WorldWideScience

Sample records for attenuates murine diet-induced

  1. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  2. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  3. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  4. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity.

    Science.gov (United States)

    Jiang, Tingting; Gao, Xuejin; Wu, Chao; Tian, Feng; Lei, Qiucheng; Bi, Jingcheng; Xie, Bingxian; Wang, Hong Yu; Chen, Shuai; Wang, Xinying

    2016-01-01

    This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8) or a high-fat diet (HFD; n = 32) for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8) or pectin-supplemented HFD (HF-P group; n = 8) for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p apple-derived pectin could modulate gut microbiota, attenuate metabolic endotoxemia and inflammation, and consequently suppress weight gain and fat accumulation in diet induced obese rats. PMID:26938554

  5. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome.

    Science.gov (United States)

    Roopchand, Diana E; Carmody, Rachel N; Kuhn, Peter; Moskal, Kristin; Rojas-Silva, Patricio; Turnbaugh, Peter J; Raskin, Ilya

    2015-08-01

    Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols. PMID:25845659

  6. AT1 receptor blockade attenuates insulin resistance and myocardial remodeling in rats with diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Silvio A Oliveira-Junior

    Full Text Available BACKGROUND: Although obesity has been associated with metabolic and cardiac disturbances, the carrier mechanisms for these responses are poorly understood. This study analyzed whether angiotensin II blockade attenuates metabolic and cardiovascular disorders in rats with diet-induced obesity. MATERIAL AND METHODS: Wistar-Kyoto (n = 40 rats were subjected to control (C; 3.2 kcal/g and hypercaloric diets (OB; 4.6 kcal/g for 30 weeks. Subsequently, rats were distributed to four groups: C, CL, OB, and OBL. L groups received Losartan (30 mg/kg/day for five weeks. After this period we performed in vivo glucose tolerance and insulin tolerance tests, and measured triacylglycerol, insulin, angiotensin-converting enzyme activity (ACE, and leptin levels. Cardiovascular analyzes included systolic blood pressure (SBP, echocardiography, myocardial morphometric study, myosin heavy chain composition, and measurements of myocardial protein levels of angiotensin, extracellular signal-regulated (ERK1/2, c-Jun amino-terminal kinases (JNK, insulin receptor subunit β (βIR, and phosphatidylinositol 3-kinase (PI3K by Western Blot. RESULTS: Glucose metabolism, insulin, lipid, and ACE activity disorders observed with obesity were minimized by Losartan. Moreover, obesity was associated with increased SBP, myocardial hypertrophy, interstitial fibrosis and improved systolic performance; these effects were also minimized with Losartan. On a molecular level, OB exhibited higher ERK, Tyr-phosphorylated βIR, and PI3K expression, and reduced myocardial angiotensin and JNK expression. ERK and JNK expression were regulated in the presence of Losartan, while angiotensin, Tyr-βRI, total and Tyr-phosphorylated PI3K expression were elevated in the OBL group. CONCLUSION: Angiotensin II blockade with Losartan attenuates obesity-induced metabolic and cardiovascular changes.

  7. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it

    OpenAIRE

    Foster, Michelle T.; Softic, Samir; Caldwell, Jody; Kohli, Rohit; deKloet, Annette D; Seeley, Randy J.

    2013-01-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the...

  8. Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice

    OpenAIRE

    Fukumitsu, S.; Aida, K; Ueno, N; Ozawa, S.; Takahashi, Y.; Kobori, M

    2008-01-01

    Flaxseed lignan secoisolariciresinol diglucoside (SDG) has been reported to prevent and alleviate lifestyle-related diseases including diabetes and hypercholesterolaemic atherosclerosis. This study assesses the effect of SDG on the development of diet-induced obesity in mice and the effect of the SDG metabolite enterodiol (END) on adipogenesis in 3T3-L1 adipocytes. We compared body weight, visceral fat weight, liver fat content, serum parameters, mRNA levels of lipid metabolism-related enzyme...

  9. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    2016-02-01

    Full Text Available This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8 or a high-fat diet (HFD; n = 32 for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8 or pectin-supplemented HFD (HF-P group; n = 8 for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p < 0.01 and serum total cholesterol level (1.46 ± 0.13 mmol/L vs. 2.06 ± 0.26 mmol/L, p < 0.01. Compared to the Chow group, the HF group showed a decrease in Bacteroidetes phylum and an increase in Firmicutes phylum, as well as subordinate categories (p < 0.01. These changes were restored to the normal levels in the HF-P group. Furthermore, compared to the HF group, the HF-P group displayed improved intestinal alkaline phosphatase (0.57 ± 0.20 vs. 0.30 ± 0.19, p < 0.05 and claudin 1 (0.76 ± 0.14 vs. 0.55 ± 0.18, p < 0.05 expression, and decreased Toll-like receptor 4 expression in ileal tissue (0.76 ± 0.58 vs. 2.04 ± 0.89, p < 0.01. The HF-P group also showed decreased inflammation (TNFα: 316.13 ± 7.62 EU/mL vs. 355.59 ± 8.10 EU/mL, p < 0.01; IL-6: 51.78 ± 2.35 EU/mL vs. 58.98 ± 2.59 EU/mL, p < 0.01 and metabolic endotoxemia (2.83 ± 0.42 EU/mL vs. 0.68 ± 0.14 EU/mL, p < 0.01. These results suggest that apple-derived pectin could modulate gut microbiota, attenuate metabolic endotoxemia and inflammation, and consequently suppress weight gain and fat accumulation in diet induced obese rats.

  10. Phenolic compounds from Rosemary (Rosmarinus officinalis L. attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Afonso Milessa S

    2013-02-01

    Full Text Available Abstract Background Phenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk. Methods To evaluate the effect of an aqueous extract (AQ and non-esterified phenolic fraction (NEPF from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C and 5 hypercholesterolemic diet groups, with 1 receiving water (HC, 2 receiving AQ at concentrations of 7 and 140 mg/kg body weight (AQ70 and AQ140, respectively, and 2 receiving NEPF at concentrations of 7 and 14 mg/kg body weight (NEPF7 and NEPF14, respectively by gavage for 4 weeks. Results In vitro, both AQ and NEPF had remarkable antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH● assay, which was similar to BHT. In vivo, the group that received AQ at 70 mg/kg body weight had lower serum total cholesterol (−39.8%, non-HDL-c (−44.4% and thiobarbituric acid reactive substance (TBARS levels (−37.7% compared with the HC group. NEPF (7 and 14 mg/kg reduced the tissue TBARS levels and increased the activity of tissular antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase. Neither AQ nor NEPF was able to ameliorate the alterations in the hypercholesterolemic diet-induced fatty acid composition in the liver. Conclusions These data suggest that phenolic compounds from rosemary ameliorate the antioxidant defense in different tissues and attenuate oxidative stress in diet-induced hypercholesterolemic rats, whereas the serum lipid profile was improved only in rats that received the aqueous extract.

  11. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Science.gov (United States)

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  12. White Pitaya (Hylocereus undatus Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Haizhao Song

    Full Text Available Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2 but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos. In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  13. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  14. High Hydrostatic Pressure Extract of Red Ginseng Attenuates Inflammation in Rats with High-fat Diet Induced Obesity.

    Science.gov (United States)

    Jung, Sunyoon; Lee, Mak-Soon; Shin, Yoonjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2015-12-01

    Chronic low-grade inflammation is associated with obesity. This study investigated effect of high hydrostatic pressure extract of red ginseng (HRG) on inflammation in rats with high-fat (HF) diet induced obesity. Male, Sprague-Dawley rats (80~110 g) were randomly divided into two groups, and fed a 45% HF diet (HF) and a 45% HF diet containing 1.5% HRG (HF+HRG) for 14 weeks. At the end of the experiment, the serum leptin level was reduced by the HRG supplementation. The mRNA expression of genes related to adipogenesis including peroxisome proliferator-activated receptor-gamma and adipocyte protein 2 was down-regulated in the white adipose tissue (WAT). The mRNA levels of major inflammatory cytokines such as tumor necrosis factor-α, monocyte chemoattractant protein 1, and interleukin-6 were remarkably down-regulated by the HRG in WAT. These results suggest that HRG might be beneficial in ameliorating the inflammation-associated health complications by suppressing adipogenic and pro-inflammatory gene expression. PMID:26770912

  15. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    International Nuclear Information System (INIS)

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad

  16. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Stek, M. Jr.; Minard, P.; Cruess, D.F.

    1984-06-01

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad.

  17. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It.

    Science.gov (United States)

    Foster, M T; Softic, S; Caldwell, J; Kohli, R; de Kloet, A D; Seeley, R J

    2013-08-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in

  18. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats

    Science.gov (United States)

    Cigarroa, Igor; Lalanza, Jaume F.; Caimari, Antoni; del Bas, Josep M.; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M.

    2016-01-01

    The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy

  19. Diet induced thermogenesis

    Directory of Open Access Journals (Sweden)

    Westerterp KR

    2004-08-01

    Full Text Available Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Results Most studies measure diet-induced thermogenesis as the increase in energy expenditure above basal metabolic rate. Generally, the hierarchy in macronutrient oxidation in the postprandial state is reflected similarly in diet-induced thermogenesis, with the sequence alcohol, protein, carbohydrate, and fat. A mixed diet consumed at energy balance results in a diet induced energy expenditure of 5 to 15 % of daily energy expenditure. Values are higher at a relatively high protein and alcohol consumption and lower at a high fat consumption. Protein induced thermogenesis has an important effect on satiety. In conclusion, the main determinants of diet-induced thermogenesis are the energy content and the protein- and alcohol fraction of the diet. Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis.

  20. Diet induced thermogenesis

    OpenAIRE

    Westerterp KR

    2004-01-01

    Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Resu...

  1. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats

    OpenAIRE

    Afonso Milessa S; de O Silva Ana Mara; Carvalho Eliane BT; Rivelli Diogo P; Barros Sílvia BM; Rogero Marcelo M; Lottenberg Ana Maria; Torres Rosângela P; Mancini-Filho Jorge

    2013-01-01

    Abstract Background Phenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk. Methods To evaluate the effect of an aqueous extract (AQ) and non-esterified phenolic fraction (NEPF) from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C) and 5 hypercholesterolemic diet groups, with 1 receiving water (HC), 2 ...

  2. Omega-3 polyunsaturated fatty acid and ursodeoxycholic acid have an additive effect in attenuating diet-induced nonalcoholic steatohepatitis in mice

    OpenAIRE

    Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il

    2014-01-01

    Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice ...

  3. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression.

    Directory of Open Access Journals (Sweden)

    Susan E Olivo-Marston

    Full Text Available Obesity is an established colon cancer risk factor, while preventing or reversing obesity via a calorie restriction (CR diet regimen decreases colon cancer risk. Unfortunately, the biological mechanisms underlying these associations are poorly understood, hampering development of mechanism-based approaches for preventing obesity-related colon cancer. We tested the hypotheses that diet-induced obesity (DIO would increase (and CR would decrease colon tumorigenesis in the mouse azoxymethane (AOM model. In addition, we established that changes in inflammatory cytokines, growth factors, and microRNAs are associated with these energy balance-colon cancer links, and thus represent mechanism-based targets for colon cancer prevention. Mice were injected with AOM once a week for 5 weeks and randomized to: 1 control diet; 2 30% CR diet; or 3 DIO diet. Mice were euthanized at week 5 (n = 12/group, 10 (n = 12/group, and 20 (n = 20/group after the last AOM injection. Colon tumors were counted, and cytokines, insulin-like growth factor 1 (IGF-1, IGF binding protein 3 (IGFBP-3, adipokines, proliferation, apoptosis, and expression of microRNAs (miRs were measured. The DIO diet regimen induced an obese phenotype (∼36% body fat, while CR induced a lean phenotype (∼14% body fat; controls were intermediate (∼26% body fat. Relative to controls, DIO increased (and CR decreased the number of colon tumors (p = 0.01, cytokines (p<0.001, IGF-1 (p = 0.01, and proliferation (p<0.001. DIO decreased (and CR increased IGFBP-3 and apoptosis (p<0.001. miRs including mir-425, mir-196, mir-155, mir-150, mir-351, mir-16, let-7, mir34, and mir-138 were differentially expressed between the dietary groups. We conclude that the enhancing effects of DIO and suppressive effects of CR on colon carcinogenesis are associated with alterations in several biological pathways, including inflammation, IGF-1, and microRNAs.

  4. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice

    OpenAIRE

    Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko

    2015-01-01

    The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise t...

  5. Orchidectomy attenuates high-salt diet-induced increases in blood pressure, renovascular resistance, and hind limb vascular dysfunction: role of testosterone.

    Science.gov (United States)

    Oloyo, Ahmed K; Sofola, Olusoga A; Yakubu, Momoh A

    2016-09-01

    Sex hormone-dependent vascular reactivity is an underlying factor contributing to sex differences in salt-dependent hypertension. This study evaluated the role of androgens (testosterone) in high salt-induced increase in blood pressure (BP) and altered vascular reactivity in renal blood flow and perfused hind limb preparation. Weanling male rats (8 weeks old, 180-200 g) were bilaterally orchidectomised or sham operated with or without testosterone replacement (Sustanon 250, 10 mg/kg intramuscularly once in 3 weeks) and placed on a normal (0.3%) or high (4.0%) NaCl diet for 6 weeks. The high-salt diet (HSD) increased arterial BP, renal vascular resistance (RVR) and positive fluid balance (FB). These changes were accompanied by decreased plasma nitric oxide levels. The increased BP, RVR and FB observed in the rats fed a HSD were reversed by orchidectomy while testosterone replacement prevented the reversal. Phenylephrine (PE)-induced increased vascular resistance in the perfused hind limb vascular bed was enhanced by HSD, the enhanced vascular resistance was prevented by orchidectomy and testosterone replacement reversed orchidectomy effect. Vasorelaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were impaired in HSD groups, orchidectomy attenuated the impairment, while testosterone replacement prevented the orchidectomy attenuation. These data suggested that eNOS-dependent and independently-mediated pathways were equally affected by HSD in vascular function impairment and this effect is testosterone-dependent in male Sprague-Dawley rats. PMID:27197589

  6. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    Science.gov (United States)

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-01

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. PMID:27346292

  7. Attenuation of murine graft-versus-host reactivity by azathioprine

    Energy Technology Data Exchange (ETDEWEB)

    Shand, F.L.

    1980-07-01

    The therapeutic effects of azathioprine were evaluated in a murine graft-versus-host (GVH) model. A single high dose (200 mg/kg) of azathioprine, administered to FI recipients 2 to 3 days after the injection of parental spleen cells, abrogated the ensuing GVH reaction. Lower doses of the drug, even when injected over an extended period of time (14 days), were found to be ineffective. However, high doses of azathioprine failed to protect when FI recipients were sublethally irradiated or injected with cyclophosphamide before GVH induction, and even the transfer of syngeneic FI spleen cells immediately after irradiation failed to alter this outcome. Further analysis of the changes that occurred in sublethally irradiated recipients revealed that the protective effect of azathioprine on CBA leads to (CBA x C57BL)FI GVH reaction was totally abrogated by doses of irradiation as low as 200 rad. Further experiments in which death was used as an indicator of GVH disease showed that lethality could not be reversed in sublethally irradiated FI recipients by the transfer of syngeneic FI spleen cells unless approximately 10 days were allowed to elapse between syngeneic reconstitution and GVH induction. Since syngeneic FI cells from spleen, lymph node, or bone marrow all behaved similarly, it seems likely that the increased severity of GVH reaction induced by prior immunosuppression may not be attributable to a simple cell deletion event.

  8. Attenuation of murine graft-versus-host reactivity by azathioprine

    International Nuclear Information System (INIS)

    The therapeutic effects of azathioprine were evaluated in a murine graft-versus-host (GVH) model. A single high dose (200 mg/kg) of azathioprine, administered to FI recipients 2 to 3 days after the injection of parental spleen cells, abrogated the ensuing GVH reaction. Lower doses of the drug, even when injected over an extended period of time (14 days), were found to be ineffective. However, high doses of azathioprine failed to protect when FI recipients were sublethally irradiated or injected with cyclophosphamide before GVH induction, and even the transfer of syngeneic FI spleen cells immediately after irradiation failed to alter this outcome. Further analysis of the changes that occurred in sublethally irradiated recipients revealed that the protective effect of azathioprine on CBA leads to (CBA x C57BL)FI GVH reaction was totally abrogated by doses of irradiation as low as 200 rad. Further experiments in which death was used as an indicator of GVH disease showed that lethality could not be reversed in sublethally irradiated FI recipients by the transfer of syngeneic FI spleen cells unless approximately 10 days were allowed to elapse between syngeneic reconstitution and GVH induction. Since syngeneic FI cells from spleen, lymph node, or bone marrow all behaved similarly, it seems likely that the increased severity of GVH reaction induced by prior immunosuppression may not be attributable to a simple cell deletion event

  9. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  10. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    International Nuclear Information System (INIS)

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  11. Platycodon grandiflorum root attenuates vascular endothelial cell injury by oxidized low-density lipoprotein and prevents high-fat diet-induced dyslipidemia in mice by up-regulating antioxidant proteins.

    Science.gov (United States)

    Chung, Mi Ja; Kim, Soo-Hyun; Park, Jeong-Won; Lee, Young Jin; Ham, Seung-Shi

    2012-05-01

    We hypothesized that a Platycodon grandiflorum root (PG) ethyl acetate extract (PGEA) would help reduce the vascular cell injury caused by oxidized low-density lipoprotein (oxLDL) and prevent high-fat (HF) diet-induced dyslipidemia and oxidative stress by up-regulating antioxidant proteins. We investigated the protective effects of PGEA against vascular endothelial cell injury induced by oxLDL and dyslipidemia induced by an HF diet, and the mechanisms underlying these effects were studied. The protective effects of PGEA were investigated with respect to calf pulmonary arterial endothelial (CPAE) cell viability and the lactate dehydrogenase release during oxLDL treatment. The in vivo effects of PGEA were examined using C57BL/6 mice, which were fed an HF diet for 9 weeks. The HF diet was supplemented with 0, 25, or 75 mg/kg PGEA during the last 4 weeks of the experimental period. Histologic analyses of hepatic lipid accumulation were performed. The changes in antioxidant protein levels induced by PGEA, which protects against HF diet-induced oxidative stress, were measured using a proteomics approach. We found that PGEA exhibited antioxidant activity. In CPAE cells, PGEA inhibited both oxLDL-induced cell death and lactate dehydrogenase release. In the HF diet-induced obese mice that received PGEA, we observed significantly reduced plasma and hepatic lipid levels, demonstrating that PGEA has beneficial effects on hyperlipidemia. In addition, we found that PGEA caused the up-regulation of antioxidant proteins. These findings suggest that the antioxidant effects of PGEA may protect against oxidative stress-related diseases. PMID:22652376

  12. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available BACKGROUND: The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents. RESULTS: All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells. CONCLUSIONS: We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  13. Hyperoxygenation attenuated a murine model of atopic dermatitis through raising skin level of ROS.

    Directory of Open Access Journals (Sweden)

    Hyung-Ran Kim

    Full Text Available Atopic dermatitis (AD is a chronic inflammatory skin disease resulting from excessive stimulation of immune cells. Traditionally, reactive oxygen species (ROS have been implicated in the progression of inflammatory diseases, but several opposing observations suggest the protective role of ROS in inflammatory disease. Recently, we demonstrated ROS prevented imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function. Thus, we hypothesized AD might also be attenuated in elevated levels of ROS through tissue hyperoxygenation, such as by hyperbaric oxygen therapy (HBOT or applying an oxygen-carrying chemical, perfluorodecalin (PFD. Elevated levels of ROS in the skin have been demonstrated directly by staining with dihydroethidum as well as indirectly by immunohistochemistry (IHC for indoleamine 2,3-dioxygenase (IDO. A murine model of AD was developed by repeated application of a chemical irritant (1% 2,4-dinitrochlorobenzene and house dust mite (Dermatophagoide farinae extract on one ear of BALB/c mice. The results showed treatment with HBOT or PFD significantly attenuated AD, comparably with 0.1% prednicarbate without any signs of side effects, such as telangiectasia. The expressions of interleukin-17A and interferon-γ were also decreased in the AD lesions by treatment with HBOT or PFD. Enhanced expression of IDO and reduced level of hypoxia-inducible factor-1α, in association with increased frequency of FoxP3+ regulatory T cells in the AD lesions, might be involved in the underlying mechanism of oxygen therapy. Taken together, it was suggested that tissue hyperoxygenation, by HBOT or treatment with PFD, might attenuate AD through enhancing skin ROS level.

  14. Radix Astragali Improves Dysregulated Triglyceride Metabolism and Attenuates Macrophage Infiltration in Adipose Tissue in High-Fat Diet-Induced Obese Male Rats through Activating mTORC1-PPARγ Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yang Long

    2014-01-01

    Full Text Available Increased levels of free fatty acids (FFAs and hypertriglyceridemia are important risk factors for cardiovascular disease. The effective fraction isolated from radix astragali (RA has been reported to alleviate hypertriglyceridemia. The mechanism of this triglyceride-lowering effect of RA is unclear. Here, we tested whether activation of the mTORC1-PPARγ signaling pathway is related to the triglyceride-lowering effect of RA. High-fat diet-induced obese (DIO rats were fed a high-fat diet (40% calories from fat for 9-10 weeks, and 4 g/kg/d RA was administered by gavage. RA treatment resulted in decreased fasting triglyceride levels, FFA concentrations, and adipocyte size. RA treated rats showed improved triglyceride clearance and fatty acid handling after olive oil overload. RA administration could also decrease macrophage infiltration and expression of MCP-1 and TNFα, but it may also increase the expression of PPARγ in epididymal adipose tissue from RA treated rats. Consistently, expressions of PPARγ and phospho-p70S6K were increased in differentiated 3T3-L1 adipocytes treated with RA. Moreover, RA couldnot upregulate the expression of PPARγ at the presence of rapamycin. In conclusion, the mTORC1-PPARγ signaling pathway is a potential mechanism through which RA exerts beneficial effects on the disturbance of triglyceride metabolism and dysfunction of adipose tissue in DIO rats.

  15. Protection against retroviral diseases after vaccination is conferred by interference to superinfection with attenuated murine leukemia viruses.

    OpenAIRE

    Corbin, A.; Sitbon, M.

    1993-01-01

    Cell cultures expressing a retroviral envelope are relatively resistant to superinfection by retroviruses which bear envelopes using the same receptor. We tested whether this phenomenon, known as interference to superinfection, might confer protection against retroviral diseases. Newborn mice first inoculated with the attenuated strain B3 of Friend murine leukemia virus (F-MuLV) were protected against severe early hemolytic anemia and nonacute anemiant erythroleukemia induced by the virulent ...

  16. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    Science.gov (United States)

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  17. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  18. Sexually dimorphic myeloid inflammatory and metabolic responses to diet-induced obesity.

    Science.gov (United States)

    Griffin, C; Lanzetta, N; Eter, L; Singer, K

    2016-08-01

    It is well known in clinical and animal studies that women and men have different disease risk as well as different disease physiology. Women of reproductive age are protected from metabolic and cardiovascular disease compared with postmenopausal women and men. Most murine studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of similar protection in female mice. We have investigated dietary obesity in a mouse model and have directly compared inflammatory responses in males and females. In this review we will summarize what is known about sex differences in diet-induced inflammation and will summarize our data on this topic. It is clear that sex differences in high-fat diet-induced inflammatory activation are due to cell intrinsic differences in hematopoietic responses to obesogenic cues, but further research is needed to understand what leads to sexually dimorphic responses. PMID:27252473

  19. Voluntary Exercise Improves High-Fat Diet-Induced Leptin Resistance Independent of Adiposity

    OpenAIRE

    Carhuatanta, Kimberly A. Krawczewski; Demuro, Giovanna; Tschöp, Matthias H.; Pfluger, Paul T.; Benoit, Stephen C.; Obici, Silvana

    2011-01-01

    The efficacy of exercise as primary prevention of obesity is the subject of intense investigation. Here, we show that voluntary exercise in a mouse strain susceptible to diet-induced obesity (C57B6J) decreases fat mass and increases energy expenditure. In addition, exercise attenuates obesity in mice fed a high-fat diet (HFD). Using FosB immunoreactivity as a marker of chronic neuronal activation, we found that exercise activates leptin receptor-positive neurons in the ventromedial hypothalam...

  20. Oral Bromelain Attenuates Inflammation in an Ovalbumin-Induced Murine Model of Asthma

    OpenAIRE

    Secor, Eric R.; Carson, William F.; Anurag Singh; Mellisa Pensa; Guernsey, Linda A.; Craig M. Schramm; Thrall, Roger S.

    2008-01-01

    Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA)-induced murine model of acute allergic airway disease (AAD). To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p.) OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavag...

  1. Oral Bromelain Attenuates Inflammation in an Ovalbumin-Induced Murine Model of Asthma

    Directory of Open Access Journals (Sweden)

    Eric R. Secor

    2008-01-01

    Full Text Available Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA-induced murine model of acute allergic airway disease (AAD. To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p. OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavaged with either (phosphate buffered salinePBS or 200 mg/kg bromelain in PBS, twice daily for four consecutive days, beginning 1 day prior to OVA aerosol challenge. Airway reactivity and methacholine sensitivity, bronchoalveolar lavage (BAL cellular differential, Th2 cytokines IL-5 and IL-13, and lung histology were compared between treatment groups. Oral bromelain-treatment of AAD mice demonstrated therapeutic efficacy as evidenced by decreased methacholine sensitivity (P ≤ 0.01, reduction in BAL eosinophils (P ≤ 0.02 and IL-13 concentrations (P ≤ 0.04 as compared with PBS controls. In addition, oral bromelain significantly reduced BAL CD19+ B cells (P ≤ 0.0001 and CD8+ T cells (P ≤ 0.0001 in AAD mice when compared with controls. These results suggest that oral treatment with bromelain had a beneficial therapeutic effect in this murine model of asthma and bromelain may also be effective in human conditions.

  2. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Dhawan Gunjan

    2012-07-01

    Full Text Available Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD. One hypothesis is that amyloid beta (Aβ peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia cell line, BV2, were used for stimulation with fibrillar Aβ1-42. The non-receptor tyrosine kinase inhibitor, dasatinib, was used to treat the cells to determine whether Src family kinase activity was required for the Aβ stimulated signaling response and subsequent increase in TNFα secretion using Western blot analysis and enzyme-linked immunosorbent assay (ELISA, respectively. A histologic longitudinal analysis was performed using an AD transgenic mouse model, APP/PS1, to determine an age at which microglial protein tyrosine kinase levels increased in order to administer dasatinib via mini osmotic pump diffusion. Effects of dasatinib administration on microglial and astroglial activation, protein phosphotyrosine levels, active Src kinase levels, Aβ plaque deposition, and spatial working memory were assessed via immunohistochemistry, Western blot, and T maze analysis. Results Aβ fibrils stimulated primary murine microglia via a tyrosine kinase pathway involving Src kinase that was attenuated by dasatinib. Dasatinib administration to APP/PS1 mice decreased protein phosphotyrosine, active Src, reactive microglia, and TNFα levels in the hippocampus and temporal cortex. The drug had no effect on GFAP levels, Aβ plaque load, or the related tyrosine kinase, Lyn. These anti-inflammatory changes correlated with improved performance on the T maze test in dasatinib infused animals compared to control animals. Conclusions These data suggest that amyloid

  3. Afzelin attenuates asthma phenotypes by downregulation of GATA3 in a murine model of asthma.

    Science.gov (United States)

    Zhou, Wenbo; Nie, Xiuhong

    2015-07-01

    Asthma is a serious health problem causing significant mortality and morbidity globally. Persistent airway inflammation, airway hyperresponsiveness, increased immunoglobulin E (IgE) levels and mucus hypersecretion are key characteristics of the condition. Asthma is mediated via a dominant T-helper 2 (Th2) immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma. To investigate the anti-asthmatic potential of afzelin, as well as the underlying mechanisms involved, its anti-asthmatic potential were investigated in a murine model of asthma. In the present study, BALB/c mice were systemically sensitized using ovalbumin (OVA) followed by aerosol allergen challenges. The effect of afzelin on airway hyperresponsiveness, eosinophilic infiltration, Th2 cytokine and OVA‑specific IgE production in a mouse model of asthma were investigated. It was found that afzelin‑treated groups suppressed eosinophil infiltration, allergic airway inflammation, airway hyperresponsiveness, OVA-specific IgE and Th2 cytokine secretion. The results of the present study suggested that the therapeutic mechanism by which afzelin effectively treats asthma is based on reduction of Th2 cytokine via inhibition of GATA-binding protein 3 transcription factor, which is the master regulator of Th2 cytokine differentiation and production. PMID:25738969

  4. Thalidomide attenuates airway hyperresponsiveness and eosinophilic inflammation in a murine model of allergic asthma.

    Science.gov (United States)

    Asano, Toshiaki; Kume, Hiroaki; Taki, Fumitaka; Ito, Satoru; Hasegawa, Yoshinori

    2010-01-01

    Asthma is characterized by chronic eosinophilic inflammation and hyperresponsiveness of the airways. We hypothesized that thalidomide, which has numerous immunomodulatory properties, may have anti-inflammatory effects in allergic asthma. BALB/c mice sensitized and challenged with ovalbumin (OVA) were treated orally with thalidomide (30, 100, or 300 mg/kg) or a vehicle. When thalidomide was administered to OVA-challenged mice, the number of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly decreased. The numbers of inflammatory cells other than eosinophils were not reduced by thalidomide. Thalidomide inhibited the elevated levels of interleukin-5 (IL-5) and tumor necrosis factor-alpha (TNF-alpha) in BALF by OVA challenges. Histological analysis of the lung revealed that both the infiltration of inflammatory cells and the hyperplasia of goblet cells were significantly suppressed by thalidomide treatment. Furthermore, thalidomide significantly inhibited the response to methacholine induced by OVA challenges. Taken together, thalidomide treatment decreased airway inflammation and hyperresponsiveness in a murine model of allergic asthma. These results might provide an opportunity for the development of novel therapeutics to treat severe asthma. PMID:20522972

  5. Rosmarinic Acid Attenuates Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma.

    Science.gov (United States)

    Liang, Zhengmin; Xu, Yangfeng; Wen, Xuemei; Nie, Haiying; Hu, Tingjun; Yang, Xiaofeng; Chu, Xiao; Yang, Jian; Deng, Xuming; He, Jiakang

    2016-01-01

    Rosmarinic acid (RA) has numerous pharmacologic effects, including anti-oxidant, anti-inflammatory, and analgesic effects. This study aimed to evaluate the preventive activity of RA in a murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice sensitized and challenged with ovalbumin (Ova) were pretreated with RA (5, 10 or 20 mg/kg) at 1 h before Ova challenge. The results demonstrated that RA markedly inhibited increases in inflammatory cells and Th2 cytokines in the bronchoalveolar lavage fluid (BALF), significantly reduced the total IgE and Ova-specific IgE concentrations, and greatly ameliorated airway hyperresponsiveness (AHR) compared with the control Ova-induced mice. Histological analyses showed that RA substantially decreased the number of inflammatory cells and mucus hypersecretion in the airway. In addition, our results suggested that the protective effects of RA might be mediated by the suppression of ERK, JNK and p38 phosphorylation and activation of nuclear factor-κB (NF-κB). Furthermore, RA pretreatment resulted in a noticeable reduction in AMCase, CCL11, CCR3, Ym2 and E-selectin mRNA expression in lung tissues. These findings suggest that RA may effectively delay the progression of airway inflammation. PMID:27304950

  6. Rosmarinic Acid Attenuates Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma

    Directory of Open Access Journals (Sweden)

    Zhengmin Liang

    2016-06-01

    Full Text Available Rosmarinic acid (RA has numerous pharmacologic effects, including anti-oxidant, anti-inflammatory, and analgesic effects. This study aimed to evaluate the preventive activity of RA in a murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice sensitized and challenged with ovalbumin (Ova were pretreated with RA (5, 10 or 20 mg/kg at 1 h before Ova challenge. The results demonstrated that RA markedly inhibited increases in inflammatory cells and Th2 cytokines in the bronchoalveolar lavage fluid (BALF, significantly reduced the total IgE and Ova-specific IgE concentrations, and greatly ameliorated airway hyperresponsiveness (AHR compared with the control Ova-induced mice. Histological analyses showed that RA substantially decreased the number of inflammatory cells and mucus hypersecretion in the airway. In addition, our results suggested that the protective effects of RA might be mediated by the suppression of ERK, JNK and p38 phosphorylation and activation of nuclear factor-κB (NF-κB. Furthermore, RA pretreatment resulted in a noticeable reduction in AMCase, CCL11, CCR3, Ym2 and E-selectin mRNA expression in lung tissues. These findings suggest that RA may effectively delay the progression of airway inflammation.

  7. Dietary ellagic acid attenuates oxidized LDL uptake and stimulates cholesterol efflux in murine macrophages.

    Science.gov (United States)

    Park, Sin-Hye; Kim, Jung-Lye; Lee, Eun-Sook; Han, Seon-Young; Gong, Ju-Hyun; Kang, Min-Kyung; Kang, Young-Hee

    2011-11-01

    Foam cell formation is the hallmark of early atherosclerosis. Lipid uptake by scavenger receptors (SR) in macrophages initiates chronic proinflammatory cascades linked to atherosclerosis. It has been reported that the upregulation of cholesterol efflux may be protective in the development of atherosclerosis. Ellagic acid, a polyphenolic compound mostly found in berries, walnuts, and pomegranates, possesses antioxidative, growth-inhibiting and apoptosis-promoting activities in cancer cells. However, the antiatherogenic actions of ellagic acid are not well defined. The current study elucidated oxidized LDL handling of ellagic acid in J774A1 murine macrophages. Noncytotoxic ellagic acid suppressed SR-B1 induction and foam cell formation within 6 h after the stimulation of macrophages with oxidized LDL, confirmed by Oil red O staining of macrophages. Ellagic acid at ≤5 μmol/L upregulated PPARγ and ATP binding cassette transporter-1 in lipid-laden macrophages, all responsible for cholesterol efflux. In addition, 5 μmol/L ellagic acid accelerated expression and transcription of the nuclear receptor of liver X receptor-α highly implicated in the PPAR signaling. Furthermore, ellagic acid promoted cholesterol efflux in oxidized LDL-induced foam cells. These results provide new information that ellagic acid downregulated macrophage lipid uptake to block foam cell formation of macrophages and boosted cholesterol efflux in lipid-laden foam cells. Therefore, dietary and pharmacological interventions with berries rich in ellagic acid may be promising treatment strategies to interrupt the development of atherosclerosis. PMID:21940512

  8. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  9. Attenuated Salmonella typhimurium carrying shRNA-expressing vectors elicit RNA interference in murine bladder tumors

    Institute of Scientific and Technical Information of China (English)

    Nan YANG; Sheng-hua LI; Yun-zhe L(U); Li-shan CHEN; Da-ming REN

    2011-01-01

    Aim: To examine whether attenuated Salmonella typhimurium (S typhimurium) could be used as an anti-cancer agent or a tumortargeting vehicle for delivering shRNA-expressing pDNA into cancer cells in a mouse tumor model.Methods: Mouse bladder transitional cancer cell line (BTT-T739) expressing GFP was used, in which the GFP expression level served as an indicator of RNA interference (RNAi). BTT-T739-GFP tumor-bearing mice (4-6 weeks) were treated with S typhimurium carrying plasmids encoding shRNA against gfp or scrambled shRNA. The mRNA and protein expression levels of GFP were assessed 5 d after the bacteria administration, and the antitumor effects of S typhimurium were evaluated.Results: In BTT-T739-GFP tumor-bearing mice, S typhirnurium (1×109 cfu, po) preferentially accumulated within tumors for as long as 40 d, and formed a tumor-to-normal tissue ratio that exceeded 1000/1. S typhimurium carrying plasmids encoding shRNA against gfp inhibited the expression of GFP in tumor cells by 73.4%. Orally delivered S typhimurium significantly delayed tumor growth and prolonged the survival of tumor-bearing mice.Conclusion: This study demonstrates that attenuated S typhimurium can be used for both delivering shRNA-expressing vectors into tumor cells and eliciting RNAi, thus exerting anti-tumor activity, which may represent a new strategy for the treatment of solid tumors.

  10. Apoptosis induction and attenuation of inflammatory gene expression in murine macrophages via multitherapeutic nanomembranes

    International Nuclear Information System (INIS)

    The realization of optimized therapeutic delivery is impaired by the challenge of localized drug activity and by the dangers of systemic cytotoxicity which often contribute to patient treatment complications. Here we demonstrate the block copolymer-mediated deposition and release of multiple therapeutics which include an LXRα/β agonist 3-((4-methoxyphenyl)amino)-4-phenyl-1-(phenylmethyl)-1H-pyrrole-2,5-dione (LXRa) and doxorubicin hydrochloride (Dox) at the air-water interface via Langmuir-Blodgett deposition, as well as copolymer-mediated potent drug elution toward the Raw 264.7 murine macrophage cell line. The resultant copolymer-therapeutic hybrid serves as a localized platform that can be functionalized with virtually any drug due to the integrated hydrophilic and hydrophobic components of the polymer structure. In addition, the sequestering function of the copolymer to anchor the drugs to implant surfaces can enhance delivery specificity when compared to systemic drug administration. Confirmation of drug functionality was confirmed via suppression of the interleukin 6 (Il-6) and tumor necrosis factor alpha (TNFα) inflammatory cytokines (LXRa), as well as DNA fragmentation analysis (Dox). Furthermore, the fragmentation assays and gene expression analysis demonstrated the innate biocompatibility of the copolymeric material at the gene expression level via the confirmed absence of material-induced apoptosis and a lack of inflammatory gene expression. This modality enables layer-by-layer control of agonist and chemotherapeutic functionalization at the nanoscale for the localization of drug dosage, while simultaneously utilizing the copolymer platform as an anchoring mechanism for drug sequestering, all with an innate material thickness of 4 nm per layer, which is orders of magnitude thinner than existing commercial technologies. Furthermore, these studies comprehensively confirmed the potential translational applicability of copolymeric nanomaterials as

  11. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Both nature and induced regulatory T (Treg lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+FoxP3(+ and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  12. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Science.gov (United States)

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  13. Simvastatin delivery via inhalation attenuates airway inflammation in a murine model of asthma.

    Science.gov (United States)

    Xu, Lan; Dong, Xing-wei; Shen, Liang-liang; Li, Fen-fen; Jiang, Jun-xia; Cao, Rui; Yao, Hong-yi; Shen, Hui-juan; Sun, Yun; Xie, Qiang-min

    2012-04-01

    The dose-response of the pleiotropic effects of statins on airway inflammation has not yet been established and may differ from that of their cholesterol-lowering effects. High oral doses of statins may have adverse effects, and it may be possible to overcome the side effects and low clinical efficacy by administering statins via inhalation. In this study, we hypothesize that simvastatin is a potential anti-inflammatory drug with biological and pharmacokinetic properties suitable for delivery by the inhaled route. Mice were immunized with ovalbumin (OVA) and then challenged with aerosol OVA. Simvastatin was locally delivered by inhalation (i.h.) and intratracheal injection (i.t.) or systematically delivered by intraperitoneal injection (i.p.) and gavage (i.g.) during the OVA challenge. In a mouse model of asthma, i.h. simvastatin significantly and dose-dependently attenuated airway inflammation, remodeling and hyperresponsiveness in a RhoA-dependent pathway. Upon comparing the pharmacodynamics, i.h. simvastatin had a more potent effect than that of i.g. and i.p. simvastatin, and the i.h. or i.t. delivery routes led to a higher drug concentration in local lung tissue and a lower drug concentration in the plasma than that obtained by the i.g. These results suggest that simvastatin is a potential anti-inflammatory drug for airway inflammatory diseases with properties suitable for delivery by inhalation, which will probably reduce the side effects and increase clinical efficacy. PMID:22326624

  14. Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis

    Institute of Scientific and Technical Information of China (English)

    David Philippe; Stéphanie Blum; Laurent Favre; Francis Foata; Oskar Adolfsson; Genevieve Perruisseau-Carrier; Karine Vidal; Gloria Reuteler; Johanna Dayer-Schneider; Christoph Mueller

    2011-01-01

    AIM: To assess the anti-inflammatory effect of the probiotic Bifidobacterium lactis (B. lactis ) in an adoptive transfer model of colitis. METHODS: Donor and recipient mice received either B. lactis or bacterial culture medium as control (deMan Rogosa Sharpe) in drinking water for one week prior to transfer of a mix of naive and regulatory T cells until sacrifice. RESULTS: All recipient mice developed signs of colonic inflammation, but a significant reduction of weight loss was observed in B. lactis -fed recipient mice compared to control mice. Moreover, a trend toward a diminution of mucosal thickness and attenuated epithelial damage was revealed. Colonic expression of pro-inflammatory and T cell markers was significantly reduced in B. lactis - fed recipient mice compared to controls. Concomitantly, forkhead box protein 3, a marker of regulatory T cells, was significantly up-regulated by B. lactis . CONCLUSION: Daily oral administration of B. lactis was able to reduce inflammatory and T cells mediators and to promote regulatory T cells specific markers in a mouse model of colitis.

  15. Pharmacologic attenuation of pelvic pain in a murine model of interstitial cystitis

    Directory of Open Access Journals (Sweden)

    Schaeffer Anthony J

    2009-11-01

    Full Text Available Abstract Background Interstitial cystitis/painful bladder syndrome (IC/PBS is a bladder disease that causes debilitating pelvic pain of unknown origin, and IC/PBS symptoms correlate with elevated bladder lamina propria mast cell counts. Similar to IC/PBS patients, pseudorabies virus (PRV infection in mice induces a neurogenic cystitis associated with bladder lamina propria mast cell accumulation and pelvic pain. We evaluated several drugs to determine the effectiveness of reducing PRV-induced pelvic pain. Methods Neurogenic cystitis was induced by the injection of Bartha's strain of PRV into the abductor caudalis dorsalis tail base muscle of female C57BL/6 mice. Therapeutic modulation of pelvic pain was assessed daily for five days using von Frey filament stimulation to the pelvic region to quantify tactile allodynia. Results Significant reduction of PRV-induced pelvic pain was observed for animals treated with antagonists of neurokinin receptor 1 (NK1R and histamine receptors. In contrast, the H1R antagonist hydroxyzine, proton pump inhibitors, a histamine receptor 3 agonist, and gabapentin had little or no effect on PRV-induced pelvic pain. Conclusion These data demonstrate that bladder-associated pelvic pain is attenuated by antagonists of NK1R and H2R. Therefore, NK1R and H2Rrepresent direct therapeutic targets for pain in IC/PBS and potentially other chronic pain conditions.

  16. EBM84 attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma.

    Science.gov (United States)

    Shin, In Sik; Lee, Mee Young; Jeon, Woo Young; Shin, Na Ra; Seo, Chang Seob; Ha, Hyekyung

    2013-04-01

    EBM84 is a traditional herbal medicine and a combination of extracts obtained from Pinellia ternata and Zingiber officinale. It is traditionally used to treat vomiting, nausea, sputum and gastrointestinal disorders, and functions is an effective expectorant. In this study, we evaluated the protective effects of EBM84 on asthmatic responses, particularly mucus hypersecretion in an ovalbumin (OVA)-induced murine model of asthma. We also analyzed EBM84 composition using high performance liquid chromatography. Animals were sensitized on days 0 and 14 via intraperitoneal injection using 20 µg OVA. On days 21, 22 and 23 after initial sensitization, the mice received an airway challenge with OVA (1% w/v in PBS) for 1 h using an ultrasonic nebulizer (NE-U12). EBM84 was administered by gavage to the mice at doses of 16.9, 33.8 and 67.5 mg/kg once daily from days 18 to 23. EBM84 administration significantly lowered elevated levels of interleukin (IL)-4, IL-13, eotaxin and immunoglobulin (Ig)E in the bronchoalveolar lavage fluid or plasma. Airway inflammation and mucus hypersecretion were attenuated following EBM84 administration. EBM84 also inhibited the overexpression of mucin 5AC (MUC5AC) induced by OVA challenge in lung tissue. This result was consistent with the immunohistochemistry results. Our results indicate that EBM84 effectively inhibited airway inflammation and mucus hypersecretion via the downregulation of T helper 2 (Th2) cytokines, which reduced MUC5AC expression. Therefore, EBM84 has potential as a useful medicine for the treatment of allergic asthma. PMID:23403738

  17. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    OpenAIRE

    Dhawan Gunjan; Combs Colin K

    2012-01-01

    Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD). One hypothesis is that amyloid beta (Aβ) peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia c...

  18. Brown Fat and the Myth of Diet-Induced Thermogenesis

    OpenAIRE

    Kozak, Leslie P.

    2010-01-01

    The notion that brown adipose tissue (BAT) in mice or humans maintains energy balance by burning off excess calories seems incompatible with evolutionary biology. Studies in obese rats and mice lacking UCP1 indicate that diet-induced thermogenesis by BAT is unlikely.

  19. Elimination of ie1 significantly attenuates murine cytomegalovirus virulence but does not alter replicative capacity in cell culture.

    NARCIS (Netherlands)

    P. Ghazal; A.E. Visser; M. Gustems; R. Garcia; E.M. Borst; K. Sullivan; M. Messerle; A. Angulo

    2005-01-01

    The major immediate-early (MIE) genes of cytomegaloviruses (CMV) are broadly thought to be decisive regulators of lytic replication and reactivation from latency. To directly assess the role of the MIE protein IE1 during the infection of murine CMV (MCMV), we constructed an MCMV with exon 4 of the i

  20. Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model.

    Science.gov (United States)

    Wei, Ying; Liu, Baojun; Sun, Jing; Lv, Yubao; Luo, Qingli; Liu, Feng; Dong, Jingcheng

    2015-06-01

    Icariin which is a flavonoid glucoside isolated from Epimedium brevicornu Maxim, has been reported to have anti-osteoporotic, anti-inflammatory and anti-depressant-like activities. In this study, we observed the effect of icariin on airway inflammation of ovalbumin (OVA)-induced murine asthma model and the associated regulatory mode on T-helper (Th)17 and regulatory T (Treg) cell function. Our data revealed that chronic OVA inhalation induced a dramatic increase in airway resistance (RL) and decrease in the lung dynamic compliance (Cdyn), and icariin and DEX treatment caused significant attenuation of such airway hyperresponsiveness (AHR). BALF cell counts demonstrated that icariin and DEX led to a prominent reduction in total leukocyte as well as lymphocyte, eosinophil, neutrophil, basophil and monocyte counts. Histological analysis results indicated that icariin and DEX alleviated the inflammatory cells infiltrating into the peribronchial tissues and goblet cells hyperplasia and mucus hyper-production. Flow cytometry test demonstrated that icariin or DEX administration resulted in a significant percentage reduction in CD4+RORγt+ T cells and elevation of CD4+Foxp3+ T cells in BALF. Furthermore, icariin or DEX caused a significant reduction in IL-6, IL-17 and TGF-β level in BALF. Unfortunately, icariin had no effect on IL-10 level in BALF. Western blot assay found that icariin or DEX suppressed RORγt and promoted Foxp3 expression in the lung tissue. qPCR analysis revealed that icariin and DEX resulted in a notable decrease in RORγt and increase in Foxp3 mRNA expression in isolated spleen CD4+ T cell. In conclusion, our results suggested that icariin was effective in the attenuation of AHR and chronic airway inflammatory changes in OVA-induced murine asthma model, and this effect was associated with regulation of Th17/Treg responses, which indicated that icariin may be used as a potential therapeutic method to treat asthma with Th17/Treg imbalance phenotype

  1. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2010-07-01

    Full Text Available Abstract Background Calorie restriction (CR and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat, low-fat diet with 30% calorie restriction (LR, high-fat diet (HC, 60% fat, high-fat diet with 30% calorie restriction (HR, high-fat diet with voluntary running exercise (HE, and high-fat diet with a combination of 30% calorie restriction and exercise (HRE. The impacts of the interventions were assessed by comprehensive metabolic analyses and pro-inflammatory cytokine gene expression. Results Endurance exercise significantly attenuated high-fat diet-induced obesity. CR dramatically prevented high-fat diet-induced metabolic abnormalities. A combination of CR and endurance exercise further reduced obesity and insulin resistance under the condition of high-fat diet. CR and endurance exercise each potently suppressed the expression of inflammatory cytokines in white adipose tissues with additive effects when combined, but the effects of diet and exercise interventions in the liver were moderate to minimal. Conclusions CR and endurance exercise share a potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance.

  2. Leptin resistance: a prediposing factor for diet-induced obesity

    OpenAIRE

    Scarpace, Philip J.; Zhang, Yi

    2008-01-01

    Obesity is a resilient and complex chronic disease. One potential causative factor in the obesity syndrome is leptin resistance. Leptin behaves as a potent anorexic and energy-enhancing hormone in most young or lean animals, but its effects are diminished or lacking in the obese state associated with a normal genetic background. Emerging evidence suggests that leptin resistance predisposes the animal to exacerbated diet-induced obesity (DIO). Elevation of central leptin in young, lean rats in...

  3. Role of resistin in diet-induced hepatic insulin resistance

    OpenAIRE

    Muse, Evan D.; Obici, Silvana; Bhanot, Sanjay; Monia, Brett P.; McKay, Robert A.; Rajala, Michael W.; Scherer, Philipp E.; Rossetti, Luciano

    2004-01-01

    Resistin is an adipose-derived hormone postulated to link adiposity to insulin resistance. To determine whether resistin plays a causative role in the development of diet-induced insulin resistance, we lowered circulating resistin levels in mice by use of a specific antisense oligodeoxynucleotide (ASO) directed against resistin mRNA and assessed in vivo insulin action by the insulin-clamp technique. After 3 weeks on a high-fat (HF) diet, mice displayed severe insulin resistance associated wit...

  4. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice

    Science.gov (United States)

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan; Badran, Samir; Arco, Rocío; Pavón, Francisco Javier; Serrano, Antonia; Rivera, Patricia; Decara, Juan; Cuesta, Antonio Luis; Rodríguez-de-Fonseca, Fernando

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the liver steatosis, whereas restoration of IL-6 in DIO IL-6-/- mice up-regulates hepatic lipogenic enzymes and aggravates steatosis. We further examined the effects of chronic low doses of murine IL-6 on hepatic lipid metabolism in WT mice in DIO. IL-6 was delivered twice daily in C57BL/6J DIO mice for 15 days. The status and expression of IL-6-signalling mediators and targets were investigated in relation to the steatosis and lipid content in blood and in liver. IL-6 administration in DIO mice markedly raised circulating levels of lipids, glucose and leptin, elevated fat liver content and aggravated steatosis. Under IL-6 treatment there was hepatic Stat3 activation and increased gene expression of Socs3 and Tnf-alpha whereas the gene expression of endogenous IL-6, IL-6-receptor, Stat3, Cpt1 and the enzymes involved in lipogenesis was suppressed. These data further implicate IL-6 in fatty liver disease modulation in the context of DIO, and indicate that continuous stimulation with IL-6 attenuates the IL-6-receptor response, which is associated with high serum levels of leptin, glucose and lipids, the lowering levels of lipogenic and Cpt1 hepatic enzymes and with increased Tnf-alpha hepatic expression, a scenario evoking that observed in IL-6-/- mice exposed to DIO and in obese Zucker rats. PMID:27333268

  5. LF-15 & T7, synthetic peptides derived from tumstatin, attenuate aspects of airway remodelling in a murine model of chronic OVA-induced allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Karryn T Grafton

    Full Text Available BACKGROUND: Tumstatin is a segment of the collagen-IV protein that is markedly reduced in the airways of asthmatics. Tumstatin can play an important role in the development of airway remodelling associated with asthma due to its anti-angiogenic properties. This study assessed the anti-angiogenic properties of smaller peptides derived from tumstatin, which contain the interface tumstatin uses to interact with the αVβ3 integrin. METHODS: Primary human lung endothelial cells were exposed to the LF-15, T3 and T7 tumstatin-derived peptides and assessed for cell viability and tube formation in vitro. The impact of the anti-angiogenic properties on airways hyperresponsiveness (AHR was then examined using a murine model of chronic OVA-induced allergic airways disease. RESULTS: The LF-15 and T7 peptides significantly reduced endothelial cell viability and attenuated tube formation in vitro. Mice exposed to OVA+ LF-15 or OVA+T7 also had reduced total lung vascularity and AHR was attenuated compared to mice exposed to OVA alone. T3 peptides reduced cell viability but had no effect on any other parameters. CONCLUSION: The LF-15 and T7 peptides may be appropriate candidates for use as novel pharmacotherapies due to their small size and anti-angiogenic properties observed in vitro and in vivo.

  6. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    Science.gov (United States)

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  7. Antiobesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats

    OpenAIRE

    Souravh Bais; Guru Sewak Singh; Ramica Sharma

    2014-01-01

    In the present study, the methanolic extract of Moringa oleifera leaves (MEMOL) was evaluated for antiobesity activity in rats. The antiobesity potential of MEMOL was studied against high fat diet-induced obesity (HFD) in rats. In this study, chronic administration of HFD in rats produced hypercholesterolemia (116.2 ± 0.27 mg/dL), which led to an increase in the body weight (225 gr), total cholesterol, triglycerides (263.0 ± 4.69 mg/dL), and attenuation in the levels of HDL (34.51 ± 2.20 mg/d...

  8. A Comparative Study of Lung Host Defense in Murine Obesity Models. Insights into Neutrophil Function.

    Science.gov (United States)

    Ubags, Niki D J; Burg, Elianne; Antkowiak, Maryellen; Wallace, Aaron M; Dilli, Estee; Bement, Jenna; Wargo, Matthew J; Poynter, Matthew E; Wouters, Emiel F M; Suratt, Benjamin T

    2016-08-01

    We have shown that obesity-associated attenuation of murine acute lung injury is driven, in part, by blunted neutrophil chemotaxis, yet differences were noted between the two models of obesity studied. We hypothesized that obesity-associated impairment of multiple neutrophil functions contributes to increased risk for respiratory infection but that such impairments may vary between murine models of obesity. We examined the most commonly used murine obesity models (diet-induced obesity, db/db, CPE(fat/fat), and ob/ob) using a Klebsiella pneumoniae pneumonia model and LPS-induced pneumonitis. Marrow-derived neutrophils from uninjured lean and obese mice were examined for in vitro functional responses. All obesity models showed impaired clearance of K. pneumoniae, but in differing temporal patterns. Failure to contain infection in obese mice was seen in the db/db model at both 24 and 48 hours, yet this defect was only evident at 24 hours in CPE(fat/fat) and ob/ob models, and at 48 hours in diet-induced obesity. LPS-induced airspace neutrophilia was decreased in all models, and associated with blood neutropenia in the ob/ob model but with leukocytosis in the others. Obese mouse neutrophils from all models demonstrated impaired chemotaxis, whereas neutrophil granulocyte colony-stimulating factor-mediated survival, LPS-induced cytokine transcription, and mitogen-activated protein kinase and signal transducer and activator of transcription 3 activation in response to LPS and granulocyte colony-stimulating factor, respectively, were variably impaired across the four models. Obesity-associated impairment of host response to lung infection is characterized by defects in neutrophil recruitment and survival. However, critical differences exist between commonly used mouse models of obesity and may reflect variable penetrance of elements of the metabolic syndrome, as well as other factors. PMID:27128821

  9. Macrophages as effector cells of protective immunity in murine schistosomiasis: macrophage activation in mice vaccinated with radiation-attenuated cercariae.

    OpenAIRE

    James, S L; Natovitz, P C; Farrar, W L; Leonard, E.J.

    1984-01-01

    Cell-mediated immune responses contributing to macrophage activation were compared in mice that demonstrated partial resistance to challenge Schistosoma mansoni infection as a result of vaccination with radiation-attenuated cercariae or of ongoing low-grade primary infection. Vaccinated mice developed significant delayed hypersensitivity reactions to soluble schistosome antigens in vivo. Splenocytes from vaccinated animals responded to in vitro culture with various specific antigens (soluble ...

  10. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4+CD25+Foxp3+ T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4+CD25+Foxp3+ regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and

  11. Generation of an attenuated Salmonella-delivery strains expressing adhesin and toxin antigens for progressive atrophic rhinitis, and evaluation of its immune responses in a murine model.

    Science.gov (United States)

    Byeon, Hoyeon; Hur, Jin; Kim, Bo Ram; Lee, John Hwa

    2014-09-01

    An expression/secretion plasmid containing genes encoding the FimA, CP39, PtfA, ToxA and F1P2 antigens associated with porcine pneumonic pasteurellosis and progressive atrophic rhinitis (PAR) was constructed and harbored in an attenuated Salmonella Typhimurium, which was used as the vaccine candidate. The immune responses induced by this delivery strain were investigated in a murine model. Each antigen secreted from the delivery strain was confirmed by Western blot analysis. Thirty BALB/c mice were divided equally into two groups; group A were intranasally inoculated with the mixture of the five delivery strains, and group B were inoculated with sterile PBS. In group A, all antigen-specific serum IgG were significantly increased compared to those of group B from the 2nd week post-inoculation (WPI) till the 8th WPI. All antigen-specific mucosal IgA in group A were also significantly greater than those of group B. In addition, the significant splenic lymphocyte proliferative responses, the elevations of CD3(+)CD4(+), CD3(+)CD8(+) and B-cell populations, and the induction of IFN-γ expression in group A were observed. In conclusion, the mixture of five delivery strains expressing specific antigen for these diseases was found to be capable of inducing significant humoral and cellular immune responses. PMID:25045826

  12. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Feigh, Michael; Hjuler, Sara T; Andreassen, Kim V;

    2014-01-01

    study we hypothesized that oral sCT as pharmacological intervention 1) exerted anti-hyperglycemic efficacy, and 2) enhanced insulin action in DIO-streptozotocin (DIO-STZ) diabetic rats. Diabetic hyperglycemia was induced in male selectively bred DIO rats by a single low dose (30mg/kg) injection of STZ......We previously reported that oral delivery of salmon calcitonin (sCT) improved energy and glucose homeostasis and attenuated diabetic progression in animal models of diet-induced obesity (DIO) and type 2 diabetes, although the glucoregulatory mode of action was not fully elucidated. In the present...... food intake and attenuated weight loss, albeit sustained glycemic control by reducing fasting blood glucose and HbA1c levels compared to those of vehicle-treated rats at the end of study. Notably, plasma levels of insulin, glucagon, leptin and adiponectin were unaltered, albeit insulin action was...

  13. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet

    Science.gov (United States)

    Sodhi, Komal; Puri, Nitin; Favero, Gaia; Stevens, Sarah; Meadows, Charles; Abraham, Nader G.; Rezzani, Rita; Ansinelli, Hayden; Lebovics, Edward; Shapiro, Joseph I.

    2015-01-01

    Background Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox. Hypothesis We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction. Methods and Results We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP. Conclusion Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the

  14. Angiotensin II type 2 receptor signaling significantly attenuates growth of murine pancreatic carcinoma grafts in syngeneic mice

    International Nuclear Information System (INIS)

    Pancreatic cancer is one of the most aggressive human malignancies, with a very poor prognosis. To evaluate the effect of angiotensin II (Ang II) type 2 receptor (AT2) expression in the host's body on the growth of pancreatic carcinoma, we have investigated the growth of mouse pancreatic ductal carcinoma grafts in syngeneic wild type and AT2 receptor-deficient (AT2-KO) mice. The role of AT2 receptor-signaling in stromal cells on the growth of murine pancreatic carcinoma cells (PAN02) was studied using various in vitro and in vivo assays. In vivo cell proliferation, apoptosis, and vasculature in tumors were monitored by Ki-67 immunostaining, TUNEL assay, and von Willebrand factor immunostaining, respectively. In the co-culture study, cell proliferation was measured by MTT cell viability assay. All the data were analyzed using t-test and data were treated as significant when p < 0.05. Our results show that the growth of subcutaneously transplanted syngeneic xenografts of PAN02 cells, mouse pancreatic ductal carcinoma cells derived from the C57/BL6 strain, was significantly faster in AT2-KO mice compared to control wild type mice. Immunohistochemical analysis of tumor tissue revealed significantly more Ki-67 positive cells in xenografts grown in AT2-KO mice than in wild type mice. The index of apoptosis is slightly higher in wild type mice than in AT2-KO mice as evaluated by TUNEL assay. Tumor vasculature number was significantly higher in AT2-KO mice than in wild type mice. In vitro co-culture studies revealed that the growth of PAN02 cells was significantly decreased when grown with AT2 receptor gene transfected wild type and AT2-KO mouse-derived fibroblasts. Faster tumor growth in AT2-KO mice may be associated with higher VEGF production in stromal cells. These results suggest that Ang II regulates the growth of pancreatic carcinoma cells through modulating functions of host stromal cells; Moreover, Ang II AT2 receptor signaling is a negative regulator in the

  15. A Drosophila model of high sugar diet-induced cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Jianbo Na

    Full Text Available Diets high in carbohydrates have long been linked to progressive heart dysfunction, yet the mechanisms by which chronic high sugar leads to heart failure remain poorly understood. Here we combine diet, genetics, and physiology to establish an adult Drosophila melanogaster model of chronic high sugar-induced heart disease. We demonstrate deterioration of heart function accompanied by fibrosis-like collagen accumulation, insulin signaling defects, and fat accumulation. The result was a shorter life span that was more severe in the presence of reduced insulin and P38 signaling. We provide evidence of a role for hexosamine flux, a metabolic pathway accessed by glucose. Increased hexosamine flux led to heart function defects and structural damage; conversely, cardiac-specific reduction of pathway activity prevented sugar-induced heart dysfunction. Our data establish Drosophila as a useful system for exploring specific aspects of diet-induced heart dysfunction and emphasize enzymes within the hexosamine biosynthetic pathway as candidate therapeutic targets.

  16. Immunity-Based Evolutionary Interpretation of Diet-Induced Thermogenesis.

    Science.gov (United States)

    Liao, Wan-Hui; Henneberg, Maciej; Langhans, Wolfgang

    2016-06-14

    Diet-induced thermogenesis (DIT) has often been argued to be a physiological defense against obesity, but no empirical proof of its effectiveness in limiting human body weight gain is available. We here propose an immune explanation of DIT-i.e., that it results from the coevolution of host and gut microbiota (especially Firmicutes) that ferment ingested food and proliferate, causing periodic, vagally mediated increases in thermogenesis aimed at curtailing their expansion. Because of this evolutionary adaptive significance related to the immune system, DIT is not effective as an "adaptation" to maintain a certain body mass. Were DIT an effective adaptation to prevent obesity, the current obesity epidemic might not have occurred. PMID:27304499

  17. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  18. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions.

    Science.gov (United States)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naïve T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and helminth infection. PMID:21440530

  19. Rebamipide Attenuates Mandibular Condylar Degeneration in a Murine Model of TMJ-OA by Mediating a Chondroprotective Effect and by Downregulating RANKL-Mediated Osteoclastogenesis

    Science.gov (United States)

    Izawa, Takashi; Mori, Hiroki; Shinohara, Tekehiro; Mino-Oka, Akiko; Hutami, Islamy Rahma; Iwasa, Akihiko; Tanaka, Eiji

    2016-01-01

    Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by progressive degradation of cartilage and changes in subchondral bone. It is also one of the most serious subgroups of temporomandibular disorders. Rebamipide is a gastroprotective agent that is currently used for the treatment of gastritis and gastric ulcers. It scavenges reactive oxygen radicals and has exhibited anti-inflammatory potential. The aim of this study was to investigate the impact of rebamipide both in vivo and in vitro on the development of cartilage degeneration and osteoclast activity in an experimental murine model of TMJ-OA, and to explore its mode of action. Oral administration of rebamipide (0.6 mg/kg and 6 mg/kg) was initiated 24 h after TMJ-OA was induced, and was maintained daily for four weeks. Rebamipide treatment was found to attenuate cartilage degeneration, to reduce the number of apoptotic cells, and to decrease the expression levels of matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in TMJ-OA cartilage in a dose-dependent manner. Rebamipide also suppressed the activation of transcription factors (e.g., NF-κB, NFATc1) and mitogen-activated protein kinases (MAPK) by receptor activator of nuclear factor kappa-B ligand (RANKL) to inhibit the differentiation of osteoclastic precursors, and disrupted the formation of actin rings in mature osteoclasts. Together, these results demonstrate the inhibitory effects of rebamipide on cartilage degradation in experimentally induced TMJ-OA. Furthermore, suppression of oxidative damage, restoration of extracellular matrix homeostasis of articular chondrocytes, and reduced subchondral bone loss as a result of blocked osteoclast activation suggest that rebamipide is a potential therapeutic strategy for TMJ-OA. PMID:27123995

  20. Ultrastructural Changes of Airway in Murine Models of Allergy and Diet-Induced Metabolic Syndrome

    OpenAIRE

    Leishangthem, Geeta Devi; Mabalirajan, Ulaganathan; Singh, Vijay Pal; Agrawal, Anurag; Ghosh, Balaram; Dinda, Amit Kumar

    2013-01-01

    Studying ultrastructural changes could reveal novel pathophysiology of obese-asthmatic condition as existing concepts in asthma pathogenesis are based on the histological changes of the diseased airway. While asthma is defined in functional terms, the potential of electron microscopy (EM) in providing cellular and subcellular detail is underutilized. With this view, we have performed transmission EM in the lungs from allergic mice that show key features of asthma and high-fat- or high-fructos...

  1. The Effects of Voluntary Exercise on Oocyte Quality in a Diet-Induced Obese Murine Model

    OpenAIRE

    Boudoures, Anna L.; Chi, Maggie; Thompson, Alysha; Zhang, Wendy; Moley, Kelle H.

    2015-01-01

    Obesity negatively affects many aspects of the human body, including reproductive function. In females, the root of the decline in fertility is linked to problems in the oocyte. Problems seen in oocytes that positively correlate with increasing BMI include changes to the metabolism, lipid accumulation, meiosis, and metaphase II (MII) spindle structure. Studies in mice indicate dietary interventions fail to reverse these problems [4]. How exercise affects the oocytes has not been addressed. Th...

  2. Hesperidin ameliorates streptozotocin and high fat diet induced diabetic nephropathy in rats

    Directory of Open Access Journals (Sweden)

    Dilpesh P. Jain

    2014-12-01

    Full Text Available Objective: The present study investigates protective effect of hesperidin on streptozotocin and high fat diet induced diabetic nephropathy in experimental type 2 diabetic rats. Methods: Sprague Dawley rats were fed with high fat emulsion and high fat diet for 2 weeks to induce glucose intolerance and then injected with streptozotocin (35 mg/kg, i.p.. Following 48 h of streptozotocin injection blood glucose level was estimated to confirm hyperglycemia. After 4 weeks of diabetes induction diabetic rats were orally treated with hesperidin (50, 100 and 200 mg/kg body weight for 4 weeks. At the end of the treatment kidney functions, oxidative stress indices, biochemical estimations and histopathological examination were carried out to assess the efficacy of the treatment. Results: Diabetic rats exhibited significant rise in blood glucose level, altered kidney functions, oxidative stress and histological abnormalities compared to control rats. Hesperidin treatment significantly reduced the elevated levels of blood glucose, creatinine, urea nitrogen, total cholesterol and triglyceride when compared with diabetic control rats. Significant rise in renal hypertrophy, hyperfiltration, microalbuminuria as well as oxidative stress in the diabetic rats were effectively attenuated with hesperidin treatment, dose dependently. Moreover, basement membrane thickening and mesangial expansion observed in the kidney of diabetic rats restored near to normal structure. Conclusion: Results of the present study suggest that hesperidin ameliorate early diabetic nephropathy. [J Exp Integr Med 2014; 4(4.000: 261-267

  3. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    Science.gov (United States)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. PMID:27304513

  4. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction.

    Science.gov (United States)

    Ceylan-Isik, Asli F; Kandadi, Machender R; Xu, Xihui; Hua, Yinan; Chicco, Adam J; Ren, Jun; Nair, Sreejayan

    2013-10-01

    Apelin has been recognized as an adipokine that plays an important role in regulating energy metabolism and is credited with antiobesity and antidiabetic properties. This study was designed to examine the effect of exogenous apelin on obesity-associated cardiac dysfunction. Oral glucose tolerance test, echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed in adult C57BL/6J mice fed - low or a - high-fat diet for 24weeks followed by apelin treatment (100nmol/kg, i.p. for 2weeks). High-fat diet resulted in increased left ventricular diastolic and systolic diameters, and wall thickness, compromised fractional shortening, impaired cardiomyocyte mechanics (peak-shortening, maximal velocity of shortening/relengthening, and duration of shortening and relengthening) and compromised intracellular Ca(2+) handling, all of which were reconciled by apelin. Apelin treatment also reversed high fat diet-induced changes in intracellular Ca(2+) regulatory proteins, ER stress, and autophagy. In addition, microRNAs (miR) -133a, miR-208 and miR-1 which were elevated following high-fat feeding were attenuated by apelin treatment. In cultured cardiomyocytes apelin reconciled palmitic acid-induced cardiomyocyte contractile anomalies. Collectively, these data depict a pivotal role of apelin in obesity-associated cardiac contractile dysfunction, suggesting a therapeutic potential of apelin in the management of cardiac dysfunction associated with obesity. PMID:23859766

  5. Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats.

    Science.gov (United States)

    Eslinger, Amanda J; Eller, Lindsay K; Reimer, Raylene A

    2014-08-01

    Numerous studies have demonstrated the impact of functional fibers on gut microbiota and metabolic health, but some less well-studied fibers and/or fractions of foods known to be high in fiber still warrant examination. The aim of this study was to assess the effect of yellow pea-derived fractions varying in fiber and protein content on metabolic parameters and gut microbiota in diet-induced obese rats. We hypothesized that the yellow pea fiber (PF) fraction would improve glycemia and alter gut microbiota. Rats were randomized to 1 of 5 isoenergetic dietary treatments for 6 weeks: (1) control; (2) oligofructose (OFS); (3) yellow PF; (4) yellow pea flour (PFL); or (5) yellow pea starch (PS). Glycemia, plasma gut hormones, body composition, hepatic triglyceride content, gut microbiota, and messenger RNA expression of genes related to hepatic fat metabolism were examined. Pea flour attenuated weight gain compared with control, PF, and PS (P Pea flour, PS, and OFS had significantly lower final percent body fat compared with control. Oligofructose but not the pea fraction diets reduced food intake compared with control (P Pea fiber resulted in lower fasting glucose and glucose area under the curve compared with control. Changes in gut microbiota were fraction specific and included a decrease in Firmicutes (percent) for OFS, PF, and PFL compared with control (P yellow pea-derived fractions are able to distinctly modulate metabolic parameters and gut microbiota in obese rats. PMID:25156790

  6. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Laura J Dixon

    Full Text Available Nonalcoholic steatohepatitis (NASH is associated with caspase activation. However, a role for pro-inflammatory caspases or inflammasomes has not been explored in diet-induced liver injury. Our aims were to examine the role of caspase-1 in high fat-induced NASH. C57BL/6 wild-type and caspase 1-knockout (Casp1(-/- mice were placed on a 12-week high fat diet. Wild-type mice on the high fat diet increased hepatic expression of pro-caspase-1 and IL-1β. Both wild-type and Casp1(-/- mice on the high fat diet gained more weight than mice on a control diet. Hepatic steatosis and TG levels were increased in wild-type mice on high fat diet, but were attenuated in the absence of caspase-1. Plasma cholesterol and free fatty acids were elevated in wild-type, but not Casp1(-/- mice, on high fat diet. ALT levels were elevated in both wild-type and Casp1(-/- mice on high fat diet compared to control. Hepatic mRNA expression for genes associated with lipogenesis was lower in Casp1(-/- mice on high fat diet compared to wild-type mice on high fat diet, while genes associated with fatty acid oxidation were not affected by diet or genotype. Hepatic Tnfα and Mcp-1 mRNA expression was increased in wild-type mice on high fat diet, but not in Casp1(-/- mice on high fat diet. αSMA positive cells, Sirius red staining, and Col1α1 mRNA were increased in wild-type mice on high fat diet compared to control. Deficiency of caspase-1 prevented those increases. In summary, the absence of caspase-1 ameliorates the injurious effects of high fat diet-induced obesity on the liver. Specifically, mice deficient in caspase-1 are protected from high fat-induced hepatic steatosis, inflammation and early fibrogenesis. These data point to the inflammasome as an important therapeutic target for NASH.

  7. Triterpene alcohols and sterols from rice bran lower postprandial glucose-dependent insulinotropic polypeptide release and prevent diet-induced obesity in mice.

    Science.gov (United States)

    Fukuoka, Daisuke; Okahara, Fumiaki; Hashizume, Kohjiro; Yanagawa, Kiyotaka; Osaki, Noriko; Shimotoyodome, Akira

    2014-12-01

    Obesity is now a worldwide health problem. Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone that is secreted following the ingestion of food and modulates energy metabolism. Previous studies reported that lowering diet-induced GIP secretion improved energy homeostasis in animals and humans, and attenuated diet-induced obesity in mice. Therefore, food-derived GIP regulators may be used in the development of foods that prevent obesity. Rice bran oil and its components are known to have beneficial effects on health. Therefore, the aim of the present study was to clarify the effects of the oil-soluble components of rice bran on postprandial GIP secretion and obesity in mice. Triterpene alcohols [cycloartenol (CA) and 24-methylene cycloartanol (24Me)], β-sitosterol, and campesterol decreased the diet-induced secretion of GIP in C57BL/6J mice. Mice fed a high-fat diet supplemented with a triterpene alcohol and sterol preparation (TASP) from rice bran for 23 wk gained less weight than control mice. Indirect calorimetry revealed that fat utilization was higher in TASP-fed mice than in control mice. Fatty acid oxidation-related gene expression in the muscles of mice fed a TASP-supplemented diet was enhanced, whereas fatty acid synthesis-related gene expression in the liver was suppressed. The treatment of HepG2 cells with CA and 24Me decreased the gene expression of sterol regulatory element-binding protein (SREBP)-1c. In conclusion, we clarified for the first time that triterpene alcohols and sterols from rice bran prevented diet-induced obesity by increasing fatty acid oxidation in muscles and decreasing fatty acid synthesis in the liver through GIP-dependent and GIP-independent mechanisms. PMID:25257874

  8. PTPRT Regulates High-Fat Diet-Induced Obesity and Insulin Resistance

    OpenAIRE

    Feng, Xiujing; Scott, Anthony; Wang, Yong; Wang, Lan; Zhao, Yiqing; Doerner, Stephanie; Satake, Masanobu; Croniger, Colleen M.; Wang, Zhenghe

    2014-01-01

    Obesity is a risk factor for many human diseases. However, the underlying molecular causes of obesity are not well understood. Here, we report that protein tyrosine phosphatase receptor T (PTPRT) knockout mice are resistant to high-fat diet-induced obesity. Those mice avoid many deleterious side effects of high-fat diet-induced obesity, displaying improved peripheral insulin sensitivity, lower blood glucose and insulin levels. Compared to wild type littermates, PTPRT knockout mice show reduce...

  9. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice

    OpenAIRE

    Yan Zhen; Li Wenjun; Mao Ting; You Jia; Zhao Feng; Qi Qibin; Shao Mengle; Li Shoufeng; Huang Ping; Liu Yong

    2010-01-01

    Abstract Background Calorie restriction (CR) and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat), low-fat diet with 30% calorie restriction (LR), high-fat diet (HC, ...

  10. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    OpenAIRE

    Haque, Jamil A; McMahan, Ryan S.; Campbell, Jean S.; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K.; Richard P Beyer; Thomas J Montine; Yeh, Matthew M.; Kavanagh, Terrance J.; Fausto, Nelson

    2010-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifi...

  11. Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  12. Morin attenuates hepatic insulin resistance in high-fat-diet-induced obese mice.

    Science.gov (United States)

    Naowaboot, Jarinyaporn; Wannasiri, Supaporn; Pannangpetch, Patchareewan

    2016-06-01

    Morin is a natural bioflavonoid that exhibits antioxidant and anti-inflammatory properties. The present study was designed to evaluate the effect of morin on insulin resistance, oxidative stress, and inflammation in a high-fat-diet (HFD)-induced obese mice. Obesity was induced in ICR mice by feeding a HFD (60 % kcal from fat) for 12 weeks. After the first 6 weeks, obese mice were treated with morin (50 or 100 mg/kg/day) once daily for further 6 weeks. Blood glucose, lipid profile, insulin, leptin, adiponectin, and markers of oxidative stress and inflammation were then measured. Liver was excised, subjected to histopathology, glycogen determination, and gene and protein expression analysis. Morin administration reduced blood glucose, serum insulin, leptin, malondialdehyde, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) levels and increased serum adiponectin levels. Moreover, there was a reduction in serum lipid and liver triglyceride levels. Liver histology indicated that morin limited accumulation of lipid droplets. Interestingly, morin reduced expression of hepatic sterol regulatory element binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) and up-regulated hepatic carnitine palmitoyltransferase 1a (CPT1a) expression. Morin also stimulated glycogen storage and suppressed phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) protein expression. Furthermore, hepatic superoxide dismutase (SOD) and catalase (CAT) expression were increased after morin treatment. These findings indicate that morin has a positive effect in the HFD-induced obesity condition by suppressing lipogenesis, gluconeogenesis, inflammation, and oxidative stress activities. PMID:26976296

  13. Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity

    OpenAIRE

    Ahmadian, Maryam; Duncan, Robin E.; Varady, Krista A.; Frasson, Danubia; Hellerstein, Marc K.; Birkenfeld, Andreas L.; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Kang, Chulho; Sul, Hei Sook

    2009-01-01

    OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARΔ1 adipocytes. RESULTS aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocyte size. Overexpression of d...

  14. N-Acetylneuraminic acid attenuates hypercoagulation on high fat diet-induced hyperlipidemic rats

    Directory of Open Access Journals (Sweden)

    Zhang Yida

    2015-12-01

    Full Text Available Background and objective: N-Acetylneuraminic acid (Neu5Ac, a type of sialic acid, has close links with cholesterol metabolism and is often used as a biomarker in evaluating the risk of cardiovascular diseases. However, most studies on the health implications of Neu5Ac have focused on its effects on the nervous system, while its effects on cardiovascular risk factors have largely been unreported. Thus, the effects of Neu5Ac on coagulation status in high fat diet (HFD-induced hyperlipidemic rats were evaluated in this study. Methods: Sprague Dawley male rats were divided into five different groups and fed with HFD alone, HFD low-dose Neu5Ac, HFD high-dose Neu5Ac, HFD simvastatin (10 mg/kg day, and normal pellet alone. Food was given ad libitum while body weight of rats was measured weekly. After 12 weeks of intervention, rats were sacrificed and serum and tissue samples were collected for biochemistry and gene expression analysis, respectively. Results: The results showed that Neu5Ac could improve lipid metabolism and hyperlipidemia-associated coagulation. Neu5Ac exerted comparable or sometimes better physiological effects than simvastatin, at biochemical and gene expression levels. Conclusions: The data indicated that Neu5Ac prevented HFD-induced hyperlipidemia and associated hypercoagulation in rats through regulation of lipid-related and coagulation-related genes and, by extension, induced metabolite and protein changes. The implications of the present findings are that Neu5Ac may be used to prevent coagulation-related cardiovascular events in hyperlipidemic conditions. These findings are worth studying further.

  15. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway.

    Science.gov (United States)

    Misawa, Koichi; Hashizume, Kojiro; Yamamoto, Masaki; Minegishi, Yoshihiko; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    The initiation of obesity entails an imbalance wherein energy intake exceeds expenditure. Obesity is increasing in prevalence and is now a worldwide health problem. Food-derived peroxisome proliferator-activated receptor δ (PPARδ) stimulators represent potential treatment options for obesity. Ginger (Zingiber officinale Roscoe) was previously shown to regulate the PPARγ signaling pathway in adipocytes. In this study, we investigated the antiobesity effects of ginger in vivo and the mechanism of action in vitro. Energy expenditure was increased, and diet-induced obesity was attenuated in C57BL/6J mice treated with dietary ginger extract (GE). GE also increased the number of Type I muscle fibers, improved running endurance capacity and upregulated PPARδ-targeted gene expression in skeletal muscle and the liver. 6-Shogaol and 6-gingerol acted as specific PPARδ ligands and stimulated PPARδ-dependent gene expression in cultured human skeletal muscle myotubes. An analysis of cellular respiration revealed that pretreating cultured skeletal muscle myotubes with GE increased palmitate-induced oxygen consumption rate, which suggested an increase in cellular fatty acid catabolism. These results demonstrated that sustained activation of the PPARδ pathway with GE attenuated diet-induced obesity and improved exercise endurance capacity by increasing skeletal muscle fat catabolism. 6-Shogaol and 6-gingerol may be responsible for the regulatory effects of dietary ginger on PPARδ signaling. PMID:26101135

  16. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity

    Science.gov (United States)

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  17. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity.

    Science.gov (United States)

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  18. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2015-01-01

    Conclusions: The P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.

  19. Impaired vascular responses to relaxin in diet-induced overweight female rats.

    Science.gov (United States)

    van Drongelen, Joris; van Koppen, Arianne; Pertijs, Jeanne; Gooi, Jonathan H; Parry, Laura J; Sweep, Fred C G J; Lotgering, Frederik K; Smits, Paul; Spaanderman, Marc E A

    2012-03-01

    Relaxin mediates renal and mesenteric vascular adaptations to pregnancy by increasing endothelium-dependent vasodilation and compliance and decreasing myogenic reactivity. Diet-induced overweight and obesity are associated with impaired endothelial dysfunction and vascular remodeling leading to a reduction in arterial diameter. In this study, we tested the hypothesis that local vascular responses to relaxin are impaired in diet-induced overweight female rats on a high-fat cafeteria-style diet for 9 wk. Rats were chronically infused with either relaxin or placebo for 5 days, and vascular responses were measured in isolated mesenteric arteries and the perfused kidney. Diet-induced overweight significantly increased sensitivity to phenylephrine (by 17%) and vessel wall thickness, and reduced renal perfusion flow (RPFF; by 16%), but did not affect flow-mediated vasodilation, myogenic reactivity, and vascular compliance. In the normal weight rats, relaxin treatment significantly enhanced flow-mediated vasodilation (2.67-fold), decreased myogenic reactivity, and reduced sensitivity to phenylephrine (by 28%), but had no effect on compliance or RPFF. NO blockade by l-NAME diminished most relaxin-mediated effects. In diet-induced overweight rats, the vasodilator effects of relaxin were markedly reduced for flow-mediated vasodilation, sensitivity to phenylephrine, and myogenic response compared with the normal diet rats, mostly persistent under l-NAME. Our data demonstrate that some of the vasodilator responses to in vivo relaxin administration are impaired in isolated mesenteric arteries and the perfused kidney in diet-induced overweight female rats. This does not result from a decrease in Rxfp1 (relaxin family peptide receptor) expression but is likely to result from downstream disruption to endothelial-dependent mechanisms in diet-induced overweight animals. PMID:22174401

  20. Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T cell dependent and antibody mediated.

    Science.gov (United States)

    Harrop, Richard; Ryan, Matthew G; Myers, Kevin A; Redchenko, Irina; Kingsman, Susan M; Carroll, Miles W

    2006-09-01

    5T4 is a tumor associated antigen that is expressed on the surface of a wide spectrum of human adenocarcinomas. The highly attenuated virus, modified vaccinia Ankara, has been engineered to express human 5T4 (h5T4). In a pre-clinical murine model, the recombinant virus (TroVax) induces protection against challenge with CT26-h5T4 (a syngeneic tumor line expressing h5T4). Anti-tumor activity is long lived, with protection still evident 6 months after the final vaccination. In a therapeutic setting, injection of mice with TroVax results in a reduction in tumor burden of >90%. Depletion of CD8+ T cells has no effect upon therapy in the active treatment model, whereas depletion of CD4+ T cells completely abrogates anti-tumor activity. In a prophylactic setting, depletion of CD4+ and CD8+ T cells after the induction of a h5T4 immune response has no deleterious effect on protection following challenge with CT26-h5T4. In light of these studies, the role of antibodies in protection against tumor challenge was investigated. 5T4 specific polyclonal serum decreased tumor burden by approximately 70%. Thus, we conclude that CD4+ T cells are essential for the induction of a protective immune response and that antibodies are the likely effector moiety in this xenogeneic murine tumor model. PMID:16311730

  1. Effects of Diet-Induced Obesity on Motivation and Pain Behavior in an Operant Assay

    OpenAIRE

    Rossi, Heather L.; Luu, Anthony K.S.; Kothari, Sunny D.; Kuburas, Adisa; Neubert, John K.; Caudle, Robert M.; Recober, Ana

    2013-01-01

    Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in th...

  2. Reduced Capacity for Fatty Acid Oxidation in Rats with Inherited Susceptibility to Diet-Induced Obesity

    OpenAIRE

    Ji, Hong; Friedman, Mark I.

    2007-01-01

    High-fat, energy-dense diets promote weight gain and obesity in humans and other animals, but the mechanisms underlying such diet-induced obesity remain elusive. To determine whether a reduced capacity to oxidize fat is involved in the etiology of diet-induced obesity, we examined different measures of fatty acid oxidation in rats selectively bred for susceptibility (DIO) or resistance (DR) to dietary obesity before and after they were fed a high-fat diet and became obese. DIO rats eating a l...

  3. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    Science.gov (United States)

    Boon, Mariëtte R.; van den Berg, Sjoerd A. A.; Wang, Yanan; van den Bossche, Jan; Karkampouna, Sofia; Bauwens, Matthias; De Saint-Hubert, Marijke; van der Horst, Geertje; Vukicevic, Slobodan; de Winther, Menno P. J.; Havekes, Louis M.; Jukema, J. Wouter; Tamsma, Jouke T.; van der Pluijm, Gabri; van Dijk, Ko Willems; Rensen, Patrick C. N.

    2013-01-01

    Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to

  4. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse.

    Science.gov (United States)

    Daly, Donna M; Park, Sung Jin; Valinsky, William C; Beyak, Michael J

    2011-06-01

    Gastrointestinal vagal afferents transmit satiety signals to the brain via both chemical and mechanical mechanisms. There is indirect evidence that these signals may be attenuated in obesity. We hypothesized that responses to satiety mediators and distension of the gut would be attenuated after induction of diet induced obesity. Obesity was induced by feeding a high fat diet (60% kcal from fat). Low fat fed mice (10% kcal from fat) served as a control. High fat fed mice were obese, with increased visceral fat, but were not hyperglycaemic. Recordings from jejunal afferents demonstrated attenuated responses to the satiety mediators cholecystokinin (CCK, 100 nm) and 5-hydroxytryptamine (5-HT, 10 μm), as was the response to low intensity jejunal distension, while responses to higher distension pressures were preserved. We performed whole cell patch clamp recordings on nodose ganglion neurons, both unlabelled, and those labelled by fast blue injection into the wall of the jejunum. The cell membrane of both labelled and unlabelled nodose ganglion neurons was less excitable in HFF mice, with an elevated rheobase and decreased number of action potentials at twice rheobase. Input resistance of HFF neurons was also significantly decreased. Calcium imaging experiments revealed reduced proportion of nodose ganglion neurons responding to CCK and 5-HT in obese mice. These results demonstrate a marked reduction in afferent sensitivity to satiety related stimuli after a chronic high fat diet. A major mechanism underlying this change is reduced excitability of the neuronal cell membrane. This may explain the development of hyperphagia when a high fat diet is consumed. Improving sensitivity of gastrointestinal afferent nerves may prove useful to limit food intake in obesity. PMID:21486762

  5. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    D'Angelo Carlo Magliano

    Full Text Available AIM: The aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPARalpha and PPARgamma by Bezafibrate (BZ could attenuate hepatic and white adipose tissue (WAT abnormalities in male offspring from diet-induced obese dams. MATERIALS AND METHODS: C57BL/6 female mice were fed a standard chow (SC; 10% lipids diet or a high-fat (HF; 49% lipids diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet started at 12 weeks of age and was maintained for three weeks. RESULTS: The HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1 in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat. CONCLUSION: Diet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.

  6. Rhinacanthus nasutus leaf improves metabolic abnormalities in high-fat diet-induced obese mice

    Directory of Open Access Journals (Sweden)

    Supaporn Wannasiri

    2016-01-01

    Conclusions: To the best of our knowledge, the present study is the first report on the impact of R. nasutus extract in improving the impaired glucose and lipid metabolism in high-fat diet-induced obesity in mice via stimulating the insulin sensitivity in the liver and adipose tissues.

  7. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Science.gov (United States)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  8. Hypolipidemic Activity of Spinacia Oleracea L. in Atherogenic Diet Induced Hyperlipidemic Rats.

    OpenAIRE

    Ranjan Kumar Giri

    2012-01-01

    Spinacia oleracea (spinach) of family Amaranthaceae is an important plant used traditionally for medicinal purposes. Hyperlipidemia was induced by treated orally with atherogenic diet. In atherogenic diet induced hyperlipidemic model, the rats receiving Spinacia oleracea powder showed significant reduction in total cholesterol, triglycerides, total protein and elevation of high density lipoprotein cholesterol. Spinacia oleracea was found to possess significant hypolipidemic activity. The resu...

  9. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Calloe, Kirstine; Braunstein, Thomas Hartig; Riemann, Mads; Hofgaard, Johannes Pauli; Liang, Bo; Jensen, Christa Funch; Olsen, Kristine Boisen; Bartels, Emil D; Baandrup, Ulrik; Jespersen, Thomas; Nielsen, Lars Bo; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten Schak

    2015-01-01

    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS...

  10. Feasibility of simultaneous PET/MR in diet-induced atherosclerotic minipig

    DEFF Research Database (Denmark)

    Pedersen, Sune F; Ludvigsen, Trine P; Johannesen, Helle H;

    2014-01-01

    Novel hybrid 18-fluoro-deoxy-D-glucose ((18)F-FDG) based positron emission tomography (PET) and magnetic resonance imaging (MRI) has shown promise for characterization of atherosclerotic plaques clinically. The purpose of this study was to evaluate the method in a pre-clinical model of diet-induc...

  11. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  12. Chenodeoxycholic acid attenuates ovalbumin-induced airway inflammation in murine model of asthma by inhibiting the T(H)2 cytokines.

    Science.gov (United States)

    Shaik, Firdose Begum; Panati, Kalpana; Narasimha, Vydyanath R; Narala, Venkata Ramireddy

    2015-08-01

    Asthma is a complex highly prevalent airway disease that is a major public health problem for which current treatment options are inadequate. Recently, farnesoid X receptor (FXR) has been shown to exert anti-inflammatory actions in various disease conditions, but there have been no reported investigations of Chenodeoxycholic acid (CDCA), a natural FXR agonist, in allergic airway inflammation. To test the CDCA effectiveness in airway inflammation, ovalbumin (OVA)-induced acute murine asthma model was established. We found that lung tissue express FXR and CDCA administration reduced the severity of the murine allergic airway disease as assessed by pathological and molecular markers associated with the disease. CDCA treatment resulted in fewer infiltrations of cells into the airspace and peribronchial areas, and decreased goblet cell hyperplasia, mucus secretion and serum IgE levels which was increased in mice with OVA-induced allergic asthma. The CDCA treatment further blocked the secretion of TH2 cytokines (IL-4, IL-5 and IL-13) and proinflammatory cytokine TNF-α indicate that the FXR and its agonists may have potential for treating allergic asthma. PMID:26067554

  13. Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice.

    Science.gov (United States)

    Rachid, Tamiris Lima; Penna-de-Carvalho, Aline; Bringhenti, Isabele; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A; Souza-Mello, Vanessa

    2015-02-15

    Browning is characterized by the formation of beige/brite fat depots in subcutaneous white adipose tissue (sWAT). This study aimed to examine whether the chronic activation of PPARalpha by fenofibrate could induce beige cell depots in the sWAT of diet-induced obese mice. High-fat fed animals presented overweight, insulin resistance and displayed adverse sWAT remodeling. Fenofibrate significantly attenuated these parameters. Treated groups demonstrated active UCP-1 beige cell clusters within sWAT, confirmed through higher gene expression of PPARalpha, PPARbeta, PGC1alpha, BMP8B, UCP-1, PRDM16 and irisin in treated groups. PPARalpha activation seems to be pivotal to trigger browning through irisin induction and UCP-1 transcription, indicating that fenofibrate increased the expression of genes typical of brown adipose tissue (BAT) in the sWAT, characterizing the formation of beige cells. These findings put forward a possible role of PPARalpha as a promising therapeutic for metabolic diseases via beige cell induction. PMID:25576856

  14. PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARγ activation in the liver

    International Nuclear Information System (INIS)

    Research highlights: → PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression. → Hepatic expressions of PPARγ and PCG-1α are induced by a ketogenic diet. → PPARγ antagonist attenuates a ketogenic diet-induced PAI-1 expression. → Ketogenic diet advances the phase of circadian clock in a PPARα-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor α (PPARα) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPARα-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPARα-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPARα target genes such as Cyp4A10 and FGF21 was damped in PPARα-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPARα-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPARα activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPARγ and its coactivator PCG-1α were more effectively induced in PPARα-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPARγ antagonist, in both WT and PPARα-null mice. PPARγ activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression

  15. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N;

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the...... ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied...

  16. MK615 attenuates Porphyromonas gingivalis lipopolysaccharide-induced pro-inflammatory cytokine release via MAPK inactivation in murine macrophage-like RAW264.7 cells.

    Science.gov (United States)

    Morimoto, Yoko; Kikuchi, Kiyoshi; Ito, Takashi; Tokuda, Masayuki; Matsuyama, Takashi; Noma, Satoshi; Hashiguchi, Teruto; Torii, Mitsuo; Maruyama, Ikuro; Kawahara, Ko-Ichi

    2009-11-01

    The Japanese apricot, known as Ume in Japanese, has been a traditional Japanese medicine for centuries, and is a familiar and commonly consumed food. The health benefits of Ume are now being widely recognized and have been strengthened by recent studies showing that MK615, an extract of compounds from Ume, has strong anticancer and anti-inflammatory effects. However, the potential role of MK615 in the periodontal field remains unknown. Here, we found that MK615 significantly reduced the production of pro-inflammatory mediators (tumor necrosis factor-alpha and interleukin-6) induced by Porphyromonas gingivalis lipopolysaccharide (LPS), a major etiological agent in localized chronic periodontitis, in murine macrophage-like RAW264.7 cells. MK615 markedly inhibited the phosphorylation of ERK1/2, p38MAPK, and JNK, which is associated with pro-inflammatory mediator release pathways. Moreover, MK615 completely blocked LPS-triggered NF-kappaB activation. The present results suggest that MK615 has potential as a therapeutic agent for treating inflammatory diseases such as periodontitis. PMID:19706286

  17. Hypolipidemic Activity of Protocatechuic Acid in Atherogenic Diet Induced Hyperlipidemic Rats

    OpenAIRE

    Borate AR; Suralkar AA; Deshpande AD; Malusare PV; Bangale PA

    2012-01-01

    Hyperlipidemia is an abnormally high level of fatty substances called lipids, largely cholesterol andtriglycerides, in the blood. The present study was designed to investigate the hypolipidemic effects ofProtocatechuic acid in atherogenic diet induced hyperlipidemia. In atherogenic diet inducedhyperlipidemic model, the rats receiving treatment of Protocatechuic acid at the dose of 25 and 50mg/kg showed significant reduction in total cholesterol, triglyceride, total protein and elevation in hi...

  18. Hypolipidemic activity of Haritaki (Terminalia chebula) in atherogenic diet induced hyperlipidemic rats

    OpenAIRE

    V. Maruthappan; K Sakthi Shree

    2010-01-01

    Haritaki (Terminalia chebula) family Combretaceae is an important plant used traditionally for medicinal purposes. It is component of the classic Ayurvedic combination called “Triphala”. Hyperlipidemia was induced by treated orally with atherogenic diet. In atherogenic diet induced hyperlipidemic model, the rats receiving treatment with Haritaki showed significant reduction in total cholesterol, triglycerides, total protein and elevation of high density lipoprotein cholesterol. Haritaki was...

  19. Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge

    OpenAIRE

    Clarke, Siobhan F.; Murphy, Eileen F.; O’Sullivan, Orla; Ross, R Paul; O’Toole, Paul W; Shanahan, Fergus; Cotter, Paul D.

    2013-01-01

    Links between the gut microbiota and host metabolism have provided new perspectives on obesity. We previously showed that the link between the microbiota and fat deposition is age- and time-dependent subject to microbial adaptation to diet over time. We also demonstrated reduced weight gain in diet-induced obese (DIO) mice through manipulation of the gut microbiota with vancomycin or with the bacteriocin-producing probiotic Lactobacillus salivarius UCC118 (Bac+), with metabolic improvement ac...

  20. High-Phosphorus Diet Induces Osteopontin Expression of Renal Tubules in Rats

    OpenAIRE

    Matsuzaki, Hiroshi; Katsumata, Shin-ichi; Uehara, Mariko; Suzuki, Kazuharu; Miwa, Misao

    2007-01-01

    High-phosphorus (P) diet induces nephrocalcinosis in rats; however, the mechanism for onset of this disorder is unclear. The calcium (Ca) deposits in kidney are a form of hydroxyapatite, while osteopontin is combined with hydroxyapatite. Based on these observations, we speculated that the osteopontin play an important role in the formation of the Ca deposits induced by high-P diet. This study was investigated the effect of high-P diet on osteopontin expression in kidney. Female Wistar rats we...

  1. Long-term voluntary running improves diet-induced adiposity in young adult mice

    Science.gov (United States)

    The present study investigated the effects of long-term voluntary running on diet-induced adiposity in male C57BL/6 mice. Four-week old mice (n = 15 per group) were fed the AIN93G diet or a 45% high-fat diet (% kcal.) with or without access to in-cage activity wheels for 14 weeks. The high-fat die...

  2. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats

    OpenAIRE

    Deblon, Nicolas; Veyrat-Durebex, Christelle; Bourgoin, Lucie; Caillon, Aurélie; Bussier, Anne-Lise; Petrosino, Stefania; Piscitelli, Fabiana; Legros, Jean-Jacques; Geenen, Vincent; Foti, Michelangelo; Wahli, Walter; Di Marzo, Vincenzo; Rohner-Jeanrenaud, Françoise

    2011-01-01

    Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such benefic...

  3. Antiatherosclerotic and Cardioprotective Potential of Acacia senegal Seeds in Diet-Induced Atherosclerosis in Rabbits

    Directory of Open Access Journals (Sweden)

    Heera Ram

    2014-01-01

    Full Text Available Acacia senegal L. (Fabaceae seeds are essential ingredient of “Pachkutta,” a specific Rajasthani traditional food. The present study explored antiatherosclerotic and cardioprotective potential of Acacia senegal seed extract, if any, in hypercholesterolemic diet-induced atherosclerosis in rabbits. Atherosclerosis in rabbits was induced by feeding normal diet supplemented with oral administration of cholesterol (500 mg/kg body weight/day mixed with coconut oil for 15 days. Circulating total cholesterol (TC, HDL-cholesterol (HDL-C, LDL-cholesterol (LDL-C, triglycerides, and VLDL-cholesterol (VLDL-C levels; atherogenic index (AI; cardiac lipid peroxidation (LPO; planimetric studies of aortal wall; and histopathological studies of heart, aorta, kidney, and liver were performed. Apart from reduced atherosclerotic plaques in aorta (6.34±0.72 and increased lumen volume (51.65±3.66, administration with ethanolic extract of Acacia senegal seeds (500 mg/kg/day, p.o. for 45 days to atherosclerotic rabbits significantly lowered serum TC, LDL-C, triglyceride, and VLDL-C levels and atherogenic index as compared to control. Atherogenic diet-induced cardiac LPO and histopathological abnormalities in aorta wall, heart, kidney, and liver were reverted to normalcy by Acacia senegal seed extract administration. The findings of the present study reveal that Acacia senegal seed extract ameliorated diet-induced atherosclerosis and could be considered as lead in the development of novel therapeutics.

  4. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    International Nuclear Information System (INIS)

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  5. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    Energy Technology Data Exchange (ETDEWEB)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd., Suite 2114, Bethesda, MD 20892 (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States)

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  6. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity.

    Science.gov (United States)

    van der Heijden, Roel A; Morrison, Martine C; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P H; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Tietge, Uwe J F; Koonen, Debby P Y; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n = 52) received a control low-fat diet (LFD; 10 kcal% fat) for 6 weeks followed by 24 weeks of either LFD (n = 13) or high-fat diet (HFD; 45 kcal% fat; n = 13) or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n = 13) or an anthocyanin-rich bilberry extract (HFD+B; n = 13). Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT) histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient and

  7. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Roel A. van der Heijden

    2016-01-01

    Full Text Available Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n=52 received a control low-fat diet (LFD; 10 kcal% fat for 6 weeks followed by 24 weeks of either LFD (n=13 or high-fat diet (HFD; 45 kcal% fat; n=13 or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n=13 or an anthocyanin-rich bilberry extract (HFD+B; n=13. Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient

  8. Comparison between Immunization Routes of Live Attenuated Salmonella Typhimurium Strains Expressing BCSP31, Omp3b, and SOD of Brucella abortus in Murine Model

    Science.gov (United States)

    Kim, Won K.; Moon, Ja Y.; Kim, Suk; Hur, Jin

    2016-01-01

    Live, attenuated Salmonella Typhimurium vaccine candidate expressing BCSP31, Omp3b, and SOD proteins of Brucella abortus was constructed. Thirty BALB/c mice were divided equally into three groups, Group A, were intraperitoneally (IP) inoculated with 100 μl of approximately 1.2 × 106 colony-forming units (CFUs)/ml of the Salmonella containing vector only in 100 μl as a control. And groups B and C mice were orally and IP immunized with approximately 1.2 × 109 CFU/ml of the mixture of three delivery strains in 10 μl and IP immunized with approximately 1.2 × 106 CFU/ml of the mixture in 100 μl, respectively. The serum IgG, TNF-α and IFN-γ concentrations in groups B (except Omp3b) and C were significantly higher than those in group A. Following challenge with B. abortus strain 544; challenge strain was detected <103 CFU from the spleen of all mice of group C. These results suggest that IP immunization with the mixture of the vaccine candidate can induce immune responses, and can effectively protect mice against brucellosis. PMID:27148232

  9. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    OpenAIRE

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  10. Antiobesity effects of yerba maté extract (Ilex paraguariensis) in high-fat diet-induced obese mice.

    Science.gov (United States)

    Arçari, Demétrius P; Bartchewsky, Waldemar; dos Santos, Tanila W; Oliveira, Karim A; Funck, Alexandre; Pedrazzoli, José; de Souza, Marina F F; Saad, Mario J; Bastos, Deborah H M; Gambero, Alessandra; Carvalho, Patricia de O; Ribeiro, Marcelo L

    2009-12-01

    Because the potential of yerba maté (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba maté extract on weight loss, obesity-related biochemical parameters, and the regulation of adipose tissue gene expression in high-fat diet-induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high-fat diets. After 12 weeks on a high-fat diet, mice were randomly assigned according to the treatment (water or yerba maté extract 1.0 g/kg). After treatment intervention, plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor-alpha (TNF-alpha), leptin, interleukin-6 (IL-6), C-C motif chemokine ligand-2 (CCL2), CCL receptor-2 (CCR2), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1), adiponectin, resistin, peroxisome proliferator-activated receptor-gamma(2) (PPAR-gamma(2)), uncoupling protein-1 (UCP1), and PPAR-gamma coactivator-1 alpha (PGC-1 alpha). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba maté exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat-pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high-fat diet. After treatment with yerba maté extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba maté extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity. PMID:19444227

  11. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Directory of Open Access Journals (Sweden)

    Marie S A Palmnäs

    Full Text Available Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat or high fat (HF, 60% kcal fat and further into ad libitum water control (W or low-dose aspartame (A, 5-7 mg/kg/d in drinking water treatments for 8 week (n = 10-12 animals/treatment. Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05. Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  12. Loss of p53 attenuates the contribution of IL-6 deletion on suppressed tumor progression and extended survival in Kras-driven murine lung cancer.

    Directory of Open Access Journals (Sweden)

    Xiaohong Tan

    Full Text Available Interleukin-6 (IL-6 is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6(-/- mice with Kras(G12D mutant mice, which develop lung tumors after activation of mutant Kras(G12D, to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. Kras(G12D; IL-6(-/- mice exhibited increased tumorigenesis, but slower tumor growth and longer survival, than Kras(G12D mice. Further, in order to investigate whether IL-6 deletion contributes to suppression of lung cancer metastasis, we generated Kras(G12D; p53(flox/flox; IL-6(-/- mice, which developed lung cancer with a trend for reduced metastases and longer survival than Kras(G12D; p53(flox/flox mice. Tumors from Kras(G12D; IL-6(-/- mice showed increased expression of TNFα and decreased expression of CCL-19, CCL-20 and phosphorylated STAT3(pSTAT3 than Kras(G12D mice; however, these changes were not present between tumors from Kras(G12D; p53(flox/flox; IL-6(-/- and Kras(G12D; p53(flox/flox mice. Upregulation of pSTAT3 and phosphorylated AKT(pAKT were observed in Kras(G12D tumors with p53 deletion. Taken together, these results indicate that IL-6 deletion accelerates tumorigenesis but delays tumor progression and prolongs survival time in a Kras-driven mouse model of lung cancer. However, these effects can be attenuated by p53 deletion.

  13. Effects of diet-induced obesity on motivation and pain behavior in an operant assay.

    Science.gov (United States)

    Rossi, H L; Luu, A K S; Kothari, S D; Kuburas, A; Neubert, J K; Caudle, R M; Recober, A

    2013-04-01

    Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet (RD) and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in this assay were strain and reward dependent. Obesity-prone C57BL/6J mice fed a high-fat diet (HFD) display lower number of licks of a caloric, palatable reward (33% sweetened condensed milk or 30% sucrose) than control mice. This occurred at all temperatures, in both sexes, and was evident even before the onset of obesity. This diminished reward-seeking behavior was not observed in obesity-resistant SKH1-E (SK) mice. These findings suggest that diet and strain interact to modulate reward-seeking behavior. Furthermore, we observed a difference between diet groups in operant behavior with caloric, palatable rewards, but not with a non-caloric neutral reward (water). Importantly, we found no effect of diet-induced obesity on acute thermal nociception in the absence of inflammation or injury. This indicates that thermal sensation in the face is not affected by obesity-associated peripheral neuropathy as it occurs when studying pain behaviors in the rodent hindpaw. Future studies using this model may reveal whether obesity facilitates the development of chronic pain after injury or inflammation. PMID:23333672

  14. Changes in gene expression foreshadow diet-induced obesity in genetically identical mice.

    Directory of Open Access Journals (Sweden)

    Robert A Koza

    2006-05-01

    Full Text Available High phenotypic variation in diet-induced obesity in male C57BL/6J inbred mice suggests a molecular model to investigate non-genetic mechanisms of obesity. Feeding mice a high-fat diet beginning at 8 wk of age resulted in a 4-fold difference in adiposity. The phenotypes of mice characteristic of high or low gainers were evident by 6 wk of age, when mice were still on a low-fat diet; they were amplified after being switched to the high-fat diet and persisted even after the obesogenic protocol was interrupted with a calorically restricted, low-fat chow diet. Accordingly, susceptibility to diet-induced obesity in genetically identical mice is a stable phenotype that can be detected in mice shortly after weaning. Chronologically, differences in adiposity preceded those of feeding efficiency and food intake, suggesting that observed difference in leptin secretion is a factor in determining phenotypes related to food intake. Gene expression analyses of adipose tissue and hypothalamus from mice with low and high weight gain, by microarray and qRT-PCR, showed major changes in the expression of genes of Wnt signaling and tissue re-modeling in adipose tissue. In particular, elevated expression of SFRP5, an inhibitor of Wnt signaling, the imprinted gene MEST and BMP3 may be causally linked to fat mass expansion, since differences in gene expression observed in biopsies of epididymal fat at 7 wk of age (before the high-fat diet correlated with adiposity after 8 wk on a high-fat diet. We propose that C57BL/6J mice have the phenotypic characteristics suitable for a model to investigate epigenetic mechanisms within adipose tissue that underlie diet-induced obesity.

  15. Cafeteria diet-induced obesity causes oxidative damage in white adipose.

    Science.gov (United States)

    Johnson, Amy R; Wilkerson, Matthew D; Sampey, Brante P; Troester, Melissa A; Hayes, D Neil; Makowski, Liza

    2016-04-29

    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods - the "cafeteria" diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet-fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes. PMID:27033600

  16. Synthetic FXR Agonist GW4064 Prevents Diet-induced Hepatic Steatosis and Insulin Resistance

    OpenAIRE

    MA, YONGJIE; Huang, Yixuan; Yan, Linna; Gao, Mingming; Liu, Dexi

    2013-01-01

    The nuclear receptor farnesoid X receptor (FXR), an endogenous sensor for bile acids, plays an important role in cholesterol, lipid and carbohydrate metabolism. The objective of this study is to examine the effect of FXR activation on diet-induced obesity and hepatic steatosis. Activation of FXR by its synthetic agonist, 3-[2-[2-Chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid (GW4064), suppressed weight gain in C57BL/6 mice fed with either ...

  17. Hypolipidemic activity of Haritaki (Terminalia chebula in atherogenic diet induced hyperlipidemic rats

    Directory of Open Access Journals (Sweden)

    V Maruthappan

    2010-01-01

    Full Text Available Haritaki (Terminalia chebula family Combretaceae is an important plant used traditionally for medicinal purposes. It is component of the classic Ayurvedic combination called "Triphala". Hyperlipidemia was induced by treated orally with atherogemc diet. In atherogenic diet induced hyperlipidemic model, the rats receiving treatment with Haritaki showed significant reduction in total cholesterol, triglycerides, total protein and elevation of high density lipoprotein cholesterol. Haritaki was found to possess significant hypolipidemic activity. The results also suggest that Haritaki at 1.05 and 2.10 mg/kg b.wt. concentrations are an excellent lipid-lowering agent.

  18. Hypolipidemic Activity of Spinacia Oleracea L. in Atherogenic Diet Induced Hyperlipidemic Rats.

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Giri

    2012-07-01

    Full Text Available Spinacia oleracea (spinach of family Amaranthaceae is an important plant used traditionally for medicinal purposes. Hyperlipidemia was induced by treated orally with atherogenic diet. In atherogenic diet induced hyperlipidemic model, the rats receiving Spinacia oleracea powder showed significant reduction in total cholesterol, triglycerides, total protein and elevation of high density lipoprotein cholesterol. Spinacia oleracea was found to possess significant hypolipidemic activity. The results also suggest that Spinacia oleracea powder at 200mg and 400 mg/kg b.wt. concentrations are an excellent lipid-lowering agent.

  19. Intestinal GATA4 deficiency protects from diet-induced hepatic steatosis

    OpenAIRE

    Patankar, Jay V.; Obrowsky, Sascha; Doddapattar, Prakash; Hoefler, Gerald; Battle, Michele; Levak-Frank, Sanja; Kratky, Dagmar

    2012-01-01

    Background & Aims GATA4, a zinc finger domain transcription factor, is critical for jejunal identity. Mice with an intestine-specific GATA4 deficiency (GATA4iKO) are resistant to diet-induced obesity and insulin resistance. Although they have decreased intestinal lipid absorption, hepatic de novo lipogenesis is inhibited. Here, we investigated dietary lipid-dependent and independent effects on the development of steatosis and fibrosis in GATA4iKO mice. Methods GATA4iKO and control mice were f...

  20. Hematological and acute-phase responses to diet-induced obesity in IL-6 KO mice

    OpenAIRE

    Pini, Maria; Rhodes, Davina H.; Fantuzzi, Giamila

    2011-01-01

    Obesity is associated with chronic inflammation and elevated levels of IL-6. The role of IL-6 in induction of acute-phase proteins and modulation of haematological responses has been demonstrated in models of inflammation and aging, but not in obesity. We hypothesized that IL-6 is necessary to regulate the acute-phase response and hematological changes associated with diet-induced obesity (DIO) in mice. Feeding a 60% kcal/fat diet for 13 weeks to C57BL6 WT male mice induced a significant incr...

  1. Early atherosclerosis and vascular inflammation in mice with diet-induced type 2 diabetes

    DEFF Research Database (Denmark)

    Bartels, E D; Bang, C A; Nielsen, L B

    2009-01-01

    median lesion area was 8.0 times higher than in fat-fed wild-type mice (P = 0.001). Intracellular adhesion molecule-1 staining of the aortic endothelium was most pronounced in the fat-fed apoB transgenic mice. CONCLUSIONS: Our findings suggest that diet-induced type 2 diabetes causes early......BACKGROUND: Obesity and type 2 diabetes increase the risk of atherosclerosis. It is unknown to what extent this reflects direct effects on the arterial wall or secondary effects of hyperlipidaemia. MATERIALS AND METHODS: The effect of obesity and type 2 diabetes on the development of...

  2. Green and Black Cardamom in a Diet-Induced Rat Model of Metabolic Syndrome

    OpenAIRE

    Maharshi Bhaswant; Hemant Poudyal; Mathai, Michael L.; Ward, Leigh C.; Peter Mouatt; Lindsay Brown

    2015-01-01

    Both black (B) and green (G) cardamom are used as flavours during food preparation. This study investigated the responses to B and G in a diet-induced rat model of human metabolic syndrome. Male Wistar rats were fed either a corn starch-rich diet (C) or a high-carbohydrate, high-fat diet with increased simple sugars along with saturated and trans fats (H) for 16 weeks. H rats showed signs of metabolic syndrome leading to visceral obesity with hypertension, glucose intolerance, cardiovascular ...

  3. Sympathetic mechanisms in diet-induced thermogenesis: modification by ciclazindol and anorectic drugs.

    OpenAIRE

    Rothwell, N. J.; Stock, M J; Wyllie, M. G.

    1981-01-01

    1 The sympathetic noradrenergic activation of brown adipose tissue and the biochemical mechanisms involved in diet-induced thermogenesis were studied in rats. 2 A close correlation was found between brown adipose tissue Na+, K+-adenosinetriphosphatase (Na+, K+-ATPase) activity in vitro and in vivo measurements of resting oxygen consumption (VO2). The effects of noradrenaline on in vitro NA+, K+-ATPase activity in brown adipose tissue and in vivo VO2 could be mimicked by a variety of agents. T...

  4. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice

    International Nuclear Information System (INIS)

    Research highlights: → NDGA decreases high-fat diet-induced body weight gain and adiposity. → NDGA reduces high-fat diet-induced triglyceride accumulation in liver. → NDGA improves lipid storage in vitro through altering lipid regulatory proteins. → Inhibition of lipid storage in vivo and in vitro is mediated by AMPK activation. -- Abstract: Nonalcoholic fatty liver disease, one of the most common causes of chronic liver disease, is strongly associated with metabolic syndrome. Nordihydroguaiaretic acid (NDGA) has been reported to inhibit lipoprotein lipase; however, the effect of NDGA on hepatic lipid metabolism remains unclear. We evaluated body weight, adiposity, liver histology, and hepatic triglyceride content in high-fat diet (HFD)-fed C57BL/6J mice treated with NDGA. In addition, we characterized the underlying mechanism of NDGA's effects in HepG2 hepatocytes by Western blot and RT-PCR analysis. NDGA (100 or 200 mg/kg/day) reduced weight gain, fat pad mass, and hepatic triglyceride accumulation, and improved serum lipid parameters in mice fed a HFD for 8 weeks. NDGA significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the liver and in HepG2 hepatocytes. NDGA downregulated the level of mature SREBP-1 and its target genes (acetyl-CoA carboxylase and fatty acid synthase), but, it upregulated expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor (PPAR)α, PPARγ coactivator-1, carnitine palmitoyl transferase-1, and uncoupling protein-2. The specific AMPK inhibitor compound C attenuated the effects of NDGA on expression of lipid metabolism-related proteins in HepG2 hepatocytes. The beneficial effects of NDGA on HFD-induced hepatic triglyceride accumulation are mediated through AMPK signaling pathways, suggesting a potential target for preventing NAFLD.

  5. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Su; Kim, Daeyoung; Jo, Keunae [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Translational Research Center for Protein Function Control, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2010-10-08

    Research highlights: {yields} NDGA decreases high-fat diet-induced body weight gain and adiposity. {yields} NDGA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} NDGA improves lipid storage in vitro through altering lipid regulatory proteins. {yields} Inhibition of lipid storage in vivo and in vitro is mediated by AMPK activation. -- Abstract: Nonalcoholic fatty liver disease, one of the most common causes of chronic liver disease, is strongly associated with metabolic syndrome. Nordihydroguaiaretic acid (NDGA) has been reported to inhibit lipoprotein lipase; however, the effect of NDGA on hepatic lipid metabolism remains unclear. We evaluated body weight, adiposity, liver histology, and hepatic triglyceride content in high-fat diet (HFD)-fed C57BL/6J mice treated with NDGA. In addition, we characterized the underlying mechanism of NDGA's effects in HepG2 hepatocytes by Western blot and RT-PCR analysis. NDGA (100 or 200 mg/kg/day) reduced weight gain, fat pad mass, and hepatic triglyceride accumulation, and improved serum lipid parameters in mice fed a HFD for 8 weeks. NDGA significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the liver and in HepG2 hepatocytes. NDGA downregulated the level of mature SREBP-1 and its target genes (acetyl-CoA carboxylase and fatty acid synthase), but, it upregulated expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor (PPAR){alpha}, PPAR{gamma} coactivator-1, carnitine palmitoyl transferase-1, and uncoupling protein-2. The specific AMPK inhibitor compound C attenuated the effects of NDGA on expression of lipid metabolism-related proteins in HepG2 hepatocytes. The beneficial effects of NDGA on HFD-induced hepatic triglyceride accumulation are mediated through AMPK signaling pathways, suggesting a potential target for preventing NAFLD.

  6. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance.

    Science.gov (United States)

    Ringling, Rebecca E; Gastecki, Michelle L; Woodford, Makenzie L; Lum-Naihe, Kelly J; Grant, Ryan W; Pulakat, Lakshmi; Vieira-Potter, Victoria J; Padilla, Jaume

    2016-01-01

    We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis. PMID:27583382

  7. Green and Black Cardamom in a Diet-Induced Rat Model of Metabolic Syndrome.

    Science.gov (United States)

    Bhaswant, Maharshi; Poudyal, Hemant; Mathai, Michael L; Ward, Leigh C; Mouatt, Peter; Brown, Lindsay

    2015-09-01

    Both black (B) and green (G) cardamom are used as flavours during food preparation. This study investigated the responses to B and G in a diet-induced rat model of human metabolic syndrome. Male Wistar rats were fed either a corn starch-rich diet (C) or a high-carbohydrate, high-fat diet with increased simple sugars along with saturated and trans fats (H) for 16 weeks. H rats showed signs of metabolic syndrome leading to visceral obesity with hypertension, glucose intolerance, cardiovascular remodelling and nonalcoholic fatty liver disease. Food was supplemented with 3% dried B or G for the final eight weeks only. The major volatile components were the closely related terpenes, 1,8-cineole in B and α-terpinyl acetate in G. HB (high-carbohydrate, high-fat + black cardamom) rats showed marked reversal of diet-induced changes, with decreased visceral adiposity, total body fat mass, systolic blood pressure and plasma triglycerides, and structure and function of the heart and liver. In contrast, HG (high-carbohydrate, high-fat + green cardamom) rats increased visceral adiposity and total body fat mass, and increased heart and liver damage, without consistent improvement in the signs of metabolic syndrome. These results suggest that black cardamom is more effective in reversing the signs of metabolic syndrome than green cardamom. PMID:26378573

  8. Cinnamomum camphora Seed Kernel Oil Ameliorates Oxidative Stress and Inflammation in Diet-Induced Obese Rats.

    Science.gov (United States)

    Fu, Jing; Zeng, Cheng; Zeng, Zheling; Wang, Baogui; Gong, Deming

    2016-05-01

    Cinnamomum camphora seed kernel oil (CCSKO) was found to reduce body fat deposition and improve blood lipid in both healthy and obese rats. The study was aimed to investigate the antioxidative stress and anti-inflammatory effects of CCSKO in high-fat-diet-induced obese rats. The obese rats were treated with CCSKO, lard, and soybean oil, respectively, for 12 wk. The level of total antioxidant capacity (T-AOC), activities of superoxide dismutase (SOD), glutathione peroxidase, and catalase, and levels of malondialdehyde (MDA), tumor necrosis factor (TNF)-α, peroxisome proliferator-activated receptor (PPAR)-γ, interleukin (IL)-6, and P65 were compared among CCSKO, lard, and soybean oil groups. Our results showed that the level of T-AOC and activities of SOD and catalase were significantly increased and the level of MDA was significantly decreased in CCSKO group. In addition, CCSKO treatment reduced the activities of serum glutamic oxaloacetic transaminase and glutamate-pyruvate transaminase, and levels of serum TNF-α, IL-6, and P65 through raising the level of PPAR-γ. In conclusion, CCSKO has, for the first time, been found to ameliorate oxidative stress and inflammation in high-fat-diet-induced obese rats. PMID:27003858

  9. Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice.

    Science.gov (United States)

    Kim, Min-Soo; Bae, Jin-Woo

    2016-05-01

    Gut microbial biogeography is a key feature of host-microbe relationships. In gut viral ecology, biogeography and responses to dietary intervention remain poorly understood. Here, we conducted a metagenomic study to determine the composition of the mucosal and luminal viromes of the gut and to evaluate the impact of a Western diet on gut viral ecology. We found that mucosal and luminal viral assemblages comprised predominantly temperate phages. The mucosal virome significantly differed from the luminal virome in low-fat diet-fed lean mice, where spatial variation correlated with bacterial microbiota from the mucosa and lumen. The mucosal and luminal viromes of high-fat, high-sucrose 'Western' diet-fed obese mice were significantly enriched with temperate phages of the Caudovirales order. Interestingly, this community alteration occurred to a greater extent in the mucosa than lumen, leading to loss of spatial differences; however, these changes recovered after switching to a low-fat diet. Temperate phages enriched in the Western diet-induced obese mice were associated with the Bacilli, Negativicutes and Bacteroidia classes and temperate phages from the Bacteroidia class particularly encoded stress and niche-specific functions advantageous to bacterial host adaptation. This study illustrates a biogeographic view of the gut virome and phage-bacterial host connections under the diet-induced microbial dysbiosis. PMID:26690305

  10. Effect of Coleus forskohliiextract on cafeteria diet-induced obesity in rats

    Directory of Open Access Journals (Sweden)

    Hebbani Nagarajappa Shivaprasad

    2014-01-01

    Full Text Available Background: Obesity is a metabolic disorder that can lead to adverse metabolic effects on blood pressure, cholesterol, triglycerides and insulin resistance and also increases the risk of coronary heart disease, ischemic stroke and type 2 diabetes mellitus. This study was designed to determine the effect of Coleus forskohlii on obesity and associated metabolic changes in rats fed with cafeteria diet. Objective: The aim of this study was to evaluate antiobesogenic and metabolic benefits of C. forskohlii in cafeteria diet induced obesity rat model. Materials and Methods: Rats were randomly divided into five groups of six animals in each group and as follows: Normal pellet diet group; cafeteria diet group; cafeteria diet followed by 50 mg/kg/d Coleus forskohlii extract (CFE, 100 mg/kg/d CFE and 45 mg/kg/d orlistat groups, respectively. Indicators of obesity such as food intake, body weight and alteration in serum lipid profiles were studied. Results: Feeding of cafeteria diet induced obesity in rats. Administration of CFE significantly halted increase in food intake and weight gain associated with cafeteria diet. Development of dyslipidemia was also significantly inhibited. Conclusion: The observed effects validate that supplementation of CFE with cafeteria diet could curb the appetite and mitigate the development of dyslipidemia.

  11. Green and Black Cardamom in a Diet-Induced Rat Model of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Maharshi Bhaswant

    2015-09-01

    Full Text Available Both black (B and green (G cardamom are used as flavours during food preparation. This study investigated the responses to B and G in a diet-induced rat model of human metabolic syndrome. Male Wistar rats were fed either a corn starch-rich diet (C or a high-carbohydrate, high-fat diet with increased simple sugars along with saturated and trans fats (H for 16 weeks. H rats showed signs of metabolic syndrome leading to visceral obesity with hypertension, glucose intolerance, cardiovascular remodelling and nonalcoholic fatty liver disease. Food was supplemented with 3% dried B or G for the final eight weeks only. The major volatile components were the closely related terpenes, 1,8-cineole in B and α-terpinyl acetate in G. HB (high-carbohydrate, high-fat + black cardamom rats showed marked reversal of diet-induced changes, with decreased visceral adiposity, total body fat mass, systolic blood pressure and plasma triglycerides, and structure and function of the heart and liver. In contrast, HG (high-carbohydrate, high-fat + green cardamom rats increased visceral adiposity and total body fat mass, and increased heart and liver damage, without consistent improvement in the signs of metabolic syndrome. These results suggest that black cardamom is more effective in reversing the signs of metabolic syndrome than green cardamom.

  12. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2016-01-01

    Full Text Available Korean pine nut oil (PNO has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO (PC, SC or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD, for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively compared with SHFD. Hepatic triacylglycerol (TG level was significantly lower in PHFD than the SHFD (26% lower. PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  13. Grp78 Heterozygosity Promotes Adaptive Unfolded Protein Response and Attenuates Diet-Induced Obesity and Insulin Resistance

    OpenAIRE

    Ye, Risheng; Jung, Dae Young; Jun, John Y.; Li, Jianze; Luo, Shengzhan; Ko, Hwi Jin; Kim, Jason K.; Lee, Amy S

    2009-01-01

    OBJECTIVE To investigate the role of the endoplasmic reticulum (ER) chaperone glucose-regulated protein (GRP) 78/BiP in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. RESEARCH DESIGN AND METHODS Male Grp78 +/− mice and their wild-type littermates were subjected to a high-fat diet (HFD) regimen. Pathogenesis of obesity and type 2 diabetes was examined by multiple approaches of metabolic phenotyping. Tissue-specific insulin sensitivity was analyzed by hyperinsulinemic-eug...

  14. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    OpenAIRE

    Haizhao Song; Zihuan Zheng; Jianan Wu; Jia Lai; Qiang Chu; Xiaodong Zheng

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed ...

  15. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Park, Soyoung; Shin, Sunhye; Lim, Yeseo; Shin, Jae Hoon; Seong, Je Kyung; Han, Sung Nim

    2016-01-01

    Korean pine nut oil (PNO) has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD) can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO) (PC, SC) or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD), for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively) compared with SHFD. Hepatic triacylglycerol (TG) level was significantly lower in PHFD than the SHFD (26% lower). PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT) 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR) and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response. PMID:26805879

  16. Interleukin-10 Prevents Diet-Induced Insulin Resistance by Attenuating Macrophage and Cytokine Response in Skeletal Muscle

    OpenAIRE

    Hong, Eun-Gyoung; Ko, Hwi Jin; Cho, You-Ree; Kim, Hyo-Jeong; Ma, Zhexi; Yu, Tim Y.; Friedline, Randall H; Kurt-Jones, Evelyn; Finberg, Robert; Matthew A Fischer; Granger, Erica L.; Norbury, Christopher C.; Hauschka, Stephen D.; Philbrick, William M.; Lee, Chun-Geun

    2009-01-01

    OBJECTIVE Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with m...

  17. Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Hyo Geun Kim

    2015-01-01

    Full Text Available Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  18. Soluble Epoxide Hydrolase Deficiency or Inhibition Attenuates Diet-induced Endoplasmic Reticulum Stress in Liver and Adipose Tissue*

    OpenAIRE

    Bettaieb, Ahmed; Nagata, Naoto; AbouBechara, Daniel; Chahed, Samah; Morisseau, Christophe; Hammock, Bruce D; Haj, Fawaz G.

    2013-01-01

    Background: Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose pharmacological inhibition or targeted deletion in mice has beneficial effects, including improved insulin signaling in liver and adipose tissue.

  19. Region-Specific Diet-induced and Leptin-Induced Cellular Leptin Resistance Includes the Ventral Tegmental Area in Rats

    OpenAIRE

    Matheny, M.; Shapiro, A.; Tümer, N.; Scarpace, P. J.

    2010-01-01

    Diet-induced obesity (DIO) results in region-specific cellular leptin resistance in the arcuate nucleus (ARC) of the hypothalamus in one strain of mice and in several medial basal hypothalamic regions in another. We hypothesized that the ventral tegmental area (VTA) is also likely susceptible to diet-induced and leptin-induced leptin resistance in parallel to that in hypothalamic areas. We examined two forms of leptin resistance in F344xBN rats, that induced by 6-months of high fat (HF) feedi...

  20. Hypolipidemic Activity of Protocatechuic Acid in Atherogenic Diet Induced Hyperlipidemic Rats

    Directory of Open Access Journals (Sweden)

    Borate AR

    2012-02-01

    Full Text Available Hyperlipidemia is an abnormally high level of fatty substances called lipids, largely cholesterol andtriglycerides, in the blood. The present study was designed to investigate the hypolipidemic effects ofProtocatechuic acid in atherogenic diet induced hyperlipidemia. In atherogenic diet inducedhyperlipidemic model, the rats receiving treatment of Protocatechuic acid at the dose of 25 and 50mg/kg showed significant reduction in total cholesterol, triglyceride, total protein and elevation in highdensity lipoprotein cholesterol. Hence by considering the effects observed in this model, it has beensuggested that Protocatechuic acid was found to possess significant hypolipidemic activity, this may bedue to its effect on increasing the metabolism of the cholesterol by activating lipoprotein lipase or byincreasing reverse cholesterol transport.

  1. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice.

    Science.gov (United States)

    Cao, Jay J; Sun, Li; Gao, Hongwei

    2010-03-01

    Obesity-derived body mass may be detrimental to bone health through not well-defined mechanisms. In this study we determined changes in bone structure and serum cytokines related to bone metabolism in diet-induced obese mice. Mice fed a high-fat diet (HFD) had higher serum tartrate-resistant acid phosphatase (TRAP) and leptin but lower osteocalcin concentrations than those fed the normal-fat diet. The HFD increased multinucleated TRAP-positive osteoclasts in bone marrow compared to the control diet. Despite being much heavier, mice fed the HFD had lower femoral bone volume, trabecular number, and connectivity density and higher trabecular separation than mice on the control diet. These findings suggest that obesity induced by a HFD increases bone resorption that may blunt any positive effects of increased body weight on bone. PMID:20392249

  2. Hydrolyzed casein reduces diet-induced obesity in male C57BL/6J mice

    DEFF Research Database (Denmark)

    Lillefosse, Haldis Haukås; Tastesen, Hanne Sørup; Du, Zhen-Yu;

    2013-01-01

    The digestion rate of dietary protein is a regulating factor for postprandial metabolism both in humans and animal models. However, few data exist about the habitual consumption of proteins with different digestion rates with regard to the development of body mass and diet-induced obesity. Here, we...... used a factorial ANOVA design to investigate the effects of protein form (intact vs. hydrolyzed casein) and protein level (16 vs. 32 energy percent protein) on body mass gain and adiposity in obesity-prone male C57BL/6J mice fed Western diets with 35 energy percent fat. Mice fed the hydrolyzed casein...... diets had higher spontaneous locomotor activity than mice fed intact casein. During the light phase, mice fed hydrolyzed casein tended (P = 0.08) to have a lower respiratory exchange ratio, indicating lower utilization of carbohydrates as energy substrate relative to those fed intact casein. In further...

  3. Hypolipidemic activity ofPiper betel in high fat diet induced hyperlipidemic rat

    Institute of Scientific and Technical Information of China (English)

    Thirunavukkarasu Thirumalai; Narayanaswamy Tamilselvan; Ernest David

    2014-01-01

    Objective:To evaluate the hypolipidemic effect ofPiper betel(P. betel) in high fat diet induced hyperlipidemia rat.Methods:The methanol leaf extract was tested for hypolipidemic effect in the albino rats at the selected optimum dosage of250 mg/kg body weight and administered orally.Adult male albino rats of six numbers in each group were undertaken study and evaluated. Results:In groupII animals, the activity levels of serum total cholesterol(TC), triglycerides (TG), low density lipoprotein(LDL) and very low density lipoprotein-cholesterol(VLDL) were significantly enhanced when compared to that of normal rat.Conclusion:It could be said that the methanolic leaf extract ofP. betel exhibited a significant hypolipidemic effect.

  4. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Calloe, Kirstine; Braunstein, Thomas Hartig;

    2015-01-01

    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS......: Sprague-Dawley rats were fed either high-fat diet and fructose water or normal chow and water for 6 weeks. The electrophysiological properties of the whole heart was analyzed by in vivo surface ECG recordings, as wells as ex vivo in Langendorff perfused hearts during baseline, ischemia and re...... significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p < 0.0001). CONCLUSION: Six weeks on a high fructose-fat diet cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during...

  5. Amelioration of diet-induced diabetes mellitus by removal of visceral fat.

    Science.gov (United States)

    Pitombo, Cid; Araújo, Eliana P; De Souza, Cláudio T; Pareja, José C; Geloneze, Bruno; Velloso, Lício A

    2006-12-01

    The effect of visceral fat removal upon glucose homeostasis, insulin signal transduction, and serum adipokine levels in an animal model of diet-induced obesity and diabetes mellitus (DIO) was evaluated. Swiss mice were initially divided into two groups fed with regular rodent chow or with chow containing 24 g% saturated fat (DIO). DIO mice became obese and overtly diabetic after 8 weeks. DIO mice were then divided into three groups: control, sham, and visceral (epididymal and perinephric) fat removal. All groups were submitted to evaluation of basal glucose and insulin levels and i.p. insulin tolerance test. Insulin signal transduction in muscle was evaluated by immunoprecipitation and immunoblot, and serum adipokine levels were determined by ELISA. DIO mice became diabetic (228 versus 115 mg/dl), hyperinsulinemic (7.59 versus 3.15 ng/ml) and insulin resistant (K(itt) 2.88 versus 4.97%/min) as compared with control. Visceral fat removal partially reverted all parameters (147 mg/dl glucose; 3.82 ng/ml insulin; and 4.20%/min K(itt)). In addition, visceral fat removal completely reversed the impairment of insulin signal transduction through insulin receptor, insulin receptor substrate (IRS)-1, IRS-2 and Akt in muscle. Finally, serum levels of the pro-inflammatory cytokines tumour necrosis factor-alpha, interleukin (IL)-1beta and IL-6 were significantly increased, while adiponectin levels were significantly reduced in DIO mice. After visceral fat removal the levels of adipokines returned to near control levels. The present study shows that removal of visceral fat improves insulin signal transduction and glucose homeostasis in an animal model of diet-induced obesity and diabetes mellitus and these metabolic and molecular outcomes are accompanied by the restoration of adipokine levels. PMID:17170226

  6. Use of hamster as a model to study diet-induced atherosclerosis

    Directory of Open Access Journals (Sweden)

    Lichtenstein Alice H

    2010-12-01

    Full Text Available Abstract Golden-Syrian hamsters have been used as an animal model to assess diet-induced atherosclerosis since the early 1980s. Advantages appeared to include a low rate of endogenous cholesterol synthesis, receptor-mediated uptake of LDL cholesterol, cholesteryl ester transfer protein activity, hepatic apoB-100 and intestinal apoB-48 secretion, and uptake of the majority of LDL cholesterol via the LDL receptor pathway. Early work suggested hamsters fed high cholesterol and saturated fat diets responded similarly to humans in terms of lipoprotein metabolism and aortic lesion morphology. Recent work has not consistently replicated these findings. Reviewed was the literature related to controlled hamster feeding studies that assessed the effect of strain, background diet (non-purified, semi-purified and dietary perturbation (cholesterol and/or fat on plasma lipoprotein profiles and atherosclerotic lesion formation. F1B hamsters fed a non-purified cholesterol/fat-supplemented diet had more atherogenic lipoprotein profiles (nHDL-C > HDL-C than other hamster strains or hamsters fed cholesterol/fat-supplemented semi-purified diets. However, fat type; saturated (SFA, monounsaturated or n-6 polyunsaturated (PUFA had less of an effect on plasma lipoprotein concentrations. Cholesterol- and fish oil-supplemented semi-purified diets yielded highly variable results when compared to SFA or n-6 PUFA, which were antithetical to responses observed in humans. Dietary cholesterol and fat resulted in inconsistent effects on aortic lipid accumulation. No hamster strain was reported to consistently develop lesions regardless of background diet, dietary cholesterol or dietary fat type amount. In conclusion, at this time the Golden-Syrian hamster does not appear to be a useful model to determine the mechanism(s of diet-induced development of atherosclerotic lesions.

  7. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Deblon

    Full Text Available Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.

  8. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer

    Science.gov (United States)

    Asgharpour, Amon; Cazanave, Sophie C.; Pacana, Tommy; Seneshaw, Mulugeta; Vincent, Robert; Banini, Bubu A.; Kumar, Divya Prasanna; Daita, Kalyani; Min, Hae-Ki; Mirshahi, Faridoddin; Bedossa, Pierre; Sun, Xiaochen; Hoshida, Yujin; Koduru, Srinivas V.; Contaifer, Daniel; Warncke, Urszula Osinska; Wijesinghe, Dayanjan S.; Sanyal, Arun J.

    2016-01-01

    Background & Aims The lack of a preclinical model of progressive non-alcoholic steatohepatitis (NASH) that recapitulates human disease is a barrier to therapeutic development. Methods A stable isogenic cross between C57BL/6J (B6) and 129S1/SvImJ (S129) mice were fed a high fat diet with ad libitum consumption of glucose and fructose in physiologically relevant concentrations and compared to mice fed a chow diet and also to both parent strains. Results Following initiation of the obesogenic diet, B6/129 mice developed obesity, insulin resistance, hypertriglyceridemia and increased LDL-cholesterol. They sequentially also developed steatosis (4–8 weeks), steatohepatitis (16–24 weeks), progressive fibrosis (16 weeks onwards) and spontaneous hepatocellular cancer (HCC). There was a strong concordance between the pattern of pathway activation at a transcriptomic level between humans and mice with similar histological phenotypes (FDR 0.02 for early and 0.08 for late time points). Lipogenic, inflammatory and apoptotic signaling pathways activated in human NASH were also activated in these mice. The HCC gene signature resembled the S1 and S2 human subclasses of HCC (FDR 0.01 for both). Only the B6/129 mouse but not the parent strains recapitulated all of these aspects of human NAFLD. Conclusions We here describe a diet-induced animal model of non-alcoholic fatty liver disease (DIAMOND) that recapitulates the key physiological, metabolic, histologic, transcriptomic and cell-signaling changes seen in humans with progressive NASH. Lay summary We have developed a diet-induced mouse model of non-alcoholic steatohepatitis (NASH) and hepatic cancers in a cross between two mouse strains (129S1/SvImJ and C57Bl/6J). This model mimics all the physiological, metabolic, histological, transcriptomic gene signature and clinical endpoints of human NASH and can facilitate preclinical development of therapeutic targets for NASH. PMID:27261415

  9. Beneficial Effects of Oolong Tea Consumption on Diet-induced Overweight and Obese Subjects

    Institute of Scientific and Technical Information of China (English)

    HE Rong-rong; CHEN Ling; LIN Bing-hui; MATSUI Yokichi; YAO Xin-sheng; KURIHARA Hiroshi

    2009-01-01

    Objective: To determine the anti-obesity effects of oolong tea on diet-induced overweight or obesity. Methods: A total of 8 g of oolong tea a day for 6 weeks was ingested by 102 diet-induced overweight or obese subjects. The body fat level of the subjects was determined at the same time by taking body weight, height and waist measurements. The thickness of the subcutaneous fat layer was also determined on the abdomen 3 cm to the right of the navel by the ultrasonic echo method. On the other hand, effects of oolong tea ingestion on plasma triglyceride (TG) and total cholesterol (TC) were determined. Inhibitions of pancreatic lipase by oolong tea extract and catechins in vitro were also determined. Results: A total of 70% of the severely obese subjects did show a decrease of more than 1 kg in body weight, including 22% who lost more than 3 kg. Similarly, 64% of the obese subjects and 66% of the overweight subjects lost more than 1 kg during the experiment, and the subcutaneous fat content decreased in 12% of the subjects. The correlation between weight loss and subcutaneous fat decrease in men (r=0.055) was obviously lower than that in women (r=0.440, P0.05). Moreover, the plasma levels of TG and TC of the subjects with hyperlipidemia were remarkably decreased after ingesting oolong tea for 6 weeks. In vitro assays for the inhibition of pancreatic lipase by oolong tea extract and catechins suggest that the mechanism for oolong tea to prevent hyperlipidemia may be related to the regulative action of oolong tea catechins in lipoprotein activity. Conclusions: Oolong tea could decrease body fat content and reduce body weight through improving lipid metabolism. Chronic consumption of oolong tea may prevent against obesity.

  10. Eicosapentaenoic acid prevents high fat diet-induced metabolic disorders: Genomic and metabolomic analyses of underlying mechanism

    Science.gov (United States)

    Previously our lab demonstrated eicosapenaenoic acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity by decreasing insulin resistance, glucose intolerance and inflammation. In the current study, we used genomic and metabolomic approaches to further investigate the molecular basis for t...

  11. Effects of voluntary running and soy supplementation on diet-induced metabolic disturbances and inflammation in mice

    Science.gov (United States)

    The present study investigated the effects of voluntary running and soy supplementation on diet-induced metabolic disturbance and inflammation in male C57BL/6 mice using a 2x2x2 design in which the effects of diet (AIN93G or its modification with 45% calories from fat), activity level (sedentary or ...

  12. A novel oral form of salmon calcitonin improves glucose homeostasis and reduces body weight in diet-induced obese rats

    DEFF Research Database (Denmark)

    Feigh, M; Henriksen, K; Andreassen, K V;

    2011-01-01

    To investigate the effects of acute and chronic administration of a novel oral formulation of salmon calcitonin (sCT) on glycaemic control, glucose homeostasis and body weight regulation in diet-induced obese (DIO) rats-an animal model of obesity-related insulin resistance and type 2 diabetes....

  13. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-κB pathway

    International Nuclear Information System (INIS)

    Highlights: ► Stevioside ameliorates high-fat diet-induced insulin resistance. ► Stevioside alleviates the adipose tissue inflammation. ► Stevioside reduces macrophages infiltration into the adipose tissue. ► Stevioside suppresses the activation of NF-κB in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-α, IL6, IL10, IL1β, KC, MIP-1α, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-κB) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-κB pathway.

  14. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Ma, Qinyun, E-mail: qinyunma@126.com [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  15. The effect of aspirin on atherogenic diet-induced diabetes mellitus.

    Science.gov (United States)

    Sethi, Apoorva; Parmar, Hamendra S; Kumar, Anil

    2011-06-01

    Exploration of atherogenic diet-induced diabetes mellitus and the evaluation of antidiabetic potential of aspirin were carried out in this study. Male albino Wistar rats were divided into three groups of seven each (1, 2 and 3). Animals of groups 2 and 3 received CCT diet (normal rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5%, 2-thiouracil), whereas the animals of group 1 received normal feed and served as control. In addition to CCT, animals of group 3 (CCT + Asp) also received aspirin (8 gm/kg), commencing from day 8 till the end of study (day 15). In another experiment (exp. 2), aspirin-supplemented normal rat chow (Asp) was fed to the animals for 7 days and compared with the normal rat chow-fed control group. In experiment 3, an in vitro nitric oxide radical-scavenging potential of aspirin at three different doses (25, 50 and 100 μg/ml) was evaluated. In response to CCT diet, a decrease in serum insulin, α-amylase activity, hepatic glycogen, pancreatic calcium with a concomitant increase in serum glucose, lipid profile (except high-density lipoprotein cholesterol (HDL-C)), pancreatic nitrite and lipid peroxidation and the size of adipocytes along with macrophages infiltration were observed. Aspirin administration to CCT diet-fed animals (CCT + Asp) reverted all the studied biochemical and histological changes towards normality. In experiment 2, aspirin administration decreased the serum glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C) and VLDL-C with concomitantly increased HDL-C and insulin; however, it increased hepatic glycogen and pancreatic calcium concentration with a decrease in pancreatic and adipose lipid peroxidation. In vitro assay revealed the nitric oxide radical-scavenging potential of aspirin in all the studied doses. It is concluded that CCT diet-induced diabetes mellitus might be the outcome of nitric oxide radical-induced oxidative stress in pancreatic tissue, as well as diminished

  16. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Uchida, Daisuke [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ohkura, Naoki [Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa (Japan); Horie, Shuichi [Department of Clinical Biochemistry, Kagawa Nutrition University, Sakado, Saitama (Japan)

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  17. Effects of four Bifidobacteria on obesity in high-fat diet induced rats

    OpenAIRE

    Yin, Ya-Ni; Yu, Qiong-Fen; Fu, Nian; LIU, XIAO-WEI; Lu, Fang-Gen

    2010-01-01

    AIM: To compare the effects of four Bifidobacteria strains (Bifidobacteria L66-5, L75-4, M13-4 and FS31-12, originated from normal human intestines) on weight gain, lipid metabolism, glucose metabolism in an obese murine model induced by high-fat diet.

  18. Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity.

    Science.gov (United States)

    Souza, Gabriela F P; Solon, Carina; Nascimento, Lucas F; De-Lima-Junior, Jose C; Nogueira, Guilherme; Moura, Rodrigo; Rocha, Guilherme Z; Fioravante, Milena; Bobbo, Vanessa; Morari, Joseane; Razolli, Daniela; Araujo, Eliana P; Velloso, Licio A

    2016-01-01

    Obesity is the result of a long-term positive energy balance in which caloric intake overrides energy expenditure. This anabolic state results from the defective activity of hypothalamic neurons involved in the sensing and response to adiposity. However, it is currently unknown what the earliest obesity-linked hypothalamic defect is and how it orchestrates the energy imbalance present in obesity. Using an outbred model of diet-induced obesity we show that defective regulation of hypothalamic POMC is the earliest marker distinguishing obesity-prone from obesity-resistant mice. The early inhibition of hypothalamic POMC was sufficient to transform obesity-resistant in obesity-prone mice. In addition, the post-prandial change in the blood level of β-endorphin, a POMC-derived peptide, correlates with body mass gain in rodents and humans. Taken together, these results suggest that defective regulation of POMC expression, which leads to a change of β-endorphin levels, is the earliest hypothalamic defect leading to obesity. PMID:27373214

  19. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  20. High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats.

    Science.gov (United States)

    Panchal, Sunil K; Poudyal, Hemant; Iyer, Abishek; Nazer, Reeza; Alam, Md Ashraful; Diwan, Vishal; Kauter, Kathleen; Sernia, Conrad; Campbell, Fiona; Ward, Leigh; Gobe, Glenda; Fenning, Andrew; Brown, Lindsay

    2011-05-01

    The prevalence of metabolic syndrome including central obesity, insulin resistance, impaired glucose tolerance, hypertension, and dyslipidemia is increasing. Development of adequate therapy for metabolic syndrome requires an animal model that mimics the human disease state. Therefore, we have characterized the metabolic, cardiovascular, hepatic, renal, and pancreatic changes in male Wistar rats (8-9 weeks old) fed on a high-carbohydrate, high-fat diet including condensed milk (39.5%), beef tallow (20%), and fructose (17.5%) together with 25% fructose in drinking water; control rats were fed a cornstarch diet. During 16 weeks on this diet, rats showed progressive increases in body weight, energy intake, abdominal fat deposition, and abdominal circumference along with impaired glucose tolerance, dyslipidemia, hyperinsulinemia, and increased plasma leptin and malondialdehyde concentrations. Cardiovascular signs included increased systolic blood pressure and endothelial dysfunction together with inflammation, fibrosis, hypertrophy, increased stiffness, and delayed repolarization in the left ventricle of the heart. The liver showed increased wet weight, fat deposition, inflammation, and fibrosis with increased plasma activity of liver enzymes. The kidneys showed inflammation and fibrosis, whereas the pancreas showed increased islet size. In comparison with other models of diabetes and obesity, this diet-induced model more closely mimics the changes observed in human metabolic syndrome. PMID:21572266

  1. Targeting the microbiota to address diet-induced obesity: a time dependent challenge.

    Directory of Open Access Journals (Sweden)

    Siobhan F Clarke

    Full Text Available Links between the gut microbiota and host metabolism have provided new perspectives on obesity. We previously showed that the link between the microbiota and fat deposition is age- and time-dependent subject to microbial adaptation to diet over time. We also demonstrated reduced weight gain in diet-induced obese (DIO mice through manipulation of the gut microbiota with vancomycin or with the bacteriocin-producing probiotic Lactobacillus salivarius UCC118 (Bac(+, with metabolic improvement achieved in DIO mice in receipt of vancomycin. However, two phases of weight gain were observed with effects most marked early in the intervention phase. Here, we compare the gut microbial populations at the early relative to the late stages of intervention using a high throughput sequencing-based analysis to understand the temporal relationship between the gut microbiota and obesity. This reveals several differences in microbiota composition over the intervening period. Vancomycin dramatically altered the gut microbiota composition, relative to controls, at the early stages of intervention after which time some recovery was evident. It was also revealed that Bac(+ treatment initially resulted in the presence of significantly higher proportions of Peptococcaceae and significantly lower proportions of Rikenellaceae and Porphyromonadaceae relative to the gut microbiota of L. salivarius UCC118 bacteriocin negative (Bac(- administered controls. These differences were no longer evident at the later time. The results highlight the resilience of the gut microbiota and suggest that interventions may need to be monitored and continually adjusted to ensure sustained modification of the gut microbiota.

  2. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  3. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  4. Lessons from Mouse Models of High-Fat Diet-Induced NAFLD

    Directory of Open Access Journals (Sweden)

    Yasuo Terauchi

    2013-10-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD encompasses a clinicopathologic spectrum of diseases ranging from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH, the more aggressive form of fatty liver disease that may progress to cirrhosis and cirrhosis-related complications, including hepatocellular carcinoma. The prevalence of NAFLD, including NASH, is also increasing in parallel with the growing epidemics of obesity and diabetes. However, the causal relationships between obesity and/or diabetes and NASH or liver tumorigenesis have not yet been clearly elucidated. Animal models of NAFLD/NASH provide crucial information, not only for elucidating the pathogenesis of NAFLD/NASH, but also for examining therapeutic effects of various agents. A high-fat diet is widely used to produce hepatic steatosis and NASH in experimental animals. Several studies, including our own, have shown that long-term high-fat diet loading, which can induce obesity and insulin resistance, can also induce NASH and liver tumorigenesis in C57BL/6J mice. In this article, we discuss the pathophysiology of and treatment strategies for NAFLD and subsequent NAFLD-related complications such as NASH and liver tumorigenesis, mainly based on lessons learned from mouse models of high-fat diet-induced NAFLD/NASH.

  5. Origin of Aberrant Blood Pressure and Sympathetic Regulation in Diet-Induced Obesity.

    Science.gov (United States)

    Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Armitage, James A; Head, Geoffrey A

    2016-08-01

    High fat diet (HFD)-induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin-stimulating hormone (α-MSH) and neuropeptide Y-positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet-fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (Pheart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension. PMID:27296999

  6. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    Science.gov (United States)

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  7. Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice.

    Science.gov (United States)

    Keung, Wendy; Ussher, John R; Jaswal, Jagdip S; Raubenheimer, Monique; Lam, Victoria H M; Wagg, Cory S; Lopaschuk, Gary D

    2013-03-01

    Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle. PMID:23139350

  8. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    Science.gov (United States)

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  9. Effects of diet-induced hypercholesterolemia on amyloid accumulation in ovariectomized mice

    Indian Academy of Sciences (India)

    V Kaliyamurthi; V Thanigavelan; G Victor Rajamanickam

    2012-12-01

    A central hypothesis in the study of Alzheimer’s disease (AD) is the accumulation and aggregation of -amyloid peptide (A). Recent epidemiological studies suggest that patients with elevated cholesterol and decreased estrogen levels are more susceptible to AD through A accumulation. To test the above hypothesis, we used ovariectomized with diet-induced hypercholesterolemia (OVX) and hypercholesterolemia (HCL) diet alone mouse models. HPLC analysis reveals the presence of beta amyloid in the OVX and HCL mice brain. Congo red staining analysis revealed the extent of amyloid deposition in OVX and hypercholesterolemia mice brain. Overall, A levels were higher in OVX mice than in HCL. Secondly, estrogen receptors (ER) were assessed by immunohistochemistry and this suggested that there was a decreased expression of ER in OVX animals when compared to hypercholesterolemic animals. A was quantified by Western blot and ELISA analysis. Overall, Aβ levels were higher in OVX mice than in HCL mice. Our experimental results suggested that OVX animals were more susceptible to AD with significant increase in A peptide.

  10. Liquid enteral diets induce bacterial translocation by increasing cecal flora without changing intestinal motility.

    Science.gov (United States)

    Haskel, Y; Udassin, R; Freund, H R; Zhang, J M; Hanani, M

    2001-01-01

    The aim of this study was to determine the contribution of intestinal motility and cecal bacterial overgrowth to liquid diet-induced bacterial translocation (BT). Three different commercially available liquid diets were offered to mice for 1 week. BT to the mesenteric lymph nodes (MLN), spleen, and liver were examined as well as cecal bacterial counts and populations, small bowel length and weight, and histopathologic changes in the ileal and jejunal mucosa. In addition, the effect of the various diets on intestinal motility was measured by the transit index of a charcoal mixture introduced into the stomach. The incidence of BT to the mesenteric lymph nodes was significantly and similarly increased (p Vivonex (30%), Ensure (30%), and Osmolite (33%) compared with chow-fed controls (0%). Compared with chow-fed controls, all three liquid diets were associated with the development of cecal bacterial overgrowth (p < .01). There were no significant changes in the transit index for the three liquid diet groups compared with the chow-fed controls. BT to the MLN was induced by all three liquid diets tested, casting some doubts as to their role in preventing BT in clinical use. BT was associated with a statistically significant increase in cecal bacterial count but was not associated with gut motility changes in this model. In fact, no significant changes in intestinal motility were noted in all groups tested. PMID:11284471

  11. Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

    Directory of Open Access Journals (Sweden)

    Shian-Huey Chiang

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.

  12. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state. PMID:26824042

  13. Antihypercholesterolemic effect of Bacopa monniera linn. on high cholesterol diet induced hypercholesterolemia in rats

    Institute of Scientific and Technical Information of China (English)

    Venkatakrishnan Kamesh; Thangarajan Sumathi

    2012-01-01

    Objective: To explore the effect of alcoholic extract of Bacopa monniera (AEBM) on high cholesterol diet-induced rats. Methods: The shade-dried and coarsely powdered whole plant material (Bacopa monniera) was extracted with 90% ethanol, finally filtered and dried in vacuum pump. The experimental rats were divided into 4 groups: control (group-I), Rats fed with hypercholesterolemic diet (HCD) for 45 days [4% cholesterol (w/w) and 1% cholic acid], Rats fed with HCD for 45 days+AEBM (40mg/kg, body weight/day orally) for last 30 days (group-III) and AEBM alone (group-IV). Blood and tissues (Aorta) were removed to ice cold containers for various biochemical and histological analysis. Results: AEBM treatment significantly decreased the levels of TC, TG, PL, LDL, VLDL, atherogenic index, LDL/HDL ratio, and TC/HDL ratio but significantly increased the level of HDL when compared to HCD induced rats. Activities on liver antioxidant status (SOD, CAT, GPx, GR, GST) were significantly raised with concomitant reduction in the level of LPO were obtained in AEBM treated rats when compared to HCD rats. Treatment with AEBM significantly lowered the activity of SGOT, LDH and CPK. Histopathology of aorta of cholesterol fed rat showed intimal thickening and foam cell deposition were noted. Conclusions:These results suggests that AEBM extended protection against various biochemical changes and aortic pathology in hypercholesterolemic rats. Thus the plant may therefore be useful for therapeutic treatment of clinical conditions associated hypercholesterolemia.

  14. High-oleic peanuts increase diet-induced thermogenesis in overweight and obese men

    Directory of Open Access Journals (Sweden)

    Raquel Duarte Moreira Alves

    2014-05-01

    Full Text Available Background: Evidences suggest that nuts consumption can improve energy metabolism. Purpose: This study aimed to compare the effects of acute ingestion of high-oleic and conventional peanuts on appetite, food intake, and energy metabolism in overweight and obese men. Methods: Seventy one subjects (29.8 ± 2.4 kg/m² were assigned to the groups: control (CT, n = 24; conventional peanuts (CVP, n = 23; high-oleic peanuts (HOP, n = 24. Subjects consumed 56 g of peanuts (CVP and HOP or control biscuits (CT after overnight fasting. Thereafter, energy metabolism was evaluated over 200 minutes, during which diet-induced thermogenesis (DIT and substrate oxidation were analyzed. Appetite sensation was recorded for 3 hours. Statistical analyses were performed using the SAS software considering 5% as the significance level. Results: Postprandial energy expenditure and DIT were significantly higher in HOP than in CVP. Substrate oxidation did not differ between groups. Only HOP presented score below 100 indicating incomplete compensation. CT and CVP showed a complete caloric compensation (scores > 100. Regarding appetite sensation, CVP group felt less "full" than HOP and CT. After 3 hours, satiety score of CVP returned to baseline, whereas HOP and CT remained significantly higher. Hunger scores returned to baseline in CVP and CT and they were maintained significantly lowered in HOP. Conclusion: High-oleic peanuts contributed to higher DIT, higher sensation of fullness and incomplete compensation for energy intake compared to conventional peanuts and may be useful to dietary intervention to reduce body weight.

  15. Flavonoid derivative exerts an antidiabetic effect via AMPK activation in diet-induced obesity mice.

    Science.gov (United States)

    Chen, Ying; Zhang, Chang; Jin, Mei-Na; Qin, Nan; Qiao, Wei; Yue, Xiao-Long; Duan, Hong-Quan; Niu, Wen-Yan

    2016-09-01

    In our previous study, a derivative of tiliroside, 3-O-[(E)-4-(4-ethoxyphenyl)-2-oxobut-3-en-1-yl]kaempferol (Fla-OEt) significantly enhanced glucose consumption in insulin resistant HepG2 cells. This article deals with the antihyperglycemic and antihyperlipidemic effects of Fla-OEt in diet-induced obesity (DIO) mice. Daily administration of Fla-OEt significantly decreased oral glucose tolerance test, intraperitoneal insulin tolerance test and serum lipids. Hyperinsulinemic-euglycemic clamp and the ratio of high-density-lipoprotein/low-density-lipoprotein with Fla-OEt treatment were increased comparing with high-fat diet (HFD) group, so lipid metabolism was improved. Histopathology examination showed that the Fla-OEt restored the damage of adipose tissues and liver in DIO mice. Moreover, compared with HFD group, Fla-OEt treatment significantly increased the phosphorylation of AMPK and ACC in adiposity tissues, liver, and muscles. The mechanism of its action might be the activation of AMPK pathway. It appears that Fla-OEt is worth further study for development as a lead compound for a potential antidiabetic agent. PMID:26511291

  16. Effect of Argyreia speciosa root extract on cafeteria diet-induced obesity in rats

    Directory of Open Access Journals (Sweden)

    Shiv Kumar

    2011-01-01

    Full Text Available Objectives : To evaluate the antiobesity effects of the ethanolic extract of Argyreia speciosa roots in rats fed with a cafeteria diet (CD. Materials and Methods : Obesity was induced in albino rats by feeding them a CD daily for 42 days, in addition to a normal diet. Body weight and food intake was measured initially and then every week thereafter. On day 42, the serum biochemical parameters were estimated and the animals were sacrificed with an overdose of ether. The, liver and parametrial adipose tissues were removed and weighed immediately. The liver triglyceride content was estimated. The influence of the extract on the pancreatic lipase activity was also determined by measuring the rate of release of oleic acid from triolein. Results : The body weight at two-to-six weeks and the final parametrial adipose tissue weights were significantly lowered (P < 0.01 and P < 0.05, respectively in rats fed with the CD with Argyreia speciosa extract 500 mg/kg/day as compared to the CD alone. The extract also significantly reduced (P < 0.01 the serum contents of leptin, total cholesterol, low density lipoprotein (LDL, and triglycerides, which were elevated in rats fed with CD alone. In addition, the extract inhibited the induction of fatty liver with the accumulation of hepatic triglycerides. The extract also showed inhibition of pancreatic lipase activity by using triolein as a substrate. Conclusions : The ethanolic extract of Argyreia speciosa roots produces inhibitory effects on cafeteria diet-induced obesity in rats.

  17. Popular edible seaweed, Gelidium amansii prevents against diet-induced obesity.

    Science.gov (United States)

    Kang, Min-Cheol; Kang, Nalae; Kim, Seo-Young; Lima, Inês S; Ko, Seok-Chun; Kim, Young-Tae; Kim, Young-Bum; Jeung, Hee-Do; Choi, Kwang-Sik; Jeon, You-Jin

    2016-04-01

    The popular edible seaweed, Gelidium amansii is broadly used as food worldwide. To determine whether G. amansii extract (GAE) has protective effects on obesity, mice fed a high-fat diet (HFD) treated with GAE (1 and 3 %) were studied. After 12 weeks of GAE treatment, body weight was greatly decreased in mice fed a high-fat diet. This effect could be due to decreased adipogenesis, as evidenced by the fact that GAE suppressed adipogenic gene expression in adipocytes. In addition, blood glucose and serum insulin levels were reduced by GAE treatment in mice fed a high-fat diet, suggesting improvement in glucose metabolism. GAE supplementation also led to a significant decrease in total cholesterol and triglyceride levels. These data are further confirmed by H&E staining. Our findings indicate that Gelidium amansii prevents against the development of diet-induced obesity, and further implicate that GAE supplementation could be the therapeutical option for treatment of metabolic disorder such as obesity. PMID:26911551

  18. Feeding-induced oleoylethanolamide mobilization is disrupted in the gut of diet-induced obese rodents.

    Science.gov (United States)

    Igarashi, Miki; DiPatrizio, Nicholas V; Narayanaswami, Vidya; Piomelli, Daniele

    2015-09-01

    The gastrointestinal tract plays a critical role in the regulation of energy homeostasis by initiating neural and hormonal responses to the ingestion of nutrients. In addition to peptide hormones, such as cholecystokinin (CKK) and peptide YY (PYY), the lipid-derived mediator oleoylethanolamide (OEA) has been implicated in the control of satiety. Previous studies in humans and rodent models have shown that obesity is associated with changes in CCK, PYY and other gut-derived peptide hormones, which may contribute to decreased satiety and increased energy intake. In the present study, we show that small-intestinal OEA production is disrupted in the gut of diet-induced obese (DIO) rats and mice. In lean rodents, feeding or duodenal infusion of Intralipid® or pure oleic acid stimulates jejunal OEA mobilization. This response is strikingly absent in DIO rats and mice. Confirming previous reports, we found that feeding rats or mice a high-fat diet for 7 days is sufficient to suppress jejunal OEA mobilization. Surprisingly, a similar effect is elicited by feeding rats and mice a high-sucrose low-fat diet for 7 days. Collectively, our findings suggest that high fat-induced obesity is accompanied by alterations in the post-digestive machinery responsible for OEA biosynthesis, which may contribute to reduced satiety and hyperphagia. PMID:26024927

  19. Effects of Astrocaryum aculeatum Meyer (Tucumã on Diet-Induced Dyslipidemic Rats

    Directory of Open Access Journals (Sweden)

    Geórgia Craveiro Holanda Malveira Maia

    2014-01-01

    Full Text Available An in vivo study was conducted to assess the effects of the consumption of Astrocaryum aculeatum Amazon Meyer (tucumã in the treatment of diet-induced dyslipidemia in sedentary and exercised Wistar rats. With an average weight of 350 grams, 40 male rats were divided into 4 subgroups of 10. The sedentary control group (SCG was fed with commercial feed, while the sedentary treatment group (STG was fed with a ration of tucumã. In addition to the sedentary groups, two exercise groups were formed. The Exercised control group (ECG was fed with commercial food and the exercised treatment group (ETG was fed with a ration of tucumã. Body weight gain and food intake were monitored during the experiment. Plasma was analyzed for cholesterol, triglycerides, HDL-C, LDL-C, VLDL, total protein, glucose, insulin, and leptin concentrations. Our results show that the ECG group tended to consume more food, while the groups that were fed with tucumã pulp (STG and ETG presented a greater tendency to gain body mass. ECG group showed a tendency towards a higher concentration of cholesterol in plasma, while STG and ETG presented higher absolute values for triglycerides and VLDL. No hypolipiemic effect was observed related to tucuma ingestion.

  20. Positive correlation between serum taurine and adiponectin levels in high-fat diet-induced obesity rats.

    Science.gov (United States)

    You, Jeong Soon; Zhao, Xu; Kim, Sung Hoon; Chang, Kyung Ja

    2013-01-01

    The purpose of this study was to investigate the relationship between serum taurine level and serum adiponectin or leptin levels in high-fat diet-induced obesity rats. Five-week-old male Sprague-Dawley rats were randomly divided into three groups for a period of 8 weeks (normal diet, N group; high-fat diet, HF group; high-fat diet + taurine, HFT group). Taurine was supplemented by dissolving in feed water (3% w/v), and the same amount of distilled water was orally administrated to N and HF groups. In serum, adiponectin level was higher in HFT group compared to HF group. The serum taurine level was negatively correlated with serum total cholesterol (TC) level and positively correlated with serum adiponectin level. These results suggest that dietary taurine supplementation has beneficial effects on total cholesterol and adiponectin levels in high-fat diet-induced obesity rats. PMID:23392875

  1. Transgenic Rescue of Adipocyte Glucose-dependent Insulinotropic Polypeptide Receptor Expression Restores High Fat Diet-induced Body Weight Gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria;

    2011-01-01

    The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and...... the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression...... targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass...

  2. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    OpenAIRE

    Oosterveer, Maaike H.; Koolman, Anniek H; de Boer, Pieter T; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods: We evaluated adipose tissue differentiation/proliferation markers and q...

  3. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    OpenAIRE

    Kerstin Stemmer; Diego Perez-Tilve; Gayathri Ananthakrishnan; Anja Bort; Seeley, Randy J.; Tschöp, Matthias H.; Dietrich, Daniel R.; Pfluger, Paul T.

    2012-01-01

    SUMMARY Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO) promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens) or partially r...

  4. Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity

    OpenAIRE

    Cui, Wenpeng; Maimaitiyiming, Hasiyeti; Qi, Xinyu; Norman, Heather; Wang, Shuxia

    2013-01-01

    Obesity is prevalent worldwide and is a major risk factor for many diseases including renal complications. Thrombospondin 1 (TSP1), a multifunctional extracellular matrix protein, plays an important role in diabetic kidney diseases. However, whether TSP1 plays a role in obesity-related kidney disease is unknown. In the present studies, the role of TSP1 in obesity-induced renal dysfunction was determined by using a diet-induced obese mouse model. The results demonstrated that TSP1 was signific...

  5. Scavenger Receptor CD36 Expression Contributes to Adipose Tissue Inflammation and Cell Death in Diet-Induced Obesity

    OpenAIRE

    Lei CAI; Wang, Zhen; Ji, Ailing; Meyer, Jason M.; van der Westhuyzen, Deneys R.

    2012-01-01

    Objective The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death. Experimental Approach Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO) mice and wild type (WT) mice fed a high fat diet (60% kcal fat) for ...

  6. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    OpenAIRE

    Davis, Paul F.; Ozias, Marlies K.; Carlson, Susan E.; Reed, Gregory A.; Winter, Michelle K; McCarson, Kenneth E.; Levant, Beth

    2010-01-01

    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% ...

  7. Pro-opiomelanocortin Gene Transfer to the NTS but not ARC Ameliorates Chronic Diet-Induced Obesity

    OpenAIRE

    Zhang, Y.; Rodrigues, E.; Gao, Y.X.; King, M.; Cheng, K. Y.; Erdös, B.; Tümer, N.; Carter, C; Scarpace, P. J.

    2010-01-01

    Short-term pharmacological melanocortin activation deters diet-induced obesity (DIO) effectively in rodents. However, whether central pro-opiomelanocortin (POMC) gene transfer targeted to the hypothalamus or hindbrain nucleus of the solitary track (NTS) can combat chronic dietary obesity has not been investigated. Four-week-old Sprague Dawley rats were fed a high fat diet for five months, and then injected with either the POMC or control vector into the hypothalamus or NTS, and body weight an...

  8. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Freese, Kim; Waligora-Dupriet, Anne-Judith; Nubret, Esther; Butel, Marie-Jo; Bergheim, Ina; De Bandt, Jean-Pascal

    2016-07-01

    A Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we sought, in a model of Western diet-induced NAFLD, to determine whether citrulline (Cit), an amino acid that regulates protein and energy metabolism, could decrease Western diet-induced liver injuries, as well as the mechanisms involved. Sprague-Dawley rats were fed a high-fat diet (45 %) and fructose (30 %) in drinking water or a control diet associated with water (group C) for 8 weeks. The high-fat, high-fructose diet (Western diet) was fed either alone (group WD) or with Cit (1 g/kg per d) (group WDC) or an isonitrogenous amount of non-essential amino acids (group WDA). We evaluated nutritional and metabolic status, liver function, intestinal barrier function, gut microbiota and splanchnic inflammatory status. Cit led to a lower level of hepatic TAG restricted to microvesicular lipid droplets and to a lower mRNA expression of CCAAT-enhancer-binding protein homologous protein, a marker of endoplasmic reticulum stress, of pro-inflammatory cytokines Il6 (Plevels. In the colon, it decreased inflammation (Tnfα and Tlr4 expressions) and increased claudin-1 protein expression. This was associated with higher levels of Bacteroides/Prevotella compared with rats fed the Western diet alone. Cit improves Western diet-induced liver injuries via decreased lipid deposition, increased insulin sensitivity, lower inflammatory process and preserved antioxidant status. This may be related in part to its protective effects at the gut level. PMID:27197843

  9. Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    OpenAIRE

    Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M.

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, urs...

  10. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats

    OpenAIRE

    Lee Si; Cha Min; Kim Jung; Lee Do; Park Shin; An Hyang; Lim Hyung; Kim Kyung; Ha Nam

    2011-01-01

    Abstract Background Recent studies have reported the preventive effects of probiotics on obesity. Among commensal bacteria, bifidobacteria is one of the most numerous probiotics in the mammalian gut and are a type of lactic acid bacteria. The aim of this study was to assess the antiobesity and lipid-lowering effects of Bifidobacterium spp. isolated from healthy Korean on high fat diet-induced obese rats. Methods Thirty-six male Sprague-Dawley rats were divided into three groups as follows: (1...

  11. Effects of antioxidant vitamins along with atorvastatin and atorvastatin–niacin combination on diet-induced hypercholesterolemia in rats

    OpenAIRE

    Solanki, Yogendrasinh B; Bhatt, Rajendra V

    2010-01-01

    The present study investigated the effects of antioxidant vitamins along with atorvastatin and atorvastatinniacin combination on diet-induced hypercholesterolemia in rats. High cholesterol diet produced a significant increase in the serum total cholesterol, LDL-C, VLDL-C, TG, atherogenic index and decrease in HDL-C and HDL/LDL ratio. The lipid peroxidation and oxidative stress were significantly high in the hyperlipidemic control group. Atorvastatin improved atherogenic index but not the HDL/...

  12. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E

    OpenAIRE

    Yinhua Ni; Mayumi Nagashimada; Fen Zhuge; Lili Zhan; Naoto Nagata; Akemi Tsutsui; Yasuni Nakanuma; Shuichi Kaneko; Tsuguhito Ota

    2015-01-01

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese ...

  13. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats

    OpenAIRE

    Betik, Andrew C.; Aguila, Jay; McConell, Glenn K.; McAinch, Andrew J.; Michael L. Mathai

    2016-01-01

    Background and Aims Obesity and impairments in metabolic health are associated with reductions in exercise capacity. Both whey protein isolates (WPIs) and vitamin E tocotrienols (TCTs) exert favorable effects on obesity-related metabolic parameters. This research sought to determine whether these supplements improved exercise capacity and increased glucose tolerance in diet-induced obese rats. Methods Six week old male rats (n = 35) weighing 187 ± 32g were allocated to either: Control (n = 9)...

  14. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice.

    Science.gov (United States)

    Zhang, Yanqiao; Ge, Xuemei; Heemstra, Lydia A; Chen, Wei-Dong; Xu, Jiesi; Smith, Joseph L; Ma, Huiyan; Kasim, Neda; Edwards, Peter A; Novak, Colleen M

    2012-02-01

    Farnesoid X receptor (FXR) is known to play important regulatory roles in bile acid, lipid, and carbohydrate metabolism. Aged (>12 months old) Fxr(-/-) mice also develop spontaneous liver carcinomas. In this report, we used three mouse models to investigate the role of FXR deficiency in obesity. As compared with low-density lipoprotein receptor (Ldlr) knockout (Ldlr(-/-)) mice, the Ldlr(-/-)Fxr(-/-) double-knockout mice were highly resistant to diet-induced obesity, which was associated with increased expression of genes involved in energy metabolism in the skeletal muscle and brown adipose tissue. Such a striking effect of FXR deficiency on obesity on an Ldlr(-/-) background led us to investigate whether FXR deficiency alone is sufficient to affect obesity. As compared with wild-type mice, Fxr(-/-) mice showed resistance to diet-induced weight gain. Interestingly, only female Fxr(-/-) mice showed significant resistance to diet-induced obesity, which was accompanied by increased energy expenditure in these mice. Finally, we determined the effect of FXR deficiency on obesity in a genetically obese and diabetic mouse model. We generated ob(-/-)Fxr(-/-) mice that were deficient in both Leptin and Fxr. On a chow diet, ob(-/-)Fxr(-/-) mice gained less body weight and had reduced body fat mass as compared with ob/ob mice. In addition, we observed liver carcinomas in 43% of young (<11 months old) Ob(-/-)Fxr(-/-) mice. Together these data indicate that loss of FXR prevents diet-induced or genetic obesity and accelerates liver carcinogenesis under diabetic conditions. PMID:22261820

  15. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat

    OpenAIRE

    Palmnäs, Marie S. A.; Cowan, Theresa E.; Bomhof, Marc R.; Su, Juliet; Reimer, Raylene A.; Vogel, Hans J.; Hittel, Dustin S.; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, ...

  16. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance

    OpenAIRE

    Su Gao; McMillan, Ryan P.; Qingzhang Zhu; Lopaschuk, Gary D.; Hulver, Matthew W.; Butler, Andrew A

    2015-01-01

    Objective: The peptide hormone adropin regulates fuel selection preferences in skeletal muscle under fed and fasted conditions. Here, we investigated whether adropin treatment can ameliorate the dysregulation of fuel substrate metabolism, and improve aspects of glucose homeostasis in diet-induced obesity (DIO) with insulin resistance. Methods: DIO C57BL/6 mice maintained on a 60% kcal fat diet received five intraperitoneal (i.p.) injections of the bioactive peptide adropin34-76 (450 nmol/k...

  17. Scavenger Receptor CD36 Expression Contributes to Adipose Tissue Inflammation and Cell Death in Diet-Induced Obesity

    OpenAIRE

    Lei Cai; Zhen Wang; Ailing Ji; Meyer, Jason M.; Deneys R. van der Westhuyzen

    2012-01-01

    OBJECTIVE: The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death. EXPERIMENTAL APPROACH: Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO) mice and wild type (WT) mice fed a high fat diet (60% kcal fat) fo...

  18. Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity

    OpenAIRE

    Chao, Pei-Ting; Liang YANG; Aja, Susan; Moran, Timothy H.; Bi, Sheng

    2011-01-01

    Hypothalamic neuropeptide Y (NPY) has been implicated in control of energy balance, but the physiological importance of NPY in the dorsomedial hypothalamus (DMH) remains unclear. Here we report that knockdown of NPY expression in the DMH by adeno-associated virus-mediated RNAi reduced fat depots in rats fed regular chow and ameliorated high-fat diet-induced hyperphagia and obesity. DMH NPY knockdown resulted in development of brown adipocytes in inguinal white adipose tissue through the sympa...

  19. Differential Effects of Diet-Induced Dyslipidemia and Hyperglycemia on Mesenteric Resistance Artery Structure and Function in Type 2 Diabetes

    OpenAIRE

    Sachidanandam, Kamakshi; Hutchinson, Jim R.; Elgebaly, Mostafa M.; Mezzetti, Erin M; Wang, Mong-Heng; Ergul, Adviye

    2008-01-01

    Type 2 diabetes and dyslipidemia oftentimes present in combination. However, the relative roles of diabetes and diet-induced dyslipidemia in mediating changes in vascular structure, mechanics, and function are poorly understood. Our hypothesis was that addition of a high-fat diet would exacerbate small artery remodeling, compliance, and vascular dysfunction in type 2 diabetes. Vascular remodeling indices [media/lumen (M/L) ratio, collagen abundance and turnover, and ma...

  20. Integrin-Linked Kinase in Muscle Is Necessary for the Development of Insulin Resistance in Diet-Induced Obese Mice.

    Science.gov (United States)

    Kang, Li; Mokshagundam, Shilpa; Reuter, Bradley; Lark, Daniel S; Sneddon, Claire C; Hennayake, Chandani; Williams, Ashley S; Bracy, Deanna P; James, Freyja D; Pozzi, Ambra; Zent, Roy; Wasserman, David H

    2016-06-01

    Diet-induced muscle insulin resistance is associated with expansion of extracellular matrix (ECM) components, such as collagens, and the expression of collagen-binding integrin, α2β1. Integrins transduce signals from ECM via their cytoplasmic domains, which bind to intracellular integrin-binding proteins. The integrin-linked kinase (ILK)-PINCH-parvin (IPP) complex interacts with the cytoplasmic domain of β-integrin subunits and is critical for integrin signaling. In this study we defined the role of ILK, a key component of the IPP complex, in diet-induced muscle insulin resistance. Wild-type (ILK(lox/lox)) and muscle-specific ILK-deficient (ILK(lox/lox)HSAcre) mice were fed chow or a high-fat (HF) diet for 16 weeks. Body weight was not different between ILK(lox/lox) and ILK(lox/lox)HSAcre mice. However, HF-fed ILK(lox/lox)HSAcre mice had improved muscle insulin sensitivity relative to HF-fed ILK(lox/lox) mice, as shown by increased rates of glucose infusion, glucose disappearance, and muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. Improved muscle insulin action in the HF-fed ILK(lox/lox)HSAcre mice was associated with increased insulin-stimulated phosphorylation of Akt and increased muscle capillarization. These results suggest that ILK expression in muscle is a critical component of diet-induced insulin resistance, which possibly acts by impairing insulin signaling and insulin perfusion through capillaries. PMID:27207548

  1. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats

    Directory of Open Access Journals (Sweden)

    M T Sampathkumar

    2011-01-01

    Full Text Available Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD. Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition, Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases.

  2. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  3. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda-Yamahara, Mako [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Koya, Daisuke [Department of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Haneda, Masakzu [Division of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan)

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  4. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    Science.gov (United States)

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH. PMID:27357826

  5. Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity.

    Science.gov (United States)

    Kraus, Daniel; Yang, Qin; Kong, Dong; Banks, Alexander S; Zhang, Lin; Rodgers, Joseph T; Pirinen, Eija; Pulinilkunnil, Thomas C; Gong, Fengying; Wang, Ya-chin; Cen, Yana; Sauve, Anthony A; Asara, John M; Peroni, Odile D; Monia, Brett P; Bhanot, Sanjay; Alhonen, Leena; Puigserver, Pere; Kahn, Barbara B

    2014-04-10

    In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine-spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes. PMID

  6. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  7. The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice.

    Science.gov (United States)

    Ceddia, Ryan P; Lee, DaeKee; Maulis, Matthew F; Carboneau, Bethany A; Threadgill, David W; Poffenberger, Greg; Milne, Ginger; Boyd, Kelli L; Powers, Alvin C; McGuinness, Owen P; Gannon, Maureen; Breyer, Richard M

    2016-01-01

    Mice carrying a targeted disruption of the prostaglandin E2 (PGE2) E-prostanoid receptor 3 (EP3) gene, Ptger3, were fed a high-fat diet (HFD), or a micronutrient matched control diet, to investigate the effects of disrupted PGE2-EP3 signaling on diabetes in a setting of diet-induced obesity. Although no differences in body weight were seen in mice fed the control diet, when fed a HFD, EP3(-/-) mice gained more weight relative to EP3(+/+) mice. Overall, EP3(-/-) mice had increased epididymal fat mass and adipocyte size; paradoxically, a relative decrease in both epididymal fat pad mass and adipocyte size was observed in the heaviest EP3(-/-) mice. The EP3(-/-) mice had increased macrophage infiltration, TNF-α, monocyte chemoattractant protein-1, IL-6 expression, and necrosis in their epididymal fat pads as compared with EP3(+/+) animals. Adipocytes isolated from EP3(+/+) or EP3(-/-) mice were assayed for the effect of PGE2-evoked inhibition of lipolysis. Adipocytes isolated from EP3(-/-) mice lacked PGE2-evoked inhibition of isoproterenol stimulated lipolysis compared with EP3(+/+). EP3(-/-) mice fed HFD had exaggerated ectopic lipid accumulation in skeletal muscle and liver, with evidence of hepatic steatosis. Both blood glucose and plasma insulin levels were similar between genotypes on a control diet, but when fed HFD, EP3(-/-) mice became hyperglycemic and hyperinsulinemic when compared with EP3(+/+) fed HFD, demonstrating a more severe insulin resistance phenotype in EP3(-/-). These results demonstrate that when fed a HFD, EP3(-/-) mice have abnormal lipid distribution, developing excessive ectopic lipid accumulation and associated insulin resistance. PMID:26485614

  8. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    International Nuclear Information System (INIS)

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding

  9. Vascular Smooth Muscle Sirtuin-1 Protects Against Diet-Induced Aortic Stiffness.

    Science.gov (United States)

    Fry, Jessica L; Al Sayah, Leona; Weisbrod, Robert M; Van Roy, Isabelle; Weng, Xiang; Cohen, Richard A; Bachschmid, Markus M; Seta, Francesca

    2016-09-01

    Arterial stiffness, a major cardiovascular risk factor, develops within 2 months in mice fed a high-fat, high-sucrose (HFHS) diet, serving as a model of human metabolic syndrome, and it is associated with activation of proinflammatory and oxidant pathways in vascular smooth muscle (VSM) cells. Sirtuin-1 (SirT1) is an NAD(+)-dependent deacetylase regulated by the cellular metabolic status. Our goal was to study the effects of VSM SirT1 on arterial stiffness in the context of diet-induced metabolic syndrome. Overnight fasting acutely decreased arterial stiffness, measured in vivo by pulse wave velocity, in mice fed HFHS for 2 or 8 months, but not in mice lacking SirT1 in VSM (SMKO). Similarly, VSM-specific genetic SirT1 overexpression (SMTG) prevented pulse wave velocity increases induced by HFHS feeding, during 8 months. Administration of resveratrol or S17834, 2 polyphenolic compounds known to activate SirT1, prevented HFHS-induced arterial stiffness and were mimicked by global SirT1 overexpression (SirT1 bacterial artificial chromosome overexpressor), without evident metabolic improvements. In addition, HFHS-induced pulse wave velocity increases were reversed by 1-week treatment with a specific, small molecule SirT1 activator (SRT1720). These beneficial effects of pharmacological or genetic SirT1 activation, against HFHS-induced arterial stiffness, were associated with a decrease in nuclear factor kappa light chain enhancer of activated B cells (NFκB) activation and vascular cell adhesion molecule (VCAM-1) and p47phox protein expressions, in aorta and VSM cells. In conclusion, VSM SirT1 activation decreases arterial stiffness in the setting of obesity by stimulating anti-inflammatory and antioxidant pathways in the aorta. SirT1 activators may represent a novel therapeutic approach to prevent arterial stiffness and associated cardiovascular complications in overweight/obese individuals with metabolic syndrome. PMID:27432859

  10. Rhinacanthus nasutus leaf improves metabolic abnormalities in high-fat diet-induced obese mice

    Institute of Scientific and Technical Information of China (English)

    Supaporn Wannasiri; Pritsana Piyabhan; Jarinyaporn Naowaboot

    2016-01-01

    Objective: To investigate the effect of Rhinacanthus nasutus (R. nasutus) leaf extract on impaired glucose and lipid metabolism in obese ICR mice. Methods: Obesity was induced in the male ICR mice by feeding them a high-fat diet (60 kcal% fat) for 12 weeks. After the first six weeks of the diet, the obese mice were administered with the water extract of R. nasutus leaves at 250 and 500 mg/kg per day for the next six weeks. Subsequently, the blood glucose, lipid profiles, insulin, leptin, and adiponectin levels were measured. The liver and adipose tissues were excised for his-topathological examination and protein expression study. Results: After six weeks of the treatment, R. nasutus extract (at 250 and 500 mg/kg per day) was found to reduce the elevated blood glucose level, improve the insulin sensitivity, decrease the serum leptin, and increase the serum adiponectin levels. The obese mice treated with R. nasutus were found to have a reduction in the increased lipid concen-trations in their serum and liver tissues. Moreover, treatment with R. nasutus reduced the fat accumulation in the liver and the large adipocyte size in the fat tissues. Interestingly, the administration with R. nasutus extract was marked by an increase in the hepatic peroxisome proliferators-activated receptor alpha, fat cell adiponectin, and glucose transporter 4 proteins. Conclusions: To the best of our knowledge, the present study is the first report on the impact of R. nasutus extract in improving the impaired glucose and lipid metabolism in high-fat diet-induced obesity in mice via stimulating the insulin sensitivity in the liver and adipose tissues.

  11. Adaptative nitric oxide overproduction in perivascular adipose tissue during early diet-induced obesity.

    Science.gov (United States)

    Gil-Ortega, Marta; Stucchi, Paula; Guzmán-Ruiz, Rocío; Cano, Victoria; Arribas, Silvia; González, M Carmen; Ruiz-Gayo, Mariano; Fernández-Alfonso, Maria S; Somoza, Beatriz

    2010-07-01

    Perivascular adipose tissue (PVAT) plays a paracrine role in regulating vascular tone. We hypothesize that PVAT undergoes adaptative mechanisms during initial steps of diet-induced obesity (DIO) which contribute to preserve vascular function. Four-week-old male C57BL/6J mice were assigned either to a control [low-fat (LF); 10% kcal from fat] or to a high-fat diet (HF; 45% kcal from fat). After 8 wk of dietary treatment vascular function was analyzed in the whole perfused mesenteric bed (MB) and in isolated mesenteric arteries cleaned of PVAT. Relaxant responses to acetylcholine (10(-9)-10(-4) m) and sodium nitroprusside (10(-12)-10(-5) m) were significantly ameliorated in the whole MB from HF animals. However, there was no difference between HF and LF groups in isolated mesenteric arteries devoid of PVAT. The enhancement of relaxant responses detected in HF mice was not attributable to an increased release of nitric oxide (NO) from the endothelium nor to an increased sensitivity and/or activity of muscular guanilylcyclase. Mesenteric PVAT of HF animals showed an increased bioavailability of NO, detected by 4,5-diaminofluorescein diacetate (DAF2-DA) staining, which positively correlated with plasma leptin levels. DAF-2DA staining was absent in PVAT from ob/ob mice but was detected in these animals after 4-wk leptin replacement. The main finding in this study is that adaptative NO overproduction occurs in PVAT during early DIO which might be aimed at preserving vascular function. PMID:20410199

  12. Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats.

    Science.gov (United States)

    Marwitz, Shannon E; Woodie, Lauren N; Blythe, Sarah N

    2015-11-01

    The prevalence of obesity in children and adolescents has increased rapidly over the past 30 years, as has the incidence of attention deficit hyperactivity disorder (ADHD). In 2012, it was found that overweight children have a twofold higher chance of developing ADHD than their normal weight counterparts. Previous work has documented learning and memory impairments linked to consumption of an energy-dense diet in rats, but the relationship between diet and ADHD-like behaviors has yet to be explored using animal models. Therefore, the purpose of this study was to explore the role of diet in the etiology of attention and hyperactivity disorders using a rat model of diet-induced obesity. Male Sprague-Dawley rats were fed either a control diet or a Western-style diet (WSD) for ten weeks, and specific physiological and behavioral effects were examined. Tail blood samples were collected to measure fasting blood glucose and insulin levels in order to assess insulin insensitivity. Rats also performed several behavioral tasks, including the open field task, novel object recognition test, and attentional set-shifting task. Rats exposed to a WSD had significantly higher fasting insulin levels than controls, but both groups had similar glucose levels. The quantitative insulin sensitivity check index (QUICKI) indicated the development of insulin resistance in WSD rats. Performance in the open field test indicated that WSD induced pronounced hyperactivity and impulsivity. Further, control diet animals were able to discriminate between old and novel objects, but the WSD animals were significantly impaired in object recognition. However, regardless of dietary condition, rats were able to perform the attentional set-shifting paradigm. While WSD impaired episodic memory and induced hyperactivity, attentional set-shifting capabilities are unaffected. With the increasing prevalence of both obesity and ADHD, understanding the potential links between the two conditions is of clinical

  13. Ghrelin does not modulate angiogenesis in matrigel plug in normal and diet-induced obese mice

    Directory of Open Access Journals (Sweden)

    Zoya Tahergorabi

    2013-01-01

    Full Text Available Background: The reciprocal interaction between adipocytes and angiogenesis is considered as an essential component in the development and expansion of adipose tissue. The aim of this study was to evaluate the effect of ghrelin on angiogenic response using in vivo angiogenesis assay of matrigel plug and its correlation with serum leptin levels in normal and diet-induced obese mice. Materials and Methods: This experimental study has been done on 24 male C57BL/6 mice which were randomly divided into four groups: Normal diet (ND or control, ND + ghrelin, high-fat-diet (HFD or obese and HFD + ghrelin (n = 6/group. Obese and control groups received HFD or standard diet for 14 weeks. Then, growth factor reduced matrigel plug (500 ΅l containing bFGF (basic fibroblast growth factor; 100 ng with or without ghrelin (100 ΅g/kg was injected subcutaneously in the mid-ventral abdominal region of each mice. After 10 days, blood samples were taken and matrigel plugs were removed under anesthesia and angiogenic response was assessed by immunohisochemical staining. Results: HFD significantly increased angiogenesis in matrigel plug as expressed as the number of CD31-positive cells than standard diet (43 ΁ 5 vs. 13 ΁ 2.5 CD31 + cells/field. Ghrelin did not alter angiogenesis in matrigel plug in both obese and control groups. There was a strong positive correlation between the number of CD31-positive cells and serum leptin concentration (r = 0.91. Conclusion: Leptin as an angiogenic factor has a positive correlation with angiogenesis in matrigel plug model of angiogenesis and ghrelin could not alter angiogenesis.

  14. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats.

    Directory of Open Access Journals (Sweden)

    Guillaume de Lartigue

    Full Text Available BACKGROUND AND AIMS: The gastrointestinal hormone cholecystokinin (CCK plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN. Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1 dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced. We tested the hypothesis that leptin resistance in VAN is responsible for reducing CCK signaling and satiation. RESULTS: Lean Zucker rats sensitive to leptin signaling, significantly reduced their food intake following administration of CCK8S (0.22 nmol/kg, i.p., while obese Zucker rats, insensitive to leptin, did not. CCK signaling in VAN of obese Zucker rats was reduced, preventing CCK-induced up-regulation of Y2 receptor and down-regulation of melanin concentrating hormone 1 receptor (MCH1R and cannabinoid receptor (CB1. In VAN from diet-induced obese (DIO Sprague Dawley rats, previously shown to become leptin resistant, we demonstrated that the reduction in EGR1 expression resulted in decreased sensitivity of VAN to CCK and reduced CCK-induced inhibition of food intake. The lowered sensitivity of VAN to CCK in DIO rats resulted in a decrease in Y2 expression and increased CB1 and MCH1R expression. These effects coincided with the onset of hyperphagia in DIO rats. CONCLUSIONS: Leptin signaling in VAN is required for appropriate CCK signaling and satiation. In response to high fat feeding, the onset of leptin resistance reduces the sensitivity of VAN to CCK thus reducing the satiating effects of CCK.

  15. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles.

    Science.gov (United States)

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C; Langer, Robert

    2016-05-17

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  16. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity.

    Science.gov (United States)

    Tajan, Mylène; Batut, Aurélie; Cadoudal, Thomas; Deleruyelle, Simon; Le Gonidec, Sophie; Saint Laurent, Céline; Vomscheid, Maëlle; Wanecq, Estelle; Tréguer, Karine; De Rocca Serra-Nédélec, Audrey; Vinel, Claire; Marques, Marie-Adeline; Pozzo, Joffrey; Kunduzova, Oksana; Salles, Jean-Pierre; Tauber, Maithé; Raynal, Patrick; Cavé, Hélène; Edouard, Thomas; Valet, Philippe; Yart, Armelle

    2014-10-21

    LEOPARD syndrome (multiple Lentigines, Electrocardiographic conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, Retardation of growth, sensorineural Deafness; LS), also called Noonan syndrome with multiple lentigines (NSML), is a rare autosomal dominant disorder associating various developmental defects, notably cardiopathies, dysmorphism, and short stature. It is mainly caused by mutations of the PTPN11 gene that catalytically inactivate the tyrosine phosphatase SHP2 (Src-homology 2 domain-containing phosphatase 2). Besides its pleiotropic roles during development, SHP2 plays key functions in energetic metabolism regulation. However, the metabolic outcomes of LS mutations have never been examined. Therefore, we performed an extensive metabolic exploration of an original LS mouse model, expressing the T468M mutation of SHP2, frequently borne by LS patients. Our results reveal that, besides expected symptoms, LS animals display a strong reduction of adiposity and resistance to diet-induced obesity, associated with overall better metabolic profile. We provide evidence that LS mutant expression impairs adipogenesis, triggers energy expenditure, and enhances insulin signaling, three features that can contribute to the lean phenotype of LS mice. Interestingly, chronic treatment of LS mice with low doses of MEK inhibitor, but not rapamycin, resulted in weight and adiposity gains. Importantly, preliminary data in a French cohort of LS patients suggests that most of them have lower-than-average body mass index, associated, for tested patients, with reduced adiposity. Altogether, these findings unravel previously unidentified characteristics for LS, which could represent a metabolic benefit for patients, but may also participate to the development or worsening of some traits of the disease. Beyond LS, they also highlight a protective role of SHP2 global LS-mimicking modulation toward the development of obesity and associated disorders

  17. Effects of four Bifidobacteria on obesity in high-fat diet induced rats

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To compare the effects of four Bifidobacteria strains(Bifidobacteria L66-5,L75-4,M13-4 and FS31-12,originated from normal human intestines) on weight gain,lipid metabolism,glucose metabolism in an obese murine model induced by high-fat diet.METHODS:Forty-eight Sprague-Dawley rats were randomly divided into six groups.Control group received standard chow,model group received high-fat diet,and intervention groups received high-fat diet added with different Bifidobacteria strains isolated from healthy volu...

  18. Increased susceptibility to diet-induced gallstones in liver fatty acid binding protein knockout mices⃞

    OpenAIRE

    Xie, Yan; Newberry, Elizabeth P.; Kennedy, Susan M; Luo, Jianyang; Davidson, Nicholas O.

    2009-01-01

    Quantitative trait mapping identified a locus colocalizing with L-Fabp, encoding liver fatty acid binding protein, as a positional candidate for murine gallstone susceptibility. When fed a lithogenic diet (LD) for 2 weeks, L-Fabp−/− mice became hypercholesterolemic with increased hepatic VLDL cholesterol secretion. Seventy-five percent of L-Fabp−/− mice developed solid gallstones compared with 6% of wild-type mice with an increased gallstone score (3.29 versus 0.62, respectively; P < 0.01). H...

  19. 饮食诱导肥胖与肥胖抵抗大鼠ATP生成量的比较%The comparison of ATP contents between diet-induced obesity group and diet-induced obesity resistance group

    Institute of Scientific and Technical Information of China (English)

    王双; 胡丽贞; 于海涛; 梁冰; 薛宏凤; 李雅杰; 王舒然

    2013-01-01

    目的 比较饮食诱导肥胖大鼠与肥胖抵抗大鼠三磷酸腺苷(adenosine triphosphate,ATP)生成量的差异.方法 将健康雄性远交群(sprague dawley,SD)大鼠,随机分为基础饲料(control,CON)组和高脂饲料组,喂养2周后,将高脂饲料组按照体重增加量分为饮食诱导肥胖(diet-induced obesity,DIO)组和饮食诱导抵抗(diet-induced obesity resistance,DR)组.于喂养第10周末,麻醉处死动物,观察体重、摄食量、能量利用率以及肝脏、心脏、肌肉组织中ATP生成量的情况.结果 DIO组的体重一直高于DR组(均有P<0.05).DIO组总能量摄入高于DR组和CON组(均有P<0.001),但DIO组与DR组能量利用率差异无统计学意义.DR组大鼠肝脏、心脏和肌肉组织中ATP生成量比DIO组分别高出12.8%,30.6%和11.6%.结论 饮食诱导肥胖和肥胖抵抗大鼠的能量代谢存在差异,这种差异可能与主要能量器官中ATP的生成量有关.%Objective To compare the ATP contents in tissues between diet-induced obesity(DIO) group and diet-induced obesity resistance (DR) group. Methods Forty-eight male sprague dawley (SD) rats were randomly divided into control group and high-fat group which were given different diets. After 2-week feeding, the high-fat group were divided into diet-induced obesity group and diet-induced obesity resistance group. The rats were sacrificed for tissues and blood sample at the end of week 10. Results The body weight of DIO group was higher than that of DR group during the feeding (all P < 0. 05 ) . The total energy intake of DIO group was higher than that of DR group and CON group ( all P < 0. 001). No significance were observed of energy utilization between DIO group and DR group. The ATP contents of DIO group were 12. 8% , 30. 6% , and 11. 6% lower than that of DR group in liver, cardiac and muscle separately. Conclusions The differences of energy utilization between DIO group and DR group may be related with the ATP contents in

  20. Interaction of Dietary Composition and PYY Gene Expression in Diet-induced Obesity in Rats

    Institute of Scientific and Technical Information of China (English)

    YANG Nianhong; WANG Chongjian; XU Mingjia; MAO Limei; LIU Liegang; SUN Xiufa

    2005-01-01

    Summary: The interaction of high-fat diet and the peptide YY (PYY) gene expression in diet-induced obesity and the mechanisms which predisposed some individuals to become obese on high-fat diet were explored. Thirty-six male SD rats were randomly divided into high-fat diet group (n=27) and chow fed control group (n=9). After 15 weeks of either a high-fat diet or chew fed diet, the high-fat diet group was subdivided into dietary induced obesity (DIO) and dietary induced obesity resistant (DIR) group according to the final body weight. Then the DIO rats were subdivided into two groups for a 8-week secondary dietary intervention. One of the group was switched to chew fed diet, whereas the other DIO and DIR rats continued on the initial high-fat diet. Weight gain and food intake were measured, food efficiency was calculated, and the concentrations of plasma neuropeptide Y (NPY) and PYY were assayed. Hypothalamic NPY mRNA expression and PYY mRNA expression in ileum and colon was detected by RT-PCR. The results showed that at the end of 15th week, the levels of body weight and caloric intake were significantly higher in DIO group than in DIR or control group (P0.05). The concentration of plasma PYY was significantly higher in DIR group than in DIO and CF group, while no significant difference was found between DIO and CF group (P<0.01). After switching the DIO rats to chow fed diet, their body weight gains were significantly lower than that of the DIO-HF group. The expression of PYY mRNA was increased in DIO-HF/CF rats than in DIO-HF rats, and the expression of hypothalamic NPY mRNA was decreased in DIO-HF/CF rats than in DIO-HF group. It was concluded that both dietary composition and PYY gene expression could potently alter the hypothalamic NPY expression and result in different susceptibility to obese and overeating. The decreased PYY was associated with the increased NPY expression and their predisposal to obese and overeating in rats.

  1. Is Western Diet-Induced Nonalcoholic Steatohepatitis in Ldlr-/- Mice Reversible?

    Directory of Open Access Journals (Sweden)

    Kelli A Lytle

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a major public health burden in western societies. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH, is characterized by hepatosteatosis, inflammation, oxidative stress, and hepatic damage that can progress to fibrosis and cirrhosis; risk factors for hepatocellular carcinoma. Given the scope of NASH, validating treatment protocols (i.e., low fat diets and weight loss is imperative.We evaluated the efficacy of two diets, a non-purified chow (NP and purified (low-fat low-cholesterol, LFLC diet to reverse western diet (WD-induced NASH and fibrosis in Ldlr-/- mice.Mice fed WD for 22-24 weeks developed robust hepatosteatosis with mild fibrosis, while mice maintained on the WD an additional 7-8 weeks developed NASH with moderate fibrosis. Returning WD-fed mice to the NP or LFLC diets significantly reduced body weight and plasma markers of metabolic syndrome (dyslipidemia, hyperglycemia and hepatic gene expression markers of inflammation (Mcp1, oxidative stress (Nox2, fibrosis (Col1A, LoxL2, Timp1 and collagen crosslinking (hydroxyproline. Time course analyses established that plasma triglycerides and hepatic Col1A1 mRNA were rapidly reduced following the switch from the WD to the LFLC diet. However, hepatic triglyceride content and fibrosis did not return to normal levels 8 weeks after the change to the LFLC diet. Time course studies further revealed a strong association (r2 ≥ 0.52 between plasma markers of inflammation (TLR2 activators and hepatic fibrosis markers (Col1A, Timp1, LoxL2. Inflammation and fibrosis markers were inversely associated (r2 ≥ 0.32 with diet-induced changes in hepatic ω3 and ω6 polyunsaturated fatty acids (PUFA content.These studies establish a temporal link between plasma markers of inflammation and hepatic PUFA and fibrosis. Low-fat low-cholesterol diets promote reversal of many, but not all, features associated with WD-induced NASH and fibrosis in Ldlr

  2. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    Science.gov (United States)

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation. PMID:25761571

  3. Susceptibility of Different Mouse Wild Type Strains to Develop Diet-Induced NAFLD/AFLD-Associated Liver Disease

    Science.gov (United States)

    Fengler, Vera H. I.; Macheiner, Tanja; Kessler, Sonja M.; Czepukojc, Beate; Gemperlein, Katja; Müller, Rolf; Kiemer, Alexandra K.; Magnes, Christoph; Haybaeck, Johannes; Lackner, Carolin; Sargsyan, Karine

    2016-01-01

    Although non-alcoholic and alcoholic fatty liver disease have been intensively studied, concerning pathophysiological mechanisms are still incompletely understood. This may be due to the use of different animal models and resulting model-associated variation. Therefore, this study aimed to compare three frequently used wild type mouse strains in their susceptibility to develop diet-induced features of non-alcoholic/alcoholic fatty liver disease. Fatty liver disease associated clinical, biochemical, and histological features in C57BL/6, CD-1, and 129Sv WT mice were induced by (i) high-fat diet feeding, (ii) ethanol feeding only, and (iii) the combination of high-fat diet and ethanol feeding. Hepatic and subcutaneous adipose lipid profiles were compared in CD-1 and 129Sv mice. Additionally hepatic fatty acid composition was determined in 129Sv mice. In C57BL/6 mice dietary regimens resulted in heterogeneous hepatic responses, ranging from pronounced steatosis and inflammation to a lack of any features of fatty liver disease. Liver-related serum biochemistry showed high deviations within the regimen groups. CD-1 mice did not exhibit significant changes in metabolic and liver markers and developed no significant steatosis or inflammation as a response to dietary regimens. Although 129Sv mice showed no weight gain, this strain achieved most consistent features of fatty liver disease, apparent from concentration alterations of liver-related serum biochemistry as well as moderate steatosis and inflammation as a result of all dietary regimens. Furthermore, the hepatic lipid profile as well as the fatty acid composition of 129Sv mice were considerably altered, upon feeding the different dietary regimens. Accordingly, diet-induced non-alcoholic/alcoholic fatty liver disease is most consistently promoted in 129Sv mice compared to C57BL/6 and CD-1 mice. As a conclusion, this study demonstrates the importance of genetic background of used mouse strains for modeling diet-induced

  4. Cognitive differences between Sprague-Dawley rats selectively bred for sensitivity or resistance to diet induced obesity.

    Science.gov (United States)

    Gurung, Sunam; Agbaga, Martin-Paul; Myers, Dean A

    2016-09-15

    Epidemiological studies have shown strong correlations between high fat diets, diet-induced obesity and cognitive impairment, primarily focusing on cognitive defects after the onset of obesity. A remaining question is whether cognitive impairment precedes obesity in individuals metabolically prone to diet-induced obesity. The inbred diet-induced obesity sensitive (DIO) and resistant (DR) strains of Sprague-Dawley rats serve as models for human polygenic obesity. DIO rats become overweight on a standard rat chow and have metabolic symptoms similar to overweight humans. We hypothesized that cognitive impairment pre-exists in adult male DIO rats prior to exposure to high fat diet. Male DIO and DR rats were fed a standard rat chow diet from 4 through 20 weeks of age and subjected to the Morris water maze at 12 weeks of age. At 5 and 20 weeks of age, brains of DIO and DR males were examined for indices of inflammation, lipid peroxidation and neuroproliferation. DIO rats showed significant memory impairment on water maze and increased indices of hippocampal inflammation at 20 weeks of age compared to DR rats. At 5 weeks of age, DIO rats exhibited significantly less neural progenitor cell (NPCs) proliferation in the dentate gyrus and increased hippocampal lipid peroxidation compared to DR rats. Therefore, we conclude that DIO rats exhibit early post-weaning indices of hippocampal inflammation, lipid peroxidation and decreased NPC proliferation, as well as impaired hippocampal dependent memory by early adulthood suggesting that inherent metabolic differences predispose the DIO strain to cognitive deficit prior to exposure to high fat diet and/or obesity. PMID:27173431

  5. Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Shi-ying DING; Zhu-fang SHEN; Yue-teng CHEN; Su-juan SUN; Quan Liu; Ming-zhi XIE

    2005-01-01

    Aim: To investigate the effect of the peroxisome proliferator-activator receptor (PPAR)-γ agonist, pioglitazone, on insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats. Methods: Normal female Wistar rats were injected intraperitoneally with low-dose streptozotocin (STZ, 30 mg/kg) and fed with a high sucrose-fat diet for 8 weeks. Pioglitazone (20 mg/kg) was administered orally to the obese and insulin-resistant rats for 28 d. Intraperitoneal glucose tolerance tests, insulin tolerance tests and gluconeogenesis tests were carried out over the last 14 d. At the end of d 28 of the treatment, serums were collected for biochemical analysis. Glucose transporter 4 (GLUT4) and insulin receptor substrate-1 (IRS-1) protein expression in the liver and skeletal muscle were detected using Western blotting. Results: Significant insulin resistance and obesity were observed in low-dose STZ and high sucrose-fat diet induced obese rats. Pioglitazone (20 mg/kg) treatment significantly decreased serum insulin,triglyceride and free fatty acid levels, and elevated high density lipoprotein-cholesterol (HDL-C) levels. Pioglitazone also lowered the lipid contents in the liver and muscles of rats undergoing treatment. Gluconeogenesis was inhibited and insulin sensitivity was improved markedly. The IRS-1 protein contents in the liver and skeletal muscles and the GLUT4 contents in skeletal muscle were elevated significantly. Conclusion: The data suggest that treatment with pioglitazone improves insulin sensitivity in low-dose STZ and high sucrose-fat diet induced obese rats. The insulin sensitizing effect may be associated with ameliorating lipid metabolism, reducing hyperinsulinemia, inhibiting gluconeogenesis, and increasing IRS-1 and GLUT4 protein expression in insulin-sensitive tissues.

  6. Effect of Ethanolic Extract of Fragaria Vesca on serum glucose levels and body weight in diet induced obese rats

    OpenAIRE

    Venkat ramana Yella; Asha P Dass

    2015-01-01

    Objective: to evaluate the effect of ethanolic extract Fragaria Vesca on serum glucose levels in diet induced obese rats.Material and methods: Male Wister albino rats weighing 200- 250 gm, were divided into 3 groups of 6 animals each. The animals of all the groups except normal group were given a lipid diet consisting of cholesterol (1%), cholic acid (0.5%), casein (20%), choline (0.25%), d-l-methionin1(0.4%), coconut oil (25%), multi vitamin mix (3.5%) and sucrose (48.4%) with standard pelle...

  7. Lactobacillus rhamnosus GG Reverses Insulin Resistance but Does Not Block Its Onset in Diet-Induced Obese Mice.

    Science.gov (United States)

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-05-01

    Recently, Lactobacillus rhamnosus GG (LGG) was shown to exert insulin-sensitizing and adiposity-reducing effects in high-fat (HF) diet-fed mice. In the present study, we observed that the effects were correlated with the extent of dysbiosis induced by HF diet feeding before LGG administration. LGG-treated mice were protected from HF diet-induced adiposity and/ or insulin resistance when LGG was treated after, not along with, HF diet feeding. Results indicate that, under HF dietary condition, supplemented LGG reverses insulin resistance, but does not block its onset. PMID:25433553

  8. Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis

    OpenAIRE

    Preitner, Frederic; Mody, Nimesh; Graham, Timothy E; Peroni, Odile D.; Kahn, Barbara B.

    2009-01-01

    The synthetic retinoid Fenretinide (FEN) increases insulin sensitivity in obese rodents and is in early clinical trials for treatment of insulin resistance in obese humans with hepatic steatosis (46). We aimed to determine the physiological mechanisms for the insulin-sensitizing effects of FEN. Wild-type mice were fed a high-fat diet (HFD) with or without FEN from 4–5 wk to 36–37 wk of age (preventive study) or following 22 wk of HF diet-induced obesity (12 wk intervention study). Retinol-bin...

  9. New Nordic Diet induced weight loss is accompanied by changes in metabolism and AMPK signalling in adipose tissue

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Anne-Marie; Jordy, Andreas Børsting;

    2015-01-01

    CONTEXT: The molecular mechanisms behind diet-induced metabolic improvements remain to be studied. The Objective was to investigate whether expression of proteins in skeletal muscle or adipose tissue could explain improvements in glucose and lipid homeostasis after weight loss. DESIGN: Volunteers...... adipose tissue (SCAT) were obtained at week 0 and 26. OUTCOME: Gene and protein expressions were analysed by real time PCR and western blotting. RESULTS: Improved HOMA-IR index and lowered plasma triacylglycerol concentration after NND coincided with molecular adaptations in SCAT, but not in skeletal...... regulation of key glucose and lipid handling proteins suggests an improved metabolic capacity in adipose tissue after weight loss....

  10. Diet-induced perturbation of the rat liver mitochondrial acetylome studied by quantitative (iTRAQ) LC-MS/MS

    DEFF Research Database (Denmark)

    León, Ileana R.; Schwämmle, Veit; Williamson, James;

    -acetylation of mitochondrial proteins has emerged as a key regulator of cellular metabolism. The acetylated proteome includes enzymes involved in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism and glycogen metabolism. A mammal’s inability to handle excess energy intake......-acetylation levels. Thus, it suggests that some lysine acetylation sites might be necessary for the some proteins in order to keep, for instance, protein conformation or enzymatic activity. Novel aspect iTRAQ-based quantitative LC-MS/MS workflow for determination of the acetylome and its diet-induced regulations...

  11. Loss of FXR Protects against Diet-Induced Obesity and Accelerates Liver Carcinogenesis in ob/ob Mice

    OpenAIRE

    Zhang, Yanqiao; Ge, Xuemei; Heemstra, Lydia A.; Chen, Wei-Dong; Xu, Jiesi; Smith, Joseph L.; Ma, Huiyan; Kasim, Neda; Edwards, Peter A.; Novak, Colleen M.

    2012-01-01

    Farnesoid X receptor (FXR) is known to play important regulatory roles in bile acid, lipid, and carbohydrate metabolism. Aged (>12 months old) Fxr−/− mice also develop spontaneous liver carcinomas. In this report, we used three mouse models to investigate the role of FXR deficiency in obesity. As compared with low-density lipoprotein receptor (Ldlr) knockout (Ldlr−/−) mice, the Ldlr−/−Fxr−/− double-knockout mice were highly resistant to diet-induced obesity, which was associated with increase...

  12. Diet-induced alterations in gut microflora contribute to lethal pulmonary damage in TLR2/TLR4 deficient mice

    OpenAIRE

    Yewei Ji; Shengyi Sun; Julia K. Goodrich; Hana Kim; Angela C. Poole; Gerald E. Duhamel; Ruth E. Ley; Ling Qi

    2014-01-01

    Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here we show that chronic intake of a high-fat diet (HFD), not a low-fat diet (LFD), leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors (TLR) 2 and 4 (DKO hereafter). Diet-induced pulmonary lesions are blocked by antibiotics treatment and transmissible to wildtype mice upon either cohousing or fecal transplantation, pointin...

  13. Post-transcriptional Stabilization of Ucp1 mRNA Protects Mice from Diet-Induced Obesity

    OpenAIRE

    Akinori Takahashi; Shungo Adachi; Masahiro Morita; Miho Tokumasu; Tohru Natsume; Toru Suzuki; Tadashi Yamamoto

    2015-01-01

    Uncoupling protein 1 (Ucp1) contributes to thermogenesis, and its expression is regulated at the transcriptional level. Here, we show that Ucp1 expression is also regulated post-transcriptionally. In inguinal white adipose tissue (iWAT) of mice fed a high-fat diet (HFD), Ucp1 level decreases concomitantly with increases in Cnot7 and its interacting partner Tob. HFD-fed mice lacking Cnot7 and Tob express elevated levels of Ucp1 mRNA in iWAT and are resistant to diet-induced obesity. Ucp1 mRNA ...

  14. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Jin [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Myoung-Su; Jo, Keunae [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Translational Research Center for Protein Functional Control, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-07-22

    Highlights: {yields} Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. {yields} PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. {yields} PRPA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} PRPAs attenuate HFD-induced obesity by activating AMPK and PPAR{delta}, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor {delta} (PPAR{delta}) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPAR{delta} protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also

  15. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Highlights: → Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. → PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. → PRPA reduces high-fat diet-induced triglyceride accumulation in liver. → PRPAs attenuate HFD-induced obesity by activating AMPK and PPARδ, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor δ (PPARδ) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPARδ protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of

  16. Gender difference following high cholesterol diet induced renal injury and the protective role of rutin and ascorbic acid combination in Wistar albino rats

    Directory of Open Access Journals (Sweden)

    Al-Rejaie Salim

    2012-03-01

    Full Text Available Abstract Background An increased interest is given to the impact of high fat diet on health worldwide. Abnormalities in lipid metabolism induced by high cholesterol diet (HCD were reported to exacerbate renal diseases via oxidative stress pathways. Rutin and ascorbic acid showed a protective role against oxidative stress-mediated diseases. Furthermore, both lipid metabolism and tissue response to oxidative stress damage was found to vary according to animal gender. Thus, the objective of this work was to examine possible gender-related differences and the possible protective effects of rutin and ascorbic acid supplementation on high cholesterol diet induced nephrotoxicity. Methods 96 young male and female Wistar albino rats were used. HCD supplemented animals were treated with rutin alone or in combination with ascorbic acid for 6 weeks. Creatinine plasma level was estimated. Furthermore, kidney levels of nucleic acids, total protein, malondialdehyde (MDA, reduced glutathione (GSH, total cholesterol, and triglycerides were determined. Finally, kidney tissues were used for histopathological examination. Results HCD supplementation decreased kidney level of nucleic acids, which was more prominent in female animals. Both vitamin combination significantly attenuated HCD induced decrease in nucleic acids. Moreover, kidney level of MDA was significantly altered by HCD in both genders, which was inhibited by rutin and ascorbic acid alone or in combination in male groups and by both vitamins in female groups. There was a reduction in kidney level of GSH by HCD, especially in male groups, which was attenuated by rutin and ascorbic acid combination. Kidney levels of total cholesterol and triglycerides were significantly increased by HCD supplementation in both genders. Coadministration with rutin and/or ascorbic acid protected from such increase, which was more obvious in both vitamins combination. Histopathological investigation supported vitamins

  17. Gastrodia elata Ameliorates High-Fructose Diet-Induced Lipid Metabolism and Endothelial Dysfunction

    OpenAIRE

    Min Chul Kho; Yun Jung Lee; Jeong Dan Cha; Kyung Min Choi; Dae Gill Kang; Ho Sub Lee

    2014-01-01

    Overconsumption of fructose results in dyslipidemia, hypertension, and impaired glucose tolerance, which have documented correlation with metabolic syndrome. Gastrodia elata, a widely used traditional herbal medicine, was reported with anti-inflammatory and antidiabetes activities. Thus, this study examined whether ethanol extract of Gastrodia elata Blume (EGB) attenuate lipid metabolism and endothelial dysfunction in a high-fructose (HF) diet animal model. Rats were fed the 65% HF diet with/...

  18. Exercise Protects against Diet-Induced Insulin Resistance through Downregulation of Protein Kinase Cβ in Mice

    OpenAIRE

    Xiaoquan Rao; Jixin Zhong; Xiaohua Xu; Brianna Jordan; Santosh Maurya; Zachary Braunstein; Tse-Yao Wang; Wei Huang; Sudha Aggarwal; Muthu Periasamy; Sanjay Rajagopalan; Kamal Mehta; Qinghua Sun

    2013-01-01

    Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ) has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in exercise-attenuated insulin resistance in high-fat diet (HFD)-fed mice. PKCβ(-/-) and wild-type mice...

  19. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    Science.gov (United States)

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  20. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    Directory of Open Access Journals (Sweden)

    Pan Huang

    2016-01-01

    Full Text Available Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP, serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress.

  1. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  2. High-Fat Diet-Induced IL-17A Exacerbates Psoriasiform Dermatitis in a Mouse Model of Steatohepatitis.

    Science.gov (United States)

    Vasseur, Philippe; Serres, Laura; Jégou, Jean-François; Pohin, Mathilde; Delwail, Adriana; Petit-Paris, Isabelle; Levillain, Pierre; Favot, Laure; Samson, Michel; Yssel, Hans; Morel, Franck; Silvain, Christine; Lecron, Jean-Claude

    2016-09-01

    Recent studies suggest that psoriasis may be more severe in patients with nonalcoholic fatty liver disease, particularly in those with the inflammatory stage of steatohepatitis [nonalcoholic steatohepatitis (NASH)]. Herein, we investigated the impact of diet-induced steatohepatitis on the severity of imiquimod-induced psoriasiform dermatitis. Mice fed with a high-fat diet developed steatohepatitis reminiscent of human NASH with ballooning hepatocytes and significant liver fibrosis. Mice with steatohepatitis also displayed moderate cutaneous inflammation characterized by erythema, dermal infiltrates of CD45(+) leukocytes, and a local production of IL-17A. Moreover, steatohepatitis was associated with an epidermal activation of caspase-1 and cutaneous overexpression of IL-1β. Imiquimod-induced psoriasiform dermatitis was exacerbated in mice with steatohepatitis as compared to animals fed with a standard diet. Scale formation and acanthosis were aggravated, in correlation with increased IL-17A and IL-22 expression in inflamed skins. Finally, intradermal injection of IL-17A in standard diet-fed mice recapitulated the cutaneous pathology of mice with steatohepatitis. The results show that high-fat diet-induced steatohepatitis aggravates the inflammation in psoriasiform dermatitis, via the cutaneous production of IL-17A. In agreement with clinical data, this description of a novel extrahepatic manifestation of NASH should sensitize dermatologists to the screening and the management of fatty liver in psoriatic patients. PMID:27423696

  3. Ganglioside GM3 synthase depletion reverses neuropathic pain and small fiber neuropathy in diet-induced diabetic mice

    Science.gov (United States)

    Jayaraj, Nirupa D; Wilson, Heather M; Ren, Dongjun; Flood, Kelsey; Wang, Xiao-Qi; Shum, Andrew; Miller, Richard J; Paller, Amy S

    2016-01-01

    Background Small fiber neuropathy is a well-recognized complication of type 2 diabetes and has been shown to be responsible for both neuropathic pain and impaired wound healing. In previous studies, we have demonstrated that ganglioside GM3 depletion by knockdown of GM3 synthase fully reverses impaired wound healing in diabetic mice. However, the role of GM3 in neuropathic pain and small fiber neuropathy in diabetes is unknown. Purpose Determine whether GM3 depletion is able to reverse neuropathic pain and small fibers neuropathy and the mechanism of the reversal. Results We demonstrate that GM3 synthase knockout and the resultant GM3 depletion rescues the denervation in mouse footpad skin and fully reverses the neuropathic pain in diet-induced obese diabetic mice. In cultured dorsal root ganglia from diet-induced diabetic mice, GM3 depletion protects against increased intracellular calcium influx in vitro. Conclusions These studies establish ganglioside GM3 as a new candidate responsible for neuropathic pain and small fiber neuropathy in diabetes. Moreover, these observations indicate that systemic or topically applied interventions aimed at depleting GM3 may improve both the painful neuropathy and the wound healing impairment in diabetes by protecting against nerve end terminal degeneration, providing a disease-modifying approach to this common, currently intractable medical issue. PMID:27590073

  4. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Lei Cai

    Full Text Available OBJECTIVE: The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death. EXPERIMENTAL APPROACH: Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO mice and wild type (WT mice fed a high fat diet (60% kcal fat for 16 weeks and the inflammatory response was studied in primary adipocytes and macrophages isolated from CD36 KO and WT mice. RESULTS: Compared to WT mice, CD36 KO mice fed a high fat diet exhibited reduced adiposity and adipose tissue inflammation, with decreased adipocyte cell death, pro-inflammatory cytokine expression and macrophage and T-cell accumulation. In primary cell culture, the absence of CD36 expression in macrophages decreased pro-inflammatory cytokine, pro-apoptotic and ER stress gene expression in response to lipopolysaccharide (LPS. Likewise, CD36 deficiency in primary adipocytes reduced pro-inflammatory cytokine and chemokine secretion in response to LPS. Primary macrophage and adipocyte co-culture experiments showed that these cell types act synergistically in their inflammatory response to LPS and that CD36 modulates such synergistic effects. CONCLUSIONS: CD36 enhances adipose tissue inflammation and cell death in diet-induced obesity through its expression in both macrophages and adipocytes.

  5. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  6. Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity

    OpenAIRE

    Park, Sun-Young; Cho, Seong-A; Lee, Myung-Ki; Lim, Sang-Dong

    2015-01-01

    This study aimed to investigate the effects of Lactobacillus plantarum FH185 on the reduction of adipocyte size and gut microbial changes in mice with diet-induced obesity. The strain was found to have a lipase inhibitory activity of 70.09±2.04% and inhibited adipocyte differentiation of 3T3-L1 cells (18.63±0.98%) at a concentration of 100 µg/mL. To examine the effect of the strain supplementation on gut microbial changes in mice with diet-induced obesity, male C57BL/6J mice were fed on four ...

  7. Combined Treatment of Mulberry Leaf and Fruit Extract Ameliorates Obesity-Related Inflammation and Oxidative Stress in High Fat Diet-Induced Obese Mice

    OpenAIRE

    Lim, Hyun Hwa; Yang, Soo Jin; Kim, Yuri; Lee, Myoungsook; LIM, YUNSOOK

    2013-01-01

    The aim of this study was to investigate whether a combined treatment of mulberry leaf extract (MLE) and mulberry fruit extract (MFE) was effective for improving obesity and obesity-related inflammation and oxidative stress in high fat (HF) diet-induced obese mice. After obesity was induced by HF diet for 9 weeks, the mice were divided into eight groups: (1) lean control, (2) HF diet-induced obese control, (3) 1:1 ratio of MLE and MFE at doses of 200 (L1:1), (4) 500 (M1:1), and (5) 1000 (H1:1...

  8. Effect of Ginseng (Panax ginseng) Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement

    OpenAIRE

    Chang Hyeon Park; Seon Kyeong Park; Tae Wan Seung; Dong Eun Jin; Tianjiao Guo; Ho Jin Heo

    2015-01-01

    High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM). The effect of ginseng (Panax ginseng) berry ethyl acetate fraction (GBEF) on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight) for 4 weeks. After three in vivo beh...

  9. Therapy with radio-attenuated vaccine in experimental murine visceral leishmaniasis showed enhanced T cell and inducible nitric oxide synthase levels, suppressed tumor growth factor-beta production with higher expression of some signaling molecules

    OpenAIRE

    Sanchita Datta; Syamal Roy; Madhumita Manna

    2015-01-01

    Background:Visceral leishmaniasis (VL) or Kala-Azar (KA) is one of the most deadly forms of disease among all neglected tropical diseases. There are no satisfactory drugs or vaccine candidates available for this dreaded disease. Our previous studies showed promising therapeutic and prophylactic efficacy of the live, radio-attenuated parasites through intramuscular (I.M.) and intraperitoneal (I.P.) route in BALB/c mice model.Methods:The T-cell proliferation level, the mRNA expression level of ...

  10. Ameliorative Potential of Tamarindus indica on High Fat Diet Induced Nonalcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Suja Rani Sasidharan

    2014-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS on high fat diet (HFD induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms.

  11. Beyond the Role of Dietary Protein and Amino Acids in the Prevention of Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Klaus J. Petzke

    2014-01-01

    Full Text Available High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.

  12. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  13. High-fat diet induced adiposity and insulin resistance in mice lacking the myotonic dystrophy protein kinase.

    Science.gov (United States)

    Llagostera, Esther; Carmona, Mari Carmen; Vicente, Meritxell; Escorihuela, Rosa María; Kaliman, Perla

    2009-06-18

    Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3'-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients. PMID:19482024

  14. Dietary Protein Source and Cyclooxygenase-Inhibition Influence Development of Diet-Induced Obesity, Glucose Homeostasis and Brown Adipose Tissue

    DEFF Research Database (Denmark)

    Aune, Ulrike Liisberg

    -grade inflammation accompanying the increasing adipose mass. In order to investigate the relationship between obesity, inflammation and insulin resistance, we ran an experiment feeding mice a high fat/high sucrose diet supplemented with the antiinflammatory cyclooxygenase-inhibitor, indomethacin. We saw that...... indomethacin prevented diet-induced obesity and glucose intolerance, but not insulin resistance. The development of obesity is largely dependent on an imbalance in energy intake relative to expenditure. Thus, strategies that influence energy utilization is of relevance in anti-obesity treatment. High protein...... striking differences between various protein sources in relation to the development of obesity, insulin resistance and hepatic lipid accumulation. Casein protein, despite being the regular protein source used in experimental diets for rodents, seems to provide strong protection against obesity. This was...

  15. Effects of macronutrient composition and cyclooxygenase-inhibition on diet-induced obesity, low grade inflammation and glucose homeostasis

    DEFF Research Database (Denmark)

    Fjære, Even

    Background: Obesity and its related metabolic complications are an increasing problem worldwide. A high fat diet in combination with sucrose has been shown to induce obesity and development of glucose intolerance and insulin resistance in rodents. C57BL/6J mice were fed high fat diets with sucrose......- or protein based background, and supplemented with either corn- or fish oil. These experiments were conducted to determine whether macronutrient composition and type of dietary fat can modulate diet-induced obesity, and associated metabolic consequences. The use of non-steroidal anti....../high diet in combination with indomethacin, a nonselective cyclooxygenase cyclooxygenase-inhibitor, reduces energy efficiency and fat mass in C57BL/6J mice. Despite prevention of obesity development, indomethacin treatment was associated with hyperglycemia and reduced glucose tolerance. Body weight was not...

  16. A comparison of glycemic control, water retention, and musculoskeletal effects of balaglitazone and pioglitazone in diet-induced obese rats

    DEFF Research Database (Denmark)

    Henriksen, Kim; Byrjalsen, Inger; Nielsen, Rasmus H;

    2009-01-01

    Agonists of Perioxisome Proliferator-Activator Receptor gamma (PPARgamma), which work as insulin sensitizers, are approved for type 2 diabetes. However, adverse effects, such as oedemas, infarctions, and increased fracture rates, limit their applicability. We performed a head-to-head comparison of...... equipotent glucose lowering concentrations of the partial PPARgamma agonist balaglitazone and the full agonist pioglitazone in male diet-induced obese rats, to investigate effects on bone formation, fluid retention and fat accumulation. Sixty male dio induced obese rats were divided into five categories...... oral glucose tolerance test was performed to evaluate glucose homeostasis in the rats. During oral glucose tolerance test both pioglitazone and balaglitazone lowered baseline glucose and maintained the suppression during the oral glucose tolerance test. Both lowered basal insulin, peak insulin...

  17. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion

    Science.gov (United States)

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Romero, María del Mar; Fernández-López, José Antonio; Alemany, Marià

    2016-01-01

    Background. A “cafeteria” diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to “cafeteria” diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal. PMID:27547590

  18. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model

    DEFF Research Database (Denmark)

    Amrutkar, Manoj; Cansby, Emmelie; Chursa, Urszula;

    2015-01-01

    Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator of...... glucose and insulin homeostasis based on observations in myoblasts with acute depletion of STK25 and in STK25-overexpressing transgenic mice. Here, we challenged Stk25 knockout mice and wild-type littermates with a high-fat diet and showed that STK25 deficiency suppressed development of hyperglycemia and...... hyperinsulinemia, improved systemic glucose tolerance, reduced hepatic gluconeogenesis, and increased insulin sensitivity. Stk25−/− mice were protected from diet-induced liver steatosis accompanied by decreased protein levels of acetyl-CoA carboxylase, a key regulator of both lipid oxidation and synthesis. Lipid...

  19. Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    OpenAIRE

    Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.

    2012-01-01

    Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates in...

  20. Initial responses of articular tissues in a murine high-fat diet-induced osteoarthritis model: pivotal role of the IPFP as a cytokine fountain.

    Directory of Open Access Journals (Sweden)

    Munetaka Iwata

    Full Text Available Obesity and high body mass index are associated with a higher incidence of osteoarthritis (OA. The aim of this study is to investigate the involvement of the infrapatellar fat pad (IPFP in the sub-acute effect of a high fat diet (HFD on the development of knee-OA. C57BL/6J male mice were fed either a HFD or a normal diet beginning at seven weeks of age. Tissue sections were evaluated with immunohistological analysis. The IPFP was excised, and mRNA expression profiles were compared using real-time RT-PCR analysis. Osteoarthritic changes were initiated in the HFD group after eight weeks of the HFD. Increased synovial cell number and angiogenesis at the anterior edge of the tibial plateau were exhibited prior to osteophyte formation. Quantitative histological analysis indicated that osteophyte volume was significantly increased in the HFD group after eight weeks, along with an increase in the IPFP volume, the size of individual adipocytes and the number of vessels in the IPFP. Histomorphometrical analysis revealed osteophyte area was significantly associated with IPFP area, individual adipocyte area and vascular area. Real-time RT-PCR analysis demonstrated elevated mRNA expression of inflammatory cytokines, growth factor, and adipokines in the IPFP after eight weeks of the HFD. These findings are in parallel with increased expression of the CD68 macrophage marker after eight weeks of the HFD. Expression levels of the adipokines were significantly correlated with expression of TNF-α, VEGF and TGF-β. Immunohistological analysis revealed that the Nampt protein was highly expressed in the IPFP especially around the site of osteophyte formation. Apoptosis and proliferation of chondrocytes were both enhanced at the site of osteophyte formation, indicating higher cell turnover at this region. These observations suggest the IPFP plays a pivotal role in the formation of osteophytes and functions as a secretory organ in response to a HFD.

  1. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  2. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats

    Science.gov (United States)

    Aguila, Jay; McConell, Glenn K.; McAinch, Andrew J.; Mathai, Michael L.

    2016-01-01

    Background and Aims Obesity and impairments in metabolic health are associated with reductions in exercise capacity. Both whey protein isolates (WPIs) and vitamin E tocotrienols (TCTs) exert favorable effects on obesity-related metabolic parameters. This research sought to determine whether these supplements improved exercise capacity and increased glucose tolerance in diet-induced obese rats. Methods Six week old male rats (n = 35) weighing 187 ± 32g were allocated to either: Control (n = 9), TCT (n = 9), WPI (n = 8) or TCT + WPI (n = 9) and placed on a high-fat diet (40% of energy from fat) for 10 weeks. Animals received 50mg/kg body weight and 8% of total energy intake per day of TCTs and/or WPIs respectively. Food intake, body composition, glucose tolerance, insulin sensitivity, exercise capacity, skeletal muscle glycogen content and oxidative enzyme activity were determined. Results Both TCT and WPI groups ran >50% longer (2271 ± 185m and 2195 ± 265m respectively) than the Control group (1428 ± 139m) during the run to exhaustion test (P<0.05), TCT + WPI did not further improve exercise endurance (2068 ± 104m). WPIs increased the maximum in vitro activity of beta-hydroxyacyl-CoA in the soleus muscle (P<0.05 vs. Control) but not in the plantaris. Citrate synthase activity was not different between groups. Neither supplement had any effect on weight gain, adiposity, glucose tolerance or insulin sensitivity. Conclusion Ten weeks of both TCTs and WPIs increased exercise endurance by 50% in sedentary, diet-induced obese rats. These positive effects of TCTs and WPIs were independent of body weight, adiposity or glucose tolerance. PMID:27058737

  3. Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity.

    Science.gov (United States)

    Gamelin, François-Xavier; Aucouturier, Julien; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Mazzarella, Enrico; Aveta, Teresa; Leriche, Melissa; Dupont, Erwan; Cieniewski-Bernard, Caroline; Montel, Valérie; Bastide, Bruno; Di Marzo, Vincenzo; Heyman, Elsa

    2016-06-01

    The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations. PMID:26880264

  4. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats.

    Science.gov (United States)

    Novak, Colleen M; Kotz, Catherine M; Levine, James A

    2006-02-01

    Nonexercise activity thermogenesis (NEAT), the most variable component of energy expenditure, can account for differential capacities for human weight gain. Also highly variable, spontaneous physical activity (SPA) may similarly affect weight balance in animals. In the following study, we utilized the rat model of obesity, the diet-induced obese (DIO) rat, as well as the diet-resistant (DR) rat strain, to investigate how access to a high-fat diet alters SPA and the associated energy expenditure (i.e., NEAT). DIO and DR rats showed no differences in the amount of SPA before access to the high-fat diet. After 29 days on a high-fat diet, the DIO rats showed significant decreases in SPA, whereas the DR rats did not. Next, we wanted to determine whether the DIO and DR rats showed differential sensitivity to microinjections of orexin into the paraventricular nucleus of the hypothalamus (PVN). Unilateral guide cannulae were implanted, aimed at the PVN. Orexin A (0, 0.125, 0.25, and 1.0 nmol in 500 nl) was microinjected through the guide cannula into the PVN, then SPA and energy expenditure were measured for 2 h. Using the response to vehicle as a baseline, the DR rats showed significantly greater increase in NEAT compared with the DIO rats. These data indicate that diet-induced obesity is associated with decreases in SPA and a lack of increase in NEAT. A putative mechanism for changes in NEAT that accompany obesity is a decreased sensitivity to the NEAT-activating effects of neuropeptides such as orexin. PMID:16188908

  5. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity. PMID:25588195

  6. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis.

    Science.gov (United States)

    Han, Yong Hwan; Buffolo, Márcio; Pires, Karla Maria; Pei, Shaobo; Scherer, Philipp E; Boudina, Sihem

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress (OS). The causal role of adipose OS in the pathogenesis of these conditions is unknown. To address this issue, we generated mice with an adipocyte-selective deletion of manganese superoxide dismutase (MnSOD). When fed a high-fat diet (HFD), the AdSod2 knockout (KO) mice exhibited less adiposity, reduced adipocyte hypertrophy, and decreased circulating leptin. The resistance to diet-induced adiposity was the result of an increased metabolic rate and energy expenditure. Furthermore, palmitate oxidation was elevated in the white adipose tissue (WAT) and brown adipose tissue of AdSod2 KO mice fed an HFD, and the expression of key fatty acid oxidation genes was increased. To gain mechanistic insight into the increased fat oxidation in HFD-fed AdSod2 KO mice, we quantified the mitochondrial function and mitochondrial content in WAT and found that MnSOD deletion increased mitochondrial oxygen consumption and induced mitochondrial biogenesis. This effect was preserved in cultured adipocytes from AdSod2 KO mice in vitro. As expected from the enhanced fat oxidation, circulating levels of free fatty acids were reduced in the HFD-fed AdSod2 KO mice. Finally, HFD-fed AdSod2 KO mice were protected from hepatic steatosis, adipose tissue inflammation, and glucose and insulin intolerance. Taken together, these results demonstrate that MnSOD deletion in adipocytes triggered an adaptive stress response that activated mitochondrial biogenesis and enhanced mitochondrial fatty acid oxidation, thereby preventing diet-induced obesity and insulin resistance. PMID:27284109

  7. Female mice target deleted for the neuromedin B receptor have partial resistance to diet-induced obesity.

    Science.gov (United States)

    Paula, Gabriela Silva Monteiro; Souza, Luana Lopes; Cabanelas, Adriana; Bloise, Flavia Fonseca; Mello-Coelho, Valéria; Wada, Etsuko; Ortiga-Carvalho, Tania Maria; Oliveira, Karen Jesus; Pazos-Moura, Carmen Cabanelas

    2010-05-01

    Previous studies have proposed a role for neuromedin B (NB), a bombesin-like peptide, in the control of body weight homeostasis. However, the nature of this role is unclear. The actions of NB are mediated preferentially by NB-preferring receptors (NBRs). Here we examined the consequences of targeted deletion of NBRs in female mice on body weight homeostasis in mice fed a normolipid diet (ND) or a high-fat diet (HFD) for 13 weeks. Body weight and food ingestion of neuromedin B receptor knockout (NBR-KO) mice fed a normolipid diet showed no difference in relation to wild-type (WT). However, the high-fat diet induced an 8.9- and 4.8-fold increase in body weight of WT and NBR-KO, respectively, compared to their controls maintained with a normolipid diet, even though the mice ingested the same amount of calories, regardless of genotype. Comparing mice fed the high-fat diet, NBR-KO mice accumulated approximately 45% less fat depot mass than WT, exhibited a lower percentage of fat in their carcasses (19.2 vs. 31.3%), and their adipocytes were less hypertrophied. Serum leptin and leptin mRNA in inguinal and perigonadal fat were lower in HFD NBR-KO than HFD WT, and serum adiponectin was similar among HFD groups and unaltered in comparison to ND-fed mice. HFD-fed WT mice developed glucose intolerance but not the HFD-fed NBR-KO mice, although they had similar glycaemia and insulinaemia. NBR-KO and WT mice on the normolipid diet showed no differences in any parameters, except for a trend to lower insulin levels. Therefore, disruption of the neuromedin B receptor pathway did not change body weight homeostasis in female mice fed a normolipid diet; however, it did result in partial resistance to diet-induced obesity. PMID:20211980

  8. Antiobesity Effects of the Ethanol Extract of Laminaria japonica Areshoung in High-Fat-Diet-Induced Obese Rat

    Directory of Open Access Journals (Sweden)

    Woong Sun Jang

    2013-01-01

    Full Text Available Laminaria japonica Areshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects of Laminaria japonica Areshoung ethanol extract (LE and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet for 6 weeks; then they were treated with LE or tea catechin for another 6 weeks. LE administration significantly decreased the body weight gain, fat-pad weights, and serum and hepatic lipid levels in HD-induced obese rats. The histological analysis revealed that LE-treated group showed a significantly decreased number of lipid droplets and size of adipocytes compared to the HD group. To elucidate the mechanism of action of LE, the levels of genes and proteins involved in obesity were measured in the liver and skeletal muscle. LE treatment resulted in an increased expression of fatty acid oxidation and thermogenesis-related genes in obese rats. Conversely, the expression of the fat intake-related gene (ACC2 and lipogenesis-related genes was reduced by LE treatment. Additionally, LE treatment increased the phosphorylation of AMP-activated protein kinase and its direct downstream protein, acetyl coenzyme A carboxylase, which is one of the rate-limiting enzymes in fatty acid synthesis pathway. These findings demonstrate that LE treatment has a protective effect against a high-fat-diet-induced obesity in rats through regulation of expression of genes and proteins involved in lipolysis and lipogenesis.

  9. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

    Directory of Open Access Journals (Sweden)

    Sung-Bae Kim

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment, MCD diet (MCD diet only, MCD + silymarin (SIL 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent

  10. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  11. High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice

    NARCIS (Netherlands)

    van der Heijden, Roel A.; Sheedfar, Fareeba; Morrison, Martine C.; Hommelberg, Pascal P. H.; Kor, Danny; Kloosterhuis, Niels J.; Gruben, Nanda; Youssef, Sameh A.; de Bruin, Alain; Hofker, Marten H.; Kleemann, Robert; Koonen, Debby P. Y.; Heeringa, Peter

    2015-01-01

    Metabolic inflammation in adipose tissue and the liver is frequently observed as a result of diet-induced obesity in human and rodent studies. Although the adipose tissue and the liver are both prone to become chronically inflamed with prolonged obesity, their individual contribution to the developm

  12. PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity

    DEFF Research Database (Denmark)

    Vrang, Niels; Madsen, Andreas Nygaard; Tang-Christensen, Mads;

    2006-01-01

    The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3-36) in mice and rats, as well as metabolic effects of chronic PYY(3-36) administration to diet-induced obese (DIO) mice and rats. A single intraperit...... conditioned taste aversion in male rats....

  13. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice.

    Science.gov (United States)

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-06-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment. PMID:27419109

  14. A low-fat diet has a higher potential than energy restriction to improve high-fat diet-induced insulin resistance in mice

    NARCIS (Netherlands)

    Muurling, M.; Jong, M.C.; Mensink, R.P.; Hornstra, G.; Dahlmans, V.E.H.; Pijl, H.; Voshol, P.J.; Havekes, L.M.

    2002-01-01

    Previous studies have shown that energy restriction (ER) or low-fat (LF) diets have beneficial effects on high-fat (HF) diet-induced obesity and non-insulin-dependent diabetes. However, comparison between ER and low-fat diet regarding the effect on insulin resistance and lipid metabolism has not bee

  15. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  16. Gastrodia elata Ameliorates High-Fructose Diet-Induced Lipid Metabolism and Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Min Chul Kho

    2014-01-01

    Full Text Available Overconsumption of fructose results in dyslipidemia, hypertension, and impaired glucose tolerance, which have documented correlation with metabolic syndrome. Gastrodia elata, a widely used traditional herbal medicine, was reported with anti-inflammatory and antidiabetes activities. Thus, this study examined whether ethanol extract of Gastrodia elata Blume (EGB attenuate lipid metabolism and endothelial dysfunction in a high-fructose (HF diet animal model. Rats were fed the 65% HF diet with/without EGB 100 mg/kg/day for 8 weeks. Treatment with EGB significantly suppressed the increments of epididymal fat weight, blood pressure, plasma triglyceride, total cholesterol levels, and oral glucose tolerance, respectively. In addition, EGB markedly prevented increase of adipocyte size and hepatic accumulation of triglycerides. EGB ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1 and adhesion molecules in the aorta. Moreover, EGB significantly recovered the impairment of vasorelaxation to acetylcholine and levels of endothelial nitric oxide synthase (eNOS expression and induced markedly upregulation of phosphorylation AMP-activated protein kinase (AMPKα in the liver, muscle, and fat. These results indicate that EGB ameliorates dyslipidemia, hypertension, and insulin resistance as well as impaired vascular endothelial function in HF diet rats. Taken together, EGB may be a beneficial therapeutic approach for metabolic syndrome.

  17. Exercise protects against diet-induced insulin resistance through downregulation of protein kinase Cβ in mice.

    Directory of Open Access Journals (Sweden)

    Xiaoquan Rao

    Full Text Available Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in exercise-attenuated insulin resistance in high-fat diet (HFD-fed mice. PKCβ(-/- and wild-type mice were fed a HFD with or without exercise training. PKC protein expression, body and tissue weight change, glucose and insulin tolerance, metabolic rate, mitochondria size and number, adipose inflammation, and AKT activation were determined to evaluate insulin sensitivity and metabolic changes after intervention. PKCβ expression decreased in both skeletal muscle and liver tissue after exercise. Exercise and PKCβ deficiency can alleviate HFD-induced insulin resistance, as evidenced by improved insulin tolerance. In addition, fat accumulation and mitochondrial dysfunction induced by HFD were also ameliorated by both exercise and PKCβ deficiency. On the other hand, exercise had little effect on PKCβ(-/- mice. Further, our data indicated improved activation of AKT, the downstream signal molecule of insulin, in skeletal muscle and liver of exercised mice, whereas PKCβ deficiency blunted the difference between sedentary and exercised mice. These results suggest that downregulation of PKCβ contributes to exercise-induced improvement of insulin resistance in HFD-fed mice.

  18. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity.

    Directory of Open Access Journals (Sweden)

    Do-Young Park

    Full Text Available OBJECTIVE: To investigate the functional effects of probiotic treatment on the gut microbiota, as well as liver and adipose gene expression in diet-induced obese mice. DESIGN: Male C57BL/6J mice were fed a high-fat diet (HFD for 8 weeks to induce obesity, and then randomized to receive HFD+probiotic (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, n = 9 or HFD+placebo (n = 9 for another 10 weeks. Normal diet (ND fed mice (n = 9 served as non-obese controls. RESULTS: Diet-induced obese mice treated with probiotics showed reduced body weight gain and fat accumulation as well as lowered plasma insulin, leptin, total-cholesterol and liver toxicity biomarkers. A total of 151,061 pyrosequencing reads for fecal microbiota were analyzed with a mean of 6,564, 5,274 and 4,464 reads for the ND, HFD+placebo and HFD+probiotic groups, respectively. Gut microbiota species were shared among the experimental groups despite the different diets and treatments. The diversity of the gut microbiota and its composition were significantly altered in the diet-induced obese mice and after probiotic treatment. We observed concurrent transcriptional changes in adipose tissue and the liver. In adipose tissue, pro-inflammatory genes (TNFα, IL6, IL1β and MCP1 were down-regulated in mice receiving probiotic treatment. In the liver, fatty acid oxidation-related genes (PGC1α, CPT1, CPT2 and ACOX1 were up-regulated in mice receiving probiotic treatment. CONCLUSIONS: The gut microbiota of diet-induced obese mice appears to be modulated in mice receiving probiotic treatment. Probiotic treatment might reduce diet-induced obesity and modulate genes associated with metabolism and inflammation in the liver and adipose tissue.

  19. An obligatory role for neurotensin in high-fat-diet-induced obesity.

    Science.gov (United States)

    Li, Jing; Song, Jun; Zaytseva, Yekaterina Y; Liu, Yajuan; Rychahou, Piotr; Jiang, Kai; Starr, Marlene E; Kim, Ji Tae; Harris, Jennifer W; Yiannikouris, Frederique B; Katz, Wendy S; Nilsson, Peter M; Orho-Melander, Marju; Chen, Jing; Zhu, Haining; Fahrenholz, Timothy; Higashi, Richard M; Gao, Tianyan; Morris, Andrew J; Cassis, Lisa A; Fan, Teresa W-M; Weiss, Heidi L; Dobner, Paul R; Melander, Olle; Jia, Jianhang; Evers, B Mark

    2016-05-19

    Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and

  20. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity.

    Directory of Open Access Journals (Sweden)

    Alessandro Marsili

    Full Text Available BACKGROUND: The type 2 iodothyronine deiodinase (D2 converts the pro-hormone thyroxine into T3 within target tissues. D2 is essential for a full thermogenic response of brown adipose tissue (BAT, and mice with a disrupted Dio2 gene (D2KO have an impaired response to cold. BAT is also activated by overfeeding. METHODOLOGY/PRINCIPAL FINDINGS: After 6-weeks of HFD feeding D2KO mice gained 5.6% more body weight and had 28% more adipose tissue. Oxygen consumption (V0(2 was not different between genotypes, but D2KO mice had an increased respiratory exchange ratio (RER, suggesting preferential use of carbohydrates. Consistent with this, serum free fatty acids and β-hydroxybutyrate were lower in D2KO mice on a HFD, while hepatic triglycerides were increased and glycogen content decreased. Neither genotype showed glucose intolerance, but D2KO mice had significantly higher insulin levels during GTT independent of diet. Accordingly, during ITT testing D2KO mice had a significantly reduced glucose uptake, consistent with insulin resistance. Gene expression levels in liver, muscle, and brown and white adipose tissue showed no differences that could account for the increased weight gain in D2KO mice. However, D2KO mice have higher PEPCK mRNA in liver suggesting increased gluconeogenesis, which could also contribute to their apparent insulin resistance. CONCLUSIONS/SIGNIFICANCE: We conclude that the loss of the Dio2 gene has significant metabolic consequences. D2KO mice gain more weight on a HFD, suggesting a role for D2 in protection from diet-induced obesity. Further, D2KO mice appear to have a greater reliance on carbohydrates as a fuel source, and limited ability to mobilize and to burn fat. This results in increased fat storage in adipose tissue, hepatic steatosis, and depletion of liver glycogen in spite of increased gluconeogenesis. D2KO mice are also less responsive to insulin, independent of diet-induced obesity.

  1. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Banin, R.M.; Hirata, B.K.S. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil); Andrade, I.S.; Zemdegs, J.C.S. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Clemente, A.P.G. [Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL (Brazil); Dornellas, A.P.S.; Boldarine, V.T. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Estadella, D. [Departamento de Biociências, Universidade Federal de São Paulo, Baixada Santista, SP (Brazil); Albuquerque, K.T. [Curso de Nutrição, Universidade Federal do Rio de Janeiro, Macaé, RJ (Brazil); Oyama, L.M.; Ribeiro, E.B. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Telles, M.M. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil)

    2014-07-25

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  2. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    R.M. Banin

    2014-09-01

    Full Text Available Ginkgo biloba extract (GbE has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1, protein tyrosine phosphatase 1B (PTP-1B, and protein kinase B (Akt, as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD or a normal fat diet (NFD for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V, and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb. NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  3. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    International Nuclear Information System (INIS)

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment

  4. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle

    DEFF Research Database (Denmark)

    Pedersen, Line; Holkmann Olsen, Caroline; Pedersen, Bente Klarlund; Hojman, Pernille

    2012-01-01

    range were obtained. At 3 mo of high-fat feeding, visceral and subcutaneous fat mass were 32.4 (P <0.01) and 22.4% (P <0.05) lower, respectively, in CXCL1-overexpressing mice compared with control mice. Also, chow-fed CXCL-transfected mice had 35.4% (P <0.05) lower visceral fat mass and 33.4% (P <0...

  5. Brain-specific natriuretic peptide receptor-B deletion attenuates high-fat diet-induced visceral and hepatic lipid deposition in mice.

    Science.gov (United States)

    Yamashita, Yui; Yamada-Goto, Nobuko; Katsuura, Goro; Ochi, Yukari; Kanai, Yugo; Miyazaki, Yuri; Kuwahara, Koichiro; Kanamoto, Naotetsu; Miura, Masako; Yasoda, Akihiro; Ohinata, Kousaku; Inagaki, Nobuya; Nakao, Kazuwa

    2016-07-01

    C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B (NPR-B), are abundantly distributed in the hypothalamus. To explore the role of central CNP/NPR-B signaling in energy regulation, we generated mice with brain-specific NPR-B deletion (BND mice) by crossing Nestin-Cre transgenic mice and mice with a loxP-flanked NPR-B locus. Brain-specific NPR-B deletion prevented body weight gain induced by a high-fat diet (HFD), and the mesenteric fat and liver weights were significantly decreased in BND mice fed an HFD. The decreased liver weight in BND mice was attributed to decreased lipid accumulation in the liver, which was confirmed by histologic findings and lipid content. Gene expression analysis revealed a significant decrease in the mRNA expression levels of CD36, Fsp27, and Mogat1 in the liver of BND mice, and uncoupling protein 2 mRNA expression was significantly lower in the mesenteric fat of BND mice fed an HFD than in that of control mice. This difference was not observed in the epididymal or subcutaneous fat. Although previous studies reported that CNP/NPR-B signaling inhibits SNS activity in rodents, SNS is unlikely to be the underlying mechanism of the metabolic phenotype observed in BND mice. Taken together, CNP/NPR-B signaling in the brain could be a central factor that regulates visceral lipid accumulation and hepatic steatosis under HFD conditions. Further analyses of the precise mechanisms will enhance our understanding of the contribution of the CNP/NPR-B system to energy regulation. PMID:27020246

  6. Blockade of Sphingosine 1-Phosphate Receptor 2 Signaling Attenuates High-Fat Diet-Induced Adipocyte Hypertrophy and Systemic Glucose Intolerance in Mice.

    Science.gov (United States)

    Kitada, Yoshihiko; Kajita, Kazuo; Taguchi, Koichiro; Mori, Ichiro; Yamauchi, Masahiro; Ikeda, Takahide; Kawashima, Mikako; Asano, Motochika; Kajita, Toshiko; Ishizuka, Tatsuo; Banno, Yoshiko; Kojima, Itaru; Chun, Jerold; Kamata, Shotaro; Ishii, Isao; Morita, Hiroyuki

    2016-05-01

    Sphingosine 1-phosphate (S1P) is known to regulate insulin resistance in hepatocytes, skeletal muscle cells, and pancreatic β-cells. Among its 5 cognate receptors (S1pr1-S1pr5), S1P seems to counteract insulin signaling and confer insulin resistance via S1pr2 in these cells. S1P may also regulate insulin resistance in adipocytes, but the S1pr subtype(s) involved remains unknown. Here, we investigated systemic glucose/insulin tolerance and phenotypes of epididymal adipocytes in high-fat diet (HFD)-fed wild-type and S1pr2-deficient (S1pr2(-/-)) mice. Adult S1pr2(-/-) mice displayed smaller body/epididymal fat tissue weights, but the differences became negligible after 4 weeks with HFD. However, HFD-fed S1pr2(-/-) mice displayed better scores in glucose/insulin tolerance tests and had smaller epididymal adipocytes that expressed higher levels of proliferating cell nuclear antigen than wild-type mice. Next, proliferation/differentiation of 3T3-L1 and 3T3-F442A preadipocytes were examined in the presence of various S1pr antagonists: JTE-013 (S1pr2 antagonist), VPC-23019 (S1pr1/S1pr3 antagonist), and CYM-50358 (S1pr4 antagonist). S1P or JTE-013 treatment of 3T3-L1 preadipocytes potently activated their proliferation and Erk phosphorylation, whereas VPC-23019 inhibited both of these processes, and CYM-50358 had no effects. In contrast, S1P or JTE-013 treatment inhibited adipogenic differentiation of 3T3-F442A preadipocytes, whereas VPC-23019 activated it. The small interfering RNA knockdown of S1pr2 promoted proliferation and inhibited differentiation of 3T3-F442A preadipocytes, whereas that of S1pr1 acted oppositely. Moreover, oral JTE-013 administration improved glucose tolerance/insulin sensitivity in ob/ob mice. Taken together, S1pr2 blockade induced proliferation but suppressed differentiation of (pre)adipocytes both in vivo and in vitro, highlighting a novel therapeutic approach for obesity/type 2 diabetes. PMID:26943364

  7. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity.

    Science.gov (United States)

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  8. CORRELATIONS BETWEEN BLOOD PRESSURE AND BODY WEIGHT, SERUM LEPTIN IN HIGH CALORIE DIET-INDUCED OBESE RATS

    Institute of Scientific and Technical Information of China (English)

    Hu Zhi; Ma Aiqun; Yang Chun; Tian Hongyan

    2006-01-01

    Objective To examine the change of body weight (BW) and blood pressure (BP) in obese rats, clarify relationships between BP and BW and other factors. Methods Male Spraque-Dawley rats were fed either with normal diet (ND) or high calorie diet (HC) for 20 weeks. BW and BP of tail artery were observed biweekly and tetraweekly respectively; serum leptin and fasting insulin (FINS) were detected by enzyme-linked immunoadsordent assay (ELISA) and radioimmunoassay (RIA) respectively. Fasting plasma glucose (FPG) and free fatty acid(FFA) were measured by conventional means. Results BW, abdominal fat weight (AFW), ratio of abdominal fat weight to body weight (RF/W), systolic blood pressure (SBP), diastolic blood pressure (DBP), serum levels of leptin and FINS, FPG, FFA increased in the HD group after 20 weeks diet intervention (P<0.05 or P<0.01). SBP was strongly correlated with BW, leptin, FINS and FFA (P<0.05), DBP was correlated with FFA (r=0.47, P<0.05). In addition, leptin was positively correlated with BW, AFW, RF/W, FINS and FFA (P<0.05 or P<0.01). Conclusion In this study of high calorie-diet induced rats, the gain of BW is accompanied by increased BP. The obese rats have hyperleptinemia, hyperinsulinemia, hyperglycemia and dyslipidemia which may have important effects on the development of obesity-related hypertension. RF/W is the key factor in which affect serum leptin level.

  9. The tissue distribution of recombinant adiponectin in type 2 diabetic mice and diet-induced obesity mice

    International Nuclear Information System (INIS)

    To investigate the tissue distribution of 125I labeled adiponectin recombinant globular form (125I-gAcrp) in Diet-induced obesity (DIO) mice, type 2 diabetes mellitus (T2DM) mice and normal mice. 125I-gAcrp was prepared and injected into different types of mice through the veins of tails, and then the radio-counts in brain, glandular angularis, heart, lung, liver, spleen, stomach, intestine, adipose tissue, kidney, muscle, testis, uterus and blood were measured at 0.5 and 2 h, respectively. The results showed that 125I-gAcrp has a much higher uptake at 2 h in the liver of T2DM mice and in the glandular angularis of DIO mice than that of at 0.5 h, whilst it has a lower uptake in the liver of DIO mice at 2 h, and also the uptake of 125I- gAcrp in the stomach, intestine and testis of DIO mice and in uterus of T2DM mice groups were increased. The result indicated that glandular angularis, testis and uterus probably play roles in the process of fat metabolism and blood glucose regulation of adiponectin in DIO and T2DM mice, besides liver and muscle. (authors)

  10. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  11. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source.

    Science.gov (United States)

    Putti, Rosalba; Migliaccio, Vincenzo; Sica, Raffaella; Lionetti, Lillà

    2015-01-01

    It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance. PMID:26834644

  12. White adipose tissue re-growth after partial lipectomy in high fat diet induced obese wistar rats.

    Science.gov (United States)

    Bueno, Allain Amador; Habitante, Carlos Alexandre; Oyama, Lila Missae; Estadella, Débora; Ribeiro, Eliane Beraldi; Oller do Nascimento, Cláudia Maria

    2011-01-01

    The effects of partial removal of epididymal (EPI) and retroperitoneal (RET) adipose tissues (partial lipectomy) on the triacylglycerol deposition of high fat diet induced obese rats were analyzed, aiming to challenge the hypothesized body fat regulatory system. Male 28-day-old wistar rats received a diet enriched with peanuts, milk chocolate and sweet biscuits during the experimental period. At the 90th day of life, rats were submitted to either lipectomy (L) or sham surgery. After 7 or 30 days, RET, EPI, liver, brown adipose tissue (BAT), blood and carcass were obtained and analyzed. Seven days following surgery, liver lipogenesis rate and EPI relative weight were increased in L. After 30 days, L, RET and EPI presented increased lipogenesis, lipolysis and percentage of small area adipocytes. L rats also presented increased liver malic enzyme activity, BAT lipogenesis, and triacylglycerol and corticosterone serum levels. The partial removal of visceral fat pads affected the metabolism of high fat diet obese rats, which leads to excised tissue re-growth and possibly compensatory growth of non-excised depots at a later time. PMID:21140253

  13. Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Tsunao Kishida

    2015-10-01

    Full Text Available Brown adipocytes (BAs play important roles in body temperature regulation, energy balance, and carbohydrate and lipid metabolism. Activities of BAs are remarkably diminished in obese and diabetic patients, providing possibilities of transplanting functional BAs resulting in therapeutic benefit. Here, we show generation of functional BAs by cellular reprogramming procedures. Transduction of the PRDM16 gene into iPSC-derived embryoid bodies induced BA phenotypes (iBAs. Moreover, normal human fibroblasts were directly converted into BAs (dBAs by C/EBP-β and C-MYC gene transduction. Approximately 90% of the fibroblasts were successfully converted within 12 days. The dBAs were highly active in mitochondrial biogenesis and oxidative metabolism. Mouse dBAs were induced by Prdm16, C/ebp-β, and L-myc genes, and after transplantation, they significantly reduced diet-induced obesity and insulin resistance in an UCP1-dependent manner. Thus, highly functional BAs can be generated by cellular reprogramming, suggesting a promising tailor-made cell therapy against metabolic disorders including type 2 diabetes mellitus.

  14. Protective effect of gymnema sylvestre ethanol extract on high fat diet-induced obese diabetic wistar rats

    Directory of Open Access Journals (Sweden)

    V Kumar

    2014-01-01

    Full Text Available Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate, serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose, cardiomyocyte apoptosis (cardiac caspase-3, Na + /K + ATPase activity and DNA fragmentation organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o. for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na + /K + ATPase activity and DNA laddering, visceral fat pad and organ′s weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus.

  15. Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs

    Directory of Open Access Journals (Sweden)

    Jennifer E. Bruin

    2015-04-01

    Full Text Available Human embryonic stem cell (hESC-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.

  16. Emodin Prevents Intrahepatic Fat Accumulation, Inflammation and Redox Status Imbalance During Diet-Induced Hepatosteatosis in Rats

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    2012-02-01

    Full Text Available High-fat and/or high-carbohydrate diets may predispose to several metabolic disturbances including liver fatty infiltration (hepatosteatosis or be associated with necro-inflammation and fibrosis (steatohepatitis. Several studies have emphasized the hepatoprotective effect of some natural agents. In this study, we investigated the potential therapeutic effects of the treatment with emodin, an anthraquinone derivative with anti-oxidant and anti-cancer abilities, in rats developing diet-induced hepatosteatosis and steatohepatitis. Sprague-Dawley rats were fed a standard diet (SD for 15 weeks, or a high-fat/high-fructose diet (HFD/HF. After 5 weeks, emodin was added to the drinking water of some of the SD and HFD/HF rats. The experiment ended after an additional 10 weeks. Emodin-treated HFD/HF rats were protected from hepatosteatosis and metabolic derangements usually observed in HFD/HF animals. Furthermore, emodin exerted anti-inflammatory activity by inhibiting the HFD/HF-induced increase of tumor necrosis factor (TNF-α. Emodin also affected the hepatocytes glutathione homeostasis and levels of the HFD/HF-induced increase of glutathionylated/phosphorylated phosphatase and tensin homolog (PTEN. In conclusion, we demonstrated that a natural agent such as emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by HFD/HF diet. These findings are promising, proposing emodin as a possible hindrance to progression of hepatosteatosis into steatohepatitis.

  17. New insights on the maternal diet induced-hypertension: potential role of the phenotypic plasticity and sympathetic-respiratory overactivity

    Directory of Open Access Journals (Sweden)

    JOAO HENRIQUE eDA COSTA SILVA

    2015-11-01

    Full Text Available Systemic arterial hypertension (SAH is an important risk factor for cardiovascular disease and affects worldwide population. Current environment including life style coupled with genetic programming have been attributed to the rising incidence of hypertension. Besides, environmental conditions during perinatal development such as maternal malnutrition can program changes in the integration among renal, neural and endocrine system leading to hypertension. This phenomenon is termed phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel or unusual input during development. Human and animal studies indicate that fetal exposure to an adverse maternal environment may alter the renal morphology and physiology that contribute to the development of hypertension. Recently, it has been shown that the maternal protein restriction alter the central control of SAH by a mechanism that include respiratory dysfunction and enhanced sympathetic-respiratory coupling at early life, which may contribute to adult hypertension. This review will address the new insights on the maternal diet induced-hypertension that include the potential role of the phenotypic plasticity, specifically the perinatal protein malnutrition, and sympathetic-respiratory overactivity.

  18. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    Lee Si

    2011-07-01

    Full Text Available Abstract Background Recent studies have reported the preventive effects of probiotics on obesity. Among commensal bacteria, bifidobacteria is one of the most numerous probiotics in the mammalian gut and are a type of lactic acid bacteria. The aim of this study was to assess the antiobesity and lipid-lowering effects of Bifidobacterium spp. isolated from healthy Korean on high fat diet-induced obese rats. Methods Thirty-six male Sprague-Dawley rats were divided into three groups as follows: (1 SD group, fed standard diet; (2 HFD group, fed high fat diet; and (3 HFD-LAB group, fed high fat diet supplemented with LAB supplement (B. pseudocatenulatum SPM 1204, B. longum SPM 1205, and B. longum SPM 1207; 108 ~ 109 CFU. After 7 weeks, the body, organ, and fat weights, food intake, blood serum levels, fecal LAB counts, and harmful enzyme activities were measured. Results Administration of LAB reduced body and fat weights, blood serum levels (TC, HDL-C, LDL-C, triglyceride, glucose, leptin, AST, ALT, and lipase levels, and harmful enzyme activities (β-glucosidase, β-glucuronidase, and tryptophanase, and significantly increased fecal LAB counts. Conclusion These data suggest that Bifidobacterium spp. used in this study may have beneficial antiobesity effects.

  19. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    International Nuclear Information System (INIS)

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C15 and Ob15) and 30 (C30 and Ob30) consecutive weeks. Obesity was determined by adiposity index. The Ob15 group was similar to the C15 group regarding the expression of myocardial collagen type I; however, expression in the Ob30 group was less than C30 group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob30 when compared with Ob15. Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression

  20. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

    Science.gov (United States)

    Verdeguer, Francisco; Soustek, Meghan S; Hatting, Maximilian; Blättler, Sharon M; McDonald, Devin; Barrow, Joeva J; Puigserver, Pere

    2016-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  1. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E.

    Science.gov (United States)

    Ni, Yinhua; Nagashimada, Mayumi; Zhuge, Fen; Zhan, Lili; Nagata, Naoto; Tsutsui, Akemi; Nakanuma, Yasuni; Kaneko, Shuichi; Ota, Tsuguhito

    2015-01-01

    Hepatic insulin resistance and nonalcoholic steatohepatitis (NASH) could be caused by excessive hepatic lipid accumulation and peroxidation. Vitamin E has become a standard treatment for NASH. However, astaxanthin, an antioxidant carotenoid, inhibits lipid peroxidation more potently than vitamin E. Here, we compared the effects of astaxanthin and vitamin E in NASH. We first demonstrated that astaxanthin ameliorated hepatic steatosis in both genetically (ob/ob) and high-fat-diet-induced obese mice. In a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet, astaxanthin alleviated excessive hepatic lipid accumulation and peroxidation, increased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis. Moreover, astaxanthin caused an M2-dominant shift in macrophages/Kupffer cells and a subsequent reduction in CD4(+) and CD8(+) T cell recruitment in the liver, which contributed to improved insulin resistance and hepatic inflammation. Importantly, astaxanthin reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. Overall, astaxanthin was more effective at both preventing and treating NASH compared with vitamin E in mice. Furthermore, astaxanthin improved hepatic steatosis and tended to ameliorate the progression of NASH in biopsy-proven human subjects. These results suggest that astaxanthin might be a novel and promising treatment for NASH. PMID:26603489

  2. Rapid response of the steatosis-sensing hepatokine LECT2 during diet-induced weight cycling in mice.

    Science.gov (United States)

    Chikamoto, Keita; Misu, Hirofumi; Takayama, Hiroaki; Kikuchi, Akihiro; Ishii, Kiyo-Aki; Lan, Fei; Takata, Noboru; Tajima-Shirasaki, Natsumi; Takeshita, Yumie; Tsugane, Hirohiko; Kaneko, Shuichi; Matsugo, Seiichi; Takamura, Toshinari

    2016-09-23

    Dieting often leads to body weight cycling involving repeated weight loss and regain. However, little information is available regarding rapid-response serum markers of overnutrition that predict body weight alterations during weight cycling. Here, we report the rapid response of serum leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine that induces insulin resistance in skeletal muscle, during diet-induced weight cycling in mice. A switch from a high-fat diet (HFD) to a regular diet (RD) in obese mice gradually decreased body weight but rapidly decreased serum LECT2 levels within 10 days. In contrast, a switch from a RD to a HFD rapidly elevated serum LECT2 levels. Serum LECT2 levels showed a positive correlation with liver triglyceride contents but not with adipose tissue weight. This study demonstrates the rapid response of LECT2 preceding body weight alterations during weight cycling in mice and suggests that measurement of serum LECT2 may be clinically useful in the management of obesity. PMID:27562717

  3. The Anti-Inflammatory Effect of Prunus yedoensis Bark Extract on Adipose Tissue in Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Hee Kang

    2015-01-01

    Full Text Available Chronic, low-grade inflammatory responses occur in obese adipose tissue and play a crucial role in the development of insulin resistance. Macrophages exposed to high glucose upregulate the expression of SRA, a macrophage-specific scavenger receptor. The present study investigated whether Prunus yedoensis (PY bark extract affects the inflammatory response and scavenger receptor gene expression observed in a diet-induced obesity model in vivo. Oral administration of PY extract significantly reduced fasting blood glucose levels without a change in body weight in mice fed a high fat diet for 17 weeks. PY extract significantly suppressed expression of inflammatory and macrophage genes such as tumor necrosis factor-α, interleukin-6, and F4/80 in epididymal adipose tissue. Among scavenger receptor genes, SRA expression was significantly reduced. The inhibitory responses of PY extract and its fractions were determined through evaluation of scavenger receptor expression in THP-1 cells. PY extract and its ethyl acetate fraction decreased the levels of SRA mRNA and phospho-ERK1/2 during monocyte differentiation. Our data indicate that the anti-inflammatory effects of PY extract and its downregulation of SRA seem to account for its hypoglycemic effects.

  4. Cholesterol 7α-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders.

    Science.gov (United States)

    Ferrell, Jessica M; Boehme, Shannon; Li, Feng; Chiang, John Y L

    2016-07-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the first and rate-limiting enzyme in the conversion of cholesterol to bile acids in the liver. In addition to absorption and digestion of nutrients, bile acids play a critical role in the regulation of lipid, glucose, and energy homeostasis. We have backcrossed Cyp7a1(-/-) mice in a mixed B6/129Sv genetic background to C57BL/6J mice to generate Cyp7a1(-/-) mice in a near-pure C57BL/6J background. These mice survive well and have normal growth and a bile acid pool size ∼60% of WT mice. The expression of the genes in the alternative bile acid synthesis pathway are upregulated, resulting in a more hydrophilic bile acid composition with reduced cholic acid (CA). Surprisingly, Cyp7a1(-/-) mice have improved glucose sensitivity with reduced liver triglycerides and fecal bile acid excretion, but increased fecal fatty acid excretion and respiratory exchange ratio (RER) when fed a high-fat/high-cholesterol diet. Supplementing chow and Western diets with CA restored bile acid composition, reversed the glucose tolerant phenotype, and reduced the RER. Our current study points to a critical role of bile acid composition, rather than bile acid pool size, in regulation of glucose, lipid, and energy metabolism to improve glucose and insulin tolerance, maintain metabolic homeostasis, and prevent high-fat diet-induced metabolic disorders. PMID:27146480

  5. Effect of Ethanolic Extract of Fragaria Vesca on serum glucose levels and body weight in diet induced obese rats

    Directory of Open Access Journals (Sweden)

    Venkat ramana Yella

    2015-10-01

    Full Text Available Objective: to evaluate the effect of ethanolic extract Fragaria Vesca on serum glucose levels in diet induced obese rats.Material and methods: Male Wister albino rats weighing 200- 250 gm, were divided into 3 groups of 6 animals each. The animals of all the groups except normal group were given a lipid diet consisting of cholesterol (1%, cholic acid (0.5%, casein (20%, choline (0.25%, d-l-methionin1(0.4%, coconut oil (25%, multi vitamin mix (3.5% and sucrose (48.4% with standard pellet diet for 30 days [20]. Growth rate was monitored during the treatment. Results: There was significantly decrease in blood glucose in standard group compared to HFD model (P< 0.05.  But there was no significant change among other groupsConclusion:  There was no significant change in the blood glucose level in all the groups except the standard group, but there was reduction in body weight.

  6. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  7. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    Directory of Open Access Journals (Sweden)

    Rostislav Chudnovskiy

    Full Text Available To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ, ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.

  8. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents.

    Directory of Open Access Journals (Sweden)

    Mario Perello

    Full Text Available The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT neurons of the hypothalamic paraventricular nucleus (PVN can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS, and provided further evidence suggesting a role of OXT to mediate leptin's actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin's ability to reduce body weight in both control and obese rats.

  9. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source

    Directory of Open Access Journals (Sweden)

    Rosalba ePutti

    2016-01-01

    Full Text Available It has been suggested that skeletal muscle mitochondria play a key role in high fat diet induced insulin resistance. Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle insulin resistance. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to insulin resistance. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of insulin resistance. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift towards mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and insulin resistance development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle insulin resistance and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle insulin resistance, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.

  10. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danielle Cristina Tomaz da [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Lima-Leopoldo, Ana Paula; Leopoldo, André Soares [Departamento de Esportes, Centro de Educação Física e Desportos da Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil); Campos, Dijon Henrique Salomé de; Nascimento, André Ferreira do [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Oliveira, Sílvio Assis Junior de [Escola de Fisioterapia da Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Padovani, Carlos Roberto [Departamento de Bioestatística do Instituto de Ciências Biológicas da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Cicogna, Antonio Carlos, E-mail: dany.tomaz@gmail.com [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-02-15

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C{sub 15} and Ob{sub 15}) and 30 (C{sub 30} and Ob{sub 30}) consecutive weeks. Obesity was determined by adiposity index. The Ob{sub 15} group was similar to the C{sub 15} group regarding the expression of myocardial collagen type I; however, expression in the Ob{sub 30} group was less than C{sub 30} group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob{sub 30} when compared with Ob{sub 15}. Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression.

  11. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Kathleen Kauter

    2013-02-01

    Full Text Available Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats.

  12. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation.

    Science.gov (United States)

    Liu, Chang; Rajapakse, Angana G; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II(-/-) mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II(-/-) mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II(-/-) mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II(-/-)-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity. PMID:26846206

  13. Metabolomic analysis of diet-induced type 2 diabetes using UPLC/MS integrated with pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Hui Sun

    Full Text Available Metabolomics represents an emerging discipline concerned with comprehensive assessment of small molecule endogenous metabolites in biological systems and provides a powerful approach insight into the mechanisms of diseases. Type 2 diabetes (T2D, called the burden of the 21st century, is growing with an epidemic rate. However, its precise molecular mechanism has not been comprehensively explored. In this study, we applied urinary metabolomics based on the UPLC/MS integrated with pattern recognition approaches to discover differentiating metabolites, to characterize and explore metabolic pathway disruption in an experimental model for high-fat-diet induced T2D. Six differentiating urinary metabolites were found in the negative mode, and two (2-(4-hydroxy-3-methoxy-phenyl acetaldehyde sulfate, 2-phenylethanol glucuronide of which were identified involving the key metabolic pathways linked to pentose and glucuronate interconversions, starch, sucrose metabolism and tyrosine metabolism. Our study provides new insight into pathophysiologic mechanisms and may enhance the understanding of T2D pathogenesis.

  14. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  15. Lagenaria siceraria fruit extract ameliorate fat amassment and serum TNF-αin high-fat diet-induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Sayyed Nadeem; Pradeep Dhore; Mohsin Quazi; Sunil Pawar; Navin Raj

    2012-01-01

    Objective:To investigate the effects of ethanolic extract ofLagenaria siceraria fruit(ELSF) on fat amassment and serumTNF-α in high-fat diet-induced obese rats.Methods:The high fat diet induced obese rats were orally treated with orlistat(50 mg/kg) andELSF(100,200,300 mg/kg/day) to the respective treatment groups.The body weight, fasting blood glucose level, lipid profile, serum levels of tumor necrosis factor-α(TNF-α) in rats were measured after30 days of treatment and compared to the obese control animals.Results:ELSF significantly(P <0.001) reduced the body weight gain, fasting blood glucose, total cholesterol, triglyceride, total protein andTNF-α.Conclusions:These encouraging findings suggest thatLagenaria siceraria has excellent pharmacological potential to prevent fat amassment.

  16. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes;

    2010-01-01

    with astrocyte-targeted IL-6 expression (GFAP-IL6 mice) with a high-fat diet (55% kcal from fat) versus a control diet (10%). The results demonstrate that the GFAP-IL6 mice are resistant to high-fat diet-induced increases in body weight and body fat, apparently without altering food intake and with no...... evidences of increased sympathetic tone. The high-fat diet-induced impaired responses to an insulin tolerance test (ITT), and to an oral glucose tolerance test (OGTT) in both genotypes. The GFAP-IL6 mice did not differ from littermate wild-type (WT) mice in ITT, but they were more glucose intolerant...... following the high-fat diet feeding. In summary, the present results demonstrate that brain-specific IL-6 controls body weight which may be a significant factor in physiological conditions and/or in diseases causing neuroinflammation....

  17. Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Maessen, Dionne E; Brouwers, Olaf; Gaens, Katrien H; Wouters, Kristiaan; Cleutjens, Jack P; Janssen, Ben J; Miyata, Toshio; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-04-01

    Obesity is associated with an increased risk for the development of type 2 diabetes and vascular complications. Advanced glycation end products are increased in adipose tissue and have been associated with insulin resistance, vascular dysfunction, and inflammation of adipose tissue. Here, we report that delayed intervention with pyridoxamine (PM), a vitamin B6 analog that has been identified as an antiglycating agent, protected against high-fat diet (HFD)-induced body weight gain, hyperglycemia, and hypercholesterolemia, compared with mice that were not treated. In both HFD-induced and db/db obese mice, impaired glucose metabolism and insulin resistance were prevented by PM supplementation. PM inhibited the expansion of adipose tissue and adipocyte hypertrophy in mice. In addition, adipogenesis of murine 3T3-L1 and human Simpson-Golabi-Behmel Syndrome preadipocytes was dose- and time-dependently reduced by PM, as demonstrated by Oil Red O staining and reduced expression of adipogenic differentiation genes. No ectopic fat deposition was found in the liver of HFD mice. The high expression of proinflammatory genes in visceral adipose tissue of the HFD group was significantly attenuated by PM. Treatment with PM partially prevented HFD-induced mild vascular dysfunction. Altogether, these findings highlight the potential of PM to serve as an intervention strategy in obesity. PMID:26718500

  18. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    OpenAIRE

    Cong Liu; Zhuo Wang; Yulong Song; Dan Wu; Xuan Zheng; Ping Li; Jin Jin; Nannan Xu; Ling Li

    2015-01-01

    This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1) for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses reve...

  19. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    OpenAIRE

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background: Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food.Objective: The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis.Design: Rats were divided into four groups (n=6 per group) after 1 week of acclimatizati...

  20. MyD88 signaling in the CNS is required for development of fatty acid induced leptin resistance and diet-induced obesity

    OpenAIRE

    Kleinridders, Andre; Schenten, Dominik; Mauer, Jan; Wunderlich, F. Thomas; Okamura, Tomoo; Koenner, A. Christine; Belgardt, Bengt F.; Bruening, Jens C.; Medzhitov, Ruslan

    2009-01-01

    Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR-4 signaling by fatty acids. Here we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat-3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterize...

  1. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns

    OpenAIRE

    Campion, J.; Martinez, J. A.; Rodriguez-Sanchez, S. (Sonia); Soria, A. C.; Bañuelos, O. (Oscar); Olivares, M.; Milagro, F. I.; Garza, A.L. (Ana Laura) de la; Iglesia, R. (Rocío) de la; Boque, N. (Noemi)

    2013-01-01

    This study was conducted to determine the mechanisms implicated in the beneficial effects of apple polyphenols (APs) against diet-induced obesity in Wistar rats, described in a previous study from our group. Supplementation of high-fat sucrose diet with AP prevented adiposity increase by inhibition of adipocyte hypertrophy. Rats supplemented with AP exhibited improved glucose tolerance while adipocytes isolated from these rats showed an enhanced lipolytic response to isoproterenol. AP intake ...

  2. Effect of Dietary Cocoa Tea (Camellia ptilophylla Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Rong Yang

    2013-01-01

    Full Text Available Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups of C57BL/6 mice that were fed with (1 normal chow (N; (2 high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt (HF; (3 a high-fat diet supplemented with 2% green tea extract (HFLG; (4 a high-fat diet supplemented with 4% green tea extract (HFHG; (5 a high-fat diet supplemented with 2% cocoa tea extract (HFLC; and (6 a high-fat diet supplemented with 4% cocoa tea extract (HFHC. From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a body weight, (b fat pad mass, (c liver weight, (d total liver lipid, (e liver triglyceride and cholesterol, and (f plasma lipids (triglyceride and cholesterol. These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome.

  3. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    OpenAIRE

    Steiner, Michel A.; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS...

  4. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice

    OpenAIRE

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-01-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippo...

  5. Diet-Induced and Age-Related Changes in the Quadriceps Muscle: MRI and MRS in a Rat Model of Sarcopenia

    OpenAIRE

    Fellner, Claudia; Schick, Fritz; Kob, Robert; Hechtl, Christine; Vorbuchner, Marianne; Büttner, Roland; Hamer, Okka W.; Sieber, Cornel C.; Stroszczynski, Christian; Bollheimer, L Cornelius

    2014-01-01

    Background: Knowledge about the molecular pathomechanisms of sarcopenia is still sparse, especially with regard to nutritional risk factors and the subtype of sarcopenic obesity. Objective: The aim of this study was to characterize diet-induced and age-related changes on the quality and quantity of the quadriceps muscle in a rat model of sarcopenia by different magnetic resonance (MR) techniques. Methods: A total of 36 6-month-old male Sprague-Dawley rats were randomly subdivid...

  6. The Crude Extract from Puerariae Flower Exerts Antiobesity and Antifatty Liver Effects in High-Fat Diet-Induced Obese Mice

    OpenAIRE

    Masaki Aburada; Tsutomu Shimada; Kinya Takagaki; Motoya Ikeguchi; Rika Nagamine; Masahito Tsubata; Mayu Sameshima-Kamiya; Tomoyasu Kamiya

    2012-01-01

    Kudzu, a leguminous plant, has long been used in folk medicine. In particular, its flowers are used in Japanese and Chinese folk medicine for treating hangovers. We focused on the flower of Kudzu (Puerariae thomsonii), and we previously reported the antiobesity effect of Puerariae thomsonii flower extract (PFE) in humans. In this study, we conducted an animal study to investigate the effect of PFE on visceral fat and hepatic lipid levels in mice with diet-induced obesity. In addition, we focu...

  7. Effect of Ginseng (Panax ginseng Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement

    Directory of Open Access Journals (Sweden)

    Chang Hyeon Park

    2015-01-01

    Full Text Available High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM. The effect of ginseng (Panax ginseng berry ethyl acetate fraction (GBEF on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight for 4 weeks. After three in vivo behavioral tests (Y-maze, passive avoidance, and Morris water maze tests, blood samples were collected from the postcaval vein for biochemical analysis, and whole brains were prepared for an ex vivo test. A method based on ultra-performance liquid chromatography (UPLC accurate-mass quadrupole time-of-flight mass spectrometry (Q-TOF/MS was used to determine major ginsenosides. GBEF decreased the fasting blood glucose levels of high-fat diet-induced diabetes mellitus (DM mice and improved hyperglycemia. Cognitive behavior tests were examined after setting up the DM mice. The in vivo experiments showed that mice treated with GBEF exhibited more improved cognitive behavior than DM mice. In addition, GBEF effectively inhibited the acetylcholinesterase (AChE activity and malondialdehyde (MDA levels of DM mice brain tissues. Q-TOF UPLC/MS analyses of GBEF showed that ginsenoside Re was the major ginsenoside.

  8. Effect of Ginseng (Panax ginseng) Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement.

    Science.gov (United States)

    Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Jin, Dong Eun; Guo, Tianjiao; Heo, Ho Jin

    2015-01-01

    High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM). The effect of ginseng (Panax ginseng) berry ethyl acetate fraction (GBEF) on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight) for 4 weeks. After three in vivo behavioral tests (Y-maze, passive avoidance, and Morris water maze tests), blood samples were collected from the postcaval vein for biochemical analysis, and whole brains were prepared for an ex vivo test. A method based on ultra-performance liquid chromatography (UPLC) accurate-mass quadrupole time-of-flight mass spectrometry (Q-TOF/MS) was used to determine major ginsenosides. GBEF decreased the fasting blood glucose levels of high-fat diet-induced diabetes mellitus (DM) mice and improved hyperglycemia. Cognitive behavior tests were examined after setting up the DM mice. The in vivo experiments showed that mice treated with GBEF exhibited more improved cognitive behavior than DM mice. In addition, GBEF effectively inhibited the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels of DM mice brain tissues. Q-TOF UPLC/MS analyses of GBEF showed that ginsenoside Re was the major ginsenoside. PMID:26161118

  9. Clodronate liposomes improve metabolic profile and reduce visceral adipose macrophage content in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Bin Feng

    Full Text Available BACKGROUND: Obesity-related adipose inflammation has been thought to be a causal factor for the development of insulin resistance and type 2 diabetes. Infiltrated macrophages in adipose tissue of obese animals and humans are an important source for inflammatory cytokines. Clodronate liposomes can ablate macrophages by inducing apoptosis. In this study, we aim to determine whether peritoneal injection of clodronate liposomes has any beneficial effect on systemic glucose homeostasis/insulin sensitivity and whether macrophage content in visceral adipose tissue will be reduced in diet-induced obese (DIO mice. METHODOLOGY/PRINCIPAL FINDINGS: Clodronate liposomes were used to deplete macrophages in lean and DIO mice. Macrophage content in visceral adipose tissue, metabolic parameters, glucose and insulin tolerance, adipose and liver histology, adipokine and cytokine production were examined. Hyperinsulinemic-euglycemic clamp study was also performed to assess systemic insulin sensitivity. Peritoneal injection of clodronate liposomes significantly reduced blood glucose and insulin levels in DIO mice. Systemic glucose tolerance and insulin sensitivity were mildly improved in both lean and DIO mice treated with clodronate liposomes by intraperitoneal (i.p. injection. Hepatosteatosis was dramatically alleviated and suppression of hepatic glucose output was markedly increased in DIO mice treated with clodronate liposomes. Macrophage content in visceral adipose tissue of DIO mice was effectively decreased without affecting subcutaneous adipose tissue. Interestingly, levels of insulin sensitizing hormone adiponectin, including the high molecular weight form, were significantly elevated in circulation. CONCLUSIONS/SIGNIFICANCE: Intraperitoneal injection of clodronate liposomes reduces visceral adipose tissue macrophages, improves systemic glucose homeostasis and insulin sensitivity in DIO mice, which can be partially attributable to increased adiponectin

  10. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Frida Fåk

    Full Text Available OBJECTIVE: To investigate whether the specific strains of Lactobacillus reuteri modulates the metabolic syndrome in Apoe-/- mice. METHODS: 8 week-old Apoe-/- mice were subdivided into four groups who received either L. reuteri ATCC PTA 4659 (ATCC, DSM 17938 (DSM, L6798, or no bacterial supplement in the drinking water for 12 weeks. The mice were fed a high-fat Western diet with 0.2% cholesterol and body weights were monitored weekly. At the end of the study, oral glucose and insulin tolerance tests were conducted. In addition, adipose and liver weights were recorded along with analyses of mRNA expression of ileal Angiopoietin-like protein 4 (Angptl4, the macrophage marker F4/80 encoded by the gene Emr1 and liver Acetyl-CoA carboxylase 1 (Acc1, Fatty acid synthase (Fas and Carnitine palmitoyltransferase 1a (Cpt1a. Atherosclerosis was assessed in the aortic root region of the heart. RESULTS AND CONCLUSIONS: Mice receiving L. reuteri ATCC gained significantly less body weight than the control mice, whereas the L6798 mice gained significantly more. Adipose and liver weights were also reduced in the ATCC group. Serum insulin levels were lower in the ATCC group, but no significant effects were observed in the glucose or insulin tolerance tests. Lipogenic genes in the liver were not altered by any of the bacterial treatments, however, increased expression of Cpt1a was found in the ATCC group, indicating increased β-oxidation. Correspondingly, the liver trended towards having lower fat content. There were no effects on inflammatory markers, blood cholesterol or atherosclerosis. In conclusion, the probiotic L. reuteri strain ATCC PTA 4659 partly prevented diet-induced obesity, possibly via a previously unknown mechanism of inducing liver expression of Cpt1a.

  11. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway.

    Science.gov (United States)

    Li, Jinmei; Ding, Lili; Song, Baoliang; Xiao, Xu; Qi, Meng; Yang, Qiaoling; Yang, Qiming; Tang, Xiaowen; Wang, Zhengtao; Yang, Li

    2016-01-01

    Currently, obesity has become a worldwide epidemic associated with Type 2 diabetes, dyslipidemia, cardiovascular disease and chronic metabolic diseases. Emodin is one of the active anthraquinone derivatives from Rheum palmatum and some other Chinese herbs with anti-inflammatory, anticancer and hepatoprotective properties. In the present study, we investigated the anti-obesity effects of emodin in obese mice and explore its potential pharmacological mechanisms. Male C57BL/6 mice were fed with high-fat diet for 12 weeks to induce obesity. Then the obese mice were divided into four groups randomly, HFD or emodin (40mg/kg/day and 80mg/kg/day) or lovastatin (30mg/kg/ day) for another 6 weeks. Body weight and food intake were recorded every week. At the end of the treatment, the fasting blood glucose, glucose and insulin tolerance test, serum and hepatic lipid levels were assayed. The gene expressions of liver and adipose tissues were analyzed with a quantitative PCR assay. Here, we found that emodin inhibited sterol regulatory element-binding proteins (SREBPs) transactivity in huh7 cell line. Furthermore, emodin (80mg/kg/day) treatment blocked body weight gain, decreased blood lipids, hepatic cholesterol and triglyceride content, ameliorated insulin sensitivity, and reduced the size of white and brown adipocytes. Consistently, SREBP-1 and SREBP-2 mRNA levels were significantly reduced in the liver and adipose tissue after emodin treatment. These data demonstrated that emodin could improve high-fat diet-induced obesity and associated metabolic disturbances. The underlying mechanism is probably associated with regulating SREBP pathway. PMID:26626587

  12. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Regan Roat

    Full Text Available The reduction of functional β cell mass is a key feature of type 2 diabetes. Here, we studied metabolic functions and islet gene expression profiles of C57BL/6J mice with naturally occurring nicotinamide nucleotide transhydrogenase (NNT deletion mutation, a widely used model of diet-induced obesity and diabetes. On high fat diet (HF, the mice developed obesity and hyperinsulinemia, while blood glucose levels were only mildly elevated indicating a substantial capacity to compensate for insulin resistance. The basal serum insulin levels were elevated in HF mice, but insulin secretion in response to glucose load was significantly blunted. Hyperinsulinemia in HF fed mice was associated with an increase in islet mass and size along with higher BrdU incorporation to β cells. The temporal profiles of glucose-stimulated insulin secretion (GSIS of isolated islets were comparable in HF and normal chow fed mice. Islets isolated from HF fed mice had elevated basal oxygen consumption per islet but failed to increase oxygen consumption further in response to glucose or carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP. To obtain an unbiased assessment of metabolic pathways in islets, we performed microarray analysis comparing gene expression in islets from HF to normal chow-fed mice. A few genes, for example, those genes involved in the protection against oxidative stress (hypoxia upregulated protein 1 and Pgc1α were up-regulated in HF islets. In contrast, several genes in extracellular matrix and other pathways were suppressed in HF islets. These results indicate that islets from C57BL/6J mice with NNT deletion mutation develop structural, metabolic and gene expression features consistent with compensation and decompensation in response to HF diet.

  13. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Minegishi, Yoshihiko; Hase, Tadashi

    2010-08-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is implicated in the control of energy metabolism and is considered to be a molecular target for the suppression of obesity and the treatment of metabolic syndrome. Here, we identified and characterized nootkatone, a constituent of grapefruit, as a naturally occurring AMPK activator. Nootkatone induced an increase in AMPKalpha1 and -alpha2 activity along with an increase in the AMP/ATP ratio and an increase the phosphorylation of AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC), in C(2)C(12) cells. Nootkatone-induced activation of AMPK was possibly mediated both by LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase. Nootkatone also upregulated PPARgamma coactivator-1alpha in C(2)C(12) cells and C57BL/6J mouse muscle. In addition, administration of nootkatone (200 mg/kg body wt) significantly enhanced AMPK activity, accompanied by LKB1, AMPK, and ACC phosphorylation in the liver and muscle of mice. Whole body energy expenditure evaluated by indirect calorimetry was also increased by nootkatone administration. Long-term intake of diets containing 0.1% to 0.3% (wt/wt) nootkatone significantly reduced high-fat and high-sucrose diet-induced body weight gain, abdominal fat accumulation, and the development of hyperglycemia, hyperinsulinemia, and hyperleptinemia in C57BL/6J mice. Furthermore, endurance capacity, evaluated as swimming time to exhaustion in BALB/c mice, was 21% longer in mice fed 0.2% nootkatone than in control mice. These findings indicate that long-term intake of nootkatone is beneficial toward preventing obesity and improving physical performance and that these effects are due, at least in part, to enhanced energy metabolism through AMPK activation in skeletal muscle and liver. PMID:20501876

  14. Effect of Antioxidants Supplementation or Restricted Diet on Oxidative Stress in a Rat Model of Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    A.A. Vahidinia

    2011-04-01

    Full Text Available Introduction & Objective: Obesity is independently associated with increased oxidative stress in men and women. Natural antioxidants showed substantial antioxidative and anti-inflammatory activities in vivo. The aim of this study was to examine the preventive effect of antioxidant supplements and/or restricted diet on the stress oxidative index (8-Iso-PGF2α and total antioxidant capacity (TAC in obese rats induced by a high-fat (HF diet. Material and Methods: In this experimental study forty-eight male Wister rats were randomly assigned to HF purified diet (61% kcal from fat ad libitum, HF restricted (30%, HF supplemented with astaxanthin, vitamin E and C (HFS, HFS restricted (30% for 12 weeks. Their daily food intake and weekly body weight gain were measured. Serum 8-Iso-PGF2α and TAC measured by EIA methods. Results: Energy intake was not significant in HF with HFS (58.8 and 58.6 kcal/rat/d, respectively and in HF restricted with HFS restricted (41.7 and 41.6 kcal/rat/d, respectively. Serum 8-Iso-PGF2α in HF was 1416.2±443.5 and in HF restricted was 1209.4±424.4pg/ml (p>0.05 and equal for other groups. The lowest TAC was seen in HF and highest was in HFS (0.36±0.43 and 3.0±1.13 mM, respectively (p<0.001. Conclusions: These results suggest that antioxidant supplements and caloric restriction may improved TAC and partially suppress stress oxidative index in high fat diet induced obese rats. (Sci J Hamadan Univ Med Sci 2011;18(1:48-56

  15. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice.

    Directory of Open Access Journals (Sweden)

    Frederique Respondek

    Full Text Available Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat or an isocaloric HF diet containing 10% of scFOS (HF-scFOS. Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia.

  16. A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice.

    Science.gov (United States)

    Ohyama, Kana; Nogusa, Yoshihito; Suzuki, Katsuya; Shinoda, Kosaku; Kajimura, Shingo; Bannai, Makoto

    2015-02-15

    Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether the beneficial effects of exercise could be further enhanced by CSN supplementation in mice. Mice were randomly assigned to four groups: 1) high-fat diet (HFD, Control), 2) HFD containing 0.3% CSNs, 3) HFD with voluntary running wheel exercise (Exercise), and 4) HFD containing 0.3% CSNs with voluntary running wheel exercise (Exercise + CSN). After 8 wk of ingestion, blood and tissues were collected and analyzed. Although CSNs significantly suppressed body weight gain under the HFD, CSN supplementation with exercise additively decreased body weight gain and fat accumulation and increased whole body energy expenditure compared with exercise alone. Exercise together with CSN supplementation robustly improved metabolic profiles, including the plasma cholesterol level. Furthermore, this combination significantly prevented diet-induced liver steatosis and decreased the size of adipocyte cells in white adipose tissue. Exercise and CSNs significantly increased cAMP levels and PKA activity in brown adipose tissue (BAT), indicating an increase of lipolysis. Moreover, they significantly activated both the oxidative phosphorylation gene program and fatty acid oxidation in skeletal muscle. These results indicate that CSNs efficiently promote the antiobesity effect of exercise, in part by increasing energy expenditure via the activation of fat oxidation in skeletal muscle and lipolysis in BAT. PMID:25516550

  17. Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Justin Chapman

    Full Text Available BACKGROUND: Insulin resistance is manifested in muscle, adipose tissue, and liver and is associated with adipose tissue inflammation. The cellular components and mechanisms that regulate the onset of diet-induced insulin resistance are not clearly defined. METHODOLOGY AND PRINCIPAL FINDINGS: We initially observed osteopontin (OPN mRNA over-expression in adipose tissue of obese, insulin resistant humans and rats which was normalized by thiazolidinedione (TZD treatment in both species. OPN regulates inflammation and is implicated in pathogenic maladies resulting from chronic obesity. Thus, we tested the hypothesis that OPN is involved in the early development of insulin resistance using a 2-4 week high fat diet (HFD model. OPN KO mice fed HFD for 2 weeks were completely protected from the severe skeletal muscle, liver and adipose tissue insulin resistance that developed in wild type (WT controls, as determined by hyperinsulinemic euglycemic clamp and acute insulin-stimulation studies. Although two-week HFD did not alter body weight or plasma free fatty acids and cytokines in either strain, HFD-induced hyperleptinemia, increased adipose tissue inflammation (macrophages and cytokines, and adipocyte hypertrophy were significant in WT mice and blunted or absent in OPN KO mice. Adipose tissue OPN protein isoform expression was significantly altered in 2- and 4-week HFD-fed WT mice but total OPN protein was unchanged. OPN KO bone marrow stromal cells were more osteogenic and less adipogenic than WT cells in vitro. Interestingly, the two differentiation pathways were inversely affected by HFD in WT cells in vitro. CONCLUSIONS: The OPN KO phenotypes we report reflect protection from insulin resistance that is associated with changes in adipocyte biology and adipose tissue inflammatory status. OPN is a key component in the development of HFD-induced insulin resistance.

  18. Anti-Obese Effect of Glucosamine and Chitosan Oligosaccharide in High-Fat Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Lanlan Huang

    2015-04-01

    Full Text Available Objective: This study is to evaluate the anti-obese effects of glucosamine (GLC and chitosan oligosaccharide (COS on high-fat diet-induced obese rats. Methods: The rats were randomly divided into twelve groups: a normal diet group (NF, a high-fat diet group (HF, Orlistat group, GLC high-, middle-, and low-dose groups (GLC-H, GLC-M, GLC-L, COS1 (COS, number-average molecular weight ≤1000 high-, middle-, and low-dose groups (COS1-H, COS1-M, COS1-L, and COS2 (COS, number-average molecular weight ≤3000 high-, middle-, and low-dose groups (COS2-H, COS2-M, COS2-L. All groups received oral treatment by gavage once daily for a period of six weeks. Results: Rats fed with COS1 gained the least weight among all the groups (P < 0.01, and these rats lost more weight than those treated with Orlistat. In addition to the COS2-H and Orlistat groups, the serum total cholesterol (CHO and low-density lipoprotein cholesterol (LDL-C levels were significantly reduced in all treatment groups compared to the HF group (P < 0.01. The various doses of GLC, COS1 and COS2 reduced the expression levels of PPARγ and LXRα mRNA in the white adipose tissue. Conclusions: The results above demonstrated that GLC, COS1, and COS2 improved dyslipidemia and prevented body weight gains by inhibiting the adipocyte differentiation in obese rats induced by a high-fat diet. Thus, these agents may potentially be used to treat obesity.

  19. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish

    Directory of Open Access Journals (Sweden)

    Hasumura Takahiro

    2012-08-01

    Full Text Available Abstract Background Visceral fat accumulation is one of the most important predictors of mortality in obese populations. Administration of green tea extract (GTE can reduce body fat and reduce the risk of obesity-related diseases in mammals. In this study, we investigated the effects and mechanisms of GTE on adiposity in diet-induced obese (DIO zebrafish. Methods Zebrafish at 3.5 to 4.5 months post-fertilization were allocated to four groups: non-DIO, DIO, DIO + 0.0025%GTE, and DIO + 0.0050%GTE. The non-DIO group was fed freshly hatched Artemia once daily (5 mg cysts/fish daily for 40 days. Zebrafish in the three DIO groups were fed freshly hatched Artemia three times daily (60 mg cysts/fish daily. Zebrafish in the DIO + 0.0025%GTE and DIO + 0.0050%GTE groups were exposed to GTE after the start of feeding three times daily for 40 days. Results Three-dimensional microcomputed tomography analysis showed that GTE exposure significantly decreased the volume of visceral but not subcutaneous fat tissue in DIO zebrafish. GTE exposure increased hepatic expression of the lipid catabolism genes ACOX1 (acyl-coenzyme A oxidase 1, palmitoyl, ACADM (acyl-coenzyme A dehydrogenase, c-4 to c-12 straight chain, and PPARA (peroxisome proliferator-activated receptor alpha. GTE exposure also significantly decreased the visceral fat expression of SOCS3 (suppressor of cytokine signaling 3b which inhibits leptin signaling. Conclusions The present results are consistent with those seen in mammals treated with GTE, supporting the validity of studying the effects of GTE in DIO zebrafish. Our results suggest that GTE exerts beneficial effects on adiposity, possibly by altering the expression of lipid catabolism genes and SOCS3.

  20. Ghrelin receptor deficiency does not affect diet-induced atherosclerosis in low-density lipoprotein receptor-null mice

    Directory of Open Access Journals (Sweden)

    Kirk M. Habegger

    2011-11-01

    Full Text Available Objective: Ghrelin, a stomach-derived, secreted peptide, and its receptor (growth hormone secretagogue receptor, GHSR are known to modulate food intake and energy homeostasis. The ghrelin system is also expressed broadly in cardiovascular tissues. Since ghrelin has been associated with anti-inflammatory and anti-atherogenic properties, but is also well known to promote obesity and impair glucose metabolism, we investigated whether ghrelin has any impact on the development of atherosclerosis. The hypothesis that endogenous ghrelin signaling may be involved in atherosclerosis has not been tested previously Methods and Results: We crossed ghrelin receptor knockout mice (GHSr-/- into a low-density lipoprotein receptor-null (Ldlr-/- mouse line. In this model, atherosclerotic lesions were promoted by feeding a high-fat, high-cholesterol Western-type diet for 13 months, following a standard protocol. Body composition and glucose homeostasis were similar between Ldlr-/- and Ldlr/GHSR -/- ko mice throughout the study. Absence or presence of GHSr did not alter the apolipoprotein profile changes in response to diet exposure on an LDLRko background. Atherosclerotic plaque volume in the aortic arch and thoracic aorta were also not affected differentially in mice without ghrelin signaling due to GHSR gene disruption as compared to control LDLRko littermates. In light of the associations reported for ghrelin with cardiovascular disease in humans, the lack of a phenotype in these loss-of- function studies in mice suggests no directly functional role for endogenous ghrelin in either the inhibition or the promotion of diet-induced atherosclerosis.Conclusions: These data indicate that, surprisingly, the complex and multifaceted actions of endogenous ghrelin signaling on the cardiovascular system have minimal direct impact on atherosclerotic plaque progression as based on loss-of-function in a mouse model of the disease.

  1. Comparison of antihyperlipidaemic activity of eugenia jambolana fruit with punica granatum fruit in diet induced hyperlipidaemic rats

    International Nuclear Information System (INIS)

    Objective: To compare the antihyperlipidemic effects of Eugenia Jambolana fruit pulp with Punica Granatum fruit in diet induced hyperlipidaemic rats at the same dose level. Methods: An experimental randomized control study was conducted on seventy five male albino rats over a period of 14 weeks in University of Health Sciences Lahore. They were divided into five groups labelled A, B, C, D and E with fifteen rats in each group. Group A was kept as normal control, groups B, C, D and E were given hyperlipidaemic diet for six weeks. In group B no further intervention was done, group C and D were given ethanolic extract of Eugenia Jambolana and Punica Granatum respectively for eight weeks. Group E was given combination of both for same duration. Serum total cholesterol (TC), high density lipoprotein cholesterol (HDL-c), lowdensity lipoprotein cholesterol (LDL-c) and triglycerides (TG) were measured at zero, six and fourteen weeks. Results: At fourteenth week significant reductions in TC, LDL-c and TG and a rise in HDL-c was observed in interventional groups C, D and E as compared to experimental hyperlipidaemic control group B (p 0.57, p > 0.22, p > 0.56, p > 0.76, respectively. On sixth week, there was no significant difference between groups B, C, D and E (p > 0.05). However, 15 rats of group A had significant lower levels of cholesterol, high density lipoproteins, low density lipoproteins and triglycerides when compared to 60 rats of groups B, C, D and E (p<0.05). Conclusion: In male albino rats combination of ethanolic extracts of Eugenia Jambolana and Punica Granatum fruit pulps was most effective in lowering serum total cholesterol and triglycerides while decrease in low density lipoprotein cholesterol and rise in high density lipoprotein cholesterol was same as the extracts given alone. (author)

  2. αB-crystallin and HspB2 deficiency is protective from diet-induced glucose intolerance.

    Science.gov (United States)

    Toft, Daniel J; Fuller, Miles; Schipma, Matthew; Chen, Feng; Cryns, Vincent L; Layden, Brian T

    2016-09-01

    Emerging evidence suggests molecular chaperones have a role in the pathogenesis of obesity and diabetes. As αB-crystallin and HspB2 are molecular chaperones and data suggests their expression is elevated in the skeletal muscle of diabetic and obese animals, we sought to determine if αB-crystallin and HspB2 collectively play a functional role in the metabolic phenotype of diet-induced obesity. Using αB-crystallin/HspB2 knockout and littermate wild-type controls, it was observed that mice on the high fat diet gained more weight as compared to the normal chow group and genotype did not impact this weight gain. To test if the genotype and/or diet influenced glucose homeostasis, intraperitoneal glucose challenge was performed. While similar on normal chow diet, wild-type mice on the high fat diet exhibited higher glucose levels during the glucose challenge compared to the αB-crystallin/HspB2 knockout mice. Although wild-type mice had higher glucose levels, insulin levels were similar for both genotypes. Insulin tolerance testing revealed that αB-crystallin/HspB2 knockout mice were more sensitive to insulin, leading to lower glucose levels over time, which is indicative of a difference in insulin sensitivity between the genotypes on a high fat diet. Transcriptome analyses of skeletal muscle in αB-crystallin/HspB2 knockout and wild-type mice on a normal or high fat diet revealed reductions in cytokine pathway genes in αB-crystallin/HspB2 knockout mice, which may contribute to their improved insulin sensitivity. Collectively, these data reveal that αB-crystallin/HspB2 plays a role in development of insulin resistance during a high fat diet challenge. PMID:27330996

  3. Novel PPAR pan agonist, ZBH ameliorates hyperlipidemia and insulin resistance in high fat diet induced hyperlipidemic hamster.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Effective and safe pharmacological interventions for hyperlipidemia remains badly needed. By incorporating the key pharmacophore of fibrates into the natural scaffold of resveratrol, a novel structural compound ZBH was constructed. In present study, we found ZBH reserved approximately one third of the sirtuin 1 (SIRT1 activation produced by resveratrol at in-vitro enzyme activity assay, directly bound to and activated all three peroxisome proliferator-activated receptor (PPAR subtypes respectively in PPAR binding and transactivation assays. Moreover, ZBH (EC₅₀, 1.75 µM activate PPARα 21 fold more efficiently than the well-known PPAR pan agonist bezafibrate (EC₅₀ 37.37 µM in the cellular transactivation assays. In the high fat diet induced hyperlipidemic hamsters, 5-week treatment with ZBH significantly lowered serum triglyceride, total cholesterol, LDL-C, FFA, hyperinsulinemia, and improved insulin sensitivity more potently than bezafibrate. Meanwhile, serum transaminases, creatine phosphokinase and CREA levels were found not altered by ZBH intervention. Mechanism study indicated ZBH promoted the expression of PPARα target genes and SIRT1 mRNA. Hepatic lipogenesis was markedly decreased via down-regulation of lipogenic genes, and fatty acid uptake and oxidation was simultaneously increased in the liver and skeletal muscle via up-regulation of lipolysis genes. Glucose uptake and utilization was also significantly promoted in skeletal muscle. These results suggested that ZBH significantly lowered hyperlipidemia and ameliorated insulin resistance more efficiently than bezafibrate in the hyperlipidemic hamsters primarily by activating of PPARα, and SIRT1 promotion and activation. ZBH thus presents a potential new agent to combat hyperlipidemia.

  4. Peripheral reduction of FGFR4 with antisense oligonucleotides increases metabolic rate and lowers adiposity in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xing Xian Yu

    Full Text Available Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4 in peripheral tissues. Treatment of diet-induce obese (DIO mice with FGFR4 antisense oligonucleotides (ASO specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.

  5. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption123

    Science.gov (United States)

    Land, Benjamin B.; Wickham, Robert J.; Maldonado-Aviles, Jaime; de Araujo, Ivan E.; Addy, Nii A.

    2016-01-01

    Abstract The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol. PMID:27257625

  6. MsrA Overexpression Targeted to the Mitochondria, but Not Cytosol, Preserves Insulin Sensitivity in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    JennaLynn Hunnicut

    Full Text Available There is growing evidence that oxidative stress plays an integral role in the processes by which obesity causes type 2 diabetes. We previously identified that mice lacking the protein oxidation repair enzyme methionine sulfoxide reductase A (MsrA are particularly prone to obesity-induced insulin resistance suggesting an unrecognized role for this protein in metabolic regulation. The goals of this study were to test whether increasing the expression of MsrA in mice can protect against obesity-induced metabolic dysfunction and to elucidate the potential underlying mechanisms. Mice with increased levels of MsrA in the mitochondria (TgMito MsrA or in the cytosol (TgCyto MsrA were fed a high fat/high sugar diet and parameters of glucose homeostasis were monitored. Mitochondrial content, markers of mitochondrial proteostasis and mitochondrial energy utilization were assessed. TgMito MsrA, but not TgCyto MsrA, mice remain insulin sensitive after high fat feeding, though these mice are not protected from obesity. This metabolically healthy obese phenotype of TgMito MsrA mice is not associated with changes in mitochondrial number or biogenesis or with a reduction of proteostatic stress in the mitochondria. However, our data suggest that increased mitochondrial MsrA can alter metabolic homeostasis under diet-induced obesity by activating AMPK signaling, thereby defining a potential mechanism by which this genetic alteration can prevent insulin resistance without affecting obesity. Our data suggest that identification of targets that maintain and regulate the integrity of the mitochondrial proteome, particular against oxidative damage, may play essential roles in the protection against metabolic disease.

  7. Depot-specific effects of treadmill running and rutin on white adipose tissue function in diet-induced obese mice.

    Science.gov (United States)

    Chen, Neng; Lei, Ting; Xin, Lili; Zhou, Lingmei; Cheng, Jinbo; Qin, Liqiang; Han, Shufen; Wan, Zhongxiao

    2016-09-01

    White adipose tissue (WAT) is a critical organ involved in regulating metabolic homeostasis under obese condition. Strategies that could positively affect WAT function would hold promise for fighting against obesity and its complications. The aim of the present study is to explore the effects of treadmill exercise training and rutin intervention on adipose tissue function from diet-induced obese (DIO) mice and whether fat depot-specific effects existed. In epididymal adipose tissue, high-fat diet (HFD) resulted in reduction in adiponectin mRNA expression, peroxisome proliferator-activated receptors (PPAR)-γ and DsbA-L protein expression, elevation in endoplasmic reticulum (ER) stress markers including 78 kDa glucose-regulated protein (GRP-78), C/EBP homologous protein (CHOP) and p-c-Jun N-terminal kinase (JNK). Isoproterenol-stimulated lipolysis and insulin stimulated Akt phosphorylation ex vivo were blunted from HFD group. The combination of rutin with exercise (HRE) completely restored GRP78 and p-JNK protein expression to normal levels, as well as blunted signaling ex vivo. In inguinal adipose tissue, HFD led to increased adiponectin mRNA expression, PPAR-γ, GRP78, and p-JNK protein expression, and reduction in DsbA-L. HRE is effective for restoring p-JNK, PPAR-γ, and DsbA-L. In conclusion, depot-specific effects may exist in regard to the effects of rutin and exercise on key molecules involved in regulating adipose tissue function (i.e., ER stress markers, PPAR-γ and DsbA-L, adiponectin expression, and secretion, ex vivo catecholamine stimulated lipolysis and insulin stimulated Akt phosphorylation) from DIO mice. PMID:27192989

  8. α1-giardin based live heterologous vaccine protects against Giardia lamblia infection in a murine model

    OpenAIRE

    Jenikova, Gabriela; Hruz, Petr; Andersson, Karl M.; Tejman-Yarden, Noa; Ferreira, Patricia C. D.; Andersen, Yolanda S.; Davids, Barbara J.; Gillin, Frances D.; Svärd, Staffan G; Curtiss, Roy; Eckmann, Lars

    2011-01-01

    Giardia lamblia is a leading protozoan cause of diarrheal disease worldwide, yet preventive medical strategies are not available. A crude veterinary vaccine has been licensed for cats and dogs, but no defined human vaccine is available. We tested the vaccine potential of three conserved antigens previously identified in human and murine giardiasis, α1-giardin, α-enolase, and ornithine carbamoyl transferase, in a murine model of G. lamblia infection. Live recombinant attenuated Salmonella ente...

  9. Repeated Bouts of Aerobic Exercise Enhance Regulatory T Cell Responses in a Murine Asthma Model

    OpenAIRE

    Lowder, Thomas; Dugger, Kari; Deshane, Jessy; Estell, Kim; Schwiebert, Lisa M

    2009-01-01

    We have reported previously that moderate intensity aerobic exercise training attenuates airway inflammation in a murine asthma model. Recent studies implicate regulatory T (Treg) cells in decreasing asthma-related airway inflammation; as such, the current study examined the effect of exercise on Treg cell function in a murine asthma model. Mice were sensitized with ovalbumin (OVA) prior to the start of exercise training at a moderate intensity 3× / week for 4 wks; exercise was performed as t...

  10. Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Tang Liang; Luo Kai; Liu Chentao; Wang Xudan; Zhang Didi; Chi Aiping; Zhang Jing

    2014-01-01

    Background Suppression of myostatin (MSTN) has been associated with skeletal muscle atrophy and insulin resistance (IR).However,few studies link MSTN suppression by ladder-climbing training (LCT) and IR.Therefore,we intended to identify the correlation with IR between LCT and to analyze the signaling pathways through which MSTN suppression by LCT regulates IR.Methods The rats were randomly assigned to two types of diet:normal pellet diet (NPD,n=8) and high-fat diet (HFD,n=16).After 8 weeks,the HFD rats were randomly re-assigned to two groups (n=8 for each group):HFD sedentary (HFD-S) and high-fat diet ladder-climbing training (HFD-LCT).HFD-LCT rats were assigned to LCT for 8 weeks.Western blotting,immunohistochemistry and enzyme assays were used to measure expression levels and activities of MSTN,GLUT4,PI3K,Akt and Akt-activated targets (mTOR,FoxO1 and GSK-3β).Results The LCT significantly improved IR and whole-body insulin sensitivity in HDF-fed rats.MSTN protein levels decreased in matching serum (42%,P=0.007) and muscle samples (25%,P=0.035) and its receptor mRNA expression also decreased (16%,P=0.041) from obese rats after LCT.But the mRNA expression of insulin receptor had no obvious changes in LCT group compared with NPD and HFD-S groups (P=0.074).The ladder-climbing training significantly enhanced PI3K activity (1.7-fold,P=0.024) and Akt phosphorylation (83.3%,P=0.022) in HFD-fed rats,significantly increased GLUT4 protein expression (84.5%,P=-0.036),enhanced phosphorylation of mTOR (4.8-fold,P <0.001) and inhibited phosphorylation of FoxO1 (57.7%,P=0.020),but did not affect the phosphorylation of GSK-3β.Conclusions The LCT significantly reduced IR in diet-induced obese rats.MSTN may play an important role in regulating IR and fat accumulation by LCT via PI3K/Akt/mTOR and PI3K/Akt/FoxO1 signaling pathway in HFD-fed rats.

  11. Rotary antenna attenuator

    Science.gov (United States)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  12. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Background: Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective: The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design: Rats were divided into four groups (n=6 per group after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w./day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50 with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results: We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG, and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions: These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis.

  13. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    Science.gov (United States)

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  14. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G; Steinberg, Gregory R; Schertzer, Jonathan D

    2016-06-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. PMID:27117007

  15. Disrupted Leptin Signaling in the Lateral Hypothalamus and Ventral Premammillary Nucleus Alters Insulin and Glucagon Secretion and Protects Against Diet-Induced Obesity.

    Science.gov (United States)

    Denroche, Heather C; Glavas, Maria M; Tudurí, Eva; Karunakaran, Subashini; Quong, Whitney L; Philippe, Marion; Britton, Heidi M; Clee, Susanne M; Kieffer, Timothy J

    2016-07-01

    Leptin signaling in the central nervous system, and particularly the arcuate hypothalamic nucleus, is important for regulating energy and glucose homeostasis. However, the roles of extra-arcuate leptin responsive neurons are less defined. In the current study, we generated mice with widespread inactivation of the long leptin receptor isoform in the central nervous system via Synapsin promoter-driven Cre (Lepr(flox/flox) Syn-cre mice). Within the hypothalamus, leptin signaling was disrupted in the lateral hypothalamic area (LHA) and ventral premammillary nucleus (PMV) but remained intact in the arcuate hypothalamic nucleus and ventromedial hypothalamic nucleus, dorsomedial hypothalamic nucleus, and nucleus of the tractus solitarius. To investigate the role of LHA/PMV neuronal leptin signaling, we examined glucose and energy homeostasis in Lepr(flox/flox) Syn-cre mice and Lepr(flox/flox) littermates under basal and diet-induced obese conditions and tested the role of LHA/PMV neurons in leptin-mediated glucose lowering in streptozotocin-induced diabetes. Lepr(flox/flox) Syn-cre mice did not have altered body weight or blood glucose levels but were hyperinsulinemic and had enhanced glucagon secretion in response to experimental hypoglycemia. Surprisingly, when placed on a high-fat diet, Lepr(flox/flox) Syn-cre mice were protected from weight gain, glucose intolerance, and diet-induced hyperinsulinemia. Peripheral leptin administration lowered blood glucose in streptozotocin-induced diabetic Lepr(flox/flox) Syn-cre mice as effectively as in Lepr(flox/flox) littermate controls. Collectively these findings suggest that leptin signaling in LHA/PMV neurons is not critical for regulating glucose levels but has an indispensable role in the regulation of insulin and glucagon levels and, may promote the development of diet-induced hyperinsulinemia and weight gain. PMID:27183315

  16. Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription

    OpenAIRE

    Fang, Cindy X.; Dong, Feng; Thomas, D. Paul; Ma, Heng; He, Leilei; Ren, Jun

    2008-01-01

    Cellular hypertrophy is regulated by coordinated pro- and antigrowth machineries. Foxo transcription factors initiate an atrophy-related gene program to counter hypertrophic growth. This study was designed to evaluate the role of Akt, the forkhead transcription factor Foxo3a, and atrophy genes muscle-specific RING finger (MuRF)-1 and atrogin-1 in cardiac hypertrophy and contractile dysfunction associated with high-fat diet-induced obesity. Mice were fed a low- or high-fat diet for 6 mo along ...

  17. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Jensen, Majbrit M; Overgaard, Agnete;

    2013-01-01

    clarified. Tesofensine effectively induces appetite suppression in the diet-induced obese (DIO) rat partially being ascribed to an indirect stimulation of central dopamine receptor function subsequent to blocked dopamine transporter activity. This is interesting, as obese patients have reduced central...... dopaminergic activity thought to provide a drive for compensatory overeating, but whether treatment with an uptake inhibitor counteracts these changes or not has not been investigated. Tesofensine treatment (2.0mg/kg/day for 14days) caused a pronounced anorexigenic and weight-reducing response in DIO rats as...

  18. Serum growth hormone-binding protein in obesity: effect of a short-term, very low calorie diet and diet-induced weight loss

    DEFF Research Database (Denmark)

    Rasmussen, M H; Ho, K K; Kjems, L;

    1996-01-01

    positively correlated to insulin as well as proinsulin levels (r = 0.60; P < 0.001 and r = 0.55; P < 0.001, respectively). After diet-induced massive weight loss, GHBP levels were restored to normal in obese subjects (BMI, 27.8 +/- 1.4 kg/m2). Multiple stepwise regression analysis revealed that changes in...... waist circumference and abdominal sagittal diameter during weight loss were the major determinants of and accounted for 54% of the fall in GHBP levels. Neither insulin nor proinsulin was an independent predictor. No changes were observed in GHBP in normal, obese, or reduced weight obese subjects after 4...

  19. Disruption of Inducible 6-Phosphofructo-2-kinase Ameliorates Diet-induced Adiposity but Exacerbates Systemic Insulin Resistance and Adipose Tissue Inflammatory Response*

    OpenAIRE

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y. Eugene; Ye, Jianping; Chapkin, Robert S.; Wu, Chaodong

    2009-01-01

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3+/− mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high...

  20. Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-induced obesity.

    Science.gov (United States)

    Huang, Xu-Feng; Zavitsanou, Katerina; Huang, Xin; Yu, Yinghua; Wang, HongQin; Chen, Feng; Lawrence, Andrew J; Deng, Chao

    2006-12-15

    This study examined the density of dopamine transporter (DAT) and D2 receptors in the brains of chronic high-fat diet-induced obese (cDIO), obese-resistant (cDR) and low-fat-fed (LF) control mice. Significantly decreased DAT densities were observed in cDR mice compared to cDIO and LF mice, primarily in the nucleus accumbens, striatal and hypothalamic regions. D2 receptor density was significantly lower in the rostral part of caudate putamen in cDIO mice compared to cDR and LF mice. PMID:17000016

  1. Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Kwon Eun-Young

    2012-09-01

    Full Text Available Abstract Background Visceral white adipose tissue (WAT hypertrophy, adipokine production, inflammation and fibrosis are strongly associated with obesity, but the time-course of these changes in-vivo are not fully understood. Therefore, the aim of this study was to establish the time-course of changes in adipocyte morphology, adipokines and the global transcriptional landscape in visceral WAT during the development of diet-induced obesity. Results C57BL/6 J mice were fed a high-fat diet (HFD or normal diet (ND and sacrificed at 8 time-points over 24 weeks. Excessive fat accumulation was evident in visceral WAT depots (Epidydimal, Perirenal, Retroperitoneum, Mesentery after 2–4 weeks. Fibrillar collagen accumulation was evident in epidydimal adipocytes at 24 weeks. Plasma adipokines, leptin, resistin and adipsin, increased early and time-dependently, while adiponectin decreased late after 20 weeks. Only plasma leptin and adiponectin levels were associated with their respective mRNA levels in visceral WAT. Time-course microarrays revealed early and sustained activation of the immune transcriptome in epididymal and mesenteric depots. Up-regulated inflammatory genes included pro-inflammatory cytokines, chemokines (Tnf, Il1rn, Saa3, Emr1, Adam8, Itgam, Ccl2, 3, 4, 6, 7 and 9 and their upstream signalling pathway genes (multiple Toll-like receptors, Irf5 and Cd14. Early changes also occurred in fibrosis, extracellular matrix, collagen and cathepsin related-genes, but histological fibrosis was only visible in the later stages. Conclusions In diet-induced obesity, early activation of TLR-mediated inflammatory signalling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches

  2. Effects of treadmill exercise on skeletal muscle mTOR signaling pathway in high-fat diet-induced obese mice

    OpenAIRE

    Woo, Jin Hee; Shin, Ki Ok; Lee, Yul Hyo; Jang, Ki Soeng; Bae, Ju Yong; Roh, Hee Tae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effects of regular treadmill exercise on skeletal muscle Rictor-Akt and mTOR-Raptor-S6K1 signaling pathway in high-fat diet-induced obese mice. [Subjects and Methods] Four- week-old C57BL/6 mice were adopted and classified into normal diet group (ND, n = 10), normal diet and training group (NDT, n = 10), high-fat diet group (HF, n = 10), and high-fat diet and training group (HFT, n = 10). The exercise program consisted of a treadmill exer...

  3. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    OpenAIRE

    Brandt, Nina; De Bock, Katrien; Richter, Erik A.; Hespel, Peter

    2010-01-01

    Brandt N, De Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab 299: E215-E224, 2010. First published May 18, 2010; doi:10.1152/ajpendo.00098.2010.-Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptatio...

  4. Combined Ethanol Extract of Grape Pomace and Omija Fruit Ameliorates Adipogenesis, Hepatic Steatosis, and Inflammation in Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Su-Jung Cho

    2013-01-01

    Full Text Available The aim of this study was to evaluate the long-term effects of grape pomace ethanol extract (GPE with or without omija fruit ethanol extract (OFE on adiposity, hepatic steatosis, and inflammation in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD as the control diet and HFD plus GPE (0.5%, w/w with or without OFE (0.05%, w/w as the experimental diet for 12 weeks. GPE alone did not significantly affect adipogenesis and hepatic steatosis. However, the supplementation of GPE + OFE significantly lowered body weight gain, white adipose tissue weight, adipocyte size, and plasma free fatty acid and adipokines (leptin, PAI-1, IL-6, and MCP-1 levels in HFD-fed mice compared to those of the control group. These beneficial effects of GPE + OFE were partly related to the decreased expression of lipogenic and inflammatory genes in white adipose tissue. GPE + OFE supplementation also significantly lowered liver weight and ameliorated fatty liver by inhibiting expression of hepatic genes involved in fatty acid and cholesterol syntheses as well as inflammation and by activating hepatic fatty acid oxidation. These findings suggest that the combined ethanol extract of grape pomace and omija fruit has the potential to improve adiposity and fatty liver in diet-induced obese mice.

  5. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    Science.gov (United States)

    Litwak, Sara A; Loh, Kim; Stanley, William J; Pappas, Evan G; Wali, Jibran A; Selck, Claudia; Strasser, Andreas; Thomas, Helen E; Gurzov, Esteban N

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  6. Cinnamomum camphora Seed Kernel Oil Improves Lipid Metabolism and Enhances β3-Adrenergic Receptor Expression in Diet-Induced Obese Rats.

    Science.gov (United States)

    Fu, Jing; Zeng, Cheng; Zeng, Zheling; Wang, Baogui; Wen, Xuefang; Yu, Ping; Gong, Deming

    2016-06-01

    The effects of dietary Cinnamomum camphora seed kernel oil (CCSKO) containing medium-chain triacylglycerols on lipid metabolism and mRNA and protein expression of β-3 adrenergic receptor in adipose tissue were studied in diet-induced obese rats. High fat food-induced obese rats were randomly divided into CCSKO group, Lard group, Soybean oil (SOY) group and naturally restoring group (n = 10). Rats fed with low fat food were used as a normal control group. Significant decreases in body mass and abdominal fat mass/body mass after 12 weeks were found in CCSKO group as compared with Lard and SOY groups (p < 0.05). Levels of blood total cholesterol (TC), triglyceride, free fatty acid, fasting insulin and insulin resistance in the CCSKO group were decreased significantly, and noradrenaline level and insulin sensitivity index in the CCSKO group were significantly higher than other groups. Meanwhile liver TC and triglyceride levels in the CCSKO group were also decreased markedly. Expression levels of β3-adrenergic receptor mRNA and protein were higher in CCSKO group than in Lard and SOY groups. These results suggest that CCSKO may contribute to reduction of the body fat mass, promote lipid metabolism and up-regulate β3-adrenergic receptor expression in high fat diet-induced obese rats. PMID:27068065

  7. Tissue Inhibitor Of Matrix Metalloproteinase-1 Is Required for High-Fat Diet-Induced Glucose Intolerance and Hepatic Steatosis in Mice.

    Directory of Open Access Journals (Sweden)

    Even Fjære

    Full Text Available Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 are elevated in obesity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is unclear. Here we investigated how the presence or absence of TIMP-1 affected the development of diet-induced glucose intolerance and hepatic steatosis using the Timp1 null mice.Timp1 knockout (TKO and wild type (TWT mice were fed chow, high-fat diet (HFD or intermediate fat and sucrose diet (IFSD. We determined body weight, body composition, lipid content of the liver, energy intake, energy expenditure, oral glucose tolerance, as well as insulin tolerance. In addition, the histology of liver and adipose tissues was examined and expression of selected genes involved in lipid metabolism and inflammation in liver and adipose tissues was determined by RT-qPCR.TKO mice gained less weight and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation.Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target.

  8. Study on Diet-induced Obesity Resistance Phenomenon and Its Mechanism%肥胖抵抗现象及其机制研究

    Institute of Scientific and Technical Information of China (English)

    刘春阳; 黄徐根

    2014-01-01

    随着肥胖症在全球迅速蔓延,国内外学者对肥胖的研究也逐渐深入,食源性肥胖抵抗(diet-induced obesity resistance,DIO-R)表现为肥胖易感程度低,与肥胖机体相比能量代谢状况较好,是机体能量代谢研究中较新的研究方向.本研究探讨了现阶段国内外肥胖抵抗大鼠的主要筛选方法,就食源性肥胖抵抗与食源性肥胖(diet-induced obesity,DIO)机体代谢差异最新研究成果进行综述,从瘦素敏感性、胰岛素敏感性、脂联素水平、食物利用率等方面分析了肥胖抵抗现象的发生机制,并从运动生理生化的角度提出现阶段肥胖抵抗研究存在的问题,对肥胖抵抗大鼠代谢及机制差异的研究前景进行展望.

  9. Mice deficient in the respiratory chain gene Cox6a2 are protected against high-fat diet-induced obesity and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Roel Quintens

    Full Text Available Oxidative phosphorylation in mitochondria is responsible for 90% of ATP synthesis in most cells. This essential housekeeping function is mediated by nuclear and mitochondrial genes encoding subunits of complex I to V of the respiratory chain. Although complex IV is the best studied of these complexes, the exact function of the striated muscle-specific subunit COX6A2 is still poorly understood. In this study, we show that Cox6a2-deficient mice are protected against high-fat diet-induced obesity, insulin resistance and glucose intolerance. This phenotype results from elevated energy expenditure and a skeletal muscle fiber type switch towards more oxidative fibers. At the molecular level we observe increased formation of reactive oxygen species, constitutive activation of AMP-activated protein kinase, and enhanced expression of uncoupling proteins. Our data indicate that COX6A2 is a regulator of respiratory uncoupling in muscle and we demonstrate that a novel and direct link exists between muscle respiratory chain activity and diet-induced obesity/insulin resistance.

  10. The combined action of omega-3 polyunsaturated fatty acids and grape proanthocyanidins on a rat model of diet-induced metabolic alterations.

    Science.gov (United States)

    Ramos-Romero, Sara; Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Taltavull, Núria; Dasilva, Gabriel; Romeu, Marta; Medina, Isabel; Torres, Josep Lluís

    2016-08-10

    It has been suggested that food components such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and (poly)phenols counteract diet-induced metabolic alterations by common or complementary mechanisms. To examine the effects of a combination of ω-3 PUFAs and (poly)phenols on such alterations, adult Wistar-Kyoto rats were fed an obesogenic high-fat high-sucrose diet supplemented, or not, for 24 weeks with: eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1 : 1 (16.6 g kg(-1) feed); proanthocyanidin-rich grape seed extract (GSE, 0.8 g kg(-1) feed); or EPA/DHA 1 : 1 + GSE. Body weight, feed intake, and plasma glucose were evaluated every 6 weeks, while adipose tissue weight, insulin, glucagon, ghrelin, leptin, adiponectin, cholesterol, and triglycerides were evaluated at the end of the experiment. ω-3 PUFAs reduced plasma leptin and cholesterol levels, but did not modify diet-induced perigonadal fat or plasma insulin levels; while GSE increased plasma triglyceride levels. The combined action of ω-3 PUFAs and the proanthocyanidins reduced plasma insulin and leptin, as well as partially prevented perigonadal fat accumulation. While separate supplementation with ω-3 PUFAs or grape proanthocyanidins may not counteract all the key metabolic changes induced by a high-energy-dense diet, the combination of both supplements reverts altered insulin, leptin and triglyceride levels to normal. PMID:27418399

  11. Chrysobalanus icaco L. Leaves Normalizes Insulin Sensitivity and Blood Glucose and Inhibits Weight Gain in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    White, Pollyanna A S; Araújo, Jessica M D; Cercato, Luana M; Souza, Lucas A; Barbosa, Ana Paula Oliveira; Quintans-Junior, Lucindo José; Machado, Ubiratan F; Camargo, Enilton A; Brito, Luciana C; Santos, Marcio Roberto V

    2016-02-01

    Chrysobalanus icaco L. is a medicinal plant present in the Brazilian coastline and known for its hypoglicemic and antioxidant properties. Here, we assessed the beneficial metabolic effects of the aqueous extract of C. icaco (AECI) leaves in diet-induced obese mice. Swiss mice were fed standard chow (SC used as controls) or high-fat diet (HFD) to induce obesity. After 10 weeks, mice on each diet were divided into two groups with one group used as control while the other group treated with AECI for 4 weeks resulting in four groups of mice: SC; SC treated with AECI (SC + AECI); HFD; and HFD treated with AECI (HFD + AECI). AECI was administered drinking water at about 200 mg/kg. AECI was able to normalize insulin (13,682 ± 1090 vs. 9828 ± 485 AU, P < .05) and fasting blood glucose (192.8 ± 14.2 vs. 132.3 ± 6.4 mg/dL, P < .05) and inhibit weight gain (39 ± 5.7%) and fat storage in liver (72.60 ± 3.83%, P < .0001), despite the high-fat intake. These findings reinforce the use of AECI in hyperglycemia and highlight the potential extract's effect in preventing weight gain and fat accumulation in liver of diet-induced obese mice. PMID:26854845

  12. Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ER{alpha} in the liver of male lizard Podarcis sicula

    Energy Technology Data Exchange (ETDEWEB)

    Verderame, Mariailaria; Prisco, Marina; Andreuccetti, Piero [Department of Biological Sciences, Evolutionary and Comparative Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy); Aniello, Francesco [Department of Biological Sciences, Genetic and Molecular Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy); Limatola, Ermelinda, E-mail: limatola@unina.it [Department of Biological Sciences, Evolutionary and Comparative Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy)

    2011-05-15

    Endocrine Disruptor Chemicals (EDCs) with estrogen-like properties i.e nonylphenol (NP) induce vitellogenin (VTG) synthesis in males of aquatic and semi-aquatic specie. In the oviparous species VTG is a female-specific oestrogen dependent protein. Males are unable to synthesize VTG except after E{sub 2} treatment. This study aimed to verify if NP, administered via food and water, is able to induce the expression of VTG even in males of vertebrates with a terrestrial habitat such as the lizard Podarcis. By means of ICC, ISH, W/B and ELISA we demonstrated that NP induces the presence of VTG in the plasma and its expression in the liver. VTG, undetectable in untreated males, reaches the value of 4.34 {mu}g/{mu}l in the experimental ones. Expression analysis and ISH in the liver showed that an NP-polluted diet also elicits the expression of ER{alpha} in the liver which is known to be related to VTG synthesis in Podarcis. - Highlights: > Nonylphenol (NP) polluted diet induces VTG synthesis in a terrestrial vertebrate. > VTG and ER{alpha} genes are unexpressed in the liver of untreated male lizards Podarcis. > In the liver cells of NP-treated males the expression of both VTG and ER{alpha} occurs. > In treated males VTG synthesis is coupled with ER{alpha} expression as in breeding females. - NP-polluted diet induces the expression of ER{alpha} and VTG in the liver.

  13. DC attenuation meter

    Science.gov (United States)

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  14. Renin-angiotensin system blockers protect pancreatic islets against diet-induced obesity and insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Eliete Dalla Corte Frantz

    Full Text Available BACKGROUND: The associations between obesity, hypertension and diabetes are well established, and the renin-angiotensin system (RAS may provide a link among them. The effect of RAS inhibition on type 2 diabetes is still unclear; however, RAS seems to play an important role in the regulation of the pancreas and glucose intolerance of mice fed high-fat (HF diet. METHODS: C57BL/6 mice fed a HF diet (8 weeks were treated with aliskiren (50 mg/kg/day, enalapril (30 mg/kg/day or losartan (10 mg/kg/day for 6 weeks, and the protective effects were extensively compared among groups by morphometry, stereological tools, immunostaining, Western blotting and hormonal analysis. RESULTS: All RAS inhibitors significantly attenuated the increased blood pressure in mice fed a HF diet. Treatment with enalapril, but not aliskiren or losartan, significantly attenuated body mass (BM gain, glucose intolerance and insulin resistance, improved the alpha and beta cell mass and prevented the reduction of plasma adiponectin. Furthermore, enalapril treatment improved the protein expression of the pancreatic islet Pdx1, GLUT2, ACE2 and Mas receptors. Losartan treatment showed the greatest AT2R expression. CONCLUSION: Our findings indicate that ACE inhibition with enalapril attenuated several of the deleterious effects of the HF diet. In summary, enalapril appears to be responsible for the normalization of islet morphology and function, of alpha and beta cell mass and of Pdx1 and GLUT2 expression. These protective effects of enalapril were attributed, primarily, to the reduction in body mass gain and food intake and the enhancement of the ACE2/Ang (1-7 /Mas receptor axis and adiponectin levels.

  15. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    OpenAIRE

    van der Heijden, Roel A; Morrison, Martine C.; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P. H.; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Uwe J F Tietge; Koonen, Debby P. Y.; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n=52) received a control low-fat diet (LFD; 10 kcal% fat) for 6 weeks followed by 24 weeks of either LFD (n=13) or high-fat d...

  16. Murine myocardium OCT imaging with a blood substitute

    Science.gov (United States)

    Kim, Jeehyun; Villard, Joseph W.; Lee, Ho; Feldman, Marc D.; Milner, Thomas E.

    2002-06-01

    Imaging of the in vivo murine myocardium using optical coherence tomography (OCT) is described. Application of conventional techniques (e.g. MRI, Ultrasound imaging) for imaging the murine myocardium is problematic because the wall thickness is less than 1.5mm (20g mouse), and the heart rate can be as high as six-hundred beats per minute. To acquire a real-time image of the murine myocardium, OCT can provide sufficient spatial resolution (10 micrometers ) and imaging speed (1000 A-Scans/s). Strong light scattering by blood in the heart causes significant light attenuation making delineation of the endocardium-chamber boundary problematic. By replacing whole blood in the mouse with an artificial blood substitute we demonstrate significant reduction of light scattering in the murine myocardium. The results indicate a significant reduction in light scattering as whole blood hematocrit is diminished below 5%. To measure thickness change of the myocardium during one cycle, a myocardium edge detection algorithm is developed and demonstrated.

  17. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production.

    LENUS (Irish Health Repository)

    Lynch, Lydia

    2012-09-21

    Invariant natural killer T (iNKT) cells are evolutionarily conserved innate T cells that influence inflammatory responses. We have shown that iNKT cells, previously thought to be rare in humans, were highly enriched in human and murine adipose tissue, and that as adipose tissue expanded in obesity, iNKT cells were depleted, correlating with proinflammatory macrophage infiltration. iNKT cell numbers were restored in mice and humans after weight loss. Mice lacking iNKT cells had enhanced weight gain, larger adipocytes, fatty livers, and insulin resistance on a high-fat diet. Adoptive transfer of iNKT cells into obese mice or in vivo activation of iNKT cells via their lipid ligand, alpha-galactocylceramide, decreased body fat, triglyceride levels, leptin, and fatty liver and improved insulin sensitivity through anti-inflammatory cytokine production by adipose-derived iNKT cells. This finding highlights the potential of iNKT cell-targeted therapies, previously proven to be safe in humans, in the management of obesity and its consequences.

  18. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice.

    Science.gov (United States)

    Tsai, Shih-Yin; Rodriguez, Ariana A; Dastidar, Somasish G; Del Greco, Elizabeth; Carr, Kaili Lia; Sitzmann, Joanna M; Academia, Emmeline C; Viray, Christian Michael; Martinez, Lizbeth Leon; Kaplowitz, Brian Stephen; Ashe, Travis D; La Spada, Albert R; Kennedy, Brian K

    2016-08-16

    Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism. PMID:27498874

  19. Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus: a novel model for diet-induced type 2 diabetes and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Maslova Ekaterina

    2010-04-01

    Full Text Available Abstract Background The prevalence of Metabolic Syndrome and related chronic diseases, among them non-insulin-dependent (type 2 diabetes mellitus, are on the rise in the United States and throughout the world. Animal models that respond to environmental stressors, such as diet, are useful for investigating the outcome and development of these related diseases. Objective Within this context, growth and energy relationships were characterized in the Nile rat, an exotic African rodent, as a potential animal model for diet-induced type 2 diabetes mellitus and Metabolic Syndrome. Methods Compiled data from several studies established the relationship between age, body weight gain (including abdominal adiposity, food and water consumption, and blood glucose levels as determinants of diabetes in male and female Nile rats. Glucose Tolerance Testing, insulin, HbA1c, blood pressure measurements and plasma lipids further characterized the diabetes in relation to criteria of the Metabolic Syndrome, while diet modification with high-fat, low-fiber or food restriction attempted to modulate the disease. Results The Nile rat fed lab chow demonstrates signs of the Metabolic Syndrome that evolve into diet-induced non-insulin-dependent (type 2 diabetes mellitus characterized by hyperinsulinemia with rising blood glucose (insulin resistance, abdominal adiposity, and impaired glucose clearance that precedes increased food and water intake, as well as elevated HbA1c, marked elevation in plasma triglycerides and cholesterol, microalbuminuria, and hypertension. Males are more prone than females with rapid progression to diabetes depending on the challenge diet. In males diabetes segregated into early-onset and late-onset groups, the former related to more rapid growth and greater growth efficiency for the calories consumed. Interestingly, no correlation was found between blood glucose and body mass index (overall adiposity in older male Nile rats in long term studies

  20. Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats.

    Science.gov (United States)

    Wu, Tao; Guo, Yu; Liu, Rui; Wang, Kuan; Zhang, Min

    2016-05-18

    With the current changes in diet and living habits, obesity has become a global health problem. Thus, the weight-reducing function of tea has attracted considerable attention. This study investigated the anti-obesity effect and the mechanism of black tea (BT) polyphenols and polysaccharides in male Sprague-Dawley rats. The BT polyphenols and polysaccharides reduced the body weight, Lee's index, visceral fat weight, and fat cell size but improved the biochemical profile and increased the fecal fatty acid content, thereby preventing high-fat diet-induced obesity. A gene expression profile array was used to screen eight upregulated and five downregulated differentially expressed genes that affect fat metabolic pathways, such as glycerolipid and glycerophospholipid metabolism, fatty acid degradation, glycolysis and gluconeogenesis, bile and pancreatic secretion, the insulin signaling pathway, and steroid hormone secretion. The BT polyphenols and polysaccharides suppressed the formation and accumulation of fat and promoted its decomposition to prevent obesity. PMID:27161951

  1. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher;

    2015-01-01

    BACKGROUND: Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are elevated in obesity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is unclear. Here we investigated how the presence or absence of TIMP-1 affected the development of diet......-induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...... and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation...

  2. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1

    DEFF Research Database (Denmark)

    Shang, Quan; Saumoy, Monica; Holst, Jens Juul;

    2009-01-01

    Bile acid sequestrants have been shown to lower glucose levels in patients with type 2 diabetes. To investigate how colesevelam (CL) HCl improves hyperglycemia, studies were conducted in diet-induced obesity (F-DIO) rats, which develop insulin resistance when fed a high-energy (high fat....../high sucrose) diet (HE). The rats were fed HE; HE + 2% CL; HE + 0.02% SC-435 (SC), an apical sodium-dependent bile acid transporter inhibitor; and regular chow (controls). After 4 wk of treatment, both in the HE group and the SC + HE group, plasma glucose and insulin levels remained elevated compared with...... activation compared with controls. We concluded that CL reduces plasma glucose levels by improving insulin resistance in this rat model. It is unlikely that the improvement is attributable to decreased bile acid flux to the liver but is likely secondary to induced GLP-1 secretion, which improves insulin...

  3. Early Onset Inflammation in Pre-Insulin-Resistant Diet-Induced Obese Rats Does Not Affect the Vasoreactivity of Isolated Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Raun, Kirsten; Boonen, Harrie C M;

    2012-01-01

    myography, we tested the vascular function of isolated small mesenteric arteries. Results: DIO animals had significantly (p <0.05) increased body weight (721.2 ± 6.3 g) compared to age- and sex-matched controls (643.4 ± 14.6 g), as well as a significant increase (p <0.01) in body fat percentage (29.7 ± 1....... Our study aimed to investigate signs of inflammation and their relation to vascular dysfunction in rats receiving a high fat diet. Methods: Diet-induced obese (DIO) rats were used as a model since these rats exhibit a human pre-diabetic pathology. Oral glucose and insulin tolerance tests were......Background: Obesity is an increasing burden affecting developed and emerging societies since it is associated with an increased risk of diabetes and consequent cardiovascular complications. Increasing evidence points towards a pivotal role of inflammation in the etiology of vascular dysfunction...

  4. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity.

    Science.gov (United States)

    Shabrova, Elena; Hoyos, Beatrice; Vinogradov, Valerie; Kim, Youn-Kyung; Wassef, Lesley; Leitges, Michael; Quadro, Loredana; Hammerling, Ulrich

    2016-03-01

    We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.-Shabrova, E., Hoyos, B., Vinogradov, V., Kim, Y.-K., Wassef, L., Leitges, M., Quadro, L., Hammerling, U. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity. PMID:26671999

  5. The Hypolipidemic Effect of Total Saponins from Kuding Tea in High-Fat Diet-Induced Hyperlipidemic Mice and Its Composition Characterized by UPLC-QTOF-MS/MS.

    Science.gov (United States)

    Song, Chengwu; Yu, Qingsong; Li, Xiaohua; Jin, Shuna; Li, Sen; Zhang, Yang; Jia, Shuailong; Chen, Cheng; Xiang, Yi; Jiang, Hongliang

    2016-05-01

    Kuding tea are used as a traditional tea material and widely consumed in China. In this study, total saponins (TS) from water extract of Kuding tea was prepared by D101 macroporous resins and analyzed by UPLC-QTOF-MS/MS. Then the hypolipidemic effect of TS extract was investigated in high-fat diet-induced hyperlipidemic mice. For comprehensive identification or characterization of saponins in TS extract, 3 major saponins of Kudinoside A, Kudinoside F, and Kudinoside D were isolated and used as standards to investigate the MS/MS fragmentation pattern. As a result, 52 saponins were identified or characterized in TS extract from Kuding tea. In addition, the increased levels of mice serum TC, LDL-C, HDL-C, and atherogenic index (AI) were significantly reduced after the treatment of TS extract. Also, the liver protective effect of TS extract was obviously judged from the photographs stained with oil red-O staining. Meanwhile, TS extract significantly upregulated the expression of hepatic scavenger receptors including SR-AI, SR-BI, and CD36. Therefore, it is reasonable to assume that the overexpression of hepatic scavenger receptors was involved in the hypolipidemic effect of Kuding tea on the high-fat diet-induced hyperlipidemic mice. The TS extract could influence these scavenger receptors, and this could be the potential mechanism of TS extract from Kuding tea in the treatment of lipid disorders. These results give the evidence that the saponins in Kuding tea could provide benefits in managing hypercholesterolemia and may be a good candidate for development as a functional food and nutraceutical. PMID:27074384

  6. Purple Tea and Its Extract Suppress Diet-induced Fat Accumulation in Mice and Human Subjects by Inhibiting Fat Absorption and Enhancing Hepatic Carnitine Palmitoyltransferase Expression.

    Science.gov (United States)

    Shimoda, Hiroshi; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi

    2015-06-01

    A number of clinical trials have been completed using green tea and black tea to investigate their effect in controlling weight in overweight adults. The results of these investigations, however, have often been contradictory, with some trials reporting positive effects of tea supplementation and some trials reporting no effect. As a result, the use of these teas for weight loss is controversial. Purple tea is a variety of green tea developed in Kenya (called TRFK306), which in addition to certain tea constituents found in green tea, also contains anthocyanins. The major constituents in the leaves of purple tea are caffeine, theobromine, epigallocatechin (ECG), epigallocatechin gallate (EGCG) and 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-β-D-glucose (GHG). We investigated the efficacy of purple tea extract (PTE) on diet-induced fat accumulation in mice. PTE administration (200 mg/kg) significantly suppressed body weight gain, liver weight, abdominal fat and triglycerides in serum and liver. Protein expression of carnitine palmitoyltransferase (CPT) 1A was also enhanced. In olive oil loaded mice, PTE (100 mg/kg) and caffeine (25 mg/kg) suppressed fat absorption. PTE (10 μg/mL) and GHG (10 μg/mL) also enhanced protein expression of CPT1A in HepG2 hepatoma. Moreover, 4-week daily consumption of purple tea drink in humans improved obesity parameters compared to baseline, including body weight (79.9 ± 3.1 kg vs 80.8 ± 3.2, p<0.05), body mass index (BMI) (26.8 ± 0.6 vs 27.0 ± 0.6, p<0.05) and body fat mass (21.0 ± 1.4 kg vs 21.8 ± 1.5, p<0.01). In conclusion, PTE could control diet-induced weight gain by suppression of fat absorption and enhancement of hepatic fat metabolism. PMID:26199579

  7. Circadian Disruption and Diet-Induced Obesity Synergize to Promote Development of β-Cell Failure and Diabetes in Male Rats.

    Science.gov (United States)

    Qian, Jingyi; Yeh, Bonnie; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2015-12-01

    There are clear epidemiological associations between circadian disruption, obesity, and pathogenesis of type 2 diabetes. The mechanisms driving these associations are unclear. In the current study, we hypothesized that continuous exposure to constant light (LL) compromises pancreatic β-cell functional and morphological adaption to diet-induced obesity leading to development of type 2 diabetes. To address this hypothesis, we studied wild type Sprague Dawley as well as Period-1 luciferase reporter transgenic rats (Per1-Luc) for 10 weeks under standard light-dark cycle (LD) or LL with concomitant ad libitum access to either standard chow or 60% high-fat diet (HFD). Exposure to HFD led to a comparable increase in food intake, body weight, and adiposity in both LD- and LL-treated rats. However, LL rats displayed profound loss of behavioral circadian rhythms as well as disrupted pancreatic islet clock function characterized by the impairment in the amplitude and the phase islet clock oscillations. Under LD cycle, HFD did not adversely alter diurnal glycemia, diurnal insulinemia, β-cell secretory function as well as β-cell survival, indicating successful adaptation to increased metabolic demand. In contrast, concomitant exposure to LL and HFD resulted in development of hyperglycemia characterized by loss of diurnal changes in insulin secretion, compromised β-cell function, and induction of β-cell apoptosis. This study suggests that circadian disruption and diet-induced obesity synergize to promote development of β-cell failure, likely mediated as a consequence of impaired islet clock function. PMID:26348474

  8. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier.

    Directory of Open Access Journals (Sweden)

    Yong Fan

    Full Text Available Obesity is a complex metabolic disease that is a serious detriment to both children and adult health, which induces a variety of diseases, such as cardiovascular disease, type II diabetes, hypertension and cancer. Although adverse effects of obesity on female reproduction or oocyte development have been well recognized, its harmfulness to male fertility is still unclear because of reported conflicting results. The aim of this study was to determine whether diet-induced obesity impairs male fertility and furthermore to uncover its underlying mechanisms. Thus, male C57BL/6 mice fed a high-fat diet (HFD for 10 weeks served as a model of diet-induced obesity. The results clearly show that the percentage of sperm motility and progressive motility significantly decreased, whereas the proportion of teratozoospermia dramatically increased in HFD mice compared to those in normal diet fed controls. Besides, the sperm acrosome reaction fell accompanied by a decline in testosterone level and an increase in estradiol level in the HFD group. This alteration of sperm function parameters strongly indicated that the fertility of HFD mice was indeed impaired, which was also validated by a low pregnancy rate in their mated normal female. Moreover, testicular morphological analyses revealed that seminiferous epithelia were severely atrophic, and cell adhesions between spermatogenic cells and Sertoli cells were loosely arranged in HFD mice. Meanwhile, the integrity of the blood-testis barrier was severely interrupted consistent with declines in the tight junction related proteins, occludin, ZO-1 and androgen receptor, but instead endocytic vesicle-associated protein, clathrin rose. Taken together, obesity can impair male fertility through declines in the sperm function parameters, sex hormone level, whereas during spermatogenesis damage to the blood-testis barrier (BTB integrity may be one of the crucial underlying factors accounting for this change.

  9. Pressure surge attenuator

    Science.gov (United States)

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  10. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  11. Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet

    NARCIS (Netherlands)

    Guidotti, Stefano; Meyer, Neele; Przybyt, Ewa; Scheurink, Anton J.W.; Harmsen, Martin C.; Garland Jr., Theodore; van Dijk, Gertjan

    2016-01-01

    Female mice from independently bred lines previously selected over 50 generations for increased voluntary wheel-running behavior (S1, S2) resist high energy (HE) diet-induced obesity (DIO) at adulthood, even without actual access to running wheels, as opposed to randomly bred controls (CON). We inve

  12. Magnolia Extract (BL153 Ameliorates Kidney Damage in a High Fat Diet-Induced Obesity Mouse Model

    Directory of Open Access Journals (Sweden)

    Wenpeng Cui

    2013-01-01

    Full Text Available Accumulating evidence demonstrated that obesity is a risk factor for renal structural and functional changes, leading to the end-stage renal disease which imposes a heavy economic burden on the community. However, no effective therapeutic method for obesity-associated kidney disease is available. In the present study, we explored the therapeutic potential of a magnolia extract (BL153 for treating obesity-associated kidney damage in a high fat diet- (HFD- induced mouse model. The results showed that inflammation markers (tumor necrosis factor-α and plasminogen activator inhibitor-1 and oxidative stress markers (3-nitrotyrosine and 4-hydroxy-2-nonenal were all significantly increased in the kidney of HFD-fed mice compared to mice fed with a low fat diet (LFD. Additionally, proteinuria and renal structure changes in HFD-fed mice were much more severe than that in LFD-fed mice. However, all these alterations were attenuated by BL153 treatment, accompanied by upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α and hexokinase II (HK II expression in the kidney. The present study indicates that BL153 administration may be a novel approach for renoprotection in obese individuals by antiinflammation and anti-oxidative stress most likely via upregulation of PGC-1α and HK II signal in the kidney.

  13. Endurance and Resistance Training Affect High Fat Diet-Induced Increase of Ceramides, Inflammasome Expression, and Systemic Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Cornelia Mardare

    2016-01-01

    Full Text Available The study aimed to investigate the effects of differentiated exercise regimes on high fat-induced metabolic and inflammatory pathways. Mice were fed a standard diet (ST or a high fat diet (HFD and subjected to regular endurance training (ET or resistance training (RT. After 10 weeks body weight, glucose tolerance, fatty acids (FAs, circulating ceramides, cytokines, and immunological mediators were determined. The HFD induced a significant increase in body weight and a disturbed glucose tolerance (p<0.05. An increase of plasma FA, ceramides, and inflammatory mediators in adipose tissue and serum was found (p<0.05. Both endurance and resistance training decreased body weight (p<0.05 and reduced serum ceramides (p<0.005. While RT attenuated the increase of NLRP-3 (RT expression in adipose tissue, ET was effective in reducing TNF-α and IL-18 expression. Furthermore, ET reduced levels of MIP-1γ, while RT decreased levels of IL-18, MIP-1γ, Timp-1, and CD40 in serum (p<0.001, respectively. Although both exercise regimes improved glucose tolerance (p<0.001, ET was more effective than RT. These results suggest that exercise improves HFD-induced complications possibly through a reduction of ceramides, the reduction of inflammasome activation in adipose tissues, and a systemic downregulation of inflammatory cytokines.

  14. Lactobionic acid reduces body weight gain in diet-induced obese rats by targeted inhibition of galectin-1.

    Science.gov (United States)

    Mukherjee, Rajib; Yun, Jong Won

    2015-08-01

    Galectin-1 (GAL1), an animal lectin with a carbohydrate recognition domain, is known for its roles in cancer, tumor progression, as well as obesity and related complications. Here, we investigated the anti-obesity effect of lactobionic acid (LBA), a GAL1 inhibitor, both in vitro and in vivo. LBA treatment significantly reduced lipogenic capacity of both 3T3-L1 and HIB1B adipocytes through down-regulation of major adipogenic transcription factors at both mRNA and protein levels. Moreover, oral administration and intraperitoneal injection of LBA in Sprague-Dawley male rats fed a high fat diet caused marked reduction of body weight gain as well as improvement of related metabolic parameters. Important lipogenic transcription factors were also down-regulated in LBA-treated rats, resulting in attenuated lipogenesis and fat accumulation. Collectively, pharmaceutical targeting of GAL1 using LBA would be a novel therapeutic approach for the treatment of obesity. PMID:26116537

  15. Anti-Obesity Effects of Aster spathulifolius Extract in High-Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Kim, Sa-Jic; Bang, Chae-Young; Guo, Yuan-Ri; Choung, Se-Young

    2016-04-01

    The aim of this study was to investigate the anti-obesity and antihyperlipidemic efficacy and molecular mechanisms of Aster spathulifolius Maxim extract (ASE) in rats with high-fat diet (HFD)-induced obesity. Rats were separately fed a normal diet or a HFD for 8 weeks, then they were treated with ASE (62.5, 125, or 250 mg/kg) for another 4.5 weeks. The ASE supplementation significantly lowered body weight gain, visceral fat pad weights, serum lipid levels, as well as hepatic lipid levels in HFD-induced obese rats. Histological analysis showed that the ASE-treated group showed lowered numbers of lipid droplets and smaller size of adipocytes compared to the HFD group. To understand the mechanism of action of ASE, the expression of genes and proteins involved in obesity were measured in liver and skeletal muscle. The expression of fatty acid oxidation and thermogenesis-related genes (e.g., PPAR-α, ACO, CPT1, UCP2, and UCP3) of HFD-induced obese rats were increased by ASE treatment. On the other hand, ASE treatment resulted in decreased expression of fat intake-related gene ACC2 and lipogenesis-related genes (e.g., SREBP-1c, ACC1, FAS, SCD1, GPATR, AGPAT, and DGAT). Furthermore, ASE treatment increased the level of phosphorylated AMPKα in obese rats. Similarly, the level of phosphorylated ACC, a target protein of AMPKα in ASE groups, was increased by ASE treatment compared with the HFD group. These results suggest that ASE attenuated visceral fat accumulation and improved hyperlipidemia in HFD-induced obese rats by increasing lipid metabolism through the regulation of AMPK activity and the expression of genes and proteins involved in lipolysis and lipogenesis. PMID:26908215

  16. DNAs from Brucella Strains Activate Efficiently Murine Immune System with Production of Cytokines, Reactive Oxygen and Nitrogen Species

    OpenAIRE

    Zahra Tavakoli; Sussan K. Ardestani; Taghi Lashkarbolouki; Amina Kariminia; Taghi Zahraei Salehi; Nasser Tavassoli

    2009-01-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated.This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated liv...

  17. Comparison of Dietary Control and Atorvastatin on High Fat Diet Induced Hepatic Steatosis and Hyperlipidemia in Rats

    Directory of Open Access Journals (Sweden)

    Liu Peiyi

    2011-01-01

    Full Text Available Abstract Background Treatment with atorvastatin (ATO or dietary control has been demonstrated to benefit patients with non-alcoholic fatty liver disease (NAFLD and hyperlipidemia. However, little is known on whether combination of dietary control and ATO treatment could enhance the therapeutic effect. Methods We employed a rat model of NAFLD to examine the therapeutic efficacy of dietary control and/or ATO treatment. Sprague-Dawley rats were fed with normal chow diet as normal controls or with high fat diet (HFD for 12 weeks to establish NAFLD. The NAFLD rats were randomized and continually fed with HFD, with normal chow diet, with HFD and treated with 30 mg/kg of ATO or with normal chow diet and treated with the same dose of ATO for 8 weeks. Subsequently, the rats were sacrificed and the serum lipids, aminotranferase, hepatic lipids, and liver pathology were characterized. The relative levels of fatty acid synthesis and β-oxidation gene expression in hepatic tissues were measured by quantitative real-time polymerase chain reaction (qRT-PCR. Hepatic expression of hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase was determined by Western blot assay. Results While continual feeding with HFD deteriorated NAFLD and hyperlipidemia, treatment with dietary control, ATO or ATO with dietary control effectively improved serum and liver lipid metabolism and liver function. In comparison with ATO treatment, dietary control or combined with ATO treatment significantly reduced the liver weight and attenuated the HFD-induced hyperlipidemia and liver steatosis in rats. Compared to ATO treatment or dietary control, combination of ATO and dietary control significantly reduced the levels of serum total cholesterol and low density lipoprotein cholesterol (LDL-C. However, the combination therapy did not significantly improve triglyceride and free fatty acid metabolism, hepatic steatosis, and liver function, as compared with dietary control alone. Conclusions

  18. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-04-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  19. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-04-01

    Full Text Available This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC containing protein (46.1% of dry algae, insoluble fibre (19.6% of dry algae, minerals (3.7% of dry algae and omega-3 fatty acids (2.8% of dry algae as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68% and fats (saturated and trans fats from beef tallow, total 24%. High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome.

  20. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Milos Lazic

    Full Text Available Obesity is associated with metabolic perturbations including liver and adipose tissue inflammation, insulin resistance, and type 2 diabetes. Omega-6 fatty acids (ω6 promote and omega-3 fatty acids (ω3 reduce inflammation as they can be metabolized to pro- and anti-inflammatory eicosanoids, respectively. 12/15-lipoxygenase (12/15-LO enzymatically produces some of these metabolites and is induced by high fat (HF diet. We investigated the effects of altering dietary ω6/ω3 ratio and 12/15-LO deficiency on HF diet-induced tissue inflammation and insulin resistance. We examined how these conditions affect circulating concentrations of oxidized metabolites of ω6 arachidonic and linoleic acids and innate and adaptive immune system activity in the liver. For 15 weeks, wild-type (WT mice were fed either a soybean oil-enriched HF diet with high dietary ω6/ω3 ratio (11∶1, HFH, similar to Western-style diet, or a fat Kcal-matched, fish oil-enriched HF diet with a low dietary ω6/ω3 ratio of 2.7∶1 (HFL. Importantly, the total saturated, monounsaturated and polyunsaturated fat content was matched in the two HF diets, which is unlike most published fish oil studies in mice. Despite modestly increased food intake, WT mice fed HFL were protected from HFH-diet induced steatohepatitis, evidenced by decreased hepatic mRNA expression of pro-inflammatory genes and genes involved in lymphocyte homing, and reduced deposition of hepatic triglyceride. Furthermore, oxidized metabolites of ω6 arachidonic acid were decreased in the plasma of WT HFL compared to WT HFH-fed mice. 12/15-LO knockout (KO mice were also protected from HFH-induced fatty liver and elevated mRNA markers of inflammation and lymphocyte homing. 12/15-LOKO mice were protected from HFH-induced insulin resistance but reducing dietary ω6/ω3 ratio in WT mice did not ameliorate insulin resistance or adipose tissue inflammation. In conclusion, lowering dietary ω6/ω3 ratio in HF diet

  1. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wahlang, Banrida [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Song, Ming [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Beier, Juliane I. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cameron Falkner, K. [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Al-Eryani, Laila [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Clair, Heather B.; Prough, Russell A. [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Osborne, Tanasa S.; Malarkey, David E. [Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Christopher States, J. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cave, Matthew C., E-mail: matt.cave@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206 (United States)

    2014-09-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  2. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  3. Variable laser attenuator

    Science.gov (United States)

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  4. Electroacupuncture Improves Insulin Resistance by Reducing Neuroprotein Y/Agouti-Related Protein Levels and Inhibiting Expression of Protein Tyrosine Phosphatase 1B in Diet-induced Obese Rats.

    Science.gov (United States)

    Liu, Xia; He, Jun-Feng; Qu, Ya-Ting; Liu, Zhi-Jun; Pu, Qing-Yang; Guo, Sheng-Tong; Du, Jia; Jiang, Peng-Fei

    2016-04-01

    Electroacupuncture (EA) has been shown to exert beneficial effects on obesity, but the mechanism is unclear. This study investigated the effects of EA on diet-induced obese (DIO) rats. Fifty male Sprague-Dawley rats were randomly divided into low-fat diet (LFD, 10 rats) and high-fat diet (HFD, 40 rats) groups. After the DIO models had been established, successful model rats were randomly divided into HFD, EA, and orlistat (OLST) groups. The EA group received EA at Zusanli (ST36) and Quchi (LI11) for 20 minutes once per day for 28 days. The OLST group was treated with orlistat by gavage. The body weight, homeostasis model assessment-insulin resistance index, adipocyte diameters, and neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B levels were significantly lower in the EA group than in the HFD group. The rats of the OLST group showed watery stools and yellow hairs whereas those of the EA group had regular stools and sleek coats. The effect of EA on weight loss may be related to improved insulin resistance caused by changes in the adipocyte size and by reductions in the expressions of neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B. This study indicates that EA may be a better method of alternative therapy for treating obesity and other metabolic diseases. PMID:27079226

  5. Anti-obesity potential of enzymatic fragments of hyaluronan on high-fat diet-induced obesity in C57BL/6 mice.

    Science.gov (United States)

    Park, Byong-Gon; Park, Yoon-Sun; Park, Joo Woong; Shin, Eunji; Shin, Woon-Seob

    2016-04-22

    Hyaluronan has diverse biological activities depending on its molecular size. The hyaluronan fragments (50 kDa) can decrease adipogenic differentiation in vitro. However, in vivo anti-obesitic effects of hyaluronan fragments have not been elucidated. Therefore, we examined the anti-obesity effects of hyaluronan fragments on high-fat diet induced obesity in C57BL/6 mice. Oral administration of hyaluronan fragments (200 mg/kg for 8 weeks) decreased body weight, adipose tissues, serum lipid (low-density lipoprotein cholesterol, triglyceride), and leptin level. Hyaluronan fragments decreased the hypertrophy of adipose tissue and ameliorated liver steatosis. The mRNA expression of leptin was reduced in adipocyte by treatment with hyaluronan fragments. Additionally, hyaluronan fragments enhanced the mRNA expression of PPAR-α and its target genes UCP-2 and decreased mRNA expression of PPAR- γ and fatty acid synthase in liver. In conclusions, hyaluronan fragments had marked effects on inhibiting the development of obesity in obese mice fed the high-fat diet. It suggested that enhancing PPAR-α and suppressing PPAR-γ expression are two possible mechanisms for the anti-obesitic effect of hyaluronan fragments. PMID:27012203

  6. Elevated IgG levels against specific bacterial antigens in obese patients with diabetes and in mice with diet-induced obesity and glucose intolerance.

    Science.gov (United States)

    Mohammed, Nadeem; Tang, Lihua; Jahangiri, Anisa; de Villiers, Willem; Eckhardt, Erik

    2012-09-01

    High fat diets increase the risk for insulin resistance by promoting inflammation. The cause of inflammation is unclear, but germfree mouse studies have implicated commensal gut bacteria. We tested whether diet-induced obesity, diabetes, and inflammation are associated with anti-bacterial IgG. Blood from lean and obese healthy volunteers or obese patients with diabetes were analyzed by ELISA for IgG against extracts of potentially pathogenic and pro-biotic strains of Escherichia coli (LF-82 and Nissle), Bacteroides thetaiotaomicron, and Lactobacillus acidophilus, and for circulating tumor necrosis factor α (TNFα). C57Bl/6 mice were fed low- or high-fat diets (10% or 60% kcal from fat) for 10 weeks and tested for anti-bacterial IgG, bodyweight, fasting glucose, and inflammation. Obese diabetic patients had significantly more IgG against extracts of E. coli LF-82 compared with lean controls, whereas IgG against extracts of the other bacteria was unchanged. Circulating TNFα was elevated and correlated with IgG against the LF-82 extract. Mice fed high-fat diets had increased fasting glucose levels, elevated TNFα and neutrophils, and significantly more IgG against the LF-82 extracts. Diabetes in obesity is characterized by increased IgG against specific bacterial antigens. Specific commensal bacteria may mediate inflammatory effects of high-fat diets. PMID:22424821

  7. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    Directory of Open Access Journals (Sweden)

    Cong Liu

    2015-01-01

    Full Text Available This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1 for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses revealed that the treatment of berberine inhibited hepatic fat accumulation. Berberine significantly reduced plasma total cholesterol, triglyceride, free fatty acid, low density lipoprotein cholesterol, malondialdehyde, thiobarbituric acid-reactive substance, and 8-isoprostane level but significantly increased plasma superoxide dismutase activity. Glucose and insulin levels were significantly reduced in metformin and berberine-treated groups. Glucose tolerance tests documented that berberine-treated mice were more glucose tolerant. Berberine treatment increased expression of skeletal muscle glucose transporter 4 mRNA and significantly decreased liver low density lipoprotein receptor mRNA expression. The study suggested that berberine was effective in lowering blood glucose and lipids levels, reducing the body weight, and alleviating the oxidative stress in diabetic hamsters, which might be beneficial in reducing the cardiovascular risk factors in diabetes.

  8. Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Yeon-Jeong Moon

    2014-03-01

    Full Text Available The effect of Pediococcus acidilactici M76 (lactic acid bacteria isolated from makgeolli on mice fed a high fat diet was investigated to clarify the lipid lowering function. C57BL/6J male mice were randomly divided into a normal diet (ND group, high fat diet (HD group, HD plus Pediococcus acidilactici DSM 20284 reference strain (PR group, and HD plus Pediococcus acidilactici M76 strain (PA groups. The lyophilized PA and PR strain were dissolved in distilled water at a final concentration of 1.25 × 109 cfu/mL and was given orally to animals at a dose of 4 mL/kg body weight for 12 weeks. The PA group had a lower final body weight, adipose tissue weight, and lipid profile than those in the HD group. Additionally, level of ACC, FAS and PPAR-γ, a key lipid synthesis enzyme, was markedly suppressed in the PA compared to those in the HD group. These data suggest that P. acidilactici M76 may exert a lipid-lowering effect in high fat diet- induced obese mice.

  9. Fat-water MRI is sensitive to local adipose tissue inflammatory changes in a diet-induced obesity mouse model at 15T

    Science.gov (United States)

    Ong, Henry H.; Webb, Corey D.; Gruen, Marnie L.; Hasty, Alyssa H.; Gore, John C.; Welch, E. B.

    2015-03-01

    In obesity, fat-water MRI (FWMRI) methods provide valuable information about adipose tissue (AT) distribution. AT is known to undergo complex metabolic and endocrine changes in association with chronic inflammation including iron overloading. Here, we investigate the potential for FWMRI parameters (fat signal fraction (FSF), local magnetic field offset, and T2*) to be sensitive to AT inflammatory changes in an established diet-induced obesity mouse model. Male C57BL/6J mice were placed on a low fat (LFD) or a high fat diet (HFD). 3D multi- gradient-echo MRI at 15.2T was performed at baseline, 4, 8, 12, and 16 weeks after diet onset. A 3D fat-water separation algorithm and additional processing was used to generate FSF, local field offset, and T2* maps. We examined these parameters in perirenal AT ROIs from HFD and LFD mice. Results: The data suggest that FSF, local field offset, and T2* can differentiate time course behavior between inflamed and control AT (increasing FSF, decreasing local field offset, increasing followed by decreasing T2*). The biophysical mechanisms of these observed changes are not well understood and require further study. To the best of our knowledge, we report the first evidence that FWMRI can provide biomarkers sensitive to AT inflammation, and that FWMRI has the potential for longitudinal non-invasive assessment of AT inflammation in obesity.

  10. Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870 on Mechanical Sensitivity in Diet-Induced Obesity Model

    Directory of Open Access Journals (Sweden)

    Fereshteh Dardmeh

    2016-01-01

    Full Text Available Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota, as an endogenous factor, influences obesity and pain sensitivity but the effect of oral probiotic supplementation on musculoskeletal pain perception has not been studied systematically. The present study examined the effect of a single daily oral dose (1 × 109 CFU of probiotics (Lactobacillus rhamnosus PB01, DSM14870 supplement on mechanical pain thresholds in behaving diet-induced obese (DIO mice and their normal weight (NW controls. The mice (N=24, 6-week-old male were randomly divided into four groups on either standard or high fat diet with and without probiotic supplementation. Both DIO and NW groups with probiotic supplementation maintained an insignificant weight gain while the control groups gained significant weight (P<0.05. Similarly, both DIO and NW probiotics supplemented groups demonstrated a significantly (P<0.05 lower sensitivity to mechanical stimulation compared to their corresponding control. The results of this study suggest a protective effect of probiotics on nociception circuits, which propose a direct result of the weight reduction or an indirect result of anti-inflammatory properties of the probiotics. Deciphering the exact underlying mechanism of the weight loss and lowering nociception effect of the probiotic applied in this study require further investigation.

  11. Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Ojo, Opeolu O; Srinivasan, Dinesh K; Owolabi, Bosede O; McGahon, Mary K; Moffett, R Charlotte; Curtis, Tim M; Conlon, J Michael; Flatt, Peter R; Abdel-Wahab, Yasser H A

    2016-08-01

    The frog skin host-defense peptide tigerinin-1R stimulates insulin release in vitro and improves glucose tolerance and insulin sensitivity in animal models of type 2 diabetes. This study extends these observations by investigating the molecular mechanisms of action underlying the beneficial metabolic effects of the analogue [Arg4]tigerinin-1R in mice with diet-induced obesity, glucose intolerance and insulin resistance. The study also investigates the electrophysiological effects of the peptide on KATP and L-type Ca2+ channels in BRIN-BD11 clonal β cells. Non-fasting plasma glucose and glucagon concentrations were significantly (pinsulin increased by twice daily treatment with [Arg4]tigerinin-1R (75 nmol/kg body weight) for 28 days. Oral and intraperitoneal glucose tolerance were significantly (pinsulin. The peptide blocked KATP channels and, consistent with this, improved beta cell responses of isolated islets to a range of secretagogues. Peptide administration resulted in up-regulation of key functional genes in islets involved insulin secretion (Abcc8, Kcnj11, Cacna1c and Slc2a2) and in skeletal muscle involved with insulin action (Insr, Irs1, Pdk1, Pik3ca, and Slc2a4). These observations encourage further development of tigerinin-1R analogues for the treatment of patients with type 2 diabetes. PMID:26966929

  12. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance.

    Science.gov (United States)

    Elias, Ivet; Ferré, Tura; Vilà, Laia; Muñoz, Sergio; Casellas, Alba; Garcia, Miquel; Molas, Maria; Agudo, Judith; Roca, Carles; Ruberte, Jesús; Bosch, Fatima; Franckhauser, Sylvie

    2016-08-01

    Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases. PMID:27207555

  13. Allomyrina Dichotoma Larvae Regulate Food Intake and Body Weight in High Fat Diet-Induced Obese Mice Through mTOR and Mapk Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jongwan Kim

    2016-02-01

    Full Text Available Recent evidence has suggested that the Korean horn beetle (Allomyrina dichotoma has anti-hepatofibrotic, anti-neoplastic, and antibiotic effects and is recognized as a traditional medicine. In our previous works, Allomyrina dichotoma larvae (ADL inhibited differentiation of adipocytes both in vitro and in vivo. However, the anorexigenic and endoplasmic reticulum(ER stress-reducing effects of ADL in obesity has not been examined. In this study, we investigated the anorexigenic and ER stress-reducing effects of ADL in the hypothalamus of diet-induced obese (DIO mice. Intracerebroventricular (ICV administration of ethanol extract of ADL (ADE suggested that an antagonizing effect on ghrelin-induced feeding behavior through the mTOR and MAPK signaling pathways. Especially, ADE resulted in strong reduction of ER stress both in vitro and in vivo. These findings strongly suggest that ADE and its constituent bioactive compounds are available and valuable to use for treatment of various diseases driven by prolonged ER stress.

  14. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota.

    Science.gov (United States)

    Alard, Jeanne; Lehrter, Véronique; Rhimi, Moez; Mangin, Irène; Peucelle, Véronique; Abraham, Anne-Laure; Mariadassou, Mahendra; Maguin, Emmanuelle; Waligora-Dupriet, Anne-Judith; Pot, Bruno; Wolowczuk, Isabelle; Grangette, Corinne

    2016-05-01

    Alterations in gut microbiota composition and diversity were suggested to play a role in the development of obesity, a chronic subclinical inflammatory condition. We here evaluated the impact of oral consumption of a monostrain or multi-strain probiotic preparation in high-fat diet-induced obese mice. We observed a strain-specific effect and reported dissociation between the capacity of probiotics to dampen adipose tissue inflammation and to limit body weight gain. A multi-strain mixture was able to improve adiposity, insulin resistance and dyslipidemia through adipose tissue immune cell-remodelling, mainly affecting macrophages. At the gut level, the mixture modified the uptake of fatty acids and restored the expression level of the short-chain fatty acid receptor GPR43. These beneficial effects were associated with changes in the microbiota composition, such as the restoration of the abundance of Akkermansia muciniphila and Rikenellaceae and the decrease of other taxa like Lactobacillaceae. Using an in vitro gut model, we further showed that the probiotic mixture favours the production of butyrate and propionate. Our findings provide crucial clues for the design and use of more efficient probiotic preparations in obesity management and may bring new insights into the mechanisms by which host-microbe interactions govern such protective effects. PMID:26689997

  15. Hypolipidemic effect of methanol fraction of Aconitum heterophyllum wall ex Royle and the mechanism of action in diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    Arun Koorappally Subash

    2012-01-01

    Full Text Available Aconitum heterophyllum is an endangered Himalayan plant included in "lekhaneyagana," a pharmacological classification mentioned by Charaka in "Charakasamhita" which means reduce excess fat. The subterranean part of the plant is used for the treatment of diseases like nervous system disorders, fever, diarrhea, obesity, etc. In the present study, we are reporting the hypolipidemic effect of methanol fraction of A. heterophyllum. The methanol extract of A. heterophyllum was orally administered in diet-induced obese rats. After four weeks treatment, blood samples were collected for the estimation of serum lipids and lecithin-cholesterol acyltransferase (LCAT. Liver was collected for the assay of HMG-CoA reductase (HMGR. The fecal samples were also collected to estimate the fecal fat content. The A. heterophyllum treatment markedly lowered total cholesterol, triglycerides and apolipoprotein B concentrations in blood serum. It also showed positive effects (increase on serum high-density lipoprotein cholesterol (HDL-c and apolipoprotein A1 concentrations. On the other hand, A. heterophyllum treatment lowered HMGR activity, which helps to reduce endogenous cholesterol synthesis and also activated LCAT, helping increase in HDL-c. An increase in fecal fat content is also an indication of the hypolipidemic effect of A. heterophyllum. The significant hypolipidemic effect of A. heterophyllum may be linked to its ability to inhibit HMGR activity and block intestinal fat absorption. The increase in HDL-c may be linked to its ability to activate LCAT enzyme.

  16. Direct infusion MS-based lipid profiling reveals the pharmacological effects of compound K-reinforced ginsenosides in high-fat diet induced obese mice.

    Science.gov (United States)

    Shon, Jong Cheol; Shin, Hwa-Soo; Seo, Yong Ki; Yoon, Young-Ran; Shin, Heungsop; Liu, Kwang-Hyeon

    2015-03-25

    The serum lipid metabolites of lean and obese mice fed normal or high-fat diets were analyzed via direct infusion nanoelectrospray-ion trap mass spectrometry followed by multivariate analysis. In addition, lipidomic biomarkers responsible for the pharmacological effects of compound K-reinforced ginsenosides (CK), thus the CK fraction, were evaluated in mice fed high-fat diets. The obese and lean groups were clearly discriminated upon principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) score plot, and the major metabolites contributing to such discrimination were triglycerides (TGs), cholesteryl esters (CEs), phosphatidylcholines (PCs), and lysophosphatidylcholines (LPCs). TGs with high total carbon number (>50) and low total carbon number (fat diet induced obesity in mice, respectively. When the CK fraction was fed to obese mice that consumed a high-fat diet, the levels of certain lipids including LPCs and CEs became similar to those of mice fed a normal diet. Such metabolic markers can be used to better understand obesity and related diseases induced by a hyperlipidic diet. Furthermore, changes in the levels of such metabolites can be employed to assess the risk of obesity and the therapeutic effects of obesity management. PMID:25744175

  17. Hypolipidemic effect of methanol fraction of Aconitum heterophyllum wall ex Royle and the mechanism of action in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Arun Koorappally Subash

    2012-01-01

    Full Text Available Aconitum heterophyllum is an endangered Himalayan plant included in "lekhaneyagana," a pharmacological classification mentioned by Charaka in "Charakasamhita" which means reduce excess fat. The subterranean part of the plant is used for the treatment of diseases like nervous system disorders, fever, diarrhea, obesity, etc. In the present study, we are reporting the hypolipidemic effect of methanol fraction of A. heterophyllum. The methanol extract of A. heterophyllum was orally administered in diet-induced obese rats. After four weeks treatment, blood samples were collected for the estimation of serum lipids and lecithin-cholesterol acyltransferase (LCAT. Liver was collected for the assay of HMG-CoA reductase (HMGR. The fecal samples were also collected to estimate the fecal fat content. The A. heterophyllum treatment markedly lowered total cholesterol, triglycerides and apolipoprotein B concentrations in blood serum. It also showed positive effects (increase on serum high-density lipoprotein cholesterol (HDL-c and apolipoprotein A1 concentrations. On the other hand, A. heterophyllum treatment lowered HMGR activity, which helps to reduce endogenous cholesterol synthesis and also activated LCAT, helping increase in HDL-c. An increase in fecal fat content is also an indication of the hypolipidemic effect of A. heterophyllum. The significant hypolipidemic effect of A. heterophyllum may be linked to its ability to inhibit HMGR activity and block intestinal fat absorption. The increase in HDL-c may be linked to its ability to activate LCAT enzyme.

  18. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Jing, Li; Zhang, Yu; Fan, Shengjie; Gu, Ming; Guan, Yu; Lu, Xiong; Huang, Cheng; Zhou, Zhiqin

    2013-09-01

    D-limonene is a major constituent in citrus essential oil, which is used in various foods as a flavoring agent. Recently, d-limonene has been reported to alleviate fatty liver induced by a high-fat diet. Here we determined the preventive and therapeutic effects of d-limonene on metabolic disorders in mice with high-fat diet-induced obesity. In the preventive treatment, d-limonene decreased the size of white and brown adipocytes, lowered serum triglyceride (TG) and fasting blood glucose levels, and prevented liver lipid accumulations in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, d-limonene reduced serum TG, low-density lipoprotein cholesterol (LDL-c) and fasting blood glucose levels and glucose tolerance, and increased serum high-density lipoprotein cholesterol (HDL-c) in obese mice. Using a reporter assay and gene expression analysis, we found that d-limonene activated peroxisome proliferator-activated receptor (PPAR)-α signaling, and inhibited liver X receptor (LXR)-β signaling. Our data suggest that the intake of d-limonene may benefit patients with dyslipidemia and hyperglycemia and is a potential dietary supplement for preventing and ameliorating metabolic disorders. PMID:23838456

  19. Increased diet-induced fatty streak formation in female mice with deficiency of liver-derived insulin-like growth factor-I.

    Science.gov (United States)

    Svensson, Johan; Sjögren, Klara; Levin, Malin; Borén, Jan; Tivesten, Åsa; Ohlsson, Claes

    2016-06-01

    The role of endocrine IGF-I for atherosclerosis is unclear. We determined the importance of circulating, liver-derived IGF-I for fatty streak formation in mice. Mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum IGF-I reduced by approximately 80 %) and control mice received an atherogenic (modified Paigen) diet between 6 and 12 months of age. At study end, Oil Red O staining of aortic root cryosections showed increased fatty streak area and lipid deposition in female but not in male LI-IGF-I(-/-) mice compared to controls. Mac-2 staining of aortic root and measurements of CD68 mRNA level in femoral artery revealed increased macrophage accumulation in proportion to the increased fatty streak area in female LI-IGF-I(-/-) mice. Moreover, female LI-IGF-I(-/-) mice displayed increased serum cholesterol and interleukin-6 as well as increased vascular cell-adhesion molecule 1 (VCAM1) mRNA levels in the femoral artery and elevated VCAM1 protein expression in the aortic root. Thus, increased diet-induced fatty streak formation in female LI-IGF-I(-/-) mice was associated with increased serum cholesterol and signs of systemic inflammation, endothelial activation, lipid deposition, and macrophage infiltration in the vascular wall. PMID:26627099

  20. Infliximab treatment prevents hyperglycemia and the intensification of hepatic gluconeogenesis in an animal model of high fat diet-induced liver glucose overproduction

    Directory of Open Access Journals (Sweden)

    Karissa Satomi Haida

    2012-06-01

    Full Text Available The effect of infliximab on gluconeogenesis in an animal model of diet-induced liver glucose overproduction was investigated. The mice were treated with standard diet (SD group or high fat diet (HFD group. HFD group were randomly divided and treated either with saline (100 µl/dose, ip, twice a day or infliximab (10 µg in 100 µl saline per dose, ip, twice a day, i.e., 0.5 mg/kg per day. SD group also received saline. The treatment with infliximab or saline started on the first day of the introduction of the HFD and was maintained during two weeks. After this period, the mice were fasted (15 h and anesthetized. After laparotomy, blood was collected for glucose determination followed by liver perfusion in which L-alanine (5 mM was used as gluconeogenic substrate. HFD group treated with saline showed higher (p < 0.05 liver glucose production from L-alanine and fasting hyperglycemia. However, these metabolic changes were prevented by infliximab treatment. Therefore, this study suggested that infliximab could prevent the glucose overproduction and hyperglycemia related with glucose intolerance and type 2 diabetes.

  1. Hypolipidemic, antioxidant and anti-atherosclerogenic effects of aqueous extract ofZanthoxylum heitziistem bark in diet-induced hypercholesterolemic rats

    Institute of Scientific and Technical Information of China (English)

    Fidele Ntchapda; Kakesse Maguirgue; Hamadjida Adjia; Paul Faustin Seke Etet; Thophile Dimo

    2015-01-01

    Objective:To evaluate anti-dyslipidemic, antioxidant and anti-atherosclerogenic properties of this extract in diet-induced hypercholesterolemic rat, a model of metabolic syndrome-induced atherosclerosis and associated cardiovascular diseases.Methods: Normocholesterolemic (NC) male rats were divided into six groups (n=10) and fed a high-cholesterol (HC) diet for 30 days (5 groups), or normal rat chow (normal control group). Rats given a HC diet also received distilled water (disease control), the potent hypocholesterolemic agent with anti-atherosclerotic activity atorvastatin (2 mg/kg, positive control), or one of the three doses of Zanthoxylum heitzii stem bark aqueous extract tested (225, 300 and 375 mg/kg) concomitantly for four months. Signs of general toxicity, body temperature and weight, and water and food intake were monitored in live animals. After sacrifice, lipid profiles and oxidative stress markers were assessed in the blood and liver, aorta, and feces, and histopathological analysis of aorta was performed.Results:Plant extract prevented the elevation of aortic total cholesterol and triglycerides, and hepatic low density lipoprotein, very low density lipoprotein, and total cholesterol. Lipid peroxidation (TBARS) was decreased and aortic atherosclerotic plaque formation prevented.Conclusions:These observations strongly suggest that stem bark aqueous extract ofZanthoxylum heitzii has anti-atherosclerogenic properties, at least partly mediated by antioxidant and hypolipidemic effects.

  2. Hypolipidemic,antioxidant and anti-atherosclerogenic effects of aqueous extract of Zanthoxylum heitzii stem bark in diet-induced hypercholesterolemic rats

    Institute of Scientific and Technical Information of China (English)

    Fidele; Ntchapda; Kakesse; Maguirgue; Hamadjida; Adjia; Paul; Faustin; Seke; Etet; Théophile; Dimo

    2015-01-01

    Objective:To evaluate anti-dyslipidemic,antioxidant and anti-atherosclerogenic properties of this extract in diet-induced hypercholesterolemic rat.a model of metabolic syndrome-induced atherosclerosis and associated cardiovascular diseases.Methods:Normocholeslerolemic(NC) male rats were divided into six groups(n=10) and fed a high-cholesterol(HC) diet for 30 days(5 groups),or normal rat chow(normal control group).Rats given a HC diet also received distilled water(disease control),the potent hypocholcsterolcmic agent with antiatherosclerotic activity atorvastatin(2 mg/kg,positive control),or one of the three doses of Zanthoxylum heitzii stem bark aqueous extract tested(225,300 and 375 mg/kg) concomitantly for four months.Signs of general toxicity,body temperature and weight,and water and food intake were monitored in live animals.After sacrifice,lipid profiles and oxidative stress markers were assessed in the blood and liver,aorta,and feces,and histopathological analysis of aorta was performed.Results:Plant extract prevented the elevation of aortic total cholesterol and triglycerides,and hepatic low density lipoprotein,very low density lipoprotein,and total cholesterol.Lipid peroxidation(TBARS) was decreased and aortic atherosclerotic plaque formation prevented.Conclusions:These observations strongly suggest that stem bark aqueous extract of Zanthoxylum heitzii has anti-atherosclerogenic properties,at least partly mediated by antioxidant and hypolipidemic effects.

  3. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination.

    Science.gov (United States)

    Pelantová, Helena; Bugáňová, Martina; Holubová, Martina; Šedivá, Blanka; Zemenová, Jana; Sýkora, David; Kaválková, Petra; Haluzík, Martin; Železná, Blanka; Maletínská, Lenka; Kuneš, Jaroslav; Kuzma, Marek

    2016-08-15

    Metformin, vildagliptin and their combination are widely used for the treatment of diabetes, but little is known about the metabolic responses to these treatments. In the present study, NMR-based metabolomics was applied to detect changes in the urinary metabolomic profile of a mouse model of diet-induced obesity in response to these treatments. Additionally, standard biochemical parameters and the expression of enzymes involved in glucose and fat metabolism were monitored. Significant correlations were observed between several metabolites (e.g., N-carbamoyl-β-alanine, N1-methyl-4-pyridone-3-carboxamide, N1-methyl-2-pyridone-5-carboxamide, glucose, 3-indoxyl sulfate, dimethylglycine and several acylglycines) and the area under the curve of glucose concentrations during the oral glucose tolerance test. The present study is the first to present N-carbamoyl-β-alanine as a potential marker of type 2 diabetes mellitus and consequently to demonstrate the efficacies of the applied antidiabetic interventions. Moreover, the elevated acetate level observed after vildagliptin administration might reflect increased fatty acid oxidation. PMID:27164444

  4. Expression of human alpha 2-adrenergic receptors in adipose tissue of beta 3-adrenergic receptor-deficient mice promotes diet-induced obesity.

    Science.gov (United States)

    Valet, P; Grujic, D; Wade, J; Ito, M; Zingaretti, M C; Soloveva, V; Ross, S R; Graves, R A; Cinti, S; Lafontan, M; Lowell, B B

    2000-11-01

    Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass. PMID:10948198

  5. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    Eu Chia

    2010-07-01

    Full Text Available Abstract Background The metabolic syndrome, known also as the insulin resistance syndrome, refers to the clustering of several risk factors for atherosclerotic cardiovascular disease. Dyslipidaemia is a hallmark of the syndrome and is associated with a whole body reduction in the activity of lipoprotein lipase (LPL, an enzyme under the regulation of the class of nuclear receptors known as peroxisome proliferator-activated receptor (PPAR. Glycyrrhizic acid (GA, a triterpenoid saponin, is the primary bioactive constituent of the roots of the shrub Glycyrrhiza glabra. Studies have indicated that triterpenoids could act as PPAR agonists and GA is therefore postulated to restore LPL expression in the insulin resistant state. Results Oral administration of 100 mg/kg of GA to high-fat diet-induced obese rats for 28 days led to significant reduction in blood glucose concentration and improvement in insulin sensitivity as indicated by the homeostasis model assessment of insulin resistance (HOMA-IR (p Conclusion In conclusion, GA may be a potential compound in improving dyslipidaemia by selectively inducing LPL expression in non-hepatic tissues. Such up-regulation was accompanied by a GA-mediated improvement in insulin sensitivity, which may be associated with a decrease in tissue lipid deposition. The HDL-raising effect of GA suggests the antiatherosclerotic properties of GA.

  6. Rat Models of Diet-Induced Obesity and High Fat/Low Dose Streptozotocin Type 2 Diabetes: Effect of Reversal of High Fat Diet Compared to Treatment with Enalapril or Menhaden Oil on Glucose Utilization and Neuropathic Endpoints

    OpenAIRE

    Amey Holmes; Coppey, Lawrence J.; Eric P. Davidson; Yorek, Mark A.

    2015-01-01

    We examined whether reversal of high fat diet, stimulating weight loss, compared to two treatments previously shown to have beneficial effects, could improve glucose utilization and peripheral neuropathy in animal models of obesity and type 2 diabetes. Rats were fed a high fat diet and treated with a low dose of streptozotocin to create models of diet induced obesity or type 2 diabetes, respectively. Afterwards, rats were transferred to a normal diet or treated with enalapril or dietary enric...

  7. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  8. RADIO FREQUENCY ATTENUATOR

    Science.gov (United States)

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  9. Recombinant adeno-associated virus-mediated human kallikrein gene therapy prevents high-salt diet-induced hypertension without effect on basal blood pressure

    Institute of Scientific and Technical Information of China (English)

    Jiang-tao YAN; Tao WANG; Juan LI; Xiao XIAO; Dao-wen WANG

    2008-01-01

    Aim: To investigate the effects of the expression of human kallikrein (HK) on basal level blood pressure and high-salt diet-induced hypertension. Methods: We delivered the recombinant adeno-associated viral (rAAV)-mediated HK (rAAV-HK) gene and rAAV-LacZ (as the control) to normal, adult Sprague-Dawley rats. The animals were administered a normal diet in the first 4 weeks, followed by a high-salt diet. The expression of HK in the rats was assessed by ELISA and RT-PCR. Blood pressure and Na~ and K~ urinary excretion were monitored. Results: Under the normal diet, no obvious changes in blood pressure and Na+ and K+ urinary excretion were observed. When the high-salt diet was administered, sys-tolic blood pressure in the control animals receiving rAAV-LacZ increased from 122.3±1. 13 mmHg to a stable 142.4±1.77 mmHg 8 weeks after the high-salt diet. In contrast, there was no significant increase in the blood pressure in the rAAV-HK-treated group, in which the blood pressure remained at 121.9±1.73 mmHg. In the rAAV-HK-treated group, Na+ and K+ urinary excretion were higher compared to those of the control group. The morphological analysis showed that HK delivery remarkably protected against renal damage induced by a high-salt intake. Conclusion: Our study indicates that rAAV-mediated human tissue kallikrein gene delivery is a potentially safe method for the long-term treatment of hypertension. More importantly, it could be applied in the salt-sensitive population to prevent the occurrence of hypertension.

  10. Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in c57bl/6 mice through activating the PPARα and GLUT4 pathway.

    Directory of Open Access Journals (Sweden)

    Xiaobo Ding

    Full Text Available OBJECTIVE: Metabolic syndrome is a serious health problem in both developed and developing countries. The present study investigated the anti-metabolic disorder effects of different pomelo varieties on obese C57BL/6 mice induced by high-fat (HF diet. DESIGN: The peels of four pomelo varieties were extracted with ethanol and the total phenols and flavonoids content of these extracts were measured. For the animal experiment, the female C57BL/6 mice were fed with a Chow diet or a HF diet alone or supplemented with 1% (w/w different pomelo peel extracts for 8 weeks. Body weight and food intake were measured every other day. At the end of the treatment, the fasting blood glucose, glucose tolerance and insulin (INS tolerance test, serum lipid profile and insulin levels, and liver lipid contents were analyzed. The gene expression analysis was performed with a quantitative real-time PCR assay. RESULT: The present study showed that the Citrus grandis liangpinyou (LP and beibeiyou (BB extracts were more potent in anti-metabolic disorder effects than the duanshiyou (DS and wubuyou (WB extracts. Both LP and BB extracts blocked the body weight gain, lowered fasting blood glucose, serum TC, liver lipid levels, and improved glucose tolerance and insulin resistance, and lowered serum insulin levels in HF diet-fed mice. Compared with the HF group, LP and BB peel extracts increased the mRNA expression of PPARα and its target genes, such as FAS, PGC-1α and PGC-1β, and GLUT4 in the liver and white adipocyte tissue (WAT. CONCLUSION: We found that that pomelo peel extracts could prevent high-fat diet-induced metabolic disorders in C57BL/6 mice through the activation of the PPARα and GLUT4 signaling. Our results indicate that pomelo peels could be used as a dietary therapy and the potential source of drug for metabolic disorders.

  11. Hypoglycemic effect of polysaccharide enriched extract of Astragalus membranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism.

    Science.gov (United States)

    Mao, Xian-qing; Yu, Feng; Wang, Nian; Wu, Yong; Zou, Feng; Wu, Ke; Liu, Min; Ouyang, Jing-ping

    2009-05-01

    Our previous studies found that Astragalus polysaccharide (APS) exerts insulin-sensitizing and hypoglycemic activities in type 2 diabetic (T2DM) rats. The present study was designed to further confirm the hypoglycemic effect of APS and to investigate its possible mechanism underlying the improvement of insulin resistance in vivo and in vitro. Diet-induced insulin resistant C57BL/6J mice treated with or without APS (orally, 700 mg/kg/d) for 8 weeks were analyzed and compared. Simultaneously, an insulin resistant C(2)C(12) cell model and an ER stressed HepG2 cell model were established and incubated with or without APS (200 microg/ml) for 24h respectively. Systematic insulin sensitivity was measured with an insulin-tolerance test (ITT) and an homeostasis model assessment (HOMA IR) index. Metabolic stress variation was analyzed for biochemical parameters and pathological variations. The expression and activity of protein tyrosine phosphatase 1B (PTP1B), which plays a very important role in insulin signaling and in the ER stress response, was measured by immunoprecipitation and Western blot. The ER stress response was analyzed through XBP1 transcription and splicing by real-time PCR. APS could alleviate insulin resistance and ER stress induced by high glucose in vivo and in vitro, respectively. The hyperglycemia, hypolipemia, and hyperinsulinemia status were controlled with APS therapy. Insulin action in the liver of insulin resistant mice was restored significantly with APS administration. APS enhanced adaptive capacity of the ER and promoted insulin signaling by the inhibition of the expression and activity of PTP1B. Furthermore, the anti-obesity effect and hypolipidemia effects of APS were probably due partly to decreasing the leptin resistance of mice, which would positively couple with the normalization of plasma insulin levels. We have shown that APS has beneficial effects on insulin resistance and hyperglycemia. The mechanism is related to the alleviation of ER

  12. Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats.

    Science.gov (United States)

    Huang, Hui-Ling; Hong, Ya-Wen; Wong, You-Hong; Chen, Ying-Nien; Chyuan, Jong-Ho; Huang, Ching-Jang; Chao, Pei-Min

    2008-02-01

    Bitter melon (Momordica charantia; BM) has been shown to ameliorate diet-induced obesity and insulin resistance. To examine the effect of BM supplementation on cell size and lipid metabolism in adipose tissues, three groups of rats were respectively fed a high-fat diet supplemented without (HF group) or with 5 % lyophilised BM powder (HFB group), or with 0.01 % thiazolidinedione (TZD) (HFT group). A group of rats fed a low-fat diet was also included as a normal control. Hyperinsulinaemia and glucose intolerance were observed in the HF group but not in HFT and HFB groups. Although the number of large adipocytes (>180 microm) of both the HFB and HFT groups was significantly lower than that of the HF group, the adipose tissue mass, TAG content and glycerol-3-phosphate dehydrogenase activity of the HFB group were significantly lower than those of the HFT group, implying that BM might reduce lipogenesis in adipose tissue. Experiment 2 was then conducted to examine the expression of lipogenic genes in adipose tissues of rats fed low-fat, HF or HFB diets. The HFB group showed significantly lower mRNA levels of fatty acid synthase, acetyl-CoA carboxylase-1, lipoprotein lipase and adipocyte fatty acid-binding protein than the HF group (P < 0.05). These results indicate BM can reduce insulin resistance as effective as the anti-diabetic drug TZD. Furthermore, BM can suppress the visceral fat accumulation and inhibit adipocyte hypertrophy, which may be associated with markedly down regulated expressions of lipogenic genes in the adipose. PMID:17651527

  13. The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Xingrong Zhao

    Full Text Available We evaluated the effect of an oral administration of a plant-derived lactic acid bacterium, Pediococcus pentosaceus LP28 (LP28, on metabolic syndrome by using high fat diet-induced obese mice. The obese mice were divided into 2 groups and fed either a high fat or regular diet for 8 weeks. Each group was further divided into 3 groups, which took LP28, another plant-derived Lactobacillus plantarum SN13T (SN13T or no lactic acid bacteria (LAB. The lean control mice were fed a regular diet without inducing obesity prior to the experiment. LP28 reduced body weight gain and liver lipid contents (triglyceride and cholesterol, in mice fed a high fat diet for 8 weeks (40%, 54%, and 70% less than those of the control group without LAB, and P = 0.018, P<0.001, and P = 0.021, respectively, whereas SN13T and the heat treated LP28 at 121°C for 15 min were ineffective. Abdominal visceral fat in the high fat diet mice fed with LP28 was also lower than that without LAB by 44%, although it was not significant but borderline (P = 0.076. The sizes of the adipocytes and the lipid droplets in the livers were obviously decreased. A real-time PCR analyses showed that lipid metabolism-related genes, such as CD36 (P = 0.013, SCD1 encoding stearoyl-CoA desaturase 1 (not significant but borderline, P = 0.066, and PPARγ encoding peroxisome proliferator-activated receptor gamma (P = 0.039, were down-regulated by taking LP28 continuously, when compared with those of the control group. In conclusion, LP28 may be a useful LAB strain for the prevention and reduction of the metabolic syndrome.

  14. Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats.

    Science.gov (United States)

    Lee, Seung-Min; Han, Hye Won; Yim, Seung Yun

    2015-02-01

    We sought to evaluate whether a soy milk and fiber mixture could improve high cholesterol diet-induced changes in gut microbiota and inflammation. Sprague-Dawley rats were administered four different diets: CTRL (AIN76A diet), CHOL (AIN76A with 1% (w/w) cholesterol), SOY (CHOL diet, 20% of which was substituted with freeze-dried soy milk), or S.FIBER (SOY diet with 1.2% (w/w) psyllium, 6.2% (w/w) resistant maltodextrin, and 6.2% (w/w) chicory powder). A lipid profile and gene expression analysis demonstrated that SOY and S.FIBER improved the serum HDL-cholesterol and colonic expression levels of genes in tight junction (ZO-1 and occludin) and inflammation-related (IL-1β, IL-10, and Foxp3) proteins. S.FIBER lowered the serum MCP-1 concentration as well. A gut microbial analysis revealed that CHOL increased the ratio of Firmicutes to Bacteroidetes (F/B ratio). SOY increased the F/B ratio due to an increased proportion of Lactobacillus spp. S.FIBER greatly decreased the F/B ratio. Allobaculum spp. and Parabacteroides spp. exhibited a negative correlation with colonic expression of anti-inflammatory genes such as Foxp3, IL-10, occludin and ZO-1. CHOL increased the relative proportions of Allobaculum spp. and Parabacteroides spp. in the gut, while SOY and S.FIBER decreased these proportions. Diets containing soy milk and fiber mixtures could be beneficial by limiting CHOL-induced colonic inflammation and rescuing CHOL-disturbed gut microbiota. PMID:25477035

  15. Activation of pregnane X receptor by pregnenolone 16 α-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yongjie Ma

    Full Text Available Pregnane X receptor (PXR is known to function as a xenobiotic sensor to regulate xenobiotic metabolism through selective transcription of genes responsible for maintaining physiological homeostasis. Here we report that the activation of PXR by pregnenolone 16α-carbonitrile (PCN in AKR/J mice can prevent the development of high-fat diet-induced obesity and insulin resistance. The beneficial effects of PCN treatment are seen with reduced lipogenesis and gluconeogenesis in the liver, and lack of hepatic accumulation of lipid and lipid storage in the adipose tissues. RT-PCR analysis of genes involved in gluconeogenesis, lipid metabolism and energy homeostasis reveal that PCN treatment on high-fat diet-fed mice reduces expression in the liver of G6Pase, Pepck, Cyp7a1, Cd36, L-Fabp, Srebp, and Fas genes and slightly enhances expression of Cyp27a1 and Abca1 genes. RT-PCR analysis of genes involved in adipocyte differentiation and lipid metabolism in white adipose tissue show that PCN treatment reduces expression of Pparγ2, Acc1, Cd36, but increases expression of Cpt1b and Pparα genes in mice fed with high-fat diet. Similarly, PCN treatment of animals on high-fat diet increases expression in brown adipose tissue of Pparα, Hsl, Cpt1b, and Cd36 genes, but reduces expression of Acc1 and Scd-1 genes. PXR activation by PCN in high-fat diet fed mice also increases expression of genes involved in thermogenesis in brown adipose tissue including Dio2, Pgc-1α, Pgc-1β, Cidea, and Ucp-3. These results verify the important function of PXR in lipid and energy metabolism and suggest that PXR represents a novel therapeutic target for prevention and treatment of obesity and insulin resistance.

  16. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage.

    Science.gov (United States)

    Becattini, Barbara; Zani, Fabio; Breasson, Ludovic; Sardi, Claudia; D'Agostino, Vito Giuseppe; Choo, Min-Kyung; Provenzani, Alessandro; Park, Jin Mo; Solinas, Giovanni

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1(-/-)) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1(-/-) mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.-Becattini, B., Zani, F., Breasson, L., Sardi, C., D'Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage. PMID:27230858

  17. Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity.

    Directory of Open Access Journals (Sweden)

    Carmen Mingorance

    Full Text Available AIMS: Obesity is a primary contributor to acquired insulin resistance leading to the development of type 2 diabetes and cardiovascular alterations. The carnitine derivate, propionyl-L-carnitine (PLC, plays a key role in energy control. Our aim was to evaluate metabolic and cardiovascular effects of PLC in diet-induced obese mice. METHODS: C57BL/6 mice were fed a high-fat diet for 9 weeks and then divided into two groups, receiving either free- (vehicle-HF or PLC-supplemented water (200 mg/kg/day during 4 additional weeks. Standard diet-fed animals were used as lean controls (vehicle-ST. Body weight and food intake were monitored. Glucose and insulin tolerance tests were assessed, as well as the HOMA(IR, the serum lipid profile, the hepatic and muscular mitochondrial activity and the tissue nitric oxide (NO liberation. Systolic blood pressure, cardiac and endothelial functions were also evaluated. RESULTS: Vehicle-HF displayed a greater increase of body weight compared to vehicle-ST that was completely reversed by PLC treatment without affecting food intake. PLC improved the insulin-resistant state and reversed the increased total cholesterol but not the increase in free fatty acid, triglyceride and HDL/LDL ratio induced by high-fat diet. Vehicle-HF exhibited a reduced cardiac output/body weight ratio, endothelial dysfunction and tissue decrease of NO production, all of them being improved by PLC treatment. Finally, the decrease of hepatic mitochondrial activity by high-fat diet was reversed by PLC. CONCLUSIONS: Oral administration of PLC improves the insulin-resistant state developed by obese animals and decreases the cardiovascular risk associated to this metabolic alteration probably via correction of mitochondrial function.

  18. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice.

    Science.gov (United States)

    Zhao, Yantao; Sedighi, Rashin; Wang, Pei; Chen, Huadong; Zhu, Yingdong; Sang, Shengmin

    2015-05-20

    In this study, we investigated the preventive effects of carnosic acid (CA) as a major bioactive component in rosemary extract (RE) on high-fat-diet-induced obesity and metabolic syndrome in mice. The mice were given a low-fat diet, a high-fat diet or a high-fat diet supplemented with either 0.14% or 0.28% (w/w) CA-enriched RE (containing 80% CA, RE#1L and RE#1H), or 0.5% (w/w) RE (containing 45% CA, RE#2), for a period of 16 weeks. There was the same CA content in the RE#1H and RE#2 diets and half of this amount in the RE#1L diet. The dietary RE supplementation significantly reduced body weight gain, percent of fat, plasma ALT, AST, glucose, insulin levels, liver weight, liver triglyceride, and free fatty acid levels in comparison with the mice fed with a HF diet without RE treatment. RE administration also decreased the levels of plasma and liver malondialdehyde, advanced glycation end products (AGEs), and the liver expression of receptor for AGE (RAGE) in comparison with those for mice of the HF group. Histological analyses of liver samples showed decreased lipid accumulation in hepatocytes in mice administrated with RE in comparison with that of HF-diet-fed mice. Meanwhile, RE administration enhanced fecal lipid excretion to inhibit lipid absorption and increased the liver GSH/GSSG ratio to perform antioxidant activity compared with HF group. Our results demonstrate that rosemary is a promising dietary agent to reduce the risk of obesity and metabolic syndrome. PMID:25929334

  19. Citrus aurantium and Rhodiola rosea in combination reduce visceral white adipose tissue and increase hypothalamic norepinephrine in a rat model of diet-induced obesity.

    Science.gov (United States)

    Verpeut, Jessica L; Walters, Amy L; Bello, Nicholas T

    2013-06-01

    Extracts from the immature fruit of Citrus aurantium are often used for weight loss but are reported to produce adverse cardiovascular effects. Root extracts of Rhodiola rosea have notable antistress properties. The hypothesis of these studies was that C aurantium (6% synephrine) and R rosea (3% rosavins, 1% salidroside) in combination would improve diet-induced obesity alterations in adult male Sprague-Dawley rats. In normal-weight animals fed standard chow, acute administration of C aurantium (1-10 mg/kg) or R rosea (2-20 mg/kg) alone did not reduce deprivation-induced food intake, but C aurantium (5.6 mg/kg) + R rosea (20 mg/kg) produced a 10.5% feeding suppression. Animals maintained (13 weeks) on a high-fat diet (60% fat) were exposed to 10-day treatments of C aurantium (5.6 mg/kg) or R rosea (20 mg/kg) alone or in combination. Additional groups received vehicle (2% ethanol) or were pair fed to the C aurantium + R rosea group. Although high-fat diet intake and weight loss were not influenced, C aurantium + R rosea had a 30% decrease in visceral fat weight compared with the other treatments. Only the C aurantium group had an increased heart rate (+7%) compared with vehicle. In addition, C aurantium + R rosea administration resulted in an elevation (+15%) in hypothalamic norepinephrine and an elevation (+150%) in frontal cortex dopamine compared with the pair-fed group. These initial findings suggest that treatments of C aurantium + R rosea have actions on central monoamine pathways and have the potential to be beneficial for the treatment of obesity. PMID:23746567

  20. A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents.

    Directory of Open Access Journals (Sweden)

    Louise S Dalbøge

    Full Text Available Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO and hypercholesterolemia Golden Syrian hamster model.Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days, normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4 inhibitor, linagliptin (3.0 mg/kg, PO, QD also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day or neuromedin U (NMU, 1.5 mg/kg/day, continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.

  1. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% versus controls and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this

  2. Corn Gluten Hydrolysate Affects the Time-Course of Metabolic Changes Through Appetite Control in High-Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Lee, Hyojung; Lee, Hyo Jin; Kim, Ji Yeon; Kwon, Oran

    2015-12-01

    This study first investigated the effects of corn gluten hydrolysate (CGH) (1.5 g/day) administration for 7 days on appetite-responsive genes in lean Sprague-Dawley (SD) rats. In a second set of experiments, the metabolic changes occurring at multiple time points over 8 weeks in response to CGH (35.33% wt/wt) were observed in high-fat (HF, 60% of energy as fat) diet-fed SD rats. In lean rats, the hypothalamus neuropeptide-Y and proopiomelanocortin mRNA levels of the CGH group were significantly changed in response to CGH administration. In the second part of the study, CGH treatment was found to reduce body weight and perirenal and epididymal fat weight. CGH also prevented an increase in food intake at 2 weeks and lowered plasma leptin and insulin levels in comparison with the HF group. This reduction in the plasma and hepatic lipid levels was followed by improved insulin resistance, and the beneficial metabolic effects of CGH were also partly related to increases in plasma adiponectin levels. The Homeostasis Model of Assessment - Insulin Resistance (HOMA-IR), an index of insulin resistance, was markedly improved in the HF-CGH group compared with the HF group at 6 weeks. According to the microarray results, adipose tissue mRNA expression related to G-protein coupled receptor protein signaling pathway and sensory perception was significantly improved after 8 weeks of CGH administration. In conclusion, the present findings suggest that dietary CGH may be effective for improving hyperglycemia, dyslipidemia and insulin resistance in diet-induced obese rats as well as appetite control in lean rats. PMID:26549503

  3. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis.

    Science.gov (United States)

    Bashiri, Amir; Nesan, Dinushan; Tavallaee, Ghazaleh; Sue-Chue-Lam, Ian; Chien, Kevin; Maguire, Graham F; Naples, Mark; Zhang, Jing; Magomedova, Lilia; Adeli, Khosrow; Cummins, Carolyn L; Ng, Dominic S

    2016-07-01

    Non-alcoholic steatohepatitis (NASH), is the form of non-alcoholic fatty liver disease posing risk to progress into serious long term complications. Human and pre-clinical models implicate cellular cholesterol dysregulation playing important role in its development. Mouse model studies suggest synergism between dietary cholesterol and fat in contributing to NASH but the mechanisms remain poorly understood. Our laboratory previously reported the primary importance of hepatic endoplasmic reticulum cholesterol (ER-Chol) in regulating hepatic ER stress by comparing the responses of wild type, Ldlr-/-xLcat+/+ and Ldlr-/-xLcat-/- mice, to a 2% high cholesterol diet (HCD). Here we further investigated the roles of ER-Chol and ER stress in HFHS diet-induced NASH using the same strains. With HFHS diet feeding, both WT and Ldlr-/-xLcat+/+ accumulate ER-Chol in association with ER stress and inflammasome activation but the Ldlr-/-xLcat-/- mice are protected. By contrast, all three strains accumulate cholesterol crystal, in correlation with ER-Chol, albeit less so in Ldlr-/-xLcat-/- mice. By comparison, HCD feeding per se (i) is sufficient to promote steatosis and activate inflammasomes, and (ii) results in dramatic accumulation of cholesterol crystal which is linked to inflammasome activation in Ldlr-/-xLcat-/- mice, independent of ER-Chol. Our data suggest that both dietary fat and cholesterol each independently promote steatosis, cholesterol crystal accumulation and inflammasome activation through distinct but complementary pathways. In vitro studies using palmitate-induced hepatic steatosis in HepG2 cells confirm the key roles by cellular cholesterol in the induction of steatosis and inflammasome activations. These novel findings provide opportunities for exploring a cellular cholesterol-focused strategy for treatment of NASH. PMID:27090939

  4. Effects of treadmill exercise on skeletal muscle mTOR signaling pathway in high-fat diet-induced obese mice.

    Science.gov (United States)

    Woo, Jin Hee; Shin, Ki Ok; Lee, Yul Hyo; Jang, Ki Soeng; Bae, Ju Yong; Roh, Hee Tae

    2016-04-01

    [Purpose] The aim of this study was to investigate the effects of regular treadmill exercise on skeletal muscle Rictor-Akt and mTOR-Raptor-S6K1 signaling pathway in high-fat diet-induced obese mice. [Subjects and Methods] Four- week-old C57BL/6 mice were adopted and classified into normal diet group (ND, n = 10), normal diet and training group (NDT, n = 10), high-fat diet group (HF, n = 10), and high-fat diet and training group (HFT, n = 10). The exercise program consisted of a treadmill exercise provided at low intensity for 1-4 weeks, and moderate intensity for 5-8 weeks. [Results] The Western blot method was used to measure the expression of mTOR, Raptor, S6K1, Rictor, and Akt proteins in the soleus muscle. mTOR levels were significantly higher in the HF group than in the ND and NDT groups. Raptor/mTORC1 and S6K1 levels were significantly higher in the HF group than in all the other groups. Akt levels were significantly lower in the HF group than in the NDT group. The risk of obesity may be associated with the overactivation of the mTOR-Raptor-S6K1 signaling pathway and a decrease in Akt levels. [Conclusion] This study also indicates that performing aerobic exercise may be associated with the downregulation of the mTOR-Raptor-S6K1 pathway. PMID:27190464

  5. Effects of physical exercise on the P38MAPK/REDD1/14-3-3 pathways in the myocardium of diet-induced obesity rats.

    Science.gov (United States)

    Pieri, B L S; Souza, D R; Luciano, T F; Marques, S O; Pauli, J R; Silva, A S R; Ropelle, E R; Pinho, R A; Lira, F S; De Souza, C T

    2014-08-01

    Obesity is associated with myocardial insulin resistance and impairment of the mammalian target of rapamycin (mTOR) signaling pathway. The activation of the mTOR cascade by exercise has been largely shown in skeletal muscle, but insufficiently analyzed in myocardial tissue. In addition, little is known regarding the mTOR upstream molecules in the hearts of obese animals and even less about the role of exercise in this process. Thus, the present study was aimed to evaluate the effects of physical exercise on P38 Mitogen-Activated Protein Kinase (P38MAPK) phosphorylation and the REDD1 (regulated in development and DNA damage responses 1) and 14-3-3 protein levels in the myocardium of diet-induced obesity (DIO) rats. After achievement of DIO and insulin resistance, Wistar rats were divided in 2 groups: sedentary obese rats and obese rats performed treadmill running (50-min/day, 5 days per week velocity of 1.0 km/h for 2 months). Forty-eight hours after the final physical exercise, the rats were killed, and the myocardial tissue was removed for Western blot analysis. DIO increased the REDD1 protein levels and reduced the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k (p70 ribosomal S6 protein kinase), and 4EBP1 (4E-binding protein-1) phosphorylation. Interestingly, physical exercise reduced the REDD1 protein levels and increased the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k, and 4EBP1 phosphorylation. Moreover, exercise increased the REDD1/14-3-3 association in the heart. Our results indicate that the phospho-P38MAPK, REDD1, and 14-3-3 protein levels were reduced in the myocardium of obese rats and that physical exercise increased the protein levels of these molecules. PMID:24691733

  6. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Wook-Dong Kim

    Full Text Available AIM: Glucagon is an essential regulator of hepatic glucose production (HGP, which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR, NPB112, on glucose homeostasis in diet-induced obese (DIO mice. METHODS: The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. RESULTS: Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. CONCLUSIONS: A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.

  7. Dietary supplementation with phytosterol and ascorbic acid reduces body mass accumulation and alters food transit time in a diet-induced obesity mouse model

    Directory of Open Access Journals (Sweden)

    Kozlowski Petri

    2011-06-01

    Full Text Available Abstract Previous research indicates that animals fed a high fat (HF diet supplemented with disodium ascorbyl phytostanyl phosphate (DAPP exhibit reduced mass accumulation when compared to HF control. This compound is a water-soluble phytostanol ester and consists of a hydrophobic plant stanol covalently bonded to ascorbic acid (Vitamin C. To provide insight into the mechanism of this response, we examined the in vivo effects of a high fat diet supplemented with ascorbic acid (AA in the presence and absence of unesterified phytosterols (PS, and set out to establish whether the supplements have a synergistic effect in a diet-induced obesity mouse model. Our data indicate that HF diet supplementation with a combination of 1% w/w phytosterol and 1% w/w ascorbic acid results in reduced mass accumulation, with mean differences in absolute mass between PSAA and HF control of 10.05%; and differences in mass accumulation of 21.6% (i.e. the PSAA group gained on average 21% less mass each week from weeks 7-12 than the HF control group. In our previous study, the absolute mass difference between the 2% DAPP and HF control was 41%, while the mean difference in mass accumulation between the two groups for weeks 7-12 was 67.9%. Mass loss was not observed in animals supplemented with PS or AA alone. These data suggest that the supplements are synergistic with respect to mass accumulation, and the esterification of the compounds further potentiates the response. Our data also indicate that chronic administration of PS, both in the presence and absence of AA, results in changes to fecal output and food transit time, providing insight into the possibility of long-term changes in intestinal function related to PS supplementation.

  8. The Effects of a Hypocaloric Diet on Diet-Induced Thermogenesis and Blood Hormone Response in Healthy Male Adults: A Pilot Study.

    Science.gov (United States)

    Ishii, Shunsuke; Osaki, Noriko; Shimotoyodome, Akira

    2016-01-01

    Calorie restriction is a common strategy for weight loss and management. Consumption of food and nutrients stimulates diet-induced thermogenesis (DIT), as well as pancreatic and gastrointestinal hormone secretion that may regulate energy metabolism. Yet, little is known about the impact of hypocaloric diets on energy metabolism-related parameters. In this study, we assessed the effects of hypocaloric diets on hormonal variance in relation to DIT in healthy adults. Ten healthy male adults were enrolled in a randomized crossover study comprising three meal trials. Each subject was given a meal of 200 (extremely hypocaloric), 400 (moderately hypocaloric), or 800 kcal (normocaloric). Postprandial blood variables and energy expenditure were measured for 4 h (after the 200- and 400-kcal meals) or 6 h (after the 800-kcal meal). DIT and postprandial changes in blood pancreatic peptide and ghrelin were significantly smaller after the extremely or moderately hypocaloric diet than after the normocaloric diet but were similar between the hypocaloric diets. Postprandial blood insulin, amylin, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide type-1 (GLP-1) increased in a calorie-dependent manner. Thermogenic efficiency (DIT per energy intake) was negatively correlated with the maximum blood level (Cmax) (p=0.01) and incremental area under the curve (p=0.01) of the blood GIP response. Calorie restriction thus leads to hormonal responses and lower DIT in healthy adults. Extreme calorie restriction, however, led to greater thermogenic efficiency compared with moderate calorie restriction. The postprandial GIP response may be a good predictor of postprandial thermogenic efficiency. PMID:27117850

  9. Attenuator And Conditioner

    Science.gov (United States)

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  10. Protection from Experimental Cerebral Malaria with a Single Dose of Radiation-Attenuated, Blood-Stage Plasmodium berghei Parasites

    OpenAIRE

    Gerald, Noel J.; Majam, Victoria; Mahajan, Babita; Kozakai, Yukiko; Kumar, Sanjai

    2011-01-01

    Background Whole malaria parasites are highly effective in inducing immunity against malaria. Due to the limited success of subunit based vaccines in clinical studies, there has been a renewed interest in whole parasite-based malaria vaccines. Apart from attenuated sporozoites, there have also been efforts to use live asexual stage parasites as vaccine immunogens. Methodology and Results We used radiation exposure to attenuate the highly virulent asexual blood stages of the murine malaria par...

  11. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    International Nuclear Information System (INIS)

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis

  12. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  13. Identification of murine complement receptor type 2.

    OpenAIRE

    Fingeroth, J D; Benedict, M A; Levy, D.N.; Strominger, J L

    1989-01-01

    A rabbit antiserum reactive with the human complement component C3d/Epstein-Barr virus receptor (complement receptor type 2, CR2) immunoprecipitates a Mr 155,000 murine B-cell surface antigen. The apparent molecular weight and cellular distribution of this murine antigen are similar to those of human CR2. Cells expressing the murine protein bind sheep erythrocytes coated with antibody and murine C1-C3d but do not bind Epstein-Barr virus at all. The monospecific antiserum to human CR2 together...

  14. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: Glucagon-like peptide-1 (GLP-1 is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg for 12 weeks. Body weight, body mass index (BMI, food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various

  15. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Si Tan

    Full Text Available INTRODUCTION: Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle fruit extract (FME on high-fat diet-induced C57BL/6 obese mice. METHODS: The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow, high-fat diet (HF, and high-fat diet with 1% (w/w extract of kumquat (HF+FME for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. RESULTS: In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC, serum low density lipoprotein cholesterol (LDL-c levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG, serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. CONCLUSION: Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  16. Saturated high-fat diet-induced obesity increases adenylate cyclase of myocardial β-adrenergic system and does not compromise cardiac function.

    Science.gov (United States)

    Vileigas, Danielle F; de Deus, Adriana F; da Silva, Danielle C T; de Tomasi, Loreta C; de Campos, Dijon H S; Adorni, Caroline S; de Oliveira, Scarlet M; Sant'Ana, Paula G; Okoshi, Katashi; Padovani, Carlos R; Cicogna, Antonio C

    2016-09-01

    Obesity is a worldwide pandemic associated with high incidence of cardiovascular disease. The mechanisms by which the obesity leads cardiac dysfunction are not fully elucidated and few studies have evaluated the relationship between obesity and proteins involved in myocardial β-adrenergic (βA) system. The purpose of this study was to evaluate the cardiac function and βA pathway components in myocardium of obese rats. Male Wistar rats were distributed into two groups: control (n = 17; standard diet) and obese (n = 17; saturated high-fat diet) fed for 33 weeks. Nutritional profile and comorbidities were assessed. Cardiac structure and function was evaluated by macroscopic postmortem, echocardiographic and isolated papillary muscle analyzes. Myocardial protein expression of β1- and β2-adrenergic receptors, Gαs protein, adenylate cyclase (AC) and protein kinase A (PKA) was performed by Western blot. Cardiac cyclic adenosine monophosphate (cAMP) levels and PKA activity were assessed by ELISA Obese rats showed increased adiposity index (P < 0.001) and several comorbidities as hypertension, glucose intolerance, insulin resistance, and dyslipidemia compared with control rats. Echocardiographic assessment revealed increased left atrium diameter (C: 4.98 ± 0.38 vs. Ob: 5.47 ± 0.53, P = 0.024) and posterior wall shortening velocity (C: 37.1 ± 3.6 vs. Ob: 41.8 ± 3.8, P = 0.007) in obese group. Papillary muscle evaluation indicated that baseline data and myocardial responsiveness to isoproterenol stimulation were similar between the groups. Protein expression of myocardial AC was higher in obese group than in the control (C: 1.00 ± 0.21 vs. Ob: 1.25 ± 0.10, P = 0.025), whereas the other components were unchanged. These results suggest that saturated high-fat diet-induced obesity was not effective in triggering cardiac dysfunction and impair the beta-adrenergic signaling. PMID:27582064

  17. Multiphoton Imaging of Ultrasound Bioeffects in the Murine Brain

    Science.gov (United States)

    Raymond, Scott; Skoch, Jesse; Bacskai, Brian; Hynynen, Kullervo

    2006-05-01

    The purpose of this study was to demonstrate the feasibility of multiphoton imaging in the murine brain during exposure to ultrasound. Our experimental setup coupled ultrasound through the ventral surface of the mouse while allowing imaging through a cranial window from the dorsal surface. Field attenuation was estimated by scanning the field after insertion of a freshly sacrificed mouse; beam profile and peak position were preserved, suggesting adequate targeting for imaging experiments. C57 mice were imaged with a Biorad multiphoton microscope while being exposed to ultrasound (f = 1.029 MHz, peak pressure ˜ 200 kPa, average power ˜ 0.18 W) with IV injection of Optison. We observed strong vasoconstriction coincident with US and Optison, as well as permeabilization of the blood-brain barrier.

  18. Radiofrequency attenuator and method

    Science.gov (United States)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  19. Murine Typhus and Febrile Illness, Nepal

    OpenAIRE

    Zimmerman, Mark D.; Murdoch, David R.; Rozmajzl, Patrick J.; Basnyat, Buddha; Woods, Christopher W.; Richards, Allen L.; Belbase, Ram Hari; Hammer, David A.; Anderson, Trevor P.; Reller, L. Barth

    2008-01-01

    Murine typhus was diagnosed by PCR in 50 (7%) of 756 adults with febrile illness seeking treatment at Patan Hospital in Kathmandu, Nepal. Of patients with murine typhus, 64% were women, 86% were residents of Kathmandu, and 90% were unwell during the winter. No characteristics clearly distinguished typhus patients from those with blood culture–positive enteric fever.

  20. Activation of LXRs using the synthetic agonist GW3965 represses the production of pro-inflammatory cytokines by murine mast cells

    Directory of Open Access Journals (Sweden)

    Satoshi Nunomura

    2015-09-01

    Conclusions: These findings demonstrate, for the first time, that the activation of LXRs by GW3965 attenuates the antigen- or LPS-induced production of pro-inflammatory cytokines, such as IL-1α and IL-1β, in murine MCs and that LXRβ plays an important role in the LXR-mediated repression of cytokine production.

  1. Lemon Polyphenols Suppress Diet-induced Obesity by Up-Regulation of mRNA Levels of the Enzymes Involved in β-Oxidation in Mouse White Adipose Tissue

    OpenAIRE

    Fukuchi, Yoshiko; Hiramitsu, Masanori; Okada, Miki; Hayashi, Sanae; Nabeno, Yuka; Osawa, Toshihiko; Naito, Michitaka

    2008-01-01

    The aim of this study was to investigate the effect of dietary lemon polyphenols on high-fat diet-induced obesity in mice, and on the regulation of the expression of the genes involved in lipid metabolism to elucidate the mechanisms. Mice were divided into three groups and fed either a low fat diet (LF) or a high fat diet (HF) or a high fat diet supplemented with 0.5% w/w lemon polyphenols (LP) extracted from lemon peel for 12 weeks. Body weight gain, fat pad accumulation, the development of ...

  2. Pressure surge attenuator

    International Nuclear Information System (INIS)

    A pressure surge attenuation arrangement comprises crushable metal foam disposed adjacent regions adapted to be expanded by a pressure surge. In a pipe system such region consists of a thin walled inner pipe surrounded by a housing with crushable metal foam disposed in the space between the housing and the inner pipe. (author)

  3. Tritium Attenuation by Distillation

    International Nuclear Information System (INIS)

    The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing

  4. Natural attenuation of herbicides

    DEFF Research Database (Denmark)

    Tuxen, Nina; Højberg, Anker Lajer; Broholm, Mette Martina;

    2002-01-01

    A field injection experiment in a sandy, aerobic aquifer showed that two phenoxy acids MCPP (mecoprop) and dichlorprop were degraded within I in downgradient of the injection wells after an apparent lag period. The plume development and microbial measurements indicated that microbial growth gover...... observations may be important for application of natural attenuation as a remedy in field scale systems....

  5. The lysyl oxidase inhibitor (β-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats.

    Science.gov (United States)

    Martínez-Martínez, Ernesto; Rodríguez, Cristina; Galán, María; Miana, María; Jurado-López, Raquel; Bartolomé, María Visitación; Luaces, María; Islas, Fabián; Martínez-González, José; López-Andrés, Natalia; Cachofeiro, Victoria

    2016-03-01

    Lysyl oxidase (LOX) is an extracellular matrix (ECM)-modifying enzyme that has been involved in cardiovascular remodeling. We explore the impact of LOX inhibition in ECM alterations induced by obesity in the cardiovascular system. LOX is overexpressed in the heart and aorta from rats fed a high-fat diet (HFD). β-Aminopropionitrile (BAPN), an inhibitor of LOX activity, significantly attenuated the increase in body weight and cardiac hypertrophy observed in HFD rats. No significant differences were found in cardiac function or blood pressure among any group. However, HFD rats showed cardiac and vascular fibrosis and enhanced levels of superoxide anion (O2(-)), collagen I and transforming growth factor β (TGF-β) in heart and aorta and connective tissue growth factor (CTGF) in aorta, effects that were attenuated by LOX inhibition. Interestingly, BAPN also prevented the increase in circulating leptin levels detected in HFD fed animals. Leptin increased protein levels of collagen I, TGF-β and CTGF, Akt phosphorylation and O2(-) production in both cardiac myofibroblasts and vascular smooth muscle cells in culture, while LOX inhibition ameliorated these alterations. LOX knockdown also attenuated leptin-induced collagen I production in cardiovascular cells. Our findings indicate that LOX inhibition attenuates the fibrosis and the oxidative stress induced by a HFD on the cardiovascular system. The reduction of leptin levels by BAPN in vivo and the ability of this compound to inhibit leptin-induced profibrotic mediators and ROS production in cardiac and vascular cells suggest that interactions between leptin and LOX regulate downstream events responsible for myocardial and vascular fibrosis in obesity. PMID:26780438

  6. A compact rotary vane attenuator

    Science.gov (United States)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  7. Photon attenuation by intensifying screens

    International Nuclear Information System (INIS)

    The photon attenuation by intensifying screens of different chemical composition has been determined. The attenuation of photons between 20 keV and 120 keV was measured by use of a multi-channel analyzer and a broad bremsstrahlung distribution. The attenuation by the intensifying screens was hereby determined simultaneously at many different monoenergetic photon energies. Experimentally determined attenuations were found to agree well with attenuation calculated from mass attenuation coefficients. The attenuation by the screens was also determined at various bremsstrahlung distributions, simulating those occurring behind the patient in various diagnostic X-ray examinations. The high attenuation in some of the intensifying screens form the basis for an analysis of the construction of asymmetric screen pairs. Single screen systems are suggested as a favourable alternative to thick screen pair systems. (Author)

  8. 饮食诱导小鼠肥胖疾病模型的建立%Establishment of A Mouse Model of Diet-induced Obesity

    Institute of Scientific and Technical Information of China (English)

    胡晓东; 李鸿炎

    2012-01-01

    目的 建立适合的食源性肥胖症动物疾病模型,用于评价减肥药物临床前动物实验的有效性和安全性.方法 将120只C57BL/6J小鼠按随机数字表法分为2组,模型组(n=110)采用高脂饲养饮食诱导肥胖(DIO),对照组(n=10)采用标准饲料饲养,2组均饲养12周.每周监测小鼠体质量和摄食量的变化,ELISA法检测血浆中血糖、血脂和胰岛素水平,断尾采血进行糖耐量(OGTT)试验.结果 饲养12周后,模型组和对照组小鼠体质量分别为(36.90±5.07)、(27.68±2.27)g,2组比较差异有统计学意义(P<0.001);模型组有80.9%的小鼠发育为DIO;模型组较对照组摄食量明显增加(P<0.01).与对照-OGTT组相比,DIO-OGTT组血糖和胰岛素明显增加(P<0.01),并伴有糖耐量减低和高脂血症.结论 饮食诱导可成功建立小鼠肥胖疾病模型,高脂饮食可以导致具有肥胖倾向的小鼠体质量增加,此模型与临床肥胖症病理接近,且具有稳定性好、操作简单、费用低等优点.%Objective To establish an animal model of diet-induced obesity (DIO),and to investigate the efficacy and safety of weight-loss drugs in pre-clinical animal testing. Methods A total of 120 C57BL/6J mice were randomly divided into fed high-fat diet (Research Diets Inc. , D12492,60%kcal% fat;DIO group, n = 110) or standard chow (control group, n= 10) for 12 weeks. Food intake and body weight were measured weekly. The levels of plasma glucose,insulin and lipid were detected by enzyme-linked immunosorbent assay(ELISA). Blood samples were collected by tail cutting for glucose tolerance test. Results After feeding for 12 weeks, 80. 9% of mice in DIO group developed obesity and had impaired glucose tolerance, and hyperlipidemia. Compared with control group,body weight was significantly increased in DIO group [(36. 90±5. 07)g vs (27. 68 ± 2. 27)g,P<0. 001]. Moreover,food intake and levels of plasma glucose and insulin obviously elevated compared with

  9. A Live Attenuated Vaccine for Lassa Fever Made by Reassortment of Lassa and Mopeia Viruses

    OpenAIRE

    Lukashevich, Igor S.; Patterson, Jean; Carrion, Ricardo; Moshkoff, Dmitry; Ticer, Anysha; Zapata, Juan; Brasky, Kathleen; Geiger, Robert; Gene B Hubbard; Bryant, Joseph; Salvato, Maria S.

    2005-01-01

    Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Old World arenaviruses that can exchange genomic segments (reassort) during coinfection. Clone ML29, selected from a library of MOPV/LASV (MOP/LAS) reassortants, encodes the major antigens (nucleocapsid and glycoprotein) of LASV and the RNA polymerase and zinc-binding protein of MOPV. Replication of ML29 was attenuated in guinea pigs and nonhuman primates. In murine adoptive-transfer experiments, as little as 150 PFU of ML29 induc...

  10. Downhole pressure attenuation apparatus

    International Nuclear Information System (INIS)

    This patent describes a process for preventing damage to tool strings and other downhole equipment in a well caused by pressures produced during detonation of one or more downhole explosive devices. It comprises adding to a tool string at least one pressure attenuating apparatus for attenuating the peak pressure wave and quasi-static pressure pulse produced by the explosive devices, the pressure attenuating apparatus including an initially closed relief vent including tubing means supporting a plurality of charge port assemblies each including an explosive filled shaped charge and a prestressed disc, the shaped charges interconnected by a detonating cord, the amount of explosive in each shaped charge being sufficient to rupture its associated disc without damaging surrounding tubular bodies in the well, and a vent chamber defined by the tubing means and providing a liquid free volume, and opening the relief vent substantially contemporaneously with downhole explosive device detonation by detonating the shaped charges to rupture the discs of the charge port assemblies

  11. Control algorithms for dynamic attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  12. Flexible graphene based microwave attenuators.

    Science.gov (United States)

    Byun, Kisik; Ju Park, Yong; Ahn, Jong-Hyun; Min, Byung-Wook

    2015-02-01

    We demonstrate flexible 3 dB and 6 dB microwave attenuators using multilayer graphene grown by the chemical vapor deposition method. On the basis of the characterized results of multilayer graphene and graphene-Au ohmic contacts, the graphene attenuators are designed and measured. The flexible graphene-based attenuators have 3 dB and 6 dB attenuation with a return loss of less than -15 dB at higher than 5 GHz. The devices have shown durability in a bending cycling test of 100 times. The circuit model of the attenuator based on the characterized results matches the experimental results well. PMID:25590144

  13. Flexible graphene based microwave attenuators

    International Nuclear Information System (INIS)

    We demonstrate flexible 3 dB and 6 dB microwave attenuators using multilayer graphene grown by the chemical vapor deposition method. On the basis of the characterized results of multilayer graphene and graphene–Au ohmic contacts, the graphene attenuators are designed and measured. The flexible graphene-based attenuators have 3 dB and 6 dB attenuation with a return loss of less than −15 dB at higher than 5 GHz. The devices have shown durability in a bending cycling test of 100 times. The circuit model of the attenuator based on the characterized results matches the experimental results well. (paper)

  14. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    Science.gov (United States)

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  15. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    International Nuclear Information System (INIS)

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis

  16. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Chandan [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ito, Takashi [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kawahara, Ko-ichi [Department of Biomedical Engineering, Osaka Institute of Technology, Osaka (Japan); Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto [Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Maruyama, Ikuro, E-mail: rinken@m3.kufm.kagoshima-u.ac.jp [Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  17. Vinpocetine attenuates lipid accumulation and atherosclerosis formation.

    Science.gov (United States)

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis. PMID:23583194

  18. Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury.

    Science.gov (United States)

    Tan, Terrence C H; Crawford, Darrell H G; Jaskowski, Lesley A; Subramaniam, V Nathan; Clouston, Andrew D; Crane, Denis I; Bridle, Kim R; Anderson, Gregory J; Fletcher, Linda M

    2013-12-01

    Endoplasmic reticulum (ER) stress is an important pathogenic mechanism for alcoholic (ALD) and nonalcoholic fatty liver disease (NAFLD). Iron overload is an important cofactor for liver injury in ALD and NAFLD, but its role in ER stress and associated stress signaling pathways is unclear. To investigate this, we developed a murine model of combined liver injury by co-feeding the mildly iron overloaded, the hemochromatosis gene-null (Hfe(-/)) mouse ad libitum with ethanol and a high-fat diet (HFD) for 8 weeks. This co-feeding led to profound steatohepatitis, significant fibrosis, and increased apoptosis in the Hfe(-/-) mice as compared with wild-type (WT) controls. Iron overload also led to induction of unfolded protein response (XBP1 splicing, activation of IRE-1α and PERK, as well as sequestration of GRP78) and ER stress (increased CHOP protein expression) following HFD and ethanol. This is associated with a muted autophagic response including reduced LC3-I expression and impaired conjugation to LC3-II, reduced beclin-1 protein, and failure of induction of autophagy-related proteins (Atg) 3, 5, 7, and 12. As a result of the impaired autophagy, levels of the sequestosome protein p62 were most elevated in the Hfe(-/-) group co-fed ethanol and HFD. Iron overload reduces the activation of adenosine monophosphate protein kinase associated with ethanol and HFD feeding. We conclude that iron toxicity may modulate hepatic stress signaling pathways by impairing adaptive cellular compensatory mechanisms in alcohol- and obesity-induced liver injury. PMID:24126888

  19. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang

    2016-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  20. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Science.gov (United States)

    Chiang, Wen-Dee; Huang, Chih Yang; Paul, Catherine Reena; Lee, Zong-Yan; Lin, Wan-Teng

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD)-fed aging rats. Design Twenty-four-month-old SD rats were randomly divided into six groups (n=8): aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day) APPH treatment, HFD with moderate (45 mg/kg/day) APPH treatment, HFD with high (75 mg/kg/day) APPH treatment, and HFD with probucol. Results APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day), moderate (45 mg/kg/day), and high (75 mg/kg/day) doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage. PMID:27415158