WorldWideScience

Sample records for attractors

  1. Localization of hidden Chua's attractors

    International Nuclear Information System (INIS)

    Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I.

    2011-01-01

    The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria. In the present Letter for localization of hidden attractors of Chua's circuit it is suggested to use a special analytical-numerical algorithm. -- Highlights: → There are hidden attractors: basin doesn't contain neighborhoods of equilibria. → Hidden attractors cannot be reached by trajectory from neighborhoods of equilibria. → We suggested special procedure for localization of hidden attractors. → We discovered hidden attractor in Chua's system, L. Chua in his work didn't expect this.

  2. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  3. Attractors in complex networks

    Science.gov (United States)

    Rodrigues, Alexandre A. P.

    2017-10-01

    In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).

  4. Horseshoes in modified Chen's attractors

    International Nuclear Information System (INIS)

    Huang Yan; Yang Xiaosong

    2005-01-01

    In this paper we study dynamics of a class of modified Chen's attractors, we show that these attractors are chaotic by giving a rigorous verification for existence of horseshoes in these systems. We prove that the Poincare maps derived from these modified Chen's attractors are semi-conjugate to the 2-shift map

  5. Hidden attractors in dynamical systems

    Science.gov (United States)

    Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh

    2016-06-01

    Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

  6. Attractors under discretisation

    CERN Document Server

    Han, Xiaoying

    2017-01-01

    This work focuses on the preservation of attractors and saddle points of ordinary differential equations under discretisation. In the 1980s, key results for autonomous ordinary differential equations were obtained – by Beyn for saddle points and by Kloeden & Lorenz for attractors. One-step numerical schemes with a constant step size were considered, so the resulting discrete time dynamical system was also autonomous. One of the aims of this book is to present new findings on the discretisation of dissipative nonautonomous dynamical systems that have been obtained in recent years, and in particular to examine the properties of nonautonomous omega limit sets and their approximations by numerical schemes – results that are also of importance for autonomous systems approximated by a numerical scheme with variable time steps, thus by a discrete time nonautonomous dynamical system.

  7. Dimension of chaotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  8. Multiple single-centered attractors

    International Nuclear Information System (INIS)

    Dominic, Pramod; Mandal, Taniya; Tripathy, Prasanta K.

    2014-01-01

    In this paper we study spherically symmetric single-centered attractors in N=2 supergravity in four dimensions. The attractor points are obtained by extremising the effective black hole potential in the moduli space. Both supersymmetric as well as non-supersymmetric attractors exist in mutually exclusive domains of the charge lattice. We construct axion free supersymmetric as well as non-supersymmetric multiple attractors in a simple two parameter model. We further obtain explicit examples of two distinct non-supersymmetric attractors in type IIA string theory compactified on K3×T"2 carrying D0−D4−D6 charges. We compute the entropy of these attractors and analyse their stability in detail.

  9. Attractors, universality, and inflation

    Science.gov (United States)

    Downes, Sean; Dutta, Bhaskar; Sinha, Kuver

    2012-11-01

    Studies of the initial conditions for inflation have conflicting predictions from exponential suppression to inevitability. At the level of phase space, this conflict arises from the competing intuitions of CPT invariance and thermodynamics. After reviewing this conflict, we enlarge the ensemble beyond phase space to include scalar potential data. We show how this leads to an important contribution from inflection point inflation, enhancing the likelihood of inflation to a power law, 1/Ne3. In the process, we emphasize the attractor dynamics of the gravity-scalar system and the existence of universality classes from inflection point inflation. Finally, we comment on the predictivity of inflation in light of these results.

  10. Chaotic attractors with separated scrolls

    International Nuclear Information System (INIS)

    Bouallegue, Kais

    2015-01-01

    This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This new approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results

  11. Attractor comparisons based on density

    International Nuclear Information System (INIS)

    Carroll, T. L.

    2015-01-01

    Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling

  12. Attractors for discrete periodic dynamical systems

    Science.gov (United States)

    John E. Franke; James F. Selgrade

    2003-01-01

    A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...

  13. Controlling Strange Attractor in Dynamics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nonlinear system which exhibits a strange attractor is considered, with the goal of illustrating how to control the chaotic dynamical system and to obtain a desired attracting periodic orbit by the OGY control algorithm.

  14. Attractor behaviour in ELKO cosmology

    International Nuclear Information System (INIS)

    Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha

    2013-01-01

    We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant

  15. Supersymmetry and attractors

    International Nuclear Information System (INIS)

    Ferrara, S.; Kallosh, R.

    1996-01-01

    We find a general principle which allows one to compute the area of the horizon of N=2 extremal black holes as an extremum of the central charge. One considers the ADM mass equal to the central charge as a function of electric and magnetic charges and moduli and extremizes this function in the moduli space (a minimum corresponds to a fixed point of attraction). The extremal value of the square of the central charge provides the area of the horizon, which depends only on electric and magnetic charges. The doubling of unbroken supersymmetry at the fixed point of attraction for N=2 black holes near the horizon is derived via conformal flatness of the Bertotti-Robinson-type geometry. These results provide an explicit model-independent expression for the macroscopic Bekenstein-Hawking entropy of N=2 black holes which is manifestly duality invariant. The presence of hypermultiplets in the solution does not affect the area formula. Various examples of the general formula are displayed. We outline the attractor mechanism in N=4,8 supersymmetries and the relation to the N=2 case. The entropy-area formula in five dimensions, recently discussed in the literature, is also seen to be obtained by extremizing the 5d central charge. copyright 1996 The American Physical Society

  16. Cosmological attractors in massive gravity

    CERN Document Server

    Dubovsky, S; Tkachev, I I

    2005-01-01

    We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining'' term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.

  17. Moduli backreaction on inflationary attractors

    International Nuclear Information System (INIS)

    Roest, Diederik; Werkman, Pelle

    2016-07-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT- scenario and cosmological α-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for α-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  18. Moduli Backreaction on Inflationary Attractors

    CERN Document Server

    Roest, Diederik; Werkman, Pelle

    2016-01-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $\\alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for $\\alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  19. Heteroclinic cycles between unstable attractors

    International Nuclear Information System (INIS)

    Broer, Henk; Efstathiou, Konstantinos; Subramanian, Easwar

    2008-01-01

    We consider networks of pulse coupled linear oscillators with non-zero delay where the coupling between the oscillators is given by the Mirollo–Strogatz function. We prove the existence of heteroclinic cycles between unstable attractors for a network of four oscillators and for an open set of parameter values

  20. Heteroclinic cycles between unstable attractors

    NARCIS (Netherlands)

    Broer, Henk; Efstathiou, Konstantinos; Subramanian, Easwar

    We consider networks of pulse coupled linear oscillators with non-zero delay where the coupling between the oscillators is given by the Mirollo-Strogatz function. We prove the existence of heteroclinic cycles between unstable attractors for a network of four oscillators and for an open set of

  1. Hyperbolic geometry of cosmological attractors

    NARCIS (Netherlands)

    Carrasco, John Joseph M.; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-01-01

    Cosmological alpha attractors give a natural explanation for the spectral index n(s) of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all observations, to be measured more precisely in future B-mode experiments. We highlight the crucial

  2. Cortical computations via transient attractors.

    Directory of Open Access Journals (Sweden)

    Oliver L C Rourke

    Full Text Available The ability of sensory networks to transiently store information on the scale of seconds can confer many advantages in processing time-varying stimuli. How a network could store information on such intermediate time scales, between typical neurophysiological time scales and those of long-term memory, is typically attributed to persistent neural activity. An alternative mechanism which might allow for such information storage is through temporary modifications to the neural connectivity which decay on the same second-long time scale as the underlying memories. Earlier work that has explored this method has done so by emphasizing one attractor from a limited, pre-defined set. Here, we describe an alternative, a Transient Attractor network, which can learn any pattern presented to it, store several simultaneously, and robustly recall them on demand using targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such functionality could be usefully embedded within sensory cortex, and allow for a flexibly-gated short-term memory, as well as conferring the ability of the network to perform automatic de-noising, and separation of input signals into distinct perceptual objects. We demonstrate that the stored information can be refreshed to extend storage time, is not sensitive to noise in the system, and can be turned on or off by simple neuromodulation. The diverse capabilities of transient attractors, as well as their resemblance to many features observed in sensory cortex, suggest the possibility that their actions might underlie neural processing in many sensory areas.

  3. Cortical computations via transient attractors.

    Science.gov (United States)

    Rourke, Oliver L C; Butts, Daniel A

    2017-01-01

    The ability of sensory networks to transiently store information on the scale of seconds can confer many advantages in processing time-varying stimuli. How a network could store information on such intermediate time scales, between typical neurophysiological time scales and those of long-term memory, is typically attributed to persistent neural activity. An alternative mechanism which might allow for such information storage is through temporary modifications to the neural connectivity which decay on the same second-long time scale as the underlying memories. Earlier work that has explored this method has done so by emphasizing one attractor from a limited, pre-defined set. Here, we describe an alternative, a Transient Attractor network, which can learn any pattern presented to it, store several simultaneously, and robustly recall them on demand using targeted probes in a manner reminiscent of Hopfield networks. We hypothesize that such functionality could be usefully embedded within sensory cortex, and allow for a flexibly-gated short-term memory, as well as conferring the ability of the network to perform automatic de-noising, and separation of input signals into distinct perceptual objects. We demonstrate that the stored information can be refreshed to extend storage time, is not sensitive to noise in the system, and can be turned on or off by simple neuromodulation. The diverse capabilities of transient attractors, as well as their resemblance to many features observed in sensory cortex, suggest the possibility that their actions might underlie neural processing in many sensory areas.

  4. Generalized Attractor Points in Gauged Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.

    2011-08-15

    The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.

  5. Finite connectivity attractor neural networks

    International Nuclear Information System (INIS)

    Wemmenhove, B; Coolen, A C C

    2003-01-01

    We study a family of diluted attractor neural networks with a finite average number of (symmetric) connections per neuron. As in finite connectivity spin glasses, their equilibrium properties are described by order parameter functions, for which we derive an integral equation in replica symmetric approximation. A bifurcation analysis of this equation reveals the locations of the paramagnetic to recall and paramagnetic to spin-glass transition lines in the phase diagram. The line separating the retrieval phase from the spin-glass phase is calculated at zero temperature. All phase transitions are found to be continuous

  6. Attractors and basins of dynamical systems

    Directory of Open Access Journals (Sweden)

    Attila Dénes

    2011-03-01

    Full Text Available There are several programs for studying dynamical systems, but none of them is very useful for investigating basins and attractors of higher dimensional systems. Our goal in this paper is to show a new algorithm for finding even chaotic attractors and their basins for these systems. We present an implementation and examples for the use of this program.

  7. Tetrapterous butterfly attractors in modified Lorenz systems

    International Nuclear Information System (INIS)

    Yu Simin; Tang, Wallace K.S.

    2009-01-01

    In this paper, the Lorenz-type tetrapterous butterfly attractors are firstly reported. With the introduction of multiple segment piecewise linear functions, these interesting and complex attractors are obtained from two different modified Lorenz models. This approach are verified in both simulations and experiments.

  8. The Lorentz Attractor and Other Attractors in the Economic System of a Firm

    International Nuclear Information System (INIS)

    Shapovalov, V I; Kazakov, N V

    2015-01-01

    A nonlinear model of the economic system of ''a firm'' is offered. It is shown that this model has several chaotic attractors, including the Lorentz attractor and a new attractor that, in our opinion, has not yet been described in the scientific literature. The chaotic nature of the attractors that were found was confirmed by computing the Lyapunov indicators. The functioning of our economic model is demonstrated with examples of firm behaviour that change the control parameters; these are well known in practice. In particular, it is shown that changes in the specific control parameters may change the system and avoid bankruptcy for the firm

  9. Exponential attractors for a nonclassical diffusion equation

    Directory of Open Access Journals (Sweden)

    Qiaozhen Ma

    2009-01-01

    Full Text Available In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in ${H^{2}(Omega}cap{H}^{1}_{0}(Omega$ when the space dimension is less than 4.

  10. Feigenbaum attractor and intermittency in particle collisions

    International Nuclear Information System (INIS)

    Batunin, A.V.

    1992-01-01

    The hypothesis is proposed that the Feigenbaum attractor arising as a limit set in an infinite pichfork bifurcation sequence for unimodal one-dimensional maps underlies the intermittency phenomena in particle collisions. 23 refs.; 8 figs

  11. Strange Attractors in Drift Wave Turbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects

  12. Cusps enable line attractors for neural computation

    International Nuclear Information System (INIS)

    Xiao, Zhuocheng; Zhang, Jiwei; Sornborger, Andrew T.; Tao, Louis

    2017-01-01

    Here, line attractors in neuronal networks have been suggested to be the basis of many brain functions, such as working memory, oculomotor control, head movement, locomotion, and sensory processing. In this paper, we make the connection between line attractors and pulse gating in feed-forward neuronal networks. In this context, because of their neutral stability along a one-dimensional manifold, line attractors are associated with a time-translational invariance that allows graded information to be propagated from one neuronal population to the next. To understand how pulse-gating manifests itself in a high-dimensional, nonlinear, feedforward integrate-and-fire network, we use a Fokker-Planck approach to analyze system dynamics. We make a connection between pulse-gated propagation in the Fokker-Planck and population-averaged mean-field (firing rate) models, and then identify an approximate line attractor in state space as the essential structure underlying graded information propagation. An analysis of the line attractor shows that it consists of three fixed points: a central saddle with an unstable manifold along the line and stable manifolds orthogonal to the line, which is surrounded on either side by stable fixed points. Along the manifold defined by the fixed points, slow dynamics give rise to a ghost. We show that this line attractor arises at a cusp catastrophe, where a fold bifurcation develops as a function of synaptic noise; and that the ghost dynamics near the fold of the cusp underly the robustness of the line attractor. Understanding the dynamical aspects of this cusp catastrophe allows us to show how line attractors can persist in biologically realistic neuronal networks and how the interplay of pulse gating, synaptic coupling, and neuronal stochasticity can be used to enable attracting one-dimensional manifolds and, thus, dynamically control the processing of graded information.

  13. Cusps enable line attractors for neural computation

    Science.gov (United States)

    Xiao, Zhuocheng; Zhang, Jiwei; Sornborger, Andrew T.; Tao, Louis

    2017-11-01

    Line attractors in neuronal networks have been suggested to be the basis of many brain functions, such as working memory, oculomotor control, head movement, locomotion, and sensory processing. In this paper, we make the connection between line attractors and pulse gating in feed-forward neuronal networks. In this context, because of their neutral stability along a one-dimensional manifold, line attractors are associated with a time-translational invariance that allows graded information to be propagated from one neuronal population to the next. To understand how pulse-gating manifests itself in a high-dimensional, nonlinear, feedforward integrate-and-fire network, we use a Fokker-Planck approach to analyze system dynamics. We make a connection between pulse-gated propagation in the Fokker-Planck and population-averaged mean-field (firing rate) models, and then identify an approximate line attractor in state space as the essential structure underlying graded information propagation. An analysis of the line attractor shows that it consists of three fixed points: a central saddle with an unstable manifold along the line and stable manifolds orthogonal to the line, which is surrounded on either side by stable fixed points. Along the manifold defined by the fixed points, slow dynamics give rise to a ghost. We show that this line attractor arises at a cusp catastrophe, where a fold bifurcation develops as a function of synaptic noise; and that the ghost dynamics near the fold of the cusp underly the robustness of the line attractor. Understanding the dynamical aspects of this cusp catastrophe allows us to show how line attractors can persist in biologically realistic neuronal networks and how the interplay of pulse gating, synaptic coupling, and neuronal stochasticity can be used to enable attracting one-dimensional manifolds and, thus, dynamically control the processing of graded information.

  14. Supersymmetry, attractors and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Bellorin, Jorge [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: jorge.bellorin@uam.es; Meessen, Patrick [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: patrick.meessen@cern.ch; Ortin, Tomas [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: tomas.ortin@cern.ch

    2007-01-29

    We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We formulate three specific conditions which we argue are equivalent to the requirement of global supersymmetry. These three conditions can be related to the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, although the solutions can still have globally defined angular momentum and non-trivial scalar fields, as we show in an explicit example. Furthermore, only the solutions satisfying these requirements seem to have a microscopic interpretation in string theory since only they have supersymmetric sources. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M=|q|, which fails to be everywhere supersymmetric. We also present a re-derivation of several results concerning attractors in N=2, d=4 theories based on the explicit knowledge of the most general solutions in the timelike class.

  15. Black hole attractors and pure spinors

    International Nuclear Information System (INIS)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-01-01

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = Ω and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation

  16. Describing chaotic attractors: Regular and perpetual points

    Science.gov (United States)

    Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz

    2018-03-01

    We study the concepts of regular and perpetual points for describing the behavior of chaotic attractors in dynamical systems. The idea of these points, which have been recently introduced to theoretical investigations, is thoroughly discussed and extended into new types of models. We analyze the correlation between regular and perpetual points, as well as their relation with phase space, showing the potential usefulness of both types of points in the qualitative description of co-existing states. The ability of perpetual points in finding attractors is indicated, along with its potential cause. The location of chaotic trajectories and sets of considered points is investigated and the study on the stability of systems is shown. The statistical analysis of the observing desired states is performed. We focus on various types of dynamical systems, i.e., chaotic flows with self-excited and hidden attractors, forced mechanical models, and semiconductor superlattices, exhibiting the universality of appearance of the observed patterns and relations.

  17. Black Hole Attractors and Pure Spinors

    International Nuclear Information System (INIS)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-01-01

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = (Omega) and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation

  18. Non-linguistic Conditions for Causativization as a Linguistic Attractor

    OpenAIRE

    Johanna Nichols; Johanna Nichols; Johanna Nichols

    2018-01-01

    An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an e...

  19. Connecting coherent structures and strange attractors

    Science.gov (United States)

    Keefe, Laurence R.

    1990-01-01

    A concept of turbulence derived from nonlinear dynamical systems theory suggests that turbulent solutions to the Navier-Stokes equations are restricted to strange attractors, and, by implication, that turbulent phenomenology must find some expression or source in the structure of these mathematical objects. Examples and discussions are presented to link coherent structures to some of the commonly known characteristics of strange attractors. Basic to this link is a geometric interpretation of conditional sampling techniques employed to educe coherent structures that offers an explanation for their appearance in measurements as well as their size.

  20. Applying Chaos Theory to Careers: Attraction and Attractors

    Science.gov (United States)

    Pryor, Robert G. L.; Bright, Jim E. H.

    2007-01-01

    This article presents the Chaos Theory of Careers with particular reference to the concepts of "attraction" and "attractors". Attractors are defined in terms of characteristic trajectories, feedback mechanisms, end states, ordered boundedness, reality visions and equilibrium and fluctuation. The identified types of attractors (point, pendulum,…

  1. Recurrence quantification analysis in Liu's attractor

    International Nuclear Information System (INIS)

    Balibrea, Francisco; Caballero, M. Victoria; Molera, Lourdes

    2008-01-01

    Recurrence Quantification Analysis is used to detect transitions chaos to periodical states or chaos to chaos in a new dynamical system proposed by Liu et al. This system contains a control parameter in the second equation and was originally introduced to investigate the forming mechanism of the compound structure of the chaotic attractor which exists when the control parameter is zero

  2. Attractor merging crisis in chaotic business cycles

    International Nuclear Information System (INIS)

    Chian, Abraham C.-L.; Borotto, Felix A.; Rempel, Erico L.; Rogers, Colin

    2005-01-01

    A numerical study is performed on a forced-oscillator model of nonlinear business cycles. An attractor merging crisis due to a global bifurcation is analyzed using the unstable periodic orbits and their associated stable and unstable manifolds. Characterization of crisis can improve our ability to forecast sudden major changes in economic systems

  3. Trajectory attractors of equations of mathematical physics

    International Nuclear Information System (INIS)

    Vishik, Marko I; Chepyzhov, Vladimir V

    2011-01-01

    In this survey the method of trajectory dynamical systems and trajectory attractors is described, and is applied in the study of the limiting asymptotic behaviour of solutions of non-linear evolution equations. This method is especially useful in the study of dissipative equations of mathematical physics for which the corresponding Cauchy initial-value problem has a global (weak) solution with respect to the time but the uniqueness of this solution either has not been established or does not hold. An important example of such an equation is the 3D Navier-Stokes system in a bounded domain. In such a situation one cannot use directly the classical scheme of construction of a dynamical system in the phase space of initial conditions of the Cauchy problem of a given equation and find a global attractor of this dynamical system. Nevertheless, for such equations it is possible to construct a trajectory dynamical system and investigate a trajectory attractor of the corresponding translation semigroup. This universal method is applied for various types of equations arising in mathematical physics: for general dissipative reaction-diffusion systems, for the 3D Navier-Stokes system, for dissipative wave equations, for non-linear elliptic equations in cylindrical domains, and for other equations and systems. Special attention is given to using the method of trajectory attractors in approximation and perturbation problems arising in complicated models of mathematical physics. Bibliography: 96 titles.

  4. COSMOS-e'-soft Higgsotic attractors

    Science.gov (United States)

    Choudhury, Sayantan

    2017-07-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.

  5. COSMOS-e"'-soft Higgsotic attractors

    International Nuclear Information System (INIS)

    Choudhury, Sayantan

    2017-01-01

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R"2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δN formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness. (orig.)

  6. On the Dynamics of a Model with Coexistence of Three Attractors: A Point, a Periodic Orbit and a Strange Attractor

    Energy Technology Data Exchange (ETDEWEB)

    Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Universitat Autònoma de Barcelona, Departament de Matemàtiques (Spain); Valls, Claudia, E-mail: cvalls@math.ist.utl.pt [Universidade de Lisboa, Departamento de Matemática, Instituto Superior Técnico (Portugal)

    2017-06-15

    For a dynamical system described by a set of autonomous differential equations, an attractor can be either a point, or a periodic orbit, or even a strange attractor. Recently a new chaotic system with only one parameter has been presented where besides a point attractor and a chaotic attractor, it also has a coexisting attractor limit cycle which makes evident the complexity of such a system. We study using analytic tools the dynamics of such system. We describe its global dynamics near the infinity, and prove that it has no Darboux first integrals.

  7. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  8. D0-branes in black hole attractors

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Simons, Aaron; Strominger, Andrew; Yin Xi

    2006-01-01

    Configurations of N probe D0-branes in a Calabi-Yau black hole are studied. A large degeneracy of near-horizon bound states are found which can be described as lowest Landau levels tiling the horizon of the black hole. These states preserve some of the enhanced supersymmetry of the near-horizon AdS 2 x S 2 x CY 3 attractor geometry, but not of the full asymptotically flat solution. Supersymmetric non-abelian configurations are constructed which, via the Myers effect, develop charges associated with higher-dimensional branes wrapping CY 3 cycles. An SU(1,1/2) superconformal quantum mechanics describing D0-branes in the attractor geometry is explicitly constructed

  9. Sneutrino Inflation with $\\alpha$-attractors

    CERN Document Server

    Kallosh, Renata; Roest, Diederik; Wrase, Timm

    2016-11-22

    Sneutrino inflation employs the fermionic partners of the inflaton and stabilizer field as right-handed neutrinos to realize the seesaw mechanism for light neutrino masses. A crucial ingredient in existing constructions for sneutrino (multi-)natural inflation is an unbroken discrete shift symmetry. We demonstrate that a similar construction applies to $\\alpha$-attractor models. In this case the hyperbolic geometry protects the neutrino Yukawa couplings to the inflaton field, and the masses of leptons and Higgs fields, from blowing up when the inflaton is super-Planckian. We find that the predictions for $n_s$ and $r$ for $\\alpha$-attractor cosmological models, compatible with the current cosmological data, are preserved in the presence of the neutrino sector.

  10. Attractors near grazing–sliding bifurcations

    International Nuclear Information System (INIS)

    Glendinning, P; Kowalczyk, P; Nordmark, A B

    2012-01-01

    In this paper we prove, for the first time, that multistability can occur in three-dimensional Fillipov type flows due to grazing–sliding bifurcations. We do this by reducing the study of the dynamics of Filippov type flows around a grazing–sliding bifurcation to the study of appropriately defined one-dimensional maps. In particular, we prove the presence of three qualitatively different types of multiple attractors born in grazing–sliding bifurcations. Namely, a period-two orbit with a sliding segment may coexist with a chaotic attractor, two stable, period-two and period-three orbits with a segment of sliding each may coexist, or a non-sliding and period-three orbit with two sliding segments may coexist

  11. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  12. The power spectrum of inflationary attractors

    International Nuclear Information System (INIS)

    Broy, Benedict J.; Westphal, Alexander; Roest, Diederik

    2014-08-01

    Inflationary attractors predict the spectral index and tensor-to-scalar ratio to take specific values that are consistent with Planck. An example is the universal attractor for models with a generalised non-minimal coupling, leading to Starobinsky inflation. In this letter we demonstrate that it also predicts a specific relation between the amplitude of the power spectrum and the number of e-folds. The length and height of the inflationary plateau are related via the non-minimal coupling: in a wide variety of examples, the observed power normalisation leads to at least 55 flat e-foldings. Prior to this phase, the inflationary predictions vary and can account for the observational indications of power loss at large angular scales.

  13. Contractive function systems, their attractors and metrization

    Czech Academy of Sciences Publication Activity Database

    Banakh, T.; Kubiś, Wieslaw; Novosad, N.; Nowak, M.; Strobin, F.

    2015-01-01

    Roč. 46, č. 2 (2015), s. 1029-1066 ISSN 1230-3429 R&D Projects: GA ČR(CZ) GA14-07880S Institutional support: RVO:67985840 Keywords : fractal * attractor * iterated function system * contracting function system Subject RIV: BA - General Mathematics Impact factor: 0.717, year: 2015 http://www.apcz.pl/czasopisma/index.php/TMNA/article/view/TMNA.2015.076

  14. Internal wave attractors: different scenarios of instability

    OpenAIRE

    Brouzet, Christophe; Ermanyuk, E. V.; Joubaud, Sylvain; Pillet, Grimaud; Dauxois, Thierry

    2017-01-01

    International audience; This paper presents an experimental study of different instability scenarios in a parallelogram-shaped internal wave attractor in a trapezoidal domain filled with a uniformly stratified fluid.Energy is injected into the system via the oscillatory motion of a vertical wall of the trapezoidal domain. Whole-field velocity measurements are performed with the conventional PIV technique. In the linear regime, the total kinetic energyof the fluid system is used to quantify th...

  15. Black-Hole Attractors in N=1 Supergravity

    CERN Document Server

    Andrianopoli, L; Ferrara, Sergio; Trigiante, M; Andrianopoli, Laura; Auria, Riccardo D'; Ferrara, Sergio; Trigiante, Mario

    2007-01-01

    We study the attractor mechanism for N=1 supergravity coupled to vector and chiral multiplets and compute the attractor equations of these theories. These equations may have solutions depending on the choice of the holomorphic symmetric matrix f_{\\Lambda\\Sigma} which appears in the kinetic lagrangian of the vector sector. Models with non trivial electric-magnetic duality group which have or have not attractor behavior are exhibited. For a particular class of models, based on an N=1 reduction of homogeneous special geometries, the attractor equations are related to the theory of pure spinors.

  16. 3rd School on Attractor Mechanism

    CERN Document Server

    SAM 2007; The Attractor Mechanism: Proceedings of the INFN-Laboratori Nazionali di Frascati School 2007

    2010-01-01

    This book is based upon lectures presented in June 2007 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, M. Gunaydin, P. Levay, and T. Mohaupt. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and related reworking of, the various contributions. In addition, this volume contains contributions originating from short presentations of rece

  17. Strange Attractors in Drift Wave Turbulence

    International Nuclear Information System (INIS)

    Lewandowski, Jerome L.V.

    2003-01-01

    There are growing experimental, numerical and theoretical evidences that the anomalous transport observed in tokamaks and stellarators is caused by slow, drift-type modes (such as trapped electron modes and ion-temperature gradient-driven modes). Although typical collision frequencies in hot, magnetized fusion plasmas can be quite low in absolute values, collisional effects are nevertheless important since they act as dissipative sinks. As it is well known, dissipative systems with many (strictly speaking more than two) degrees of freedom are often chaotic and may evolve towards a so-called attractor

  18. Attractors of the periodically forced Rayleigh system

    Directory of Open Access Journals (Sweden)

    Petre Bazavan

    2011-07-01

    Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.

  19. Existence of global attractor for the Trojan Y Chromosome model

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhao

    2012-04-01

    Full Text Available This paper is concerned with the long time behavior of solution for the equation derived by the Trojan Y Chromosome (TYC model with spatial spread. Based on the regularity estimates for the semigroups and the classical existence theorem of global attractors, we prove that this equations possesses a global attractor in $H^k(\\Omega^4$ $(k\\geq 0$ space.

  20. Attractors for a class of doubly nonlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Hamid El Ouardi

    2006-03-01

    Full Text Available In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\\left[ L^{\\infty }(\\Omega \\right] ^{2}$ and ${\\prod_{i=1}^{2}}{B_{\\infty }^{1+\\sigma_{i},p_{i}}( \\Omega } $.

  1. Existence and attractors of solutions for nonlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Hamid El Ouardi

    2001-01-01

    Full Text Available We prove existence and asymptotic behaviour results for weak solutions of a mixed problem (S. We also obtain the existence of the global attractor and the regularity for this attractor in $\\left[H^{2}(\\Omega \\right] ^{2}$ and we derive estimates of its Haussdorf and fractal dimensions.

  2. Synchronization in Coupled Oscillators with Two Coexisting Attractors

    International Nuclear Information System (INIS)

    Han-Han, Zhu; Jun-Zhong, Yang

    2008-01-01

    Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Duffing oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions. (general)

  3. Google matrix, dynamical attractors, and Ulam networks.

    Science.gov (United States)

    Shepelyansky, D L; Zhirov, O V

    2010-03-01

    We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value alpha in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter alpha or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.

  4. Attractor mechanism as a distillation procedure

    International Nuclear Information System (INIS)

    Levay, Peter; Szalay, Szilard

    2010-01-01

    In a recent paper it was shown that for double extremal static spherical symmetric BPS black hole solutions in the STU model the well-known process of moduli stabilization at the horizon can be recast in a form of a distillation procedure of a three-qubit entangled state of a Greenberger-Horne-Zeilinger type. By studying the full flow in moduli space in this paper we investigate this distillation procedure in more detail. We introduce a three-qubit state with amplitudes depending on the conserved charges, the warp factor, and the moduli. We show that for the recently discovered non-BPS solutions it is possible to see how the distillation procedure unfolds itself as we approach the horizon. For the non-BPS seed solutions at the asymptotically Minkowski region we are starting with a three-qubit state having seven nonequal nonvanishing amplitudes and finally at the horizon we get a Greenberger-Horne-Zeilinger state with merely four nonvanishing ones with equal magnitudes. The magnitude of the surviving nonvanishing amplitudes is proportional to the macroscopic black hole entropy. A systematic study of such attractor states shows that their properties reflect the structure of the fake superpotential. We also demonstrate that when starting with the very special values for the moduli corresponding to flat directions the uniform structure at the horizon deteriorates due to errors generalizing the usual bit flips acting on the qubits of the attractor states.

  5. Counting and classifying attractors in high dimensional dynamical systems.

    Science.gov (United States)

    Bagley, R J; Glass, L

    1996-12-07

    Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.

  6. A New Chaotic Attractor with Quadratic Exponential Nonlinear Term from Chen’s Attractor

    Directory of Open Access Journals (Sweden)

    Iftikhar Ahmed

    2014-02-01

    Full Text Available In this paper a new three-dimensional chaotic system is proposed, which relies on a nonlinear exponential term and a nonlinear quadratic cross term necessary for folding trajectories. Basic dynamical characteristics of the new system are analyzed. Compared with the Chen system, the equilibrium points of the new system does not contain the origin, and has a greater positive Lyapunov index, can produce more complex shaped chaotic attractor.

  7. Dynamics of neural networks with continuous attractors

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2008-10-01

    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.

  8. Black hole microstates and attractor without supersymmetry

    International Nuclear Information System (INIS)

    Dabholkar, Atish; Trivedi, Sandip P.; Sen, Ashoke

    2007-01-01

    Due to the attractor mechanism, the entropy of an extremal black hole does not vary continuously as we vary the asymptotic values of various moduli fields. Using this fact we argue that the entropy of an extremal black hole in string theory, calculated for a range of values of the asymptotic moduli for which the microscopic theory is strongly coupled, should match the statistical entropy of the same system calculated for a range of values of the asymptotic moduli for which the microscopic theory is weakly coupled. This argument does not rely on supersymmetry and applies equally well to nonsupersymmetric extremal black holes. We discuss several examples which support this argument and also several caveats which could invalidate this argument

  9. Fibre inflation and α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata; Linde, Andrei [Stanford Univ., Stanford, CA (United States). Stanford Inst. for Theoretical Physics and Dept. of Physics; Leiden Univ. (Netherlands). Lorentz Inst. for Theoretical Physics; Roest, Diederik [Groningen Univ. (Netherlands). Van Swinderen Inst. for Particle Physics and Gravity; Westphal, Alexander [DESY, Hamburg (Germany). Theory Group; Yamada, Yusuke [Stanford Univ., Stanford, CA (United States). Stanford Inst. for Theoretical Physics and Dept. of Physics

    2017-07-15

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α=2 and α=1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an D3 uplift term with a nilpotent superfield. Specific moduli dependent D3 induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  10. Attractor cosmology from nonminimally coupled gravity

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2018-03-01

    By using a bottom-up reconstruction technique for nonminimally coupled scalar-tensor theories, we realize the Einstein frame attractor cosmologies in the Ω (ϕ )-Jordan frame. For our approach, what is needed for the reconstruction method to work is the functional form of the nonminimal coupling Ω (ϕ ) and of the scalar-to-tensor ratio, and also the assumption of the slow-roll inflation in the Ω (ϕ )-Jordan frame. By appropriately choosing the scalar-to-tensor ratio, we demonstrate that the observational indices of the attractor cosmologies can be realized directly in the Ω (ϕ )-Jordan frame. We investigate the special conditions that are required to hold true in for this realization to occur, and we provide the analytic form of the potential in the Ω (ϕ )-Jordan frame. Also, by performing a conformal transformation, we find the corresponding Einstein frame canonical scalar-tensor theory, and we calculate in detail the corresponding observational indices. The result indicates that although the spectral index of the primordial curvature perturbations is the same in the Jordan and Einstein frames, at leading order in the e -foldings number, the scalar-to-tensor ratio differs. We discuss the possible reasons behind this discrepancy, and we argue that the difference is due to some approximation we performed to the functional form of the potential in the Einstein frame, in order to obtain analytical results, and also due to the difference in the definition of the e -foldings number in the two frames, which is also pointed out in the related literature. Finally, we find the F (R ) gravity corresponding to the Einstein frame canonical scalar-tensor theory.

  11. Hyperbolic Plykin attractor can exist in neuron models

    DEFF Research Database (Denmark)

    Belykh, V.; Belykh, I.; Mosekilde, Erik

    2005-01-01

    Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study...... of the neuron model, we derive a flow-defined Poincare map giving ail accurate account of the system's dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic...... holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary...

  12. Multi-wing hyperchaotic attractors from coupled Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe; Severance, Frank L.; Miller, Damon A.

    2009-01-01

    This paper illustrates an approach to generate multi-wing attractors in coupled Lorenz systems. In particular, novel four-wing (eight-wing) hyperchaotic attractors are generated by coupling two (three) identical Lorenz systems. The paper shows that the equilibria of the proposed systems have certain symmetries with respect to specific coordinate planes and the eigenvalues of the associated Jacobian matrices exhibit the property of similarity. In analogy with the original Lorenz system, where the two-wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four-wings (eight-wings) of these attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.

  13. Attractor neural networks with resource-efficient synaptic connectivity

    Science.gov (United States)

    Pehlevan, Cengiz; Sengupta, Anirvan

    Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.

  14. Coexisting multiple attractors and riddled basins of a memristive system.

    Science.gov (United States)

    Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu

    2018-01-01

    In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.

  15. Attractor of reaction-diffusion equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    José Valero

    2001-04-01

    Full Text Available In this paper we prove first some abstract theorems on existence of global attractors for differential inclusions generated by w-dissipative operators. Then these results are applied to reaction-diffusion equations in which the Babach space Lp is used as phase space. Finally, new results concerning the fractal dimension of the global attractor in the space L2 are obtained.

  16. Existence of a new three-dimensional chaotic attractor

    International Nuclear Information System (INIS)

    Wang Jiezhi; Chen Zengqiang; Yuan Zhuzhi

    2009-01-01

    In this paper, one heteroclinic orbit of a new three-dimensional continuous autonomous chaotic system, whose chaotic attractor belongs to the conjugate Lue attractor, is found. The series expression of the heteroclinic orbit of Shil'nikov type is derived by using the undetermined coefficient method. The uniform convergence of the precise series expansions of this heteroclinic orbits is proved. According to the Shil'nikov theorem, this system clearly has Smale horseshoes and the horseshoe chaos.

  17. Revisiting non-Gaussianity from non-attractor inflation models

    Science.gov (United States)

    Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei

    2018-05-01

    Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.

  18. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    Science.gov (United States)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  19. Oscillatory attractors: a new cosmological phase

    Energy Technology Data Exchange (ETDEWEB)

    Bains, Jasdeep S. [Center for the Fundamental Laws of Nature, Harvard University, 17 Oxford St, Cambridge, MA 02138 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155 (United States); Wilczek, Frank, E-mail: bains@physics.harvard.edu, E-mail: mark.hertzberg@tufts.edu, E-mail: wilczek@mit.edu [Center for Theoretical Physics, Department of Physics, MIT, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2017-05-01

    In expanding FRW spacetimes, it is usually the case that homogeneous scalar fields redshift and their amplitudes approach limiting values: Hubble friction usually ensures that the field relaxes to its minimum energy configuration, which is usually a static configuration. Here we discover a class of relativistic scalar field models in which the attractor behavior is the field oscillating indefinitely, with finite amplitude, in an expanding FRW spacetime, despite the presence of Hubble friction. This is an example of spontaneous breaking of time translation symmetry. We find that the effective equation of state of the field has average value ( w )=−1, implying that the field itself could drive an inflationary or dark energy dominated phase. This behavior is reminiscent of ghost condensate models, but in the new models, unlike in the ghost condensate models, the energy-momentum tensor is time dependent, so that these new models embody a more definitive breaking of time translation symmetry. We explore (quantum) fluctuations around the homogeneous background solution, and find that low k -modes can be stable, while high k -modes are typically unstable. We discuss possible interpretations and implications of that instability.

  20. Quintessential inflation with α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Konstantinos; Owen, Charlotte, E-mail: k.dimopoulos1@lancaster.ac.uk, E-mail: c.owen@lancaster.ac.uk [Consortium for Fundamental Physics, Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2017-06-01

    A novel approach to quintessential inflation model building is studied, within the framework of α-attractors, motivated by supergravity theories. Inflationary observables are in excellent agreement with the latest CMB observations, while quintessence explains the dark energy observations without any fine-tuning. The model is kept intentionally minimal, avoiding the introduction of many degrees of freedom, couplings and mass scales. In stark contrast to ΛCDM, for natural values of the parameters, the model attains transient accelerated expansion, which avoids the future horizon problem, while it maintains the field displacement mildly sub-Planckian such that the flatness of the quintessential tail is not lifted by radiative corrections and violations of the equivalence principle (fifth force) are under control. In particular, the required value of the cosmological constant is near the eletroweak scale. Attention is paid to the reheating of the Universe, which avoids gravitino overproduction and respects nucleosynthesis constraints. Kination is treated in a model independent way. A spike in gravitational waves, due to kination, is found not to disturb nucleosynthesis as well.

  1. Fibre inflation and α-attractors

    Science.gov (United States)

    Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke

    2018-02-01

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  2. Non-linguistic Conditions for Causativization as a Linguistic Attractor.

    Science.gov (United States)

    Nichols, Johanna

    2017-01-01

    An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an element is an attractor are linguistic (auditory salience, ease of processing, paradigm structure, etc.), but the factors that make selection possible and propagate selected items through the speech community are non-linguistic. This paper uses the consonants in personal pronouns to show what makes for an attractor and how selection and diffusion work, then presents a survey of several language families and areas showing that the derivational morphology of pairs of verbs like fear and frighten , or Turkish korkmak 'fear, be afraid' and korkutmak 'frighten, scare', or Finnish istua 'sit' and istutta 'seat (someone)', or Spanish sentarse 'sit down' and sentar 'seat (someone)' is susceptible to selection. Specifically, the Turkish and Finnish pattern, where 'seat' is derived from 'sit' by addition of a suffix-is an attractor and a favored target of selection. This selection occurs chiefly in sociolinguistic contexts of what is defined here as linguistic symbiosis, where languages mingle in speech, which in turn is favored by certain demographic, sociocultural, and environmental factors here termed frontier conditions. Evidence is surveyed from northern Eurasia, the Caucasus, North and Central America, and the Pacific and from both modern and ancient languages to raise the hypothesis that frontier conditions and symbiosis favor causativization.

  3. Non-linguistic Conditions for Causativization as a Linguistic Attractor

    Directory of Open Access Journals (Sweden)

    Johanna Nichols

    2018-01-01

    Full Text Available An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an element is an attractor are linguistic (auditory salience, ease of processing, paradigm structure, etc., but the factors that make selection possible and propagate selected items through the speech community are non-linguistic. This paper uses the consonants in personal pronouns to show what makes for an attractor and how selection and diffusion work, then presents a survey of several language families and areas showing that the derivational morphology of pairs of verbs like fear and frighten, or Turkish korkmak ‘fear, be afraid’ and korkutmak ‘frighten, scare’, or Finnish istua ‘sit’ and istutta ‘seat (someone’, or Spanish sentarse ‘sit down’ and sentar ‘seat (someone’ is susceptible to selection. Specifically, the Turkish and Finnish pattern, where ‘seat’ is derived from ‘sit’ by addition of a suffix—is an attractor and a favored target of selection. This selection occurs chiefly in sociolinguistic contexts of what is defined here as linguistic symbiosis, where languages mingle in speech, which in turn is favored by certain demographic, sociocultural, and environmental factors here termed frontier conditions. Evidence is surveyed from northern Eurasia, the Caucasus, North and Central America, and the Pacific and from both modern and ancient languages to raise the hypothesis that frontier conditions and symbiosis favor causativization.

  4. β-expansion attractors observed in A/D converters

    Science.gov (United States)

    Kohda, Tohru; Horio, Yoshihiko; Aihara, Kazuyuki

    2012-12-01

    The recently proposed β-encoders, analog-to-digital converters using an amplifier with a factor β and a flaky quantizer with threshold ν, have proven to be explained by the deterministic dynamics of multi-valued Rényi-Parry maps. Such a map is locally eventually onto [ν-1, ν), which is topologically conjugate to Parry's (β,α)-map with α =(β-1)(ν-1). This implies that β-encoders have a closed subinterval [ν-1,ν), which includes an attractor. Thus, the iteration of the multi-valued Rényi-Parry map performs the β-expansion of x while quantization errors in β-encoders behave chaotically and do not converge to a fixed point. This β-expansion attractor is relatively simpler than previously reported attractors. The object of this paper is twofold: to observe the embedded attractors in the β-encoder and to identify attractors that are useful for spread-spectrum codes and optimization techniques using pseudo-random numbers.

  5. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Sergei P [Saratov Branch, Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov (Russian Federation)

    2011-02-28

    Research is reviewed on the identification and construction of physical systems with chaotic dynamics due to uniformly hyperbolic attractors (such as the Plykin attraction or the Smale-Williams solenoid). Basic concepts of the mathematics involved and approaches proposed in the literature for constructing systems with hyperbolic attractors are discussed. Topics covered include periodic pulse-driven models; dynamics models consisting of periodically repeated stages, each described by its own differential equations; the construction of systems of alternately excited coupled oscillators; the use of parametrically excited oscillations; and the introduction of delayed feedback. Some maps, differential equations, and simple mechanical and electronic systems exhibiting chaotic dynamics due to the presence of uniformly hyperbolic attractors are presented as examples. (reviews of topical problems)

  6. The dimension of attractors underlying periodic turbulent Poiseuille flow

    Science.gov (United States)

    Keefe, Laurence; Moin, Parviz; Kim, John

    1992-01-01

    A lower bound on the Liapunov dimenison, D-lambda, of the attractor underlying turbulent, periodic Poiseuille flow at a pressure-gradient Reynolds number of 3200 is calculated, on the basis of a coarse-grained (16x33x8) numerical solution, to be approximately 352. Comparison of Liapunov exponent spectra from this and a higher-resolution (16x33x16) simulation on the same spatial domain shows these spectra to have a universal shape when properly scaled. On the basis of these scaling properties, and a partial exponent spectrum from a still higher-resolution (32x33x32) simulation, it is argued that the actual dimension of the attractor underlying motion of the given computational domain is approximately 780. It is suggested that this periodic turbulent shear flow is deterministic chaos, and that a strange attractor does underly solutions to the Navier-Stokes equations in such flows.

  7. Separation of attractors in 1-modulus quantum corrected special geometry

    CERN Document Server

    Bellucci, S; Marrani, A; Shcherbakov, A

    2008-01-01

    We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...

  8. Strange attractors in weakly turbulent Couette-Taylor flow

    Science.gov (United States)

    Brandstater, A.; Swinney, Harry L.

    1987-01-01

    An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.

  9. Attractors of equations of non-Newtonian fluid dynamics

    International Nuclear Information System (INIS)

    Zvyagin, V G; Kondrat'ev, S K

    2014-01-01

    This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles

  10. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system

    OpenAIRE

    Kuznetsov, N. V.; Leonov, G. A.; Mokaev, T. N.; Prasad, A.; Shrimali, M. D.

    2015-01-01

    The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a hidden attractor in the case of multistability as well as a classical self-excited attractor. The hidden attractor in this system can be localized by analytical/numerical methods based on the continuation and perpetual points. The concept of finite-time Lyapunov dimension is developed for numerical study of the dimension of attractors. A con...

  11. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse

    International Nuclear Information System (INIS)

    Li Chunguang; Chen Guanrong

    2005-01-01

    In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra

  12. Analysis of chaos attractors of MCG-recordings.

    Science.gov (United States)

    Jiang, Shiqin; Yang, Fan; Yi, Panke; Chen, Bo; Luo, Ming; Wang, Lemin

    2006-01-01

    By studying the chaos attractor of cardiac magnetic induction strength B(z) generated by the electrical activity of the heart, we found that its projection in the reconstructed phase space has a similar shape with the map of the total current dipole vector. It is worth noting that the map of the total current dipole vector is computed with MCG recordings measured at 36 locations, whereas the chaos attractor of B(z) is generated by only one cardiac magnetic field recordings on the measured plan. We discuss only two subjects of different ages in this paper.

  13. Strange attractor in the Potts spin glass on hierarchical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Washington de [Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Pernambuco (Brazil); Camelo-Neto, G. [Universidade Federal de Alagoas, Núcleo de Ciências Exatas, Laboratório de Física Teórica e Computacional, CEP 57309-005 Arapiraca, Alagoas (Brazil); Coutinho, S., E-mail: sergio@ufpe.br [Universidade Federal de Pernambuco, Departamento de Física, Laboratório de Física Teórica e Computacional, Cidade Universitária, CEP 50670-901 Recife, Pernambuco (Brazil)

    2013-11-29

    The spin-glass q-state Potts model on d-dimensional diamond hierarchical lattices is investigated by an exact real space renormalization group scheme. Above a critical dimension d{sub l}(q) for q>2, the coupling constants probability distribution flows to a low-temperature strange attractor or to the high-temperature paramagnetic fixed point, according to the temperature is below or above the critical temperature T{sub c}(q,d). The strange attractor was investigated considering four initial different distributions for q=3 and d=5 presenting strong robustness in shape and temperature interval suggesting a condensed phase with algebraic decay.

  14. STRANGE ATTRACTORS ON PSEUDOSPECTRAL SOLUTIONS FOR DISSIPATIVE ZAKHAROV EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    马书清; 常谦顺

    2004-01-01

    In this paper, the pseudospcctral method to solve the dissipative Zakharov equations is used. Its convergence is proved by priori estinates. The existence of the global attractors and the estimates of dimension are presented. A class of steady state solutions is also disscussed. The numerical results show that if the steady state solutions satisfy some special conditions, they become unstable and limit cycles and strange attractors will occur for very small perturbations.The largest Lyapunov exponent and analysis of the lincarized system are applied to explain these phenomena.

  15. Statistical properties of chaotic dynamical systems which exhibit strange attractors

    International Nuclear Information System (INIS)

    Jensen, R.V.; Oberman, C.R.

    1981-07-01

    A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping

  16. Simplified Chua's attractor via bridging a diode pair

    Directory of Open Access Journals (Sweden)

    Quan Xu

    2015-04-01

    Full Text Available In this paper, a simplified Chua's circuit is realised by bridging a diode pair between a passive LC (inductance and capacitance in parallel connection - LC oscillator and an active RC (resistance and capacitance in parallel connection - RC filter. The dynamical behaviours of the circuit are investigated by numerical simulations and verified by experimental measurements. It is found that the simplified Chua's circuit generates Chua's attractors similarly and demonstrates complex non-linear phenomena including coexisting bifurcation modes and coexisting attractors in particular.

  17. Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors

    Science.gov (United States)

    Lai, Bang-Cheng; He, Jian-Jun

    2018-03-01

    In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.

  18. MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR

    NARCIS (Netherlands)

    SCHOUTEN, JC; TAKENS, F; VANDENBLEEK, CM

    In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed that can be obtained directly from a time series. Also, the relative standard deviation of the entropy estimate is derived; it is dependent on the entropy and on the number of samples used in the

  19. Low-dimensional chaotic attractors in drift wave turbulence

    International Nuclear Information System (INIS)

    Persson, M.; Nordman, H.

    1991-01-01

    Simulation results of toroidal η i -mode turbulence are analyzed using mathematical tools of nonlinear dynamics. Low-dimensional chaotic attractors are found in the strongly nonlinear regime while in the weakly interacting regime the dynamics is high dimensional. In both regimes, the solutions are found to display sensitive dependence on initial conditions, characterized by a positive largest Liapunov exponent. (au)

  20. The Geometric Structure of Strange Attractors in the Lozi Map

    Institute of Scientific and Technical Information of China (English)

    YongluoCAO; ZengrongLIU

    1998-01-01

    In this paper,the structure of the strange attractors in the Lozi map is investigated on basis of the results gotten by the authors in 1991-1993,The new results of the strange atrtractors of the Lozi map show that our viewpoint is correct.

  1. Global attractors for the coupled suspension bridge system with temperature

    Czech Academy of Sciences Publication Activity Database

    Dell'Oro, Filippo; Giorgi, C.

    2016-01-01

    Roč. 39, č. 4 (2016), s. 864-875 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : absorbing set * coupled bridge system * global attractor Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3526/abstract

  2. Sourcing dark matter and dark energy from α-attractors

    International Nuclear Information System (INIS)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri

    2017-01-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m 2 φ 2 , while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m 2 φ 2 potential in describing dark matter.

  3. Probability Density Function Method for Observing Reconstructed Attractor Structure

    Institute of Scientific and Technical Information of China (English)

    陆宏伟; 陈亚珠; 卫青

    2004-01-01

    Probability density function (PDF) method is proposed for analysing the structure of the reconstructed attractor in computing the correlation dimensions of RR intervals of ten normal old men. PDF contains important information about the spatial distribution of the phase points in the reconstructed attractor. To the best of our knowledge, it is the first time that the PDF method is put forward for the analysis of the reconstructed attractor structure. Numerical simulations demonstrate that the cardiac systems of healthy old men are about 6 - 6.5 dimensional complex dynamical systems. It is found that PDF is not symmetrically distributed when time delay is small, while PDF satisfies Gaussian distribution when time delay is big enough. A cluster effect mechanism is presented to explain this phenomenon. By studying the shape of PDFs, that the roles played by time delay are more important than embedding dimension in the reconstruction is clearly indicated. Results have demonstrated that the PDF method represents a promising numerical approach for the observation of the reconstructed attractor structure and may provide more information and new diagnostic potential of the analyzed cardiac system.

  4. Sourcing dark matter and dark energy from α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Swagat S.; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2017-06-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.

  5. Our universe as an attractor in a superstring model

    International Nuclear Information System (INIS)

    Maeda, Keiichi.

    1986-11-01

    One preferential scenario of the evolution of the universe is discussed in a superstring model. The universe can reach the present state as an attractor in the dynamical system. The kinetic terms of the ''axions'' play an important role so that our present universe is realized almost uniquely. (author)

  6. Attractor horizons in six-dimensional type IIB supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Miskovic, Olivera, E-mail: olivera.miskovic@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Universidad Andres Bello, Departamento de Ciencias Fisicas, Republica 220, Santiago (Chile)

    2012-08-14

    We consider near horizon geometries of extremal black holes in six-dimensional type IIB supergravity. In particular, we use the entropy function formalism to compute the charges and thermodynamic entropy of these solutions. We also comment on the role of attractor mechanism in understanding the entropy of the Hopf T-dual solutions in type IIA supergravity.

  7. On reliability of singular-value decomposition in attractor reconstruction

    International Nuclear Information System (INIS)

    Palus, M.; Dvorak, I.

    1990-12-01

    Applicability of singular-value decomposition for reconstructing the strange attractor from one-dimensional chaotic time series, proposed by Broomhead and King, is extensively tested and discussed. Previously published doubts about its reliability are confirmed: singular-value decomposition, by nature a linear method, is only of a limited power when nonlinear structures are studied. (author). 29 refs, 9 figs

  8. A new chaotic attractor with two quadratic nonlinearities, its synchronization and circuit implementation

    Science.gov (United States)

    Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto

    2018-03-01

    A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.

  9. A novel 3D autonomous system with different multilayer chaotic attractors

    International Nuclear Information System (INIS)

    Dong Gaogao; Du Ruijin; Tian Lixin; Jia Qiang

    2009-01-01

    This Letter proposes a novel three-dimensional autonomous system which has complex chaotic dynamics behaviors and gives analysis of novel system. More importantly, the novel system can generate three-layer chaotic attractor, four-layer chaotic attractor, five-layer chaotic attractor, multilayer chaotic attractor by choosing different parameters and initial condition. We analyze the new system by means of phase portraits, Lyapunov exponent spectrum, fractional dimension, bifurcation diagram and Poincare maps of the system. The three-dimensional autonomous system is totally different from the well-known systems in previous work. The new multilayer chaotic attractors are also worth causing attention.

  10. COSMOS-e{sup '}-soft Higgsotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-07-15

    In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R{sup 2} gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δN formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness. (orig.)

  11. A snapshot attractor view of the advection of inertial particles in the presence of history force

    Science.gov (United States)

    Guseva, Ksenia; Daitche, Anton; Tél, Tamás

    2017-06-01

    We analyse the effect of the Basset history force on the sedimentation or rising of inertial particles in a two-dimensional convection flow. We find that the concept of snapshot attractors is useful to understand the extraordinary slow convergence due to long-term memory: an ensemble of particles converges exponentially fast towards a snapshot attractor, and this attractor undergoes a slow drift for long times. We demonstrate for the case of a periodic attractor that the drift of the snapshot attractor can be well characterized both in the space of the fluid and in the velocity space. For the case of quasiperiodic and chaotic dynamics we propose the use of the average settling velocity of the ensemble as a distinctive measure to characterize the snapshot attractor and the time scale separation corresponding to the convergence towards the snapshot attractor and its own slow dynamics.

  12. Chaotic Attractor Crisis and Climate Sensitivity: a Transfer Operator Approach

    Science.gov (United States)

    Tantet, A.; Lucarini, V.; Lunkeit, F.; Dijkstra, H. A.

    2015-12-01

    The rough response to a smooth parameter change of some non-chaotic climate models, such as the warm to snowball-Earth transition in energy balance models due to the ice-albedo feedback, can be studied in the framework of bifurcation theory, in particular by analysing the Lyapunov spectrum of fixed points or periodic orbits. However, bifurcation theory is of little help to study the destruction of a chaotic attractor which can occur in high-dimensional General Circulation Models (GCM). Yet, one would expect critical slowing down to occur before the crisis, since, as the system becomes susceptible to the physical instability mechanism responsible for the crisis, it turns out to be less and less resilient to exogenous perturbations and to spontaneous fluctuations due to other types of instabilities on the attractor. The statistical physics framework, extended to nonequilibrium systems, is particularly well suited for the study of global properties of chaotic and stochastic systems. In particular, the semigroup of transfer operators governs the evolution of distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum of the semigroup of transfer operators is expected to shrink. We show that the chaotic attractor crisis due to the ice-albedo feedback and resulting in a transition from a warm to a snowball-Earth in the Planet Simulator (PlaSim), a GCM of intermediate complexity, is associated with critical slowing down, as observed by the slower decay of correlations before the crisis (cf. left panel). In addition, we demonstrate that this critical slowing down can be traced back to the shrinkage of the gap between the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the

  13. When Darwin meets Lorenz: Evolving new chaotic attractors through genetic programming

    International Nuclear Information System (INIS)

    Pan, Indranil; Das, Saptarshi

    2015-01-01

    Highlights: •New 3D continuous time chaotic systems with analytical expressions are obtained. •The multi-gene genetic programming (MGGP) paradigm is employed to achieve this. •Extends earlier works for evolving generalised family of Lorenz attractors. •Over one hundred of new chaotic attractors along with their parameters are reported. •The MGGP method have the potential for finding other similar chaotic attractors. -- Abstract: In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone

  14. Reconstruction of the El Nino attractor with neural networks

    International Nuclear Information System (INIS)

    Grieger, B.; Latif, M.

    1993-01-01

    Based on a combined data set of sea surface temperature, zonal surface wind stress and upper ocean heat content the dynamics of the El Nino phenomenon is investigated. In a reduced phase space spanned by the first four EOFs two different stochastic models are estimated from the data. A nonlinear model represented by a simulated neural network is compared with a linear model obtained with the Principal Oscillation Pattern (POP) analysis. While the linear model is limited to damped oscillations onto a fix point attractor, the nonlinear model recovers a limit cycle attractor. This indicates that the real system is located above the bifurcation point in parameter space supporting self-sustained oscillations. The results are discussed with respect to consistency with current theory. (orig.)

  15. Generating multi-double-scroll attractors via nonautonomous approach

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Qinghui; Xie, Qingguo, E-mail: qgxie@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Wuhan 430074 (China); Shen, Yi; Wang, Xiaoping [School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-08-15

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.

  16. Determining the flexibility of regular and chaotic attractors

    International Nuclear Information System (INIS)

    Marhl, Marko; Perc, Matjaz

    2006-01-01

    We present an overview of measures that are appropriate for determining the flexibility of regular and chaotic attractors. In particular, we focus on those system properties that constitute its responses to external perturbations. We deploy a systematic approach, first introducing the simplest measure given by the local divergence of the system along the attractor, and then develop more rigorous mathematical tools for estimating the flexibility of the system's dynamics. The presented measures are tested on the regular Brusselator and chaotic Hindmarsh-Rose model of an excitable neuron with equal success, thus indicating the overall effectiveness and wide applicability range of the proposed theory. Since responses of dynamical systems to external signals are crucial in several scientific disciplines, and especially in natural sciences, we discuss several important aspects and biological implications of obtained results

  17. Generating multi-double-scroll attractors via nonautonomous approach.

    Science.gov (United States)

    Hong, Qinghui; Xie, Qingguo; Shen, Yi; Wang, Xiaoping

    2016-08-01

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.

  18. Non-Abelian magnetized blackholes and unstable attractors

    International Nuclear Information System (INIS)

    Mosaffa, A.E.; Randjbar-Daemi, S.; Sheikh-Jabbari, M.M.

    2006-12-01

    Fluctuations of non-Abelian gauge fields in a background magnetic flux contain tachyonic modes and hence the background is unstable. We extend these results to the cases where the background flux is coupled to Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of Reissner-Nordstroem blackholes or the AdS 2 x S 2 , are also unstable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes. (author)

  19. Lifetime of chaotic attractors in a multidimensional laser system

    International Nuclear Information System (INIS)

    Pando L, C.L.; Cerdeira, H.A.

    1995-01-01

    We study the lifetimes of chaotic attractors at crises in a multidimensional laser system. This system describes the CO 2 laser with modulated losses and is known as the four-level model. The critical exponents which are related to the lifetimes of the attractors are estimated in terms of the corresponding eigenvalues and the measured characteristic lifetime in the model. The critical exponents in this model and those of its center manifold version are in good agreement. We conjecture that generically in the four-level model the critical exponents are close to 1/2 at crises. In addition, we compare predictions of a simpler and popular model known as the two-level model with those of the above mentioned models. (author). 21 refs, 2 figs, 3 tabs

  20. Attractors of dissipative structure in three dissipative fluids

    International Nuclear Information System (INIS)

    Kondoh, Yoshiomi

    1993-10-01

    A general theory with use of auto-correlations for distributions is presented to derive that realization of coherent structures in general dissipative dynamic systems is equivalent to that of self-organized states with the minimum dissipation rate for instantaneously contained energy. Attractors of dissipative structure are shown to be given by eigenfunctions for dissipative dynamic operators of the dynamic system and to constitute the self-organized and self-similar decay phase. Three typical examples applied to incompressible viscous fluids, to incompressible viscous and resistive magnetohydrodynamic (MHD) fluids and to compressible resistive MHD plasmas are presented to lead to attractors in the three dissipative fluids and to describe a common physical picture of self-organization and bifurcation of the dissipative structure. (author)

  1. Torus-doubling process via strange nonchaotic attractors

    International Nuclear Information System (INIS)

    Mitsui, Takahito; Uenohara, Seiji; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki

    2012-01-01

    Torus-doubling bifurcations typically occur only a finite number of times. It has been assumed that torus-doubling bifurcations in quasiperiodically forced systems are interrupted by the appearance of strange nonchaotic attractors (SNAs). In the present Letter, we study a quasiperiodically forced noninvertible map and report the occurrence of a torus-doubling process via SNAs. The mechanism of this process is numerically clarified. Furthermore, this process is experimentally demonstrated in a switched-capacitor integrated circuit. -- Highlights: ► We report the occurrence of a torus-doubling process via strange nonchaotic attractors (SNAs). ► The process consists of the gradual fractalization of a torus and the Heagy–Hammel transition. ► The torus-doubling process via SNAs is also experimentally demonstrated in an electronic circuit.

  2. Logical Attractors: a Boolean Approach to the Dynamics of Psychosis

    Science.gov (United States)

    Kupper, Z.; Hoffmann, H.

    A Boolean modeling approach to attractors in the dynamics of psychosis is presented: Kinetic Logic, originating from R. Thomas, describes systems on an intermediate level between a purely verbal, qualitative description and a description using nonlinear differential equations. With this method we may model impact, feedback and temporal evolution, as well as analyze the resulting attractors. In our previous research the method has been applied to general and more specific questions in the dynamics of psychotic disorders. In this paper a model is introduced that describes different dynamical patterns of chronic psychosis in the context of vocational rehabilitation. It also shows to be useful in formulating and exploring possible treatment strategies. Finally, some of the limitations and benefits of Kinetic Logic as a modeling tool for psychology and psychiatry are discussed.

  3. A Hyperchaotic Attractor with Multiple Positive Lyapunov Exponents

    International Nuclear Information System (INIS)

    Guo-Si, Hu

    2009-01-01

    There are many hyperchaotic systems, but few systems can generate hyperchaotic attractors with more than three PLEs (positive Lyapunov exponents). A new hyperchaotic system, constructed by adding an approximate time-delay state feedback to a five-dimensional hyperchaotic system, is presented. With the increasing number of phase-shift units used in this system, the number of PLEs also steadily increases. Hyperchaotic attractors with 25 PLEs can be generated by this system with 32 phase-shift units. The sum of the PLEs will reach the maximum value when 23 phase-shift units are used. A simple electronic circuit, consisting of 16 operational amplifiers and two analogy multipliers, is presented for confirming hyperchaos of order 5, i.e., with 5 PLEs

  4. Attractor reconstruction for non-linear systems: a methodological note

    Science.gov (United States)

    Nichols, J.M.; Nichols, J.D.

    2001-01-01

    Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.

  5. Sequences by Metastable Attractors: Interweaving Dynamical Systems and Experimental Data

    Directory of Open Access Journals (Sweden)

    Axel Hutt

    2017-05-01

    Full Text Available Metastable attractors and heteroclinic orbits are present in the dynamics of various complex systems. Although their occurrence is well-known, their identification and modeling is a challenging task. The present work reviews briefly the literature and proposes a novel combination of their identification in experimental data and their modeling by dynamical systems. This combination applies recurrence structure analysis permitting the derivation of an optimal symbolic representation of metastable states and their dynamical transitions. To derive heteroclinic sequences of metastable attractors in various experimental conditions, the work introduces a Hausdorff clustering algorithm for symbolic dynamics. The application to brain signals (event-related potentials utilizing neural field models illustrates the methodology.

  6. Hierarchical-control-based output synchronization of coexisting attractor networks

    International Nuclear Information System (INIS)

    Yun-Zhong, Song; Yi-Fa, Tang

    2010-01-01

    This paper introduces the concept of hierarchical-control-based output synchronization of coexisting attractor networks. Within the new framework, each dynamic node is made passive at first utilizing intra-control around its own arena. Then each dynamic node is viewed as one agent, and on account of that, the solution of output synchronization of coexisting attractor networks is transformed into a multi-agent consensus problem, which is made possible by virtue of local interaction between individual neighbours; this distributed working way of coordination is coined as inter-control, which is only specified by the topological structure of the network. Provided that the network is connected and balanced, the output synchronization would come true naturally via synergy between intra and inter-control actions, where the Tightness is proved theoretically via convex composite Lyapunov functions. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme. (general)

  7. Inflationary α -attractor cosmology: A global dynamical systems perspective

    Science.gov (United States)

    Alho, Artur; Uggla, Claes

    2017-04-01

    We study flat Friedmann-Lemaître-Robertson-Walker α -attractor E- and T-models by introducing a dynamical systems framework that yields regularized unconstrained field equations on two-dimensional compact state spaces. This results in both illustrative figures and a complete description of the entire solution spaces of these models, including asymptotics. In particular, it is shown that observational viability, which requires a sufficient number of e -folds, is associated with a particular solution given by a one-dimensional center manifold of a past asymptotic de Sitter state, where the center manifold structure also explains why nearby solutions are attracted to this "inflationary attractor solution." A center manifold expansion yields a description of the inflationary regime with arbitrary analytic accuracy, where the slow-roll approximation asymptotically describes the tangency condition of the center manifold at the asymptotic de Sitter state.

  8. Coupled flare attractors – a discrete prototype for economic modelling

    Directory of Open Access Journals (Sweden)

    Georg C. Hartmann

    1999-01-01

    Full Text Available A chaotic environment can give rise to “flares” if an autocatalytic variable responds in a multiplicative, threshold-type fashion to the environmental forcing. An “economic unit” similarly depends in its growth behavior on the unpredictable (chaotic? buying habits of its customers, say. It turns out that coupled flare attractors are surprisingly robust in the sense that the resulting “economy” is largely independent of the extent of diffusive coupling used. Some simulations are presented.

  9. Resonances in a Chaotic Attractor Crisis of the Lorenz Flow

    Science.gov (United States)

    Tantet, Alexis; Lucarini, Valerio; Dijkstra, Henk A.

    2018-02-01

    Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle-Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises.

  10. Long time behavior and attractors for energetically insulated fluid systems

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2010-01-01

    Roč. 27, č. 4 (2010), s. 1587-1609 ISSN 1078-0947 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : Navier-Stokes-Fourier system * attractor * long time behavior Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=5040

  11. Reduction of Dietrich-Ruina attractors to unimodal maps

    Directory of Open Access Journals (Sweden)

    S. Shkoller

    1997-01-01

    Full Text Available We present a geometric analysis of a quasi-static single degree of freedom elastic slider with a state and rate dependent friction law. In particular, we examine and characterize the regime of chaotic motions displayed by the Dieterich-Ruina model. We do so by numerically reducing the chaotic attractors to a family of unimodal maps and discuss why this suggests complex behaviour in the dynamical system.

  12. Attractors of magnetohydrodynamic flows in an Alfvenic state

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    1999-08-13

    We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)

  13. Global attractors and extinction dynamics of cyclically competing species.

    Science.gov (United States)

    Rulands, Steffen; Zielinski, Alejandro; Frey, Erwin

    2013-05-01

    Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.

  14. On the renormalization group perspective of α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav, E-mail: gaunarain@itp.ac.cn [Kavli Institute for Theoretical Physics China (KITPC), Key Laboratory of Theoretical Physics, Institute of Theoretical Physics (ITP), Chinese Academy of Sciences -CAS, Beijing 100190 (China)

    2017-10-01

    In this short paper we outline a recipe for the reconstruction of F ( R ) gravity starting from single field inflationary potentials in the Einstein frame. For simple potentials one can compute the explicit form of F ( R ), whilst for more involved examples one gets a parametric form of F ( R ). The F ( R ) reconstruction algorithm is used to study various examples: power-law φ {sup n} , exponential and α -attractors. In each case it is seen that for large R (corresponding to large value of inflaton field), F ( R ) ∼ R {sup 2}. For the case of α -attractors F ( R ) ∼ R {sup 2} for all values of inflaton field (for all values of R ) as α → 0. For generic inflaton potential V (φ), it is seen that if V {sup '}/ V →0 (for some φ) then the corresponding F ( R ) ∼ R {sup 2}. We then study α-attractors in more detail using non-perturbative renormalisation group methods to analyse the reconstructed F ( R ). It is seen that α →0 is an ultraviolet stable fixed point of the renormalisation group trajectories.

  15. Approximate convex hull of affine iterated function system attractors

    International Nuclear Information System (INIS)

    Mishkinis, Anton; Gentil, Christian; Lanquetin, Sandrine; Sokolov, Dmitry

    2012-01-01

    Highlights: ► We present an iterative algorithm to approximate affine IFS attractor convex hull. ► Elimination of the interior points significantly reduces the complexity. ► To optimize calculations, we merge the convex hull images at each iteration. ► Approximation by ellipses increases speed of convergence to the exact convex hull. ► We present a method of the output convex hull simplification. - Abstract: In this paper, we present an algorithm to construct an approximate convex hull of the attractors of an affine iterated function system (IFS). We construct a sequence of convex hull approximations for any required precision using the self-similarity property of the attractor in order to optimize calculations. Due to the affine properties of IFS transformations, the number of points considered in the construction is reduced. The time complexity of our algorithm is a linear function of the number of iterations and the number of points in the output approximate convex hull. The number of iterations and the execution time increases logarithmically with increasing accuracy. In addition, we introduce a method to simplify the approximate convex hull without loss of accuracy.

  16. Topological and metric properties of Henon-type strange attractors

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Gunaratne, G.H.; Procaccia, I.

    1988-01-01

    We use the set of all periodic points of Henon-type mappings to develop a theory of the topological and metric properties of their attractors. The topology of a Henon-type attractor is conveniently represented by a two-dimensional symbol plane, with the allowed and disallowed orbits cleanly separated by the ''pruning front.'' The pruning front is a function discontinuous on every binary rational number, but for maps with finite dissipation chemical bondbchemical bond<1, it is well approximated by a few steps, or, in the symbolic dynamics language, by a finite grammar. Thus equipped with the complete list of allowed periodic points, we reconstruct (to resolution of order b/sup n/) the physical attractor by piecing together the linearized neighborhoods of all periodic points of cycle length n. We use this representation to compute the singularity spectrum f(α). The description in terms of periodic points works very well in the ''hyperbolic phase,'' for α larger than some α/sub c/, where α/sub c/ is the value of α corresponding to the (conjectured) phase transition

  17. Investigating parameters participating in the infant respiratory control system attractor.

    Science.gov (United States)

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2008-01-01

    Theoretically, any participating parameter in a non-linear system represents the dynamics of the whole system. Taken's time delay embedding theory provides the fundamental basis for allowing non-linear analysis to be performed on physiological, time-series data. In practice, only one measurable parameter is required to be measured to convey an accurate representation of the system dynamics. In this paper, the infant respiratory control system is represented using three variables-a digitally sampled respiratory inductive plethysmography waveform, and the derived parameters tidal volume and inter-breath interval time series data. For 14 healthy infants, these data streams were analysed using recurrence plot analysis across one night of sleep. The measured attractor size of these variables followed the same qualitative trends across the nights study. Results suggest that the attractor size measures of the derived IBI and tidal volume are representative surrogates for the raw respiratory waveform. The extent to which the relative attractor sizes of IBI and tidal volume remain constant through changing sleep state could potentially be used to quantify pathology, or maturation of breathing control.

  18. Entropies from Markov Models as Complexity Measures of Embedded Attractors

    Directory of Open Access Journals (Sweden)

    Julián D. Arias-Londoño

    2015-06-01

    Full Text Available This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes.

  19. Generating two simultaneously chaotic attractors with a switching piecewise-linear controller

    International Nuclear Information System (INIS)

    Zheng Zuohuan; Lue Jinhu; Chen Guanrong; Zhou Tianshou; Zhang Suochun

    2004-01-01

    It has been demonstrated that a piecewise-linear system can generate chaos under suitable conditions. This paper proposes a novel method for simultaneously creating two symmetrical chaotic attractor--an upper-attractor and a lower-attractor--in a 3D linear autonomous system. Basically dynamical behaviors of this new chaotic system are further investigated. Especially, the chaos formation mechanism is explored by analyzing the structure of fixed points and the system trajectories

  20. Discontinuous bifurcation and coexistence of attractors in a piecewise linear map with a gap

    International Nuclear Information System (INIS)

    Qu Shixian; Lu Yongzhi; Zhang Lin; He Daren

    2008-01-01

    Coexistence of attractors with striking characteristics is observed in this work, where a stable period-5 attractor coexists successively with chaotic band-11, period-6, chaotic band-12 and band-6 attractors. They are induced by different mechanisms due to the interaction between the discontinuity and the non-invertibility. A characteristic boundary collision bifurcation, is observed. The critical conditions are obtained both analytically and numerically. (general)

  1. Noise-induced attractor annihilation in the delayed feedback logistic map

    International Nuclear Information System (INIS)

    Pisarchik, A.N.; Martínez-Zérega, B.E.

    2013-01-01

    We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.

  2. Application of fixed point theory to chaotic attractors of forced oscillators

    International Nuclear Information System (INIS)

    Stewart, H.B.

    1990-11-01

    A review of the structure of chaotic attractors of periodically forced second order nonlinear oscillators suggests that the theory of fixed points of transformations gives information about the fundamental topological structure of attractors. First a simple extension of the Levinson index formula is proved. Then numerical evidence is used to formulate plausible conjectures about absorbing regions containing chaotic attractors in forced oscillators. Applying the Levinson formula suggests a fundamental relation between the number of fixed points or periodic points in a section of the chaotic attractor on the one hand, and a topological invariant of an absorbing region on the other hand. (author)

  3. Complicated basins and the phenomenon of amplitude death in coupled hidden attractors

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Ushnish [Department of Physics, Sri Venkateswara College, University of Delhi, New Delhi 110021 (India); Department of Physics, National University of Singapore, Singapore 117551 (Singapore); Prasad, Awadhesh, E-mail: awadhesh@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-02-07

    Understanding hidden attractors, whose basins of attraction do not contain the neighborhood of equilibrium of the system, are important in many physical applications. We observe riddled-like complicated basins of coexisting hidden attractors both in coupled and uncoupled systems. Amplitude death is observed in coupled hidden attractors with no fixed point using nonlinear interaction. A new route to amplitude death is observed in time-delay coupled hidden attractors. Numerical results are presented for systems with no or one stable fixed point. The applications are highlighted.

  4. An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks

    Science.gov (United States)

    Zheng, Desheng; Yang, Guowu; Li, Xiaoyu; Wang, Zhicai; Liu, Feng; He, Lei

    2013-01-01

    Biological networks, such as genetic regulatory networks, often contain positive and negative feedback loops that settle down to dynamically stable patterns. Identifying these patterns, the so-called attractors, can provide important insights for biologists to understand the molecular mechanisms underlying many coordinated cellular processes such as cellular division, differentiation, and homeostasis. Both synchronous and asynchronous Boolean networks have been used to simulate genetic regulatory networks and identify their attractors. The common methods of computing attractors are that start with a randomly selected initial state and finish with exhaustive search of the state space of a network. However, the time complexity of these methods grows exponentially with respect to the number and length of attractors. Here, we build two algorithms to achieve the computation of attractors in synchronous and asynchronous Boolean networks. For the synchronous scenario, combing with iterative methods and reduced order binary decision diagrams (ROBDD), we propose an improved algorithm to compute attractors. For another algorithm, the attractors of synchronous Boolean networks are utilized in asynchronous Boolean translation functions to derive attractors of asynchronous scenario. The proposed algorithms are implemented in a procedure called geneFAtt. Compared to existing tools such as genYsis, geneFAtt is significantly faster in computing attractors for empirical experimental systems. Availability The software package is available at https://sites.google.com/site/desheng619/download. PMID:23585840

  5. Hematopoietic differentiation: a coordinated dynamical process towards attractor stable states

    Directory of Open Access Journals (Sweden)

    Rossi Simona

    2010-06-01

    Full Text Available Abstract Background The differentiation process, proceeding from stem cells towards the different committed cell types, can be considered as a trajectory towards an attractor of a dynamical process. This view, taking into consideration the transcriptome and miRNome dynamics considered as a whole, instead of looking at few 'master genes' driving the system, offers a novel perspective on this phenomenon. We investigated the 'differentiation trajectories' of the hematopoietic system considering a genome-wide scenario. Results We developed serum-free liquid suspension unilineage cultures of cord blood (CB CD34+ hematopoietic progenitor cells through erythroid (E, megakaryocytic (MK, granulocytic (G and monocytic (Mo pathways. These cultures recapitulate physiological hematopoiesis, allowing the analysis of almost pure unilineage precursors starting from initial differentiation of HPCs until terminal maturation. By analyzing the expression profile of protein coding genes and microRNAs in unilineage CB E, MK, G and Mo cultures, at sequential stages of differentiation and maturation, we observed a coordinated, fully interconnected and scalable character of cell population behaviour in both transcriptome and miRNome spaces reminiscent of an attractor-like dynamics. MiRNome and transcriptome space differed for a still not terminally committed behaviour of microRNAs. Conclusions Consistent with their roles, the transcriptome system can be considered as the state space of a cell population, while the continuously evolving miRNA space corresponds to the tuning system necessary to reach the attractor. The behaviour of miRNA machinery could be of great relevance not only for the promise of reversing the differentiated state but even for tumor biology.

  6. Is attentional blink a byproduct of neocortical attractors?

    Directory of Open Access Journals (Sweden)

    David N Silverstein

    2011-05-01

    Full Text Available This study proposes a computational model for attentional blink or blink of the mind, a phenomenon where a human subject misses perception of a later expected visual pattern as two expected visual patterns are presented less than 500 ms apart. A neocortical patch modeled as an attractor network is stimulated with a sequence of 14 patterns 100 ms apart, two of which are expected targets. Patterns that become active attractors are considered recognized. A neocortical patch is represented as a square matrix of hypercolumns, each containing a set of minicolumns with synaptic connections within and across both minicolumns and hypercolumns. Each minicolumn consists of locally connected layer 2/3 pyramidal cells with interacting basket cells and layer 4 pyramidal cells for input stimulation. All neurons are implemented using the Hodgkin-Huxley multi-compartmental cell formalism and include calcium dynamics, and they interact via saturating and depressing AMPA / NMDA and GABAA synapses. Stored patterns are encoded with global connectivity of minicolumns across hypercolumns and active patterns compete as the result of lateral inhibition in the network. Stored patterns were stimulated over time intervals to create attractor interference measurable with synthetic spike traces. This setup corresponds with item presentations in human visual attentional blink studies. Stored target patterns were depolarized while distractor patterns where hyperpolarized to represent expectation of items in working memory. Additionally, studies on the inhibitory effect of benzodiazopines on attentional blink in human subjects were compared with neocortical simulations where the GABAA receptor conductance and decay time were increased. Simulations showed increases in the attentional blink duration, agreeing with observations in human studies.

  7. Neural attractor network for application in visual field data classification

    International Nuclear Information System (INIS)

    Fink, Wolfgang

    2004-01-01

    The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a ' counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available

  8. Plykin type attractor in electronic device simulated in MULTISIM

    Science.gov (United States)

    Kuznetsov, Sergey P.

    2011-12-01

    An electronic device is suggested representing a non-autonomous dynamical system with hyperbolic chaotic attractor of Plykin type in the stroboscopic map, and the results of its simulation with software package NI MULTISIM are considered in comparison with numerical integration of the underlying differential equations. A main practical advantage of electronic devices of this kind is their structural stability that means insensitivity of the chaotic dynamics in respect to variations of functions and parameters of elements constituting the system as well as to interferences and noises.

  9. Multistability and hidden attractors in a relay system with hysteresis

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Rubanov, Vasily G.

    2015-01-01

    with the neighborhood of that cycle. We show how the equilibrium point of a relay system disappears in a boundary-equilibrium bifurcation as the system enters the region of autonomous switching dynamics and demonstrate experimentally how a relay system can exhibit large amplitude chaotic oscillations at high values...... of the supply voltage. By investigating a four-dimensional model of the experimental relay system we finally show how a variety of hidden periodic, quasiperiodic and chaotic attractors arise, transform and disappear through different bifurcations. (C) 2015 Elsevier B.V. All rights reserved....

  10. Generalized pole inflation: Hilltop, natural, and chaotic inflationary attractors

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Takahiro, E-mail: takahiro.terada@apctp.org [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of)

    2016-09-10

    A reformulation of inflationary model analyses appeared recently, in which inflationary observables are determined by the structure of a pole in the inflaton kinetic term rather than the shape of the inflaton potential. We comprehensively study this framework with an arbitrary order of the pole taking into account possible additional poles in the kinetic term or in the potential. Depending on the setup, the canonical potential becomes the form of hilltop or plateau models, variants of natural inflation, power-law inflation, or monomial/polynomial chaotic inflation. We demonstrate attractor behaviors of these models and compute corrections from the additional poles to the inflationary observables.

  11. Some statistical properties of strange attractors: engineering view

    International Nuclear Information System (INIS)

    Mijangos, M; Kontorovich, V; Aguilar-Torrentera, J

    2008-01-01

    In this paper, the statistical characterization of strange attractors is investigated via the so-called 'model distribution' approach. It is shown that in order to calculate the first four cumulants, which are necessary to create a model distribution of kurtosis approximation, a systematic method for the calculus of the variance needs to be considered. Correspondently, an analytical method based on the Kolmogorov-Sinai (K-S) entropy for variance approximation is herein proposed. The methodology is of interest for its application in the statistical analysis of chaotic systems that model physical phenomena found in some areas of electrical (communication) engineering

  12. Pullback attractors for a singularly nonautonomous plate equation

    Directory of Open Access Journals (Sweden)

    Vera Lucia Carbone

    2011-06-01

    Full Text Available We consider the family of singularly nonautonomous plate equations with structural damping $$ u_{tt} + a(t,xu_t - Delta u_t + (-Delta^2 u + lambda u = f(u, $$ in a bounded domain $Omega subset mathbb{R}^n$, with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in $H^2_0(Omega imes L^2(Omega$ and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.

  13. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  14. Attractors of multivalued semiflows generated by differential inclusions and their approximations

    Directory of Open Access Journals (Sweden)

    Alexei V. Kapustian

    2000-01-01

    Full Text Available We prove the existence of global compact attractors for differential inclusions and obtain some results concerning the continuity and upper semicontinuity of the attractors for approximating and perturbed inclusions. Applications are given to a model of regional economic growth.

  15. Lorenz-like attractors in a nonholonomic model of a rattleback

    International Nuclear Information System (INIS)

    Gonchenko, A S; Gonchenko, S V

    2015-01-01

    We study chaotic dynamics in a nonholonomic model of a rattleback stone. We show that, for certain values of parameters that characterise geometrical and physical properties of the stone, a strange Lorenz-like attractor is observed in the model. We also study bifurcation scenarios for the appearance and break-down of this attractor. (paper)

  16. Shift of critical points in the parametrically modulated Henon map with coexisting attractors

    International Nuclear Information System (INIS)

    Saucedo-Solorio, J.M.; Pisarchik, A.N.; Aboites, V.

    2002-01-01

    We study how the critical point positions change in the parametrically modulated Henon map with coexisting period-1 and period-3 attractors. In particular, a new type of scaling law is found coinciding with that evidenced by laser experiments. We show that resonance phenomena play a crucial role in deformation of attractors and their basins of attraction

  17. Using periodic modulation to control coexisting attractors induced by delayed feedback

    International Nuclear Information System (INIS)

    Martinez-Zerega, B.E.; Pisarchik, A.N.; Tsimring, L.S.

    2003-01-01

    A delay in feedback can stabilize simultaneously several unstable periodic orbits embedded in a chaotic attractor. We show that by modulating the feedback variable it is possible to lock one of these states and eliminate other coexisting periodic attractors. The method is demonstrated with both a logistic map and a CO 2 laser model

  18. A novel one equilibrium hyper-chaotic system generated upon Lü attractor

    International Nuclear Information System (INIS)

    Hong-Yan, Jia; Zeng-Qiang, Chen; Zhu-Zhi, Yuan

    2010-01-01

    By introducing an additional state feedback into a three-dimensional autonomous chaotic attractor Lü system, this paper presents a novel four-dimensional continuous autonomous hyper-chaotic system which has only one equilibrium. There are only 8 terms in all four equations of the new hyper-chaotic system, which may be less than any other four-dimensional continuous autonomous hyper-chaotic systems generated by three-dimensional (3D) continuous autonomous chaotic systems. The hyper-chaotic system undergoes Hopf bifurcation when parameter c varies, and becomes the 3D modified Lü system when parameter k varies. Although the hyper-chaotic system does not undergo Hopf bifurcation when parameter k varies, many dynamic behaviours such as periodic attractor, quasi periodic attractor, chaotic attractor and hyper-chaotic attractor can be observed. A circuit is also designed when parameter k varies and the results of the circuit experiment are in good agreement with those of simulation. (general)

  19. Generation and control of multi-scroll chaotic attractors in fractional order systems

    International Nuclear Information System (INIS)

    Ahmad, Wajdi M.

    2005-01-01

    The objective of this paper is twofold: on one hand we demonstrate the generation of multi-scroll attractors in fractional order chaotic systems. Then, we design state feedback controllers to eliminate chaos from the system trajectories. It is demonstrated that modifying the underlying nonlinearity of the fractional chaotic system results in the birth of multiple chaotic attractors, thus forming the so called multi-scroll attractors. The presence of chaotic behavior is evidenced by a positive largest Lyapunov exponent computed for the output time series. We investigate generation and control of multi-scroll attractors in two different models, both of which are fractional order and chaotic: an electronic oscillator, and a mechanical 'jerk' model. The current findings extend previously reported results on generation of n-scroll attractors from the domain of integer order to the domain of fractional order chaotic systems, and addresses the issue of controlling such chaotic behaviors. Our investigations are validated through numerical simulations

  20. Non-Abelian magnetized blackholes and unstable attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mosaffa, A.E. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: mosaffa@theory.ipm.ac.ir; Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11 34014, Trieste (Italy)], E-mail: seif@ictp.trieste.it; Sheikh-Jabbari, M.M. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@theory.ipm.ac.ir

    2008-01-21

    Fluctuations of non-Abelian gauge fields in a background magnetic charge contain 'tachyonic' modes which as we will show cause an instability of the background. We extend this result to the cases where the background charge (flux) is coupled to four-dimensional Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of (colored) Reissner-Nordstroem blackholes or the AdS{sub 2}xS{sup 2}, are also unstable unless the flux assumes its smallest allowed value, in which case the configuration is stable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes, with the exception of the minimally charged stable ones.

  1. Universality of multi-field α-attractors

    Science.gov (United States)

    Achúcarro, Ana; Kallosh, Renata; Linde, Andrei; Wang, Dong-Gang; Welling, Yvette

    2018-04-01

    We study a particular version of the theory of cosmological α-attractors with α=1/3, in which both the dilaton (inflaton) field and the axion field are light during inflation. The kinetic terms in this theory originate from maximal Script N=4 superconformal symmetry and from maximal Script N=8 supergravity. We show that because of the underlying hyperbolic geometry of the moduli space in this theory, it exhibits double attractor behavior: their cosmological predictions are stable not only with respect to significant modifications of the dilaton potential, but also with respect to significant modifications of the axion potential: nssimeq1‑2/N, rsimeq4/N2. We also show that the universality of predictions extends to other values of α lesssim Script O(1) with general two-field potentials that may or may not have an embedding in supergravity. Our results support the idea that inflation involving multiple, not stabilized, light fields on a hyperbolic manifold may be compatible with current observational constraints for a broad class of potentials.

  2. Split Attractor Flow in N=2 Minimally Coupled Supergravity

    CERN Document Server

    Ferrara, Sergio; Orazi, Emanuele

    2011-01-01

    We classify the stability region, marginal stability walls (MS) and split attractor flows for two-center extremal black holes in four-dimensional N=2 supergravity minimally coupled to n vector multiplets. It is found that two-center (continuous) charge orbits, classified by four duality invariants, either support a stability region ending on a MS wall or on an anti-marginal stability (AMS) wall, but not both. Therefore, the scalar manifold never contains both walls. Moreover, the BPS mass of the black hole composite (in its stability region) never vanishes in the scalar manifold. For these reasons, the "bound state transformation walls" phenomenon does not necessarily occur in these theories. The entropy of the flow trees also satisfies an inequality which forbids "entropy enigma" decays in these models. Finally, the non-BPS case, due to the existence of a "fake" superpotential satisfying a triangle inequality, can be treated as well, and it can be shown to exhibit a split attractor flow dynamics which, at le...

  3. Reconstructing a f ( R ) theory from the α-Attractors

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, T.; Fabris, J. C.; Piattella, O. F., E-mail: tays.andrade@aluno.ufes.br, E-mail: oliver.piattella@pq.cnpq.br, E-mail: fabris@pq.cnpq.br [Department of Physics, Universidade Federal do Espírito Santo, avenida Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo (Brazil)

    2017-09-01

    We show an analogy at high curvature between a f ( R ) = R + aR {sup n} {sup −} {sup 1} + bR {sup 2} theory and the α-Attractors. We calculate the expressions of the parameters a , b and n as functions of α and the predictions of the model f ( R ) = R + aR {sup n} {sup −} {sup 1} + bR {sup 2} on the scalar spectral index n {sub s} and the tensor-to-scalar ratio r . We find that the power law correction R {sup n} {sup −} {sup 1} allows for a production of gravitational waves enhanced with respect to the one in the Starobinsky model, while maintaining a viable prediction on n {sub s}. We numerically reconstruct the full α-Attractors class of models testing the goodness of our high-energy approximation f ( R ) = R + aR {sup n} {sup −} {sup 1} + bR {sup 2}. Moreover, we also investigate the case of a single power law f ( R ) = γ R {sup 2} {sup −} {sup δ} theory, with γ and δ free parameters. We calculate analytically the predictions of this model on the scalar spectral index n {sub s} and the tensor-to-scalar ratio r and the values of δ which are allowed from the current observational results. We find that −0.015 < δ < 0.016, confirming once again the excellent agreement between the Starobinsky model and observation.

  4. Holonomy Attractor Connecting Spaces of Different Curvature Responsible for ``Anomalies''

    Science.gov (United States)

    Binder, Bernd

    2009-03-01

    In this lecture paper we derive Magic Angle Precession (MAP) from first geometric principles. MAP can arise in situations, where precession is multiply related to spin, linearly by time or distance (dynamic phase, rolling, Gauss law) and transcendentally by the holonomy loop path (geometric phase). With linear spin-precession coupling, gyroscopes can be spun up and down to very high frequencies via low frequency holonomy control induced by external accelerations, which provides for extreme coupling strengths or "anomalies" that can be tested by the powerball or gyrotwister device. Geometrically, a gyroscopic manifold with spherical metric is tangentially aligned to a precession wave channel with conic or hyperbolic metric (like the relativistic Thomas precession). Transporting triangular spin/precession vector relations across the tangential boundary of contact with SO(3) Lorentz symmetry, we get extreme vector currents near the attractor fixed points in precession phase space, where spin currents remain intact while crossing the contact boundaries between regions of different curvature signature (-1, 0, +1). The problem can be geometrically solved by considering a curvature invariant triangular condition, which holds on surfaces with different curvature that are in contact and locally parallel. In this case two out of three angles are identical, whereas the third angle is different due to holonomy. If we require that the side length ratio corresponding to these angles are invariant we get a geodesic chaotic attractor, which is a cosine map cos(x)˜Mx in parameter space providing for fixed points, limit cycle bifurcations, and singularities. The situation could be quite natural and common in the context of vector currents in curved spacetime and gauge theories. MAP could even be part of the electromagnetic interaction, where the electric charge is the geometric U(1) precession spin current and gauge potential with magnetic effects given by extra rotations under the

  5. Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system

    Science.gov (United States)

    Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre

    2018-01-01

    This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.

  6. Bump formation in a binary attractor neural network

    International Nuclear Information System (INIS)

    Koroutchev, Kostadin; Korutcheva, Elka

    2006-01-01

    The conditions for the formation of local bumps in the activity of binary attractor neural networks with spatially dependent connectivity are investigated. We show that these formations are observed when asymmetry between the activity during the retrieval and learning is imposed. An analytical approximation for the order parameters is derived. The corresponding phase diagram shows a relatively large and stable region where this effect is observed, although critical storage and information capacities drastically decrease inside that region. We demonstrate that the stability of the network, when starting from the bump formation, is larger than the stability when starting even from the whole pattern. Finally, we show a very good agreement between the analytical results and the simulations performed for different topologies of the network

  7. Topology and computational performance of attractor neural networks

    International Nuclear Information System (INIS)

    McGraw, Patrick N.; Menzinger, Michael

    2003-01-01

    To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The random configuration is the most efficient for storage and retrieval of patterns by the network as a whole. However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of these findings for brain function and social dynamics are suggestive

  8. Explosive attractor solutions to a universal cubic delay equation

    Science.gov (United States)

    Sanz-Orozco, D.; Berk, H. L.

    2017-05-01

    New explosive attractor solutions have been found in a universal cubic delay equation that has been studied in both the plasma and the fluid mechanics literature. Through computational simulations and analytic approximations, it is found that the oscillatory component of the explosive mode amplitude solutions are described through multi-frequency Fourier expansions with respect to a pseudo-time variable. The spectral dependence of these solutions as a function of a system parameter, ϕ , is studied. The mode amplitude that is described in the explosive regime has two main features: a well-known envelope ( t 0 - t ) - 5 / 2 , with t0 the blow-up time of the amplitude, and a spectrum of discrete oscillations with ever-increasing frequencies, which may give experimental information about the properties of a system's equilibrium.

  9. Detection of strong attractors in social media networks.

    Science.gov (United States)

    Qasem, Ziyaad; Jansen, Marc; Hecking, Tobias; Hoppe, H Ulrich

    2016-01-01

    Detection of influential actors in social media such as Twitter or Facebook plays an important role for improving the quality and efficiency of work and services in many fields such as education and marketing. The work described here aims to introduce a new approach that characterizes the influence of actors by the strength of attracting new active members into a networked community. We present a model of influence of an actor that is based on the attractiveness of the actor in terms of the number of other new actors with which he or she has established relations over time. We have used this concept and measure of influence to determine optimal seeds in a simulation of influence maximization using two empirically collected social networks for the underlying graphs. Our empirical results on the datasets demonstrate that our measure stands out as a useful measure to define the attractors comparing to the other influence measures.

  10. Strange attractor of Henon map and its basin

    Institute of Scientific and Technical Information of China (English)

    曹永罗

    1995-01-01

    In this paper, Henon map is considered. For a positive measure set of parameters (a, b), we construct a trapping region G of topologically transitive strange attractor Aa,b for Ta,b, and prove that Aa,b= ∩n≥0Ta,bnG, and the basin B(Aa,b) of Aa,b is exactly the union of domain whose boundary is contained in w5(p) ∪wu(p) and ws(p). Therefore, that the conjecture posed by Benedicks and Carleson about the basin of strange attactor is true is proved. Furthermore, B(Aa,b) is simply connected and path-connected, w4(p2) is contained in the attainable boundary set of B(Aa,b) (where p2 is another hyperbolic fixed point of Ta,b).

  11. Noether symmetry approach in the cosmological alpha-attractors

    Science.gov (United States)

    Kaewkhao, Narakorn; Kanesom, Thanyagamon; Channuie, Phongpichit

    2018-06-01

    In cosmological framework, Noether symmetry technique has revealed a useful tool in order to examine exact solutions. In this work, we first introduce the Jordan-frame Lagrangian and apply the conformal transformation in order to obtain the Lagrangian equivalent to Einstein-frame form. We then analyze the dynamics of the field in the cosmological alpha-attractors using the Noether symmetry approach by focusing on the single field scenario in the Einstein-frame form. We show that with a Noether symmetry the corresponding dynamical system can be completely integrated and the potential exhibited by the symmetry can be exactly obtained. With the proper choice of parameters, the behavior of the scale factor displays an exponential (de Sitter) behavior at the present epoch. Moreover, we discover that the Hubble parameters strongly depends on the initial values of parameters exhibited by the Noether symmetry. Interestingly, it can retardedly evolve and becomes a constant in the present epoch in all cases.

  12. A polynomial approach for generating a monoparametric family of chaotic attractors via switched linear systems

    International Nuclear Information System (INIS)

    Aguirre-Hernández, B.; Campos-Cantón, E.; López-Renteria, J.A.; Díaz González, E.C.

    2015-01-01

    In this paper, we consider characteristic polynomials of n-dimensional systems that determine a segment of polynomials. One parameter is used to characterize this segment of polynomials in order to determine the maximal interval of dissipativity and unstability. Then we apply this result to the generation of a family of attractors based on a class of unstable dissipative systems (UDS) of type affine linear systems. This class of systems is comprised of switched linear systems yielding strange attractors. A family of these chaotic switched systems is determined by the maximal interval of perturbation of the matrix that governs the dynamics for still having scroll attractors

  13. Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2008-01-01

    This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues. (general)

  14. Implementation of a novel two-attractor grid multi-scroll chaotic system

    International Nuclear Information System (INIS)

    Xiao-Hua, Luo; Zheng-Wei, Tu; Xi-Rui, Liu; Chang, Cai; Pu, Gong; Yi-Long, Liang

    2010-01-01

    This paper proposed a method of generating two attractors in a novel grid multi-scroll chaotic system. Based on a newly generated three-dimensional system, a two-attractor grid multi-scroll attractor system can be generated by adding two triangular waves and a sign function. Some basic dynamical properties, such as equilibrium points, bifurcations, and phase diagrams, were studied. Furthermore, the system was experimentally confirmed by an electronic circuit. The circuit simulation results and numerical simulation results verified the feasibility of this method. (general)

  15. Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains

    Science.gov (United States)

    Wang, Xiaohu; Lu, Kening; Wang, Bixiang

    2018-01-01

    In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction-diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of stochastic reaction-diffusion equation. Then, we show that the attractors of Wong-Zakai approximations converges to the attractor of the stochastic reaction-diffusion equation for both additive and multiplicative noise.

  16. How organisms do the right thing: The attractor hypothesis

    Science.gov (United States)

    Emlen, J.M.; Freeman, D.C.; Mills, A.; Graham, J.H.

    1998-01-01

    Neo-Darwinian theory is highly successful at explaining the emergence of adaptive traits over successive generations. However, there are reasons to doubt its efficacy in explaining the observed, impressively detailed adaptive responses of organisms to day-to-day changes in their surroundings. Also, the theory lacks a clear mechanism to account for both plasticity and canalization. In effect, there is a growing sentiment that the neo-Darwinian paradigm is incomplete, that something more than genetic structure, mutation, genetic drift, and the action of natural selection is required to explain organismal behavior. In this paper we extend the view of organisms as complex self-organizing entities by arguing that basic physical laws, coupled with the acquisitive nature of organisms, makes adaptation all but tautological. That is, much adaptation is an unavoidable emergent property of organisms' complexity and, to some a significant degree, occurs quite independently of genomic changes wrought by natural selection. For reasons that will become obvious, we refer to this assertion as the attractor hypothesis. The arguments also clarify the concept of "adaptation." Adaptation across generations, by natural selection, equates to the (game theoretic) maximization of fitness (the success with which one individual produces more individuals), while self-organizing based adaptation, within generations, equates to energetic efficiency and the matching of intake and biosynthesis to need. Finally, we discuss implications of the attractor hypothesis for a wide variety of genetical and physiological phenomena, including genetic architecture, directed mutation, genetic imprinting, paramutation, hormesis, plasticity, optimality theory, genotype-phenotype linkage and puncuated equilibrium, and present suggestions for tests of the hypothesis. ?? 1998 American Institute of Physics.

  17. The dynamical and statistical properties of cognitive strategies: relations between strategies, attractors, and latent classes

    NARCIS (Netherlands)

    van der Maas, H.L.J.; Newell, K.; Molenaar, P.C.M.

    1998-01-01

    Cognitive developmental psychology is faced with new developments in the mathematical theory of nonlinear dynamic systems and in psychometrics. This chapter addresses: the relation between the strategy concept in cognitive developmental psychology and the concept of attractor in nonlinear dynamic

  18. Random Attractors for the Stochastic Navier-Stokes Equations on the 2D Unit Sphere

    Science.gov (United States)

    Brzeźniak, Z.; Goldys, B.; Le Gia, Q. T.

    2018-03-01

    In this paper we prove the existence of random attractors for the Navier-Stokes equations on 2 dimensional sphere under random forcing irregular in space and time. We also deduce the existence of an invariant measure.

  19. A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design

    Directory of Open Access Journals (Sweden)

    Qiang Lai

    2017-12-01

    Full Text Available This paper reports about a novel three-dimensional chaotic system with three nonlinearities. The system has one stable equilibrium, two stable equilibria and one saddle node, two saddle foci and one saddle node for different parameters. One salient feature of this novel system is its multiple attractors caused by different initial values. With the change of parameters, the system experiences mono-stability, bi-stability, mono-periodicity, bi-periodicity, one strange attractor, and two coexisting strange attractors. The complex dynamic behaviors of the system are revealed by analyzing the corresponding equilibria and using the numerical simulation method. In addition, an electronic circuit is given for implementing the chaotic attractors of the system. Using the new chaotic system, an S-Box is developed for cryptographic operations. Moreover, we test the performance of this produced S-Box and compare it to the existing S-Box studies.

  20. Hidden Attractors in a Model of a Bubble Contrast Agent Oscillating Near an Elastic Wall

    Science.gov (United States)

    Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay

    2018-02-01

    A model describing the dynamics of a spherical gas bubble in a compressible viscous liquid is studied. The bubble is oscillating close to an elastic wall of finite thickness under the influence of an external pressure field which simulates a contrast agent oscillating close to a blood vessel wall. Here we investigate numerically the coexistence of chaotic and periodic attractors in this model. One of the tools applied for seeking coexisting attractors is the perpetual points method. This method can be helpful for localizing coexisting attractors, occurring in various physically realistic ranges of variation of the control parameters. We provide some examples of coexisting attractors to demonstrate the importance of the multistability problem for the applications.

  1. Co-existing hidden attractors in a radio-physical oscillator system

    DEFF Research Database (Denmark)

    Kuznetsov, A. P.; Kuznetsov, S. P.; Mosekilde, Erik

    2015-01-01

    The term `hidden attractor' relates to a stable periodic, quasiperiodic or chaotic state whose basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Considering a three-dimensional oscillator system that does not allow for the existence of an equilibrium point...... frequency, describe the bifurcations through which hidden attractors of different type arise and disappear, and illustrate the form of the basins of attraction....

  2. Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay

    Czech Academy of Sciences Publication Activity Database

    Chueshov, I.; Rezunenko, Oleksandr

    2015-01-01

    Roč. 14, č. 5 (2015), s. 1685-1704 ISSN 1534-0392 R&D Projects: GA ČR GAP103/12/2431 Institutional support: RVO:67985556 Keywords : Parabolic evolution equations * state-dependent delay * global attractor * finite-dimension * exponential attractor Subject RIV: BC - Control Systems Theory Impact factor: 0.926, year: 2015 http://library.utia.cas.cz/separaty/2015/AS/rezunenko-0444705.pdf

  3. Context-dependent retrieval of information by neural-network dynamics with continuous attractors.

    Science.gov (United States)

    Tsuboshita, Yukihiro; Okamoto, Hiroshi

    2007-08-01

    Memory retrieval in neural networks has traditionally been described by dynamic systems with discrete attractors. However, recent neurophysiological findings of graded persistent activity suggest that memory retrieval in the brain is more likely to be described by dynamic systems with continuous attractors. To explore what sort of information processing is achieved by continuous-attractor dynamics, keyword extraction from documents by a network of bistable neurons, which gives robust continuous attractors, is examined. Given an associative network of terms, a continuous attractor led by propagation of neuronal activation in this network appears to represent keywords that express underlying meaning of a document encoded in the initial state of the network-activation pattern. A dominant hypothesis in cognitive psychology is that long-term memory is archived in the network structure, which resembles associative networks of terms. Our results suggest that keyword extraction by the neural-network dynamics with continuous attractors might symbolically represent context-dependent retrieval of short-term memory from long-term memory in the brain.

  4. General method to find the attractors of discrete dynamic models of biological systems

    Science.gov (United States)

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  5. General method to find the attractors of discrete dynamic models of biological systems.

    Science.gov (United States)

    Gan, Xiao; Albert, Réka

    2018-04-01

    Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.

  6. Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators

    International Nuclear Information System (INIS)

    Giacomin, Giambattista; Pakdaman, Khashayar; Pellegrin, Xavier

    2012-01-01

    We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long-term dynamics of this model is finite dimensional. Following this, we prove that the global attractor of this model takes one of two forms. When coupling strength is below a critical value, the global attractor is a single equilibrium point corresponding to an incoherent state. Otherwise, when coupling strength is beyond this critical value, the global attractor is a two-dimensional disc composed of radial trajectories connecting a saddle-point equilibrium (the incoherent state) to an invariant closed curve of locally stable equilibria (partially synchronized state). Our analysis hinges, on the one hand, upon sharp existence and uniqueness results and their consequence for the existence of a global attractor, and, on the other hand, on the study of the dynamics in the vicinity of the incoherent and coherent (or synchronized) equilibria. We prove in particular nonlinear stability of each synchronized equilibrium, and normal hyperbolicity of the set of such equilibria. We explore mathematically and numerically several properties of the global attractor, in particular we discuss the limit of this attractor as noise intensity decreases to zero

  7. Attractor controllability of Boolean networks by flipping a subset of their nodes

    Science.gov (United States)

    Rafimanzelat, Mohammad Reza; Bahrami, Fariba

    2018-04-01

    The controllability analysis of Boolean networks (BNs), as models of biomolecular regulatory networks, has drawn the attention of researchers in recent years. In this paper, we aim at governing the steady-state behavior of BNs using an intervention method which can easily be applied to most real system, which can be modeled as BNs, particularly to biomolecular regulatory networks. To this end, we introduce the concept of attractor controllability of a BN by flipping a subset of its nodes, as the possibility of making a BN converge from any of its attractors to any other one, by one-time flipping members of a subset of BN nodes. Our approach is based on the algebraic state-space representation of BNs using semi-tensor product of matrices. After introducing some new matrix tools, we use them to derive necessary and sufficient conditions for the attractor controllability of BNs. A forward search algorithm is then suggested to identify the minimal perturbation set for attractor controllability of a BN. Next, a lower bound is derived for the cardinality of this set. Two new indices are also proposed for quantifying the attractor controllability of a BN and the influence of each network variable on the attractor controllability of the network and the relationship between them is revealed. Finally, we confirm the efficiency of the proposed approach by applying it to the BN models of some real biomolecular networks.

  8. Patterns of patterns of synchronization: Noise induced attractor switching in rings of coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emenheiser, Jeffrey [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Chapman, Airlie; Mesbahi, Mehran [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Pósfai, Márton [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Crutchfield, James P. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); D' Souza, Raissa M. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States)

    2016-09-15

    Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.

  9. Counterexamples to regularity of Mañé projections in the theory of attractors

    International Nuclear Information System (INIS)

    Eden, Al'p; Zelik, Sergey V; Kalantarov, Varga K

    2013-01-01

    This paper is a study of global attractors of abstract semilinear parabolic equations and their embeddings in finite-dimensional manifolds. As is well known, a sufficient condition for the existence of smooth (at least C 1 -smooth) finite-dimensional inertial manifolds containing a global attractor is the so-called spectral gap condition for the corresponding linear operator. There are also a number of examples showing that if there is no gap in the spectrum, then a C 1 -smooth inertial manifold may not exist. On the other hand, since an attractor usually has finite fractal dimension, by Mañé's theorem it projects bijectively and Hölder-homeomorphically into a finite-dimensional generic plane if its dimension is large enough. It is shown here that if there are no gaps in the spectrum, then there exist attractors that cannot be embedded in any Lipschitz or even log-Lipschitz finite-dimensional manifold. Thus, if there are no gaps in the spectrum, then in the general case the inverse Mañé projection of the attractor cannot be expected to be Lipschitz or log-Lipschitz. Furthermore, examples of attractors with finite Hausdorff and infinite fractal dimension are constructed in the class of non-linearities of finite smoothness. Bibliography: 35 titles.

  10. Diffusion of intrinsic localized modes by attractor hopping

    International Nuclear Information System (INIS)

    Meister, Matthias; Vazquez, Luis

    2003-01-01

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability θ and a delay time τ A . The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, θ and τ A being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in θ, a decrease in τ A and reduces the average distance a mode travels during the transition period

  11. Octodon Degus: A Strong Attractor for Alzheimer Research

    Directory of Open Access Journals (Sweden)

    Rafael Castro-Fuentes

    2013-01-01

    Full Text Available   The most popular animal models of Alzheimer’s disease (AD are transgenic mice expressing human genes with known mutations which do not represent the most abundant sporadic form of the disease. An increasing number of genetic, vascular and psychosocial data strongly support that the Octodon degus, a moderate-sized and diurnal precocial rodent, provides a naturalistic model for the study of the early neurodegenerative process associated with sporadic AD. In this minireview we describe and analyze the risk factors that contribute to Alzheimer-like characteristics in the degus, following recent publications, and establish some guidelines for future studies in this model of natural aging associated with the disease. Given the heterogeneity of current data derived from the diverse transgenic animal models of AD, now may be the time for the degus to become a strong attractor for academic research labs and companies involved with AD. This may help to understand the mechanisms responsible for the early neurodegenerative process associated with this devastating disease.

  12. Octodon Degus: A Strong Attractor for Alzheimer Research

    Directory of Open Access Journals (Sweden)

    Rafael Castro-Fuentes

    2013-02-01

    Full Text Available The most popular animal models of Alzheimer’s disease (AD are transgenic mice expressing human genes with known mutations which do not represent the most abundant sporadic form of the disease. An increasing number of genetic, vascular and psychosocial data strongly support that the Octodon degus, a moderate-sized and diurnal precocial rodent, provides a naturalistic model for the study of the early neurodegenerative process associated with sporadic AD. In this minireview we describe and analyze the risk factors that contribute to Alzheimer-like characteristics in the degus, following recent publications, and establish some guidelines for future studies in this model of natural aging associated with the disease. Given the heterogeneity of current data derived from the diverse transgenic animal models of AD, now may be the time for the degus to become a strong attractor for academic research labs and companies involved with AD. This may help to understand the mechanisms responsible for the early neurodegenerative process associated with this devastating disease.

  13. Minimality of invariant laminations for partially hyperbolic attractors

    International Nuclear Information System (INIS)

    Nobili, Felipe

    2015-01-01

    Let f : M → M be a C 1 -diffeomorphism over a compact boundaryless Riemannian manifold M, and Λ a compact f-invariant subset of M admitting a partially hyperbolic spliting T f Λ = E s  ⊕ E c  ⊕ E u over the tangent bundle T f Λ. It's known from the Hirsch–Pugh–Shub theory that Λ admits two invariant laminations associated to the extremal bundles E s and E u . These laminations are families of dynamically defined immersed submanifolds of the M tangent, respectively, to the bundles E s and E u at every point in Λ. In this work, we prove that at least one of the invariant laminations of a transitive partially hyperbolic attractor with a one-dimensional center bundle is minimal: the orbit of every leaf intersects Λ densely. This result extends those in Bonatti et al (2002 J. Inst. Math. Jussieu 1 513–41) and Hertz et al (2007 Fields Institute Communications vol 51 (Providence, RI: American Mathematical Society) pp 103–9) about minimal foliations for robustly transitive diffeomorphisms. (paper)

  14. Structural alphabets derived from attractors in conformational space

    Directory of Open Access Journals (Sweden)

    Kleinjung Jens

    2010-02-01

    Full Text Available Abstract Background The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis. Results A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness. Conclusions The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics.

  15. Resurgence and hydrodynamic attractors in Gauss-Bonnet holography

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben

    2018-04-01

    We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.

  16. Diffusion of intrinsic localized modes by attractor hopping

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Matthias [Dpto FIsica de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Biocomputacion y FIsica de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza (Spain); Vazquez, Luis [Dpto Matematica Aplicada, Facultad de Informatica, Universidad Complutense de Madrid, 28040 Madrid (Spain); Centro de AstrobiologIa (CSIC-INTA), 28850 Torrejon de Ardoz (Spain)

    2003-11-28

    Propagating intrinsic localized modes exist in the damped-driven discrete sine-Gordon chain as attractors of the dynamics. The equations of motion of the system are augmented with Gaussian white noise in order to model the effects of temperature on the system. The noise induces random transitions between attracting configurations corresponding to opposite signs of the propagation velocity of the mode, which leads to a diffusive motion of the excitation. The Heun method is used to numerically generate the stochastic time-evolution of the configuration. We also present a theoretical model for the diffusion which contains two parameters, a transition probability {theta} and a delay time {tau}{sub A}. The mean value and the variance of the position of the intrinsic localized mode, obtained from simulations, can be fitted well with the predictions of our model, {theta} and {tau}{sub A} being used as parameters in the fit. After a transition period following the switching on of the noise, the variance shows a linear behaviour as a function of time and the mean value remains constant. An increase in the strength of the noise lowers the variance, leads to an increase in {theta}, a decrease in {tau}{sub A} and reduces the average distance a mode travels during the transition period.

  17. Deformation of attractor landscape via cholinergic presynaptic modulations: a computational study using a phase neuron model.

    Directory of Open Access Journals (Sweden)

    Takashi Kanamaru

    Full Text Available Corticopetal acetylcholine (ACh is released transiently from the nucleus basalis of Meynert (NBM into the cortical layers and is associated with top-down attention. Recent experimental data suggest that this release of ACh disinhibits layer 2/3 pyramidal neurons (PYRs via muscarinic presynaptic effects on inhibitory synapses. Together with other possible presynaptic cholinergic effects on excitatory synapses, this may result in dynamic and temporal modifications of synapses associated with top-down attention. However, the system-level consequences and cognitive relevance of such disinhibitions are poorly understood. Herein, we propose a theoretical possibility that such transient modifications of connectivity associated with ACh release, in addition to top-down glutamatergic input, may provide a neural mechanism for the temporal reactivation of attractors as neural correlates of memories. With baseline levels of ACh, the brain returns to quasi-attractor states, exhibiting transitive dynamics between several intrinsic internal states. This suggests that top-down attention may cause the attention-induced deformations between two types of attractor landscapes: the quasi-attractor landscape (Q-landscape, present under low-ACh, non-attentional conditions and the attractor landscape (A-landscape, present under high-ACh, top-down attentional conditions. We present a conceptual computational model based on experimental knowledge of the structure of PYRs and interneurons (INs in cortical layers 1 and 2/3 and discuss the possible physiological implications of our results.

  18. How additive noise generates a phantom attractor in a model with cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Bashkirtseva, Irina; Ryashko, Lev, E-mail: lev.ryashko@urfu.ru

    2016-10-07

    Two-dimensional nonlinear system forced by the additive noise is studied. We show that an increasing noise shifts random states and localizes them in a zone far from deterministic attractors. This phenomenon of the generation of the new “phantom” attractor is investigated on the base of probability density functions, mean values and variances of random states. We show that increasing noise results in the qualitative changes of the form of pdf, sharp shifts of mean values, and spikes of the variance. To clarify this phenomenon mathematically, we use the fast–slow decomposition and averaging over the fast variable. For the dynamics of the mean value of the slow variable, a deterministic equation is derived. It is shown that equilibria and the saddle-node bifurcation point of this deterministic equation well describe the stochastic phenomenon of “phantom” attractor in the initial two-dimensional stochastic system. - Highlights: • Two-dimensional nonlinear system with cubic nonlinearity is studied. • Additive noise generates a new phantom attractor. • By averaging over the fast variable one-dimensional equation is derived. • Phantom attractor appearance is analyzed by bifurcation analysis of this equation.

  19. Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow

    Science.gov (United States)

    Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.

    2018-02-01

    The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.

  20. Generation of multi-wing chaotic attractor in fractional order system

    International Nuclear Information System (INIS)

    Zhang Chaoxia; Yu Simin

    2011-01-01

    Highlights: → We investigate a novel approach for generating multi-wing chaotic attractors. → We introduce a fundamental fractional differential nominal linear system. → A proper nonlinear state feedback controller is designed. → The controlled system can generate fractional-order multi-wing chaotic attractors. - Abstract: In this paper, a novel approach is proposed for generating multi-wing chaotic attractors from the fractional linear differential system via nonlinear state feedback controller equipped with a duality-symmetric multi-segment quadratic function. The main idea is to design a proper nonlinear state feedback controller by using four construction criterions from a fundamental fractional differential nominal linear system, so that the controlled fractional differential system can generate multi-wing chaotic attractors. It is the first time in the literature to report the multi-wing chaotic attractors from an uncoupled fractional differential system. Furthermore, some basic dynamical analysis and numerical simulations are also given, confirming the effectiveness of the proposed method.

  1. Excavation of attractor modules for nasopharyngeal carcinoma via integrating systemic module inference with attract method.

    Science.gov (United States)

    Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J

    2017-07-10

    The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.

  2. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors.

    Science.gov (United States)

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2013-06-01

    A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.

  3. The Existence of Weak D-Pullback Exponential Attractor for Nonautonomous Dynamical System

    Directory of Open Access Journals (Sweden)

    Yongjun Li

    2016-01-01

    Full Text Available First, for a process U(t,τ∣t≥τ, we introduce a new concept, called the weak D-pullback exponential attractor, which is a family of sets M(t∣t≤T, for any T∈R, satisfying the following: (i M(t is compact, (ii M(t is positively invariant, that is, U(t,τM(τ⊂M(t, and (iii there exist k,l>0 such that dist(U(t,τB(τ,M(t≤ke-(t-τ; that is, M(t pullback exponential attracts B(τ. Then we give a method to obtain the existence of weak D-pullback exponential attractors for a process. As an application, we obtain the existence of weak D-pullback exponential attractor for reaction diffusion equation in H01 with exponential growth of the external force.

  4. Architecture of chaotic attractors for flows in the absence of any singular point

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, Christophe [CORIA-UMR 6614 Normandie Université, CNRS-Université et INSA de Rouen, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray (France); Malasoma, Jean-Marc [Université de Lyon, ENTPE, Laboratoire Génie Civil et Bâtiment, 3 Rue Maurice Audin, F-69518 Vaulx-en-Velin Cedex (France)

    2016-06-15

    Some chaotic attractors produced by three-dimensional dynamical systems without any singular point have now been identified, but explaining how they are structured in the state space remains an open question. We here want to explain—in the particular case of the Wei system—such a structure, using one-dimensional sets obtained by vanishing two of the three derivatives of the flow. The neighborhoods of these sets are made of points which are characterized by the eigenvalues of a 2 × 2 matrix describing the stability of flow in a subspace transverse to it. We will show that the attractor is spiralling and twisted in the neighborhood of one-dimensional sets where points are characterized by a pair of complex conjugated eigenvalues. We then show that such one-dimensional sets are also useful in explaining the structure of attractors produced by systems with singular points, by considering the case of the Lorenz system.

  5. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping

    International Nuclear Information System (INIS)

    Bucci, Francesca; Toundykov, Daniel

    2010-01-01

    The long-term behaviour of solutions to a model for acoustic–structure interactions is addressed; the system consists of coupled semilinear wave (3D) and plate equations with nonlinear damping and critical sources. The questions of interest are the existence of a global attractor for the dynamics generated by this composite system as well as dimensionality and regularity of the attractor. A distinct and challenging feature of the problem is the geometrically restricted dissipation on the wave component of the system. It is shown that the existence of a global attractor of finite fractal dimension—established in a previous work by Bucci et al (2007 Commun. Pure Appl. Anal. 6 113–40) only in the presence of full-interior acoustic damping—holds even in the case of localized dissipation. This nontrivial generalization is inspired by, and consistent with, the recent advances in the study of wave equations with nonlinear localized damping

  6. Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic.

    Science.gov (United States)

    Safonov, Leonid A.; Tomer, Elad; Strygin, Vadim V.; Ashkenazy, Yosef; Havlin, Shlomo

    2002-12-01

    We study a system of delay-differential equations modeling single-lane road traffic. The cars move in a closed circuit and the system's variables are each car's velocity and the distance to the car ahead. For low and high values of traffic density the system has a stable equilibrium solution, corresponding to the uniform flow. Gradually decreasing the density from high to intermediate values we observe a sequence of supercritical Hopf bifurcations forming multistable limit cycles, corresponding to flow regimes with periodically moving traffic jams. Using an asymptotic technique we find approximately small limit cycles born at Hopf bifurcations and numerically preform their global continuations with decreasing density. For sufficiently large delay the system passes to chaos following the Ruelle-Takens-Newhouse scenario (limit cycles-two-tori-three-tori-chaotic attractors). We find that chaotic and nonchaotic attractors coexist for the same parameter values and that chaotic attractors have a broad multifractal spectrum. (c) 2002 American Institute of Physics.

  7. Controllable V-Shape Multi-Scroll Butterfly Attractor: System and Circuit Implementation

    KAUST Repository

    Zidan, Mohammed A.

    2012-07-23

    In this paper, a new controllable V-shape multiscroll attractor is presented, where a variety of symmetrical and unsymmetrical attractors with a variable number of scrolls can be controlled using new staircase nonlinear function and the parameters of the system. This attractor can be used to generate random signals with a variety of symbol distribution. Digital implementation of the proposed generator is also presented using a Xilinx Virtex® 4 Field Programmable Gate Array and experimental results are provided. The digital realization easily fits into a small area (<1.5% of the total area) and expresses a high throughput (4.3 Gbit/sec per state variable). © 2012 World Scientific Publishing Company.

  8. Controllable V-Shape Multi-Scroll Butterfly Attractor: System and Circuit Implementation

    KAUST Repository

    Zidan, Mohammed A.; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    In this paper, a new controllable V-shape multiscroll attractor is presented, where a variety of symmetrical and unsymmetrical attractors with a variable number of scrolls can be controlled using new staircase nonlinear function and the parameters of the system. This attractor can be used to generate random signals with a variety of symbol distribution. Digital implementation of the proposed generator is also presented using a Xilinx Virtex® 4 Field Programmable Gate Array and experimental results are provided. The digital realization easily fits into a small area (<1.5% of the total area) and expresses a high throughput (4.3 Gbit/sec per state variable). © 2012 World Scientific Publishing Company.

  9. On the control of the chaotic attractors of the 2-d Navier-Stokes equations.

    Science.gov (United States)

    Smaoui, Nejib; Zribi, Mohamed

    2017-03-01

    The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.

  10. Spike frequency adaptation is a possible mechanism for control of attractor preference in auto-associative neural networks

    Science.gov (United States)

    Roach, James; Sander, Leonard; Zochowski, Michal

    Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).

  11. A signature of attractor dynamics in the CA3 region of the hippocampus.

    Directory of Open Access Journals (Sweden)

    César Rennó-Costa

    2014-05-01

    Full Text Available The notion of attractor networks is the leading hypothesis for how associative memories are stored and recalled. A defining anatomical feature of such networks is excitatory recurrent connections. These "attract" the firing pattern of the network to a stored pattern, even when the external input is incomplete (pattern completion. The CA3 region of the hippocampus has been postulated to be such an attractor network; however, the experimental evidence has been ambiguous, leading to the suggestion that CA3 is not an attractor network. In order to resolve this controversy and to better understand how CA3 functions, we simulated CA3 and its input structures. In our simulation, we could reproduce critical experimental results and establish the criteria for identifying attractor properties. Notably, under conditions in which there is continuous input, the output should be "attracted" to a stored pattern. However, contrary to previous expectations, as a pattern is gradually "morphed" from one stored pattern to another, a sharp transition between output patterns is not expected. The observed firing patterns of CA3 meet these criteria and can be quantitatively accounted for by our model. Notably, as morphing proceeds, the activity pattern in the dentate gyrus changes; in contrast, the activity pattern in the downstream CA3 network is attracted to a stored pattern and thus undergoes little change. We furthermore show that other aspects of the observed firing patterns can be explained by learning that occurs during behavioral testing. The CA3 thus displays both the learning and recall signatures of an attractor network. These observations, taken together with existing anatomical and behavioral evidence, make the strong case that CA3 constructs associative memories based on attractor dynamics.

  12. [Extraction and recognition of attractors in three-dimensional Lorenz plot].

    Science.gov (United States)

    Hu, Min; Jang, Chengfan; Wang, Suxia

    2018-02-01

    Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X , Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency ( A PF ) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, A PF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.

  13. Accurate path integration in continuous attractor network models of grid cells.

    Science.gov (United States)

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  14. INFN-Laboratori Nazionali di Frascati School on the Attractor Mechanism 2009

    CERN Document Server

    4th School on Attractor Mechanism : Supersymmetric Gravity and Black Holes

    2013-01-01

    This book is based upon lectures presented in the summer of 2009 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara,  G. Dall'Agata, J.F. Morales, J. Simón and M. Trigiante. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and the related reworking of, the various contributions. It is the fifth volume in a series of books on the general topics of supersymmetry, supergravity, black holes and the attractor mechanism.

  15. Rank One Strange Attractors in Periodically Kicked Predator-Prey System with Time-Delay

    Science.gov (United States)

    Yang, Wenjie; Lin, Yiping; Dai, Yunxian; Zhao, Huitao

    2016-06-01

    This paper is devoted to the study of the problem of rank one strange attractor in a periodically kicked predator-prey system with time-delay. Our discussion is based on the theory of rank one maps formulated by Wang and Young. Firstly, we develop the rank one chaotic theory to delayed systems. It is shown that strange attractors occur when the delayed system undergoes a Hopf bifurcation and encounters an external periodic force. Then we use the theory to the periodically kicked predator-prey system with delay, deriving the conditions for Hopf bifurcation and rank one chaos along with the results of numerical simulations.

  16. Multistability and hidden attractors in a multilevel DC/DC converter

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik

    2015-01-01

    An attracting periodic, quasiperiodic or chaotic set of a smooth, autonomous system may be referred to as a "hidden attractor" if its basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Historically, this condition has implied that the basin of attraction...... produce complicated structures of attracting and repelling states organized around the basic switching cycle. This leads us to suggest the existence of hidden attractors in such systems as well. In this case, the condition will be that the basin of attraction does not overlap with the fixed point...

  17. Exponential attractors for a Cahn-Hilliard model in bounded domains with permeable walls

    Directory of Open Access Journals (Sweden)

    Ciprian G. Gal

    2006-11-01

    Full Text Available In a previous article [7], we proposed a model of phase separation in a binary mixture confined to a bounded region which may be contained within porous walls. The boundary conditions were derived from a mass conservation law and variational methods. In the present paper, we study the problem further. Using a Faedo-Galerkin method, we obtain the existence and uniqueness of a global solution to our problem, under more general assumptions than those in [7]. We then study its asymptotic behavior and prove the existence of an exponential attractor (and thus of a global attractor with finite dimension.

  18. A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium

    Science.gov (United States)

    Ren, Shuili; Panahi, Shirin; Rajagopal, Karthikeyan; Akgul, Akif; Pham, Viet-Thanh; Jafari, Sajad

    2018-02-01

    Discovering unknown aspects of non-equilibrium systems with hidden strange attractors is an attractive research topic. A novel quadratic hyperjerk system is introduced in this paper. It is noteworthy that this non-equilibrium system can generate hidden chaotic attractors. The essential properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram, and Lyapunov exponents. In addition, a fractional-order differential equation of this new system is presented. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model.

  19. On the New Scenario of Annihilation of the Cross-Well Chaotic Attractor in a Nonlinear Oscillator

    International Nuclear Information System (INIS)

    Szemplinska, W.; Zubrzycki, A.; Tyrkiel, E.

    1999-01-01

    The twin-well potential Duffing oscillator is considered and the investigations are focused on a new scenario of destruction of the cross-well chaotic attractor. The new phenomenon belongs to the category of subduction bifurcation and consists in replacement of the cross-well chaotic attractor by a pair of unsymmetric 2T-periodic attractors. It is shown that the new scenario forms a transition zone in the system control parameter plane, the zone, which separates the two known scenarios of annihilation of the cross-well chaotic attractor: the boundary crisis, and the subduction in which the two single-well T-periodic attractors are born in a saddle-node bifurcation. (author)

  20. Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise

    Directory of Open Access Journals (Sweden)

    Hongyan Li

    2015-10-01

    Full Text Available In this article, we prove the existence of a random attractor of the stochastic three-component reversible Gray-Scott system on infinite lattice with additive noise. We use a transformation of addition involved with Ornstein-Uhlenbeck process, for proving the pullback absorbing property and the pullback asymptotic compactness of the reaction diffusion system with cubic nonlinearity.

  1. Robustness of unstable attractors in arbitrarily sized pulse-coupled networks with delay

    NARCIS (Netherlands)

    Broer, Hendrik; Efstathiou, Konstantinos; Subramanian, Easwar

    We consider arbitrarily large networks of pulse-coupled oscillators with non-zero delay where the coupling is given by the Mirollo-Strogatz function. We prove that such systems have unstable attractors (saddle periodic orbits whose stable set has non-empty interior) in an open parameter region for

  2. Decay of Correlations, Quantitative Recurrence and Logarithm Law for Contracting Lorenz Attractors

    Science.gov (United States)

    Galatolo, Stefano; Nisoli, Isaia; Pacifico, Maria Jose

    2018-03-01

    In this paper we prove that a class of skew products maps with non uniformly hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm law for the hitting time associated to a contracting Lorenz attractor at all the points having a well defined local dimension, and a quantitative recurrence estimation.

  3. Particle Swarm Optimization Based on Local Attractors of Ordinary Differential Equation System

    Directory of Open Access Journals (Sweden)

    Wenyu Yang

    2014-01-01

    Full Text Available Particle swarm optimization (PSO is inspired by sociological behavior. In this paper, we interpret PSO as a finite difference scheme for solving a system of stochastic ordinary differential equations (SODE. In this framework, the position points of the swarm converge to an equilibrium point of the SODE and the local attractors, which are easily defined by the present position points, also converge to the global attractor. Inspired by this observation, we propose a class of modified PSO iteration methods (MPSO based on local attractors of the SODE. The idea of MPSO is to choose the next update state near the present local attractor, rather than the present position point as in the original PSO, according to a given probability density function. In particular, the quantum-behaved particle swarm optimization method turns out to be a special case of MPSO by taking a special probability density function. The MPSO methods with six different probability density functions are tested on a few benchmark problems. These MPSO methods behave differently for different problems. Thus, our framework not only gives an interpretation for the ordinary PSO but also, more importantly, provides a warehouse of PSO-like methods to choose from for solving different practical problems.

  4. Detecting small attractors of large Boolean networks by function-reduction-based strategy.

    Science.gov (United States)

    Zheng, Qiben; Shen, Liangzhong; Shang, Xuequn; Liu, Wenbin

    2016-04-01

    Boolean networks (BNs) are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behaviour of systems. A central aim of Boolean-network analysis is to find attractors that correspond to various cellular states, such as cell types or the stage of cell differentiation. This problem is NP-hard and various algorithms have been used to tackle it with considerable success. The idea is that a singleton attractor corresponds to n consistent subsequences in the truth table. To find these subsequences, the authors gradually reduce the entire truth table of Boolean functions by extending a partial gene activity profile (GAP). Not only does this process delete inconsistent subsequences in truth tables, it also directly determines values for some nodes not extended, which means it can abandon the partial GAPs that cannot lead to an attractor as early as possible. The results of simulation show that the proposed algorithm can detect small attractors with length p = 4 in BNs of up to 200 nodes with average indegree K = 2.

  5. New explicit spike solutions-non-local component of the generalized Mixmaster attractor

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2008-01-01

    By applying a standard solution-generating transformation to an arbitrary vacuum Bianchi type II solution, one generates a new solution with spikes commonly observed in numerical simulations. It is conjectured that the spike solutions are part of the generalized Mixmaster attractor

  6. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    Science.gov (United States)

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  7. The necessity for a time local dimension in systems with time-varying attractors

    DEFF Research Database (Denmark)

    Særmark, Knud H; Ashkenazy, Y; Levitan, J

    1997-01-01

    We show that a simple non-linear system for ordinary differential equations may possess a time-varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non...

  8. Nonlinear attractor dynamics in the fundamental and extended prism adaptation paradigm

    International Nuclear Information System (INIS)

    Frank, T.D.; Blau, Julia J.C.; Turvey, M.T.

    2009-01-01

    Adaptation and re-adaptation processes are studied in terms of dynamic attractors that evolve and devolve. In doing so, a theoretical account is given for the fundamental observation that adaptation and re-adaptation processes do not exhibit one-trial learning. Moreover, the emergence of the latent aftereffect in the extended prism paradigm is addressed

  9. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-14

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  10. Multiple attractors and crisis route to chaos in a model food-chain

    International Nuclear Information System (INIS)

    Upadhyay, Ranjit Kumar

    2003-01-01

    An attempt has been made to identify the mechanism, which is responsible for the existence of chaos in narrow parameter range in a realistic ecological model food-chain. Analytical and numerical studies of a three species food-chain model similar to a situation likely to be seen in terrestrial ecosystems has been carried out. The study of the model food chain suggests that the existence of chaos in narrow parameter ranges is caused by the crisis-induced sudden death of chaotic attractors. Varying one of the critical parameters in its range while keeping all the others constant, one can monitor the changes in the dynamical behaviour of the system, thereby fixing the regimes in which the system exhibits chaotic dynamics. The computed bifurcation diagrams and basin boundary calculations indicate that crisis is the underlying factor which generates chaotic dynamics in this model food-chain. We investigate sudden qualitative changes in chaotic dynamical behaviour, which occur at a parameter value a 1 =1.7804 at which the chaotic attractor destroyed by boundary crisis with an unstable periodic orbit created by the saddle-node bifurcation. Multiple attractors with riddled basins and fractal boundaries are also observed. If ecological systems of interacting species do indeed exhibit multiple attractors etc., the long term dynamics of such systems may undergo vast qualitative changes following epidemics or environmental catastrophes due to the system being pushed into the basin of a new attractor by the perturbation. Coupled with stochasticity, such complex behaviours may render such systems practically unpredictable

  11. Interpolating from Bianchi attractors to Lifshitz and AdS spacetimes

    International Nuclear Information System (INIS)

    Kachru, Shamit; Kundu, Nilay; Saha, Arpan; Samanta, Rickmoy; Trivedi, Sandip P.

    2014-01-01

    We construct classes of smooth metrics which interpolate from Bianchi attractor geometries of Types II, III, VI and IX in the IR to Lifshitz or AdS 2 ×S 3 geometries in the UV. While we do not obtain these metrics as solutions of Einstein gravity coupled to a simple matter field theory, we show that the matter sector stress-energy required to support these geometries (via the Einstein equations) does satisfy the weak, and therefore also the null, energy condition. Since Lifshitz or AdS 2 ×S 3 geometries can in turn be connected to AdS 5 spacetime, our results show that there is no barrier, at least at the level of the energy conditions, for solutions to arise connecting these Bianchi attractor geometries to AdS 5 spacetime. The asymptotic AdS 5 spacetime has no non-normalizable metric deformation turned on, which suggests that furthermore, the Bianchi attractor geometries can be the IR geometries dual to field theories living in flat space, with the breaking of symmetries being either spontaneous or due to sources for other fields. Finally, we show that for a large class of flows which connect two Bianchi attractors, a C-function can be defined which is monotonically decreasing from the UV to the IR as long as the null energy condition is satisfied. However, except for special examples of Bianchi attractors (including AdS space), this function does not attain a finite and non-vanishing constant value at the end points

  12. Laboratory and numerical simulation of internal wave attractors and their instability.

    Science.gov (United States)

    Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias

    2015-04-01

    Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F

  13. Crisis of the chaotic attractor of a climate model: a transfer operator approach

    Science.gov (United States)

    Tantet, Alexis; Lucarini, Valerio; Lunkeit, Frank; Dijkstra, Henk A.

    2018-05-01

    The destruction of a chaotic attractor leading to rough changes in the dynamics of a dynamical system is studied. Local bifurcations are known to be characterised by a single or a pair of characteristic exponents crossing the imaginary axis. As a result, the approach of such bifurcations in the presence of noise can be inferred from the slowing down of the decay of correlations (Held and Kleinen 2004 Geophys. Res. Lett. 31 1–4). On the other hand, little is known about global bifurcations involving high-dimensional attractors with several positive Lyapunov exponents. It is known that the global stability of chaotic attractors may be characterised by the spectral properties of the Koopman (Mauroy and Mezić 2016 IEEE Trans. Autom. Control 61 3356–69) or the transfer operators governing the evolution of statistical ensembles. Accordingly, it has recently been shown (Tantet 2017 J. Stat. Phys. 1–33) that a boundary crisis in the Lorenz flow coincides with the approach to the unit circle of the eigenvalues of these operators associated with motions about the attractor, the stable resonances. A second class of resonances, the unstable resonances, are responsible for the decay of correlations and mixing on the attractor. In the deterministic case, these cannot be expected to be affected by general boundary crises. Here, however, we give an example of a chaotic system in which slowing down of the decay of correlations of some observables does occur at the approach of a boundary crisis. The system considered is a high-dimensional, chaotic climate model of physical relevance. Moreover, coarse-grained approximations of the transfer operators on a reduced space, constructed from a long time series of the system, give evidence that this behaviour is due to the approach of unstable resonances to the unit circle. That the unstable resonances are affected by the crisis can be physically understood from the fact that the process responsible for the instability, the ice

  14. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    Science.gov (United States)

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic

  15. Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kong-Ming, E-mail: kmguo@xidian.edu.cn [School of Electromechanical Engineering, Xidian University, P.O. Box 187, Xi' an 710071 (China); Jiang, Jun, E-mail: jun.jiang@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-07-04

    To apply stochastic sensitivity function method, which can estimate the probabilistic distribution of stochastic attractors, to non-autonomous dynamical systems, a 1/N-period stroboscopic map for a periodic motion is constructed in order to discretize the continuous cycle into a discrete one. In this way, the sensitivity analysis of a cycle for discrete map can be utilized and a numerical algorithm for the stochastic sensitivity analysis of periodic solutions of non-autonomous nonlinear dynamical systems under stochastic disturbances is devised. An external excited Duffing oscillator and a parametric excited laser system are studied as examples to show the validity of the proposed method. - Highlights: • A method to analyze sensitivity of stochastic periodic attractors in non-autonomous dynamical systems is proposed. • Probabilistic distribution around periodic attractors in an external excited Φ{sup 6} Duffing system is obtained. • Probabilistic distribution around a periodic attractor in a parametric excited laser system is determined.

  16. The finite dimensional behaviour of the global attractors for the generalized Landau-Lifshitz equation on compact manifolds

    International Nuclear Information System (INIS)

    Guo Boling

    1994-01-01

    We prove the existence of the global attractors for the generalized Landau-Lifshitz equation on compact manifold M, and give the upper and lower estimates of their Hausdorff and fractal dimensions. (author). 18 refs

  17. On convergence of trajectory attractors of the 3D Navier-Stokes-α model as α approaches 0

    International Nuclear Information System (INIS)

    Vishik, M I; Chepyzhov, V V; Titi, E S

    2007-01-01

    We study the relations between the long-time dynamics of the Navier-Stokes-α model and the exact 3D Navier-Stokes system. We prove that bounded sets of solutions of the Navier-Stokes-α model converge to the trajectory attractor A 0 of the 3D Navier-Stokes system as the time approaches infinity and α approaches zero. In particular, we show that the trajectory attractor A α of the Navier-Stokes-α model converges to the trajectory attractor A 0 of the 3D Navier-Stokes system as α→0+. We also construct the minimal limit A min (subset or equal A 0 ) of the trajectory attractor A α as α→0+ and prove that the set A min is connected and strictly invariant. Bibliography: 35 titles.

  18. Global and exponential attractors of the three dimensional viscous primitive equations of large-scale moist atmosphere

    OpenAIRE

    You, Bo; Li, Fang

    2016-01-01

    This paper is concerned with the long-time behavior of solutions for the three dimensional viscous primitive equations of large-scale moist atmosphere. We prove the existence of a global attractor for the three dimensional viscous primitive equations of large-scale moist atmosphere by asymptotic a priori estimate and construct an exponential attractor by using the smoothing property of the semigroup generated by the three dimensional viscous primitive equations of large-scale moist atmosphere...

  19. Generation of n x m-scroll attractors in a two-port RCL network with hysteresis circuits

    International Nuclear Information System (INIS)

    Yu Simin; Tang, Wallace K.S.

    2009-01-01

    In this paper, the generation of n x m-scroll attractors based on a two-port network is presented. The two-port network is built according to the RCL circuit suggested in the conventional Chua's circuit. By appending hysteresis voltage controlled devices on this two-port network, n-scroll and n x m-scroll attractors can be duly obtained both in simulations and experiments.

  20. Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Márquez, Bicky A., E-mail: bmarquez@ivic.gob.ve; Suárez-Vargas, José J., E-mail: jjsuarez@ivic.gob.ve; Ramírez, Javier A. [Centro de Física, Instituto Venezolano de Investigaciones Científicas, km. 11 Carretera Panamericana, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2014-09-01

    Controlled transitions between a hierarchy of n-scroll attractors are investigated in a nonlinear optoelectronic oscillator. Using the system's feedback strength as a control parameter, it is shown experimentally the transition from Van der Pol-like attractors to 6-scroll, but in general, this scheme can produce an arbitrary number of scrolls. The complexity of every state is characterized by Lyapunov exponents and autocorrelation coefficients.

  1. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kengne, J. [Laboratory of Automation and Applied Computer (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Dschang (Cameroon); Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.; Nguomkam Negou, A. [Laboratory of Automation and Applied Computer (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Dschang (Cameroon); Department of Physics, Laboratory of Electronics and Signal Processing (LETS), Faculty of Science, University of Dschang, Dschang (Cameroon)

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pair of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.

  2. Structural health monitoring based on sensitivity vector fields and attractor morphing.

    Science.gov (United States)

    Yin, Shih-Hsun; Epureanu, Bogdan I

    2006-09-15

    The dynamic responses of a thermo-shielding panel forced by unsteady aerodynamic loads and a classical Duffing oscillator are investigated to detect structural damage. A nonlinear aeroelastic model is obtained for the panel by using third-order piston theory to model the unsteady supersonic flow, which interacts with the panel. To identify damage, we analyse the morphology (deformation and movement) of the attractor of the dynamics of the aeroelastic system and the Duffing oscillator. Damages of various locations, extents and levels are shown to be revealed by the attractor-based analysis. For the panel, the type of damage considered is a local reduction in the bending stiffness. For the Duffing oscillator, variations in the linear and nonlinear stiffnesses and damping are considered as damage. Present studies of such problems are based on linear theories. In contrast, the presented approach using nonlinear dynamics has the potential of enhancing accuracy and sensitivity of detection.

  3. Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn

    Science.gov (United States)

    Gu, Anhui; Li, Dingshi; Wang, Bixiang; Yang, Han

    2018-06-01

    We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction-diffusion equations in Hs (Rn) with s ∈ (0 , 1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs (Rn) and attracts all tempered random subsets of L2 (Rn) with respect to the norm of Hs (Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs (Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.

  4. The de Sitter spacetime as an attractor solution in fourth-order gravity

    International Nuclear Information System (INIS)

    Schmidt, H.-J.

    1988-01-01

    We investigate the general vacuum solution of fourth-order gravity, and include the Bach tensor. For L 2 = 1.3μR 2 + 1/2αC 2 the expanding de Sitter spacetime is an attractor in the set of axially symmetric Bianchi type-I models if and only if αμ ≤ 0 or α > 4μ holds. It will be argued that this result holds true for a large class of inhomogeneous models. As a byproduct, a new closed-form cosmological solution, is obtained. It is also shown that the de Sitter spacetime is an attractor for the Bach-Einstein gravity with a minimally coupled scalar field φ. Specialised to Einstein gravity (i.e. α = 0 above) this conformal equivalence remains a non-trivial one. (author)

  5. 6d → 5d → 4d reduction of BPS attractors in flat gauged supergravities

    Directory of Open Access Journals (Sweden)

    Kiril Hristov

    2015-08-01

    This is achieved starting from the BPS black string in 6d with an AdS3×S3 attractor and taking two different routes to arrive at a 1/2 BPS AdS2×S2 attractor of a non-BPS black hole in 4d N=2 flat gauged supergravity. The two inequivalent routes interchange the order of KK reduction on AdS3 and SS reduction on S3. We also find the commutator between the two operations after performing a duality transformation: on the level of the theory the result is the exchange of electric with magnetic gaugings; on the level of the solution we find a flip of the quartic invariant I4 to −I4.

  6. A birational mapping with a strange attractor: post-critical set and covariant curves

    International Nuclear Information System (INIS)

    Bouamra, M; Hassani, S; Maillard, J-M

    2009-01-01

    We consider some two-dimensional birational transformations. One of them is a birational deformation of the Henon map. For some of these birational mappings, the post-critical set (i.e. the iterates of the critical set) is infinite and we show that this gives straightforwardly the algebraic covariant curves of the transformation when they exist. These covariant curves are used to build the preserved meromorphic 2-form. One may also have an infinite post-critical set yielding a covariant curve which is not algebraic (transcendental). For two of the birational mappings considered, the post-critical set is finite and we claim that there is no algebraic covariant curve and no preserved meromorphic 2-form. For these two mappings with finite post-critical sets, attracting sets occur and we show that they pass the usual tests (Lyapunov exponents and the fractal dimension) for being strange attractors. The strange attractor of one of these two mappings is unbounded.

  7. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    International Nuclear Information System (INIS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2016-01-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  8. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  9. Robustness of unstable attractors in arbitrarily sized pulse-coupled networks with delay

    International Nuclear Information System (INIS)

    Broer, Henk; Efstathiou, Konstantinos; Subramanian, Easwar

    2008-01-01

    We consider arbitrarily large networks of pulse-coupled oscillators with non-zero delay where the coupling is given by the Mirollo–Strogatz function. We prove that such systems have unstable attractors (saddle periodic orbits whose stable set has non-empty interior) in an open parameter region for three or more oscillators. The evolution operator of the system can be discontinuous and we propose an improved model with continuous evolution operator

  10. STRANGE ATTRACTORS IN SYMMETRIC UNFOLDINGS OF A SINGULARITY WITH THREE-FOLD ZERO EIGENVALUE

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou

    2009-01-01

    In this paper, we study the Sil'nikov heteroclinic bifurcations, which display strange attractors, for the symmetric versal unfoldings of the singularity at the origin with a nilpotent Linear part and 3-jet, using the normal form, the blow-up and the ge-neralized Mel'nikov methods of heteroclinic orbits to two hyperbolic or nonhyperbolic equilibria in a high-dimensional space.

  11. Solving Stochastic Büchi Games on Infinite Arenas with a Finite Attractor

    Directory of Open Access Journals (Sweden)

    Nathalie Bertrand

    2013-06-01

    Full Text Available We consider games played on an infinite probabilistic arena where the first player aims at satisfying generalized Büchi objectives almost surely, i.e., with probability one. We provide a fixpoint characterization of the winning sets and associated winning strategies in the case where the arena satisfies the finite-attractor property. From this we directly deduce the decidability of these games on probabilistic lossy channel systems.

  12. Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving

    Science.gov (United States)

    González-Miranda, J. M.

    1998-06-01

    Chaotic systems, when used to drive copies of themselves (or parts of themselves) may induce interesting behaviors in the driven system. In case the later exhibits invariance under amplification or translation, they may show amplification (reduction), or displacement of the attractor. It is shown how the behavior to be obtained is implied by the symmetries involved. Two explicit examples are studied to show how these phenomena manifest themselves under perfect and imperfect coupling.

  13. Stochastic inflation in phase space: is slow roll a stochastic attractor?

    Energy Technology Data Exchange (ETDEWEB)

    Grain, Julien [Institut d' Astrophysique Spatiale, UMR8617, CNRS, Univ. Paris Sud, Université Paris-Saclay, Bt. 121, Orsay, F-91405 (France); Vennin, Vincent, E-mail: julien.grain@ias.u-psud.fr, E-mail: vincent.vennin@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO13FX (United Kingdom)

    2017-05-01

    An appealing feature of inflationary cosmology is the presence of a phase-space attractor, ''slow roll'', which washes out the dependence on initial field velocities. We investigate the robustness of this property under backreaction from quantum fluctuations using the stochastic inflation formalism in the phase-space approach. A Hamiltonian formulation of stochastic inflation is presented, where it is shown that the coarse-graining procedure—where wavelengths smaller than the Hubble radius are integrated out—preserves the canonical structure of free fields. This means that different sets of canonical variables give rise to the same probability distribution which clarifies the literature with respect to this issue. The role played by the quantum-to-classical transition is also analysed and is shown to constrain the coarse-graining scale. In the case of free fields, we find that quantum diffusion is aligned in phase space with the slow-roll direction. This implies that the classical slow-roll attractor is immune to stochastic effects and thus generalises to a stochastic attractor regardless of initial conditions, with a relaxation time at least as short as in the classical system. For non-test fields or for test fields with non-linear self interactions however, quantum diffusion and the classical slow-roll flow are misaligned. We derive a condition on the coarse-graining scale so that observational corrections from this misalignment are negligible at leading order in slow roll.

  14. Phase-space analysis of the cosmological 3-fluid problem: families of attractors and repellers

    International Nuclear Information System (INIS)

    Azreg-Aïnou, Mustapha

    2013-01-01

    We perform a phase-space analysis of the cosmological 3-fluid problem consisting of a barotropic fluid with an equation-of-state parameter γ − 1, a pressureless dark matter fluid, plus a scalar field ϕ (representing dark energy) coupled to an exponential potential V = V 0 exp ( − κλϕ). Besides the potential–kinetic scaling solutions, which are not the unique late-time attractors whenever they exist for λ 2 ⩾ 3γ, we derive new attractors where both dark energy and dark matter coexist and the final density is shared in a way independent of the value of γ > 1. The case of a pressureless barotropic fluid (γ = 1) has a one-parameter family of attractors where all components coexist. New one-parameter families of matter–dark matter saddle points and kinetic–matter repellers exist. We investigate the stability of the ten critical points by linearization and/or Lyapunov's theorems and a variant of the theorems formulated in this paper. A solution with two transient periods of acceleration and two transient periods of deceleration is derived. (paper)

  15. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  16. Supersymmetric mechanics. Vol. 2. The attractor mechanism and space time singularities

    International Nuclear Information System (INIS)

    Bellucci, S.; Marrani, A.; Ferrara, S.

    2006-01-01

    This is the second volume in a series of books on the general theme of Supersymmetric Mechanics; the series is based on lectures and discussions held in 2005 and 2006 at the INFN-Laboratori Nazionali di Frascati. The first volume appears as Lect. Notes Physics, Vol. 698 ''Supersymmetric Mechanics, Vol.1: Supersymmetry, Noncommutativity and Matrix Models'' (2006) ISBN: 3-540-33313-4. The present extensive lecture supplies a pedagogical introduction, at the non-expert level, to the attractor mechanism in space-time singularities. In such a framework, supersymmetry seems to be related to dynamical systems with fixed points, describing the equilibrium state and the stability features of the thermodynamics of black holes. After a qualitative overview, explicit examples realizing the attractor mechanism are treated at some length; they include relevant cases of asymptotically flat, maximal and non-maximal, extended supergravities in 4 and 5 dimensions. A number of recent advances along various directions of research on the attractor mechanism are also given. (orig.)

  17. Attractor States in Teaching and Learning Processes: A Study of Out-of-School Science Education.

    Science.gov (United States)

    Geveke, Carla H; Steenbeek, Henderien W; Doornenbal, Jeannette M; Van Geert, Paul L C

    2017-01-01

    In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of components. A cluster revealed general descriptions of the components across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low-, and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained.

  18. Synaptic potentiation facilitates memory-like attractor dynamics in cultured in vitro hippocampal networks.

    Directory of Open Access Journals (Sweden)

    Mark Niedringhaus

    Full Text Available Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-organize to produce such activity is not well understood. Attractor-based computational models have been successfully implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent modification of synaptic transmission is thought to be the physiological basis of learning and memory. The goal of this study is to demonstrate that using a pharmacological treatment that has been shown to increase synaptic strength within in vitro networks of hippocampal neurons follows the dynamical postulates theorized by attractor models. We use a grid of extracellular electrodes to study changes in network activity after this perturbation and show that there is a persistent increase in overall spiking and bursting activity after treatment. This increase in activity appears to recruit more "errant" spikes into bursts. Phase plots indicate a conserved activity pattern suggesting that a synaptic potentiation perturbation to the attractor leaves it unchanged. Lastly, we construct a computational model to demonstrate that these synaptic perturbations can account for the dynamical changes seen within the network.

  19. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  20. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  1. Hypercrater Bifurcations, Attractor Coexistence, and Unfolding in a 5D Model of Economic Dynamics

    Directory of Open Access Journals (Sweden)

    Toichiro Asada

    2011-01-01

    Full Text Available Complex dynamical features are explored in a discrete interregional macrodynamic model proposed by Asada et al., using numerical methods. The model is five-dimensional with four parameters. The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and coexistence of attractors, generated by high-dimensional discrete systems. In three cases of two-dimensional parameter subspaces the stability of equilibrium region is determined and its boundaries, the flip and Neimark-Hopf bifurcation curves, are identified by means of necessary coefficient criteria. In the first case closed invariant curves (CICs are found to occur through 5D-crater-type bifurcations, and for certain ranges of parameter values a stable equilibrium coexists with an unstable CIC associated with the subcritical bifurcation, as well as with an outer stable CIC. A remarkable feature of the second case is the coexistence of two attracting CICs outside the stability region. In both these cases the related hysteresis effects are illustrated by numerical simulations. In the third case a remarkable feature is the apparent unfolding of an attracting CIC before it evolves to a chaotic attractor. Examples of CICs and chaotic attractors are given in subspaces of phase space.

  2. Learning rate and attractor size of the single-layer perceptron

    International Nuclear Information System (INIS)

    Singleton, Martin S.; Huebler, Alfred W.

    2007-01-01

    We study the simplest possible order one single-layer perceptron with two inputs, using the delta rule with online learning, in order to derive closed form expressions for the mean convergence rates. We investigate the rate of convergence in weight space of the weight vectors corresponding to each of the 14 out of 16 linearly separable rules. These vectors follow zigzagging lines through the piecewise constant vector field to their respective attractors. Based on our studies, we conclude that a single-layer perceptron with N inputs will converge in an average number of steps given by an Nth order polynomial in (t/l), where t is the threshold, and l is the size of the initial weight distribution. Exact values for these averages are provided for the five linearly separable classes with N=2. We also demonstrate that the learning rate is determined by the attractor size, and that the attractors of a single-layer perceptron with N inputs partition R N +R N

  3. Attractor hopping between polarization dynamical states in a vertical-cavity surface-emitting laser subject to parallel optical injection

    Science.gov (United States)

    Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc

    2018-03-01

    We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.

  4. Characterization of the disruption of neural control strategies for dynamic fingertip forces from attractor reconstruction.

    Directory of Open Access Journals (Sweden)

    Lorenzo Peppoloni

    Full Text Available The Strength-Dexterity (SD test measures the ability of the pulps of the thumb and index finger to compress a compliant and slender spring prone to buckling at low forces (<3N. We know that factors such as aging and neurodegenerative conditions bring deteriorating physiological changes (e.g., at the level of motor cortex, cerebellum, and basal ganglia, which lead to an overall loss of dexterous ability. However, little is known about how these changes reflect upon the dynamics of the underlying biological system. The spring-hand system exhibits nonlinear dynamical behavior and here we characterize the dynamical behavior of the phase portraits using attractor reconstruction. Thirty participants performed the SD test: 10 young adults, 10 older adults, and 10 older adults with Parkinson's disease (PD. We used delayed embedding of the applied force to reconstruct its attractor. We characterized the distribution of points of the phase portraits by their density (number of distant points and interquartile range and geometric features (trajectory length and size. We find phase portraits from older adults exhibit more distant points (p = 0.028 than young adults and participants with PD have larger interquartile ranges (p = 0.001, trajectory lengths (p = 0.005, and size (p = 0.003 than their healthy counterparts. The increased size of the phase portraits with healthy aging suggests a change in the dynamical properties of the system, which may represent a weakening of the neural control strategy. In contrast, the distortion of the attractor in PD suggests a fundamental change in the underlying biological system, and disruption of the neural control strategy. This ability to detect differences in the biological mechanisms of dexterity in healthy and pathological aging provides a simple means to assess their disruption in neurodegenerative conditions and justifies further studies to understand the link with the physiological changes.

  5. AHaH Computing–From Metastable Switches to Attractors to Machine Learning

    Science.gov (United States)

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures–all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315

  6. AHaH computing-from metastable switches to attractors to machine learning.

    Directory of Open Access Journals (Sweden)

    Michael Alexander Nugent

    Full Text Available Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.

  7. Attractors, statefinders and observational measurement for chameleonic Brans-Dicke cosmology

    International Nuclear Information System (INIS)

    Farajollahi, Hossein; Salehi, Amin

    2010-01-01

    We investigate chameleonic Brans-Dicke model applied to the FRW universes. A framework to study stability and attractor solutions in the phase space is developed for the model. We show that depending on the matter field and stability conditions, it is possible to realize phantom-like behavior without introducing phantom filed in the model while the stability is fulfilled and phantom crossing occurs. The statefinder parameters to the model for different kinds of matter interacting with the chameleon scalar field are studied. We also compare our model with present day observations

  8. Attractors, statefinders and observational measurement for chameleonic Brans-Dicke cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Farajollahi, Hossein; Salehi, Amin, E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2010-11-01

    We investigate chameleonic Brans-Dicke model applied to the FRW universes. A framework to study stability and attractor solutions in the phase space is developed for the model. We show that depending on the matter field and stability conditions, it is possible to realize phantom-like behavior without introducing phantom filed in the model while the stability is fulfilled and phantom crossing occurs. The statefinder parameters to the model for different kinds of matter interacting with the chameleon scalar field are studied. We also compare our model with present day observations.

  9. A novel double-convection chaotic attractor, its adaptive control and circuit simulation

    Science.gov (United States)

    Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.

  10. NON-HAMILTONIAN QUANTUM MECHANICS AND THE NUMERICAL RESEARCHES OF THE ATTRACTOR OF A DYNAMICAL SYSTEM.

    Directory of Open Access Journals (Sweden)

    A. Weissblut

    2012-03-01

    Full Text Available This article – introduction to the structural theory of general view dynamical systems, based on construction of dynamic quantum models (DQM, offered by the author. This model is simply connected with traditional model of quantum mechanics (i.e. with the Schrodinger equation. At the same time obtained thus non – Hamiltonian quantum dynamics is easier than classical one: it allow building the clear structural theory and effective algorithms of research for concrete systems. This article is devoted mainly to such task. The algorithm of search for DQM attractors, based on this approach, is offered here.

  11. CMB constraints on the inflaton couplings and reheating temperature in α-attractor inflation

    Science.gov (United States)

    Drewes, Marco; Kang, Jin U.; Mun, Ui Ri

    2017-11-01

    We study reheating in α-attractor models of inflation in which the inflaton couples to other scalars or fermions. We show that the parameter space contains viable regions in which the inflaton couplings to radiation can be determined from the properties of CMB temperature fluctuations, in particular the spectral index. This may be the only way to measure these fundamental microphysical parameters, which shaped the universe by setting the initial temperature of the hot big bang and contain important information about the embedding of a given model of inflation into a more fundamental theory of physics. The method can be applied to other models of single field inflation.

  12. Birth of new folds and competing attractors in Elmo Bumpy Torus

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, A; Vahala, G

    1984-04-09

    The topology of equilibrium surfaces for the point model equations with neoclassical nonresonant ions in EBT is a complicated nongradient-dynamic version of the canonical cusp catastrophe. New folds emerge from degenerate equilibrium surfaces as the control vector (filling pressure, microwave power, ambipolar potential) is changed. Strong sensitivity to small changes in initial conditions of the state variables (electron/ion temperatures, plasma density) is found that can drastically alter the final equilibrium state when competing point attractors are present. 5 references, 3 figures.

  13. Induced gravity and the attractor dynamics of dark energy/dark matter

    International Nuclear Information System (INIS)

    Cervantes-Cota, Jorge L.; Putter, Roland de; Linder, Eric V.

    2010-01-01

    Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity

  14. On the global attractor of 2D incompressible turbulence with random forcing

    Science.gov (United States)

    Emami, Pedram; Bowman, John C.

    2018-03-01

    This study revisits bounds on the projection of the global attractor in the energy-enstrophy plane for 2D incompressible turbulence [Dascaliuc, Foias, and Jolly, 2005, 2010]. In addition to providing more elegant proofs of some of the required nonlinear identities, the treatment is extended from the case of constant forcing to the more realistic case of random forcing. Numerical simulations in particular often use a stochastic white-noise forcing to achieve a prescribed mean energy injection rate. The analytical bounds are demonstrated numerically for the case of white-noise forcing.

  15. A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design

    Science.gov (United States)

    Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.

  16. Identification of core pathways based on attractor and crosstalk in ischemic stroke.

    Science.gov (United States)

    Diao, Xiufang; Liu, Aijuan

    2018-02-01

    Ischemic stroke is a leading cause of mortality and disability around the world. It is an important task to identify dysregulated pathways which infer molecular and functional insights existing in high-throughput experimental data. Gene expression profile of E-GEOD-16561 was collected. Pathways were obtained from the database of Kyoto Encyclopedia of Genes and Genomes and Retrieval of Interacting Genes was used to download protein-protein interaction sets. Attractor and crosstalk approaches were applied to screen dysregulated pathways. A total of 20 differentially expressed genes were identified in ischemic stroke. Thirty-nine significant differential pathways were identified according to Ppathways were identified with RPpathways were identified with impact factor >250. On the basis of the three criteria, 11 significant dysfunctional pathways were identified. Among them, Epstein-Barr virus infection was the most significant differential pathway. In conclusion, with the method based on attractor and crosstalk, significantly dysfunctional pathways were identified. These pathways are expected to provide molecular mechanism of ischemic stroke and represents a novel potential therapeutic target for ischemic stroke treatment.

  17. Distortions in recall from visual memory: two classes of attractors at work.

    Science.gov (United States)

    Huang, Jie; Sekuler, Robert

    2010-02-24

    In a trio of experiments, a matching procedure generated direct, analogue measures of short-term memory for the spatial frequency of Gabor stimuli. Experiment 1 showed that when just a single Gabor was presented for study, a retention interval of just a few seconds was enough to increase the variability of matches, suggesting that noise in memory substantially exceeds that in vision. Experiment 2 revealed that when a pair of Gabors was presented on each trial, the remembered appearance of one of the Gabors was influenced by: (1) the relationship between its spatial frequency and the spatial frequency of the accompanying, task-irrelevant non-target stimulus; and (2) the average spatial frequency of Gabors seen on previous trials. These two influences, which work on very different time scales, were approximately additive in their effects, each operating as an attractor for remembered appearance. Experiment 3 showed that a timely pre-stimulus cue allowed selective attention to curtail the influence of a task-irrelevant non-target, without diminishing the impact of the stimuli seen on previous trials. It appears that these two separable attractors influence distinct processes, with perception being influenced by the non-target stimulus and memory being influenced by stimuli seen on previous trials.

  18. Pullback attractors for three-dimensional non-autonomous Navier–Stokes–Voigt equations

    International Nuclear Information System (INIS)

    García-Luengo, Julia; Marín-Rubio, Pedro; Real, José

    2012-01-01

    In this paper, we consider a non-autonomous Navier–Stokes–Voigt model, with which a continuous process can be associated. We study the existence and relationship between minimal pullback attractors for this process in two different frameworks, namely, for the universe of fixed bounded sets, and also for another universe given by a tempered condition. Since the model does not have a regularizing effect, obtaining asymptotic compactness for the process is a more involved task. We prove this in a relatively simple way just using an energy method. Our results simplify—and in some aspects generalize—some of those obtained previously for the autonomous and non-autonomous cases, since for example in section 4, regularity is not required for the boundary of the domain and the force may take values in V'. Under additional suitable assumptions, regularity results for these families of attractors are also obtained, via bootstrapping arguments. Finally, we also conclude some results concerning the attraction in the D(A) norm

  19. Higher derivative corrections to BPS black hole attractors in 4d gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Hristov, Kiril [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria); Katmadas, Stefanos [Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN, Sezione di Milano-Bicocca,I-20126 Milano (Italy); Lodato, Ivano [Department of Physics, IISER Pune,Homi Bhaba Road, Pashan, Pune (India)

    2016-05-30

    We analyze BPS black hole attractors in 4d gauged supergravity in the presence of higher derivative supersymmetric terms, including a Weyl-squared-type action, and determine the resulting corrections to the Bekenstein-Hawking entropy. The near-horizon geometry AdS{sub 2}×S{sup 2} (or other Riemann surface) preserves half of the supercharges in N=2 supergravity with Fayet-Iliopoulos gauging. We derive a relation between the entropy and the black hole charges that suggests via AdS/CFT how subleading corrections contribute to the supersymmetric index in the dual microscopic picture. Depending on the model, the attractors are part of full black hole solutions with different asymptotics, such as Minkowski, AdS{sub 4}, and hvLif{sub 4}. We give explicit examples for each of the asymptotic cases and comment on the implications. Among other results, we find that the Weyl-squared terms spoil the exact two-derivative relation to non-BPS asymptotically flat black holes in ungauged supergravity.

  20. Bubbling route to strange nonchaotic attractor in a nonlinear series LCR circuit with a nonsinusoidal force.

    Science.gov (United States)

    Senthilkumar, D V; Srinivasan, K; Thamilmaran, K; Lakshmanan, M

    2008-12-01

    We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.

  1. The Kuramoto–Sivashinsky equation. A Local Attractor Filled with Unstable Periodic Solutions

    Directory of Open Access Journals (Sweden)

    Anatoli N. Kulikov

    2018-01-01

    Full Text Available A periodic boundary value problem is considered for one version of the KuramotoSivashinsky equation, which is widely known in mathematical physics. Local bifurcations in a neighborhood of the spatially homogeneous equilibrium points in the case when they change stability are studied. It is shown that the loss of stability of homogeneous equilibrium points leads to the appearance of a two-dimensional attractor on which all solutions are periodic functions of time, except one spatially inhomogeneous state. A spectrum of frequencies of the given family of periodic solutions fills the entire number line, and they are all unstable in a sense of Lyapunov definition in the metric of the phase space (space of initial conditions of the corresponding initial boundary value problem. It is chosen the Sobolev space as the phase space. For the periodic solutions which fill the two-dimensional attractor, the asymptotic formulas are given. In order to analyze the bifurcation problem it was used analysis methods for infinite-dimensional dynamical systems: the integral (invariant manifold method, the Poincare normal form theory, and asymptotic methods. The analysis of bifurcations for periodic boundary value problem was reduced to analysing the structure of the neighborhood of the zero solution of the homogeneous Dirichlet boundary value problem for the considered equation. 

  2. Hypothetical neural mechanism that may play a role in mental rotation: an attractor neural network model.

    Science.gov (United States)

    Benusková, L; Estok, S

    1998-11-01

    We propose an attractor neural network (ANN) model that performs rotation-invariant pattern recognition in such a way that it can account for a neural mechanism being involved in the image transformation accompanying the experience of mental rotation. We compared the performance of our ANN model with the results of the chronometric psychophysical experiments of Cooper and Shepard (Cooper L A and Shepard R N 1973 Visual Information Processing (New York: Academic) pp 204-7) on discrimination of alphanumeric characters presented in various angular departures from their canonical upright position. Comparing the times required for pattern retrieval in its canonical upright position with the reaction times of human subjects, we found agreement in that (i) retrieval times for clockwise and anticlockwise departures of the same angular magnitude (up to 180 degrees) were not different, (ii) retrieval times increased with departure from upright and (iii) increased more sharply as departure from upright approached 180 degrees. The rotation-invariant retrieval of the activity pattern has been accomplished by means of the modified algorithm of Dotsenko (Dotsenko V S 1988 J. Phys. A: Math. Gen. 21 L783-7) proposed for translation-, rotation- and size-invariant pattern recognition, which uses relaxation of neuronal firing thresholds to guide the evolution of the ANN in state space towards the desired memory attractor. The dynamics of neuronal relaxation has been modified for storage and retrieval of low-activity patterns and the original gradient optimization of threshold dynamics has been replaced with optimization by simulated annealing.

  3. Linear-control-based synchronization of coexisting attractor networks with time delays

    International Nuclear Information System (INIS)

    Yun-Zhong, Song

    2010-01-01

    This paper introduces the concept of linear-control-based synchronization of coexisting attractor networks with time delays. Within the new framework, closed loop control for each dynamic node is realized through linear state feedback around its own arena in a decentralized way, where the feedback matrix is determined through consideration of the coordination of the node dynamics, the inner connected matrix and the outer connected matrix. Unlike previously existing results, the feedback gain matrix here is decoupled from the inner matrix; this not only guarantees the flexible choice of the gain matrix, but also leaves much space for inner matrix configuration. Synchronization of coexisting attractor networks with time delays is made possible in virtue of local interaction, which works in a distributed way between individual neighbours, and the linear feedback control for each node. Provided that the network is connected and balanced, synchronization will come true naturally, where theoretical proof is given via a Lyapunov function. For completeness, several illustrative examples are presented to further elucidate the novelty and efficacy of the proposed scheme. (general)

  4. Cosmological attractors and anisotropies in two measure theories, effective EYMH systems, and off-diagonal inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Rajpoot, Subhash [California State University, Long Beach, CA (United States); Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al.I. Cuza' ' , Project IDEI, Iasi (Romania)

    2017-05-15

    Applying the anholonomic frame deformation method, we construct various classes of cosmological solutions for effective Einstein-Yang-Mills-Higgs, and two measure theories. The types of models considered are Freedman-Lemaitre-Robertson-Walker, Bianchi, Kasner and models with attractor configurations. The various regimes pertaining to plateau-type inflation, quadratic inflation, Starobinsky type and Higgs type inflation are presented. (orig.)

  5. Commentary on "A non-reward attractor theory of depression" : A proposal to include the habenula connection

    NARCIS (Netherlands)

    Loonen, Anton J M; Ivanova, Svetlana A

    2017-01-01

    The non-reward attractor theory of depression describes this mood disorder as originating from a neuronal dysfunction that arises from increased vulnerability of a cortical network that detects failure to receive an expected reward. From an evolutionary standpoint, the concept that the cerebral

  6. Regime shifts under forcing of non-stationary attractors: Conceptual model and case studies in hydrologic systems.

    Science.gov (United States)

    Park, Jeryang; Rao, P Suresh C

    2014-11-15

    We present here a conceptual model and analysis of complex systems using hypothetical cases of regime shifts resulting from temporal non-stationarity in attractor strengths, and then present selected published cases to illustrate such regime shifts in hydrologic systems (shallow aquatic ecosystems; water table shifts; soil salinization). Complex systems are dynamic and can exist in two or more stable states (or regimes). Temporal variations in state variables occur in response to fluctuations in external forcing, which are modulated by interactions among internal processes. Combined effects of external forcing and non-stationary strengths of alternative attractors can lead to shifts from original to alternate regimes. In systems with bi-stable states, when the strengths of two competing attractors are constant in time, or are non-stationary but change in a linear fashion, regime shifts are found to be temporally stationary and only controlled by the characteristics of the external forcing. However, when attractor strengths change in time non-linearly or vary stochastically, regime shifts in complex systems are characterized by non-stationary probability density functions (pdfs). We briefly discuss implications and challenges to prediction and management of hydrologic complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Unraveling chaotic attractors by complex networks and measurements of stock market complexity.

    Science.gov (United States)

    Cao, Hongduo; Li, Ying

    2014-03-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  8. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde, Emilio; Odintsov, Sergei D. [Instituto de Ciencias del Espacio (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Campus UAB, Carrer de Can Magrans, s/n, Cerdanyola del Vallès, Barcelona, 08193 Spain (Spain); Pozdeeva, Ekaterina O.; Vernov, Sergey Yu., E-mail: elizalde@ieec.uab.es, E-mail: odintsov@ieec.uab.es, E-mail: pozdeeva@www-hep.sinp.msu.ru, E-mail: svernov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 (Russian Federation)

    2016-02-01

    The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflation scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.

  9. Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Danxia Wang

    2015-01-01

    Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l‍(ux2dxuxx-ϕ(∫0l‍(ux2dxuxxt=q(x, in  [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.

  10. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    International Nuclear Information System (INIS)

    Cao, Hongduo; Li, Ying

    2014-01-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process

  11. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    Science.gov (United States)

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  12. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Directory of Open Access Journals (Sweden)

    Laura Dempere-Marco

    Full Text Available The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1 the presence of a visually salient item reduces the number of items that can be held in working memory, and 2 visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC in contrast to the maximal upper capacity limit only reached under ideal conditions.

  13. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.

  14. Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network

    Science.gov (United States)

    Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608

  15. Synchronisation, electronic circuit implementation, and fractional-order analysis of 5D ordinary differential equations with hidden hyperchaotic attractors

    Science.gov (United States)

    Wei, Zhouchao; Rajagopal, Karthikeyan; Zhang, Wei; Kingni, Sifeu Takougang; Akgül, Akif

    2018-04-01

    Hidden hyperchaotic attractors can be generated with three positive Lyapunov exponents in the proposed 5D hyperchaotic Burke-Shaw system with only one stable equilibrium. To the best of our knowledge, this feature has rarely been previously reported in any other higher-dimensional systems. Unidirectional linear error feedback coupling scheme is used to achieve hyperchaos synchronisation, which will be estimated by using two indicators: the normalised average root-mean squared synchronisation error and the maximum cross-correlation coefficient. The 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integration. In addition, fractional-order hidden hyperchaotic system will be considered from the following three aspects: stability, bifurcation analysis and FPGA implementation. Such implementations in real time represent hidden hyperchaotic attractors with important consequences for engineering applications.

  16. Self-organizing path integration using a linked continuous attractor and competitive network: path integration of head direction.

    Science.gov (United States)

    Stringer, Simon M; Rolls, Edmund T

    2006-12-01

    A key issue is how networks in the brain learn to perform path integration, that is update a represented position using a velocity signal. Using head direction cells as an example, we show that a competitive network could self-organize to learn to respond to combinations of head direction and angular head rotation velocity. These combination cells can then be used to drive a continuous attractor network to the next head direction based on the incoming rotation signal. An associative synaptic modification rule with a short term memory trace enables preceding combination cell activity during training to be associated with the next position in the continuous attractor network. The network accounts for the presence of neurons found in the brain that respond to combinations of head direction and angular head rotation velocity. Analogous networks in the hippocampal system could self-organize to perform path integration of place and spatial view representations.

  17. Period-doubling cascades and strange attractors in the triple-well Φ6-Van der Pol oscillator

    International Nuclear Information System (INIS)

    Yu Jun; Zhang Rongbo; Pan Weizhen; Schimansky-Geier, L

    2008-01-01

    Duffing-Van der Pol equation with the fifth nonlinear-restoring force is investigated. The bifurcation structure and chaotic motion under the periodic perturbation are obtained by numerical simulations. Numerical simulations, including bifurcation diagrams, Lyapunov exponents, phase portraits and Poincare maps, exhibit some new complex dynamical behaviors of the system. Different routes to chaos, such as period doubling and quasi-periodic routes, and various kinds of strange attractors are also demonstrated

  18. Maximum Entropy Production Is Not a Steady State Attractor for 2D Fluid Convection

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2016-12-01

    Full Text Available Multiple authors have claimed that the natural convection of a fluid is a process that exhibits maximum entropy production (MEP. However, almost all such investigations were limited to fixed temperature boundary conditions (BCs. It was found that under those conditions, the system tends to maximize its heat flux, and hence it was concluded that the MEP state is a dynamical attractor. However, since entropy production varies with heat flux and difference of inverse temperature, it is essential that any complete investigation of entropy production allows for variations in heat flux and temperature difference. Only then can we legitimately assess whether the MEP state is the most attractive. Our previous work made use of negative feedback BCs to explore this possibility. We found that the steady state of the system was far from the MEP state. For any system, entropy production can only be maximized subject to a finite set of physical and material constraints. In the case of our previous work, it was possible that the adopted set of fluid parameters were constraining the system in such a way that it was entirely prevented from reaching the MEP state. Hence, in the present work, we used a different set of boundary parameters, such that the steady states of the system were in the local vicinity of the MEP state. If MEP was indeed an attractor, relaxing those constraints of our previous work should have caused a discrete perturbation to the surface of steady state heat flux values near the value corresponding to MEP. We found no such perturbation, and hence no discernible attraction to the MEP state. Furthermore, systems with fixed flux BCs actually minimize their entropy production (relative to the alternative stable state, that of pure diffusive heat transport. This leads us to conclude that the principle of MEP is not an accurate indicator of which stable steady state a convective system will adopt. However, for all BCs considered, the quotient of

  19. Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit

    International Nuclear Information System (INIS)

    Njitacke, Z.T.; Kengne, J.; Fotsin, H.B.; Negou, A. Nguomkam; Tchiotsop, D.

    2016-01-01

    In the present paper, a new memristor based oscillator is obtained from the autonomous Jerk circuit [Kengne et al., Nonlinear Dynamics (2016) 83: 751̶765] by substituting the nonlinear element of the original circuit with a first order memristive diode bridge. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. Various nonlinear analysis tools such as phase portraits, time series, bifurcation diagrams, Poincaré section and the spectrum of Lyapunov exponents are exploited to characterize different scenarios to chaos in the novel circuit. It is found that the system experiences period doubling and crisis routes to chaos. One of the major results of this work is the finding of a window in the parameters’ space in which the circuit develops hysteretic behaviors characterized by the coexistence of four different (periodic and chaotic) attractors for the same values of the system parameters. Basins of attractions of various coexisting attractors are plotted showing complex basin boundaries. As far as the authors’ knowledge goes, the novel memristive jerk circuit represents one of the simplest electrical circuits (no analog multiplier chip is involved) capable of four disconnected coexisting attractors reported to date. Both PSpice simulations of the nonlinear dynamics of the oscillator and laboratory experimental measurements are carried out to validate the theoretical analysis.

  20. Attractor Structures of Signaling Networks: Consequences of Different Conformational Barcode Dynamics and Their Relations to Network-Based Drug Design.

    Science.gov (United States)

    Szalay, Kristóf Z; Nussinov, Ruth; Csermely, Peter

    2014-06-01

    Conformational barcodes tag functional sites of proteins and are decoded by interacting molecules transmitting the incoming signal. Conformational barcodes are modified by all co-occurring allosteric events induced by post-translational modifications, pathogen, drug binding, etc. We argue that fuzziness (plasticity) of conformational barcodes may be increased by disordered protein structures, by integrative plasticity of multi-phosphorylation events, by increased intracellular water content (decreased molecular crowding) and by increased action of molecular chaperones. This leads to increased plasticity of signaling and cellular networks. Increased plasticity is both substantiated by and inducing an increased noise level. Using the versatile network dynamics tool, Turbine (www.turbine.linkgroup.hu), here we show that the 10 % noise level expected in cellular systems shifts a cancer-related signaling network of human cells from its proliferative attractors to its largest, apoptotic attractor representing their health-preserving response in the carcinogen containing and tumor suppressor deficient environment modeled in our study. Thus, fuzzy conformational barcodes may not only make the cellular system more plastic, and therefore more adaptable, but may also stabilize the complex system allowing better access to its largest attractor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The instantaneous local transition of a stable equilibrium to a chaotic attractor in piecewise-smooth systems of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, D.J.W., E-mail: d.j.w.simpson@massey.ac.nz

    2016-09-07

    An attractor of a piecewise-smooth continuous system of differential equations can bifurcate from a stable equilibrium to a more complicated invariant set when it collides with a switching manifold under parameter variation. Here numerical evidence is provided to show that this invariant set can be chaotic. The transition occurs locally (in a neighbourhood of a point) and instantaneously (for a single critical parameter value). This phenomenon is illustrated for the normal form of a boundary equilibrium bifurcation in three dimensions using parameter values adapted from of a piecewise-linear model of a chaotic electrical circuit. The variation of a secondary parameter reveals a period-doubling cascade to chaos with windows of periodicity. The dynamics is well approximated by a one-dimensional unimodal map which explains the bifurcation structure. The robustness of the attractor is also investigated by studying the influence of nonlinear terms. - Highlights: • A boundary equilibrium bifurcation involving stable and saddle foci is considered. • A two-dimensional return map is constructed and approximated by a one-dimensional map. • A trapping region and Smale horseshoe are identified for a Rössler-like attractor. • Bifurcation diagrams reveal period-doubling cascades and windows of periodicity.

  2. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    Science.gov (United States)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  3. Some Convex Functions Based Measures of Independence and Their Application to Strange Attractor Reconstruction

    Directory of Open Access Journals (Sweden)

    Kazuyuki Aihara

    2011-04-01

    Full Text Available The classical information-theoretic measures such as the entropy and the mutual information (MI are widely applicable to many areas in science and engineering. Csiszar generalized the entropy and the MI by using the convex functions. Recently, we proposed the grid occupancy (GO and the quasientropy (QE as measures of independence. The QE explicitly includes a convex function in its definition, while the expectation of GO is a subclass of QE. In this paper, we study the effect of different convex functions on GO, QE, and Csiszar’s generalized mutual information (GMI. A quality factor (QF is proposed to quantify the sharpness of their minima. Using the QF, it is shown that these measures can have sharper minima than the classical MI. Besides, a recursive algorithm for computing GMI, which is a generalization of Fraser and Swinney’s algorithm for computing MI, is proposed. Moreover, we apply GO, QE, and GMI to chaotic time series analysis. It is shown that these measures are good criteria for determining the optimum delay in strange attractor reconstruction.

  4. Hebbian plasticity realigns grid cell activity with external sensory cues in continuous attractor models

    Directory of Open Access Journals (Sweden)

    Marcello eMulas

    2016-02-01

    Full Text Available After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN, is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors overtime due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments.

  5. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.

  6. Effect of the Great Attractor on the cosmic microwave background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bertschinger, E [Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Physics; Gorski, K M [Los Alamos National Lab., NM (USA); Dekel, A [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics

    1990-06-07

    ANISOTROPY in the cosmic microwave background radiation (CMB) is expected as a result of fluctuations in gravitational potential caused by large-scale structure in the Universe. The background radiation is redshifted as it climbs out of gravitational wells. Here we present a map of the anisotropy in CMB temperature {Delta}T/T of our region of the Universe as viewed by a distant observer, predicted on the basis of the gravitational potential field. We calculate this field in the vicinity of the Local Group of galaxies from the observed peculiar (non-Hubble) velocities of galaxies, under the assumption that the peculiar motions are induced by gravity. If the cosmological density parameter {Omega} is 1, the gravitational potential field of the Great Attractor and surrounding regions produces a maximum Sachs-Wolfe anisotropy of {Delta}T/T=(1.7{plus minus}0.3) x 10{sup -5} on an angular scale of 1deg. Doppler and adiabatic contributions to this anisotropy are expected to be somewhat larger. If similar fluctuations in the gravitational potential are present elsewhere in the Universe, the anisotropy present when the CMB was last scattered should be visible from the Earth, and should be detectable in current experiments. A fundamental test of whether gravity is responsible for the generation of structure in the Universe can be made by looking for the imprint in the CMB of deep potential wells similar to those found in our neighbourhood, (author).

  7. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    Science.gov (United States)

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  8. Seven-Disk Manifold, alpha-attractors and B-modes

    CERN Document Server

    Ferrara, Sergio

    2016-01-01

    Cosmological alpha-attractor models in \\cN=1 supergravity are based on hyperbolic geometry of a Poincar\\'e disk with the radius square {\\cal R}^2=3\\alpha. The predictions for the B-modes, r\\approx 3\\alpha {4\\over N^2}, depend on moduli space geometry and are robust for a rather general class of potentials. Here we notice that starting with M-theory compactified on a 7-manifold with G_2 holonomy, with a special choice of Betti numbers, one can obtain d=4 \\cN=1 supergravity with rank 7 scalar coset \\Big[{SL(2)\\over SO(2)}\\Big]^7. In a model where these 7 unit size Poincar\\'e disks have identified moduli one finds that 3 alpha =7. Assuming that the moduli space geometry of the phenomenological models is inherited from this version of M-theory, one would predict r \\approx 10^{-2} for 53 e-foldings. We also describe the related maximal supergravity and M/string theory models leading to preferred values 3 alpha =1,2,3,4,5,6,7.

  9. Cancer as quasi-attractor in the gene expression phase space

    Science.gov (United States)

    Giuliani, A.

    2017-09-01

    It takes no more than 250 tissue types to build up a metazoan, and each tissue has a specific and largely invariant gene expression signature. This implies the `viable configurations' correspondent to a given activated/inactivated expression pattern over the entire genome are very few. This points to the presence of few `low energy deep valleys' correspondent to the allowed states of the system and is a direct consequence of the fact genes do not work by alone but embedded into genetic expression networks. Statistical thermodynamics formalism focusing on the changes in the degree of correlation of the studied systems allows to detect transition behavior in gene expression phase space resembling the phase transition of physical-chemistry studies. In this realm cancer can be intended as a sort of `parasite' sub-attractor of the corresponding healthy tissue that, in the case of disease, is `kinetically entrapped' into a sub-optimal solution. The consequences of such a state of affair for cancer therapies are potentially huge.

  10. Study of the attractor structure of an agent-based sociological model

    Energy Technology Data Exchange (ETDEWEB)

    Timpanaro, Andre M; Prado, Carmen P C, E-mail: timpa@if.usp.br, E-mail: prado@if.usp.br [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-03-01

    The Sznajd model is a sociophysics model that is based in the Potts model, and used for describing opinion propagation in a society. It employs an agent-based approach and interaction rules favouring pairs of agreeing agents. It has been successfully employed in modeling some properties and scale features of both proportional and majority elections (see for instance the works of A. T. Bernardes and R. N. Costa Filho), but its stationary states are always consensus states. In order to explain more complicated behaviours, we have modified the bounded confidence idea (introduced before in other opinion models, like the Deffuant model), with the introduction of prejudices and biases (we called this modification confidence rules), and have adapted it to the discrete Sznajd model. This generalized Sznajd model is able to reproduce almost all of the previous versions of the Sznajd model, by using appropriate choices of parameters. We solved the attractor structure of the resulting model in a mean-field approach and made Monte Carlo simulations in a Barabasi-Albert network. These simulations show great similarities with the mean-field, for the tested cases of 3 and 4 opinions. The dynamical systems approach that we devised allows for a deeper understanding of the potential of the Sznajd model as an opinion propagation model and can be easily extended to other models, like the voter model. Our modification of the bounded confidence rule can also be readily applied to other opinion propagation models.

  11. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data

    Science.gov (United States)

    Pathak, Jaideep; Lu, Zhixin; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2017-12-01

    We use recent advances in the machine learning area known as "reservoir computing" to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a "reservoir." After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the "output weights." The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing an arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's "climate." Since the reservoir equations and output weights are known, we can compute the derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In the case of the KS equation, we note that the high dimensional nature of the system and the large number of Lyapunov exponents yield a challenging test of our method, which we find the method successfully passes.

  12. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    Science.gov (United States)

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. FAST MOTIONS OF GALAXIES IN THE COMA I CLOUD: A CASE OF DARK ATTRACTOR?

    International Nuclear Information System (INIS)

    Karachentsev, Igor D.; Nasonova, Olga G.; Courtois, Helene M.

    2011-01-01

    We note that nearby galaxies having high negative peculiar velocities are distributed over the sky very inhomogeneously. A part of this anisotropy is caused by the 'Local Velocity Anomaly', i.e., by the bulk motion of nearby galaxies away from the Local Void. However, half of the fast-flying objects reside within a small region known as the Coma I cloud. According to Makarov and Karachentsev, this complex contains 8 groups, 5 triplets, 10 pairs, and 83 single galaxies with a total mass of 4.7 × 10 13 M ☉ . We use 122 galaxies in the Coma I region with known distances and radial velocities V LG –1 to draw the Hubble relation for them. The Hubble diagram shows a Z-shaped effect of infall with an amplitude of +200 km s –1 on the nearby side and –700 km s –1 on the back side. This phenomenon can be understood as the galaxy infall toward a dark attractor with a mass of ∼2 × 10 14 M ☉ situated at a distance of 15 Mpc from us. The existence of a large void between the Coma and Virgo clusters also probably affects the Hubble flow around the Coma I.

  14. Emergent properties of gene evolution: Species as attractors in phenotypic space

    Science.gov (United States)

    Reuveni, Eli; Giuliani, Alessandro

    2012-02-01

    The question how the observed discrete character of the phenotype emerges from a continuous genetic distance metrics is the core argument of two contrasted evolutionary theories: punctuated equilibrium (stable evolution scattered with saltations in the phenotype) and phyletic gradualism (smooth and linear evolution of the phenotype). Identifying phenotypic saltation on the molecular levels is critical to support the first model of evolution. We have used DNA sequences of ∼1300 genes from 6 isolated populations of the budding yeast Saccharomyces cerevisiae. We demonstrate that while the equivalent measure of the genetic distance show a continuum between lineage distance with no evidence of discrete states, the phenotypic space illustrates only two (discrete) possible states that can be associated with a saltation of the species phenotype. The fact that such saltation spans large fraction of the genome and follows by continuous genetic distance is a proof of the concept that the genotype-phenotype relation is not univocal and may have severe implication when looking for disease related genes and mutations. We used this finding with analogy to attractor-like dynamics and show that punctuated equilibrium could be explained in the framework of non-linear dynamics systems.

  15. An evolutionary attractor model for sapwood cross section in relation to leaf area.

    Science.gov (United States)

    Westoby, Mark; Cornwell, William K; Falster, Daniel S

    2012-06-21

    Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    Science.gov (United States)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  17. Topographic distribution of EEG alpha attractor correlation dimension values in wake and drowsy states in humans.

    Science.gov (United States)

    Kalauzi, Aleksandar; Vuckovic, Aleksandra; Bojić, Tijana

    2015-03-01

    Organization of resting state cortical networks is of fundamental importance for the phenomenon of awareness, which is altered in the first part of hypnagogic period (Hori stages 1-4). Our aim was to investigate the change in brain topography pattern of EEG alpha attractor correlation dimension (CD) in the period of transition from Hori stage 1 to 4. EEG of ten healthy adult individuals was recorded in the wake and drowsy states, using a 14 channel average reference montage, from which 91 bipolar channels were derived and filtered in the wider alpha (6-14 Hz) range. Sixty 1s long epochs of each state and individual were subjected to CD calculation according to the Grassberger-Procaccia method. For such a collection of signals, two embedding dimensions, d={5, 10}, and 22 time delays τ=2-23 samples were explored. Optimal values were d=10 and τ=18, where both saturation and second zero crossing of the autocorrelation function occurred. Bipolar channel CD underwent a significant decrease during the transition and showed a positive linear correlation with electrode distance, stronger in the wake individuals. Topographic distribution of bipolar channels with above median CD changed from longitudinal anterior-posterior pattern (awake) to a more diagonal pattern, with localization in posterior regions (drowsiness). Our data are in line with the literature reporting functional segregation of neuronal assemblies in anterior and posterior regions during this transition. Our results should contribute to understanding of complex reorganization of the cortical part of alpha generators during the wake/drowsy transition. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Antonella [Grupo de Cosmología y Gravitación GCG-UBB and Departamento de Física, Universidad del Bío-Bío, Casilla 5-C, Concepción (Chile); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Leyva, Yoelsy, E-mail: acidm@ubiobio.cl, E-mail: genly.leon@ucv.cl, E-mail: yoelsy.leyva@uta.cl [Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Casilla 7-D, Arica (Chile)

    2016-02-01

    In this paper we investigate the evolution of a Jordan-Brans-Dicke scalar field, Φ, with a power-law potential in the presence of a second scalar field, φ, with an exponential potential, in both the Jordan and the Einstein frames. We present the relation of our model with the induced gravity model with power-law potential and the integrability of this kind of models is discussed when the quintessence field φ is massless, and has a small velocity. The fact that for some fine-tuned values of the parameters we may get some integrable cosmological models, makes our choice of potentials very interesting. We prove that in Jordan-Brans-Dicke theory, the de Sitter solution is not a natural attractor. Instead, we show that the attractor in the Jordan frame corresponds to an ''intermediate accelerated'' solution of the form a(t) ≅ e{sup α{sub 1} t{sup p{sup {sub 1}}}}, as t → ∞ where α{sub 1} > 0 and 0 < p{sub 1} < 1, for a wide range of parameters. Furthermore, when we work in the Einstein frame we get that the attractor is also an ''intermediate accelerated'' solution of the form a(t) ≅ e{sup α{sub 2} tp{sub 2}} as t → ∞ where α{sub 2} > 0 and 0attractor is linked with the exact solution found for the induced gravity model. In this example the ''intermediate accelerated

  19. Intermediate accelerated solutions as generic late-time attractors in a modified Jordan-Brans-Dicke theory

    International Nuclear Information System (INIS)

    Cid, Antonella; Leon, Genly; Leyva, Yoelsy

    2016-01-01

    In this paper we investigate the evolution of a Jordan-Brans-Dicke scalar field, Φ, with a power-law potential in the presence of a second scalar field, φ, with an exponential potential, in both the Jordan and the Einstein frames. We present the relation of our model with the induced gravity model with power-law potential and the integrability of this kind of models is discussed when the quintessence field φ is massless, and has a small velocity. The fact that for some fine-tuned values of the parameters we may get some integrable cosmological models, makes our choice of potentials very interesting. We prove that in Jordan-Brans-Dicke theory, the de Sitter solution is not a natural attractor. Instead, we show that the attractor in the Jordan frame corresponds to an ''intermediate accelerated'' solution of the form a(t) ≅ e α 1  t p 1 , as t → ∞ where α 1  > 0 and 0 < p 1  < 1, for a wide range of parameters. Furthermore, when we work in the Einstein frame we get that the attractor is also an ''intermediate accelerated'' solution of the form a(t) ≅ e α 2  tp 2 as t → ∞ where α 2  > 0 and 0

    attractor is linked with the exact solution found for the induced gravity model. In this example the ''intermediate accelerated'' solution does not exist, and the attractor

  20. Framework of collagen type I - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available In a previous research, we have described and documented self-assembly of geometric triangular chiral hexagon crystal-like complex organizations (GTCHC in human pathological tissues. This article documents and gathers insights into the magnetic field in cancer tissues and also how it generates an invariant functional geometric attractor constituted for collider partners in their entangled environment. The need to identify this hierarquic attractor was born out of the concern to understand how the vascular net of these complexes are organized, and to determine if the spiral vascular subpatterns observed adjacent to GTCHC complexes and their assembly are interrelational. The study focuses on cancer tissues and all the macroscopic and microscopic material in which GTCHC complexes are identified, which have been overlooked so far, and are rigorously revised. This revision follows the same parameters that were established in the initial phase of the investigation, but with a new item: the visualization and documentation of external dorsal serous vascular bed areas in spatial correlation with the localization of GTCHC complexes inside the tumors. Following the standard of the electro-optical collision model, we were able to reproduce and replicate collider patterns, that is, pairs of left and right hand spin-spiraled subpatterns, associated with the orientation of the spinning process that can be an expansion or contraction disposition of light particles. Agreement between this model and tumor data is surprisingly close; electromagnetic spiral patterns generated were identical at the spiral vascular arrangement in connection with GTCHC complexes in malignant tumors. These findings suggest that the framework of collagen type 1 - vasoactive vessels that structure geometric attractors in cancer tissues with invariant morphology sets generate collider partners in their magnetic domain with opposite biological behavior. If these principles are incorporated

  1. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way

    Science.gov (United States)

    True, Hans

    2013-03-01

    In recent years, several authors have proposed 'easier numerical methods' to find the critical speed in railway dynamical problems. Actually, the methods do function in some cases, but in most cases it is really a gamble. In this article, the methods are discussed and the pros and contras are commented upon. I also address the questions when a linearisation is allowed and the curious fact that the hunting motion is more robust than the ideal stationary-state motion on the track. Concepts such as 'multiple attractors', 'subcritical and supercritical bifurcations', 'permitted linearisation', 'the danger of running at supercritical speeds' and 'chaotic motion' are addressed.

  2. Example of the Smooth Skew Product in the Plane with the One-dimensional Ramified Continuum as the Global Attractor*

    Directory of Open Access Journals (Sweden)

    Efremova L.S.

    2012-08-01

    Full Text Available The example is constructed of the C1-smooth skew product of interval maps possessing the one-dimensional ramified continuum (containing no arcs homeomorphic to the circle with an infinite set of ramification points as the global attractor. L’exemple est construit à partir d’un produit biaisé lisse de classe C1 de transformations d’un intervalle, qui a un continuum unidimensionnel ramifié (ne contenant pas d’arcs homéomorphes à un cercle avec un ensemble infini de points de branchement comme attracteur global.

  3. FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY*

    Institute of Scientific and Technical Information of China (English)

    应阳君; 黄祖洽

    2001-01-01

    Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.

  4. Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors

    Science.gov (United States)

    Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim

    2017-06-01

    We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.

  5. Chaotic behaviour of the Rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors

    Science.gov (United States)

    Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.

    2018-05-01

    The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.

  6. The dynamics of stress and fatigue across menopause: attractors, coupling, and resilience.

    Science.gov (United States)

    Taylor-Swanson, Lisa; Wong, Alexander E; Pincus, David; Butner, Jonathan E; Hahn-Holbrook, Jennifer; Koithan, Mary; Wann, Kathryn; Woods, Nancy F

    2018-04-01

    The objective of this study was to evaluate the regulatory dynamics between stress and fatigue experienced by women during the menopausal transition (MT) and early postmenopause (EPM). Fatigue and perceived stress are commonly experienced by women during the MT and EPM. We sought to discover relationships between these symptoms and to employ these symptoms as possible markers for resilience. Participants were drawn from the longitudinal Seattle Midlife Women's Health Study. Eligible women completed questionnaires on 60+ occasions (annual health reports and monthly health diaries) (n = 56 women). The total number of observations across the sample was 4,224. STRAW+10 criteria were used to stage women in either in late reproductive, early or late transition, or EPM stage. Change values were generated for fatigue and stress and analyzed with a multilevel structural equation model; slopes indicate how quickly a person returns to homeostasis after a perturbation. Coupling of stress and fatigue was modeled to evaluate resilience, the notion of maintaining stability during change. Eligible women were on average 35 years old (SD = 4.71), well educated, employed, married or partnered, and white. Fit indices suggested the model depicts the relationships of stress and fatigue (χ(9 df) = 7.638, P = 0.57, correction factor = 4.9244; root mean square error of approximation (RMSEA) 90% CI = 0.000 ≤ 0.000 ≤ 0.032; comparative fit index (CFI) = 1.00). A loss in model fit across stages suggests that the four stages differed in their dynamics (χΔ(12 df) = 21.181, P = .048). All stages showed fixed-point attractor dynamics: fatigue became less stable over time; stress generally became more stable over time. Coupling relationships of stress on fatigue show evidence for shifts in regulatory relationships with one another across the MT. Results are suggestive of general dysregulation via disruptions to coupling relationships of stress and

  7. A Novel Image Encryption Scheme Based on Clifford Attractor and Noisy Logistic Map for Secure Transferring Images in Navy

    Directory of Open Access Journals (Sweden)

    Mohadeseh Kanafchian

    2017-04-01

    In this paper, we first give a brief introduction into chaotic image encryption and then we investigate some important properties and behaviour of the logistic map. The logistic map, aperiodic trajectory, or random-like fluctuation, could not be obtained with some choice of initial condition. Therefore, a noisy logistic map with an additive system noise is introduced. The proposed scheme is based on the extended map of the Clifford strange attractor, where each dimension has a specific role in the encryption process. Two dimensions are used for pixel permutation and the third dimension is used for pixel diffusion. In order to optimize the Clifford encryption system we increase the space key by using the noisy logistic map and a novel encryption scheme based on the Clifford attractor and the noisy logistic map for secure transfer images is proposed. This algorithm consists of two parts: the noisy logistic map shuffle of the pixel position and the pixel value. We use times for shuffling the pixel position and value then we generate the new pixel position and value by the Clifford system. To illustrate the efficiency of the proposed scheme, various types of security analysis are tested. It can be concluded that the proposed image encryption system is a suitable choice for practical applications.

  8. The attractor recurrent neural network based on fuzzy functions: An effective model for the classification of lung abnormalities.

    Science.gov (United States)

    Khodabakhshi, Mohammad Bagher; Moradi, Mohammad Hassan

    2017-05-01

    The respiratory system dynamic is of high significance when it comes to the detection of lung abnormalities, which highlights the importance of presenting a reliable model for it. In this paper, we introduce a novel dynamic modelling method for the characterization of the lung sounds (LS), based on the attractor recurrent neural network (ARNN). The ARNN structure allows the development of an effective LS model. Additionally, it has the capability to reproduce the distinctive features of the lung sounds using its formed attractors. Furthermore, a novel ARNN topology based on fuzzy functions (FFs-ARNN) is developed. Given the utility of the recurrent quantification analysis (RQA) as a tool to assess the nature of complex systems, it was used to evaluate the performance of both the ARNN and the FFs-ARNN models. The experimental results demonstrate the effectiveness of the proposed approaches for multichannel LS analysis. In particular, a classification accuracy of 91% was achieved using FFs-ARNN with sequences of RQA features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Neuromorphic Implementation of Attractor Dynamics in a Two-Variable Winner-Take-All Circuit with NMDARs: A Simulation Study.

    Science.gov (United States)

    You, Hongzhi; Wang, Da-Hui

    2017-01-01

    Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems.

  10. New measurements of distances to spirals in the great attractor - Further confirmation of the large-scale flow

    International Nuclear Information System (INIS)

    Dressler, A.; Faber, S.M.

    1990-01-01

    H-alpha rotation curves and CCD photometry have been obtained for 117 Sb-Sc spiral galaxies in the direction of the large-scale streaming flow. By means of the Tully-Fisher relation, these data are used to predict distances to these galaxies and, by comparison with their observed radial velocities, their peculiar motions relative to a smooth Hubble flow. The new data confirm the results of the earlier studies of a coherent flow pattern in a large region called the 'great attractor'. For the first time, evidence is found for backside infall into the great attractor. Taken as a whole, the data sets for E, S0, and spiral galaxies support the model proposed by Lynden-Bell et al. (1988) of a large, extended overdensity centered at about 45/h Mpc that perturbs the Hubble flow over a region less than about 100/h Mpc in diameter. Observation of the full 's-wave' in the Hubble flow establishes this scale for the structure, providing a strong constraint for models of structure formation, like those based on hot or cold dark matter. 24 refs

  11. Social media reveal that charismatic species are not the main attractor of ecotourists to sub-Saharan protected areas.

    Science.gov (United States)

    Hausmann, Anna; Toivonen, Tuuli; Heikinheimo, Vuokko; Tenkanen, Henrikki; Slotow, Rob; Di Minin, Enrico

    2017-04-10

    Charismatic megafauna are arguably considered the primary attractor of ecotourists to sub-Saharan African protected areas. However, the lack of visitation data across the whole continent has thus far prevented the investigation of whether charismatic species are indeed a key attractor of ecotourists to protected areas. Social media data can now be used for this purpose. We mined data from Instagram, and used generalized linear models with site- and country-level deviations to explore which socio-economic, geographical and biological factors explain social media use in sub-Saharan African protected areas. We found that charismatic species richness did not explain social media usage. On the other hand, protected areas that were more accessible, had sparser vegetation, where human population density was higher, and that were located in wealthier countries, had higher social media use. Interestingly, protected areas with lower richness in non-charismatic species had more users. Overall, our results suggest that more factors than simply charismatic species might explain attractiveness of protected areas, and call for more in-depth content analysis of the posts. With African countries projected to develop further in the near-future, more social media data will become available, and could be used to inform protected area management and marketing.

  12. Parsing in a Dynamical System: An Attractor-Based Account of the Interaction of Lexical and Structural Constraints in Sentence Processing.

    Science.gov (United States)

    Tabor, Whitney; And Others

    1997-01-01

    Proposes a dynamical systems approach to parsing in which syntactic hypotheses are associated with attractors in a metric space. The experiments discussed documented various contingent frequency effects that cut across traditional linguistic grains, each of which was predicted by the dynamical systems model. (47 references) (Author/CK)

  13. A Quantitative Method for the Analysis of Nomothetic Relationships between Idiographic Structures: Dynamic Patterns Create Attractor States for Sustained Posttreatment Change

    Science.gov (United States)

    Fisher, Aaron J.; Newman, Michelle G.; Molenaar, Peter C. M.

    2011-01-01

    Objective: The present article aimed to demonstrate that the establishment of dynamic patterns during the course of psychotherapy can create attractor states for continued adaptive change following the conclusion of treatment. Method: This study is a secondary analysis of T. D. Borkovec and E. Costello (1993). Of the 55 participants in the…

  14. 概率密度函数法研究重构吸引子的结构%Probability Density Function Method for Observing Reconstructed Attractor Structure

    Institute of Scientific and Technical Information of China (English)

    陆宏伟; 陈亚珠; 卫青

    2004-01-01

    Probability density function (PDF) method is proposed for analysing the structure of the reconstructed attractor in computing the correlation dimensions of RR intervals of ten normal old men.PDF contains important information about the spatial distribution of the phase points in the reconstructed attractor.To the best of our knowledge, it is the first time that the PDF method is put forward for the analysis of the reconstructed attractor structure.Numerical simulations demonstrate that the cardiac systems of healthy old men are about 6-6.5 dimensional complex dynamical systems.It is found that PDF is not symmetrically distributed when time delay is small, while PDF satisfies Gaussian distribution when time delay is big enough.A cluster effect mechanism is presented to explain this phenomenon.By studying the shape of PDFs, that the roles played by time delay are more important than embedding dimension in the reconstruction is clearly indicated.Results have demonstrated that the PDF method represents a promising numerical approach for the observation of the reconstructed attractor structure and may provide more information and new diagnostic potential of the analyzed cardiac system.

  15. The nonlinear dynamics of family problem solving in adolescence: the predictive validity of a peaceful resolution attractor.

    Science.gov (United States)

    Dishion, Thomas J; Forgatch, Marion; Van Ryzin, Mark; Winter, Charlotte

    2012-07-01

    In this study we examined the videotaped family interactions of a community sample of adolescents and their parents. Youths were assessed in early to late adolescence on their levels of antisocial behavior. At age 16-17, youths and their parents were videotaped interacting while completing a variety of tasks, including family problem solving. The interactions were coded and compared for three developmental patterns of antisocial behavior: early onset, persistent; adolescence onset; and typically developing. The mean duration of conflict bouts was the only interaction pattern that discriminated the 3 groups. In the prediction of future antisocial behavior, parent and youth reports of transition entropy and conflict resolution interacted to account for antisocial behavior at age 18-19. Families with low entropy and peaceful resolutions predicted low levels of youth antisocial behavior at age 18-19. These findings suggest the need to study both attractors and repellers to understand family dynamics associated with health and social and emotional development.

  16. Discovering Digital Signage System Opportunities as Crowd Attractor in Public Spaces: A Study in Charge Gratis Service

    Directory of Open Access Journals (Sweden)

    Ahmad Faisal Choiril Anam Fathoni

    2016-07-01

    Full Text Available Article presented a research about the "Charge Gratis" service that included digital signage, along with free charging device as the crowd attractors in the public space. The main focus of this research was about media display embedded in the uniform of a sales promotion person who displays ads from the advertiser using the qualitative method, through the interview with some expert sources many fields. Article described several possibilities that can be worked in the use of digital signage so that it can be used as a reference in maximizing digital signage in public spaces. It finds that Digital signage is not just functioned as like any other media, but also the awaken interaction and also enhance shopping experiences. The expert sources divide this media display functions into three categories, which is a media information, media entertainment, and media education. 

  17. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system.

    Science.gov (United States)

    Wang, Chunhua; Liu, Xiaoming; Xia, Hu

    2017-03-01

    In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

  18. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability.

    Science.gov (United States)

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-01-01

    By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.

  19. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Directory of Open Access Journals (Sweden)

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  20. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.

  1. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor

    Science.gov (United States)

    Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178

  2. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.

    Science.gov (United States)

    Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.

  3. Covariance-based synaptic plasticity in an attractor network model accounts for fast adaptation in free operant learning.

    Science.gov (United States)

    Neiman, Tal; Loewenstein, Yonatan

    2013-01-23

    In free operant experiments, subjects alternate at will between targets that yield rewards stochastically. Behavior in these experiments is typically characterized by (1) an exponential distribution of stay durations, (2) matching of the relative time spent at a target to its relative share of the total number of rewards, and (3) adaptation after a change in the reward rates that can be very fast. The neural mechanism underlying these regularities is largely unknown. Moreover, current decision-making neural network models typically aim at explaining behavior in discrete-time experiments in which a single decision is made once in every trial, making these models hard to extend to the more natural case of free operant decisions. Here we show that a model based on attractor dynamics, in which transitions are induced by noise and preference is formed via covariance-based synaptic plasticity, can account for the characteristics of behavior in free operant experiments. We compare a specific instance of such a model, in which two recurrently excited populations of neurons compete for higher activity, to the behavior of rats responding on two levers for rewarding brain stimulation on a concurrent variable interval reward schedule (Gallistel et al., 2001). We show that the model is consistent with the rats' behavior, and in particular, with the observed fast adaptation to matching behavior. Further, we show that the neural model can be reduced to a behavioral model, and we use this model to deduce a novel "conservation law," which is consistent with the behavior of the rats.

  4. A revised catalog of CfA galaxy groups in the Virgo/Great Attractor flow field

    Science.gov (United States)

    Nolthenius, Richard

    1993-01-01

    A new identification of groups and clusters in the CfAl Catalog of Huchra, et al. (1983) is presented, using a percolation algorithm to identify density enhancements. The procedure differs from that of the original Geller and Huchra (1983; GH) catalog in several important respects; galaxy distances are calculated from the Virgo-Great Attractor flow model of Faber and Burnstein (1988), the adopted distance linkage criteria is only approx. 1/4 as large as in the Geller and Huchra catalog, the sky link relation is taken from Nolthenius and White (1987), correction for interstellar extinction is included, and 'by-hand' adjustments to group memberships are made in the complex regions of Virgo/Coma I/Ursa Major and Coma/A1367 (to allow for varying group velocity dispersions and to trim unphysical 'spider arms'). Since flow model distances are poorly determined in these same regions, available distances from the IR Tully-Fisher planetary nebula luminosity function and surface brightness resolution methods are adopted if possible.

  5. Exploring the pullback attractors of a low-order quasigeostrophic ocean model subject to deterministic and random forcing

    Science.gov (United States)

    Ghil, M.; Pierini, S.; Chekroun, M.

    2017-12-01

    A low-order quasigeostrophic model [1] captures several key features of intrinsic low-frequency variability of the oceans' wind-driven circulation. This double-gyre model is used here as a prototype of an unstable and nonlinear dynamical system with time-dependent forcing to explore basic features of climate change in the presence of natural variability. The studies rely on the theoretical framework of nonautonomous dynamical systems and of their pullback attractors (PBAs), namely the time-dependent invariant sets that attract all trajectories initialized in the remote past [2,3]. Ensemble simulations help us explore these PBAs. The chaotic PBAs of the periodically forced model [4] are found to be cyclo-stationary and cyclo-ergodic. Two parameters are then introduced to analyze the topological structure of the PBAs as a function of the forcing period; their joint use allows one to identify four distinct forms of sensitivity to initial state that correspond to distinct types of system behavior. The model's response to periodic forcing turns out to be, in most cases, very sensitive to the initial state. The system is then forced by a synthetic aperiodic forcing [5]. The existence of a global PBA is rigorously demonstrated. We then assess the convergence of trajectories to this PBA by computing the probability density function (PDF) of trajectory localization in the model's phase space. A sensitivity analysis with respect to forcing amplitude shows that the global PBA experiences large modifications if the underlying autonomous system is dominated by small-amplitude limit cycles, while the changes are less dramatic in a regime characterized by large-amplitude relaxation oscillations. The dependence of the attracting sets on the choice of the ensemble of initial states is analyzed in detail. The extension to random dynamical systems is described and connected to the model's autonomous and periodically forced behavior. [1] Pierini, S., 2011. J. Phys. Oceanogr., 41, 1585

  6. Conductivities from attractors

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Fernández, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Goulart, Prieslei [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany); Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, São Paulo 01140-070, SP (Brazil); Witkowski, Piotr [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 Munich (Germany)

    2017-03-28

    In the context of applications of the AdS/CFT correspondence to condensed matter physics, we compute conductivities for field theory duals of dyonic planar black holes in 3+1-dimensional Einstein-Maxwell-dilaton theories at zero temperature. We combine the near-horizon data obtained via Sen’s entropy function formalism with known expressions for conductivities. In this way we express the conductivities in terms of the extremal black hole charges. We apply our approach to three different examples for dilaton theories for which the background geometry is not known explicitly. For a constant scalar potential, the thermoelectric conductivity explicitly scales as α{sub xy}∼N{sup 3/2}, as expected. For the same model, our approach yields a finite result for the heat conductivity κ/T∝N{sup 3/2} even for T→0.

  7. Lyapunov, attractors and exponents

    International Nuclear Information System (INIS)

    Oliveira, C.R. de.

    1987-01-01

    Based on the fundamental principles of statistical mechanics and ergodic theory a definition is given to atractor, as an invariant measure. Many results which reinforce this definition are demonstrated. Chaos is related to the presence of an atractor with entropy above zero. The role of Lyapunov exponents is analyzed. (A.C.A.S.) [pt

  8. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Velarde, M

    1977-07-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.

  9. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermoconvective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Benard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (author) [es

  10. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs

  11. Light Higgs from pole attractor

    International Nuclear Information System (INIS)

    Matsedonskyi, Oleksii; Montull, Marc

    2017-09-01

    We propose a new way of explaining the observed Higgs mass, within the cosmological relaxation framework. The key feature distinguishing it from other scanning scenarios is that the scanning field has a non-canonical kinetic term, whose role is to terminate the scan around the desired Higgs mass value. We propose a concrete realisation of this idea with two new singlet fields, one that scans the Higgs mass, and another that limits the time window in which the scan is possible. Within the provided time period, the scanning field does not significantly evolve after the Higgs field gets close to the Standard Model value, due to particle production friction.

  12. Photonic analogies of gravitational attractors

    KAUST Repository

    San-Romá n-Alerigi, Damiá n P.; Alsunaidi, Mohammad A.; Ng, Tien Khee; Ooi, Boon S.; Ben Slimane, Ahmed; Zhang, Yaping

    2013-01-01

    In our work we demonstrate a Gaussian-like refractive index mapping to realize light trapping. Our study shows that this centro-symmetrical photonic structure is able to mime the light geodesics described by celestial mechanics. Possible applications are discussed. © 2013 IEEE.

  13. Quantum jumps on Anderson attractors

    Science.gov (United States)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  14. Moduli stabilization, large-volume dS minimum without D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi–Yau’s

    CERN Document Server

    Misra, A

    2008-01-01

    We consider two sets of issues in this paper. The first has to do with moduli stabilization, existence of “area codes” [A. Giryavets, New attractors and area codes, JHEP 0603 (2006) 020, hep-th/0511215] and the possibility of getting a non-supersymmetric dS minimum without the addition of -branes as in KKLT for type II flux compactifications. The second has to do with the “inverse problem” [K. Saraikin, C. Vafa, Non-supersymmetric black holes and topological strings, hep-th/0703214] and “fake superpotentials” [A. Ceresole, G. Dall'Agata, Flow equations for non-BPS extremal black holes, JHEP 0703 (2007) 110, hep-th/0702088] for extremal (non-)supersymmetric black holes in type II compactifications. We use (orientifold of) a “Swiss cheese” Calabi–Yau [J.P. Conlon, F. Quevedo, K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 0508 (2005) 007, hep-th/0505076] expressed as a degree-18 hypersurface in WCP4[1,1,1,6,9] in the “large-volume...

  15. Chaos, strange attractors, and fractal basin boundaries

    International Nuclear Information System (INIS)

    Grebogi, C.

    1989-01-01

    Even simple mathematical models of physical systems are often observed to exhibit rather complex time evolution. Upon observation, one often has the feeling that such complex time evolutions could, for most practical purposes, be best characterized by statistical properties rather than by detailed knowledge of the exact process. In such situations, the time evolution is often labeled chaotic or turbulent. The study of chaotic dynamics has recently undergone explosive growth. Motivation for this comes partly from the fact that chaotic dynamics is being found to be of fundamental importance in many branches of science and engineering. Examples illustrating the wide-ranging applications of chaotic dynamics to scientific and engineering problems are the following: fluid dynamics, biology, ecology, meteorology, optics, electronics, mechanical engineerings, physiology, economics, chemistry, accelerator technology, thermonuclear fusion, celestial mechanics, and oceanography. The common element in all of the above topics is that they involve nonlinearity in some way. Indeed chaos is expected to be common whenever nonlinearity plays a role. Since nonlinearity is inherent in so much of science and engineering, an understanding of chaos is essential. Given the varied nature of applications where chaos is important, it is natural that researchers in a broad range of fields have become interested in and have contributed to recent developments in chaos

  16. Attractors, bifurcations, & chaos nonlinear phenomena in economics

    CERN Document Server

    Puu, Tönu

    2003-01-01

    The present book relies on various editions of my earlier book "Nonlinear Economic Dynamics", first published in 1989 in the Springer series "Lecture Notes in Economics and Mathematical Systems", and republished in three more, successively revised and expanded editions, as a Springer monograph, in 1991, 1993, and 1997, and in a Russian translation as "Nelineynaia Economicheskaia Dinamica". The first three editions were focused on applications. The last was differ­ ent, as it also included some chapters with mathematical background mate­ rial -ordinary differential equations and iterated maps -so as to make the book self-contained and suitable as a textbook for economics students of dynamical systems. To the same pedagogical purpose, the number of illus­ trations were expanded. The book published in 2000, with the title "A ttractors, Bifurcations, and Chaos -Nonlinear Phenomena in Economics", was so much changed, that the author felt it reasonable to give it a new title. There were two new math­ ematics ch...

  17. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  18. Attractors for equations of mathematical physics

    CERN Document Server

    Chepyzhov, Vladimir V

    2001-01-01

    One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For a number of basic evolution equations of mathematical physics, it was shown that the long time behavior of their soluti

  19. From Anosov dynamics to hyperbolic attractors

    Indian Academy of Sciences (India)

    the dynamics on the attractive sets of the self-oscillatory systems and for the original Anosov geodesic flow. The hyperbolic nature ... Hyperbolic theory is a branch of the theory of dynami- ..... Figure 5. Verification of the hyperbolicity criterion for.

  20. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  1. ?Strange Attractors (chaos) in the hydro-climatology of Colombia?

    International Nuclear Information System (INIS)

    Poveda Jaramillo, German

    1997-01-01

    Inter annual hydro-climatology of Colombia is strongly influenced by extreme phases of ENSO, a phenomenon exhibiting many features of chaotic non-linear system. The possible chaotic nature of Colombian hydrology is examined by using time series of monthly precipitation at Bogota (1866-1992) and Medellin (1908-1995), and average stream flows of the Magdalena River at Puerto Berrio. The power spectrum, the Haussdorf-Besikovich (fractal) dimension, the correlation dimension, and the largest Lyapunov exponent are estimated for the time series. Ideas of hydrologic forecasting and predictability are discussed in the context of nonlinear dynamical systems exhibit chaotic behavior

  2. Toward making the constraint hypersurface an attractor in free evolution

    International Nuclear Information System (INIS)

    Fiske, David R.

    2004-01-01

    When constructing numerical solutions to systems of evolution equations subject to a constraint, one must decide what role the constraint equations will play in the evolution system. In one popular choice, known as free evolution, a simulation is treated as a Cauchy problem, with the initial data constructed to satisfy the constraint equations. This initial data are then evolved via the evolution equations with no further enforcement of the constraint equations. The evolution, however, via the discretized evolution equations introduce constraint violating modes at the level of truncation error, and these constraint violating modes will behave in a formalism dependent way. This paper presents a generic method for incorporating the constraint equations into the evolution equations so that the off-constraint dynamics are biased toward the constraint satisfying solutions

  3. Hidden attractors without equilibrium and adaptive reduced-order ...

    Indian Academy of Sciences (India)

    Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, People's Republic of China; School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, People's Republic of China ...

  4. On dynamics analysis of a new chaotic attractor

    International Nuclear Information System (INIS)

    Zhou Wuneng; Xu Yuhua; Lu Hongqian; Pan Lin

    2008-01-01

    In this Letter, a new chaotic system is discussed. Some basic dynamical properties, such as Lyapunov exponents, Poincare mapping, fractal dimension, bifurcation diagram, continuous spectrum and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed in this Letter is a new chaotic system and deserves a further detailed investigation

  5. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  6. Storage capacity of attractor neural networks with depressing synapses

    International Nuclear Information System (INIS)

    Torres, Joaquin J.; Pantic, Lovorka; Kappen, Hilbert J.

    2002-01-01

    We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard mean-field approach. We find that at T=0 the critical storage capacity decreases with the degree of the depression. We confirm the validity of our main mean-field results with numerical simulations

  7. Chaotic inflation as an attractor in initial-condition space

    International Nuclear Information System (INIS)

    Kung, J.H.; Brandenberger, R.H.

    1990-01-01

    We study the evolution of scalar field inhomogeneities in the preinflationary phase of an inflationary universe. We decompose the scalar field configuration in Fourier modes and consider initial conditions in which more than one mode is excited. We find that the long-wavelength modes are stable against perturbations due to short-wavelength excitations and that chaotic inflation results even if at the initial time the short waves contain most of the energy density

  8. On attractor mechanism of AdS4 black holes

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru

    2013-01-01

    We construct a general family of exact non-extremal 4-dimensional black holes in AdS gravity with U(1) gauge fields non-minimally coupled to a dilaton and a non-trivial dilaton potential. These black holes can have spherical, toroidal, and hyperbolic horizon topologies. We use the entropy function formalism to obtain the near horizon data in the extremal limit. Due to the non-trivial self-interaction of the scalar field, the zero temperature black holes can have a finite horizon area even if only the electric field is turned on

  9. A c-function for non-supersymmetric attractors

    International Nuclear Information System (INIS)

    Goldstein, Kevin; Jena, Rudra P.; Mandal, Gautam; Trivedi, Sandip P.

    2006-01-01

    We present a c-function for spherically symmetric, static and asymptotically flat solutions in theories of four-dimensional gravity coupled to gauge fields and moduli. The c-function is valid for both extremal and non-extremal black holes. It monotonically decreases from infinity and in the static region acquires its minimum value at the horizon, where it equals the entropy of the black hole. Higher dimensional cases, involving p-form gauge fields, and other generalisations are also discussed

  10. Attractor Signaling Models for Discovery of Combinatorial Therapies

    Science.gov (United States)

    2014-11-01

    given!drug!combination,!which!is!the!drug! A15!(a!PDK1/AKT1/FLT3!Inhibitor)!and!the!drug!code!next!to!the!black!circles,!and!the!connected! red !x’s...PLOS ONE | www.plosone.org 8 August 2014 | Volume 9 | Issue 8 | e105842 islets, which are nodes i with Aij~ Aji ~0 for all i=j (self-loops allowed...in red . If limiting the search to differential kinases with jci ~z1 and ignoring all sinks, p~2 has 19 possible targets. There is only one cycle

  11. Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    DEFF Research Database (Denmark)

    Martens, Erik Andreas

    2010-01-01

    . This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits two coexisting stable chimeras. Both chimeras are......, as usual, born through a saddle-node bifurcation. As the coupling becomes increasingly local in nature they lose stability through a Hopf bifurcation, giving rise to breathing chimeras, which in turn get destroyed through a homoclinic bifurcation. Remarkably, one of the chimeras reemerges by a reversal...

  12. Coupled chaotic attractors and driving-induced bistability: A brief ...

    Indian Academy of Sciences (India)

    2015-02-04

    Feb 4, 2015 ... In the 'drive–response' scenario, a system is unidirectionally coupled to another sys- tem. Here, the ... where R1 and R2 are the dynamical variables of the drive and response systems, respec- tively. F and G ..... [3] K Kaneko, Theory and applications of coupled map lattices (John Wiley and Sons, NY, 1993).

  13. Navigating cancer network attractors for tumor-specific therapy

    DEFF Research Database (Denmark)

    Creixell, Pau; Schoof, Erwin; Erler, Janine Terra

    2012-01-01

    understanding of the processes by which genetic lesions perturb these networks and lead to disease phenotypes. Network biology will help circumvent fundamental obstacles in cancer treatment, such as drug resistance and metastasis, empowering personalized and tumor-specific cancer therapies....

  14. Hidden attractors without equilibrium and adaptive reduced-order ...

    Indian Academy of Sciences (India)

    2017-03-10

    Mar 10, 2017 ... (2017) 88: 62 c Indian Academy of Sciences ... attention from various scientific and engineering com- munities. ... tance. Motivated by the above research, a new four- ..... good qualitative agreement is illustrated between the.

  15. Moduli and (un)attractor black hole thermodynamics

    NARCIS (Netherlands)

    Astefanesei, D.; Goldstein, K.D.; Mahapatra, S.

    2008-01-01

    We investigate four-dimensional spherically symmetric black hole solutions in gravity theories with massless, neutral scalars non-minimally coupled to gauge fields. In the non-extremal case, we explicitly show that, under the variation of the moduli, the scalar charges appear in the first law of

  16. Is Inflation in India an Attractor of Inflation in Nepal?

    OpenAIRE

    Edimon Ginting

    2007-01-01

    The paper attempts to answer some important questions around the inflationary process in Nepal, particularly the transmission of inflation from India. Because the Nepali currency is pegged to the Indian rupee and the two countries share an open border, price developments in Nepal would be expected to mirror to those in India. The results show that inflation in India and inflation in Nepal tend to converge in the long run. Our estimates indicate that the passthrough of inflation from India to ...

  17. Estimation of dynamic properties of attractors observed in hollow ...

    Indian Academy of Sciences (India)

    Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, ... online control have been reported based on time series, power spectrum, .... nals are different due to their different intrinsic dependence in terms of micro– ...

  18. Synchronization of Rikitake chaotic attractor using active control

    International Nuclear Information System (INIS)

    Vincent, U.E.

    2005-01-01

    Using synchronization technique based on control theory, we design an active controller which enables the synchronization of two identical Rikitake two-disc dynamo systems. Numerical simulations are used to show the robustness of the active control scheme in synchronizing coupled Rikitake dynamical systems. On the sequential application of the active control, transitions from temporary phase locking (TPL) state to complete synchronization state were found

  19. Self-organizing maps based on limit cycle attractors.

    Science.gov (United States)

    Huang, Di-Wei; Gentili, Rodolphe J; Reggia, James A

    2015-03-01

    Recent efforts to develop large-scale brain and neurocognitive architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason for this is that most conventional SOMs use a static encoding representation: each input pattern or sequence is effectively represented as a fixed point activation pattern in the map layer, something that is inconsistent with the rhythmic oscillatory activity observed in the brain. Here we develop and study an alternative encoding scheme that instead uses sparsely-coded limit cycles to represent external input patterns/sequences. We establish conditions under which learned limit cycle representations arise reliably and dominate the dynamics in a SOM. These limit cycles tend to be relatively unique for different inputs, robust to perturbations, and fairly insensitive to timing. In spite of the continually changing activity in the map layer when a limit cycle representation is used, map formation continues to occur reliably. In a two-SOM architecture where each SOM represents a different sensory modality, we also show that after learning, limit cycles in one SOM can correctly evoke corresponding limit cycles in the other, and thus there is the potential for multi-SOM systems using limit cycles to work effectively as hetero-associative memories. While the results presented here are only first steps, they establish the viability of SOM models based on limit cycle activity patterns, and suggest that such models merit further study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Strange attractors in a chaotic coin flip simulation

    International Nuclear Information System (INIS)

    Cooper, Crystal

    2006-01-01

    Presented is a computer simulation used to model a variation of the game known as the gambler's ruin. A rich player gambles with a set amount of money m. The poor player starts out with zero capital, and is allowed to flip a coin in order to try to win the money. If the coin is heads, the poor player wins a dollar but if it is tails, the player loses a dollar. The poor player is always allowed to win the first flip, and is allowed to flip n times, even when the amount of money lost reaches zero. The dynamics of this process is chaotic due to fluctuations in the variance of the amount of money

  1. A possible approach on optical analogues of gravitational attractors

    KAUST Repository

    San-Román-Alerigi, Damián P.

    2013-04-01

    In this paper we report on the feasibility of light confinement in orbital geodesics on stationary, planar, and centro-symmetric refractive index mappings. Constrained to fabrication and [meta]material limitations, the refractive index, n, has been bounded to the range: 0.8 ? n(r) ? 3.5. Mappings are obtained through the inverse problem to the light geodesics equations, considering trappings by generalized orbit conditions defined a priori. Our simulation results show that the above mentioned refractive index distributions trap light in an open orbit manifold, both perennial and temporal, in regards to initial conditions. Moreover, due to their characteristics, these mappings could be advantageous to optical computing and telecommunications, for example, providing an on-demand time delay or optical memories. Furthermore, beyond their practical applications to photonics, these mappings set forth an attractive realm to construct a panoply of celestial mechanics analogies and experiments in the laboratory. © 2013 Optical Society of America.

  2. A possible approach on optical analogues of gravitational attractors

    KAUST Repository

    San-Romá n-Alerigi, Damiá n P.; Ben Slimane, Ahmed; Ng, Tien Khee; Alsunaidi, Mohammad; Ooi, Boon S.

    2013-01-01

    , for example, providing an on-demand time delay or optical memories. Furthermore, beyond their practical applications to photonics, these mappings set forth an attractive realm to construct a panoply of celestial mechanics analogies and experiments

  3. Some remarks on the attractor behaviour in ELKO cosmology

    Science.gov (United States)

    Pereira, S. H.; A. Pinho S., S.; Hoff da Silva, J. M.

    2014-08-01

    Recent results on the dynamical stability of a system involving the interaction of the ELKO spinor field with standard matter in the universe have been reanalysed, and the conclusion is that such system does not exhibit isolated stable points that could alleviate the cosmic coincidence problem. When a constant parameter δ related to the potential of the ELKO field is introduced in the system however, stable fixed points are found for some specific types of interaction between the ELKO field and matter. Although the parameter δ is related to an unknown potential, in order to satisfy the stability conditions and also that the fixed points are real, the range of the constant parameter δ can be constrained for the present time and the coincidence problem can be alleviated for some specific interactions. Such restriction on the ELKO potential opens possibility to apply the ELKO field as a candidate to dark energy in the universe, and so explain the present phase of acceleration of the universe through the decay of the ELKO field into matter.

  4. Some remarks on the attractor behaviour in ELKO cosmology

    OpenAIRE

    Pereira, S. H.; S., A. Pinho S.; da Silva, J. M. Hoff

    2014-01-01

    Recent results on the dynamical stability of a system involving the interaction of the ELKO spinor field with standard matter in the universe have been reanalysed, and the conclusion is that such system does not exhibit isolated stable points that could alleviate the cosmic coincidence problem. When a constant parameter $\\delta$ related to the potential of the ELKO field is introduced in the system however, stable fixed points are found for some specific types of interaction between the ELKO ...

  5. Human-Swarm Interactions Based on Managing Attractors

    Science.gov (United States)

    2014-03-06

    Laboratory/ Brigham Young University Information Directorate Provo, UT 84602 Rome Research Site/ RISC 525 Brooks Road Rome NY 13441...Information Directorate Rome Research Site/ RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/RI 11. SPONSORING

  6. Strange attractors and synchronization dynamics of coupled Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Yamapi, R.; Filatrella, G.

    2006-07-01

    We consider in this paper the dynamics and synchronization of coupled chaotic Van der Pol-Duffing systems. The stability of the synchronization process between two coupled autonomous Van der Pol model is first analyzed analytically and numerically, before following the problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol-Duffing systems. The stability boundaries of the synchronization process are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane. (author)

  7. Renormalization group analysis of the global properties of a strange attractor

    International Nuclear Information System (INIS)

    Kadanoff, L.P.

    1986-01-01

    This paper considers the circle map at the special point: the one at which there is a trajectory with a golden mean winding number and at which the map just fails to be invertable at one point on the circle. The invariant density of this trajectory has fractal properties. Previous work has suggested that the global behavior of this fractal can be effectively analyzed using a kind of partition function formalism to generate an f versus Σ curve. In this paper the partition function is obtained by using a renormalization group approach

  8. Noise in attractor networks in the brain produced by graded firing rate representations

    OpenAIRE

    Webb, Tristan J.; Rolls, Edmund T; Deco, Gustavo; Feng, Jianfeng

    2011-01-01

    Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate\\ud probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as\\ud decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given\\ud mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribut...

  9. Reactivation in working memory: an attractor network model of free recall.

    Science.gov (United States)

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  10. Reactivation in working memory: an attractor network model of free recall.

    Directory of Open Access Journals (Sweden)

    Anders Lansner

    Full Text Available The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  11. Reactivation in Working Memory : An Attractor Network Model of Free Recall

    OpenAIRE

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity...

  12. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints

    Czech Academy of Sciences Publication Activity Database

    Colwell, R. K.; Gotelli, N. J.; Ashton, L. A.; Beck, J.; Brehm, G.; Fayle, Tom Maurice; Fiedler, K.; Forister, M. L.; Kessler, M.; Kitching, R. L.; Klimeš, Petr; Kluge, J.; Longino, J. T.; Maunsell, S. C.; McCain, C. M.; Moses, J.; Noben, N.; Sam, Kateřina; Sam, Legi; Shapiro, A. M.; Wang, X.; Novotný, Vojtěch

    2016-01-01

    Roč. 19, č. 9 (2016), s. 1009-1022 ISSN 1461-023X R&D Projects: GA ČR GB14-36098G; GA ČR GA14-32302S; GA ČR(CZ) GP14-32024P; GA ČR GA13-10486S Institutional support: RVO:60077344 Keywords : Bayesian model * biogeography * elevational gradients Subject RIV: EH - Ecology, Behaviour Impact factor: 9.449, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/ele.12640/full

  13. Chaotic attractors in tumor growth and decay: a differential equation model.

    Science.gov (United States)

    Harney, Michael; Yim, Wen-sau

    2015-01-01

    Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.

  14. Reactivation in Working Memory: An Attractor Network Model of Free Recall

    Science.gov (United States)

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690

  15. Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay

    DEFF Research Database (Denmark)

    Zhusubaliyev, Z. T.; Mosekilde, Erik; Churilov, A. N.

    2015-01-01

    are subject to a negative feedback regulation that is capable of modifying the intermittent bursts into more regular pulse trains. Bifurcation analysis of a hybrid model that attempts to integrate the intermittent bursting activity with a continuous hormone secretion has recently demonstrated a number...

  16. A Novel Type of Chaotic Attractor for Quadratic Systems Without Equilibriums

    Science.gov (United States)

    Dantsev, Danylo

    In this paper, a new chaotic dynamic system without equilibriums is presented. A conducted research of the qualitative properties of the discovered system reveals a noncompliance between the bifurcation behavior of the system and the Feigenbaum-Sharkovskii-Magnitsky theory. Additional research of known systems confirms the discrepancy.

  17. Multiple steady states, limit cycles and chaotic attractors in evolutionary games with Logit Dynamics

    NARCIS (Netherlands)

    Hommes, C.H.; Ochea, M.I.

    2010-01-01

    This paper investigates, by means of simple, three and four strategy games, the occurrence of periodic and chaotic behaviour in a smooth version of the Best Response Dynamics, the Logit Dynamics. The main finding is that, unlike Replicator Dynamics, generic Hopf bifurcation and thus, stable limit

  18. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  19. Strange attractors, spiritual interlopers and lonely wanderers: The search for pre-Pangean supercontinents

    Directory of Open Access Journals (Sweden)

    Joseph G. Meert

    2014-03-01

    A second possibility is that our views of older supercontinents are shaped by well-known connections documented for the most recent supercontinent, Pangea. It is intriguing that three of the four ‘lonely wanderers’ (Tarim, North China, South China did not unite until just before, or slightly after the breakup of Pangea. The fourth ‘lonely wanderer’, the Kalahari (and core Kaapvaal craton has a somewhat unique Archean-age geology compared to its nearest neighbors in Gondwana, but very similar to that in western Australia.

  20. Are attractors 'strange', or is life more complicated than the simple laws of physics?

    Science.gov (United States)

    Pogun, S

    2001-01-01

    Interesting and intriguing questions involve complex systems whose properties cannot be explained fully by reductionist approaches. Last century was dominated by physics, and applying the simple laws of physics to biology appeared to be a practical solution to understand living organisms. However, although some attributes of living organisms involve physico-chemical properties, the genetic program and evolutionary history of complex biological systems make them unique and unpredictable. Furthermore, there are and will be 'unobservable' phenomena in biology which have to be accounted for.

  1. The Damaged Object: A "Strange Attractor" in the Dynamical System of the Mind

    Science.gov (United States)

    Shulman, Graham

    2010-01-01

    This article discusses the impact of the damaged object on the development and functioning of psychic life with particular reference to the sense of reality. The damaged object is of pivotal significance in Klein's and Winnicott's models of psychic development and experience in early infancy. A key dimension of the development and functioning of…

  2. The dolphin attractor: Dialogue for emergent new order in a Dutch manufacturing firm

    NARCIS (Netherlands)

    Eijnatten, van F.M.; van Galen, M.C.

    2002-01-01

    This paper documents a series of complex responsive processes, observed in a Dutch capital-equip-ment manufacturing firm in the South of The Netherlands, which are focused on the development of the organisational mind, seen through the Chaos lens. The organisational goal is to facilitate

  3. The use of supernatural entities in moral conversations as a cultural-psychological attractor.

    Science.gov (United States)

    Tófalvy, Tamás; Viciana, Hugo

    2009-06-01

    Social behavior in most human societies is characterized by the following of moral rules explicitly justified by religious belief systems. These systems constitute the diverse domain of human sacred values. Supernatural entities as founders or warranty of moral principles may be seen as a form of "conversation stoppers," considerations that can be dropped into a moral decision process in order to prevent endlessly reconsidering and endlessly asking for further justification. In this article we offer a general naturalistic framework toward answering the question of why supernatural entities are so attractive in moral argumentation. We present an explanatory model based on the phenomena of multiple channels of moral reasoning, the suspension of epistemic vigilance, and relevance assumptions through the attractiveness of the sacred, moral dumbfounding, and the expression of social coalitionary commitment. Thus, in light of much of current cognitive theory, sacred values make sense as basins in the evolutionary landscape of human morality.

  4. Attractor states in teaching and learning processes : a study of out-of-school science education

    NARCIS (Netherlands)

    Geveke, Carla H.; Steenbeek, Henderien W.; Doornenbal, Jeannette M.; Van Geert, Paul L. C.

    2017-01-01

    In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the

  5. Multiple attractors and dynamics in an OLG model with productive environment

    Science.gov (United States)

    Caravaggio, Andrea; Sodini, Mauro

    2018-05-01

    This work analyses an overlapping generations model in which economic activity depends on the exploitation of a free-access natural resource. In addition, public expenditures for environmental maintenance are assumed. By characterising some properties of the map and performing numerical simulations, we investigate consequences of the interplay between environmental public expenditure and private sector. In particular, we identify different scenarios in which multiple equilibria as well as complex dynamics may arise.

  6. Ulam's scheme revisited digital modeling of chaotic attractors via micro-perturbations

    CERN Document Server

    Domokos, Gabor K

    2002-01-01

    We consider discretizations $f_N$ of expanding maps $f:I \\to I$ in the strict sense: i.e. we assume that the only information available on the map is a finite set of integers. Using this definition for computability, we show that by adding a random perturbation of order $1/N$, the invariant measure corresponding to $f$ can be approximated and we can also give estimates of the error term. We prove that the randomized discrete scheme is equivalent to Ulam's scheme applied to the polygonal approximation of $f$, thus providing a new interpretation of Ulam's scheme. We also compare the efficiency of the randomized iterative scheme to the direct solution of the $N \\times N$ linear system.

  7. Invariants, Attractors and Bifurcation in Two Dimensional Maps with Polynomial Interaction

    Science.gov (United States)

    Hacinliyan, Avadis Simon; Aybar, Orhan Ozgur; Aybar, Ilknur Kusbeyzi

    This work will present an extended discrete-time analysis on maps and their generalizations including iteration in order to better understand the resulting enrichment of the bifurcation properties. The standard concepts of stability analysis and bifurcation theory for maps will be used. Both iterated maps and flows are used as models for chaotic behavior. It is well known that when flows are converted to maps by discretization, the equilibrium points remain the same but a richer bifurcation scheme is observed. For example, the logistic map has a very simple behavior as a differential equation but as a map fold and period doubling bifurcations are observed. A way to gain information about the global structure of the state space of a dynamical system is investigating invariant manifolds of saddle equilibrium points. Studying the intersections of the stable and unstable manifolds are essential for understanding the structure of a dynamical system. It has been known that the Lotka-Volterra map and systems that can be reduced to it or its generalizations in special cases involving local and polynomial interactions admit invariant manifolds. Bifurcation analysis of this map and its higher iterates can be done to understand the global structure of the system and the artifacts of the discretization by comparing with the corresponding results from the differential equation on which they are based.

  8. Two-dimensional heteroclinic attractor in the generalized Lotka-Volterra system

    Science.gov (United States)

    Afraimovich, Valentin S.; Moses, Gregory; Young, Todd

    2016-05-01

    We study a simple dynamical model exhibiting sequential dynamics. We show that in this model there exist sets of parameter values for which a cyclic chain of saddle equilibria, O k , k=1,\\ldots,p , have two-dimensional unstable manifolds that contain orbits connecting each O k to the next two equilibrium points O k+1 and O k+2 in the chain ({{O}p+1}={{O}1} ). We show that the union of these equilibria and their unstable manifolds form a two-dimensional surface with a boundary that is homeomorphic to a cylinder if p is even and a Möbius strip if p is odd. If, further, each equilibrium in the chain satisfies a condition called ‘dissipativity’, then this surface is asymptotically stable.

  9. Attractor-Based Obstructions to Growth in Homogeneous Cyclic Boolean Automata.

    Science.gov (United States)

    Khan, Bilal; Cantor, Yuri; Dombrowski, Kirk

    2015-11-01

    We consider a synchronous Boolean organism consisting of N cells arranged in a circle, where each cell initially takes on an independently chosen Boolean value. During the lifetime of the organism, each cell updates its own value by responding to the presence (or absence) of diversity amongst its two neighbours' values. We show that if all cells eventually take a value of 0 (irrespective of their initial values) then the organism necessarily has a cell count that is a power of 2. In addition, the converse is also proved: if the number of cells in the organism is a proper power of 2, then no matter what the initial values of the cells are, eventually all cells take on a value of 0 and then cease to change further. We argue that such an absence of structure in the dynamical properties of the organism implies a lack of adaptiveness, and so is evolutionarily disadvantageous. It follows that as the organism doubles in size (say from m to 2m) it will necessarily encounter an intermediate size that is a proper power of 2, and suffers from low adaptiveness. Finally we show, through computational experiments, that one way an organism can grow to more than twice its size and still avoid passing through intermediate sizes that lack structural dynamics, is for the organism to depart from assumptions of homogeneity at the cellular level.

  10. Attractor structure discriminates sleep states: recurrence plot analysis applied to infant breathing patterns.

    Science.gov (United States)

    Terrill, Philip Ian; Wilson, Stephen James; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2010-05-01

    Breathing patterns are characteristically different between infant active sleep (AS) and quiet sleep (QS), and statistical quantifications of interbreath interval (IBI) data have previously been used to discriminate between infant sleep states. It has also been identified that breathing patterns are governed by a nonlinear controller. This study aims to investigate whether nonlinear quantifications of infant IBI data are characteristically different between AS and QS, and whether they may be used to discriminate between these infant sleep states. Polysomnograms were obtained from 24 healthy infants at six months of age. Periods of AS and QS were identified, and IBI data extracted. Recurrence quantification analysis (RQA) was applied to each period, and recurrence calculated for a fixed radius in the range of 0-8 in steps of 0.02, and embedding dimensions of 4, 6, 8, and 16. When a threshold classifier was trained, the RQA variable recurrence was able to correctly classify 94.3% of periods in a test dataset. It was concluded that RQA of IBI data is able to accurately discriminate between infant sleep states. This is a promising step toward development of a minimal-channel automatic sleep state classification system.

  11. National Athletic Trainers' Association-accredited postprofessional athletic training education: attractors and career intentions.

    Science.gov (United States)

    Mazerolle, Stephanie M; Dodge, Thomas M

    2012-01-01

    Anecdotally, we know that students select graduate programs based on location, finances, and future career goals. Empirically, however, we lack information on what attracts a student to these programs. To gain an appreciation for the selection process of graduate study. Qualitative study. Postprofessional programs in athletic training (PPATs) accredited by the National Athletic Trainers' Association. A total of 19 first-year PPAT students participated, representing 13 of the 16 accredited PPAT programs. All interviews were conducted via phone and transcribed verbatim. Analysis of the interview data followed the procedures as outlined by a grounded theory approach. Trustworthiness was secured by (1) participant checks, (2) participant verification, and (3) multiple analyst triangulations. Athletic training students select PPAT programs for 4 major reasons: reputation of the program or faculty (or both), career intentions, professional socialization, and mentorship from undergraduate faculty or clinical instructors (or both). Participants discussed long-term professional goals as the driving force behind wanting an advanced degree in athletic training. Faculty and clinical instructor recommendations and the program's prestige helped guide the decisions. Participants also expressed the need to gain more experience, which promoted autonomy, and support while gaining that work experience. Final selection of the PPAT program was based on academic offerings, the assistantship offered (including financial support), advanced knowledge of athletic training concepts and principles, and apprenticeship opportunities. Students who attend PPAT programs are attracted to advancing their entry-level knowledge, are committed to their professional development as athletic trainers, and view the profession of athletic training as a life-long career. The combination of balanced academics, clinical experiences, and additional professional socialization and mentorship from the PPAT program experience will help them to secure their desired career positions.

  12. Lorenz's attractor applied to the stream cipher (Ali-Pacha generator)

    International Nuclear Information System (INIS)

    Ali-Pacha, Adda; Hadj-Said, Naima; M'Hamed, A.; Belgoraf, A.

    2007-01-01

    The safety of information is primarily founded today on the calculation of algorithms whose confidentiality depends on the number of the necessary bits for the definition of a cryptographic key. If this type of system has proved reliable, then the increasing power of the means of calculation threatens the confidentiality of these methods. The powerful computers are certainly able to quantify and decipher information quickly, but their computing speed allows parallel cryptanalysis, which aims 'to break' a code by discovering the key, for example, by testing all the possible keys. The only evocation of the principle of the quantum computer, with the potentially colossal capacities of calculation, has started a shock, even in the most savaged who are convinced of algorithmic cryptography. To mitigate this concern, we will introduce in this article a new cryptographic system based on chaotic concepts

  13. Solitary attractors and low-order filamentation in anisotropic self-focusing media

    DEFF Research Database (Denmark)

    Zozulya, A.A.; Anderson, D.Z.; Mamaev, A.V.

    1998-01-01

    We present a detailed theoretical analysis of the properties and formation of single solitons and higher-order bound dipole pairs in media with anisotropic nonlocal photorefractive material response. The single solitons are elliptical beams, whereas the dipole pairs are formed by a pair of displa......We present a detailed theoretical analysis of the properties and formation of single solitons and higher-order bound dipole pairs in media with anisotropic nonlocal photorefractive material response. The single solitons are elliptical beams, whereas the dipole pairs are formed by a pair...

  14. On attractor mechanism of AdS{sub 4} black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de Lyon, 46 allé d' Italie, F-69364 Lyon Cedex 07 (France); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2013-12-18

    We construct a general family of exact non-extremal 4-dimensional black holes in AdS gravity with U(1) gauge fields non-minimally coupled to a dilaton and a non-trivial dilaton potential. These black holes can have spherical, toroidal, and hyperbolic horizon topologies. We use the entropy function formalism to obtain the near horizon data in the extremal limit. Due to the non-trivial self-interaction of the scalar field, the zero temperature black holes can have a finite horizon area even if only the electric field is turned on.

  15. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    Science.gov (United States)

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  16. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    NARCIS (Netherlands)

    C. Feillet (Céline); C.A. Krusche; F. Tamanini (Filippo); R. Janssens (Roel); R.A. Downey (Roger); P. Martin (Patrick); J.L. Teboul (Jean Louis); S. Saito (Seiji); F.A. Lévi (Francis); T. Bretschneider (Till); G.T.J. van der Horst (Gijsbertus); F. Delaunay (Franck); D.A. Rand (David)

    2014-01-01

    textabstractDaily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle

  17. The Great Attractor: At the Limits of Hubble's Law of the Expanding Universe.

    Science.gov (United States)

    Murdin, Paul

    1991-01-01

    Presents the origin and mathematics of Hubble's Law of the expanding universe. Discusses limitations to this law and the related concepts of standard candles, elliptical galaxies, and streaming motions, which are conspicuous deviations from the law. The third of three models proposed as explanations for streaming motions is designated: The Great…

  18. Equilibrium and nonequilibrium attractors for a discrete, selection-migration model

    Science.gov (United States)

    James F. Selgrade; James H. Roberds

    2003-01-01

    This study presents a discrete-time model for the effects of selection and immigration on the demographic and genetic compositions of a population. Under biologically reasonable conditions, it is shown that the model always has an equilibrium. Although equilibria for similar models without migration must have real eigenvalues, for this selection-migration model we...

  19. New BFA Method Based on Attractor Neural Network and Likelihood Maximization

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Polyakov, P.Y.; Snášel, V.

    2014-01-01

    Roč. 132, 20 May (2014), s. 14-29 ISSN 0925-2312 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : recurrent neural network * associative memory * Hebbian learning rule * neural network application * data mining * statistics * Boolean factor analysis * information gain * dimension reduction * likelihood-maximization * bars problem Subject RIV: IN - Informatics, Computer Science Impact factor: 2.083, year: 2014

  20. Attractor switching in neuron networks and Spatiotemporal filters for motion processing

    NARCIS (Netherlands)

    Subramanian, Easwara Naga

    2008-01-01

    From a broader perspective, we address two important questions, viz., (a) what kind of mechanism would enable a neuronal network to switch between various tasks or stored patterns? (b) what are the properties of neurons that are used by the visual system in early motion detection? To address (a) we

  1. Modelling and prediction for chaotic fir laser attractor using rational function neural network.

    Science.gov (United States)

    Cho, S

    2001-02-01

    Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.

  2. Flexibility and Attractors in Context: Family Emotion Socialization Patterns and Children's Emotion Regulation in Late Childhood

    NARCIS (Netherlands)

    Lunkenheimer, E.S.; Hollenstein, T.P.; Wang, J.; Shields, A.M.

    2012-01-01

    Familial emotion socialization practices relate to children's emotion regulation (ER) skills in late childhood, however, we have more to learn about how the context and structure of these interactions relates to individual differences in children's ER. The present study examined flexibility and

  3. Multiple attractors and boundary crises in a tri-trophic food chain.

    NARCIS (Netherlands)

    Boer, M.P.; Kooi, B.W.; Kooijman, S.A.L.M.

    2001-01-01

    The asymptotic behaviour of a model of a tri-trophic food chain in the chemostat is analysed in detail. The Monod growth model is used for all trophic levels, yielding a non-linear dynamical system of four ordinary differential equations. Mass conservation makes it possible to reduce the dimension

  4. On multiple attractors and critical parameters and how to find them numerically: The right, the wrong and "the American way"

    DEFF Research Database (Denmark)

    True, Hans

    2011-01-01

    In recent years several authors have proposed, "easier" numerical methods' to find the critical speed in railway dynamical problems. Actually the methods do function in some cases, but in most cases it is really a gamble. In this presentation the methods will be discussed and the pros and contras...

  5. Self-organization in the localised failure regime: metastable attractors and their implications on force chain functionality

    Science.gov (United States)

    Pucilowski, Sebastian; Tordesillas, Antoinette; Froyland, Gary

    2017-06-01

    In transitive metastable chaotic dynamical systems, there are no invariant neighbourhoods in the phase space. The best that one can do is look for metastable or almost-invariant (AI) regions as a means to decompose the system into its basic self-organising building blocks. Here we study the metastable dynamics of a dense granular material embodying strain localization in 3D from the perspective of its conformational landscape: the state space of all observed conformations as defined by the local topology of individual grains relative to their first ring of contacting neighbors. We determine the metastable AI sets that divide this conformational landscape, such that grain rearrangements from one conformation to another conformation in the same AI set occurs with high probability: by contrast, grain rearrangements involving conformational transitions between AI sets are unlikely. The great majority of conformational transitions are identity transitions: grains rearrange and exchange contacts to preserve those topological properties with the greatest influence on cluster stability, namely, the number of contacts and 3-cycles. Force chains show a clear preference for that AI set with the most number of accessible and highly connected conformations. Here force chains continually explore the conformational landscape, wandering from one rarely inhabited conformation to another. As force chains become overloaded and buckle, the energy released enables member grains to overcome the high dynamical barriers that separate metastable regions and subsequently escape one region to enter another in the conformational landscape. Thus, compared to grains locked in stable force chains, those in buckling force chains, confined to the shear band, show a greater propensity for not only non-identity transitions within each metastable region but also inter-transitions between metastable regions.

  6. Dentist-Perceived Barriers and Attractors to Cognitive-Behavioral Treatment Provided by Mental Health Providers in Dental Practices.

    Science.gov (United States)

    Heyman, R E; Wojda, A K; Eddy, J M; Haydt, N C; Geiger, J F; Slep, A M Smith

    2018-02-01

    Over 1 in 5 dental patients report moderate to severe dental fear. Although the efficacy of cognitive-behavioral treatment (CBT) for dental fear has been examined in over 20 randomized controlled trials-with 2 meta-analyses finding strong average effect sizes ( d > 1)-CBT has received almost no dissemination beyond the specialty clinics that tested it. The challenge, then, is not how to treat dental fear but how to disseminate and implement such an evidence-based treatment in a way that recognizes the rewards and barriers in the US health care system. This mixed-method study investigated the potential of disseminating CBT through care from a mental health provider from within the dental home, a practice known as evidence-based collaborative care (EBCC). Two preadoption studies were conducted with practicing dentists drawn from a self-organized Practice-Based Research Network in the New York City metropolitan area. The first comprised 3 focus groups ( N = 17), and the second involved the administration of a survey ( N = 46). Focus group participants agreed that CBT for dental fear is worthy of consideration but identified several concerns regarding its appeal, feasibility, and application in community dental practices. Survey participants indicated endorsement of factors promoting the use of EBCC as a mechanism for CBT dissemination, with no factors receiving less than 50% support. Taken together, these findings indicate that EBCC may be a useful framework through which an evidence-based treatment for dental fear treatment can be delivered.

  7. Image Encryption Algorithm Based on a Novel Improper Fractional-Order Attractor and a Wavelet Function Map

    Directory of Open Access Journals (Sweden)

    Jian-feng Zhao

    2017-01-01

    Full Text Available This paper presents a three-dimensional autonomous chaotic system with high fraction dimension. It is noted that the nonlinear characteristic of the improper fractional-order chaos is interesting. Based on the continuous chaos and the discrete wavelet function map, an image encryption algorithm is put forward. The key space is formed by the initial state variables, parameters, and orders of the system. Every pixel value is included in secret key, so as to improve antiattack capability of the algorithm. The obtained simulation results and extensive security analyses demonstrate the high level of security of the algorithm and show its robustness against various types of attacks.

  8. Corridengum: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables (2017 Nonlinearity 30 1204)

    Science.gov (United States)

    Baladi, Viviane; Kuna, Tobias; Lucarini, Valerio

    2017-08-01

    The first main result of Baladi et al (2017 Nonlinearity 30 1204-20) is modified as follows: For any θ in the Sobolev space H^r_p(M) , with 1 and 0, the map t\\mapsto \\int θ dρt is α-Hölder continuous for all \

  9. A Simple Snap Oscillator with Coexisting Attractors, Its Time-Delayed Form, Physical Realization, and Communication Designs

    Science.gov (United States)

    Rajagopal, Karthikeyan; Jafari, Sajad; Akgul, Akif; Karthikeyan, Anitha; Çiçek, Serdar; Shekofteh, Yasser

    2018-05-01

    In this paper, we report a novel chaotic snap oscillator with one nonlinear function. Dynamic analysis of the system shows the existence of bistability. To study the time delay effects on the proposed snap oscillator, we introduce multiple time delay in the fourth state equation. Investigation of dynamical properties of the time-delayed system shows that the snap oscillator exhibits the same multistable properties as the nondelayed system. The new multistable hyperjerk chaotic system has been tested in chaos shift keying and symmetric choc shift keying modulated communication designs for engineering applications. It has been determined that the symmetric chaos shift keying modulated communication system implemented with the new chaotic system is more successful than the chaos shift keying modulation for secure communication. Also, circuit implementation of the chaotic snap oscillator with tangent function is carried out showing its feasibility.

  10. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE

    Science.gov (United States)

    Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V.

    2017-10-01

    During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked loop based circuits.

  11. Origin and Elimination of Two Global Spurious Attractors in Hopfield-Like Neural Network Performing Boolean Factor Analysis

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2010-01-01

    Roč. 73, č. 7-9 (2010), s. 1394-1404 ISSN 0925-2312 R&D Projects: GA ČR GA205/09/1079; GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10300504 Keywords : Boolean factor analysis * Hopfield neural Network * unsupervised learning * dimension reduction * data mining Subject RIV: IN - Informatics, Computer Science Impact factor: 1.429, year: 2010

  12. A Mechanistic Neural Field Theory of How Anesthesia Suppresses Consciousness: Synaptic Drive Dynamics, Bifurcations, Attractors, and Partial State Equipartitioning.

    Science.gov (United States)

    Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M

    2015-12-01

    With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.

  13. Embodiment of intersubjective time: relational dynamics as attractors in the temporal coordination of interpersonal behaviors and experiences.

    Science.gov (United States)

    Laroche, Julien; Berardi, Anna Maria; Brangier, Eric

    2014-01-01

    This paper addresses the issue of "being together," and more specifically the issue of "being together in time." We provide with an integrative framework that is inspired by phenomenology, the enactive approach and dynamical systems theories. To do so, we first define embodiment as a living and lived phenomenon that emerges from agent-world coupling. We then show that embodiment is essentially dynamical and therefore we describe experiential, behavioral and brain dynamics. Both lived temporality and the temporality of the living appear to be complex, multiscale phenomena. Next we discuss embodied dynamics in the context of interpersonal interactions, and briefly review the empirical literature on between-persons temporal coordination. Overall, we propose that being together in time emerges from the relational dynamics of embodied interactions and their flexible co-regulation.

  14. INTRODUCING DISPARITY ABATEMENT OF SOCIAL-CULTURAL ATTRACTORS IN THE WESTERN PART OF TÂRGU-JIU MUNICIPALITY

    Directory of Open Access Journals (Sweden)

    Claudia Elena TUDORACHE

    2016-10-01

    Full Text Available The municipality of Târgu Jiu, as an ensemble of urban space organization, is strictly dependent on the physical environment in which it is located, starting with relief, hydrography and so on. The peri-central part of the city hada developed the urban tissue poorly at the start of the 19th century, with a deficient historical, cultural and architectural load. Landscape improvement owes heavily to the central axis of the city, represented by the "Calea Eroilor" Cultural Ensemble, which brings a touch of uniqueness to the urban context. The article hopes to emphasize the discrepancies between the two banks of the River Jiu, which are extremely contrasting from both an architectural and a functional points of view. The left bank has administrative and architectural roles, while the right side is a former industrial area. In its entirety, the project aims to combine the two components, economic and social. The existing patrimony will help bring a harmonization and anew dynamic to the western part of the city, in terms of profits as well as in terms of the social course. The urban structure of the city as a whole must correspond to a territorial harmony and operational status so that a revitalization of the analysed area can transform the entire city. The specific objectives are the increase in real-estate action in the implementation area and developing the infrastructure, which will eventually lead to more entrepreneurial activities for a sustainable development.

  15. Self-organization in the localised failure regime: metastable attractors and their implications on force chain functionality

    Directory of Open Access Journals (Sweden)

    Pucilowski Sebastian

    2017-01-01

    Full Text Available In transitive metastable chaotic dynamical systems, there are no invariant neighbourhoods in the phase space. The best that one can do is look for metastable or almost-invariant (AI regions as a means to decompose the system into its basic self-organising building blocks. Here we study the metastable dynamics of a dense granular material embodying strain localization in 3D from the perspective of its conformational landscape: the state space of all observed conformations as defined by the local topology of individual grains relative to their first ring of contacting neighbors. We determine the metastable AI sets that divide this conformational landscape, such that grain rearrangements from one conformation to another conformation in the same AI set occurs with high probability: by contrast, grain rearrangements involving conformational transitions between AI sets are unlikely. The great majority of conformational transitions are identity transitions: grains rearrange and exchange contacts to preserve those topological properties with the greatest influence on cluster stability, namely, the number of contacts and 3-cycles. Force chains show a clear preference for that AI set with the most number of accessible and highly connected conformations. Here force chains continually explore the conformational landscape, wandering from one rarely inhabited conformation to another. As force chains become overloaded and buckle, the energy released enables member grains to overcome the high dynamical barriers that separate metastable regions and subsequently escape one region to enter another in the conformational landscape. Thus, compared to grains locked in stable force chains, those in buckling force chains, confined to the shear band, show a greater propensity for not only non-identity transitions within each metastable region but also inter-transitions between metastable regions.

  16. Multiple attractors and critical parameters and how to find them numerically: the right, the wrong and the gambling way

    DEFF Research Database (Denmark)

    True, Hans

    2013-01-01

    In recent years, several authors have proposed easier numerical methods to find the critical speed in railway dynamical problems. Actually, the methods do function in some cases, but in most cases it is really a gamble. In this article, the methods are discussed and the pros and contras are comme......In recent years, several authors have proposed easier numerical methods to find the critical speed in railway dynamical problems. Actually, the methods do function in some cases, but in most cases it is really a gamble. In this article, the methods are discussed and the pros and contras...

  17. State Variability and Psychopathological Attractors: the Behavioural Complexity as Discriminating Factor Between the Pathology and Normality Profiles

    Science.gov (United States)

    Marconi, Pier Luigi

    369 patients, selected within a set of 1215 outpatients, were studied. The data were clustered into two set: the baseline set and the endpoint set. The clinical parameters had a higher variability at the baseline than at the endpoint. 4 to 5 factors were extracted in total group and 3 subgroups (190 "affective", 34 type-B personality, 166 without any of both disorders). In all subgroups there was a background pattern of 6 components: 3 components confirming the trifactorial temperamental model of Cloninger; 1 component related to the quality of social relationships; 2 components (that are the main components of factorial model about in all groups) relating to quality of life and adjustment self perceived by patients, and to pattern of dysfunctional behavior, inner feelings, and thought processes externally evaluated. These background components seem to aggregate differently in the subgroups in accordance to the clinical diagnosis. These patterns may be interpreted as expression of an increased "coherence" among parameters due to a lack of flexibility caused by the illness. The different class of illness can be further distinguished by intensity of maladjustment, that is related to the intensity of clinical signs just only at the baseline. These data suggest that the main interfering factors are clinical psychopathology at baseline and stable personality traits at endpoint. This persistent chronic maladjustment personality-driven is evidenced after the clinical disorder was cured by treatment. An interpretative model is presented by the author.

  18. Harmony as a convergence attractor that minimizes the energy expenditure and variability in physiological gait and the loss of harmony in cerebellar ataxia.

    Science.gov (United States)

    Serrao, Mariano; Chini, Giorgia; Iosa, Marco; Casali, Carlo; Morone, Giovanni; Conte, Carmela; Bini, Fabiano; Marinozzi, Franco; Coppola, Gianluca; Pierelli, Francesco; Draicchio, Francesco; Ranavolo, Alberto

    2017-10-01

    The harmony of the human gait was recently found to be related to the golden ratio value (ϕ). The ratio between the duration of the stance and that of the swing phases of a gait cycle was in fact found to be close to ϕ, which implies that, because of the fractal property of autosimilarity of that number, the gait ratios stride/stance, stance/swing, swing/double support, were not significantly different from one another. We studied a group of patients with cerebellar ataxia to investigate how the differences between their gait ratios and the golden ratio are related to efficiency and stability of their gait, assessed by energy expenditure and stride-to-stride variability, respectively. The gait of 28 patients who were affected by degenerative cerebellar ataxia and of 28 healthy controls was studied using a stereophotogrammetric system. The above mentioned gait ratios, the energy expenditure estimated using the pelvis reconstructed method and the gait variability in terms of the stride length were computed, and their relationships were analyzed. Matching procedures have also been used to avoid multicollinearity biases. The gait ratio values of the patients were farther from the controls (and hence from ϕ), even in speed matched conditions (P=0.011, Cohen's D=0.76), but not when the variability and energy expenditure were matched between the two groups (Cohen's D=0.49). In patients with cerebellar ataxia, the farther the stance-swing ratio was from ϕ, the larger the total mechanical work (R 2 adj =0.64). Further, a significant positive correlation was observed between the difference of the gait ratio from the golden ratio and the severity of the disease (R=0.421, P=0.026). Harmony of gait appears to be a benchmark of physiological gait leading to physiological energy recovery and gait reliability. Neurorehabilitation of patients with ataxia might benefit from the restoration of harmony of their locomotor patterns. Copyright © 2017. Published by Elsevier Ltd.

  19. Universality of the topology of period doubling dynamical systems

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1983-10-01

    The evolution of the topology of the invariant manifolds of the attractors of 3-D autonomous dynamical systems during period doubling is shown to be universal. The overall topology of the nth attractor is shown to depend only on the topology of the first attractor at birth

  20. Moduli stabilization, large-volume dS minimum without D3-bar branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau's

    CERN Document Server

    Misra, Aalok

    2008-01-01

    We consider issues of moduli stabilization and "area codes" for type II flux compactifications, and the "Inverse Problem" and "Fake Superpotentials" for extremal (non)supersymmetric black holes in type II compactifications on (orientifold of) a compact two-parameter Calabi-Yau expressed as a degree-18 hypersurface in WCP^4[1,1,1,6,9] which has multiple singular loci in its moduli space. We argue the existence of extended "area codes" [1] wherein for the same set of large NS-NS and RR fluxes, one can stabilize all the complex structure moduli and the axion-dilaton modulus (to different sets of values) for points in the moduli space away as well as near the different singular conifold loci leading to the existence of domain walls. By including non-perturbative alpha' and instanton corrections in the Kaehler potential and superpotential [2], we show the possibility of getting a large-volume non-supersymmetric (A)dS minimum. Further, using techniques of [3] we explicitly show that given a set of moduli and choice...

  1. Two-Layer Feedback Neural Networks with Associative Memories

    International Nuclear Information System (INIS)

    Gui-Kun, Wu; Hong, Zhao

    2008-01-01

    We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly. (general)

  2. Invariant polygons in systems with grazing-sliding.

    Science.gov (United States)

    Szalai, R; Osinga, H M

    2008-06-01

    The paper investigates generic three-dimensional nonsmooth systems with a periodic orbit near grazing-sliding. We assume that the periodic orbit is unstable with complex multipliers so that two dominant frequencies are present in the system. Because grazing-sliding induces a dimension loss and the instability drives every trajectory into sliding, the system has an attractor that consists of forward sliding orbits. We analyze this attractor in a suitably chosen Poincare section using a three-parameter generalized map that can be viewed as a normal form. We show that in this normal form the attractor must be contained in a finite number of lines that intersect in the vertices of a polygon. However the attractor is typically larger than the associated polygon. We classify the number of lines involved in forming the attractor as a function of the parameters. Furthermore, for fixed values of parameters we investigate the one-dimensional dynamics on the attractor.

  3. Forward and adjoint sensitivity computation of chaotic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiqi, E-mail: qiqi@mit.edu [Department of Aeronautics and Astronautics, MIT, 77 Mass Ave., Cambridge, MA 02139 (United States)

    2013-02-15

    This paper describes a forward algorithm and an adjoint algorithm for computing sensitivity derivatives in chaotic dynamical systems, such as the Lorenz attractor. The algorithms compute the derivative of long time averaged “statistical” quantities to infinitesimal perturbations of the system parameters. The algorithms are demonstrated on the Lorenz attractor. We show that sensitivity derivatives of statistical quantities can be accurately estimated using a single, short trajectory (over a time interval of 20) on the Lorenz attractor.

  4. Hyperchaotic Chameleon: Fractional Order FPGA Implementation

    Directory of Open Access Journals (Sweden)

    Karthikeyan Rajagopal

    2017-01-01

    Full Text Available There are many recent investigations on chaotic hidden attractors although hyperchaotic hidden attractor systems and their relationships have been less investigated. In this paper, we introduce a hyperchaotic system which can change between hidden attractor and self-excited attractor depending on the values of parameters. Dynamic properties of these systems are investigated. Fractional order models of these systems are derived and their bifurcation with fractional orders is discussed. Field programmable gate array (FPGA implementations of the systems with their power and resource utilization are presented.

  5. Noise-Induced Riddling in Chaotic Systems

    International Nuclear Information System (INIS)

    Lai, Y.; Grebogi, C.

    1996-01-01

    Recent works have considered the situation of riddling where, when a chaotic attractor lying in an invariant subspace is transversely stable, the basin of the attractor can be riddled with holes that belong to the basin of another attractor. We show that riddling can be induced by arbitrarily small random noise even if the attractor is transversely unstable, and we obtain universal scaling laws for noise-induced riddling. Our results imply that the phenomenon of riddling can be more prevalent than expected before, as noise is practically inevitable in dynamical systems. copyright 1996 The American Physical Society

  6. Emergence of unstable itinerant orbits in a recurrent neural network model

    International Nuclear Information System (INIS)

    Suemitsu, Yoshikazu; Nara, Shigetoshi

    2005-01-01

    A recurrent neural network model with time delay is investigated by numerical methods. The model functions as both conventional associative memory and also enables us to embed a new kind of memory attractor that cannot be realized in models without time delay, for example chain-ring attractors. This is attributed to the fact that the time delay extends the available state space dimension. The difference between the basin structures of chain-ring attractors and of isolated cycle attractors is investigated with respect to the two attractor pattern sets, random memory patterns and designed memory patterns with intended structures. Compared to isolated attractors with random memory patterns, the basins of chain-ring attractors are reduced considerably. Computer experiments confirm that the basin volume of each embedded chain-ring attractor shrinks and the emergence of unstable itinerant orbits in the outer state space of the memory attractor basins is discovered. The instability of such itinerant orbits is investigated. Results show that a 1-bit difference in initial conditions does not exceed 10% of a total dimension within 100 updating steps

  7. Complex dynamics of a new 3D Lorenz-type autonomous chaotic ...

    Indian Academy of Sciences (India)

    Newautonomous chaotic system; chaotic attractors; Lyapunov stability theory; ultimate ... College of Mathematics and Statistics, Chongqing Technology and Business ... College of Electronic and Information Engineering, Southwest University, ...

  8. Analysis of stochastic effects in Kaldor-type business cycle discrete model

    Science.gov (United States)

    Bashkirtseva, Irina; Ryashko, Lev; Sysolyatina, Anna

    2016-07-01

    We study nonlinear stochastic phenomena in the discrete Kaldor model of business cycles. A numerical parametric analysis of stochastically forced attractors (equilibria, closed invariant curves, discrete cycles) of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is modeled by confidence domains. The phenomenon of noise-induced transitions ;chaos-order; is discussed.

  9. Understanding Educational Change through the Lens of Complexity Science

    Science.gov (United States)

    Girtz, Suzann

    2009-01-01

    The purpose of this study was to investigate four attractor states in schools through the perceptions of formal leaders that engaged in and reflected upon school reform regarding the Millennial generation. The term attractor was used as a metaphor for a habitual pattern, gleaned from complexity science which informs of new ways in which to…

  10. Crises in a dissipative bouncing ball model

    Energy Technology Data Exchange (ETDEWEB)

    Livorati, André L.P., E-mail: livorati@usp.br [Departamento de Física, UNESP, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); School of Mathematics, University of Bristol, Bristol, BS8 1TW (United Kingdom); Instituto de Física, IFUSP, Universidade de São Paulo, USP, Rua do Matão, Tr.R 187, Cidade Universitária, 05314-970, São Paulo, SP (Brazil); Caldas, Iberê L. [Instituto de Física, IFUSP, Universidade de São Paulo, USP, Rua do Matão, Tr.R 187, Cidade Universitária, 05314-970, São Paulo, SP (Brazil); Dettmann, Carl P. [School of Mathematics, University of Bristol, Bristol, BS8 1TW (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil)

    2015-11-06

    Highlights: • We studied a dissipative bouncing ball dynamics. • A two-dimensional nonlinear mapping describes the dynamics. • Crises between attractors and its manifolds were characterized. • A new physical crisis between vibrating platform and an attractor was characterized. • The existence of a ‘robust’ chaotic attractor was set. - Abstract: The dynamics of a bouncing ball model under the influence of dissipation is investigated by using a two-dimensional nonlinear mapping. When high dissipation is considered, the dynamics evolves to different attractors. The evolution of the basins of the attracting fixed points is characterized, as we vary the control parameters. Crises between the attractors and their boundaries are observed. We found that the multiple attractors are intertwined, and when the boundary crisis between their stable and unstable manifolds occurs, it creates a successive mechanism of destruction for all attractors originated by the sinks. Also, a physical impact crisis is described, an important mechanism in the reduction of the number of attractors.

  11. NUMERICAL ANALYSIS OF A CHAOTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    任志坚

    2001-01-01

    This paper further proves that a single spiral strange attractor can be observed in an extremely simple autonomous electrical circuit by computer simulation. It is of third order and has only one nonlinear element: a three-segment piecewise linear resistor. The digital analyses show that the strange attractor has peculiar features compared with other third-order differential systems.

  12. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Article ID 33 Research Article. Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors · BANG-CHENG LAI JIAN-JUN HE · More Details Abstract Fulltext PDF. In this paper, we construct a novel 4D autonomous chaotic ...

  13. Dynamic analysis, circuit implementation and passive control of a ...

    Indian Academy of Sciences (India)

    BANG-CHENG LAI

    2018-02-08

    Feb 8, 2018 ... strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two ... have been found to construct chaotic system with multi- ..... ent coloured branches of X0 (green colour) and Y0 (pink.

  14. Crises-induced intermittencies in a coherently driven system of two-level atoms

    International Nuclear Information System (INIS)

    Pando L, C.L.; Perez, G.; Cerdeira, H.A.

    1993-04-01

    We study the coherent dynamics of a thin layer of two-level atoms driven by an external coherent field and a phase conjugated mirror (PCM). Since the variables of the system are defined on the Bloch sphere, the third dimension is provided by the temporal modulation of the Rabi frequencies, which are induced by a PCM which reflects an electric field with a carrier frequency different from the incident one. We show that as the PCM gain coefficient is changed period doubling leading to chaos occurs. We find crises of attractor merging and attractor widening types related to homoclinic and heteroclinic tangencies respectively. For the attractor merging crises we find the critical exponent for the characteristic time of intermittency versus the control parameter which is given by the gain coefficient of the PCM. We show that during the crises of attractor widening type, another crisis due to attractor destruction occurs as the control parameter is changed. The latter is due to the collision of the old attractor with its basin boundary when a new attractor is created. This new attractor is stable only in a very small interval in the neighborhood of this second crisis. (author). 31 refs, 15 figs

  15. Multistability in Chua's circuit with two stable node-foci

    Energy Technology Data Exchange (ETDEWEB)

    Bao, B. C.; Wang, N.; Xu, Q. [School of Information Science and Engineering, Changzhou University, Changzhou 213164 (China); Li, Q. D. [Research Center of Analysis and Control for Complex Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-04-15

    Only using one-stage op-amp based negative impedance converter realization, a simplified Chua's diode with positive outer segment slope is introduced, based on which an improved Chua's circuit realization with more simpler circuit structure is designed. The improved Chua's circuit has identical mathematical model but completely different nonlinearity to the classical Chua's circuit, from which multiple attractors including coexisting point attractors, limit cycle, double-scroll chaotic attractor, or coexisting chaotic spiral attractors are numerically simulated and experimentally captured. Furthermore, with dimensionless Chua's equations, the dynamical properties of the Chua's system are studied including equilibrium and stability, phase portrait, bifurcation diagram, Lyapunov exponent spectrum, and attraction basin. The results indicate that the system has two symmetric stable nonzero node-foci in global adjusting parameter regions and exhibits the unusual and striking dynamical behavior of multiple attractors with multistability.

  16. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com [Institute of Modern Circuits and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Xiaowei [Department of Automation, Shanghai University, Shanghai 200072 (China)

    2016-07-15

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.

  17. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.

    Science.gov (United States)

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2016-07-01

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.

  18. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation

    International Nuclear Information System (INIS)

    Saiki, Yoshitaka; Yamada, Michio; Chian, Abraham C.-L.; Miranda, Rodrigo A.; Rempel, Erico L.

    2015-01-01

    The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs

  19. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Yoshitaka, E-mail: yoshi.saiki@r.hit-u.ac.jp [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan); Yamada, Michio [Research Institute for Mathematical Sciences (RIMS), Kyoto University, Kyoto 606-8502 (Japan); Chian, Abraham C.-L. [Paris Observatory, LESIA, CNRS, 92195 Meudon (France); National Institute for Space Research (INPE), P.O. Box 515, São José dos Campos, São Paulo 12227-010 (Brazil); Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil); School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005 (Australia); Department of Biomedical Engineering, George Washington University, Washington, DC 20052 (United States); Miranda, Rodrigo A. [Faculty UnB-Gama, and Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900 (Brazil); Rempel, Erico L. [Institute of Aeronautical Technology (ITA) and World Institute for Space Environment Research (WISER), São José dos Campos, São Paulo 12228-900 (Brazil)

    2015-10-15

    The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.

  20. Mechanism for boundary crises in quasiperiodically forced period-doubling systems

    International Nuclear Information System (INIS)

    Kim, Sang-Yoon; Lim, Woochang

    2005-01-01

    We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a representative model for quasiperiodically forced period-doubling systems. For small quasiperiodic forcing ε, a chaotic attractor disappears suddenly via a 'standard' boundary crisis when it collides with the smooth unstable torus. However, when passing a threshold value of ε, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from the interior of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is shown that a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abruptly through a new type of boundary crisis when it collides with an invariant 'ring-shaped' unstable set which has no counterpart in the unforced case

  1. Multistability in Chua's circuit with two stable node-foci

    International Nuclear Information System (INIS)

    Bao, B. C.; Wang, N.; Xu, Q.; Li, Q. D.

    2016-01-01

    Only using one-stage op-amp based negative impedance converter realization, a simplified Chua's diode with positive outer segment slope is introduced, based on which an improved Chua's circuit realization with more simpler circuit structure is designed. The improved Chua's circuit has identical mathematical model but completely different nonlinearity to the classical Chua's circuit, from which multiple attractors including coexisting point attractors, limit cycle, double-scroll chaotic attractor, or coexisting chaotic spiral attractors are numerically simulated and experimentally captured. Furthermore, with dimensionless Chua's equations, the dynamical properties of the Chua's system are studied including equilibrium and stability, phase portrait, bifurcation diagram, Lyapunov exponent spectrum, and attraction basin. The results indicate that the system has two symmetric stable nonzero node-foci in global adjusting parameter regions and exhibits the unusual and striking dynamical behavior of multiple attractors with multistability.

  2. Mechanism for boundary crises in quasiperiodically forced period-doubling systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Yoon [Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701 (Korea, Republic of)]. E-mail: sykim@kangwon.ac.kr; Lim, Woochang [Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701 (Korea, Republic of)]. E-mail: wclim@kwnu.kangwon.ac.kr

    2005-01-10

    We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a representative model for quasiperiodically forced period-doubling systems. For small quasiperiodic forcing {epsilon}, a chaotic attractor disappears suddenly via a 'standard' boundary crisis when it collides with the smooth unstable torus. However, when passing a threshold value of {epsilon}, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from the interior of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is shown that a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abruptly through a new type of boundary crisis when it collides with an invariant 'ring-shaped' unstable set which has no counterpart in the unforced case.

  3. Is Cygus X-1 a chaotic dynamical system?

    International Nuclear Information System (INIS)

    Unno, Wasaburo; Yoneyama, Tadaoki; Urata, Kenji; Masaki, Isao; Kondo, Masa-aki; Inoue, Hajime.

    1990-01-01

    X-ray data of Cyg X-1 observed by the Tenma satellite were analyzed to determine whether Cyg X-1 is a chaotic dynamical system of low dimension. Since Poisson noise disturbs the determination of the attractor dimension of the system, comparative studies were carried out for the Cyg X-1 data relative to artificial data of purely stochastic Poisson noise and to a Lorenz attractor plus noise. The attractor dimension was searched using trajectories of time series data in phase space, the dimension of which was varied up to 21. The relation between the attractor dimension and the phase-space dimension for the Cyg X-1 data starts to deviate from that of noise data from a phase-space dimension of about 7, showing the presence of an attractor with a dimension of about 7 or less. Though three positive Lyapunov exponents were calculated, they are too small (∼10 -2 ) to prove with certainty that the Cyg X-1 attractor should be a strange attractor. (author)

  4. Personalized identification of differentially expressed pathways in pediatric sepsis.

    Science.gov (United States)

    Li, Binjie; Zeng, Qiyi

    2017-10-01

    Sepsis is a leading killer of children worldwide with numerous differentially expressed genes reported to be associated with sepsis. Identifying core pathways in an individual is important for understanding septic mechanisms and for the future application of custom therapeutic decisions. Samples used in the study were from a control group (n=18) and pediatric sepsis group (n=52). Based on Kauffman's attractor theory, differentially expressed pathways associated with pediatric sepsis were detected as attractors. When the distribution results of attractors are consistent with the distribution of total data assessed using support vector machine, the individualized pathway aberrance score (iPAS) was calculated to distinguish differences. Through attractor and Kyoto Encyclopedia of Genes and Genomes functional analysis, 277 enriched pathways were identified as attractors. There were 81 pathways with Ppathways with Ppathway clusters and four sample clusters. Thus, in the majority pediatric sepsis samples, core pathways can be detected as different from accumulated normal samples. In conclusion, a novel procedure that identified the dysregulated attractors in individuals with pediatric sepsis was constructed. Attractors can be markers to identify pathways involved in pediatric sepsis. iPAS may provide a correlation score for each of the signaling pathways present in an individual patient. This process may improve the personalized interpretation of disease mechanisms and may be useful in the forthcoming era of personalized medicine.

  5. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Science.gov (United States)

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo

    2015-10-01

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.

  6. Vanishing of local non-Gaussianity in canonical single field inflation

    Science.gov (United States)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We study the production of observable primordial local non-Gaussianity in two opposite regimes of canonical single field inflation: attractor (standard single field slow-roll inflation) and non attractor (ultra slow-roll inflation). In the attractor regime, the standard derivation of the bispectrum's squeezed limit using co-moving coordinates gives the well known Maldacena's consistency relation fNL = 5 (1‑ns) / 12. On the other hand, in the non-attractor regime, the squeezed limit offers a substantial violation of this relation given by fNL = 5/2. In this work we argue that, independently of whether inflation is attractor or non-attractor, the size of the observable primordial local non-Gaussianity is predicted to be fNLobs = 0 (a result that was already understood to hold in the case of attractor models). To show this, we follow the use of the so-called Conformal Fermi Coordinates (CFC), recently introduced in the literature. These coordinates parametrize the local environment of inertial observers in a perturbed FRW spacetime, allowing one to identify and compute gauge invariant quantities, such as n-point correlation functions. Concretely, we find that during inflation, after all the modes have exited the horizon, the squeezed limit of the 3-point correlation function of curvature perturbations vanishes in the CFC frame, regardless of the inflationary regime. We argue that such a cancellation should persist after inflation ends.

  7. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojun [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001 (China); Hong, Ling, E-mail: hongling@mail.xjtu.edu.cn; Jiang, Jun [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-15

    Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuous change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.

  8. Fast convergence of spike sequences to periodic patterns in recurrent networks

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.

    2002-01-01

    The dynamical attractors are thought to underlie many biological functions of recurrent neural networks. Here we show that stable periodic spike sequences with precise timings are the attractors of the spiking dynamics of recurrent neural networks with global inhibition. Almost all spike sequences converge within a finite number of transient spikes to these attractors. The convergence is fast, especially when the global inhibition is strong. These results support the possibility that precise spatiotemporal sequences of spikes are useful for information encoding and processing in biological neural networks

  9. From Wang-Chen System with Only One Stable Equilibrium to a New Chaotic System Without Equilibrium

    Science.gov (United States)

    Pham, Viet-Thanh; Wang, Xiong; Jafari, Sajad; Volos, Christos; Kapitaniak, Tomasz

    2017-06-01

    Wang-Chen system with only one stable equilibrium as well as the coexistence of hidden attractors has attracted increasing interest due to its striking features. In this work, the effect of state feedback on Wang-Chen system is investigated by introducing a further state variable. It is worth noting that a new chaotic system without equilibrium is obtained. We believe that the system is an interesting example to illustrate the conversion of hidden attractors with one stable equilibrium to hidden attractors without equilibrium.

  10. Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part

    Directory of Open Access Journals (Sweden)

    Bixiang Wang

    2013-08-01

    Full Text Available We prove the existence and uniqueness of random attractors for the p-Laplace equation driven simultaneously by non-autonomous deterministic and stochastic forcing. The nonlinearity of the equation is allowed to have a polynomial growth rate of any order which may be greater than p. We further establish the upper semicontinuity of random attractors as the intensity of noise approaches zero. In addition, we show the pathwise periodicity of random attractors when all non-autonomous deterministic forcing terms are time periodic.

  11. Dynamic analysis of a buckled asymmetric piezoelectric beam for energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, Louis, E-mail: louis01@umail.ucsb.edu; Moehlis, Jeff [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States)

    2016-03-15

    A model of a buckled beam energy harvester is analyzed to determine the phenomena behind the transition between high and low power output levels. It is shown that the presence of a chaotic attractor is a sufficient condition to predict high power output, though there are relatively small areas where high output is achieved without a chaotic attractor. The chaotic attractor appears as a product of a period doubling cascade or a boundary crisis. Bifurcation diagrams provide insight into the development of the chaotic region as the input power level is varied, as well as the intermixed periodic windows.

  12. Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion

    Directory of Open Access Journals (Sweden)

    S. A. Kaschenko

    2014-01-01

    Full Text Available We study the dynamics of finite-difference approximation on spatial variables of a logistic equation with delay and diffusion. It is assumed that the diffusion coefficient is small and the Malthusian coefficient is large. The question of the existence and asymptotic behavior of attractors was studied with special asymptotic methods. It is shown that there is a rich array of different types of attractors in the phase space: leading centers, spiral waves, etc. The main asymptotic characteristics of all solutions from the corresponding attractors are adduced in this work. Typical graphics of wave fronts motion of different structures are represented in the article.

  13. Global dynamics of a reaction-diffusion system

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2011-02-01

    Full Text Available In this work the existence of a global attractor for the semiflow of weak solutions of a two-cell Brusselator system is proved. The method of grouping estimation is exploited to deal with the challenge in proving the absorbing property and the asymptotic compactness of this type of coupled reaction-diffusion systems with cubic autocatalytic nonlinearity and linear coupling. It is proved that the Hausdorff dimension and the fractal dimension of the global attractor are finite. Moreover, the existence of an exponential attractor for this solution semiflow is shown.

  14. Controlling bistability by linear augmentation

    International Nuclear Information System (INIS)

    Sharma, Pooja Rani; Shrimali, Manish Dev; Prasad, Awadhesh; Feudel, Ulrike

    2013-01-01

    In many bistable oscillating systems only one of the attractors is desired to possessing certain system performance. We present a method to drive a bistable system to a desired target attractor by annihilating the other one. This shift from bistability to monostability is achieved by augmentation of the nonlinear oscillator with a linear control system. For a proper choice of the control function one of the attractors disappears at a critical coupling strength in an control-induced boundary crisis. This transition from bistability to monostability is demonstrated with two paradigmatic examples, the autonomous Chua oscillator and a neuronal system with a periodic input signal.

  15. Motions of galaxies in the neighborhood of the local group

    International Nuclear Information System (INIS)

    Faber, S.M.; Burstein, D.

    1988-01-01

    Two samples of spiral galaxies, as well as elliptical galaxies, are presently used to investigate the velocity field of galaxies relative to the cosmic microwave background to a distance of 3000 km/sec. The velocity-field models optimized include motions due to a spherically-symmetric Great Attractor, a Virgocentric flow, and a Local Anomally of which the Local Group is a part. While the spiral samples are in good agreement with the Great-Attractor-Virgo model for the motion of elliptical galaxies, new observations indicate that the Great Attractor is not spherically symmetric in its inner regions and may require modification of the model. 27 refs

  16. Free association transitions in models of cortical latching dynamics

    International Nuclear Information System (INIS)

    Russo, Eleonora; Treves, Alessandro; Kropff, Emilio; Namboodiri, Vijay M K

    2008-01-01

    Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes

  17. Hyperbolic Chaos A Physicist’s View

    CERN Document Server

    Kuznetsov, Sergey P

    2012-01-01

    "Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos.   This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering.   Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.  

  18. Cancer Theory from Systems Biology Point of View

    Science.gov (United States)

    Wang, Gaowei; Tang, Ying; Yuan, Ruoshi; Ao, Ping

    In our previous work, we have proposed a novel cancer theory, endogenous network theory, to understand mechanism underlying cancer genesis and development. Recently, we apply this theory to hepatocellular carcinoma (HCC). A core endogenous network of hepatocyte was established by integrating the current understanding of hepatocyte at molecular level. Quantitative description of the endogenous network consisted of a set of stochastic differential equations which could generate many local attractors with obvious or non-obvious biological functions. By comparing with clinical observation and experimental data, the results showed that two robust attractors from the model reproduced the main known features of normal hepatocyte and cancerous hepatocyte respectively at both modular and molecular level. In light of our theory, the genesis and progression of cancer is viewed as transition from normal attractor to HCC attractor. A set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care were provided.

  19. Jump and pull-in dynamics of an electrically actuated bistable MEMS device

    KAUST Repository

    Ruzziconi, Laura; Lenci, Stefano; Younis, Mohammad I.

    2014-01-01

    and practice, a dynamical integrity analysis is performed in order to take them into account. We build the integrity charts, which examine the practical vulnerability of each attractor. A small integrity enhances the sensitivity of the system to disturbances

  20. Evolutionary competition between boundedly rational behavioral rules in oligopoly games

    International Nuclear Information System (INIS)

    Cerboni Baiardi, Lorenzo; Lamantia, Fabio; Radi, Davide

    2015-01-01

    In this paper, we propose an evolutionary model of oligopoly competition where agents can select between different behavioral rules to make decisions on productions. We formalize the model as a general class of evolutionary oligopoly games and then we consider an example with two specific rules, namely Local Monopolistic Approximation and Gradient dynamics. We provide several results on the global dynamic properties of the model, showing that in some cases the attractor of the system may belong to an invariant plane where only one behavioral rule is adopted (monomorphic state). The attractors on the invariant planes can be either strong attractors or weak attractors. However, we also explain why the system can be in a state of Evolutionary Stable Heterogeneity, where it is more profitable for the agents to employ both heuristics in the long term (polymorphic state).

  1. The becoming organisation : a conversation about the added value of Chaordic Systems Thinking for organisational renewal

    NARCIS (Netherlands)

    Eijnatten, van F.M.; Wäfler, T.; Eijnatten, van F.M.

    2002-01-01

    This conceptual contribution explores the added value of Chaordic System Thinking (CST) for organisational renewal, and its consequences for future research. The paper starts with some essentials of CST (concepts of attractor, holon, discontinuous development, nonlinearity, chaordic properties). In

  2. Riddling bifurcation and interstellar journeys

    International Nuclear Information System (INIS)

    Kapitaniak, Tomasz

    2005-01-01

    We show that riddling bifurcation which is characteristic for low-dimensional attractors embedded in higher-dimensional phase space can give physical mechanism explaining interstellar journeys described in science-fiction literature

  3. Modelling the complex dynamics of vegetation, livestock and rainfall ...

    African Journals Online (AJOL)

    Open Access DOWNLOAD FULL TEXT ... In this paper, we present mathematical models that incorporate ideas from complex systems theory to integrate several strands of rangeland theory in a hierarchical framework. ... Keywords: catastrophe theory; complexity theory; disequilibrium; hysteresis; moving attractors

  4. Free association transitions in models of cortical latching dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Eleonora; Treves, Alessandro; Kropff, Emilio [SISSA, Cognitive Neuroscience, via Beirut 4, 34014 Trieste (Italy); Namboodiri, Vijay M K [Department of Physics, IIT Bombay, Powai, Mumbai, India 400076 (India)], E-mail: russo@sissa.it, E-mail: vijay_mkn@iitb.ac.in, E-mail: ale@sissa.it, E-mail: kropff@sissa.it

    2008-01-15

    Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes.

  5. 'The role of chaos in cognition and music - super selection rules moderating complexity' - a research program

    Energy Technology Data Exchange (ETDEWEB)

    Nicolis, John S. E-mail: lalnicol-archgist@tee.gr

    2007-08-15

    We propose a common formalism concerning the non-linear filtering abilities of brains and enzymes via the study of the unevenness of the invariant measures of the multifractal attractors involved (classical and quantum respectively)

  6. An algorithm for engineering regime shifts in one-dimensional dynamical systems

    Science.gov (United States)

    Tan, James P. L.

    2018-01-01

    Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.

  7. Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models.

    Science.gov (United States)

    Franke, John E; Yakubu, Abdul-Aziz

    2008-12-01

    The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark-Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.

  8. Old Hickory Lake Appendix M To Park Management Shoreline Management Plan

    Science.gov (United States)

    2014-07-01

    attractors, establishment of nesting/forage habitat such as monarch butterfly way stations, construction of chimney swift towers, etc. 22. Leases...Elaeagnus umbellata Thunb.) Japanese Bush honeysuckles (Lonicera japonica.) Amur Bush honeysuckle (Lonicera maackii.) Marrows Bush honeysuckle (Lonicera

  9. Hypogenetic chaotic jerk flows

    International Nuclear Information System (INIS)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-01-01

    Removing the amplitude or polarity information in the feedback loop of a jerk structure shows that special nonlinearities with partial information in the variable can also lead to chaos. Some striking properties are found for this kind of hypogenetic chaotic jerk flow, including multistability of symmetric coexisting attractors from an asymmetric structure, hidden attractors with respect to equilibria but with global attraction, easy amplitude control, and phase reversal which is convenient for chaos applications. - Highlights: • Hypogenetic chaotic jerk flows with incomplete feedback of amplitude or polarity are obtained. • Multistability of symmetric coexisting attractors from an asymmetric structure is found. • Some jerk systems have hidden attractors with respect to equilibria but have global attraction. • These chaotic jerk flows have the properties of amplitude control and phase reversal.

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    butterfly chaotic attractors generated from generalised Sprott C system · QIANG LAI XIAO-WEN ZHAO ... FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations.

  11. Time-delayed chameleon: Analysis, synchronization and FPGA ...

    Indian Academy of Sciences (India)

    Karthikeyan Rajagopal

    of Technology, Lae, Papua New Guinea. 2Biomedical ... MS received 7 June 2017; revised 20 July 2017; accepted 2 August 2017; published online 2 December 2017 ... families of chaotic attractors depending on the choices of parameters.

  12. Time-delayed chameleon: Analysis, synchronization and FPGA

    Indian Academy of Sciences (India)

    ... chaotic system which can belong to different families of chaotic attractors depending ... and Communication Engineering, The PNG University of Technology, Lae, ... version published online: Final version published online: 2 December 2017 ...

  13. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A new 4D chaotic system with hidden attractor and its engineering applications: Analog circuit design and field programmable gate array implementation .... On synchronisation of a class of complex chaotic systems with complex unknown ...

  14. Long-time behavior for suspension bridge equations with time delay

    Science.gov (United States)

    Park, Sun-Hye

    2018-04-01

    In this paper, we consider suspension bridge equations with time delay of the form u_{tt}(x,t) + Δ ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- τ ) + f(u(x,t)) = g(x). Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.

  15. 'The role of chaos in cognition and music - super selection rules moderating complexity' - a research program

    International Nuclear Information System (INIS)

    Nicolis, John S.

    2007-01-01

    We propose a common formalism concerning the non-linear filtering abilities of brains and enzymes via the study of the unevenness of the invariant measures of the multifractal attractors involved (classical and quantum respectively)

  16. The analysis of a novel 3-D autonomous system and circuit implementation

    International Nuclear Information System (INIS)

    Dong Gaogao; Zheng Song; Tian Lixin; Du Ruijin; Sun Mei; Shi Zhiyan

    2009-01-01

    This Letter presents a new three-dimensional autonomous system with four quadratic terms. The system with five equilibrium points has complex chaotic dynamics behaviors. It can generate many different single chaotic attractors and double coexisting chaotic attractors over a large range of parameters. We observe that these chaotic attractors were rarely reported in previous work. The complex dynamical behaviors of the system are further investigated by means of phase portraits, Lyapunov exponents spectrum, Lyapunov dimension, dissipativeness of system, bifurcation diagram and Poincare map. The physical circuit experimental results of the chaotic attractors show agreement with numerical simulations. More importantly, the analysis of frequency spectrum shows that the novel system has a broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.

  17. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization...

  18. Dynamics of Interacting Tachyonic Teleparallel Dark Energy

    International Nuclear Information System (INIS)

    Banijamali, Ali

    2014-01-01

    We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity. We analyze the phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor. So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.

  19. Non-Kaehler attracting manifolds

    International Nuclear Information System (INIS)

    Dall'Agata, Gianguido

    2006-01-01

    We observe that the new attractor mechanism describing IIB flux vacua for Calabi-Yau compactifications has a possible extension to the landscape of non-Kaehler vacua that emerge in heterotic compactifications with fluxes. We focus on the effective theories coming from compactifications on generalized half-flat manifolds, showing that the Minkowski 'attractor points' for 3-form fluxes are special-hermitian manifolds

  20. Applications of chaotic neurodynamics in pattern recognition

    Science.gov (United States)

    Baird, Bill; Freeman, Walter J.; Eeckman, Frank H.; Yao, Yong

    1991-08-01

    Network algorithms and architectures for pattern recognition derived from neural models of the olfactory system are reviewed. These span a range from highly abstract to physiologically detailed, and employ the kind of dynamical complexity observed in olfactory cortex, ranging from oscillation to chaos. A simple architecture and algorithm for analytically guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in the same network is described. A matrix inversion determines network weights, given prototype patterns to be stored. There are N units of capacity in an N node network with 3N2 weights. It costs one unit per static attractor, two per Fourier component of each sequence, and three to four per chaotic attractor. There are no spurious attractors, and for sequences there is a Liapunov function in a special coordinate system which governs the approach of transient states to stored trajectories. Unsupervised or supervised incremental learning algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be implemented. The architecture can be ''folded'' into a recurrent network with higher order weights that can be used as a model of cortex that stores oscillatory and chaotic attractors by a Hebb rule. Network performance is demonstrated by application to the problem of real-time handwritten digit recognition. An effective system with on-line learning has been written by Eeckman and Baird for the Macintosh. It utilizes static, oscillatory, and/or chaotic attractors of two kinds--Lorenze attractors, or attractors resulting from chaotically interacting oscillatory modes. The successful application to an industrial pattern recognition problem of a network architecture of considerable physiological and dynamical complexity, developed by Freeman and Yao, is described. The data sets of the problem come in three classes of difficulty, and performance of the biological network is