate that concurrently streaming auditory objects, even if spectrally overlapping and not resolvable at the auditory periphery, are individually neurally encoded in auditory cortex, as separate objects. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-04-01

    . This study aimed to analyze the auditory evoked middle latency response in two patients with auditory processing disorder and relate objective and behavioral measures. This case study was conducted in 2 patients (P1 = 12 years, female, P2 = 17 years old, male, both with the absence of sensory abnormalities, neurological and neuropsychiatric disorders. Both were submitted to anamnesis, inspection of the external ear canal, hearing test and evaluation of Auditory Evoked Middle latency Response. There was a significant association between behavioral test and objectives results. In the interview, there were complaints about the difficulty in listening in a noisy environment, sound localization, inattention, and phonological changes in writing and speaking, as confirmed by evaluation of auditory processing and Auditory Evoked Middle Latency Response. Changes were observed in the right decoding process hearing in both cases on the behavioral assessment of auditory processing; auditory evoked potential test middle latency shows that the right contralateral via response was deficient, confirming the difficulties of the patients in the assignment of meaning in acoustic information in a competitive sound condition at right, in both cases. In these cases it was shown the association between the results, but there is a need for further studies with larger sample population to confirm the data.

  1. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-01-01

    . This study aimed to analyze the auditory evoked middle latency response in two patients with auditory processing disorder and relate objective and behavioral measures. This case study was conducted in 2 patients (P1 = 12 years, female, P2 = 17 years old, male, both with the absence of sensory abnormalities, neurological and neuropsychiatric disorders. Both were submitted to anamnesis, inspection of the external ear canal, hearing test and evaluation of Auditory Evoked Middle latency Response. There was a significant association between behavioral test and objectives results. In the interview, there were complaints about the difficulty in listening in a noisy environment, sound localization, inattention, and phonological changes in writing and speaking, as confirmed by evaluation of auditory processing and Auditory Evoked Middle Latency Response. Changes were observed in the right decoding process hearing in both cases on the behavioral assessment of auditory processing; auditory evoked potential test middle latency shows that the right contralateral via response was deficient, confirming the difficulties of the patients in the assignment of meaning in acoustic information in a competitive sound condition at right, in both cases. In these cases it was shown the association between the results, but there is a need for further studies with larger sample population to confirm the data.

  2. Relationship of the Acoustic Startle Response and Its Modulation to Emotional and Behavioral Problems in Typical Development Children and Those with Autism Spectrum Disorders

    Science.gov (United States)

    Takahashi, Hidetoshi; Komatsu, Sahoko; Nakahachi, Takayuki; Ogino, Kazuo; Kamio, Yoko

    2016-01-01

    Auditory hyper-reactivity is a common sensory-perceptual abnormality in autism spectrum disorders (ASD), which interrupts behavioral adaptation. We investigated acoustic startle response (ASR) modulations in 17 children with ASD and 27 with typical development (TD). Compared to TD, children with ASD had larger ASR magnitude to weak stimuli and…

  3. Auditory Hallucination

    Directory of Open Access Journals (Sweden)

    MohammadReza Rajabi

    2003-09-01

    Full Text Available Auditory Hallucination or Paracusia is a form of hallucination that involves perceiving sounds without auditory stimulus. A common is hearing one or more talking voices which is associated with psychotic disorders such as schizophrenia or mania. Hallucination, itself, is the most common feature of perceiving the wrong stimulus or to the better word perception of the absence stimulus. Here we will discuss four definitions of hallucinations:1.Perceiving of a stimulus without the presence of any subject; 2. hallucination proper which are the wrong perceptions that are not the falsification of real perception, Although manifest as a new subject and happen along with and synchronously with a real perception;3. hallucination is an out-of-body perception which has no accordance with a real subjectIn a stricter sense, hallucinations are defined as perceptions in a conscious and awake state in the absence of external stimuli which have qualities of real perception, in that they are vivid, substantial, and located in external objective space. We are going to discuss it in details here.

  4. Prevalence of Auditory Problems in Children with Feeding and Swallowing Disorders

    Science.gov (United States)

    Rawool, Vishakha Waman

    2017-01-01

    Purpose: Although an interdisciplinary approach is recommended for assessment and management of feeding or swallowing difficulties, audiologists are not always included in the interdisciplinary team. The purpose of this study is to report the prevalence of middle ear and hearing problems in children with feeding and swallowing disorders and to…

  5. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus

    DEFF Research Database (Denmark)

    IIiadou, Vasiliki; Ptok, Martin; Grech, Helen

    2017-01-01

    of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional...

  6. Impact of the presence of auditory neuropathy spectrum disorder (ANSD) on outcomes of children at three years of age.

    Science.gov (United States)

    Ching, Teresa Y C; Day, Julia; Dillon, Harvey; Gardner-Berry, Kirsty; Hou, Sanna; Seeto, Mark; Wong, Angela; Zhang, Vicky

    2013-12-01

    To determine the influence of the presence of auditory neuropathy spectrum disorder (ANSD) on speech, language, and psycho-social development of children at three years of age. A population-based, longitudinal study was performed on outcomes of children with hearing impairment (LOCHI) in Australia. The demographic characteristics of the children were described, and their developmental outcomes were evaluated at three years of age. Performance of children with ANSD was compared with that of children without ANSD in the LOCHI study. There were 47 children with ANSD in the study sample. Sixty-four percent of children with ANSD have hearing sensitivity loss ranging from mild to severe degree, and the remaining have profound hearing loss. At three years, 27 children used hearing aids, 19 used cochlear implants, and one child did not use any hearing device. Thirty percent of children have disabilities in addition to hearing loss. On average, there were no significant differences in performance level between children with and without ANSD. Also, the variability of scores was not significantly different between the two groups. There was no significant difference in performance levels or variability between children with and without ANSD, both for children who use hearing aids, and children who use cochlear implants.

  7. Impact of the presence of auditory neuropathy spectrum disorder (ANSD) on outcomes of children at three years of age

    Science.gov (United States)

    Ching, Teresa Y. C.; Day, Julia; Dillon, Harvey; Gardner-Berry, Kirsty; Hou, Sanna; Seeto, Mark; Wong, Angela; Zhang, Vicky

    2013-01-01

    Objective To determine the influence of the presence of auditory neuropathy spectrum disorder (ANSD) on speech, language, and psycho-social development of children at three years of age. Design A population-based, longitudinal study was performed on outcomes of children with hearing impairment (LOCHI) in Australia. The demographic characteristics of the children were described, and their developmental outcomes were evaluated at three years of age. Performance of children with ANSD was compared with that of children without ANSD in the LOCHI study. Study sample There were 47 children with ANSD in the study sample. Results Sixty-four percent of children with ANSD have hearing sensitivity loss ranging from mild to severe degree, and the remaining have profound hearing loss. At three years, 27 children used hearing aids, 19 used cochlear implants, and one child did not use any hearing device. Thirty percent of children have disabilities in addition to hearing loss. On average, there were no significant differences in performance level between children with and without ANSD. Also, the variability of scores was not significantly different between the two groups. Conclusions There was no significant difference in performance levels or variability between children with and without ANSD, both for children who use hearing aids, and children who use cochlear implants. PMID:24350696

  8. Psychometric Evaluation of Children with Auditory Processing Disorder (APD): Comparison with Normal-Hearing and Clinical Non-APD Groups

    Science.gov (United States)

    Iliadou, Vasiliki; Bamiou, Doris Eva

    2012-01-01

    Purpose: To investigate the clinical utility of the Children's Auditory Processing Performance Scale (CHAPPS; Smoski, Brunt, & Tannahill, 1992) to evaluate listening ability in 12-year-old children referred for auditory processing assessment. Method: This was a prospective case control study of 97 children (age range = 11;4 [years;months] to…

  9. Relação entre desvios fonológicos e processamento auditivo Relationship between phonological disorders and auditory processing

    Directory of Open Access Journals (Sweden)

    Débora Tomazi Moreira Caumo

    2009-01-01

    Full Text Available OBJETIVOS: Pesquisar a relação entre desvio fonológico e processamento auditivo. MÉTODOS: Os dados foram coletados por meio da verificação de prontuários. Foram incluídos no estudo pacientes com diagnóstico de desvio fonológico que realizaram testes de processamento auditivo e que tinham idade mínima de sete anos. Considerou-se a avaliação do processamento auditivo, a avaliação da fala, o gênero, a idade e a série escolar. RESULTADOS: Todas as crianças (100% apresentaram pelo menos um subperfil do processamento auditivo alterado. Ao comparar os processos de substituição e de estruturação silábica aos resultados dos testes de processamento auditivo verificou-se correlação estatisticamente significante para a etapa de integração binaural para a orelha direita do teste dicótico de dígitos (p=0,018 e para a condição nomeando do teste PPS (p=0,041. Na comparação dos testes de processamento auditivo com a idade encontrou-se diferença estatisticamente significante para o teste PSI na orelha direita (p=0,011 para a faixa de 10 a 12 anos. O mesmo ocorreu na comparação com a série escolar, em que o teste SSW na condição direita competitiva (p=0,039 e a atenção direcionada à direita do teste dicótico de dígitos (p=0,037 foram estatisticamente significantes para as séries mais avançadas. CONCLUSÃO: A pesquisa sugere a existência de uma estreita relação entre processamento auditivo e desvio fonológico principalmente em relação ao desempenho da orelha direita, evidenciando a importância de determinar a existência do comprometimento das habilidades auditivas em crianças com desvio fonológico.PURPOSE: To study the relationship between phonological disorder and auditory processing. METHODS: Data were gathered from patients' records, and included individuals with diagnosis of phonological disorder, with seven years old or more, who had carried out auditory processing tests. The study considered auditory

  10. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  11. On the Perceptual Subprocess of Absolute Pitch

    Directory of Open Access Journals (Sweden)

    Seung-Goo Kim

    2017-10-01

    Full Text Available Absolute pitch (AP is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label. In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC or based on absolute pitch memory (APM. A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM, only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  12. Mental imagery of speech: linking motor and perceptual systems through internal simulation and estimation

    National Research Council Canada - National Science Library

    Tian, Xing; Poeppel, David

    2012-01-01

    .... Imagined speech production ("articulation imagery"), which induces the kinesthetic feeling of articulator movement and its auditory consequences, provides a new angle because of the concurrent involvement of motor and perceptual systems...

  13. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  14. Visual and auditory socio-cognitive perception in unilateral temporal lobe epilepsy in children and adolescents: a prospective controlled study.

    Science.gov (United States)

    Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania

    2014-12-01

    A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re

  15. Source imaging of P300 auditory evoked potentials and clinical correlations in patients with posttraumatic stress disorder.

    Science.gov (United States)

    Bae, Kyung-Yeol; Kim, Do-Won; Im, Chang-Hwan; Lee, Seung-Hwan

    2011-12-01

    Posttraumatic stress disorder (PTSD) is associated with abnormal information processing. The P300 component of event-related potentials (ERPs) is known to be a useful marker of information processing. The purposes of this study were to determine the P300 current source density in PTSD patients, and its relationship with symptom severity. ERPs were recorded in 30 PTSD patients and 33 healthy controls while participants were performing the auditory oddball task. We compared P300 current source density data--obtained by standardized low-resolution brain electromagnetic tomography (sLORETA)--between the two groups. The correlation between P300 current source density and clinical symptoms (as evaluated using the Korean version of the Structured Interview for PTSD--K-SIPS and Davidson Trauma Scale--K-DTS) was conducted. In PTSD patients, the current source density of P300 is significantly reduced in the inferior frontal gyrus, precentral gyrus, insula, and anterior cingulate compared to healthy controls. Total K-DTS scores were correlated with the P300 current source density in the posterior cingulate gyrus. The K-SIP B items (re-experiencing) and K-SIB D items (increased arousal) were positively correlated with P300 current source densities in several brain regions located in the frontal, parietal, and temporal lobe (psource densities in the superior and middle frontal gyri in the frontal lobes (psource densities reflected the pathophysiology of PTSD patients. PTSD symptoms were related to different neural activities, depending on their symptom characteristics. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    2014-02-01

    Full Text Available The extended phenotype of autism spectrum disorders (ASD includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs and magnetic fields (ERFs may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response - automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN, and evaluation of stimulus novelty, indexed by P3a component, - found in individuals with ASD either increased, decreased or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, ‘sensory gating’ studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants at risk who can potentially benefit from particular types of therapies or interventions.

  17. Otoacoustic emissions, auditory evoked potentials and self-reported gender in people affected by disorders of sex development (DSD).

    Science.gov (United States)

    Wisniewski, Amy B; Espinoza-Varas, Blas; Aston, Christopher E; Edmundson, Shelagh; Champlin, Craig A; Pasanen, Edward G; McFadden, Dennis

    2014-08-01

    Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) - (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) - the male-typical pattern - than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Auditory verbal hallucinations in schizophrenia and post-traumatic stress disorder: common phenomenology, common cause, common interventions?

    Science.gov (United States)

    McCarthy-Jones, Simon; Longden, Eleanor

    2015-01-01

    Auditory verbal hallucinations (AVH: ‘hearing voices’) are found in both schizophrenia and post-traumatic stress disorder (PTSD). In this paper we first demonstrate that AVH in these two diagnoses share a qualitatively similar phenomenology. We then show that the presence of AVH in schizophrenia is often associated with earlier exposure to traumatic/emotionally overwhelming events, as it is by definition in PTSD. We next argue that the content of AVH relates to earlier traumatic events in a similar way in both PTSD and schizophrenia, most commonly having direct or indirect thematic links to emotionally overwhelming events, rather than being direct re-experiencing. We then propose, following cognitive models of PTSD, that the reconstructive nature of memory may be able to account for the nature of these associations between trauma and AVH content, as may threat-hypervigilance and the individual’s personal goals. We conclude that a notable subset of people diagnosed with schizophrenia with AVH are having phenomenologically and aetiologically identical experiences to PTSD patients who hear voices. As such we propose that the iron curtain between AVH in PTSD (often termed ‘dissociative AVH’) and AVH in schizophrenia (so-called ‘psychotic AVH’) needs to be torn down, as these are often the same experience. One implication of this is that these trauma-related AVH require a common trans-diagnostic treatment strategy. Whilst antipsychotics are already increasingly being used to treat AVH in PTSD, we argue for the centrality of trauma-based interventions for trauma-based AVH in both PTSD and in people diagnosed with schizophrenia. PMID:26283997

  19. Seeing the song: left auditory structures may track auditory-visual dynamic alignment.

    Directory of Open Access Journals (Sweden)

    Julia A Mossbridge

    Full Text Available Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements, it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment.

  20. Brief Daily Exposures to Asian Females Reverses Perceptual Narrowing for Asian Faces in Caucasian Infants

    Science.gov (United States)

    Anzures, Gizelle; Wheeler, Andrea; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Heron-Delaney, Michelle; Tanaka, James W.; Lee, Kang

    2012-01-01

    Perceptual narrowing in the visual, auditory, and multisensory domains has its developmental origins during infancy. The current study shows that experimentally induced experience can reverse the effects of perceptual narrowing on infants' visual recognition memory of other-race faces. Caucasian 8- to 10-month-olds who could not discriminate…

  1. Thirty-Five Years of Research on Perceptual Strengths: Essential Strategies to Promote Learning

    Science.gov (United States)

    Dunn, Rita; Dunn, Kenneth

    2005-01-01

    This article discusses the evolution of teaching approaches in concert with the findings of over three decades of researches on student perceptual strengths. Confusing reports of successes and only limited successes for students with varied perceptual strengths suggest that combined auditory, visual, tactual, and/or kinesthetic instructional…

  2. Perceptual Training Enhances Temporal Acuity for Multisensory Speech.

    Science.gov (United States)

    De Niear, Matthew A; Gupta, Pranjal B; Baum, Sarah H; Wallace, Mark T

    2017-10-28

    The temporal relationship between auditory and visual cues is a fundamental feature in the determination of whether these signals will be integrated. The window of perceived simultaneity (TBW) is a construct that describes the epoch of time during which asynchronous auditory and visual stimuli are likely to be perceptually bound. Recently, a number of studies have demonstrated the capacity for perceptual training to enhance temporal acuity for audiovisual stimuli (i.e., narrow the TBW). These studies, however, have only examined multisensory perceptual learning that develops in response to feedback that is provided when making judgments on simple, low-level audiovisual stimuli (i.e., flashes and beeps). Here we sought to determine if perceptual training was capable of altering temporal acuity for audiovisual speech. Furthermore, we also explored whether perceptual training with simple or complex audiovisual stimuli generalized across levels of stimulus complexity. Using a simultaneity judgment (SJ) task, we measured individuals' temporal acuity (as estimated by the TBW) prior to, immediately following, and one week after four consecutive days of perceptual training. We report that temporal acuity for audiovisual speech stimuli is enhanced following perceptual training using speech stimuli. Additionally, we find that changes in temporal acuity following perceptual training do not generalize across the levels of stimulus complexity in this study. Overall, the results suggest that perceptual training is capable of enhancing temporal acuity for audiovisual speech in adults, and that the dynamics of the changes in temporal acuity following perceptual training differ between simple audiovisual stimuli and more complex audiovisual speech stimuli. Copyright © 2017. Published by Elsevier Inc.

  3. Perceptual Wavelet packet transform based Wavelet Filter Banks Modeling of Human Auditory system for improving the intelligibility of voiced and unvoiced speech: A Case Study of a system development

    OpenAIRE

    Ranganadh Narayanam

    2015-01-01

    The objective of this project is to discuss a versatile speech enhancement method based on the human auditory model. In this project a speech enhancement scheme is being described which meets the demand for quality noise reduction algorithms which are capable of operating at a very low signal to noise ratio. We will be discussing how proposed speech enhancement system is capable of reducing noise with little speech degradation in diverse noise environments. In this model to reduce the resi...

  4. Context effects on auditory distraction

    Science.gov (United States)

    Chen, Sufen; Sussman, Elyse S.

    2014-01-01

    The purpose of the study was to test the hypothesis that sound context modulates the magnitude of auditory distraction, indexed by behavioral and electrophysiological measures. Participants were asked to identify tone duration, while irrelevant changes occurred in tone frequency, tone intensity, and harmonic structure. Frequency deviants were randomly intermixed with standards (Uni-Condition), with intensity deviants (Bi-Condition), and with both intensity and complex deviants (Tri-Condition). Only in the Tri-Condition did the auditory distraction effect reflect the magnitude difference among the frequency and intensity deviants. The mixture of the different types of deviants in the Tri-Condition modulated the perceived level of distraction, demonstrating that the sound context can modulate the effect of deviance level on processing irrelevant acoustic changes in the environment. These findings thus indicate that perceptual contrast plays a role in change detection processes that leads to auditory distraction. PMID:23886958

  5. Efficacy of a sound-based intervention with a child with an autism spectrum disorder and auditory sensory over-responsivity.

    Science.gov (United States)

    Gee, Bryan M; Thompson, Kelly; St John, Holly

    2014-03-01

    Sound-based interventions (SBIs) are being used by paediatric occupational therapists to help children with autism spectrum disorders and co-morbid sensory processing disorders. A limited yet growing body of evidence is emerging related to the efficacy of SBIs in reducing sensory processing deficits among paediatric clients with co-morbid conditions. The current study employed an ABA single-subject case-controlled design, implementing The Listening Program® with a 7-year-old child diagnosed with autism spectrum disorder who demonstrated auditory sensory over-responsivity (SOR). The intervention consisted of 10 weeks of psycho-acoustically modified classical music that was delivered using specialized headphones and amplifier and a standard CD player. Repeated measures were conducted during the A(1), B and A(2) phases of the study using the Sensory Processing Measure, a subjective caregiver questionnaire, and the Sensory Over-Responsivity Scales, an examiner-based assessment measure to track changes of the participant's auditory SOR-related behaviours. The results indicated that the participant exhibited a decrease in the number of negative (avoidant, verbal and physical negative) and self-stimulatory behaviours. The decreases in negative and self-stimulatory behaviour may have been due to the therapeutic effect of the repeated exposure to the Sensory Over-Responsivity Scales or The Listening Program SBI. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Auditory neuropathy spectrum disorder in the wider health context: experiences of parents whose infants have been identified through newborn hearing screening programme.

    Science.gov (United States)

    Uus, Kai; Young, Alys; Day, Marianne

    2012-03-01

    This paper presents an insight into the parental experiences of how parents made sense of having their child identified with auditory neuropathy spectrum disorder (ANSD), given the broader context of their child's other health issues. Qualitative narrative study. Twenty-one families participated whose children had been identified with ANSD through the newborn hearing screening programme. The majority of parents in the sample were overwhelmed with perinatal health issues and initially gave the diagnosis of ANSD very low priority. An understanding of parents' perspective is particularly relevant to everyone involved in early support and management of infants with ANSD.

  7. Functional imaging of auditory scene analysis.

    Science.gov (United States)

    Gutschalk, Alexander; Dykstra, Andrew R

    2014-01-01

    Our auditory system is constantly faced with the task of decomposing the complex mixture of sound arriving at the ears into perceptually independent streams constituting accurate representations of individual sound sources. This decomposition, termed auditory scene analysis, is critical for both survival and communication, and is thought to underlie both speech and music perception. The neural underpinnings of auditory scene analysis have been studied utilizing invasive experiments with animal models as well as non-invasive (MEG, EEG, and fMRI) and invasive (intracranial EEG) studies conducted with human listeners. The present article reviews human neurophysiological research investigating the neural basis of auditory scene analysis, with emphasis on two classical paradigms termed streaming and informational masking. Other paradigms - such as the continuity illusion, mistuned harmonics, and multi-speaker environments - are briefly addressed thereafter. We conclude by discussing the emerging evidence for the role of auditory cortex in remapping incoming acoustic signals into a perceptual representation of auditory streams, which are then available for selective attention and further conscious processing. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Monitoring the Hearing Handicap and the Recognition Threshold of Sentences of a Patient with Unilateral Auditory Neuropathy Spectrum Disorder with Use of a Hearing Aid.

    Science.gov (United States)

    Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares

    2016-04-01

    Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to -2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use.

  9. Application of the IPI Model to a Perceptual Development Curriculum.

    Science.gov (United States)

    Rosner, Jerome

    The Individually Prescribed Instruction (IPI) Model developed by Bolvin and Glaser (1968) is applied to a perceptual development curriculum for children manifesting learning disabilities. The Model utilizes criterion referenced tests for behavioral objectives in four areas: general motor, visual motor, auditory motor, and integrative. Eight units…

  10. The Design of an Individualized Perceptual Skills Curriculum.

    Science.gov (United States)

    Rosner, Jerome

    The purpose of this individualized perceptual skills curriculum is to ensure that each child acquires facility in processing concrete information before being exposed to abstraction demands of an academic program. The four major curriculum areas described are general motor, visual motor, auditory motor, and integrative. Unit areas are defined,…

  11. Perceptual Learning of Acoustic Noise by Individuals with Dyslexia

    Science.gov (United States)

    Agus, Trevor R.; Carrión-Castillo, Amaia; Pressnitzer, Daniel; Ramus, Franck

    2014-01-01

    Purpose: A phonological deficit is thought to affect most individuals with developmental dyslexia. The present study addresses whether the phonological deficit is caused by difficulties with perceptual learning of fine acoustic details. Method: A demanding test of nonverbal auditory memory, "noise learning," was administered to both…

  12. Deep band modulated phrase perception in quiet and noise in individuals with auditory neuropathy spectrum disorder and sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Hemanth Narayan Shetty

    2017-01-01

    Full Text Available Context: Deep band modulation (DBM improves speech perception in individuals with learning disability and older adults, who had temporal impairment in them. However, it is unclear on perception of DBM phrases at quiet and noise conditions in individuals with auditory neuropathy spectrum disorder (ANSD and sensorineural hearing loss (SNHL, as these individuals suffer from temporal impairment. Aim: The aim is to study the effect of DBM and noise on phrase perception in individuals with normal hearing, SNHL, and ANSD. Settings and Design: A factorial design was used to study deep-band-modulated phrase perception in quiet and at noise. Materials and Methods: Twenty participants in each group (normal, SNHL, and ANSD were included to assess phrase perception on four lists of each unprocessed (UP and DBM phrases at different signal-to-noise ratios (SNRs (−1, −3, and −5 dB SNR, which were presented at most comfortable level. In addition, a temporal processing was determined by gap detection threshold test. Statistical Analysis: A mixed analysis of variance was used to investigate main and interaction effects of conditions, noise, and groups. Further, a Pearson product moment correlation was used to document relationship between phrase perception and temporal processing among study participants in each experimental condition. Results: In each group, a significant improvement was observed in DBM phrase perception over UP phrase recognition in quiet and noise conditions. Although a significant improvement was observed, the benefit of recognition from DBM over UP is negligible at −5 dB SNR in both SNHL and ANSD groups. In addition, as expected, a significant improvement in phrase perception in each condition was found in normal hearing than SNHL followed by ANSD. Further, in both atypical groups, a strong negative correlation was found between phrase perception and gap detection threshold in each of the experimental condition. Conclusion: This

  13. Free-classification of perceptually similar speakers with dysarthria.

    Science.gov (United States)

    Lansford, Kaitlin L; Liss, Julie M; Norton, Rebecca E

    2014-12-01

    In this investigation, the construct of perceptual similarity was explored in the dysarthrias. Specifically, we employed an auditory free-classification task to determine whether listeners could cluster speakers by perceptual similarity, whether the clusters mapped to acoustic metrics, and whether the clusters were constrained by dysarthria subtype diagnosis. Twenty-three listeners blinded to speakers' medical and dysarthria subtype diagnoses participated. The task was to group together (drag and drop) the icons corresponding to 33 speakers with dysarthria on the basis of how similar they sounded. Cluster analysis and multidimensional scaling (MDS) modeled the perceptual dimensions underlying similarity. Acoustic metrics and perceptual judgments were used in correlation analyses to facilitate interpretation of the derived dimensions. Six clusters of similar-sounding speakers and 3 perceptual dimensions underlying similarity were revealed. The clusters of similar-sounding speakers were not constrained by dysarthria subtype diagnosis. The 3 perceptual dimensions revealed by MDS were correlated with metrics for articulation rate, intelligibility, and vocal quality, respectively. This study shows (a) feasibility of a free-classification approach for studying perceptual similarity in dysarthria, (b) correspondence between acoustic and perceptual metrics to clusters of similar-sounding speakers, and (c) similarity judgments transcended dysarthria subtype diagnosis.

  14. The Relationship between Brainstem Temporal Processing and Performance on Tests of Central Auditory Function in Children with Reading Disorders

    Science.gov (United States)

    Billiet, Cassandra R.; Bellis, Teri James

    2011-01-01

    Purpose: Studies using speech stimuli to elicit electrophysiologic responses have found approximately 30% of children with language-based learning problems demonstrate abnormal brainstem timing. Research is needed regarding how these responses relate to performance on behavioral tests of central auditory function. The purpose of the study was to…

  15. Motor-Auditory-Visual Integration: The Role of the Human Mirror Neuron System in Communication and Communication Disorders

    Science.gov (United States)

    Le Bel, Ronald M.; Pineda, Jaime A.; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an…

  16. Developmental Dyslexia: Exploring How Much Phonological and Visual Attention Span Disorders Are Linked to Simultaneous Auditory Processing Deficits

    Science.gov (United States)

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    The simultaneous auditory processing skills of 17 dyslexic children and 17 skilled readers were measured using a dichotic listening task. Results showed that the dyslexic children exhibited difficulties reporting syllabic material when presented simultaneously. As a measure of simultaneous visual processing, visual attention span skills were…

  17. An Auditory Go/No-Go Study of Event-Related Potentials in Children with Fetal Alcohol Spectrum Disorders

    DEFF Research Database (Denmark)

    Steinmann, Tobias P.; Andrew, Colin M.; Thomsen, Carsten E.

    2011-01-01

    Abstract—In this study event-related potentials (ERPs) were used to investigate the effects of prenatal alcohol exposure on response inhibition identified during task performance. ERPs were recorded during a auditory Go/No Go task in two groups of children with mean age of 12:8years (11years to 1...

  18. Posttraining sleep enhances automaticity in perceptual discrimination.

    Science.gov (United States)

    Atienza, Mercedes; Cantero, Jose L; Stickgold, Robert

    2004-01-01

    Perceptual learning can develop over extended periods, with slow, at times sleep-dependent, improvement seen several days after training. As a result, performance can become more automatic, that is, less dependent on voluntary attention. This study investigates whether the brain correlates of this enhancement of automaticity are sleep-dependent. Event-related potentials produced in response to complex auditory stimuli were recorded while subjects' attention was focused elsewhere. We report here that following training on an auditory discrimination task, performance continued to improve, without significant further training, for 72 hr. At the same time, several event-related potential components became evident 48-72 hr after training. Posttraining sleep deprivation prevented neither the continued performance improvement nor the slow development of cortical dynamics related to an enhanced familiarity with the task. However, those brain responses associated with the automatic shift of attention to unexpected stimuli failed to develop. Thus, in this auditory learning paradigm, posttraining sleep appears to reduce the voluntary attentional effort required for successful perceptual discrimination by facilitating the intrusion of a potentially meaningful stimulus into one's focus of attention for further evaluation.

  19. Delayed perceptual awareness in rapid perceptual decisions.

    Directory of Open Access Journals (Sweden)

    Regina Gregori-Grgič

    Full Text Available The flourishing of studies on the neural correlates of decision-making calls for an appraisal of the relation between perceptual decisions and conscious perception. By exploiting the long integration time of noisy motion stimuli, and by forcing human observers to make difficult speeded decisions--sometimes a blind guess--about stimulus direction, we traced the temporal buildup of motion discrimination capability and perceptual awareness, as assessed trial by trial through direct rating. We found that both increased gradually with motion coherence and viewing time, but discrimination was systematically leading awareness, reaching a plateau much earlier. Sensitivity and criterion changes contributed jointly to the slow buildup of perceptual awareness. It made no difference whether motion discrimination was accomplished by saccades or verbal responses. These findings suggest that perceptual awareness emerges on the top of a developing or even mature perceptual decision. We argue that the middle temporal (MT cortical region does not confer us the full phenomenic depth of motion perception, although it may represent a precursor stage in building our subjective sense of visual motion.

  20. Current status of auditory aging and anti-aging research.

    Science.gov (United States)

    Ruan, Qingwei; Ma, Cheng; Zhang, Ruxin; Yu, Zhuowei

    2014-01-01

    The development of presbycusis, or age-related hearing loss, is determined by a combination of genetic and environmental factors. The auditory periphery exhibits a progressive bilateral, symmetrical reduction of auditory sensitivity to sound from high to low frequencies. The central auditory nervous system shows symptoms of decline in age-related cognitive abilities, including difficulties in speech discrimination and reduced central auditory processing, ultimately resulting in auditory perceptual abnormalities. The pathophysiological mechanisms of presbycusis include excitotoxicity, oxidative stress, inflammation, aging and oxidative stress-induced DNA damage that results in apoptosis in the auditory pathway. However, the originating signals that trigger these mechanisms remain unclear. For instance, it is still unknown whether insulin is involved in auditory aging. Auditory aging has preclinical lesions, which manifest as asymptomatic loss of periphery auditory nerves and changes in the plasticity of the central auditory nervous system. Currently, the diagnosis of preclinical, reversible lesions depends on the detection of auditory impairment by functional imaging, and the identification of physiological and molecular biological markers. However, despite recent improvements in the application of these markers, they remain under-utilized in clinical practice. The application of antisenescent approaches to the prevention of auditory aging has produced inconsistent results. Future research will focus on the identification of markers for the diagnosis of preclinical auditory aging and the development of effective interventions. © 2013 Japan Geriatrics Society.

  1. Alterations in low-level perceptual networks related to clinical severity in PTSD after an earthquake: a resting-state fMRI study.

    Directory of Open Access Journals (Sweden)

    Jing Shang

    Full Text Available BACKGROUND: Several task-based functional MRI (fMRI studies have highlighted abnormal activation in specific regions involving the low-level perceptual (auditory, visual, and somato-motor network in posttraumatic stress disorder (PTSD patients. However, little is known about whether the functional connectivity of the low-level perceptual and higher-order cognitive (attention, central-execution, and default-mode networks change in medication-naïve PTSD patients during the resting state. METHODS: We investigated the resting state networks (RSNs using independent component analysis (ICA in 18 chronic Wenchuan earthquake-related PTSD patients versus 20 healthy survivors (HSs. RESULTS: Compared to the HSs, PTSD patients displayed both increased and decreased functional connectivity within the salience network (SN, central executive network (CEN, default mode network (DMN, somato-motor network (SMN, auditory network (AN, and visual network (VN. Furthermore, strengthened connectivity involving the inferior temporal gyrus (ITG and supplementary motor area (SMA was negatively correlated with clinical severity in PTSD patients. LIMITATIONS: Given the absence of a healthy control group that never experienced the earthquake, our results cannot be used to compare alterations between the PTSD patients, physically healthy trauma survivors, and healthy controls. In addition, the breathing and heart rates were not monitored in our small sample size of subjects. In future studies, specific task paradigms should be used to reveal perceptual impairments. CONCLUSIONS: These findings suggest that PTSD patients have widespread deficits in both the low-level perceptual and higher-order cognitive networks. Decreased connectivity within the low-level perceptual networks was related to clinical symptoms, which may be associated with traumatic reminders causing attentional bias to negative emotion in response to threatening stimuli and resulting in emotional dysregulation.

  2. Musically Cued Gait-Training Improves Both Perceptual and Motor Timing in Parkinson’s Disease

    Science.gov (United States)

    Benoit, Charles-Etienne; Dalla Bella, Simone; Farrugia, Nicolas; Obrig, Hellmuth; Mainka, Stefan; Kotz, Sonja A.

    2014-01-01

    It is well established that auditory cueing improves gait in patients with idiopathic Parkinson’s disease (IPD). Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor, and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here, we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a 4-week music training program with rhythmic auditory cueing. Long-term effects were assessed 1 month after the end of the training. Perceptual and motor timing was evaluated with a battery for the assessment of auditory sensorimotor and timing abilities and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients’ performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts). The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing. PMID:25071522

  3. Musically cued gait-training improves both perceptual and motor timing in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Charles-Etienne eBenoit

    2014-07-01

    Full Text Available It is well established that auditory cueing improves gait in patients with Idiopathic Parkinson’s Disease (IPD. Disease-related reductions in speed and step length can be improved by providing rhythmical auditory cues via a metronome or music. However, effects on cognitive aspects of motor control have yet to be thoroughly investigated. If synchronization of movement to an auditory cue relies on a supramodal timing system involved in perceptual, motor and sensorimotor integration, auditory cueing can be expected to affect both motor and perceptual timing. Here we tested this hypothesis by assessing perceptual and motor timing in 15 IPD patients before and after a four-week music training program with rhythmic auditory cueing. Long-term effects were assessed one month after the end of the training. Perceptual and motor timing was evaluated with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA and compared to that of age-, gender-, and education-matched healthy controls. Prior to training, IPD patients exhibited impaired perceptual and motor timing. Training improved patients’ performance in tasks requiring synchronization with isochronous sequences, and enhanced their ability to adapt to durational changes in a sequence in hand tapping tasks. Benefits of cueing extended to time perception (duration discrimination and detection of misaligned beats in musical excerpts. The current results demonstrate that auditory cueing leads to benefits beyond gait and support the idea that coupling gait to rhythmic auditory cues in IPD patients relies on a neuronal network engaged in both perceptual and motor timing.

  4. Surprise Leads to Noisier Perceptual Decisions

    Directory of Open Access Journals (Sweden)

    Marta I Garrido

    2011-02-01

    Full Text Available Surprising events in the environment can impair task performance. This might be due to complete distraction, leading to lapses during which performance is reduced to guessing. Alternatively, unpredictability might cause a graded withdrawal of perceptual resources from the task at hand and thereby reduce sensitivity. Here we attempt to distinguish between these two mechanisms. Listeners performed a novel auditory pitch—duration discrimination, where stimulus loudness changed occasionally and incidentally to the task. Responses were slower and less accurate in the surprising condition, where loudness changed unpredictably, than in the predictable condition, where the loudness was held constant. By explicitly modelling both lapses and changes in sensitivity, we found that unpredictable changes diminished sensitivity but did not increase the rate of lapses. These findings suggest that background environmental uncertainty can disrupt goal-directed behaviour. This graded processing strategy might be adaptive in potentially threatening contexts, and reflect a flexible system for automatic allocation of perceptual resources.

  5. Study of psychiatric disorders and evaluation of their treatment using method of auditory evoked potential P300

    OpenAIRE

    Dapšys, Kastytis

    2011-01-01

    Recording and analysis of event-related potentials is safe and harmless method of evaluation of cognition and is suitable to follow the changes of cognitive processes induced by psychoactive drugs or other therapeutic procedures. The main aim of the work was to evaluate the influence of atypical antipsychotics risperidone and quetiapine and such nonpharmacological methods as electroconvulsive therapy and metaglossotherapy on the changes of information processing in the auditory system using e...

  6. Abnormal pre-attentive arousal in young children with autism spectrum disorder contributes to their atypical auditory behavior: an ERP study.

    Science.gov (United States)

    Stroganova, Tatiana A; Kozunov, Vladimir V; Posikera, Irina N; Galuta, Ilia A; Gratchev, Vitaliy V; Orekhova, Elena V

    2013-01-01

    Auditory sensory modulation difficulties and problems with automatic re-orienting to sound are well documented in autism spectrum disorders (ASD). Abnormal preattentive arousal processes may contribute to these deficits. In this study, we investigated components of the cortical auditory evoked potential (CAEP) reflecting preattentive arousal in children with ASD and typically developing (TD) children aged 3-8 years. Pairs of clicks ('S1' and 'S2') separated by a 1 sec S1-S2 interstimulus interval (ISI) and much longer (8-10 sec) S1-S1 ISIs were presented monaurally to either the left or right ear. In TD children, the P50, P100 and N1c CAEP components were strongly influenced by temporal novelty of clicks and were much greater in response to the S1 than the S2 click. Irrespective of the stimulation side, the 'tangential' P100 component was rightward lateralized in TD children, whereas the 'radial' N1c component had higher amplitude contralaterally to the stimulated ear. Compared to the TD children, children with ASD demonstrated 1) reduced amplitude of the P100 component under the condition of temporal novelty (S1) and 2) an attenuated P100 repetition suppression effect. The abnormalities were lateralized and depended on the presentation side. They were evident in the case of the left but not the right ear stimulation. The P100 abnormalities in ASD correlated with the degree of developmental delay and with the severity of auditory sensory modulation difficulties observed in early life. The results suggest that some rightward-lateralized brain networks that are crucially important for arousal and attention re-orienting are compromised in children with ASD and that this deficit contributes to sensory modulation difficulties and possibly even other behavioral deficits in ASD.

  7. Abnormal pre-attentive arousal in young children with autism spectrum disorder contributes to their atypical auditory behavior: an ERP study.

    Directory of Open Access Journals (Sweden)

    Tatiana A Stroganova

    Full Text Available Auditory sensory modulation difficulties and problems with automatic re-orienting to sound are well documented in autism spectrum disorders (ASD. Abnormal preattentive arousal processes may contribute to these deficits. In this study, we investigated components of the cortical auditory evoked potential (CAEP reflecting preattentive arousal in children with ASD and typically developing (TD children aged 3-8 years. Pairs of clicks ('S1' and 'S2' separated by a 1 sec S1-S2 interstimulus interval (ISI and much longer (8-10 sec S1-S1 ISIs were presented monaurally to either the left or right ear. In TD children, the P50, P100 and N1c CAEP components were strongly influenced by temporal novelty of clicks and were much greater in response to the S1 than the S2 click. Irrespective of the stimulation side, the 'tangential' P100 component was rightward lateralized in TD children, whereas the 'radial' N1c component had higher amplitude contralaterally to the stimulated ear. Compared to the TD children, children with ASD demonstrated 1 reduced amplitude of the P100 component under the condition of temporal novelty (S1 and 2 an attenuated P100 repetition suppression effect. The abnormalities were lateralized and depended on the presentation side. They were evident in the case of the left but not the right ear stimulation. The P100 abnormalities in ASD correlated with the degree of developmental delay and with the severity of auditory sensory modulation difficulties observed in early life. The results suggest that some rightward-lateralized brain networks that are crucially important for arousal and attention re-orienting are compromised in children with ASD and that this deficit contributes to sensory modulation difficulties and possibly even other behavioral deficits in ASD.

  8. Presentation of dynamically overlapping auditory messages in user interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Papp, III, Albert Louis [Univ. of California, Davis, CA (United States)

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  9. The efficacy of formal auditory training in children with (central auditory processing disorder: behavioral and electrophysiological evaluation A eficácia do treinamento auditivo formal em crianças com transtorno de processamento auditivo (central: avaliação comportamental e eletrofisiológica

    Directory of Open Access Journals (Sweden)

    Renata Alonso

    2009-10-01

    Full Text Available Long Latency Auditory Evoked Potentials can be used to monitor changes in the Central Auditory Nervous System after Auditory Training. AIM: The aim of this study was to investigate the efficacy of Auditory Training in children with (Central Auditory Processing Disorder, comparing behavioral and electrophysiological findings before and after training. MATERIAL AND METHODS: twenty nine individuals between eight and 16 years of age with (Central Auditory Processing Disorder - diagnosed by behavioral tests - were involved in this research. After evaluation with the P300, the subjects were submitted to an Auditory Training program in acoustic booth and, at the end, a new evaluation of (central auditory processing and a new recording of P300. RESULTS: The comparison between the evaluations made before and after the Auditory Training showed that there was a statistically significant difference among P300 latency values and also among behavioral test mean values in evaluation of (central auditory processing. CONCLUSION: P300 appears to be a useful tool to monitor Central Auditory Nervous System changes after Auditory Training, and this program was effective in the rehabilitation of the auditory skills in children with (Central Auditory Processing Disorder.Os Potenciais Evocados Auditivos de Longa Latência podem ser uma ferramenta útil no monitoramento das mudanças ocorridas no Sistema Nervoso Auditivo Central após Treinamento Auditivo. OBJETIVO: O objetivo deste estudo foi verificar a eficácia do Treinamento Auditivo em crianças com Transtorno de Processamento Auditivo (Central, comparando as medidas comportamentais e eletrofisiológicas antes e após o treinamento. MATERIAL E MÉTODO: Participaram do estudo 29 indivíduos com idades entre oito e 16 anos diagnosticados, por meio de testes comportamentais, com Transtorno de Processamento Auditivo (Central. Após serem submetidos à avaliação do P300, foi realizado com os sujeitos um programa de

  10. Perceptually motivated time-frequency analysis.

    Science.gov (United States)

    O'Donovan, Jonathan J; Furlong, Dermot J

    2005-01-01

    This paper describes the design of a bilinear time-frequency distribution which is a joint model of temporal and spectral masking. The distribution is used to generate temporally evolving excitation patterns of nonstationary signals and systems and is conceived as a tool for acousticians and engineers for perceptual time-frequency analysis. Distribution time and frequency resolutions are controlled by a separable kernel consisting of a set of low-pass time and frequency smoothing windows. These windows are designed by adapting existing psychoacoustic models of auditory resolution, rather than using mathematical window functions. Cross-term interference and windowing clutter are highly suppressed for the distribution, ensuring resolution accuracy over a dynamic range sufficient to encompass that of the auditory system (in excess of 100 dB). Application to the analysis of a synthetic and two real signals are included to demonstrate the approach.

  11. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The frequency modulated auditory evoked response (FMAER, a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    Directory of Open Access Journals (Sweden)

    Duffy Frank H

    2013-01-01

    Full Text Available Abstract Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS, and autism spectrum disorder (ASD and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent

  13. Top-down (Prior Knowledge) and Bottom-up (Perceptual Modality) Influences on Spontaneous Interpersonal Synchronization.

    Science.gov (United States)

    Gipson, Christina L; Gorman, Jamie C; Hessler, Eric E

    2016-04-01

    Coordination with others is such a fundamental part of human activity that it can happen unintentionally. This unintentional coordination can manifest as synchronization and is observed in physical and human systems alike. We investigated the role of top-down influences (prior knowledge of the perceptual modality their partner is using) and bottom-up factors (perceptual modality combination) on spontaneous interpersonal synchronization. We examine this phenomena with respect to two different theoretical perspectives that differently emphasize top-down and bottom-up factors in interpersonal synchronization: joint-action/shared cognition theories and ecological-interactive theories. In an empirical study twelve dyads performed a finger oscillation task while attending to each other's movements through either visual, auditory, or visual and auditory perceptual modalities. Half of the participants were given prior knowledge of their partner's perceptual capabilities for coordinating across these different perceptual modality combinations. We found that the effect of top-down influence depends on the perceptual modality combination between two individuals. When people used the same perceptual modalities, top-down influence resulted in less synchronization and when people used different perceptual modalities, top-down influence resulted in more synchronization. Furthermore, persistence in the change in behavior as a result of having perceptual information about each other ('social memory') was stronger when this top-down influence was present.

  14. Perceptual Consequences of “Hidden” Hearing Loss

    Science.gov (United States)

    Barker, Daphne; Prendergast, Garreth

    2014-01-01

    Dramatic results from recent animal experiments show that noise exposure can cause a selective loss of high-threshold auditory nerve fibers without affecting absolute sensitivity permanently. This cochlear neuropathy has been described as hidden hearing loss, as it is not thought to be detectable using standard measures of audiometric threshold. It is possible that hidden hearing loss is a common condition in humans and may underlie some of the perceptual deficits experienced by people with clinically normal hearing. There is some evidence that a history of noise exposure is associated with difficulties in speech discrimination and temporal processing, even in the absence of any audiometric loss. There is also evidence that the tinnitus experienced by listeners with clinically normal hearing is associated with cochlear neuropathy, as measured using Wave I of the auditory brainstem response. To date, however, there has been no direct link made between noise exposure, cochlear neuropathy, and perceptual difficulties. Animal experiments also reveal that the aging process itself, in the absence of significant noise exposure, is associated with loss of auditory nerve fibers. Evidence from human temporal bone studies and auditory brainstem response measures suggests that this form of hidden loss is common in humans and may have perceptual consequences, in particular, regarding the coding of the temporal aspects of sounds. Hidden hearing loss is potentially a major health issue, and investigations are ongoing to identify the causes and consequences of this troubling condition. PMID:25204468

  15. Auditory cortical processing in real-world listening: the auditory system going real.

    Science.gov (United States)

    Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A; Wang, Xiaoqin

    2014-11-12

    The auditory sense of humans transforms intrinsically senseless pressure waveforms into spectacularly rich perceptual phenomena: the music of Bach or the Beatles, the poetry of Li Bai or Omar Khayyam, or more prosaically the sense of the world filled with objects emitting sounds that is so important for those of us lucky enough to have hearing. Whereas the early representations of sounds in the auditory system are based on their physical structure, higher auditory centers are thought to represent sounds in terms of their perceptual attributes. In this symposium, we will illustrate the current research into this process, using four case studies. We will illustrate how the spectral and temporal properties of sounds are used to bind together, segregate, categorize, and interpret sound patterns on their way to acquire meaning, with important lessons to other sensory systems as well. Copyright © 2014 the authors 0270-6474/14/3415135-04$15.00/0.

  16. Reconstructing speech from human auditory cortex.

    Directory of Open Access Journals (Sweden)

    Brian N Pasley

    2012-01-01

    Full Text Available How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex.

  17. Intelligibility of degraded speech and the relationship between symptoms of inattention, hyperactivity/impulsivity and language impairment in children with suspected auditory processing disorder.

    Science.gov (United States)

    Ahmmed, Ansar Uddin

    2017-10-01

    To compare the sensitivity and specificity of Auditory Figure Ground sub-tests of the SCAN-3 battery, using signal to noise ratio (SNR) of +8 dB (AFG+8) and 0 dB (AFG0), in identifying auditory processing disorder (APD). A secondary objective was to evaluate any difference in auditory processing (AP) between children with symptoms of inattention versus combined sub-types of Attention Deficit Hyperactivity Disorder (ADHD). Data from 201 children, aged 6 to 16 years (mean: 10 years 6 months, SD: 2 years 8 months), who were assessed for suspected APD were reviewed retrospectively. The outcomes of the SCAN-3 APD test battery, Swanson Nolan and Pelham-IV parental rating (SNAP-IV) and Children's Communication Checklist-2 (CCC-2) were analysed. AFG0 had a sensitivity of 56.3% and specificity of 100% in identifying children performing poorly in at least two of six SCAN-3 sub-tests or one of the two questionnaires, in contrast to 42.1% and 80% respectively for AFG+8. Impaired AP was mostly associated with symptoms of ADHD and /or language impairment (LI). LI was present in 92.9% of children with ADHD symptoms. Children with symptoms of combined ADHD plus LI performed significantly poorly (p < 0.05) compared to inattention ADHD plus LI in Filtered Words (FW) sub-test, but not in the rest of the SCAN-3 sub-tests. Speech in noise tests using SNR of 0 dB is better than +8 dB in assessing APD. The better FW performance of the inattention ADHD plus LI group can be speculated to be related to known difference in activity in a neural network between different sub-types of ADHD. The findings of the study and existing literature suggest that neural networks connecting the cerebral hemispheres, basal ganglia and cerebellum are involved in APD, ADHD and LI. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Perceptual Anomalies in Schizophrenia: Integrating Phenomenology and Cognitive Neuroscience

    National Research Council Canada - National Science Library

    Uhlhaas, Peter J; Mishara, Aaron L

    .... In contrast, general consensus has viewed dysfunctions in basic perceptual processes to be relatively unimportant in the explanation of more complex aspects of the disorder, including changes in self...

  19. Mechanisms of Perceptual Attention

    National Research Council Canada - National Science Library

    Dosher, Barbara

    2000-01-01

    .... Attention may affect the perceived clarity of visual displays and improve performance. In this project, a powerful external noise method was developed to identify and characterize the effect of attention on perceptual performance in visual tasks...

  20. Mechanism of Perceptual Attention

    National Research Council Canada - National Science Library

    Lu, Zhong-Lin

    2000-01-01

    .... Attention may affect the perceived clarity of visual displays and improve performance. In this project, a powerful external noise method was developed to identify and characterize the effect of attention on perceptual performance in visual tasks...

  1. Pseudo Perceptual Differentiation

    Science.gov (United States)

    Silverman, Julian; King, Catherine

    1970-01-01

    Two studies employing rod-and-frame test (RFT) and a size-estimation measure of "extensiveness of scanning reported. Results indicated perceptual differentiation interpretation of RFT performance erroneous for certain kinds of Ss. (Author)

  2. Central auditory processing disorder (CAPD tests in a school-age hearing screening programme – analysis of 76,429 children

    Directory of Open Access Journals (Sweden)

    Piotr H. Skarzynski

    2015-02-01

    Full Text Available [b]Introduction and objective[/b]. Hearing disorders among school-age children are a current concern. Continuing studies have been performed in Poland since 2008, and on 2 December 2011 the EU Council adopted Conclusions on the Early Detection and Treatment of Communication Disorders in Children, Including the Use of e-Health Tools and innovative Solutions. The discussion now focuses not only on the efficacy of hearing screening programmes in schoolchildren, but what should be its general aim and what tests it should include? This paper makes the case that it is important to include central auditory processing disorder (CAPD tests. One such test is the dichotic digits test (DDT. The aim of the presented study was to evaluate the usefulness of the DDT in detecting central hearing disorders in school-age children. [b]Materials and methods[/b]. During hearing screening programmes conducted in Poland in 2008–2010, exactly 235,664 children (7–12-years-old were screened in 9,325 schools. Of this number, 7,642 were examined using the DDT test for CAPD. Screening programmes were conducted using the Sense Examination Platform. [b]Results.[/b] With the cut-off criterion set at the 5th percentile, results for the DDT applied in a divided attention mode were 11.4% positive for 7-year-olds and 11.3% for 12-year-olds. In the focused attention mode, the comparable result for 12-year-olds was 9.7%. There was a clear right ear advantage. In children with positive DDT results, a higher incidence of other disorders, such as dyslexia, was observed. [b]Conclusions[/b]. A test for CAPD should be included in the hearing screening of school-age children. The results of this study form the basis for developing Polish standards in this area.

  3. Lexical-perceptual integration influences sensorimotor adaptation in speech

    Directory of Open Access Journals (Sweden)

    Nicolas Jean Bourguignon

    2014-04-01

    Full Text Available A combination of lexical bias and altered auditory feedback was used to investigate the influence of higher-order linguistic knowledge on the perceptual aspects of speech motor control. Subjects produced monosyllabic real words or pseudo-words containing the vowel [ε] (as in head under conditions of altered auditory feedback involving a decrease in vowel first formant (F1 frequency. This manipulation had the effect of making the vowel sound more similar to [I] (as in hid, affecting the lexical status of produced words in two Lexical-Change (LC groups (either changing them from real words to pseudo-words: e.g., less – liss, or pseudo-words to real words: e.g., kess – kiss. Two No-Lexical-Change (NLC control groups underwent the same auditory feedback manipulation during the production of [ε] real- or pseudo-words, only without any resulting change in lexical status (real words to real words: e.g., mess – miss, or pseudo-words to pseudo-words: e.g., ness – niss. The results from the LC groups indicate that auditory-feedback-based speech motor learning is sensitive to the lexical status of the stimuli being produced, in that speakers tend to keep their acoustic speech outcomes within the auditory-perceptual space corresponding to the task-related side of the word/non-word boundary (real words or pseudo-words. For the NLC groups, however, no such effect of lexical status is observed.

  4. Poor anchoring limits dyslexics' perceptual, memory, and reading skills.

    Science.gov (United States)

    Oganian, Yulia; Ahissar, Merav

    2012-07-01

    The basic deficits underlying the severe and persistent reading difficulties in dyslexia are still highly debated. One of the major topics of debate is whether these deficits are language specific, or affect both verbal and non-verbal stimuli. Recently, Ahissar and colleagues proposed the "anchoring-deficit hypothesis" (Ahissar, Lubin, Putter-Katz, & Banai, 2006), which suggests that dyslexics have a general difficulty in automatic extraction of stimulus regularities from auditory inputs. This hypothesis explained a broad range of dyslexics' verbal and non-verbal difficulties. However, it was not directly tested in the context of reading and verbal memory, which poses the main stumbling blocks to dyslexics. Here we assessed the abilities of adult dyslexics to efficiently benefit from ("anchor to") regularities embedded in repeated tones, orally presented syllables, and written words. We also compared dyslexics' performance to that of individuals with attention disorder (ADHD), but no reading disability. We found an anchoring effect in all groups: all gained from stimulus repetition. However, in line with the anchoring-deficit hypothesis, controls and ADHD participants showed a significantly larger anchoring effect in all tasks. This study is the first that directly shows that the same domain-general deficit, poor anchoring, characterizes dyslexics' performance in perceptual, working memory and reading tasks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Auditory Perception of Statistically Blurred Sound Textures

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; MacDonald, Ewen; Dau, Torsten

    Sound textures have been identified as a category of sounds which are processed by the peripheral auditory system and captured with running timeaveraged statistics. Although sound textures are temporally homogeneous, they offer a listener with enough information to identify and differentiate...... sources. This experiment investigated the ability of the auditory system to identify statistically blurred sound textures and the perceptual relationship between sound textures. Identification performance of statistically blurred sound textures presented at a fixed blur increased over those presented...... as a gradual blur. The results suggests that the correct identification of sound textures is influenced by the preceding blurred stimulus. These findings draw parallels to the recognition of blurred images....

  6. Language and perceptual categorisation.

    Science.gov (United States)

    Davidoff, J

    2001-09-01

    In a pioneering set of experiments, Rosch investigated the colour processing of a remote traditional culture. It was concluded that colours form universally natural and salient categories. However, our own cross-cultural research, backed up by neuropsychological data and interference studies, indicates that perceptual categories are derived from the words in the speaker's language. The new data support a rather strong version of the Whorfian view that perceptual categories are organized by the linguistic systems of our mind.

  7. Language and perceptual categorisation

    OpenAIRE

    Davidoff, Jules B.

    2001-01-01

    In a pioneering set of experiments, Rosch investigated the colour processing of a remote traditional culture. It was concluded that colours form universally natural and salient categories. However, our own cross-cultural research, backed up by neuropsychological data and interference studies, indicates that perceptual categories are derived from the words in the speaker's language. The new data support a rather strong version of the Whorfian view that perceptual categories are organized by th...

  8. Music and the auditory brain: where is the connection?

    Directory of Open Access Journals (Sweden)

    Israel eNelken

    2011-09-01

    Full Text Available Sound processing by the auditory system is understood in unprecedented details, even compared with sensory coding in the visual system. Nevertheless, we don't understand yet the way in which some of the simplest perceptual properties of sounds are coded in neuronal activity. This poses serious difficulties for linking neuronal responses in the auditory system and music processing, since music operates on abstract representations of sounds. Paradoxically, although perceptual representations of sounds most probably occur high in auditory system or even beyond it, neuronal responses are strongly affected by the temporal organization of sound streams even in subcortical stations. Thus, to the extent that music is organized sound, it is the organization, rather than the sound, which is represented first in the auditory brain.

  9. Association Study between Auditory P3a/P3b Event-Related Potentials and Thought Disorder in Schizophrenia.

    Science.gov (United States)

    Kirihara, Kenji; Araki, Tsuyoshi; Uetsuki, Miki; Yamasue, Hidenori; Hata, Akinobu; Rogers, Mark A; Iwanami, Akira; Kasai, Kiyoto

    2009-09-01

    Thought disorder is considered as one of the core features of schizophrenia and several research groups previously reported an association between P300 (P3b) amplitude and thought disorder in schizophrenia. However, previous studies have not evaluated two P300 subcomponents (P3a and P3b) to investigate whether the relationship with thought disorder was specific to P3b. In this study, we measured P3b and thought disorder of 60 patients with schizophrenia. We also measured P3a of 36 patients out of this sample. We replicated correlation between P3b amplitude and thought disorder and extended this finding by observing that this correlation was not present for the P3a subcomponent. These results suggest that specific electrophysiological abnormalities associated with context updating may underlie thought disorder in schizophrenia.

  10. Análise de cantores de baile em estilo de canto popular e lírico:perceptivo-auditiva, acústica e da configuração laríngea Dancing show singers analysis in pop and opera music styles:perceptual-auditory, acoustic and laryngeal configuration

    Directory of Open Access Journals (Sweden)

    Sueli A. Zampieri

    2002-05-01

    subjects. Perceptual-auditory and acoustic analysis was performed. Laryngeal assessment with a flexible endoscope was performed to investigate laryngeal configuration in the pop and opera style. Results: The perceptual-auditory analysis allowed us to observe that the pop singers change their vocal quality when trying to sing a piece of an opera music, increasing vibrato and vocal volume, enhancing vocal resonance and overarticulating the words. The spectrographic analysis didn't show the presence of the singer formant in any of the subject's voices. The laryngeal arrangement of pop singers singing opera music was characterized, in the majority, by an increase of the antero-posterior and median supraglotic closure. Median supraglotic closure cropped up more among the male. Jitter and shimmer values decreased for the sung vowel when compared to the spoken one. These values were statistically significant for the female voices.

  11. Análise perceptivo-auditiva, acústica computadorizada e laringológica da voz de adultos jovens fumantes e não-fumantes Auditory perceptual, acoustic, computerized and laryngological analysis of young smokers' and nonsmokers' voice

    Directory of Open Access Journals (Sweden)

    Daniele C. de Figueiredo

    2003-12-01

    Full Text Available OBJETIVO: Realizar a avaliação laringológica, análise perceptivo-auditiva e acústica computadorizada das vozes de adultos jovens fumantes e não-fumantes, sem queixa vocal, compará-las e verificar a incidência de alterações laríngeas. FORMA DE ESTUDO: Caso-controle. MATERIAL E MÉTODO: Foram analisadas as vozes de 80 indivíduos com idades compreendidas entre 20 e 40 anos. Estes foram divididos em quatro grupos: 20 homens fumantes, 20 homens não-fumantes, 20 mulheres fumantes e 20 mulheres não-fumantes. Este estudo envolveu laringoscopia, realizada e interpretada por uma médica otorrinolaringologista, e gravação em fita cassete das vogais sustentadas /a/, /m/, /i/ e /u/, contagem dos números de 1 a 20, emissão dos dias da semana, dos meses do ano e da canção "Parabéns a você". A gravação em fita cassete foi editada para posterior análise espectrográfica e avaliação perceptiva auditiva por quatro avaliadores com experiência na área de voz. RESULTADOS: Após a análise, foi constatada uma discreta diminuição da freqüência fundamental da voz dos indivíduos fumantes de ambos os sexos, bem como maior incidência de rouquidão e de alterações laríngeas entre os tabagistas.AIM: The goal of this study was to make the laryngological, auditory perceptual and acoustic computer analyses of young adults' (smokers and non-smokers voices, without vocal complaint, compare them and verify the incidence of vocal alterations. STUDY DESIGN: Clinical comparative. MATERIAL AND METHOD: The voices of 80 individuals with age range from 20 to 40 years were analyzed. These individuals were divided in four groups: 20 male smokers, 20 male non-smokers, 20 female smokers and 20 female non-smokers. This analysis involved laryngoscopy, which was performed and interpreted by an otolaryngologist, and cassette tape recordings of the sustained vowels /a/, /m/, /i/ e /u/, number counting from 1 to 20, speech of the days of the week, months of

  12. The Effect of Attention-Deficit/Hyperactivity Disorder and Methylphenidate Treatment on the Adult Auditory Temporal Order Judgment Threshold

    Science.gov (United States)

    Fostick, Leah

    2017-01-01

    Purpose: "The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition" notes that attention-deficit/hyperactivity disorder (ADHD) diagnosed in childhood will persist into adulthood among at least some individuals. There is a paucity of evidence, however, regarding whether other difficulties that often accompany childhood…

  13. Auditory hypersensitivity in children and teenagers with autistic spectrum disorder Hipersensibilidade auditiva em crianças e adolescentes com transtorno do espectro autista

    Directory of Open Access Journals (Sweden)

    Erissandra Gomes

    2004-09-01

    Full Text Available OBJECTIVE: To verify if the clinical behavior of auditory hypersensitivity, reported in interviews with parents/caregivers and therapists/teachers of 46 children and teenagers suffering from autistic spectrum disorder, correspond to audiological findings. METHOD: The clinical diagnosis for auditory hypersensitivity was investigated by means of an interview. Subsequently, a test of the acoustic stapedial reflex was conducted, and responses to intense acoustic stimulus in open field were observed. RESULTS: Of the 46 subjects, 11 (23.9% were clinically diagnosed as oversensitive to sound and only 2 showed discomfort when exposed to intense acoustic stimulus in open field. There was no statistically significant difference for the test of the ipsilateral acoustic stapedial reflex between the groups. CONCLUSION: Behavioral manifestations to sounds are not associated to hypersensitivity of the auditory pathways, but instead these are associated to difficulties in the upper processing, involving systems that usually are impaired in autistic spectrum patients, such as the limbic system.OBJETIVO: Verificar se o comportamento clínico de hipersensibilidade auditiva, relatado nas entrevistas com os pais/cuidadores e terapeutas/professores de crianças e adolescentes com transtorno do espectro autista, corresponde aos achados audiológicos. MÉTODO: O diagnóstico clínico para a hipersensibilidade auditiva foi investigado a partir do protocolo de entrevista. Após, foi utilizada a pesquisa do reflexo acústico estapédico e observadas as reações ao estímulo sonoro intenso em campo aberto. RESULTADOS: Dos 46 sujeitos, 11 (23,9% foram diagnosticados clinicamente como hipersensíveis ao som, e somente 2 demonstraram desconforto quando expostos ao estímulo sonoro intenso em campo aberto. Não houve diferença estatisticamente significante para a pesquisa do reflexo acústico estapédico ipsilateral entre os grupos. CONCLUSÃO: As manifesta

  14. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  15. Perceptual Load Affects Eyewitness Accuracy & Susceptibility to Leading Questions

    Directory of Open Access Journals (Sweden)

    Gillian Murphy

    2016-08-01

    Full Text Available Load Theory (Lavie, 1995; 2005 states that the level of perceptual load in a task (i.e. the amount of information involved in processing task-relevant stimuli determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator, the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  16. Intact Spectral but Abnormal Temporal Processing of Auditory Stimuli in Autism

    Science.gov (United States)

    Groen, Wouter B.; van Orsouw, Linda; ter Huurne, Niels; Swinkels, Sophie; van der Gaag, Rutger-Jan; Buitelaar, Jan K.; Zwiers, Marcel P.

    2009-01-01

    The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with high-functioning-autism and 23 matched controls…

  17. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study.

    Science.gov (United States)

    Söderlund, Göran B W; Björk, Christer; Gustafsson, Peik

    2016-01-01

    Recent research has shown that acoustic white noise (80 dB) can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD). This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC) took the same tests as a comparison. Twenty children with ADHD of combined or inattentive subtypes and twenty TDC matched for age and gender performed three different tests (word recall, spanboard and n-back task) during exposure to white noise (80 dB) and in a silent condition. The ADHD children were tested with and without central stimulant medication. In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks. This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  18. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-09-01

    Full Text Available Background: Recent research has shown that acoustic white noise (80 dB can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD. This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC took the same tests as a comparison.Methods: Twenty children with ADHD of combined or inattentive subtypes and twenty typically developed children matched for age and gender performed three different tests (word recall, spanboard and n-back task during exposure to white noise (80 dB and in a silent condition. The ADHD children were tested with and without central stimulant medication.Results: In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks.Conclusion: This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  19. A habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico Sustained auditory attention ability in children with cleft lip and palate and phonological disorders

    Directory of Open Access Journals (Sweden)

    Tâmyne Ferreira Duarte de Moraes

    2011-12-01

    Full Text Available OBJETIVO: Verificar a habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico, comparando o desempenho com crianças com fissura labiopalatina e ausência de transtorno fonológico. MÉTODOS: Dezessete crianças com idade entre 6 e 11 anos, com fissura labiopalatina transforame unilateral operada e ausência de queixa e/ou alteração auditiva, separadas em dois grupos: GI (com transtorno fonológico e GII (com auŝencia de transtorno fonológico. Para detecção de alteração auditiva foram realizadas audiometria e timpanometria. Para avaliação fonológica foram utilizados os seguintes instrumentos: Teste de Linguagem Infantil e Consciência Fonológica: Instrumento de Avaliação Sequencial. Para avaliar a habilidade de atenção auditiva foi aplicado o Teste da Habilidade de Atenção Auditiva Sustentada. RESULTADOS: Das sete crianças com transtorno fonológico (41%, duas (29% apresentaram alteração nos resultados do Teste da Habilidade de Atenção Auditiva Sustentada. Não houve diferença entre as crianças com fissura labiopalatina e transtorno fonológico e as crianças com fissura labiopalatina e ausência de transtorno fonológico quanto aos resultados do Teste de Habilidade de Atenção Auditiva Sustentada. CONCLUSÃO: A habilidade de atenção auditiva sustentada nas crianças com fissura labiopalatina e transtorno fonológico não difere da habilidade de atenção auditiva sustentada de crianças com fissura labiopalatina sem transtorno fonológico.PURPOSE: To verify the ability of sustained auditory attention in children with cleft lip and palate and phonological disorder, in comparison with the performance of children with cleft lip and palate and absence of phonological disorder. METHODS: Seventeen children with ages between 6 and 11 years, with repaired unilateral complete cleft lip and palate and absence of auditory complaints or hearing problems, were divided into two

  20. Auditory Processing Training in Learning Disability - doi:10.5020/18061230.2006.p188

    OpenAIRE

    Nívea Franklin Chaves Martins; Hipólito Virgílio Magalhães Jr

    2012-01-01

    The aim of this case report was to promote a reflection about the importance of speechtherapy for stimulation a person with learning disability associated to language and auditory processing disorders. Data analysis considered the auditory abilities deficits identified in the first auditory processing test, held on April 30, 2002 compared with the new auditory processing test done on May 13, 2003, after one year of therapy directed to acoustic stimulation of auditory abilities disorders, in a...

  1. Early Experience and Visual Information Processing in Perceptual and Reading Disorders; Proceedings of a Conference Held October 27-30, 1968, at Lake Mohonk, New York, in Association with the Committee on Brain Sciences, Div. of Medical Sciences, National Research Council.

    Science.gov (United States)

    Young, Francis A., Ed.; Lindsley, Donald B., Ed.

    This book brings together papers presented at a conference on early experience and visual information processing in perceptual and reading disorders sponsored by the National Academy of Sciences. The goal of the conference was to integrate basic knowledge of structure and mechanisms of eye and brain with their function and their behavioral roles…

  2. Perceptual context and individual differences in the language proficiency of preschool children.

    Science.gov (United States)

    Banai, Karen; Yifat, Rachel

    2016-02-01

    Although the contribution of perceptual processes to language skills during infancy is well recognized, the role of perception in linguistic processing beyond infancy is not well understood. In the experiments reported here, we asked whether manipulating the perceptual context in which stimuli are presented across trials influences how preschool children perform visual (shape-size identification; Experiment 1) and auditory (syllable identification; Experiment 2) tasks. Another goal was to determine whether the sensitivity to perceptual context can explain part of the variance in oral language skills in typically developing preschool children. Perceptual context was manipulated by changing the relative frequency with which target visual (Experiment 1) and auditory (Experiment 2) stimuli were presented in arrays of fixed size, and identification of the target stimuli was tested. Oral language skills were assessed using vocabulary, word definition, and phonological awareness tasks. Changes in perceptual context influenced the performance of the majority of children on both identification tasks. Sensitivity to perceptual context accounted for 7% to 15% of the variance in language scores. We suggest that context effects are an outcome of a statistical learning process. Therefore, the current findings demonstrate that statistical learning can facilitate both visual and auditory identification processes in preschool children. Furthermore, consistent with previous findings in infants and in older children and adults, individual differences in statistical learning were found to be associated with individual differences in language skills of preschool children. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Sources of pathology underlying listening disorders in children.

    Science.gov (United States)

    Moore, David R

    2015-02-01

    Some children referred to audiology and developmental disability services have listening difficulties, despite normal audiograms. These children may be tested for 'auditory processing disorder' (APD), a controversial construct suggesting that neural dysfunction in the central auditory system leads to impaired auditory perception. An important question, not currently tested in clinical evaluation, is whether listening difficulties result from problems with bottom-up auditory sensory processing or top-down modulating cognition. Perceptual variability and poor performance on standardized tests suggest that listening difficulties are primarily cognitive in origin. However, evidence for impaired olivocochlear function and temporal processing deficits may implicate peripheral or central auditory dysfunction in some cases. Wide-spread, top-down modulation of auditory cortical, brainstem and ear function suggests that afferent and efferent control systems may not be simple to segregate. During normal maturation, hearing appears to develop in proportion to the complexity of both stimuli and tasks. But some younger individuals have mature hearing, highlighting individual differences that suggest APD may be due to a generalized developmental delay. Recent studies have investigated specific hypotheses showing, for example, that spatial hearing and executive function are compromised in some children with listening difficulties. Using speech stimuli (e.g. consonant-vowel syllables) to examine auditory brainstem responses, and psychophysiological relations between dichotic hearing and cortical physiology, various effects of auditory experience and development point the way to promising approaches for further studies of APD. Newer technology, from genetic sequencing to MRI, may have the sensitivity to test whether and how frequently APD is associated with impaired processing in the auditory system. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Predicting the Perceptual Consequences of Hidden Hearing Loss

    Directory of Open Access Journals (Sweden)

    Andrew J. Oxenham

    2016-12-01

    Full Text Available Recent physiological studies in several rodent species have revealed that permanent damage can occur to the auditory system after exposure to a noise that produces only a temporary shift in absolute thresholds. The damage has been found to occur in the synapses between the cochlea’s inner hair cells and the auditory nerve, effectively severing part of the connection between the ear and the brain. This synaptopathy has been termed hidden hearing loss because its effects are not thought to be revealed in standard clinical, behavioral, or physiological measures of absolute threshold. It is currently unknown whether humans suffer from similar deficits after noise exposure. Even if synaptopathy occurs in humans, it remains unclear what the perceptual consequences might be or how they should best be measured. Here, we apply a simple theoretical model, taken from signal detection theory, to provide some predictions for what perceptual effects could be expected for a given loss of synapses. Predictions are made for a number of basic perceptual tasks, including tone detection in quiet and in noise, frequency discrimination, level discrimination, and binaural lateralization. The model’s predictions are in line with the empirical observations that a 50% loss of synapses leads to changes in threshold that are too small to be reliably measured. Overall, the model provides a simple initial quantitative framework for understanding and predicting the perceptual effects of synaptopathy in humans.

  5. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  6. Reading skills and auditory processing ability in children with chronic otitis media in early childhood.

    Science.gov (United States)

    Updike, C; Thornburg, J D

    1992-06-01

    The effect of recurrent middle ear disease during the first 2 years of life on auditory perceptual skills and reading ability was examined in two groups of 6- and 7-year-old children who were pair-matched by age, gender, socioeconomic status, and receptive vocabulary. Group 1 consisted of children with documented chronic otitis media at an early age, and group 2 had no history of middle ear problems. Tests of auditory perceptual skills and reading ability were administered. Significant differences in performance on all tests of auditory processing ability and reading ability were noted.

  7. Children with Auditory Neuropathy Spectrum Disorder Fitted with Hearing Aids Applying the American Academy of Audiology Pediatric Amplification Guideline: Current Practice and Outcomes.

    Science.gov (United States)

    Walker, Elizabeth; McCreery, Ryan; Spratford, Meredith; Roush, Patricia

    2016-03-01

    Up to 15% of children with permanent hearing loss (HL) have auditory neuropathy spectrum disorder (ANSD), which involves normal outer hair cell function and disordered afferent neural activity in the auditory nerve or brainstem. Given the varying presentations of ANSD in children, there is a need for more evidence-based research on appropriate clinical interventions for this population. This study compared the speech production, speech perception, and language outcomes of children with ANSD, who are hard of hearing, to children with similar degrees of mild-to-moderately severe sensorineural hearing loss (SNHL), all of whom were fitted with bilateral hearing aids (HAs) based on the American Academy of Audiology pediatric amplification guidelines. Speech perception and communication outcomes data were gathered in a prospective accelerated longitudinal design, with entry into the study between six mo and seven yr of age. Three sites were involved in participant recruitment: Boys Town National Research Hospital, the University of North Carolina at Chapel Hill, and the University of Iowa. The sample consisted of 12 children with ANSD and 22 children with SNHL. The groups were matched based on better-ear pure-tone average, better-ear aided speech intelligibility index, gender, maternal education level, and newborn hearing screening result (i.e., pass or refer). Children and their families participated in an initial baseline visit, followed by visits twice a year for children children >2 yr of age. Paired-sample t-tests were used to compare children with ANSD to children with SNHL. Paired t-tests indicated no significant differences between the ANSD and SNHL groups on language and articulation measures. Children with ANSD displayed functional speech perception skills in quiet. Although the number of participants was too small to conduct statistical analyses for speech perception testing, there appeared to be a trend in which the ANSD group performed more poorly in

  8. Human auditory evoked potentials. II - Effects of attention

    Science.gov (United States)

    Picton, T. W.; Hillyard, S. A.

    1974-01-01

    Attention directed toward auditory stimuli, in order to detect an occasional fainter 'signal' stimulus, caused a substantial increase in the N1 (83 msec) and P2 (161 msec) components of the auditory evoked potential without any change in preceding components. This evidence shows that human auditory attention is not mediated by a peripheral gating mechanism. The evoked response to the detected signal stimulus also contained a large P3 (450 msec) wave that was topographically distinct from the preceding components. This late positive wave could also be recorded in response to a detected omitted stimulus in a regular train and therefore seemed to index a stimulus-independent perceptual decision process.

  9. Conceptual priming for realistic auditory scenes and for auditory words.

    Science.gov (United States)

    Frey, Aline; Aramaki, Mitsuko; Besson, Mireille

    2014-02-01

    Two experiments were conducted using both behavioral and Event-Related brain Potentials methods to examine conceptual priming effects for realistic auditory scenes and for auditory words. Prime and target sounds were presented in four stimulus combinations: Sound-Sound, Word-Sound, Sound-Word and Word-Word. Within each combination, targets were conceptually related to the prime, unrelated or ambiguous. In Experiment 1, participants were asked to judge whether the primes and targets fit together (explicit task) and in Experiment 2 they had to decide whether the target was typical or ambiguous (implicit task). In both experiments and in the four stimulus combinations, reaction times and/or error rates were longer/higher and the N400 component was larger to ambiguous targets than to conceptually related targets, thereby pointing to a common conceptual system for processing auditory scenes and linguistic stimuli in both explicit and implicit tasks. However, fine-grained analyses also revealed some differences between experiments and conditions in scalp topography and duration of the priming effects possibly reflecting differences in the integration of perceptual and cognitive attributes of linguistic and nonlinguistic sounds. These results have clear implications for the building-up of virtual environments that need to convey meaning without words. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Visual Perceptual Learning and Models.

    Science.gov (United States)

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  11. Hearing Story Characters' Voices: Auditory Imagery during Reading

    Science.gov (United States)

    Gunraj, Danielle N.; Klin, Celia M.

    2012-01-01

    Despite the longstanding belief in an inner voice, there is surprisingly little known about the perceptual features of that voice during text processing. This article asked whether readers infer nonlinguistic phonological features, such as speech rate, associated with a character's speech. Previous evidence for this type of auditory imagery has…

  12. Relationship between Serotonergic Dysfunction Based on Loudness Dependence of Auditory-Evoked Potentials and Suicide in Patients with Major Depressive Disorder.

    Science.gov (United States)

    Park, Young-Min

    2015-10-01

    The relationship between suicidality and the loudness dependence of auditory-evoked potentials (LDAEP) remains controversial. This article reviews the literature related to the LDAEP and suicide in patients with major depressive disorder, and suggests future research directions. Serotonergic dysfunction in suicidality seems to be more complicated than was originally thought. Studies of suicide based on the LDAEP have produced controversial results, but it is possible that these are due to differences in study designs and the smallness of samples. For example, some studies have evaluated suicide ideation and the LDAEP, while others have evaluated suicide attempts and the LDAEP. Furthermore, some of the latter studies enrolled acute suicide attempters, while others enrolled those with the history of previous suicide attempts, irrespective of whether these were acute or chronic. Thus, a more robust study design is needed in future studies, for example by evaluating the LDAEP immediately after a suicide attempt rather than in those with a history of suicide attempts and suicide ideation in order to reduce bias. Moreover, genuine suicide attempt, self-injurious behaviors, and faked suicide attempt need to be discriminated in the future.

  13. Crossed and uncrossed acoustic reflex growth functions in normal-hearing adults, typically developing children, and children with suspected auditory processing disorder.

    Science.gov (United States)

    Saxena, Udit; Allan, Chris; Allen, Prudence

    2015-01-01

    Previous data suggested that children with suspected auditory processing disorders (APD) often show elevated or absent acoustic reflex thresholds, especially in crossed conditions (e.g. Allen & Allan, 2014 ). This study further explored these effects by measuring acoustic reflex growth functions (ARGF). Crossed and uncrossed ARGF slopes were obtained by linear fits between reflex amplitudes and increases in activator level from threshold to 15 dB above it. Normal-hearing adults, typically developing children and children with reported listening difficulties and suspected of having an APD, participated. The ARGF slopes were shallower in crossed than in uncrossed conditions for all groups but the magnitude of the effect was significantly greater in the children with suspected APD. There were no differences between the typically developing children and the adults. The results suggest shallower ARGFs in children with suspected APD. Given the role of the acoustic reflex in facilitating hearing speech in noise these findings may begin to shed light on physiologic explanations for some of the difficulties that are reported by children with suspected APD.

  14. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex.SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  15. Effectiveness of Earmuffs and Noise-cancelling Headphones for Coping with Hyper-reactivity to Auditory Stimuli in Children with Autism Spectrum Disorder: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Nobuhiko Ikuta

    2016-12-01

    Conclusion: This study demonstrated the effectiveness of standard earmuffs and NC headphones in helping children with ASD to cope with problem behaviours related to hyper-reactivity to auditory stimuli, therefore, children with ASD could use earmuffs to help to deal with unpleasant sensory auditory stimuli.

  16. Characterizing the experience of auditory verbal hallucinations and accompanying delusions in individuals with a diagnosis of bipolar disorder: A systematic review.

    Science.gov (United States)

    Smith, L M; Johns, L C; Mitchell, Rlc

    2017-09-01

    The aim of the current study was to inform ongoing attempts to identify clinically meaningful subcategories of auditory verbal hallucination (AVH), and to evaluate evidence that might pertain to the suitability of current psychological interventions for people with bipolar disorder (BD) who experience psychotic symptoms. A comprehensive synthesis of findings on the phenomenology of AVH and delusions in BD is included, alongside a critical review of clinical and cognitive correlates. Studies published in the previous 20 years, until December 2016, were retrieved from the following databases: Embase, CINAHL, MEDLINE, PsycINFO and Web of Science. Thirty-two articles were reviewed after applying a set of predetermined inclusion criteria. Psychotic symptoms were common in both manic and depressive phases, although higher frequencies were indicated in mania. Few detailed characterizations of AVH phenomenology were identified. Delusions with persecutory, grandiose and referential themes were the most common in BD. AVHs were associated with delusions and there was evidence to suggest that delusion subtype may vary according to mood state and type of AVH. Data on clinical correlates of AVH in BD were sparse. However, the results indicated that cognitive appraisals or interpretations of voices might be different in BD from those established to be predictive of clinical outcomes in schizophrenia spectrum disorders. Clear gaps exist in our current understanding of the first-person experience of AVH in BD and the potential relationship to co-occurring symptoms, including delusions. Further research into cognitive interpretations of AVH in BD might inform adapted psychological interventions for psychotic symptoms in this population. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  18. Perceptual frames in frequency estimation.

    Science.gov (United States)

    Zyłowska, Aleksandra; Kossek, Marcin; Wawrzyniak, Małgorzata

    2014-02-01

    This study is an introductory investigation of cognitive frames, focused on perceptual frames divided into information and formal perceptual frames, which were studied based on sub-additivity of frequency estimations. It was postulated that different presentations of a response scale would result in different percentage estimates of time spent watching TV or using the Internet. The results supported the existence of perceptual frames that influence the perception process and indicated that information perceptual frames had a stronger effect than formal frames. The measures made possible the exploration of the operation of perceptual frames and also outlined the relations between heuristics and cognitive frames.

  19. Noise, multisensory integration, and previous response in perceptual disambiguation.

    Directory of Open Access Journals (Sweden)

    Cesare V Parise

    2017-07-01

    Full Text Available Sensory information about the state of the world is generally ambiguous. Understanding how the nervous system resolves such ambiguities to infer the actual state of the world is a central quest for sensory neuroscience. However, the computational principles of perceptual disambiguation are still poorly understood: What drives perceptual decision-making between multiple equally valid solutions? Here we investigate how humans gather and combine sensory information-within and across modalities-to disambiguate motion perception in an ambiguous audiovisual display, where two moving stimuli could appear as either streaming through, or bouncing off each other. By combining psychophysical classification tasks with reverse correlation analyses, we identified the particular spatiotemporal stimulus patterns that elicit a stream or a bounce percept, respectively. From that, we developed and tested a computational model for uni- and multi-sensory perceptual disambiguation that tightly replicates human performance. Specifically, disambiguation relies on knowledge of prototypical bouncing events that contain characteristic patterns of motion energy in the dynamic visual display. Next, the visual information is linearly integrated with auditory cues and prior knowledge about the history of recent perceptual interpretations. What is more, we demonstrate that perceptual decision-making with ambiguous displays is systematically driven by noise, whose random patterns not only promote alternation, but also provide signal-like information that biases perception in highly predictable fashion.

  20. Silent articulation modulates auditory and audiovisual speech perception.

    Science.gov (United States)

    Sato, Marc; Troille, Emilie; Ménard, Lucie; Cathiard, Marie-Agnès; Gracco, Vincent

    2013-06-01

    The concept of an internal forward model that internally simulates the sensory consequences of an action is a central idea in speech motor control. Consistent with this hypothesis, silent articulation has been shown to modulate activity of the auditory cortex and to improve the auditory identification of concordant speech sounds, when embedded in white noise. In the present study, we replicated and extended this behavioral finding by showing that silently articulating a syllable in synchrony with the presentation of a concordant auditory and/or visually ambiguous speech stimulus improves its identification. Our results further demonstrate that, even in the case of perfect perceptual identification, concurrent mouthing of a syllable speeds up the perceptual processing of a concordant speech stimulus. These results reflect multisensory-motor interactions during speech perception and provide new behavioral arguments for internally generated sensory predictions during silent speech production.

  1. An interactive model of auditory-motor speech perception.

    Science.gov (United States)

    Liebenthal, Einat; Möttönen, Riikka

    2017-12-18

    Mounting evidence indicates a role in perceptual decoding of speech for the dorsal auditory stream connecting between temporal auditory and frontal-parietal articulatory areas. The activation time course in auditory, somatosensory and motor regions during speech processing is seldom taken into account in models of speech perception. We critically review the literature with a focus on temporal information, and contrast between three alternative models of auditory-motor speech processing: parallel, hierarchical, and interactive. We argue that electrophysiological and transcranial magnetic stimulation studies support the interactive model. The findings reveal that auditory and somatomotor areas are engaged almost simultaneously, before 100 ms. There is also evidence of early interactions between auditory and motor areas. We propose a new interactive model of auditory-motor speech perception in which auditory and articulatory somatomotor areas are connected from early stages of speech processing. We also discuss how attention and other factors can affect the timing and strength of auditory-motor interactions and propose directions for future research. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Perceptual effects in auralization of virtual rooms

    Science.gov (United States)

    Kleiner, Mendel; Larsson, Pontus; Vastfjall, Daniel; Torres, Rendell R.

    2002-05-01

    By using various types of binaural simulation (or ``auralization'') of physical environments, it is now possible to study basic perceptual issues relevant to room acoustics, as well to simulate the acoustic conditions found in concert halls and other auditoria. Binaural simulation of physical spaces in general is also important to virtual reality systems. This presentation will begin with an overview of the issues encountered in the auralization of room and other environments. We will then discuss the influence of various approximations in room modeling, in particular, edge- and surface scattering, on the perceived room response. Finally, we will discuss cross-modal effects, such as the influence of visual cues on the perception of auditory cues, and the influence of cross-modal effects on the judgement of ``perceived presence'' and the rating of room acoustic quality.

  3. Perceptual learning and human expertise

    Science.gov (United States)

    Kellman, Philip J.; Garrigan, Patrick

    2009-06-01

    We consider perceptual learning: experience-induced changes in the way perceivers extract information. Often neglected in scientific accounts of learning and in instruction, perceptual learning is a fundamental contributor to human expertise and is crucial in domains where humans show remarkable levels of attainment, such as language, chess, music, and mathematics. In Section 2, we give a brief history and discuss the relation of perceptual learning to other forms of learning. We consider in Section 3 several specific phenomena, illustrating the scope and characteristics of perceptual learning, including both discovery and fluency effects. We describe abstract perceptual learning, in which structural relationships are discovered and recognized in novel instances that do not share constituent elements or basic features. In Section 4, we consider primary concepts that have been used to explain and model perceptual learning, including receptive field change, selection, and relational recoding. In Section 5, we consider the scope of perceptual learning, contrasting recent research, focused on simple sensory discriminations, with earlier work that emphasized extraction of invariance from varied instances in more complex tasks. Contrary to some recent views, we argue that perceptual learning should not be confined to changes in early sensory analyzers. Phenomena at various levels, we suggest, can be unified by models that emphasize discovery and selection of relevant information. In a final section, we consider the potential role of perceptual learning in educational settings. Most instruction emphasizes facts and procedures that can be verbalized, whereas expertise depends heavily on implicit pattern recognition and selective extraction skills acquired through perceptual learning. We consider reasons why perceptual learning has not been systematically addressed in traditional instruction, and we describe recent successful efforts to create a technology of perceptual

  4. Intensity dependence of auditory P2 in monozygotic twins discordant for Vietnam combat: Associations with posttraumatic stress disorder

    Science.gov (United States)

    Metzger, Linda J.; Pitman, Roger K.; Miller, Gregory A.; Paige, Stephen R.; Orr, Scott P.

    2010-01-01

    Two studies have reported decreased intensity dependence of the P2 event-related potential (ERP) in male combat veterans with posttraumatic stress disorder (PTSD), a response pattern presumed to reflect central nervous system-induced protective inhibition and heightened central serotonergic activity. We used an identical twin, case-control design to investigate whether intensity dependence abnormalities reflect pretrauma vulnerability or are an acquired consequence of PTSD. ERPs were measured in male Vietnam combat veterans and their noncombat-exposed monozygotic twin brothers during a four-tone, stimulus-intensity modulation procedure. Contrary to previous findings in male veterans, the PTSD group had significantly steeper P2 amplitude intensity slopes, similar to those reported for female veterans and abused children with PTSD. Additionally, increased P2 amplitude intensity slope was associated with increased PTSD symptom severity, particularly the severity of reexperiencing symptoms. A mixed-model, random-effects analysis that included the combat-unexposed twins revealed a significant diagnosis by combat exposure interaction. Inspection of group means suggests that the observed increased P2 intensity dependence is a consequence of PTSD. Our findings further suggest that low serotonergic tone may emerge as one potential consequence of this disorder. PMID:18629752

  5. The effects of polarity of click stimulation on auditory brainstem responses (ABR in patients with cochlear and retro-cochlear disorders in Amiralam and Resalat Hospitals 1995-97

    Directory of Open Access Journals (Sweden)

    Soltani AH

    2002-08-01

    Full Text Available Background: Auditory brainstem response (A.B.R is one of the most important electrophysiological tests in evaluating of auditory system, especially for diagnosing of auditory nerve and brainstem disorders. It is a non-invasive test and has reliability and validity characteristic. There is no contra-indication for this test. One of the most important of stimulation parameters of A.B.R is click polarity (rarefaction, condensation and alternative. Some of the investigators believed that different polarities have no effects on A.B.R are affected by different polarities. Materials and Methods: In this study, the results of ABR of 148 patients (296 ears were compared with three different polarities of rarefaction, condensation and alternative half click stimuli. The cases were categorized in three groups of normal (60 cases, cochlear (62 cases and retro-cochlear (17 cases. This classification were done according to the hearing level in pure tone audiometry results in three frequencies of 1000, 2000, 4000 Hz and to the site of the their disorders. The mean absolute latencies of waves I, III and V were obtained for each polarity. Inter-peak latency (I.P.L of wave also measured in three groups (normal, cochlear and retro-cochlear. Results: The results were showed a significant difference between absolute latency of wave I among different polarities on three above mentioned groups (P0.05. Conclusion: It was concluded that rarefaction polarity has better and more stable results of ABR tests.

  6. Temporal integration of consecutive tones into synthetic vowels demonstrates perceptual assembly in audition

    NARCIS (Netherlands)

    Saija, Jefta D.; Andringa, Tjeerd C.; Başkent, Deniz; Akyürek, Elkan G.

    Temporal integration is the perceptual process combining sensory stimulation over time into longer percepts that can span over 10 times the duration of a minimally detectable stimulus. Particularly in the auditory domain, such "long-term" temporal integration has been characterized as a relatively

  7. Model cortical responses for the detection of perceptual onsets and beat tracking in singing

    NARCIS (Netherlands)

    Coath, M.; Denham, S.L.; Smith, L.M.; Honing, H.; Hazan, A.; Holonowicz, P.; Purwins, H.

    2009-01-01

    We describe a biophysically motivated model of auditory salience based on a model of cortical responses and present results that show that the derived measure of salience can be used to identify the position of perceptual onsets in a musical stimulus successfully. The salience measure is also shown

  8. The perceptual influence of the cabin acoustics on the reproduced sound of a car audio system

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Sakari, Tervo

    2015-01-01

    A significant element of audio evaluation experiments is the availability of verbal descriptors that can accurately characterize the perceived auditory events. In terms of room acoustics, understanding the perceptual effects of the physical properties of the space would enable a better understand...

  9. Constraints on the transfer of perceptual learning in accented speech

    Directory of Open Access Journals (Sweden)

    Frank eEisner

    2013-04-01

    Full Text Available The perception of speech sounds can be re-tuned through a mechanism of lexically-driven perceptual learning after exposure to instances of atypical speech production. This study asked whether this re-tuning is sensitive to the position of the atypical sound within the word. We investigated perceptual learning using English voiced stop consonants, which are commonly devoiced in word-final position by Dutch learners of English. After exposure to a Dutch learner’s productions of devoiced stops in word-final position (but not in any other positions, British English (BE listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with devoiced final stops (e.g., ‘seed’, pronounced [si:t^h], facilitated recognition of visual targets with voiced final stops (e.g., SEED. In Experiment 1, this learning effect generalized to test pairs where the critical contrast was in word-initial position, e.g. auditory primes such as ‘town’ facilitated recognition of visual targets like DOWN. Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The generalization to word-initial position did not occur when participants had also heard correctly voiced, word-initial stops during exposure (Experiment 2, and when the speaker was a native BE speaker who mimicked the word-final devoicing (Experiment 3. The readiness of the perceptual system to generalize a previously learned adjustment to other positions within the word thus appears to be modulated by distributional properties of the speech input, as well as by the perceived sociophonetic characteristics of the speaker. The results suggest that the transfer of pre-lexical perceptual adjustments that occur through lexically-driven learning can be affected by a combination of acoustic, phonological, and sociophonetic factors.

  10. Constraints on the Transfer of Perceptual Learning in Accented Speech

    Science.gov (United States)

    Eisner, Frank; Melinger, Alissa; Weber, Andrea

    2013-01-01

    The perception of speech sounds can be re-tuned through a mechanism of lexically driven perceptual learning after exposure to instances of atypical speech production. This study asked whether this re-tuning is sensitive to the position of the atypical sound within the word. We investigated perceptual learning using English voiced stop consonants, which are commonly devoiced in word-final position by Dutch learners of English. After exposure to a Dutch learner’s productions of devoiced stops in word-final position (but not in any other positions), British English (BE) listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with devoiced final stops (e.g., “seed”, pronounced [si:th]), facilitated recognition of visual targets with voiced final stops (e.g., SEED). In Experiment 1, this learning effect generalized to test pairs where the critical contrast was in word-initial position, e.g., auditory primes such as “town” facilitated recognition of visual targets like DOWN. Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The generalization to word-initial position did not occur when participants had also heard correctly voiced, word-initial stops during exposure (Experiment 2), and when the speaker was a native BE speaker who mimicked the word-final devoicing (Experiment 3). The readiness of the perceptual system to generalize a previously learned adjustment to other positions within the word thus appears to be modulated by distributional properties of the speech input, as well as by the perceived sociophonetic characteristics of the speaker. The results suggest that the transfer of pre-lexical perceptual adjustments that occur through lexically driven learning can be affected by a combination of acoustic, phonological, and sociophonetic factors. PMID:23554598

  11. Perceptual Skills Curriculum: Auditory-motor Skills, Program II.

    Science.gov (United States)

    Rosner, Jerome

    This curriculum is designed primarily for use in individualized classrooms where the teacher is working with an assistant, but it has also been proven effective in traditional classrooms and in remedial situations. Program II focuses on the basic abilities used in analyzing and organizing acoustical patterns, with special emphasis on verbal…

  12. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    OpenAIRE

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they wer...

  13. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  14. Auditory hallucinations in dissociative identity disorder and schizophrenia with and without a childhood trauma history: similarities and differences.

    Science.gov (United States)

    Dorahy, Martin J; Shannon, Ciarán; Seagar, Lenaire; Corr, Mary; Stewart, Kellie; Hanna, Donncha; Mulholland, Ciaran; Middleton, Warwick

    2009-12-01

    Little is known about similarities and differences in voice hearing in schizophrenia and dissociative identity disorder (DID) and the role of child maltreatment and dissociation. This study examined various aspects of voice hearing, along with childhood maltreatment and pathological dissociation in 3 samples: schizophrenia without child maltreatment (n = 18), schizophrenia with child maltreatment (n = 16), and DID (n = 29). Compared with the schizophrenia groups, the DID sample was more likely to have voices starting before 18, hear more than 2 voices, have both child and adult voices and experience tactile and visual hallucinations. The 3 groups were similar in that voice content was incongruent with mood and the location was more likely internal than external. Pathological dissociation predicted several aspects of voice hearing and appears an important variable in voice hearing, at least where maltreatment is present.

  15. Two representations of a high-dimensional perceptual space.

    Science.gov (United States)

    Victor, Jonathan D; Rizvi, Syed M; Conte, Mary M

    2017-08-01

    A perceptual space is a mental workspace of points in a sensory domain that supports similarity and difference judgments and enables further processing such as classification and naming. Perceptual spaces are present across sensory modalities; examples include colors, faces, auditory textures, and odors. Color is perhaps the best-studied perceptual space, but it is atypical in two respects. First, the dimensions of color space are directly linked to the three cone absorption spectra, but the dimensions of generic perceptual spaces are not as readily traceable to single-neuron properties. Second, generic perceptual spaces have more than three dimensions. This is important because representing each distinguishable point in a high-dimensional space by a separate neuron or population is unwieldy; combinatorial strategies may be needed to overcome this hurdle. To study the representation of a complex perceptual space, we focused on a well-characterized 10-dimensional domain of visual textures. Within this domain, we determine perceptual distances in a threshold task (segmentation) and a suprathreshold task (border salience comparison). In N=4 human observers, we find both quantitative and qualitative differences between these sets of measurements. Quantitatively, observers' segmentation thresholds were inconsistent with their uncertainty determined from border salience comparisons. Qualitatively, segmentation thresholds suggested that distances are determined by a coordinate representation with Euclidean geometry. Border salience comparisons, in contrast, indicated a global curvature of the space, and that distances are determined by activity patterns across broadly tuned elements. Thus, our results indicate two representations of this perceptual space, and suggest that they use differing combinatorial strategies. To move from sensory signals to decisions and actions, the brain carries out a sequence of transformations. An important stage in this process is the

  16. Auditory Perception and Word Recognition in Cantonese-Chinese Speaking Children with and without Specific Language Impairment

    Science.gov (United States)

    Kidd, Joanna C.; Shum, Kathy K.; Wong, Anita M.-Y.; Ho, Connie S.-H.

    2017-01-01

    Auditory processing and spoken word recognition difficulties have been observed in Specific Language Impairment (SLI), raising the possibility that auditory perceptual deficits disrupt word recognition and, in turn, phonological processing and oral language. In this study, fifty-seven kindergarten children with SLI and fifty-three language-typical…

  17. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  18. Perfil pragmático longitudinal de uma criança no espectro da neuropatia auditiva Longitudinal pragmatic profile of a child with auditory neuropathy spectrum disorder

    Directory of Open Access Journals (Sweden)

    Andreza Carolina Bretanha

    2011-06-01

    spectrum disorder generates a dyssynchrony in nerve conduction, contributing to an impairment in speech perception. In hearing impaired children the language acquisition and development process can be stimulated with intervention. The aim of this study was to present a longitudinal follow-up of the use of pragmatic communication abilities by a child with auditory neuropathy spectrum disorder. The child received speech-language pathology therapy during three years in the Educational Audiology area. Video recordings of spontaneous conversation were made in the beginning of each year. These recordings were transcribed and analyzed according to the verbal communicative abilities protocol. In the initial recording, the most frequent ability presented by the child was the direct response; however these were extended to more complex responses during the intervention. In the last recording the child proposes new topics of discourse, produce narratives and arguments. The emergence of more sophisticated communication skills is justified by the language development, which benefits from language therapy with hearing impaired children. This suggests that, for the case study described, speech-language pathology therapy contributed to the improvement of pragmatic communication abilities.

  19. The perceptual organization of complex sounds by birds

    Science.gov (United States)

    Dent, Micheal L.

    2004-05-01

    Birds have proven to be ideal models for the perceptual organization of complex sounds because, like humans, they produce, learn, and use complex acoustic signals for communication. Although conducted in laboratory settings, measures of auditory abilities in birds are usually designed to parallel the acoustic problems faced in their natural habitats, including the location of conspecifics, discrimination among potential mates, prey localization, predator avoidance, and territorial defense. As a result, there is probably more known about hearing in birds under both natural and laboratory conditions than in any other nonhuman organism. Behavioral and/or physiological experiments on complex sound perception in birds have revealed that they exhibit serial pattern perception, can discriminate frequency changes in tones embedded within tonal patterns regardless of stimulus uncertainty conditions, segregate signals into auditory streams, and exhibit comodulation masking release. In addition, binaural experiments have revealed that birds exhibit both the cocktail party effect and the precedence effect. Taken together, these results suggest that, like humans, auditory scene analysis plays a general role in auditory perception in birds and probably other animals that must parse the world into auditory objects. [Work supported by NIH DC006124.

  20. fMRI of the auditory system: understanding the neural basis of auditory gestalt.

    Science.gov (United States)

    Di Salle, Francesco; Esposito, Fabrizio; Scarabino, Tommaso; Formisano, Elia; Marciano, Elio; Saulino, Claudio; Cirillo, Sossio; Elefante, Raffaele; Scheffler, Klaus; Seifritz, Erich

    2003-12-01

    Functional magnetic resonance imaging (fMRI) has rapidly become the most widely used imaging method for studying brain functions in humans. This is a result of its extreme flexibility of use and of the astonishingly detailed spatial and temporal information it provides. Nevertheless, until very recently, the study of the auditory system has progressed at a considerably slower pace compared to other functional systems. Several factors have limited fMRI research in the auditory field, including some intrinsic features of auditory functional anatomy and some peculiar interactions between fMRI technique and audition. A well known difficulty arises from the high intensity acoustic noise produced by gradient switching in echo-planar imaging (EPI), as well as in other fMRI sequences more similar to conventional MR sequences. The acoustic noise interacts in an unpredictable way with the experimental stimuli both from a perceptual point of view and in the evoked hemodynamics. To overcome this problem, different approaches have been proposed recently that generally require careful tailoring of the experimental design and the fMRI methodology to the specific requirements posed by the auditory research. The novel methodological approaches can make the fMRI exploration of auditory processing much easier and more reliable, and thus may permit filling the gap with other fields of neuroscience research. As a result, some fundamental neural underpinnings of audition are being clarified, and the way sound stimuli are integrated in the auditory gestalt are beginning to be understood.

  1. Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology

    Science.gov (United States)

    Olsen, Kirk N.

    Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.

  2. Molecular Impairment Mechanisms of Novel OPA1 Mutations Predicted by Molecular Modeling in Patients With Autosomal Dominant Optic Atrophy and Auditory Neuropathy Spectrum Disorder.

    Science.gov (United States)

    Namba, Kazunori; Mutai, Hideki; Takiguchi, Yoichiro; Yagi, Hirotaka; Okuyama, Takahide; Oba, Shuntaro; Yamagishi, Ryosuke; Kaneko, Hiroki; Shintani, Tomoko; Kaga, Kimitaka; Matsunaga, Tatsuo

    2016-04-01

    Different missense mutations of the optic atrophy 1 gene (OPA1) identified in optic atrophy patients with auditory neuropathy spectrum disorder (ANSD) induce functional impairment through different molecular mechanisms. OPA1 is the gene responsible for autosomal dominant optic atrophy (ADOA), but some of its mutations are also associated with ANSD. OPA1 is a member of the GTPase family of proteins and plays a key role in the maintenance of mitochondrial activities that are dependent on dimer formation of the protein. There are many reports of OPA1 mutations, but the molecular mechanisms of their functional impairments are unclear. The sequences of coding regions in OPA1 were analyzed from blood samples of ADOA patients with ANSD. Molecular modeling of the protein's ability to form dimers and its GTP-binding ability were conducted to study the effects of structural changes in OPA1 caused by two identified mutations and their resultant effects on protein function. Two heterozygous mutations, p.T414P (c.1240A>C) and p.T540P (c.1618A>C), located in the GTPase and middle domains of OPA1, respectively, were identified in two patients. Molecular modeling indicated decreased dimer formation caused by destabilization of the association structure of the p.T414P mutant, and decreased GTP-binding caused by destabilization of the binding site structure in the p.T540P mutant. These two different conformational changes might result in decreased GTPase activities that trigger ADOA associated with ANSD, and are likely to be associated with mild clinical features. Molecular modeling would provide useful information in clinical practice.

  3. Auditory Discrimination Learning: Role of Working Memory.

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    Full Text Available Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM. First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.

  4. Attention enhances apparent perceptual organization.

    Science.gov (United States)

    Barbot, Antoine; Liu, Sirui; Kimchi, Ruth; Carrasco, Marisa

    2017-08-28

    Perceptual organization and selective attention are two crucial processes that influence how we perceive visual information. The former structures complex visual inputs into coherent units, whereas the later selects relevant information. Attention and perceptual organization can modulate each other, affecting visual processing and performance in various tasks and conditions. Here, we tested whether attention can alter the way multiple elements appear to be perceptually organized. We manipulated covert spatial attention using a rapid serial visual presentation task, and measured perceptual organization of two multielements arrays organized by luminance similarity as rows or columns, at both the attended and unattended locations. We found that the apparent perceptual organization of the multielement arrays is intensified when attended and attenuated when unattended. We ruled out response bias as an alternative explanation. These findings reveal that attention enhances the appearance of perceptual organization, a midlevel vision process, altering the way we perceive our visual environment.

  5. Acoustic and Perceptual Correlates of Stress in Nonwords Produced by Children with Suspected Developmental Apraxia of Speech and Children with Phonological Disorder.

    Science.gov (United States)

    Munson, Benjamin; Bjorum, Elissa M.; Windsor, Jennifer

    2003-01-01

    This study examined whether accuracy in producing linguistic stress reliably distinguished between five children with suspected developmental apraxia of speech (sDAS) and five children with phonological disorder (PD). No group differences in the production of stress were found; however, listeners judged that nonword repetitions of the children…

  6. Acoustic and Perceptual Measurements of Prosody Production on the Profiling Elements of Prosodic Systems in Children by Children with Autism Spectrum Disorders

    Science.gov (United States)

    Diehl, Joshua John; Paul, Rhea

    2013-01-01

    Prosody production atypicalities are a feature of autism spectrum disorders (ASDs), but behavioral measures of performance have failed to provide detail on the properties of these deficits. We used acoustic measures of prosody to compare children with ASDs to age-matched groups with learning disabilities and typically developing peers. Overall,…

  7. Aplicabilidade do software Fast Forword na reabilitação dos distúrbios do processamento auditivo: resultados iniciais Applicability of Fast ForWord software to management auditory process disorders: early result

    Directory of Open Access Journals (Sweden)

    Sheila Andreoli Balen

    2008-12-01

    Full Text Available TEMA: novas propostas de reabilitação para crianças com distúrbios do processamento auditivo associadas aos distúrbios de linguagem e de aprendizagem são necessárias para aumentar a eficácia do tratamento fonoaudiológico. Assim, o objetivo foi descrever a aplicabilidade do software Fast ForWord Language (FFWL na reabilitação dos distúrbios de processamento auditivo (DPA em três crianças brasileiras. PROCEDIMENTOS: estas três crianças, na faixa-etária de 9 a 14 anos, foram selecionadas pela avaliação audiológica básica, do processamento auditivo, de linguagem escrita e de consciência fonológica. Estes procedimentos foram utilizados antes e após a realização do treinamento com o software FFWL, que foi aplicado durante 80 minutos por dia, em cinco dias por semana em até oito semanas de treinamento. Foram utilizadas as seguintes estratégias: Circus sequence, Old Mac Donald's Flying Farm, Phoneme identification e Phonic Match, envolvendo detecção, discriminação, atenção sustentada e memória auditiva. RESULTADOS: após, em média 30,67 dias de uso do FFW, observou-se adequação em duas crianças do processamento auditivo. Em uma das crianças isso não foi evidenciado mantendo-se com as mesmas alterações na reavaliação do processamento auditivo. Após a terceira semana de estimulação observou-se diminuição do interesse pelas estratégias, o que necessitou uma intervenção mais intensa e criativa dos pesquisadores. CONCLUSÃO: pode-se inferir que o FFW apresenta aplicabilidade para crianças brasileiras com distúrbio do processamento auditivo, entretanto, são necessárias novas pesquisas com uma amostra maior para verificar a eficácia deste software para crianças brasileiras.BACKGROUND: news proposals of rehabilitation for children with auditory processing disorders associated to language and learning disorders are necessary to increase the efficacy of speech and language treatment. So, the purpose was

  8. A perceptual metric for photo retouching.

    Science.gov (United States)

    Kee, Eric; Farid, Hany

    2011-12-13

    In recent years, advertisers and magazine editors have been widely criticized for taking digital photo retouching to an extreme. Impossibly thin, tall, and wrinkle- and blemish-free models are routinely splashed onto billboards, advertisements, and magazine covers. The ubiquity of these unrealistic and highly idealized images has been linked to eating disorders and body image dissatisfaction in men, women, and children. In response, several countries have considered legislating the labeling of retouched photos. We describe a quantitative and perceptually meaningful metric of photo retouching. Photographs are rated on the degree to which they have been digitally altered by explicitly modeling and estimating geometric and photometric changes. This metric correlates well with perceptual judgments of photo retouching and can be used to objectively judge by how much a retouched photo has strayed from reality.

  9. Extraction of auditory features and elicitation of attributes for the assessment of multi-channel reproduced sound

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian

    2005-01-01

    The identification of relevant auditory attributes is pivotal in sound quality evaluation. Two fundamentally different psychometric methods were employed to uncover perceptually relevant auditory features of multi-channel reproduced sound. In the first method, called Repertory Grid Technique (RGT......), subjects were asked to directly assign verbal labels to the features when encountering them, and to subsequently rate the sounds on the scales thus obtained. The second method requires the subjects to consistently identify the perceptually relevant features before assigning them a verbal label. Under...... sufficient consistency, a lattice representation -- as frequently used in Formal Concept Analysis (FCA) -- can be derived to depict the structure of auditory features....

  10. Extraction of auditory features and elicitation of attributes for the assessment of multi-channel reproduced sound

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian Maria

    2005-01-01

    The identification of relevant auditory attributes is pivotal in sound quality evaluation. Two fundamentally different psychometric methods were employed to uncover perceptually relevant auditory features of multichannel reproduced sound. In the first method, called Repertory Grid Technique (RGT......), subjects were asked to directly assign verbal labels to the features when encountering them and to subsequently rate the sounds on the scales thus obtained. The second method requires the subjects to consistently identify the perceptually relevant features before assigning them a verbal label. Under...... sufficient consistency, a lattice representation-as frequently used in Formal Concept Analysis (FCA)-can be derived to depict the structure of auditory features...

  11. Perceptual Audio Hashing Functions

    Directory of Open Access Journals (Sweden)

    Emin Anarım

    2005-07-01

    Full Text Available Perceptual hash functions provide a tool for fast and reliable identification of content. We present new audio hash functions based on summarization of the time-frequency spectral characteristics of an audio document. The proposed hash functions are based on the periodicity series of the fundamental frequency and on singular-value description of the cepstral frequencies. They are found, on one hand, to perform very satisfactorily in identification and verification tests, and on the other hand, to be very resilient to a large variety of attacks. Moreover, we address the issue of security of hashes and propose a keying technique, and thereby a key-dependent hash function.

  12. Perceptual learning of degraded speech by minimizing prediction error.

    Science.gov (United States)

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

  13. Quadri-stability of a spatially ambiguous auditory illusion

    Directory of Open Access Journals (Sweden)

    Constance May Bainbridge

    2015-01-01

    Full Text Available In addition to vision, audition plays an important role in sound localization in our world. One way we estimate the motion of an auditory object moving towards or away from us is from changes in volume intensity. However, the human auditory system has unequally distributed spatial resolution, including difficulty distinguishing sounds in front versus behind the listener. Here, we introduce a novel quadri-stable illusion, the Transverse-and-Bounce Auditory Illusion, which combines front-back confusion with changes in volume levels of a nonspatial sound to create ambiguous percepts of an object approaching and withdrawing from the listener. The sound can be perceived as traveling transversely from front to back or back to front, or bouncing to remain exclusively in front of or behind the observer. Here we demonstrate how human listeners experience this illusory phenomenon by comparing ambiguous and unambiguous stimuli for each of the four possible motion percepts. When asked to rate their confidence in perceiving each sound’s motion, participants reported equal confidence for the illusory and unambiguous stimuli. Participants perceived all four illusory motion percepts, and could not distinguish the illusion from the unambiguous stimuli. These results show that this illusion is effectively quadri-stable. In a second experiment, the illusory stimulus was looped continuously in headphones while participants identified its perceived path of motion to test properties of perceptual switching, locking, and biases. Participants were biased towards perceiving transverse compared to bouncing paths, and they became perceptually locked into alternating between front-to-back and back-to-front percepts, perhaps reflecting how auditory objects commonly move in the real world. This multi-stable auditory illusion opens opportunities for studying the perceptual, cognitive, and neural representation of objects in motion, as well as exploring multimodal perceptual

  14. Inter-trial coherence as a marker of cortical phase synchrony in children with sensorineural hearing loss and auditory neuropathy spectrum disorder fitted with hearing aids and cochlear implants.

    Science.gov (United States)

    Nash-Kille, Amy; Sharma, Anu

    2014-07-01

    Although brainstem dys-synchrony is a hallmark of children with auditory neuropathy spectrum disorder (ANSD), little is known about how the lack of neural synchrony manifests at more central levels. We used time-frequency single-trial EEG analyses (i.e., inter-trial coherence; ITC), to examine cortical phase synchrony in children with normal hearing (NH), sensorineural hearing loss (SNHL) and ANSD. Single trial time-frequency analyses were performed on cortical auditory evoked responses from 41 NH children, 91 children with ANSD and 50 children with SNHL. The latter two groups included children who received intervention via hearing aids and cochlear implants. ITC measures were compared between groups as a function of hearing loss, intervention type, and cortical maturational status. In children with SNHL, ITC decreased as severity of hearing loss increased. Children with ANSD revealed lower levels of ITC relative to children with NH or SNHL, regardless of intervention. Children with ANSD who received cochlear implants showed significant improvements in ITC with increasing experience with their implants. Cortical phase coherence is significantly reduced as a result of both severe-to-profound SNHL and ANSD. ITC provides a window into the brain oscillations underlying the averaged cortical auditory evoked response. Our results provide a first description of deficits in cortical phase synchrony in children with SNHL and ANSD. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Atypical brain lateralisation in the auditory cortex and language performance in 3- to 7-year-old children with high-functioning autism spectrum disorder: a child-customised magnetoencephalography (MEG) study.

    Science.gov (United States)

    Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Ueno, Sanae; Munesue, Toshio; Ono, Yasuki; Tsubokawa, Tsunehisa; Haruta, Yasuhiro; Oi, Manabu; Niida, Yo; Remijn, Gerard B; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Minabe, Yoshio

    2013-10-08

    Magnetoencephalography (MEG) is used to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. In young children, however, the simultaneous quantification of the bilateral auditory-evoked response during binaural hearing is difficult using conventional adult-sized MEG systems. Recently, a child-customised MEG device has facilitated the acquisition of bi-hemispheric recordings, even in young children. Using the child-customised MEG device, we previously reported that language-related performance was reflected in the strength of the early component (P50m) of the auditory evoked magnetic field (AEF) in typically developing (TD) young children (2 to 5 years old) [Eur J Neurosci 2012, 35:644-650]. The aim of this study was to investigate how this neurophysiological index in each hemisphere is correlated with language performance in autism spectrum disorder (ASD) and TD children. We used magnetoencephalography (MEG) to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. We investigated the P50m that is evoked by voice stimuli (/ne/) bilaterally in 33 young children (3 to 7 years old) with ASD and in 30 young children who were typically developing (TD). The children were matched according to their age (in months) and gender. Most of the children with ASD were high-functioning subjects. The results showed that the children with ASD exhibited significantly less leftward lateralisation in their P50m intensity compared with the TD children. Furthermore, the results of a multiple regression analysis indicated that a shorter P50m latency in both hemispheres was specifically correlated with higher language-related performance in the TD children, whereas this latency was not correlated with non-verbal cognitive performance or chronological age. The children with ASD did not show any correlation between P50m latency and language-related performance; instead, increasing chronological age was a

  16. Reduced auditory segmentation potentials in first-episode schizophrenia.

    Science.gov (United States)

    Coffman, Brian A; Haigh, Sarah M; Murphy, Timothy K; Leiter-Mcbeth, Justin; Salisbury, Dean F

    2017-10-22

    Auditory scene analysis (ASA) dysfunction is likely an important component of the symptomatology of schizophrenia. Auditory object segmentation, the grouping of sequential acoustic elements into temporally-distinct auditory objects, can be assessed with electroencephalography through measurement of the auditory segmentation potential (ASP). Further, N2 responses to the initial and final elements of auditory objects are enhanced relative to medial elements, which may indicate auditory object edge detection (initiation and termination). Both ASP and N2 modulation are impaired in long-term schizophrenia. To determine whether these deficits are present early in disease course, we compared ASP and N2 modulation between individuals at their first episode of psychosis within the schizophrenia spectrum (FE, N=20) and matched healthy controls (N=24). The ASP was reduced by >40% in FE; however, N2 modulation was not statistically different from HC. This suggests that auditory segmentation (ASP) deficits exist at this early stage of schizophrenia, but auditory edge detection (N2 modulation) is relatively intact. In a subset of subjects for whom structural MRIs were available (N=14 per group), ASP sources were localized to midcingulate cortex (MCC) and temporal auditory cortex. Neurophysiological activity in FE was reduced in MCC, an area linked to aberrant perceptual organization, negative symptoms, and cognitive dysfunction in schizophrenia, but not temporal auditory cortex. This study supports the validity of the ASP for measurement of auditory object segmentation and suggests that the ASP may be useful as an early index of schizophrenia-related MCC dysfunction. Further, ASP deficits may serve as a viable biomarker of disease presence. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Perceptual and linguistic interactions in speeded classification: tests of the semantic coding hypothesis.

    Science.gov (United States)

    Martino, G; Marks, L E

    1999-01-01

    We tested the semantic coding hypothesis, which states that cross-modal interactions observed in speeded classification tasks arise after perceptual information is recoded into an abstract format common to perceptual and linguistic systems. Using a speeded classification task, we first confirmed the presence of congruence interactions between auditory pitch and visual lightness and observed Garner-type interference with nonlinguistic (perceptual) stimuli (low-frequency and high-frequency tones, black and white squares). Subsequently, we found that modifying the visual stimuli by (a) making them lexical (related words) or (b) reducing their compactness or figural 'goodness' altered congruence effects and Garner interference. The results are consistent with the semantic coding hypothesis, but only in part, and suggest the need for additional assumptions regarding the role of perceptual organization in cross-modal dimensional interactions.

  18. Conflict-Induced Perceptual Filtering

    Science.gov (United States)

    Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas

    2012-01-01

    In a variety of conflict paradigms, target and distractor stimuli are defined in terms of perceptual features. Interference evoked by distractor stimuli tends to be reduced when the ratio of congruent to incongruent trials is decreased, suggesting conflict-induced perceptual filtering (i.e., adjusting the processing weights assigned to stimuli…

  19. What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework

    Science.gov (United States)

    Perrier, Pascal; Schwartz, Jean-Luc; Diard, Julien

    2018-01-01

    Shifts in perceptual boundaries resulting from speech motor learning induced by perturbations of the auditory feedback were taken as evidence for the involvement of motor functions in auditory speech perception. Beyond this general statement, the precise mechanisms underlying this involvement are not yet fully understood. In this paper we propose a quantitative evaluation of some hypotheses concerning the motor and auditory updates that could result from motor learning, in the context of various assumptions about the roles of the auditory and somatosensory pathways in speech perception. This analysis was made possible thanks to the use of a Bayesian model that implements these hypotheses by expressing the relationships between speech production and speech perception in a joint probability distribution. The evaluation focuses on how the hypotheses can (1) predict the location of perceptual boundary shifts once the perturbation has been removed, (2) account for the magnitude of the compensation in presence of the perturbation, and (3) describe the correlation between these two behavioral characteristics. Experimental findings about changes in speech perception following adaptation to auditory feedback perturbations serve as reference. Simulations suggest that they are compatible with a framework in which motor adaptation updates both the auditory-motor internal model and the auditory characterization of the perturbed phoneme, and where perception involves both auditory and somatosensory pathways. PMID:29357357

  20. Auditory-Acoustic Basis of Consonant Perception. Attachments A thru I

    Science.gov (United States)

    1991-01-22

    DEC Screen Management routines (SMG$ Run Time Library). Finally, we developed a program to assist the user in editing a file which contains a list of...demisyllable unit over the whole syllable is large reduction in the size of the reference inventory . One study (46) shows that a reduction by about a...perceptual aspect is implied. It is within the broad framwork described above that the auditory-perceptual theory will be considered. But before beginning

  1. The psychoacoustics of noise vocoded speech: a physiological means to a perceptual end.

    Science.gov (United States)

    Loebach, Jeremy L; Wickesberg, Robert E

    2008-07-01

    Noise vocoded speech tokens produce temporal patterns in the ensemble response of the auditory nerve similar to those of their naturally produced counterparts [Loebach, J.L., Wickesberg, R.E., 2006. The representation of noise vocoded speech in the auditory nerve of the chinchilla: Physiological correlates for the perception of spectrally reduced speech. Hear. Res. 213 (1-2), 130-144]. Moreover, the degree of pattern similarity increased as more noise bands were used to synthesize the vocoded stimuli, suggesting a relationship between the patterns that these stimuli evoke in the auditory nerve and their recognition by human subjects. In order to make a direct comparison between the psychoacoustic and physiological domains, the present study obtained the perceptual identification scores for these stimuli. A set of 120 stimuli containing the 16 tokens of interest was presented to 30 young normal hearing subjects, who identified the tokens in a closed set task. Overall, the perceptual identification of the tokens increased in accuracy with the addition of noise bands. The neural pattern similarity was quantified using dynamic time warping, and correlated with the perceptual identification scores for the target stimuli of interest. A significant linear relationship between the pattern similarity and perceptual identification scores was found, such that as neural pattern similarity increased, the accuracy of stimulus identification also increased. These findings suggest a possible physiological substrate for the recognition of noise vocoded consonants.

  2. Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis.

    Science.gov (United States)

    Giroud, Nathalie; Lemke, Ulrike; Reich, Philip; Matthes, Katarina L; Meyer, Martin

    2017-02-01

    The current study investigates cognitive processes as reflected in late auditory-evoked potentials as a function of longitudinal auditory learning. A normal hearing adult sample (n=15) performed an active oddball task at three consecutive time points (TPs) arranged at two week intervals, and during which EEG was recorded. The stimuli comprised of syllables consisting of a natural fricative (/sh/,/s/,/f/) embedded between two /a/ sounds, as well as morphed transitions of the two syllables that served as deviants. Perceptual and cognitive modulations as reflected in the onset and the mean global field power (GFP) of N2b- and P3b-related microstates across four weeks were investigated. We found that the onset of P3b-like microstates, but not N2b-like microstates decreased across TPs, more strongly for difficult deviants leading to similar onsets for difficult and easy stimuli after repeated exposure. The mean GFP of all N2b-like and P3b-like microstates increased more in spectrally strong deviants compared to weak deviants, leading to a distinctive activation for each stimulus after learning. Our results indicate that longitudinal training of auditory-related cognitive mechanisms such as stimulus categorization, attention and memory updating processes are an indispensable part of successful auditory learning. This suggests that future studies should focus on the potential benefits of cognitive processes in auditory training. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Integration and segregation in auditory scene analysis

    Science.gov (United States)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  4. Cleft Palate Children: Performance In Auditory Processing Tests

    OpenAIRE

    Boscariol M.; Andre K.D.; Feniman M.R.

    2009-01-01

    Many children with auditory processing disorders have a high prevalence of otitis media, a middle ear alterations greatly prevalent in children with palatine and lip clefts. Aim: to check the performance of children with palate cleft alone (PC) in auditory processing tests. Prospective study. Materials and Methods: twenty children (7 to 11 years) with CP were submitted to sound location tests (SL), memory for verbal sounds (MSSV) and non verbal sounds in sequence (MSSNV), Revised auditory fus...

  5. Auditory Grouping Mechanisms Reflect a Sound’s Relative Position in a Sequence

    Directory of Open Access Journals (Sweden)

    Kevin Thomas Hill

    2012-06-01

    Full Text Available The human brain uses acoustic cues to decompose complex auditory scenes into its components. For instance to improve communication, a listener can select an individual stream, such as a talker in a crowded room, based on cues such as pitch or location. Despite numerous investigations into auditory streaming, few have demonstrated clear correlates of perception; instead, in many studies perception covaries with changes in physical stimulus properties (e.g. frequency separation. In the current report, we employ a classic ABA streaming paradigm and human electroencephalography (EEG to disentangle the individual contributions of stimulus properties from changes in auditory perception. We find that changes in perceptual state – that is the perception of one versus two auditory streams with physically identical stimuli – and changes in physical stimulus properties are reflected independently in the event-related potential (ERP during overlapping time windows. These findings emphasize the necessity of controlling for stimulus properties when studying perceptual effects of streaming. Furthermore, the independence of the perceptual effect from stimulus properties suggests the neural correlates of streaming reflect a tone’s relative position within a larger sequence (1st, 2nd, 3rd rather than its acoustics. By clarifying the role of stimulus attributes along with perceptual changes, this study helps explain precisely how the brain is able to distinguish a sound source of interest in an auditory scene.

  6. The influence of schizotypal traits on attention under high perceptual load.

    Science.gov (United States)

    Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna

    2018-03-01

    Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.

  7. Perceptual and academic patterns of learning-disabled/gifted students.

    Science.gov (United States)

    Waldron, K A; Saphire, D G

    1992-04-01

    This research explored ways gifted children with learning disabilities perceive and recall auditory and visual input and apply this information to reading, mathematics, and spelling. 24 learning-disabled/gifted children and a matched control group of normally achieving gifted students were tested for oral reading, word recognition and analysis, listening comprehension, and spelling. In mathematics, they were tested for numeration, mental and written computation, word problems, and numerical reasoning. To explore perception and memory skills, students were administered formal tests of visual and auditory memory as well as auditory discrimination of sounds. Their responses to reading and to mathematical computations were further considered for evidence of problems in visual discrimination, visual sequencing, and visual spatial areas. Analyses indicated that these learning-disabled/gifted students were significantly weaker than controls in their decoding skills, in spelling, and in most areas of mathematics. They were also significantly weaker in auditory discrimination and memory, and in visual discrimination, sequencing, and spatial abilities. Conclusions are that these underlying perceptual and memory deficits may be related to students' academic problems.

  8. Clinical characteristics of patients with persistent postural-perceptual dizziness

    Directory of Open Access Journals (Sweden)

    Roseli Saraiva Moreira Bittar

    2015-06-01

    Full Text Available INTRODUCTION: Persistent postural-perceptual dizziness is the dizziness that lasts for over three months with no clinical explanation for its persistence. The patient's motor response pattern presents changes and most patients manifest significant anxiety. OBJECTIVE: To evaluate the clinical characteristics of patients with persistent postural and perceptual dizziness. METHODS: statistical analysis of clinical aspects of patients with persistent postural-perceptual dizziness. RESULTS: 81 patients, average age: 50.06 ± 12.16 years; female/male ratio: 5.7/1; main reasons for dizziness: visual stimuli (74%, body movements (52%, and sleep deprivation (38%. The most prevalent comorbidities were hypercholesterolemia (31%, migraine headaches (26%, carbohydrate metabolism disorders (22% and cervical syndrome (21%. DHI, State-Trait Anxiety Inventory - Trait, Beck Depression Inventory, and Hospital Anxiety and Depression Scale questionnaires were statistically different (p < 0.05 when compared to controls. 68% demonstrated clinical improvement after treatment with serotonin reuptake inhibitors. CONCLUSION: Persistent postural-perceptual dizziness affects more women than men, with a high associated prevalence of metabolic disorders and migraine. Questionnaires help to identify the predisposition to persistent postural-perceptual dizziness. The prognosis is good with adequate treatment.

  9. Stochastic undersampling steepens auditory threshold/duration functions: Implications for understanding auditory deafferentation and aging

    Directory of Open Access Journals (Sweden)

    Frederic eMarmel

    2015-05-01

    Full Text Available It has long been known that some listeners experience hearing difficulties out of proportion with their audiometric losses. Notably, some older adults as well as auditory neuropathy patients have temporal-processing and speech-in-noise intelligibility deficits not accountable for by elevated audiometric thresholds. The study of these hearing deficits has been revitalized by recent studies that show that auditory deafferentation comes with aging and can occur even in the absence of an audiometric loss. The present study builds on the stochastic undersampling principle proposed by Lopez-Poveda and Barrios (2013 to account for the perceptual effects of auditory deafferentation. Auditory threshold/duration functions were measured for broadband noises that were stochastically undersampled to various different degrees. Stimuli with and without undersampling were equated for overall energy in order to focus on the changes that undersampling elicited on the stimulus waveforms, and not on its effects on the overall stimulus energy. Stochastic undersampling impaired the detection of short sounds ( 50 ms did not change or improved, depending on the degree of undersampling. The results for short sounds show that stochastic undersampling, and hence presumably deafferentation, can account for the steeper threshold/duration functions observed in auditory neuropathy patients and older adults with (near normal audiometry. This suggests that deafferentation might be diagnosed using pure-tone audiometry with short tones. It further suggests that that the auditory system of audiometrically normal older listeners might not be ‘slower than normal’, as is commonly thought, but simply less well afferented. Finally, the results for both short and long sounds support the probabilistic theories of detectability that challenge the idea that auditory threshold occurs by integration of sound energy over time.

  10. Tongue-Palate Contact of Perceptually Acceptable Alveolar Stops

    Science.gov (United States)

    Lee, Alice; Gibbon, Fiona E.; O'Donovan, Cliona

    2013-01-01

    Increased tongue-palate contact for perceptually acceptable alveolar stops has been observed in children with speech sound disorders (SSD). This is a retrospective study that further investigated this issue by using quantitative measures to compare the target alveolar stops /t/, /d/ and /n/ produced in words by nine children with SSD (20 tokens of…

  11. Consciência do próprio desvio de fala e processamento auditivo no desvio fonológico Awareness of their own speech impairment and auditory processing in phonological disorder

    Directory of Open Access Journals (Sweden)

    Roberta Freitas Dias

    2012-12-01

    Full Text Available TEMA: a habilidade de reconhecimento do próprio desvio de fala e sua possível relação com o processamento auditivo em crianças com diagnóstico de desvio fonológico. PROCEDIMENTOS: participaram do estudo oito sujeitos com diagnóstico de desvio fonológico e idades 5:0;26 e 7:7;2. O sistema fonético/fonológico foi avaliado por meio do instrumento - Avaliação Fonológica da Criança. Aplicou-se ainda o teste de consciência do próprio desvio de fala, o qual tem por finalidade fazer com que a criança ouça e julgue os desvios existentes em sua própria fala. Para avaliação do processamento auditivo, utilizou-se a Avaliação Simplificada do Processamento Auditivo (Triagem, e os testes especiais de Fala no Ruído e o Teste de Dissílabos Alternados. RESULTADOS: todos os sujeitos obtiveram resultados abaixo do esperado, com valores abaixo de 50% do valor máximo possível nos testes de processamento auditivo. Quanto à consciência do próprio desvio de fala, todos os sujeitos apresentaram esta habilidade, mas em valores bastante variáveis ainda que o desempenho dos testes do processamento auditivo não tenham sido satisfatórios. Este achado sugere que as crianças neste período (5-7 anos, mesmo apresentando dificuldade para entender ou interpretar o que ouvem, são capazes de perceber os erros que apresentam na fala. CONCLUSÃO: a consciência do próprio desvio de fala está presente nos sujeitos com desvio fonológico, independentemente do desempenho apresentado em tarefas do processamento auditivo.BACKGROUND: the ability of recognizing the own speech impairment and its possible relationship with the auditory processing in children with phonological disorder. PROCEDURES: this study included eight subjects diagnosed with phonological disorders, age between 5:0;26 and 7:7;2-year old. The phonetic / phonological system was evaluated by the Phonological Assessment of Child Speech. The Awareness of the own Speech Impairment Test

  12. Auditory stimulation and cardiac autonomic regulation

    Directory of Open Access Journals (Sweden)

    Vitor E. Valenti

    2012-08-01

    Full Text Available Previous studies have already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we described the relationship between musical auditory stimulation and heart rate variability. Searches were performed with the Medline, SciELO, Lilacs and Cochrane databases using the following keywords: "auditory stimulation", "autonomic nervous system", "music" and "heart rate variability". The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Additionally, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasurable songs is involved in cardiac autonomic regulation. Musical auditory stimulation influences heart rate variability through a neural mechanism that is not well understood. Further studies are necessary to develop new therapies to treat cardiovascular disorders.

  13. Development of a central auditory test battery for adults.

    NARCIS (Netherlands)

    Neijenhuis, C.A.M.; Stollman, M.H.P.; Snik, A.F.M.; Broek, P. van den

    2001-01-01

    There is little standardized test material in Dutch to document central auditory processing disorders (CAPDs). Therefore, a new central auditory test battery was composed and standardized for use with adult populations and older children. The test battery comprised seven tests (words in noise,

  14. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  15. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  16. A Factorial Study of the Carrow Auditory-Visual Abilities Test with Normal and Clinical Children.

    Science.gov (United States)

    Woodward, Paul J.; And Others

    1987-01-01

    A factor analysis of the Carrow Auditory-Visual Abilities Test identified common factors in a population of 1,032 nondisabled 4- through 10-year-olds and a clinical population of language-disordered or learning-disabled peers with auditory and/or visual perception problems. Most subtests fell into factors attributed to auditory or visual…

  17. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Directory of Open Access Journals (Sweden)

    Andrée-Anne S Meilleur

    Full Text Available Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination and mid-level (e.g., pattern matching tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals.We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ and Raven Progressive Matrices (RPM. We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence.In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism.Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor. Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor, which may drive perceptual abilities differently in

  18. Autism-Specific Covariation in Perceptual Performances: “g” or “p” Factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S.; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Background Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. Methods We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. Results In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Conclusions Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or “g” factor). Instead, this residual covariation is accounted for by a common perceptual process (or “p” factor), which may drive

  19. Autism-specific covariation in perceptual performances: "g" or "p" factor?

    Science.gov (United States)

    Meilleur, Andrée-Anne S; Berthiaume, Claude; Bertone, Armando; Mottron, Laurent

    2014-01-01

    Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals. We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler's Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler's FSIQ or RPM in the regression models controlled for the effects of intelligence. In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism. Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or "g" factor). Instead, this residual covariation is accounted for by a common perceptual process (or "p" factor), which may drive perceptual abilities differently in autistic and

  20. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals.

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-06-22

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.

  1. Computer-based auditory training (CBAT): benefits for children with language- and reading-related learning difficulties

    National Research Council Canada - National Science Library

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Campbell, Nicci; Luxon, Linda M

    2010-01-01

    This article reviews the evidence for computer-based auditory training (CBAT) in children with language, reading, and related learning difficulties, and evaluates the extent it can benefit children with auditory processing disorder (APD...

  2. Auditory free classification of nonnative speech.

    Science.gov (United States)

    Atagi, Eriko; Bent, Tessa

    2013-11-01

    Through experience with speech variability, listeners build categories of indexical speech characteristics including categories for talker, gender, and dialect. The auditory free classification task-a task in which listeners freely group talkers based on audio samples-has been a useful tool for examining listeners' representations of some of these characteristics including regional dialects and different languages. The free classification task was employed in the current study to examine the perceptual representation of nonnative speech. The category structure and salient perceptual dimensions of nonnative speech were investigated from two perspectives: general similarity and perceived native language background. Talker intelligibility and whether native talkers were included were manipulated to test stimulus set effects. Results showed that degree of accent was a highly salient feature of nonnative speech for classification based on general similarity and on perceived native language background. This salience, however, was attenuated when listeners were listening to highly intelligible stimuli and attending to the talkers' native language backgrounds. These results suggest that the context in which nonnative speech stimuli are presented-such as the listeners' attention to the talkers' native language and the variability of stimulus intelligibility-can influence listeners' perceptual organization of nonnative speech.

  3. Acquired Auditory Verbal Agnosia and Seizures in Childhood

    Science.gov (United States)

    Cooper, Judith A.; Ferry, Peggy C.

    1978-01-01

    The paper presents a review of cases of children with acquired aphasia with convulsive disorder and discusses clinical features of three additional children in whom the specific syndrome of auditory verbal agnosia was identified. (Author/CL)

  4. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal

  5. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise.

    Science.gov (United States)

    Söderlund, Göran B W; Jobs, Elisabeth Nilsson

    2016-01-01

    The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6-9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman's speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  6. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear when Exposed to 65 dB of Auditory Noise

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-01-01

    Full Text Available The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD, affecting approximately 6-9 % of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB. Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children (TDC and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  7. Perceptual anchoring in preschool children: not adultlike, but there.

    Directory of Open Access Journals (Sweden)

    Karen Banai

    Full Text Available BACKGROUND: Recent studies suggest that human auditory perception follows a prolonged developmental trajectory, sometimes continuing well into adolescence. Whereas both sensory and cognitive accounts have been proposed, the development of the ability to base current perceptual decisions on prior information, an ability that strongly benefits adult perception, has not been directly explored. Here we ask whether the auditory frequency discrimination of preschool children also improves when given the opportunity to use previously presented standard stimuli as perceptual anchors, and whether the magnitude of this anchoring effect undergoes developmental changes. METHODOLOGY/PRINCIPAL FINDINGS: Frequency discrimination was tested using two adaptive same/different protocols. In one protocol (with-reference, a repeated 1-kHz standard tone was presented repeatedly across trials. In the other (no-reference, no such repetitions occurred. Verbal memory and early reading skills were also evaluated to determine if the pattern of correlations between frequency discrimination, memory and literacy is similar to that previously reported in older children and adults. Preschool children were significantly more sensitive in the with-reference than in the no-reference condition, but the magnitude of this anchoring effect was smaller than that observed in adults. The pattern of correlations among discrimination thresholds, memory and literacy replicated previous reports in older children. CONCLUSIONS/SIGNIFICANCE: The processes allowing the use of context to form perceptual anchors are already functional among preschool children, albeit to a lesser extent than in adults. Nevertheless, immature anchoring cannot fully account for the poorer frequency discrimination abilities of young children. That anchoring is present among the majority of typically developing preschool children suggests that the anchoring deficits observed among individuals with dyslexia represent a

  8. Auditory-motor learning during speech production in 9-11-year-old children.

    Directory of Open Access Journals (Sweden)

    Douglas M Shiller

    Full Text Available BACKGROUND: Hearing ability is essential for normal speech development, however the precise mechanisms linking auditory input and the improvement of speaking ability remain poorly understood. Auditory feedback during speech production is believed to play a critical role by providing the nervous system with information about speech outcomes that is used to learn and subsequently fine-tune speech motor output. Surprisingly, few studies have directly investigated such auditory-motor learning in the speech production of typically developing children. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we manipulated auditory feedback during speech production in a group of 9-11-year old children, as well as in adults. Following a period of speech practice under conditions of altered auditory feedback, compensatory changes in speech production and perception were examined. Consistent with prior studies, the adults exhibited compensatory changes in both their speech motor output and their perceptual representations of speech sound categories. The children exhibited compensatory changes in the motor domain, with a change in speech output that was similar in magnitude to that of the adults, however the children showed no reliable compensatory effect on their perceptual representations. CONCLUSIONS: The results indicate that 9-11-year-old children, whose speech motor and perceptual abilities are still not fully developed, are nonetheless capable of auditory-feedback-based sensorimotor adaptation, supporting a role for such learning processes in speech motor development. Auditory feedback may play a more limited role, however, in the fine-tuning of children's perceptual representations of speech sound categories.

  9. Prosody recognition in adults with high-functioning autism spectrum disorders: from psychoacoustics to cognition.

    Science.gov (United States)

    Globerson, Eitan; Amir, Noam; Kishon-Rabin, Liat; Golan, Ofer

    2015-04-01

    Prosody is an important tool of human communication, carrying both affective and pragmatic messages in speech. Prosody recognition relies on processing of acoustic cues, such as the fundamental frequency of the voice signal, and their interpretation according to acquired socioemotional scripts. Individuals with autism spectrum disorders (ASD) show deficiencies in affective prosody recognition. These deficiencies have been mostly associated with general difficulties in emotion recognition. The current study explored an additional association between affective prosody recognition in ASD and auditory perceptual abilities. Twenty high-functioning male adults with ASD and 32 typically developing male adults, matched on age and verbal abilities undertook a battery of auditory tasks. These included affective and pragmatic prosody recognition tasks, two psychoacoustic tasks (pitch direction recognition and pitch discrimination), and a facial emotion recognition task, representing nonvocal emotion recognition. Compared with controls, the ASD group demonstrated poorer performance on both vocal and facial emotion recognition, but not on pragmatic prosody recognition or on any of the psychoacoustic tasks. Both groups showed strong associations between psychoacoustic abilities and prosody recognition, both affective and pragmatic, although these were more pronounced in the ASD group. Facial emotion recognition predicted vocal emotion recognition in the ASD group only. These findings suggest that auditory perceptual abilities, alongside general emotion recognition abilities, play a significant role in affective prosody recognition in ASD. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  10. The effects of aging on auditory processing and cognition.

    Science.gov (United States)

    Tun, Patricia A; Williams, Victoria A; Small, Brent J; Hafter, Ervin R

    2012-12-01

    To briefly summarize existing data on effects of aging on auditory processing and cognition. A narrative review summarized previously reported data on age-related changes in auditory processing and in cognitive processes with a focus on spoken language comprehension and memory. In addition, recent data on effects of lifestyle engagement on cognitive processes are reviewed. There is substantial evidence for age-related declines in both auditory processes and cognitive abilities. Accumulating evidence supports the idea that the perceptual burden associated with hearing loss impacts the processing resources available for good comprehension and memory for spoken language, particularly in older adults with limited resources. However, many language abilities are well preserved in old age, and there is considerable variability among individuals in cognitive performance across the life span. The authors discuss how lifestyle factors and socioemotional engagement can help to offset declining abilities. It is clear that spoken language processing in adulthood and old age is affected by changes in perceptual, cognitive, and socioemotional processes as well as by interactions among these changes. Recommendations for further research include studying speech comprehension in complex conditions, including meaningful-connection spoken language, and tailoring clinical interventions based on patients' auditory processing and cognitive abilities along with their individual socioemotional demands.

  11. Modeling auditory perception of individual hearing-impaired listeners

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve; Dau, Torsten

    Models of auditory signal processing and perception allow us to generate hypotheses that can be quantitatively tested, which in turn helps us to explain and understand the functioning of the auditory system. Here, the perceptual consequences of hearing impairment in individual listeners were...... investigated within the framework of the computational auditory signal processing and perception (CASP) model of Jepsen et al. [ J. Acoust. Soc. Am., in press]. Several parameters of the model were modified according to data from psychoacoustic measurements. Parameters associated with the cochlear stage were...... forward masking. The model may be useful for the evaluation of hearing-aid algorithms, where a reliable simulation of hearing impairment may reduce the need for time-consuming listening tests during development....

  12. Diagnosis of unilateral telencephalic hearing disorders. Evaluation of a simple psychoacoustic pattern discrimination test.

    Science.gov (United States)

    Blaettner, U; Scherg, M; von Cramon, D

    1989-02-01

    A new psychoacoustic pattern discrimination test (PPDT) has been validated for the diagnosis of telencephalic hearing disorders. In this test, regular sequences of noise bursts or click trains are presented dichotically, and randomly occurring monaural changes in intensity or click pattern have to be discriminated. The PPDT was administered to 48 control subjects and to 62 patients with circumscribed cerebrovascular lesions. Involvement of telencephalic auditory structures (TAS) was assessed from CT scans. Abnormality in the PPDT was highly correlated with the incidence of a TAS lesion. The most prominent abnormality consisted of an increased error rate (missed discriminations) on the ear contralateral to the TAS lesion, comparable to the ear effect described for former dichotic tests. In normals, no ear dominance, which might have confounded the interpretation of lesion effects in patients, was observed for our test material. Also, the influence of peripheral hearing loss on test results was small. Criteria for the clinical evaluation of the PPDT were developed and yielded a good sensitivity (76.1%) when related to the CT scan data. Abnormality in the PPDT was also confirmed by reduced auditory evoked dipole source potentials in the lesioned hemisphere. Disturbances in auditory language comprehension in aphasic patients were not significantly related to a positive PPDT result, but a questionnaire about hearing difficulties revealed a close association of PPDT abnormality and auditory perceptual disturbances. These occurred only in difficult hearing environments, for example, the cocktail party situation. It must be concluded that unilateral TAS lesions lead to auditory perceptual impairment and communication problems, which should be given adequate attention during neuropsychological rehabilitation.

  13. Mental imagery of speech: linking motor and perceptual systems through internal simulation and estimation

    OpenAIRE

    Xing eTian; David ePoeppel

    2012-01-01

    The neural basis of mental imagery has been investigated by localizing the underlying neural networks, mostly in motor and perceptual systems, separately. However, how modality-specific representations are top-down induced and how the action and perception systems interact in the context of mental imagery is not well understood. Imagined speech production (‘articulation imagery’), which induces the kinesthetic feeling of articulator movement and its auditory consequences, provides a new angle...

  14. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    Science.gov (United States)

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. BAER - brainstem auditory evoked response

    Science.gov (United States)

    ... auditory potentials; Brainstem auditory evoked potentials; Evoked response audiometry; Auditory brainstem response; ABR; BAEP ... Normal results vary. Results will depend on the person and the instruments used to perform the test.

  16. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  17. Central auditory masking by an illusory tone.

    Science.gov (United States)

    Plack, Christopher J; Oxenham, Andrew J; Kreft, Heather A; Carlyon, Robert P

    2013-01-01

    Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated) between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  18. Central auditory masking by an illusory tone.

    Directory of Open Access Journals (Sweden)

    Christopher J Plack

    Full Text Available Many natural sounds fluctuate over time. The detectability of sounds in a sequence can be reduced by prior stimulation in a process known as forward masking. Forward masking is thought to reflect neural adaptation or neural persistence in the auditory nervous system, but it has been unclear where in the auditory pathway this processing occurs. To address this issue, the present study used a "Huggins pitch" stimulus, the perceptual effects of which depend on central auditory processing. Huggins pitch is an illusory tonal sensation produced when the same noise is presented to the two ears except for a narrow frequency band that is different (decorrelated between the ears. The pitch sensation depends on the combination of the inputs to the two ears, a process that first occurs at the level of the superior olivary complex in the brainstem. Here it is shown that a Huggins pitch stimulus produces more forward masking in the frequency region of the decorrelation than a noise stimulus identical to the Huggins-pitch stimulus except with perfect correlation between the ears. This stimulus has a peripheral neural representation that is identical to that of the Huggins-pitch stimulus. The results show that processing in, or central to, the superior olivary complex can contribute to forward masking in human listeners.

  19. Sleep and rest facilitate auditory learning.

    Science.gov (United States)

    Gottselig, J M; Hofer-Tinguely, G; Borbély, A A; Regel, S J; Landolt, H-P; Rétey, J V; Achermann, P

    2004-01-01

    Sleep is superior to waking for promoting performance improvements between sessions of visual perceptual and motor learning tasks. Few studies have investigated possible effects of sleep on auditory learning. A key issue is whether sleep specifically promotes learning, or whether restful waking yields similar benefits. According to the "interference hypothesis," sleep facilitates learning because it prevents interference from ongoing sensory input, learning and other cognitive activities that normally occur during waking. We tested this hypothesis by comparing effects of sleep, busy waking (watching a film) and restful waking (lying in the dark) on auditory tone sequence learning. Consistent with recent findings for human language learning, we found that compared with busy waking, sleep between sessions of auditory tone sequence learning enhanced performance improvements. Restful waking provided similar benefits, as predicted based on the interference hypothesis. These findings indicate that physiological, behavioral and environmental conditions that accompany restful waking are sufficient to facilitate learning and may contribute to the facilitation of learning that occurs during sleep.

  20. Neural coding and perception of pitch in the normal and impaired human auditory system

    DEFF Research Database (Denmark)

    Santurette, Sébastien

    2011-01-01

    for a variety of basic auditory tasks, indicating that it may be a crucial measure to consider for hearing-loss characterization. In contrast to hearing-impaired listeners, adults with dyslexia showed no deficits in binaural pitch perception, suggesting intact low-level auditory mechanisms. The second part...... into the fundamental auditory mechanisms underlying pitch perception, and may have implications for future pitch-perception models, as well as strategies for auditory-profile characterization and restoration of accurate pitch perception in impaired hearing.......Pitch is an important attribute of hearing that allows us to perceive the musical quality of sounds. Besides music perception, pitch contributes to speech communication, auditory grouping, and perceptual segregation of sound sources. In this work, several aspects of pitch perception in humans were...

  1. P3a, perceptual distinctiveness, and stimulus modality.

    Science.gov (United States)

    Comerchero, M D; Polich, J

    1998-07-01

    A three-stimulus oddball paradigm (target, standard, nontarget) was employed in which subjects responded to an infrequent target, when its discrimination from the frequent standard was difficult. In separate auditory and visual modality conditions, the stimulus characteristics of an infrequent nontarget were manipulated such that its perceptual distinctiveness from the target was varied systematically. For both the low and high distinctiveness conditions, target stimulus P300 amplitude was larger than the nontarget only at the parietal electrode. In contrast, nontarget P3a amplitude was larger and earlier than the target P300 over the frontal/central electrode sites. The distinctiveness manipulation between the target and nontarget produced larger P3a component profiles for the auditory compared to visual stimuli. The results support previous findings that target/standard stimulus context determines P3a generation for both auditory and visual stimulus modalities and suggest that the distinctiveness of the eliciting stimulus contributes to P3a amplitude. Theoretical implications are discussed. Copyright 1998 Elsevier Science B.V.

  2. Perceptual inference and autistic traits.

    Science.gov (United States)

    Skewes, Joshua C; Jegindø, Else-Marie; Gebauer, Line

    2015-04-01

    Autistic people are better at perceiving details. Major theories explain this in terms of bottom-up sensory mechanisms or in terms of top-down cognitive biases. Recently, it has become possible to link these theories within a common framework. This framework assumes that perception is implicit neural inference, combining sensory evidence with prior perceptual knowledge. Within this framework, perceptual differences may occur because of enhanced precision in how sensory evidence is represented or because sensory evidence is weighted much higher than prior perceptual knowledge. In this preliminary study, we compared these models using groups with high and low autistic trait scores (Autism-Spectrum Quotient). We found evidence supporting the cognitive bias model and no evidence for the enhanced sensory precision model. © The Author(s) 2014.

  3. Clinical characteristics of patients with persistent postural-perceptual dizziness.

    Science.gov (United States)

    Bittar, Roseli Saraiva Moreira; Lins, Eliane Maria Dias von Söhsten

    2015-01-01

    Persistent postural-perceptual dizziness is the dizziness that lasts for over three months with no clinical explanation for its persistence. The patient's motor response pattern presents changes and most patients manifest significant anxiety. To evaluate the clinical characteristics of patients with persistent postural and perceptual dizziness. statistical analysis of clinical aspects of patients with persistent postural-perceptual dizziness. 81 patients, average age: 50.06±12.16 years; female/male ratio: 5.7/1; main reasons for dizziness: visual stimuli (74%), body movements (52%), and sleep deprivation (38%). The most prevalent comorbidities were hypercholesterolemia (31%), migraine headaches (26%), carbohydrate metabolism disorders (22%) and cervical syndrome (21%). DHI, State-Trait Anxiety Inventory - T