WorldWideScience

Sample records for attenuates murine diet-induced

  1. Modulation of tissue fatty acids by L-carnitine attenuates metabolic syndrome in diet-induced obese rats.

    Science.gov (United States)

    Panchal, Sunil K; Poudyal, Hemant; Ward, Leigh C; Waanders, Jennifer; Brown, Lindsay

    2015-08-01

    Obesity and dyslipidaemia are metabolic defects resulting from impaired lipid metabolism. These impairments are associated with the development of cardiovascular disease and non-alcoholic fatty liver disease. Correcting the defects in lipid metabolism may attenuate obesity and dyslipidaemia, and reduce cardiovascular risk and liver damage. L-Carnitine supplementation was used in this study to enhance fatty acid oxidation so as to ameliorate diet-induced disturbances in lipid metabolism. Male Wistar rats (8-9 weeks old) were fed with either corn starch or high-carbohydrate, high-fat diets for 16 weeks. Separate groups were supplemented with L-carnitine (1.2% in food) on either diet for the last 8 weeks of the protocol. High-carbohydrate, high-fat diet-fed rats showed central obesity, dyslipidaemia, hypertension, impaired glucose tolerance, hyperinsulinaemia, cardiovascular remodelling and non-alcoholic fatty liver disease. L-Carnitine supplementation attenuated these high-carbohydrate, high-fat diet-induced changes, together with modifications in lipid metabolism including the inhibition of stearoyl-CoA desaturase-1 activity, reduced storage of short-chain monounsaturated fatty acids in the tissues with decreased linoleic acid content and trans fatty acids stored in retroperitoneal fat. Thus, L-carnitine supplementation attenuated the signs of metabolic syndrome through inhibition of stearoyl-CoA desaturase-1 activity, preferential β-oxidation of some fatty acids and increased storage of saturated fatty acids and relatively inert oleic acid in the tissues.

  2. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  3. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  4. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  5. Thioacetamide-induced Hepatocellular Necrosis Is Attenuated in Diet-induced Obese Mice.

    Science.gov (United States)

    Shirai, Makoto; Arakawa, Shingo; Miida, Hiroaki; Matsuyama, Takuya; Kinoshita, Junzo; Makino, Toshihiko; Kai, Kiyonori; Teranishi, Munehiro

    2013-06-01

    To assess modification of thioacetamide-induced hepatotoxicity in mice fed a high-fat diet, male C57BL/6J mice were fed a normal rodent diet or a high-fat diet for 8 weeks and then treated once intraperitoneally with thioacetamide at 50 mg/kg body weight. At 24 and 48 hours after administration, massive centrilobular hepatocellular necrosis was observed in mice fed the normal rodent diet, while the necrosis was less severe in mice fed the high-fat diet. In contrast, severe swelling of hepatocytes was observed in mice fed the high-fat diet. In addition, mice fed the high-fat diet displayed more than a 4-fold higher number of BrdU-positive hepatocytes compared with mice fed the normal rodent diet at 48 hours after thioacetamide treatment. To clarify the mechanisms by which the hepatic necrosis was attenuated, we investigated exposure to thioacetamide and one of its metabolites, the expression of CYP2E1, which converts thioacetamide to reactive metabolites, and the content of glutathione S-transferases in the liver. However, the reduced hepatocellular necrosis noted in mice fed the high-fat diet could not be explained by the differences in exposure to thioacetamide or thioacetamide sulfoxide or by differences in the expression of drug-metabolizing enzymes. On the other hand, at 8 hours after thioacetamide administration, hepatic total glutathione in mice fed the high-fat diet was significantly lower than that in mice fed the normal diet. Hence, decreased hepatic glutathione amount is a candidate for the mechanism of the attenuated necrosis. In conclusion, this study revealed that thioacetamide-induced hepatic necrosis was attenuated in mice fed the high-fat diet. PMID:23914059

  6. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome.

    Science.gov (United States)

    Roopchand, Diana E; Carmody, Rachel N; Kuhn, Peter; Moskal, Kristin; Rojas-Silva, Patricio; Turnbaugh, Peter J; Raskin, Ilya

    2015-08-01

    Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols. PMID:25845659

  7. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    Science.gov (United States)

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  8. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity.

    Science.gov (United States)

    Jiang, Tingting; Gao, Xuejin; Wu, Chao; Tian, Feng; Lei, Qiucheng; Bi, Jingcheng; Xie, Bingxian; Wang, Hong Yu; Chen, Shuai; Wang, Xinying

    2016-03-01

    This study was aimed at determining potential effects of apple-derived pectin on weight gain, gut microbiota, gut barrier and metabolic endotoxemia in rat models of diet-induced obesity. The rats received a standard diet (control; Chow group; n = 8) or a high-fat diet (HFD; n = 32) for eight weeks to induce obesity. The top 50th percentile of weight-gainers were selected as diet induced obese rats. Thereafter, the Chow group continued on chow, and the diet induced obese rats were randomly divided into two groups and received HFD (HF group; n = 8) or pectin-supplemented HFD (HF-P group; n = 8) for six weeks. Compared to the HF group, the HF-P group showed attenuated weight gain (207.38 ± 7.96 g vs. 283.63 ± 10.17 g, p alkaline phosphatase (0.57 ± 0.20 vs. 0.30 ± 0.19, p diet induced obese rats. PMID:26938554

  9. Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it

    OpenAIRE

    Foster, Michelle T.; Softic, Samir; Caldwell, Jody; Kohli, Rohit; deKloet, Annette D; Seeley, Randy J.

    2013-01-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance, and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the...

  10. Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice

    OpenAIRE

    Fukumitsu, S.; Aida, K; Ueno, N; Ozawa, S.; Takahashi, Y.; Kobori, M

    2008-01-01

    Flaxseed lignan secoisolariciresinol diglucoside (SDG) has been reported to prevent and alleviate lifestyle-related diseases including diabetes and hypercholesterolaemic atherosclerosis. This study assesses the effect of SDG on the development of diet-induced obesity in mice and the effect of the SDG metabolite enterodiol (END) on adipogenesis in 3T3-L1 adipocytes. We compared body weight, visceral fat weight, liver fat content, serum parameters, mRNA levels of lipid metabolism-related enzyme...

  11. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Science.gov (United States)

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism. PMID:26914024

  12. White Pitaya (Hylocereus undatus Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Haizhao Song

    Full Text Available Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2 but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos. In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  13. Phenolic compounds from Rosemary (Rosmarinus officinalis L. attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats

    Directory of Open Access Journals (Sweden)

    Afonso Milessa S

    2013-02-01

    Full Text Available Abstract Background Phenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk. Methods To evaluate the effect of an aqueous extract (AQ and non-esterified phenolic fraction (NEPF from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C and 5 hypercholesterolemic diet groups, with 1 receiving water (HC, 2 receiving AQ at concentrations of 7 and 140 mg/kg body weight (AQ70 and AQ140, respectively, and 2 receiving NEPF at concentrations of 7 and 14 mg/kg body weight (NEPF7 and NEPF14, respectively by gavage for 4 weeks. Results In vitro, both AQ and NEPF had remarkable antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH● assay, which was similar to BHT. In vivo, the group that received AQ at 70 mg/kg body weight had lower serum total cholesterol (−39.8%, non-HDL-c (−44.4% and thiobarbituric acid reactive substance (TBARS levels (−37.7% compared with the HC group. NEPF (7 and 14 mg/kg reduced the tissue TBARS levels and increased the activity of tissular antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase. Neither AQ nor NEPF was able to ameliorate the alterations in the hypercholesterolemic diet-induced fatty acid composition in the liver. Conclusions These data suggest that phenolic compounds from rosemary ameliorate the antioxidant defense in different tissues and attenuate oxidative stress in diet-induced hypercholesterolemic rats, whereas the serum lipid profile was improved only in rats that received the aqueous extract.

  14. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Su-Kyung Shin

    2016-02-01

    Full Text Available Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w, high-fat diet (HFD, 20% fat, w/w, or HFD supplemented with phlorizin (PH, 0.02%, w/w. The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  15. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Shin, Su-Kyung; Cho, Su-Jung; Jung, Un Ju; Ryu, Ri; Choi, Myung-Sook

    2016-02-16

    Obesity, along with its related complications, is a serious health problem worldwide. Many studies reported the anti-diabetic effect of phlorizin, while little is known about its anti-obesity effect. We investigated the beneficial effects of phlorizin on obesity and its complications, including diabetes and inflammation in obese animal. Male C57BL/6J mice were divided into three groups and fed their respective experimental diets for 16 weeks: a normal diet (ND, 5% fat, w/w), high-fat diet (HFD, 20% fat, w/w), or HFD supplemented with phlorizin (PH, 0.02%, w/w). The findings revealed that the PH group had significantly decreased visceral and total white adipose tissue (WAT) weights, and adipocyte size compared to the HFD. Plasma and hepatic lipids profiles also improved in the PH group. The decreased levels of hepatic lipids in PH were associated with decreased activities of enzymes involved in hepatic lipogenesis, cholesterol synthesis and esterification. The PH also suppressed plasma pro-inflammatory adipokines levels such as leptin, adipsin, tumor necrosis factor-α, monocyte chemoattractant protein-1, interferon-γ, and interleukin-6, and prevented HFD-induced collagen accumulation in the liver and WAT. Furthermore, the PH supplementation also decreased plasma glucose, insulin, glucagon, and homeostasis model assessment of insulin resistance levels. In conclusion, phlorizin is beneficial for preventing diet-induced obesity, hepatic steatosis, inflammation, and fibrosis, as well as insulin resistance.

  16. Chlorella Protein Hydrolysate Attenuates Glucose Metabolic Disorder and Fatty Liver in High-fat Diet-induced Obese Mice.

    Science.gov (United States)

    Noguchi, Naoto; Yanagita, Teruyoshi; Rahman, Shaikh Mizanoor; Ando, Yotaro

    2016-07-01

    Chlorella (Parachlorella beijerinckii) powder is reported to show a preventive effect against metabolic syndromes such as arteriosclerosis, hyperlipidemia, and hypertension. Approximately 60% of the chlorella content is protein. In order to understand the role of chlorella protein, we prepared a chlorella protein hydrolysate (CPH) by protease treatment. Male C57BL/6 mice were divided into three groups: a normal diet group, high-fat diet (HFD) group, and high-fat diet supplemented with CPH (HFD+CPH) group. The CPH administration improved glucose intolerance, insulin sensitivity, and adipose tissue hypertrophy in the high-fat diet-fed mice. In addition, the HFD+CPH group had significantly decreased liver total cholesterol and triglyceride levels compared with those in the HFD group. Furthermore, the HFD+CPH group had a decreased level of monocyte chemotactic protein-1 (MCP-1) in serum and a lower MCP-1 mRNA expression level in adipose tissue compared with the HFD group. The present study suggests that chlorella protein hydrolysate can prevent a high-fat diet-induced glucose disorder and fatty liver by inhibiting adipocyte hypertrophy and reducing the MCP-1 protein and gene expression. PMID:27321121

  17. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It.

    Science.gov (United States)

    Foster, M T; Softic, S; Caldwell, J; Kohli, R; de Kloet, A D; Seeley, R J

    2013-08-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in

  18. CD40L deficiency attenuates diet-induced adipose tissue inflammation by impairing immune cell accumulation and production of pathogenic IgG-antibodies.

    Directory of Open Access Journals (Sweden)

    Dennis Wolf

    Full Text Available BACKGROUND: Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L--an established marker and mediator of cardiovascular disease--induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: WT or CD40L(-/- mice consumed a high fat diet (HFD for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L(-/- mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L(-/- mice. However, CD40L(-/- mice consuming HFD were not protected from the onset of diet-induced obesity (DIO, insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L(-/- mice consuming a low fat diet (LFD showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels. CONCLUSION: We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.

  19. Treadmill Intervention Attenuates the Cafeteria Diet-Induced Impairment of Stress-Coping Strategies in Young Adult Female Rats

    Science.gov (United States)

    Cigarroa, Igor; Lalanza, Jaume F.; Caimari, Antoni; del Bas, Josep M.; Capdevila, Lluís; Arola, Lluís; Escorihuela, Rosa M.

    2016-01-01

    The current prevalence of diet-induced overweight and obesity in adolescents and adults is continuously growing. Although the detrimental biochemical and metabolic consequences of obesity are widely studied, its impact on stress-coping behavior and its interaction with specific exercise doses (in terms of intensity, duration and frequency) need further investigation. To this aim, we fed adolescent rats either an obesogenic diet (cafeteria diet, CAF) or standard chow (ST). Each group was subdivided into four subgroups according to the type of treadmill intervention as follows: a sedentary group receiving no manipulation; a control group exposed to a stationary treadmill; a low-intensity treadmill group trained at 12 m/min; and a higher intensity treadmill group trained at 17 m/min. Both the diet and treadmill interventions started at weaning and lasted for 8 weeks. Subjects were tested for anxiety-like behavior in the open field test and for coping strategies in the two-way active avoidance paradigm at week 7 and were sacrificed at week 8 for biometric and metabolic characterization. CAF feeding increased the weight gain, relative retroperitoneal white adipose tissue (RWAT %), and plasma levels of glucose, insulin, triglycerides and leptin and decreased the insulin sensitivity. Treadmill intervention partially reversed the RWAT% and triglyceride alterations; at higher intensity, it decreased the leptin levels of CAF-fed animals. CAF feeding decreased the motor activity and impaired the performance in a two-way active avoidance assessment. Treadmill intervention reduced defecation in the shuttle box, suggesting diminished anxiety. CAF feeding combined with treadmill training at 17 m/min increased the time spent in the center of the open field and more importantly, partially reversed the two-way active avoidance deficit. In conclusion, this study demonstrates that at doses that decreased anxiety-like behavior, treadmill exercise partially improved the coping strategy

  20. Antiresistin RNA Oligonucleotide Ameliorates Diet-Induced Nonalcoholic Fatty Liver Disease in Mice through Attenuating Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Yi Tan

    2015-01-01

    Full Text Available The aim of this study was to determine whether inhibition of resistin by a synthetic antiresistin RNA (oligonucleotide oligo ameliorates metabolic and histological abnormalities in nonalcoholic fatty liver disease (NAFLD induced by high-fat diet (HFD in mice. The antiresistin RNA oligo and a scrambled control oligo (25 mg/kg of body weight were i.p. injected to HFD mice. Serum metabolic parameters and hepatic enzymes were measured after 4-week treatment. The treatment significantly reduced epididymal fat and attenuated the elevated serum resistin, cholesterol, triglycerides, glucose, and insulin with an improved glucose tolerance test. Antiresistin RNA oligo also normalized serum AST and ALT levels with improved pathohistology of NAFLD. Immunoblotting and qRT-PCR revealed that decreased protein and mRNA expression of resistin in fat and liver tissues of the treated mice were associated with reduction of adipose TNF-α and IL-6 expression and secretion into circulation. mRNA and protein expression of hepatic phosphoenolpyruvate carboxykinase (PEPCK and sterol regulatory element-binding protein-1c (SREBP-1c were also significantly decreased in the treated mice. Our results suggest that resistin may exacerbate NAFLD in metabolic syndrome through upregulating inflammatory cytokines and hepatic PEPCK and SREBP-1c. Antiresistin RNA oligo ameliorated metabolic abnormalities and histopathology of NAFLD through attenuating proinflammatory cytokines.

  1. Browning attenuates murine white adipose tissue expansion during postnatal development.

    Science.gov (United States)

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  2. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo

    NARCIS (Netherlands)

    Morrison, Martine; van der Heijden, Roel; Heeringa, Peter; Kaijzel, Eric; Verschuren, Lars; Blomhoff, Rune; Kooistra, Teake; Kleemann, Robert

    2014-01-01

    OBJECTIVE: Previous studies investigating flavanol-rich foods provide indications for potential cardioprotective effects of these foods, but the effects of individual flavanols remain unclear. We investigated whether the flavanol epicatechin can reduce diet-induced atherosclerosis, with particular e

  3. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB invivo

    NARCIS (Netherlands)

    Morrison, M.; Heijden, R. van der; Heeringa, P.; Kaijzel, E.; Verschuren, L.; Blomhoff, R.; Kooistra, T.; Kleemann, R.

    2014-01-01

    Objective: Previous studies investigating flavanol-rich foods provide indications for potential cardioprotective effects of these foods, but the effects of individual flavanols remain unclear. We investigated whether the flavanol epicatechin can reduce diet-induced atherosclerosis, with particular e

  4. Diet induced thermogenesis

    Directory of Open Access Journals (Sweden)

    Westerterp KR

    2004-08-01

    Full Text Available Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Results Most studies measure diet-induced thermogenesis as the increase in energy expenditure above basal metabolic rate. Generally, the hierarchy in macronutrient oxidation in the postprandial state is reflected similarly in diet-induced thermogenesis, with the sequence alcohol, protein, carbohydrate, and fat. A mixed diet consumed at energy balance results in a diet induced energy expenditure of 5 to 15 % of daily energy expenditure. Values are higher at a relatively high protein and alcohol consumption and lower at a high fat consumption. Protein induced thermogenesis has an important effect on satiety. In conclusion, the main determinants of diet-induced thermogenesis are the energy content and the protein- and alcohol fraction of the diet. Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis.

  5. Omega-3 polyunsaturated fatty acid and ursodeoxycholic acid have an additive effect in attenuating diet-induced nonalcoholic steatohepatitis in mice

    OpenAIRE

    Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il

    2014-01-01

    Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice ...

  6. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats

    OpenAIRE

    Afonso Milessa S; de O Silva Ana Mara; Carvalho Eliane BT; Rivelli Diogo P; Barros Sílvia BM; Rogero Marcelo M; Lottenberg Ana Maria; Torres Rosângela P; Mancini-Filho Jorge

    2013-01-01

    Abstract Background Phenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk. Methods To evaluate the effect of an aqueous extract (AQ) and non-esterified phenolic fraction (NEPF) from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C) and 5 hypercholesterolemic diet groups, with 1 receiving water (HC), 2 ...

  7. Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression.

    Directory of Open Access Journals (Sweden)

    Susan E Olivo-Marston

    Full Text Available Obesity is an established colon cancer risk factor, while preventing or reversing obesity via a calorie restriction (CR diet regimen decreases colon cancer risk. Unfortunately, the biological mechanisms underlying these associations are poorly understood, hampering development of mechanism-based approaches for preventing obesity-related colon cancer. We tested the hypotheses that diet-induced obesity (DIO would increase (and CR would decrease colon tumorigenesis in the mouse azoxymethane (AOM model. In addition, we established that changes in inflammatory cytokines, growth factors, and microRNAs are associated with these energy balance-colon cancer links, and thus represent mechanism-based targets for colon cancer prevention. Mice were injected with AOM once a week for 5 weeks and randomized to: 1 control diet; 2 30% CR diet; or 3 DIO diet. Mice were euthanized at week 5 (n = 12/group, 10 (n = 12/group, and 20 (n = 20/group after the last AOM injection. Colon tumors were counted, and cytokines, insulin-like growth factor 1 (IGF-1, IGF binding protein 3 (IGFBP-3, adipokines, proliferation, apoptosis, and expression of microRNAs (miRs were measured. The DIO diet regimen induced an obese phenotype (∼36% body fat, while CR induced a lean phenotype (∼14% body fat; controls were intermediate (∼26% body fat. Relative to controls, DIO increased (and CR decreased the number of colon tumors (p = 0.01, cytokines (p<0.001, IGF-1 (p = 0.01, and proliferation (p<0.001. DIO decreased (and CR increased IGFBP-3 and apoptosis (p<0.001. miRs including mir-425, mir-196, mir-155, mir-150, mir-351, mir-16, let-7, mir34, and mir-138 were differentially expressed between the dietary groups. We conclude that the enhancing effects of DIO and suppressive effects of CR on colon carcinogenesis are associated with alterations in several biological pathways, including inflammation, IGF-1, and microRNAs.

  8. Populus balsamifera Extract and Its Active Component Salicortin Reduce Obesity and Attenuate Insulin Resistance in a Diet-Induced Obese Mouse Model

    Directory of Open Access Journals (Sweden)

    Despina Harbilas

    2013-01-01

    Full Text Available Populus balsamifera L. (BP is a medicinal plant stemming from the traditional pharmacopoeia of the Cree of Eeyou Istchee (CEI—Northern Quebec. In vitro screening studies revealed that it strongly inhibited adipogenesis in 3T3-L1 adipocytes, suggesting potential antiobesity activity. Salicortin was identified, through bioassay-guided fractionation, as the active component responsible for BP’s activity. The present study aimed to assess the potential of BP and salicortin at reducing obesity and features of the metabolic syndrome, in diet-induced obese C57Bl/6 mice. Mice were subjected to high fat diet (HFD for sixteen weeks, with BP (125 or 250 mg/kg or salicortin (12.5 mg/kg introduced in the HFD for the last eight of the sixteen weeks. BP and salicortin effectively reduced whole body and retroperitoneal fat pad weights, as well as hepatic triglyceride accumulation. Glycemia, insulinemia, leptin, and adiponectin levels were also improved. This was accompanied by a small yet significant reduction in food intake in animals treated with BP. BP and salicortin (slightly also modulated key components in signaling pathways involved with glucose regulation and lipid oxidation in the liver, muscle, and adipose tissue. These results confirm the validity of the CEI pharmacopoeia as alternative and complementary antiobesity and antidiabetic therapies.

  9. Hepatic glutathione contributes to attenuation of thioacetamide-induced hepatic necrosis due to suppression of oxidative stress in diet-induced obese mice.

    Science.gov (United States)

    Shirai, Makoto; Matsuoka, Miho; Makino, Toshihiko; Kai, Kiyonori; Teranishi, Munehiro; Takasaki, Wataru

    2015-08-01

    We previously reported that hepatic necrosis induced by thioacetamide (TA), a hepatotoxicant, was attenuated in mice fed a high-fat diet (HFD mice) in comparison with mice fed a normal rodent diet (ND mice). In this study, we focused on investigation of the mechanism of the attenuation. Hepatic content of thiobarbituric acid reactive substances (TBARS), an oxidative stress marker, significantly increased in ND mice at 24 and 48 hr after TA administration in comparison to that in vehicle-treated ND mice. At these time points, severe hepatic necrosis was observed in ND mice. Treatment with an established antioxidant, butylated hydroxyanisole, attenuated the TA-induced hepatic necrosis in ND mice. In contrast, in HFD mice, hepatic TBARS content did not increase, and hepatic necrosis was attenuated in comparison with ND mice at 24 and 48 hr after TA dosing. Metabolomics analysis regarding hepatic glutathione, a biological antioxidant, revealed decreased glutathione and changes in the amount of glutathione metabolism-related metabolites, such as increased ophtalmate and decreased cysteine, and this indicated activation of glutathione synthesis and usage in HFD mice. Finally, after treatment with L-buthionine-S,R-sulfoxinine, an inhibitor of glutathione synthesis, TA-induced hepatic necrosis was enhanced and hepatic TBARS contents increased after TA dosing in HFD mice. These results suggested that activated synthesis and usage of hepatic GSH, which suppresses hepatic oxidative stress, is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26165648

  10. Decreased hepatic phosphorylated p38 mitogen-activated protein kinase contributes to attenuation of thioacetamide-induced hepatic necrosis in diet-induced obese mice.

    Science.gov (United States)

    Shirai, Makoto; Arakawa, Shingo; Teranishi, Munehiro; Kai, Kiyonori

    2016-04-01

    We previously reported that thioacetamide (TA)-induced hepatocellular necrosis was attenuated in mice fed a high-fat diet (HFD mice) compared with mice fed a normal rodent diet (ND mice). In this study, we investigated whether p38 mitogen-activated protein kinase (p38 MAPK) was involved in this attenuation. Western blot analysis revealed that hepatic phosphorylated p38 MAPK protein decreased at 8 and 24 hours (hr) after TA dosing in the HFD mice, while it decreased only at 24 hr in the ND mice in comparison to the time- and diet-matched, vehicle-treated mice. p38 MAPK regulates various biological functions including inflammation, therefore, hepatic metabolomics analysis focusing on pro-inflammatory lipid mediators was performed. At 24 hr after TA dosing, only one pro-inflammatory mediator, 12-hydroxyeicosatetraenoic acid (HETE), was higher in the HFD mice. On the other hand, in addition to 12-HETE, 15-HETE and 12-hydroxyeicosapentaenoic acid (HEPE) were higher and omega-3/omega-6 polyunsaturated fatty acids ratios were lower in the ND mice at 24 hr. These results of metabolomics indicated that less pro-inflammatory state was seen in HFD mice than in ND mice at 24 hr. Finally, to confirm whether the observed decrease in phosphorylated p38 MAPK could attenuate TA-induced hepatocellular necrosis, we showed that SB203580 hydrochloride, an inhibitor of p38 MAPK, partially attenuated TA-induced hepatic necrosis in ND mice. Collectively, these results suggest that a prompt decrease in phosphorylation of p38 MAPK after TA administration is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26961609

  11. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice

    OpenAIRE

    Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko

    2015-01-01

    The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise t...

  12. Orchidectomy attenuates high-salt diet-induced increases in blood pressure, renovascular resistance, and hind limb vascular dysfunction: role of testosterone.

    Science.gov (United States)

    Oloyo, Ahmed K; Sofola, Olusoga A; Yakubu, Momoh A

    2016-09-01

    Sex hormone-dependent vascular reactivity is an underlying factor contributing to sex differences in salt-dependent hypertension. This study evaluated the role of androgens (testosterone) in high salt-induced increase in blood pressure (BP) and altered vascular reactivity in renal blood flow and perfused hind limb preparation. Weanling male rats (8 weeks old, 180-200 g) were bilaterally orchidectomised or sham operated with or without testosterone replacement (Sustanon 250, 10 mg/kg intramuscularly once in 3 weeks) and placed on a normal (0.3%) or high (4.0%) NaCl diet for 6 weeks. The high-salt diet (HSD) increased arterial BP, renal vascular resistance (RVR) and positive fluid balance (FB). These changes were accompanied by decreased plasma nitric oxide levels. The increased BP, RVR and FB observed in the rats fed a HSD were reversed by orchidectomy while testosterone replacement prevented the reversal. Phenylephrine (PE)-induced increased vascular resistance in the perfused hind limb vascular bed was enhanced by HSD, the enhanced vascular resistance was prevented by orchidectomy and testosterone replacement reversed orchidectomy effect. Vasorelaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were impaired in HSD groups, orchidectomy attenuated the impairment, while testosterone replacement prevented the orchidectomy attenuation. These data suggested that eNOS-dependent and independently-mediated pathways were equally affected by HSD in vascular function impairment and this effect is testosterone-dependent in male Sprague-Dawley rats. PMID:27197589

  13. Angelica acutiloba Kitagawa Extract Attenuates DSS-Induced Murine Colitis.

    Science.gov (United States)

    Jang, Jong-Chan; Lee, Kang Min; Ko, Seong-Gyu

    2016-01-01

    We examined the protective effects of Angelica acutiloba Kitagawa (AAK) extract on a murine model of acute experimental colitis. Colitis was induced by 4% dextran sulfate sodium (DSS) in the drinking water of male C57BL/6 mice, for 7 consecutive days. Oral administration of AAK extract (500 mg/kg/day) significantly alleviated DSS-induced symptoms such as anorexia, weight loss, events of diarrhea or bloody stools, and colon shortening. Histological damage was also ameliorated, as evidenced by the architectural preservation and suppression of inflammatory cell infiltration in colonic samples. Treatment improved the colonic mRNA expression of different inflammatory markers: cytokines, inducible enzymes, matrix metalloproteinases, and tight junction-related proteins. In the isolated serum, IgE levels were downregulated. Collectively, these findings indicate the therapeutic potentials of AAK as an effective complementary or alternative modality for the treatment of ulcerative colitis.

  14. Resveratrol attenuates inflammation and oxidative stress in epididymal white adipose tissue: implications for its involvement in improving steroidogenesis in diet-induced obese mice.

    Science.gov (United States)

    Lv, Zheng-mei; Wang, Qi; Chen, Yuan-hua; Wang, Sheng-hua; Huang, Dao-qi

    2015-04-01

    Chronic, low-grade systemic inflammation has been shown to play an important role in the development of obesity-related complications. Epididymal white adipose tissue (WAT) can influence testicular function through its endocrine function. The purpose of this study was to assess the effects of resveratrol on the epididymal WAT inflammatory response and on testicular steroidogenesis in obese individuals. Seven-week-old male C57BL/6J mice were fed a high-calorie and high-cholesterol diet (HCD group) or HCD supplemented with resveratrol (HCD+Res group) for 18 weeks. As we previously showed that resveratrol protects against Leydig cell steroidogenesis in HCD-induced obese mice, this study assessed macrophage infiltration in fat depots by measuring crown-like structure (CLS) density. Histological analysis showed that adipocyte size was significantly smaller and CLSs were less numerous in the HCD+Res group than the HCD group (P < 0.01). Additionally, resveratrol supplementation decreased Nfkb1 expression (P < 0.01) and increased the IκB-α protein abundance (P < 0.01) in epididymal WAT. Consistent with this alteration in NF-κB signaling, the expression of two classic proinflammatory cytokines, TNF-α (Tnfa) and IL-1β (Il1b), were significantly decreased in the HCD+Res group compared with the HCD group (P < 0.01). Significant differences were also found in the expression of sirtuin1 (Sirt1) (P < 0.01) and manganese superoxide dismutase (Sod2) (P < 0.01) between the HCD and HCD+Res groups. Our data suggest that resveratrol can attenuate obesity-induced inflammation and oxidative stress in epididymal WAT, which partly accounts for its beneficial effects in testicular steroidogenesis.

  15. Characterization of attenuated food motivation in high-fat diet-induced obesity: Critical roles for time on diet and reinforcer familiarity.

    Science.gov (United States)

    Tracy, Andrea L; Wee, Colin J M; Hazeltine, Grace E; Carter, Rebecca A

    2015-03-15

    Prior work using animal models to study the effects of obesogenic diets on food motivation have generated inconsistent results, with some reporting increases and others reporting decreases in responding on food-reinforced tasks. Here, we identified two specific variables that may account for these discrepant outcomes - the length of time on the obesigenic diet and the familiarity of the food reinforcer - and examined the independent roles of these factors. Time on diet was found to be inversely related to food motivation, as rats consuming a 40% high-fat diet (HFD) for only 3weeks did not differ from chow-fed rats when responding for a sucrose reinforcer on a progressive ratio (PR) schedule, but responding was suppressed after 6weeks of ad lib HFD consumption. Explicitly manipulating experience with the sucrose reinforcer by pre-exposing half the rats prior to 10weeks of HFD consumption attenuated the motivational deficit seen in the absence of this familiarity, resulting in obese rats performing at the same level as lean rats. Finally, after 8weeks on a HFD, rats did not express a conditioned place preference for sucrose, indicating a decrement in reward value independent of motivation. These findings are consistent with prior literature showing an increase in food motivation for rats with a shorter time consuming the obesigenic diet, and for those with more prior experience with the reinforcer. This account also helps reconcile these findings with increased food motivation in obese humans due to extensive experience with palatable food and suggests that researchers engaging in non-human animal studies of obesity would better model the conditions under which human obesity develops by using a varied, cafeteria-style diet to increase the breadth of food experiences.

  16. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    Science.gov (United States)

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-01

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. PMID:27346292

  17. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation.

    Directory of Open Access Journals (Sweden)

    Siddhartha S Ghosh

    Full Text Available Association between circulating lipopolysaccharide (LPS and metabolic diseases (such as Type 2 Diabetes and atherosclerosis has shifted the focus from Western diet-induced changes in gut microbiota per se to release of gut bacteria-derived products into circulation as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. Under physiological conditions, an intact intestinal barrier prevents this release of LPS underscoring the importance of examining and modulating the direct effects of Western diet on intestinal barrier function. In the present study we evaluated two strategies, namely selective gut decontamination and supplementation with oral curcumin, to modulate Western-diet (WD induced changes in intestinal barrier function and subsequent development of glucose intolerance and atherosclerosis. LDLR-/- mice were fed WD for 16 weeks and either received non-absorbable antibiotics (Neomycin and polymyxin in drinking water for selective gut decontamination or gavaged daily with curcumin. WD significantly increased intestinal permeability as assessed by in vivo translocation of FITC-dextran and plasma LPS levels. Selective gut decontamination and supplementation with curcumin significantly attenuated the WD-induced increase in plasma LPS levels (3.32 vs 1.90 or 1.51 EU/ml, respectively and improved intestinal barrier function at multiple levels (restoring intestinal alkaline phosphatase activity and expression of tight junction proteins, ZO-1 and Claudin-1. Consequently, both these interventions significantly reduced WD-induced glucose intolerance and atherosclerosis in LDLR-/- mice. Activation of macrophages by low levels of LPS (50 ng/ml and its exacerbation by fatty acids is likely the mechanism by which release of trace amounts of LPS into circulation due to disruption of intestinal barrier function induces the development of these diseases. These studies not only establish the important role

  18. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    International Nuclear Information System (INIS)

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  19. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  20. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available BACKGROUND: The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents. RESULTS: All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells. CONCLUSIONS: We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  1. Hyperoxygenation attenuated a murine model of atopic dermatitis through raising skin level of ROS.

    Directory of Open Access Journals (Sweden)

    Hyung-Ran Kim

    Full Text Available Atopic dermatitis (AD is a chronic inflammatory skin disease resulting from excessive stimulation of immune cells. Traditionally, reactive oxygen species (ROS have been implicated in the progression of inflammatory diseases, but several opposing observations suggest the protective role of ROS in inflammatory disease. Recently, we demonstrated ROS prevented imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function. Thus, we hypothesized AD might also be attenuated in elevated levels of ROS through tissue hyperoxygenation, such as by hyperbaric oxygen therapy (HBOT or applying an oxygen-carrying chemical, perfluorodecalin (PFD. Elevated levels of ROS in the skin have been demonstrated directly by staining with dihydroethidum as well as indirectly by immunohistochemistry (IHC for indoleamine 2,3-dioxygenase (IDO. A murine model of AD was developed by repeated application of a chemical irritant (1% 2,4-dinitrochlorobenzene and house dust mite (Dermatophagoide farinae extract on one ear of BALB/c mice. The results showed treatment with HBOT or PFD significantly attenuated AD, comparably with 0.1% prednicarbate without any signs of side effects, such as telangiectasia. The expressions of interleukin-17A and interferon-γ were also decreased in the AD lesions by treatment with HBOT or PFD. Enhanced expression of IDO and reduced level of hypoxia-inducible factor-1α, in association with increased frequency of FoxP3+ regulatory T cells in the AD lesions, might be involved in the underlying mechanism of oxygen therapy. Taken together, it was suggested that tissue hyperoxygenation, by HBOT or treatment with PFD, might attenuate AD through enhancing skin ROS level.

  2. Protection against retroviral diseases after vaccination is conferred by interference to superinfection with attenuated murine leukemia viruses.

    OpenAIRE

    Corbin, A.; Sitbon, M.

    1993-01-01

    Cell cultures expressing a retroviral envelope are relatively resistant to superinfection by retroviruses which bear envelopes using the same receptor. We tested whether this phenomenon, known as interference to superinfection, might confer protection against retroviral diseases. Newborn mice first inoculated with the attenuated strain B3 of Friend murine leukemia virus (F-MuLV) were protected against severe early hemolytic anemia and nonacute anemiant erythroleukemia induced by the virulent ...

  3. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    Science.gov (United States)

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  4. Radix Astragali Improves Dysregulated Triglyceride Metabolism and Attenuates Macrophage Infiltration in Adipose Tissue in High-Fat Diet-Induced Obese Male Rats through Activating mTORC1-PPARγ Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yang Long

    2014-01-01

    Full Text Available Increased levels of free fatty acids (FFAs and hypertriglyceridemia are important risk factors for cardiovascular disease. The effective fraction isolated from radix astragali (RA has been reported to alleviate hypertriglyceridemia. The mechanism of this triglyceride-lowering effect of RA is unclear. Here, we tested whether activation of the mTORC1-PPARγ signaling pathway is related to the triglyceride-lowering effect of RA. High-fat diet-induced obese (DIO rats were fed a high-fat diet (40% calories from fat for 9-10 weeks, and 4 g/kg/d RA was administered by gavage. RA treatment resulted in decreased fasting triglyceride levels, FFA concentrations, and adipocyte size. RA treated rats showed improved triglyceride clearance and fatty acid handling after olive oil overload. RA administration could also decrease macrophage infiltration and expression of MCP-1 and TNFα, but it may also increase the expression of PPARγ in epididymal adipose tissue from RA treated rats. Consistently, expressions of PPARγ and phospho-p70S6K were increased in differentiated 3T3-L1 adipocytes treated with RA. Moreover, RA couldnot upregulate the expression of PPARγ at the presence of rapamycin. In conclusion, the mTORC1-PPARγ signaling pathway is a potential mechanism through which RA exerts beneficial effects on the disturbance of triglyceride metabolism and dysfunction of adipose tissue in DIO rats.

  5. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  6. CMV infection attenuates the disease course in a murine model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Istvan Pirko

    Full Text Available Recent evidence in multiple sclerosis (MS suggests that active CMV infection may result in more benign clinical disease. The goal of this pilot study was to determine whether underlying murine CMV (MCMV infection affects the course of the Theiler's murine encephalitis virus (TMEV induced murine model of MS. A group of eight TMEV-infected mice were co-infected with MCMV at 2 weeks prior to TMEV infection while a second group of TMEV-infected mice received MCMV two weeks post TMEV. We also used 2 control groups, where at the above time points MCMV was replaced with PBS. Outcome measures included (1 monthly monitoring of disability via rotarod for 8 months; (2 in vivo MRI for brain atrophy studies and (3 FACS analysis of brain infiltrating lymphocytes at 8 months post TMEV infection. Co-infection with MCMV influenced the disease course in mice infected prior to TMEV infection. In this group, rotarod detectable motor performance was significantly improved starting 3 months post-infection and beyond (p≤0.024. In addition, their brain atrophy was close to 30% reduced at 8 months, but this was only present as a trend due to low power (p = 0.19. A significant reduction in the proportion of brain infiltrating CD3+ cells was detected in this group (p = 0.026, while the proportion of CD45+ Mac1+ cells significantly increased (p = 0.003. There was also a strong trend for a reduced proportion of CD4+ cells (p = 0.17 while CD8 and B220+ cell proportion did not change. These findings support an immunomodulatory effect of MCMV infection in this MS model. Future studies in this co-infection model will provide insight into mechanisms which modulate the development of demyelination and may be utilized for the development of novel therapeutic strategies.

  7. Oral Bromelain Attenuates Inflammation in an Ovalbumin-Induced Murine Model of Asthma

    OpenAIRE

    Secor, Eric R.; Carson, William F.; Anurag Singh; Mellisa Pensa; Guernsey, Linda A.; Craig M. Schramm; Thrall, Roger S.

    2008-01-01

    Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA)-induced murine model of acute allergic airway disease (AAD). To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p.) OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavag...

  8. Sexually dimorphic myeloid inflammatory and metabolic responses to diet-induced obesity.

    Science.gov (United States)

    Griffin, C; Lanzetta, N; Eter, L; Singer, K

    2016-08-01

    It is well known in clinical and animal studies that women and men have different disease risk as well as different disease physiology. Women of reproductive age are protected from metabolic and cardiovascular disease compared with postmenopausal women and men. Most murine studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of similar protection in female mice. We have investigated dietary obesity in a mouse model and have directly compared inflammatory responses in males and females. In this review we will summarize what is known about sex differences in diet-induced inflammation and will summarize our data on this topic. It is clear that sex differences in high-fat diet-induced inflammatory activation are due to cell intrinsic differences in hematopoietic responses to obesogenic cues, but further research is needed to understand what leads to sexually dimorphic responses. PMID:27252473

  9. Oral Bromelain Attenuates Inflammation in an Ovalbumin-Induced Murine Model of Asthma

    Directory of Open Access Journals (Sweden)

    Eric R. Secor

    2008-01-01

    Full Text Available Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA-induced murine model of acute allergic airway disease (AAD. To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p. OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavaged with either (phosphate buffered salinePBS or 200 mg/kg bromelain in PBS, twice daily for four consecutive days, beginning 1 day prior to OVA aerosol challenge. Airway reactivity and methacholine sensitivity, bronchoalveolar lavage (BAL cellular differential, Th2 cytokines IL-5 and IL-13, and lung histology were compared between treatment groups. Oral bromelain-treatment of AAD mice demonstrated therapeutic efficacy as evidenced by decreased methacholine sensitivity (P ≤ 0.01, reduction in BAL eosinophils (P ≤ 0.02 and IL-13 concentrations (P ≤ 0.04 as compared with PBS controls. In addition, oral bromelain significantly reduced BAL CD19+ B cells (P ≤ 0.0001 and CD8+ T cells (P ≤ 0.0001 in AAD mice when compared with controls. These results suggest that oral treatment with bromelain had a beneficial therapeutic effect in this murine model of asthma and bromelain may also be effective in human conditions.

  10. Voluntary Exercise Improves High-Fat Diet-Induced Leptin Resistance Independent of Adiposity

    OpenAIRE

    Carhuatanta, Kimberly A. Krawczewski; Demuro, Giovanna; Tschöp, Matthias H.; Pfluger, Paul T.; Benoit, Stephen C.; Obici, Silvana

    2011-01-01

    The efficacy of exercise as primary prevention of obesity is the subject of intense investigation. Here, we show that voluntary exercise in a mouse strain susceptible to diet-induced obesity (C57B6J) decreases fat mass and increases energy expenditure. In addition, exercise attenuates obesity in mice fed a high-fat diet (HFD). Using FosB immunoreactivity as a marker of chronic neuronal activation, we found that exercise activates leptin receptor-positive neurons in the ventromedial hypothalam...

  11. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Dhawan Gunjan

    2012-07-01

    Full Text Available Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD. One hypothesis is that amyloid beta (Aβ peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia cell line, BV2, were used for stimulation with fibrillar Aβ1-42. The non-receptor tyrosine kinase inhibitor, dasatinib, was used to treat the cells to determine whether Src family kinase activity was required for the Aβ stimulated signaling response and subsequent increase in TNFα secretion using Western blot analysis and enzyme-linked immunosorbent assay (ELISA, respectively. A histologic longitudinal analysis was performed using an AD transgenic mouse model, APP/PS1, to determine an age at which microglial protein tyrosine kinase levels increased in order to administer dasatinib via mini osmotic pump diffusion. Effects of dasatinib administration on microglial and astroglial activation, protein phosphotyrosine levels, active Src kinase levels, Aβ plaque deposition, and spatial working memory were assessed via immunohistochemistry, Western blot, and T maze analysis. Results Aβ fibrils stimulated primary murine microglia via a tyrosine kinase pathway involving Src kinase that was attenuated by dasatinib. Dasatinib administration to APP/PS1 mice decreased protein phosphotyrosine, active Src, reactive microglia, and TNFα levels in the hippocampus and temporal cortex. The drug had no effect on GFAP levels, Aβ plaque load, or the related tyrosine kinase, Lyn. These anti-inflammatory changes correlated with improved performance on the T maze test in dasatinib infused animals compared to control animals. Conclusions These data suggest that amyloid

  12. Afzelin attenuates asthma phenotypes by downregulation of GATA3 in a murine model of asthma.

    Science.gov (United States)

    Zhou, Wenbo; Nie, Xiuhong

    2015-07-01

    Asthma is a serious health problem causing significant mortality and morbidity globally. Persistent airway inflammation, airway hyperresponsiveness, increased immunoglobulin E (IgE) levels and mucus hypersecretion are key characteristics of the condition. Asthma is mediated via a dominant T-helper 2 (Th2) immune response, causing enhanced expression of Th2 cytokines. These cytokines are responsible for the various pathological changes associated with allergic asthma. To investigate the anti-asthmatic potential of afzelin, as well as the underlying mechanisms involved, its anti-asthmatic potential were investigated in a murine model of asthma. In the present study, BALB/c mice were systemically sensitized using ovalbumin (OVA) followed by aerosol allergen challenges. The effect of afzelin on airway hyperresponsiveness, eosinophilic infiltration, Th2 cytokine and OVA‑specific IgE production in a mouse model of asthma were investigated. It was found that afzelin‑treated groups suppressed eosinophil infiltration, allergic airway inflammation, airway hyperresponsiveness, OVA-specific IgE and Th2 cytokine secretion. The results of the present study suggested that the therapeutic mechanism by which afzelin effectively treats asthma is based on reduction of Th2 cytokine via inhibition of GATA-binding protein 3 transcription factor, which is the master regulator of Th2 cytokine differentiation and production. PMID:25738969

  13. Attenuated Salmonella typhimurium carrying shRNA-expressing vectors elicit RNA interference in murine bladder tumors

    Institute of Scientific and Technical Information of China (English)

    Nan YANG; Sheng-hua LI; Yun-zhe L(U); Li-shan CHEN; Da-ming REN

    2011-01-01

    Aim: To examine whether attenuated Salmonella typhimurium (S typhimurium) could be used as an anti-cancer agent or a tumortargeting vehicle for delivering shRNA-expressing pDNA into cancer cells in a mouse tumor model.Methods: Mouse bladder transitional cancer cell line (BTT-T739) expressing GFP was used, in which the GFP expression level served as an indicator of RNA interference (RNAi). BTT-T739-GFP tumor-bearing mice (4-6 weeks) were treated with S typhimurium carrying plasmids encoding shRNA against gfp or scrambled shRNA. The mRNA and protein expression levels of GFP were assessed 5 d after the bacteria administration, and the antitumor effects of S typhimurium were evaluated.Results: In BTT-T739-GFP tumor-bearing mice, S typhirnurium (1×109 cfu, po) preferentially accumulated within tumors for as long as 40 d, and formed a tumor-to-normal tissue ratio that exceeded 1000/1. S typhimurium carrying plasmids encoding shRNA against gfp inhibited the expression of GFP in tumor cells by 73.4%. Orally delivered S typhimurium significantly delayed tumor growth and prolonged the survival of tumor-bearing mice.Conclusion: This study demonstrates that attenuated S typhimurium can be used for both delivering shRNA-expressing vectors into tumor cells and eliciting RNAi, thus exerting anti-tumor activity, which may represent a new strategy for the treatment of solid tumors.

  14. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  15. Walnut Polyphenol Extract Attenuates Immunotoxicity Induced by 4-Pentylphenol and 3-methyl-4-nitrophenol in Murine Splenic Lymphocyte

    Directory of Open Access Journals (Sweden)

    Lubing Yang

    2016-05-01

    Full Text Available 4-pentylphenol (PP and 3-methyl-4-nitrophenol (PNMC, two important components of vehicle emissions, have been shown to confer toxicity in splenocytes. Certain natural products, such as those derived from walnuts, exhibit a range of antioxidative, antitumor, and anti-inflammatory properties. Here, we investigated the effects of walnut polyphenol extract (WPE on immunotoxicity induced by PP and PNMC in murine splenic lymphocytes. Treatment with WPE was shown to significantly enhance proliferation of splenocytes exposed to PP or PNMC, characterized by increases in the percentages of splenic T lymphocytes (CD3+ T cells and T cell subsets (CD4+ and CD8+ T cells, as well as the production of T cell-related cytokines and granzymes (interleukin-2, interleukin-4, and granzyme-B in cells exposed to PP or PNMC. These effects were associated with a decrease in oxidative stress, as evidenced by changes in OH, SOD, GSH-Px, and MDA levels. The total phenolic content of WPE was 34,800 ± 200 mg gallic acid equivalents/100 g, consisting of at least 16 unique phenols, including ellagitannins, quercetin, valoneic acid dilactone, and gallic acid. Taken together, these results suggest that walnut polyphenols significantly attenuated PP and PNMC-mediated immunotoxicity and improved immune function by inhibiting oxidative stress.

  16. Rapamycin Blocks Fibrocyte Migration and Attenuates Bronchiolitis Obliterans in a Murine Model

    Science.gov (United States)

    Gillen, Jacob R.; Zhao, Yunge; Harris, David A.; LaPar, Damien J.; Stone, Matthew L.; Fernandez, Lucas G.; Kron, Irving L.; Lau, Christine L.

    2014-01-01

    Background Fibrocytes are integral in the development of fibroproliferative disease. The CXCL12/CXCR4 chemokine axis has been shown to play a central role in fibrocyte migration and the development of bronchiolitis obliterans post lung transplantation. Inhibition of the mTOR (mammalian target of rapamycin) pathway with rapamycin has been shown to decrease expression of both CXCR4 and its receptor agonist, CXCL12. Thus, we hypothesize that rapamycin treatment would decrease fibrocyte trafficking into tracheal allografts and prevent bronchiolitis obliterans. Methods A total alloantigenic mismatch, murine heterotopic tracheal transplant model of bronchiolitis obliterans was used. Animals were either treated with rapamycin or dimethyl sulfoxide (DMSO) for 14 days post tracheal transplant. Fibrocyte levels were assessed via flow cytometry, and allograft neutrophil, CD3+ T-cell, macrophage, and smooth muscle actin levels were assessed via immunohistochemistry. Tracheal luminal obliteration was assessed on hematoxylin and eosin stains. Results Compared to DMSO controls, rapamycin-treated mice showed a significant decrease in fibrocyte levels in tracheal allografts. Fibrocytes levels in recipient’s blood showed a similar pattern, although not statistically significant. Furthermore, animals treated with rapamycin showed a significant decrease in tracheal allograft luminal obliteration compared to controls. Based on immunohistochemistry analyses, populations of α-SMA positive cells, neutrophils, CD3+ T-cells, and macrophages were all decreased in rapamycin-treated allograft versus DMSO controls. Conclusions Rapamycin effectively reduces recruitment of fibrocytes into tracheal allografts and mitigates development of tracheal luminal fibrosis. Further studies are needed to determine the cellular and molecular mechanisms that mediate the protective effect of rapamycin against bronchiolitis obliterans. PMID:23561805

  17. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Isabel Hinsenkamp

    2016-08-01

    Full Text Available Gastric cancer (GC remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2 which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl-homopiperazine (HA-1077, fasudil is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy.

  18. Bifidobacterium lactis attenuates onset of inflammation in a murine model of colitis

    Institute of Scientific and Technical Information of China (English)

    David Philippe; Stéphanie Blum; Laurent Favre; Francis Foata; Oskar Adolfsson; Genevieve Perruisseau-Carrier; Karine Vidal; Gloria Reuteler; Johanna Dayer-Schneider; Christoph Mueller

    2011-01-01

    AIM: To assess the anti-inflammatory effect of the probiotic Bifidobacterium lactis (B. lactis ) in an adoptive transfer model of colitis. METHODS: Donor and recipient mice received either B. lactis or bacterial culture medium as control (deMan Rogosa Sharpe) in drinking water for one week prior to transfer of a mix of naive and regulatory T cells until sacrifice. RESULTS: All recipient mice developed signs of colonic inflammation, but a significant reduction of weight loss was observed in B. lactis -fed recipient mice compared to control mice. Moreover, a trend toward a diminution of mucosal thickness and attenuated epithelial damage was revealed. Colonic expression of pro-inflammatory and T cell markers was significantly reduced in B. lactis - fed recipient mice compared to controls. Concomitantly, forkhead box protein 3, a marker of regulatory T cells, was significantly up-regulated by B. lactis . CONCLUSION: Daily oral administration of B. lactis was able to reduce inflammatory and T cells mediators and to promote regulatory T cells specific markers in a mouse model of colitis.

  19. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Both nature and induced regulatory T (Treg lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+FoxP3(+ and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma.

  20. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    Science.gov (United States)

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  1. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    Science.gov (United States)

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

  2. Simvastatin delivery via inhalation attenuates airway inflammation in a murine model of asthma.

    Science.gov (United States)

    Xu, Lan; Dong, Xing-wei; Shen, Liang-liang; Li, Fen-fen; Jiang, Jun-xia; Cao, Rui; Yao, Hong-yi; Shen, Hui-juan; Sun, Yun; Xie, Qiang-min

    2012-04-01

    The dose-response of the pleiotropic effects of statins on airway inflammation has not yet been established and may differ from that of their cholesterol-lowering effects. High oral doses of statins may have adverse effects, and it may be possible to overcome the side effects and low clinical efficacy by administering statins via inhalation. In this study, we hypothesize that simvastatin is a potential anti-inflammatory drug with biological and pharmacokinetic properties suitable for delivery by the inhaled route. Mice were immunized with ovalbumin (OVA) and then challenged with aerosol OVA. Simvastatin was locally delivered by inhalation (i.h.) and intratracheal injection (i.t.) or systematically delivered by intraperitoneal injection (i.p.) and gavage (i.g.) during the OVA challenge. In a mouse model of asthma, i.h. simvastatin significantly and dose-dependently attenuated airway inflammation, remodeling and hyperresponsiveness in a RhoA-dependent pathway. Upon comparing the pharmacodynamics, i.h. simvastatin had a more potent effect than that of i.g. and i.p. simvastatin, and the i.h. or i.t. delivery routes led to a higher drug concentration in local lung tissue and a lower drug concentration in the plasma than that obtained by the i.g. These results suggest that simvastatin is a potential anti-inflammatory drug for airway inflammatory diseases with properties suitable for delivery by inhalation, which will probably reduce the side effects and increase clinical efficacy. PMID:22326624

  3. Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions

    Directory of Open Access Journals (Sweden)

    Jessica E. Beilharz

    2015-08-01

    Full Text Available It is of vital importance to understand how the foods which are making us fat also act to impair cognition. In this review, we compare the effects of acute and chronic exposure to high-energy diets on cognition and examine the relative contributions of fat (saturated and polyunsaturated and sugar to these deficits. Hippocampal-dependent memory appears to be particularly vulnerable to the effects of high-energy diets and these deficits can occur rapidly and prior to weight gain. More chronic diet exposure seems necessary however to impair other sorts of memory. Many potential mechanisms have been proposed to underlie diet-induced cognitive decline and we will focus on inflammation and the neurotrophic factor, brain-derived neurotrophic factor (BDNF. Finally, given supplementation of diets with omega-3 and curcumin has been shown to have positive effects on cognitive function in healthy ageing humans and in disease states, we will discuss how these nutritional interventions may attenuate diet-induced cognitive decline. We hope this approach will provide important insights into the causes of diet-induced cognitive deficits, and inform the development of novel therapeutics to prevent or ameliorate such memory impairments.

  4. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    OpenAIRE

    Dhawan Gunjan; Combs Colin K

    2012-01-01

    Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD). One hypothesis is that amyloid beta (Aβ) peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia c...

  5. Elimination of ie1 significantly attenuates murine cytomegalovirus virulence but does not alter replicative capacity in cell culture.

    NARCIS (Netherlands)

    P. Ghazal; A.E. Visser; M. Gustems; R. Garcia; E.M. Borst; K. Sullivan; M. Messerle; A. Angulo

    2005-01-01

    The major immediate-early (MIE) genes of cytomegaloviruses (CMV) are broadly thought to be decisive regulators of lytic replication and reactivation from latency. To directly assess the role of the MIE protein IE1 during the infection of murine CMV (MCMV), we constructed an MCMV with exon 4 of the i

  6. Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model.

    Science.gov (United States)

    Wei, Ying; Liu, Baojun; Sun, Jing; Lv, Yubao; Luo, Qingli; Liu, Feng; Dong, Jingcheng

    2015-06-01

    Icariin which is a flavonoid glucoside isolated from Epimedium brevicornu Maxim, has been reported to have anti-osteoporotic, anti-inflammatory and anti-depressant-like activities. In this study, we observed the effect of icariin on airway inflammation of ovalbumin (OVA)-induced murine asthma model and the associated regulatory mode on T-helper (Th)17 and regulatory T (Treg) cell function. Our data revealed that chronic OVA inhalation induced a dramatic increase in airway resistance (RL) and decrease in the lung dynamic compliance (Cdyn), and icariin and DEX treatment caused significant attenuation of such airway hyperresponsiveness (AHR). BALF cell counts demonstrated that icariin and DEX led to a prominent reduction in total leukocyte as well as lymphocyte, eosinophil, neutrophil, basophil and monocyte counts. Histological analysis results indicated that icariin and DEX alleviated the inflammatory cells infiltrating into the peribronchial tissues and goblet cells hyperplasia and mucus hyper-production. Flow cytometry test demonstrated that icariin or DEX administration resulted in a significant percentage reduction in CD4+RORγt+ T cells and elevation of CD4+Foxp3+ T cells in BALF. Furthermore, icariin or DEX caused a significant reduction in IL-6, IL-17 and TGF-β level in BALF. Unfortunately, icariin had no effect on IL-10 level in BALF. Western blot assay found that icariin or DEX suppressed RORγt and promoted Foxp3 expression in the lung tissue. qPCR analysis revealed that icariin and DEX resulted in a notable decrease in RORγt and increase in Foxp3 mRNA expression in isolated spleen CD4+ T cell. In conclusion, our results suggested that icariin was effective in the attenuation of AHR and chronic airway inflammatory changes in OVA-induced murine asthma model, and this effect was associated with regulation of Th17/Treg responses, which indicated that icariin may be used as a potential therapeutic method to treat asthma with Th17/Treg imbalance phenotype

  7. Therapeutic immunization with radio-attenuated Leishmania parasites through i.m. route revealed protection against the experimental murine visceral leishmaniasis.

    Science.gov (United States)

    Datta, Sanchita; Manna, Madhumita; Khanra, Supriya; Ghosh, Moumita; Bhar, Radhaballav; Chakraborty, Anindita; Roy, Syamal

    2012-07-01

    After our promising results from prophylactic and therapeutic study (i.p. route) with the radio-attenuated Leishmania donovani parasites against experimental murine visceral leishmaniasis, we prompted to check their therapeutic efficacy through i.m route. BALB/c mice were infected with highly virulent L. donovani parasites. After 75 days, mice were treated with gamma (γ)-irradiated parasites. A second therapeutic immunization was given after 15 days of first immunization. The protection against kala-azar was estimated with the reduction of Leishman-Donovan unit from spleen and liver that scored up to 80% and 93%, respectively, while a twofold increase in nitric oxide (NO) and reactive oxygen species (ROS) productions has been observed in the immunized groups of animals. These groups of mice also showed disease regression by skewing Th2 cytokines (IL-10) towards Th1 cytokine (IFN-γ) bias along with the increased generation of NO and ROS, while the infected control group of mice without such treatment surrendered to the disease. Establishment of Th1 ambience in the treated groups has also been supported from the measured antileishmanial antibody IgG subsets (IgG2a and IgG1) with higher anti-soluble Leishmania antigen-specific IgG2a titer. As seen in our previous studies, doses of attenuation by γ-radiation should be taken into serious consideration. Attenuation of parasites at 50 Gy of absorbed dose of gamma rays has not worked well. Thus, therapeutic use of L. donovani parasites radio-attenuated at particular doses can be exploited as a promising vaccine agent. Absence of any adjuvant may increase its acceptability as vaccine candidate further.

  8. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    Science.gov (United States)

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts.

  9. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    Science.gov (United States)

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  10. LF-15 & T7, synthetic peptides derived from tumstatin, attenuate aspects of airway remodelling in a murine model of chronic OVA-induced allergic airway disease.

    Directory of Open Access Journals (Sweden)

    Karryn T Grafton

    Full Text Available BACKGROUND: Tumstatin is a segment of the collagen-IV protein that is markedly reduced in the airways of asthmatics. Tumstatin can play an important role in the development of airway remodelling associated with asthma due to its anti-angiogenic properties. This study assessed the anti-angiogenic properties of smaller peptides derived from tumstatin, which contain the interface tumstatin uses to interact with the αVβ3 integrin. METHODS: Primary human lung endothelial cells were exposed to the LF-15, T3 and T7 tumstatin-derived peptides and assessed for cell viability and tube formation in vitro. The impact of the anti-angiogenic properties on airways hyperresponsiveness (AHR was then examined using a murine model of chronic OVA-induced allergic airways disease. RESULTS: The LF-15 and T7 peptides significantly reduced endothelial cell viability and attenuated tube formation in vitro. Mice exposed to OVA+ LF-15 or OVA+T7 also had reduced total lung vascularity and AHR was attenuated compared to mice exposed to OVA alone. T3 peptides reduced cell viability but had no effect on any other parameters. CONCLUSION: The LF-15 and T7 peptides may be appropriate candidates for use as novel pharmacotherapies due to their small size and anti-angiogenic properties observed in vitro and in vivo.

  11. Liver and circulating NK1.1(+)CD3(-) cells are increased in infection with attenuated Salmonella typhimurium and are associated with reduced tumor in murine liver cancer.

    Science.gov (United States)

    Feltis, B A; Miller, J S; Sahar, D A; Kim, A S; Saltzman, D A; Leonard, A S; Wells, C L; Sielaff, T D

    2002-09-01

    An attenuated (DeltacyA, Deltacrp) strain of Salmonella typhimurium (chi4550) containing a gene for human IL-2 (chi4550pIL2) reduces hepatic tumor burden when orally inoculated into mice with liver cancer; however, wild-type S. typhimurium is also associated with cancer regression. Therefore, experiments were designed to clarify the invasiveness and the anti-tumor properties of three strains of S. typhimurium. S. typhimurium chi4550pIL2, chi4550, or wild type (WT) was incubated with mature Caco-2 and HT-29 enterocytes, and S. typhimurium internalization was assessed. For infectivity experiments, mice were orally inoculated with saline or 10(9)S. typhimurium chi4550pIL2, chi4550, or WT; 48 h later mice were sacrificed for analysis of cecal bacteria and S. typhimurium translocation to mesenteric lymph nodes. For experiments involving tumor implantation, four groups were studied: saline control, tumor alone, chi4550pIL2+tumor, and chi4550+tumor. Mice were orally inoculated with saline or S. typhimurium and underwent laparotomy 24 h later with 5 x 10(4) MCA38 murine adenocarcinoma cells injected into the spleen. On day 14, liver tumors were counted and peripheral blood and hepatic lymphocyte populations were analyzed by FACScan. Attenuated S. typhimurium exhibited decreased internalization by cultured enterocytes and decreased infectivity after oral inoculation. Mice treated with chi4550pIL2 or chi4550 had fewer liver tumors and increased populations of hepatic and circulating NK1.1(+)CD3(-) lymphocytes compared to mice treated with saline (P < 0.01). These data suggest that attenuated S. typhimurium may have an application as an anti-tumor agent.

  12. Icariin attenuates glucocorticoid insensitivity mediated by repeated psychosocial stress on an ovalbumin-induced murine model of asthma.

    Science.gov (United States)

    Li, Bei; Duan, Xiaohong; Xu, Changqing; Wu, Jinfeng; Liu, Baojun; Du, Yiji; Luo, Qingli; Jin, Hualiang; Gong, Weiyi; Dong, Jingcheng

    2014-04-01

    Evidence shows that psychosocial stress exacerbates asthma, but there is little intervention to alleviate negative effects of psychosocial stress on asthma. We investigated the role of icariin in anti-inflammation and anti-anxiety potential in a murine model combined psychosocial stress with allergic exposure. The results indicated that icariin administered remarkable increased activity in the center of the open field, reversed airway hyperresponsivenesss, reduced inflammatory cytokine infiltration to the lung and whole body and also in part recovered glucocorticoid responsiveness. Furthermore, our data also showed that icariin significantly inhibited increases of corticosterone and markedly increased glucocorticoid receptor mRNA and protein expression in the lungs of mice exposed to both stress and allergen. Collectively, we speculate that inducing glucocorticoid receptor modulation might be the potential mechanisms of icariin to facilitate corticosteroid responsiveness of cytokine production.

  13. Role of resistin in diet-induced hepatic insulin resistance

    OpenAIRE

    Muse, Evan D.; Obici, Silvana; Bhanot, Sanjay; Monia, Brett P.; McKay, Robert A.; Rajala, Michael W.; Scherer, Philipp E.; Rossetti, Luciano

    2004-01-01

    Resistin is an adipose-derived hormone postulated to link adiposity to insulin resistance. To determine whether resistin plays a causative role in the development of diet-induced insulin resistance, we lowered circulating resistin levels in mice by use of a specific antisense oligodeoxynucleotide (ASO) directed against resistin mRNA and assessed in vivo insulin action by the insulin-clamp technique. After 3 weeks on a high-fat (HF) diet, mice displayed severe insulin resistance associated wit...

  14. Leptin resistance: a prediposing factor for diet-induced obesity

    OpenAIRE

    Scarpace, Philip J.; Zhang, Yi

    2008-01-01

    Obesity is a resilient and complex chronic disease. One potential causative factor in the obesity syndrome is leptin resistance. Leptin behaves as a potent anorexic and energy-enhancing hormone in most young or lean animals, but its effects are diminished or lacking in the obese state associated with a normal genetic background. Emerging evidence suggests that leptin resistance predisposes the animal to exacerbated diet-induced obesity (DIO). Elevation of central leptin in young, lean rats in...

  15. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2010-07-01

    Full Text Available Abstract Background Calorie restriction (CR and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat, low-fat diet with 30% calorie restriction (LR, high-fat diet (HC, 60% fat, high-fat diet with 30% calorie restriction (HR, high-fat diet with voluntary running exercise (HE, and high-fat diet with a combination of 30% calorie restriction and exercise (HRE. The impacts of the interventions were assessed by comprehensive metabolic analyses and pro-inflammatory cytokine gene expression. Results Endurance exercise significantly attenuated high-fat diet-induced obesity. CR dramatically prevented high-fat diet-induced metabolic abnormalities. A combination of CR and endurance exercise further reduced obesity and insulin resistance under the condition of high-fat diet. CR and endurance exercise each potently suppressed the expression of inflammatory cytokines in white adipose tissues with additive effects when combined, but the effects of diet and exercise interventions in the liver were moderate to minimal. Conclusions CR and endurance exercise share a potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance.

  16. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice

    Science.gov (United States)

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan; Badran, Samir; Arco, Rocío; Pavón, Francisco Javier; Serrano, Antonia; Rivera, Patricia; Decara, Juan; Cuesta, Antonio Luis; Rodríguez-de-Fonseca, Fernando

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the liver steatosis, whereas restoration of IL-6 in DIO IL-6-/- mice up-regulates hepatic lipogenic enzymes and aggravates steatosis. We further examined the effects of chronic low doses of murine IL-6 on hepatic lipid metabolism in WT mice in DIO. IL-6 was delivered twice daily in C57BL/6J DIO mice for 15 days. The status and expression of IL-6-signalling mediators and targets were investigated in relation to the steatosis and lipid content in blood and in liver. IL-6 administration in DIO mice markedly raised circulating levels of lipids, glucose and leptin, elevated fat liver content and aggravated steatosis. Under IL-6 treatment there was hepatic Stat3 activation and increased gene expression of Socs3 and Tnf-alpha whereas the gene expression of endogenous IL-6, IL-6-receptor, Stat3, Cpt1 and the enzymes involved in lipogenesis was suppressed. These data further implicate IL-6 in fatty liver disease modulation in the context of DIO, and indicate that continuous stimulation with IL-6 attenuates the IL-6-receptor response, which is associated with high serum levels of leptin, glucose and lipids, the lowering levels of lipogenic and Cpt1 hepatic enzymes and with increased Tnf-alpha hepatic expression, a scenario evoking that observed in IL-6-/- mice exposed to DIO and in obese Zucker rats. PMID:27333268

  17. A Comparative Study of Lung Host Defense in Murine Obesity Models. Insights into Neutrophil Function.

    Science.gov (United States)

    Ubags, Niki D J; Burg, Elianne; Antkowiak, Maryellen; Wallace, Aaron M; Dilli, Estee; Bement, Jenna; Wargo, Matthew J; Poynter, Matthew E; Wouters, Emiel F M; Suratt, Benjamin T

    2016-08-01

    We have shown that obesity-associated attenuation of murine acute lung injury is driven, in part, by blunted neutrophil chemotaxis, yet differences were noted between the two models of obesity studied. We hypothesized that obesity-associated impairment of multiple neutrophil functions contributes to increased risk for respiratory infection but that such impairments may vary between murine models of obesity. We examined the most commonly used murine obesity models (diet-induced obesity, db/db, CPE(fat/fat), and ob/ob) using a Klebsiella pneumoniae pneumonia model and LPS-induced pneumonitis. Marrow-derived neutrophils from uninjured lean and obese mice were examined for in vitro functional responses. All obesity models showed impaired clearance of K. pneumoniae, but in differing temporal patterns. Failure to contain infection in obese mice was seen in the db/db model at both 24 and 48 hours, yet this defect was only evident at 24 hours in CPE(fat/fat) and ob/ob models, and at 48 hours in diet-induced obesity. LPS-induced airspace neutrophilia was decreased in all models, and associated with blood neutropenia in the ob/ob model but with leukocytosis in the others. Obese mouse neutrophils from all models demonstrated impaired chemotaxis, whereas neutrophil granulocyte colony-stimulating factor-mediated survival, LPS-induced cytokine transcription, and mitogen-activated protein kinase and signal transducer and activator of transcription 3 activation in response to LPS and granulocyte colony-stimulating factor, respectively, were variably impaired across the four models. Obesity-associated impairment of host response to lung infection is characterized by defects in neutrophil recruitment and survival. However, critical differences exist between commonly used mouse models of obesity and may reflect variable penetrance of elements of the metabolic syndrome, as well as other factors. PMID:27128821

  18. Addition of Sodium Pyruvate to Stored Red Blood Cells Attenuates Liver Injury in a Murine Transfusion Model

    Science.gov (United States)

    2016-01-01

    RBCs undergo numerous changes during storage and stored RBCs may induce adverse effects, ultimately resulting in organ injury in transfusion recipients. We tested the hypothesis that the addition of SP to stored RBCs would improve the quality of the stored RBCs and mitigate liver injury after transfusion in a murine model. RBCs were harvested from C57BL/6J mice and stored for 14 days in CPDA-1 containing either a solution of SP in saline or saline alone. Haemolysis, the 24-hour posttransfusion recovery, the oxygen-carrying capacity, and the SOD activity of stored RBCs were evaluated. The plasma biochemistry, hepatic MDA level, MPO activity, IL-6, TNF-α concentrations, and histopathology were measured two hours after the transfusion of stored RBCs. Compared with RBCs stored in CPDA-1 and saline, the addition of SP to stored RBCs restored their oxygen-carrying capacity and SOD activity, reduced the AST activity, BUN concentrations, and LDH activity in the plasma, and decreased the MDA level, MPO activity, and concentrations of IL-6 and TNF-α in the liver. These data indicate that the addition of SP to RBCs during storage has a beneficial effect on storage lesions in vitro and subsequently alleviates liver injury after the transfusion of stored RBCs in vivo.

  19. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    International Nuclear Information System (INIS)

    Highlights: → Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. → Induction of CD4+CD25+Foxp3+ T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. → C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4+CD25+Foxp3+ regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and

  20. Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet.

    Directory of Open Access Journals (Sweden)

    Komal Sodhi

    Full Text Available Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD, obesity and cardiovascular disease (CVD. Heme Oxygenase-1 (HO-1 is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1 belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05. Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05. Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose. These beneficial effects of CoPP were reversed by SnMP.Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates

  1. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    Science.gov (United States)

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  2. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Il [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Kim, Seung Hyun [Div. of AIDS, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of); Park, Jin Wook; Park, Yeong-Min [Dept. of Microbiology and Immunology, College of Medicine, Pusan National University, Yang-San (Korea, Republic of); Lee, Sang Eun, E-mail: ondalgl@cdc.go.kr [Div. of Malaria and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Osong (Korea, Republic of)

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  3. Rebamipide Attenuates Mandibular Condylar Degeneration in a Murine Model of TMJ-OA by Mediating a Chondroprotective Effect and by Downregulating RANKL-Mediated Osteoclastogenesis

    Science.gov (United States)

    Izawa, Takashi; Mori, Hiroki; Shinohara, Tekehiro; Mino-Oka, Akiko; Hutami, Islamy Rahma; Iwasa, Akihiko; Tanaka, Eiji

    2016-01-01

    Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by progressive degradation of cartilage and changes in subchondral bone. It is also one of the most serious subgroups of temporomandibular disorders. Rebamipide is a gastroprotective agent that is currently used for the treatment of gastritis and gastric ulcers. It scavenges reactive oxygen radicals and has exhibited anti-inflammatory potential. The aim of this study was to investigate the impact of rebamipide both in vivo and in vitro on the development of cartilage degeneration and osteoclast activity in an experimental murine model of TMJ-OA, and to explore its mode of action. Oral administration of rebamipide (0.6 mg/kg and 6 mg/kg) was initiated 24 h after TMJ-OA was induced, and was maintained daily for four weeks. Rebamipide treatment was found to attenuate cartilage degeneration, to reduce the number of apoptotic cells, and to decrease the expression levels of matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in TMJ-OA cartilage in a dose-dependent manner. Rebamipide also suppressed the activation of transcription factors (e.g., NF-κB, NFATc1) and mitogen-activated protein kinases (MAPK) by receptor activator of nuclear factor kappa-B ligand (RANKL) to inhibit the differentiation of osteoclastic precursors, and disrupted the formation of actin rings in mature osteoclasts. Together, these results demonstrate the inhibitory effects of rebamipide on cartilage degradation in experimentally induced TMJ-OA. Furthermore, suppression of oxidative damage, restoration of extracellular matrix homeostasis of articular chondrocytes, and reduced subchondral bone loss as a result of blocked osteoclast activation suggest that rebamipide is a potential therapeutic strategy for TMJ-OA. PMID:27123995

  4. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions.

    Science.gov (United States)

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naïve T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical relationship between the allergic immune response and helminth infection. PMID:21440530

  5. Diet-induced obesity alters kinematics of rat spermatozoa

    Institute of Scientific and Technical Information of China (English)

    IP Oyeyipo; PJ Maartens; SS duPlessis

    2015-01-01

    Objective:To investigate the effect of DIO on the kinematics and viability of spermatozoa in an albino rat model.Methods:Sperm suspensions from normal (Control) and diet-induced obese (DIO) Wistar rats were collected and incubated for various times (30, 60, 120 or 180 min at 37℃). Motility parameters were analyzed with computer-aided sperm analysis (CASA), while viability was assessed by means of a dye exclusion staining technique (eosin/nigrosin).Results: Results reveal that there was a significant time dependent decrease (P<0.05) in progressive motility, curvilinear velocity and beat cross frequency after 60 min, while amplitude of lateral head displacement and sperm viability was significantly reduced (P<0.05) after 120 min in the DIO group compared to control spermatozoa.Conclusions: These results provided evidence that obesity is detrimental to sperm parameter in rats possibly through increased testicular temperature as a result of a rise in fat deposition.

  6. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    Science.gov (United States)

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet.

  7. Ultrastructural Changes of Airway in Murine Models of Allergy and Diet-Induced Metabolic Syndrome

    OpenAIRE

    Leishangthem, Geeta Devi; Mabalirajan, Ulaganathan; Singh, Vijay Pal; Agrawal, Anurag; Ghosh, Balaram; Dinda, Amit Kumar

    2013-01-01

    Studying ultrastructural changes could reveal novel pathophysiology of obese-asthmatic condition as existing concepts in asthma pathogenesis are based on the histological changes of the diseased airway. While asthma is defined in functional terms, the potential of electron microscopy (EM) in providing cellular and subcellular detail is underutilized. With this view, we have performed transmission EM in the lungs from allergic mice that show key features of asthma and high-fat- or high-fructos...

  8. The Effects of Voluntary Exercise on Oocyte Quality in a Diet-Induced Obese Murine Model

    OpenAIRE

    Boudoures, Anna L.; Chi, Maggie; Thompson, Alysha; Zhang, Wendy; Moley, Kelle H.

    2015-01-01

    Obesity negatively affects many aspects of the human body, including reproductive function. In females, the root of the decline in fertility is linked to problems in the oocyte. Problems seen in oocytes that positively correlate with increasing BMI include changes to the metabolism, lipid accumulation, meiosis, and metaphase II (MII) spindle structure. Studies in mice indicate dietary interventions fail to reverse these problems [4]. How exercise affects the oocytes has not been addressed. Th...

  9. Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats.

    Science.gov (United States)

    Eslinger, Amanda J; Eller, Lindsay K; Reimer, Raylene A

    2014-08-01

    Numerous studies have demonstrated the impact of functional fibers on gut microbiota and metabolic health, but some less well-studied fibers and/or fractions of foods known to be high in fiber still warrant examination. The aim of this study was to assess the effect of yellow pea-derived fractions varying in fiber and protein content on metabolic parameters and gut microbiota in diet-induced obese rats. We hypothesized that the yellow pea fiber (PF) fraction would improve glycemia and alter gut microbiota. Rats were randomized to 1 of 5 isoenergetic dietary treatments for 6 weeks: (1) control; (2) oligofructose (OFS); (3) yellow PF; (4) yellow pea flour (PFL); or (5) yellow pea starch (PS). Glycemia, plasma gut hormones, body composition, hepatic triglyceride content, gut microbiota, and messenger RNA expression of genes related to hepatic fat metabolism were examined. Pea flour attenuated weight gain compared with control, PF, and PS (P Pea flour, PS, and OFS had significantly lower final percent body fat compared with control. Oligofructose but not the pea fraction diets reduced food intake compared with control (P Pea fiber resulted in lower fasting glucose and glucose area under the curve compared with control. Changes in gut microbiota were fraction specific and included a decrease in Firmicutes (percent) for OFS, PF, and PFL compared with control (P yellow pea-derived fractions are able to distinctly modulate metabolic parameters and gut microbiota in obese rats. PMID:25156790

  10. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    Science.gov (United States)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. PMID:27304513

  11. Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats.

    Science.gov (United States)

    Eslinger, Amanda J; Eller, Lindsay K; Reimer, Raylene A

    2014-08-01

    Numerous studies have demonstrated the impact of functional fibers on gut microbiota and metabolic health, but some less well-studied fibers and/or fractions of foods known to be high in fiber still warrant examination. The aim of this study was to assess the effect of yellow pea-derived fractions varying in fiber and protein content on metabolic parameters and gut microbiota in diet-induced obese rats. We hypothesized that the yellow pea fiber (PF) fraction would improve glycemia and alter gut microbiota. Rats were randomized to 1 of 5 isoenergetic dietary treatments for 6 weeks: (1) control; (2) oligofructose (OFS); (3) yellow PF; (4) yellow pea flour (PFL); or (5) yellow pea starch (PS). Glycemia, plasma gut hormones, body composition, hepatic triglyceride content, gut microbiota, and messenger RNA expression of genes related to hepatic fat metabolism were examined. Pea flour attenuated weight gain compared with control, PF, and PS (P Pea flour, PS, and OFS had significantly lower final percent body fat compared with control. Oligofructose but not the pea fraction diets reduced food intake compared with control (P Pea fiber resulted in lower fasting glucose and glucose area under the curve compared with control. Changes in gut microbiota were fraction specific and included a decrease in Firmicutes (percent) for OFS, PF, and PFL compared with control (P pea-derived fractions are able to distinctly modulate metabolic parameters and gut microbiota in obese rats.

  12. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Laura J Dixon

    Full Text Available Nonalcoholic steatohepatitis (NASH is associated with caspase activation. However, a role for pro-inflammatory caspases or inflammasomes has not been explored in diet-induced liver injury. Our aims were to examine the role of caspase-1 in high fat-induced NASH. C57BL/6 wild-type and caspase 1-knockout (Casp1(-/- mice were placed on a 12-week high fat diet. Wild-type mice on the high fat diet increased hepatic expression of pro-caspase-1 and IL-1β. Both wild-type and Casp1(-/- mice on the high fat diet gained more weight than mice on a control diet. Hepatic steatosis and TG levels were increased in wild-type mice on high fat diet, but were attenuated in the absence of caspase-1. Plasma cholesterol and free fatty acids were elevated in wild-type, but not Casp1(-/- mice, on high fat diet. ALT levels were elevated in both wild-type and Casp1(-/- mice on high fat diet compared to control. Hepatic mRNA expression for genes associated with lipogenesis was lower in Casp1(-/- mice on high fat diet compared to wild-type mice on high fat diet, while genes associated with fatty acid oxidation were not affected by diet or genotype. Hepatic Tnfα and Mcp-1 mRNA expression was increased in wild-type mice on high fat diet, but not in Casp1(-/- mice on high fat diet. αSMA positive cells, Sirius red staining, and Col1α1 mRNA were increased in wild-type mice on high fat diet compared to control. Deficiency of caspase-1 prevented those increases. In summary, the absence of caspase-1 ameliorates the injurious effects of high fat diet-induced obesity on the liver. Specifically, mice deficient in caspase-1 are protected from high fat-induced hepatic steatosis, inflammation and early fibrogenesis. These data point to the inflammasome as an important therapeutic target for NASH.

  13. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Feigh, Michael; Hjuler, Sara T; Andreassen, Kim V;

    2014-01-01

    We previously reported that oral delivery of salmon calcitonin (sCT) improved energy and glucose homeostasis and attenuated diabetic progression in animal models of diet-induced obesity (DIO) and type 2 diabetes, although the glucoregulatory mode of action was not fully elucidated. In the present...... study we hypothesized that oral sCT as pharmacological intervention 1) exerted anti-hyperglycemic efficacy, and 2) enhanced insulin action in DIO-streptozotocin (DIO-STZ) diabetic rats. Diabetic hyperglycemia was induced in male selectively bred DIO rats by a single low dose (30mg/kg) injection of STZ...... was enhanced in conjunction with protection of pancreatic insulin content. The results of the present study indicate that oral sCT exerts a novel insulin-sensitizing effect to improve glucose metabolism in obesity and type 2 diabetes....

  14. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice

    OpenAIRE

    Haque, Jamil A; McMahan, Ryan S.; Campbell, Jean S.; Shimizu-Albergine, Masami; Wilson, Angela M; Botta, Dianne; Bammler, Theo K.; Richard P Beyer; Thomas J Montine; Yeh, Matthew M.; Kavanagh, Terrance J.; Fausto, Nelson

    2010-01-01

    In nonalcoholic fatty liver disease (NAFLD), depletion of hepatic antioxidants may contribute to the progression of steatosis to nonalcoholic steatohepatitis (NASH) by increasing oxidative stress that produces lipid peroxidation, inflammation, and fibrosis. We investigated whether depletion of glutathione (GSH) increases NASH-associated hepatic pathology in mice fed a diet deficient in methionine and choline (MCD diet). Wild-type (wt) mice and genetically GSH-deficient mice lacking the modifi...

  15. Adipose Overexpression of Desnutrin Promotes Fatty Acid Use and Attenuates Diet-Induced Obesity

    OpenAIRE

    Ahmadian, Maryam; Duncan, Robin E.; Varady, Krista A.; Frasson, Danubia; Hellerstein, Marc K.; Birkenfeld, Andreas L.; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Kang, Chulho; Sul, Hei Sook

    2009-01-01

    OBJECTIVE To investigate the role of desnutrin in adipose tissue triacylglycerol (TAG) and fatty acid metabolism. RESEARCH DESIGN AND METHODS We generated transgenic mice overexpressing desnutrin (also called adipose triglyceride lipase [ATGL]) in adipocytes (aP2-desnutrin) and also performed adenoviral-mediated overexpression of desnutrin in 3T3-L1CARΔ1 adipocytes. RESULTS aP2-desnutrin mice were leaner with decreased adipose tissue TAG content and smaller adipocyte size. Overexpression of d...

  16. Salsalate attenuates diet induced non-alcoholic steatohepatitis in mice by decreasing lipogenic and inflammatory processes

    NARCIS (Netherlands)

    Liang, W.; Verschuren, L.; Mulder, P.; Hoorn, J.W.A. van der; Verheij, J.; Dam, A.D. van; Boon, M.R.; Princen, H.M.G.; Havekes, L.M.; Kleemann, R.; Hoek, A.M. van den

    2015-01-01

    BACKGROUND AND PURPOSE: Salsalate (salicylsalicylic acid) is an anti-inflammatory drug that was recently found to exert beneficial metabolic effects on glucose and lipid metabolism. Although its utility in the prevention and management of a wide range of vascular disorders, including type 2 diabetes

  17. N-Acetylneuraminic acid attenuates hypercoagulation on high fat diet-induced hyperlipidemic rats

    Directory of Open Access Journals (Sweden)

    Zhang Yida

    2015-12-01

    Full Text Available Background and objective: N-Acetylneuraminic acid (Neu5Ac, a type of sialic acid, has close links with cholesterol metabolism and is often used as a biomarker in evaluating the risk of cardiovascular diseases. However, most studies on the health implications of Neu5Ac have focused on its effects on the nervous system, while its effects on cardiovascular risk factors have largely been unreported. Thus, the effects of Neu5Ac on coagulation status in high fat diet (HFD-induced hyperlipidemic rats were evaluated in this study. Methods: Sprague Dawley male rats were divided into five different groups and fed with HFD alone, HFD low-dose Neu5Ac, HFD high-dose Neu5Ac, HFD simvastatin (10 mg/kg day, and normal pellet alone. Food was given ad libitum while body weight of rats was measured weekly. After 12 weeks of intervention, rats were sacrificed and serum and tissue samples were collected for biochemistry and gene expression analysis, respectively. Results: The results showed that Neu5Ac could improve lipid metabolism and hyperlipidemia-associated coagulation. Neu5Ac exerted comparable or sometimes better physiological effects than simvastatin, at biochemical and gene expression levels. Conclusions: The data indicated that Neu5Ac prevented HFD-induced hyperlipidemia and associated hypercoagulation in rats through regulation of lipid-related and coagulation-related genes and, by extension, induced metabolite and protein changes. The implications of the present findings are that Neu5Ac may be used to prevent coagulation-related cardiovascular events in hyperlipidemic conditions. These findings are worth studying further.

  18. Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice

    Science.gov (United States)

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  19. Thioacetamide-induced Hepatocellular Necrosis Is Attenuated in Diet-induced Obese Mice

    OpenAIRE

    Shirai, Makoto; Arakawa, Shingo; Miida, Hiroaki; Matsuyama, Takuya; Kinoshita, Junzo; Makino, Toshihiko; Kai, Kiyonori; Teranishi, Munehiro

    2013-01-01

    To assess modification of thioacetamide-induced hepatotoxicity in mice fed a high-fat diet, male C57BL/6J mice were fed a normal rodent diet or a high-fat diet for 8 weeks and then treated once intraperitoneally with thioacetamide at 50 mg/kg body weight. At 24 and 48 hours after administration, massive centrilobular hepatocellular necrosis was observed in mice fed the normal rodent diet, while the necrosis was less severe in mice fed the high-fat diet. In contrast, severe swelling of hepatoc...

  20. Jatrorrhizine hydrochloride attenuates hyperlipidemia in a high-fat diet-induced obesity mouse model.

    Science.gov (United States)

    Yang, Weiwei; She, Liping; Yu, Kun; Yan, Shan; Zhang, Xuefeng; Tian, Xiaoyi; Ma, Shuren; Zhang, Xiwen

    2016-10-01

    Jatrorrhizine hydrochloride (JH) is an active component of the traditional Chinese herb Coptis chinensis, which has been used to prevent and treat metabolic disorders. Hyperlipidemia is one of the principal factors underlying numerous metabolic diseases, including diabetes and obesity. Therefore, the aim of the present study was to investigate the lipid lowering effects of JH treatment in vivo in an obesity mouse model. JH-treated hyperlipidemic mice exhibited a reduction in body weight, as well as improved glucose tolerance and insulin sensitivity. In addition, JH‑treated hyperlipidemic mice exhibited reduced serum triglyceride, total cholesterol and low‑density lipoprotein cholesterol levels, as well as increased high‑density lipoprotein cholesterol levels compared with untreated mice fed a high‑fat diet. Notably, JH treatment ameliorated the pathophysiological changes observed in the livers of hyperlipidemic mice. At the molecular level, JH downregulated the hepatic mRNA expression levels of SREBP‑1c and FAS, and induced PPAR‑α and CPT1A mRNA expression in hyperlipidemic mice. These findings suggest that JH ameliorates hyperlipidemia via the suppression of lipogenesis and the enhancement of lipid oxidation in the liver. PMID:27573054

  1. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

    Science.gov (United States)

    Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-02-01

    A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment.

  2. Triterpene alcohols and sterols from rice bran lower postprandial glucose-dependent insulinotropic polypeptide release and prevent diet-induced obesity in mice.

    Science.gov (United States)

    Fukuoka, Daisuke; Okahara, Fumiaki; Hashizume, Kohjiro; Yanagawa, Kiyotaka; Osaki, Noriko; Shimotoyodome, Akira

    2014-12-01

    Obesity is now a worldwide health problem. Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone that is secreted following the ingestion of food and modulates energy metabolism. Previous studies reported that lowering diet-induced GIP secretion improved energy homeostasis in animals and humans, and attenuated diet-induced obesity in mice. Therefore, food-derived GIP regulators may be used in the development of foods that prevent obesity. Rice bran oil and its components are known to have beneficial effects on health. Therefore, the aim of the present study was to clarify the effects of the oil-soluble components of rice bran on postprandial GIP secretion and obesity in mice. Triterpene alcohols [cycloartenol (CA) and 24-methylene cycloartanol (24Me)], β-sitosterol, and campesterol decreased the diet-induced secretion of GIP in C57BL/6J mice. Mice fed a high-fat diet supplemented with a triterpene alcohol and sterol preparation (TASP) from rice bran for 23 wk gained less weight than control mice. Indirect calorimetry revealed that fat utilization was higher in TASP-fed mice than in control mice. Fatty acid oxidation-related gene expression in the muscles of mice fed a TASP-supplemented diet was enhanced, whereas fatty acid synthesis-related gene expression in the liver was suppressed. The treatment of HepG2 cells with CA and 24Me decreased the gene expression of sterol regulatory element-binding protein (SREBP)-1c. In conclusion, we clarified for the first time that triterpene alcohols and sterols from rice bran prevented diet-induced obesity by increasing fatty acid oxidation in muscles and decreasing fatty acid synthesis in the liver through GIP-dependent and GIP-independent mechanisms. PMID:25257874

  3. Calorie restriction and endurance exercise share potent anti-inflammatory function in adipose tissues in ameliorating diet-induced obesity and insulin resistance in mice

    OpenAIRE

    Yan Zhen; Li Wenjun; Mao Ting; You Jia; Zhao Feng; Qi Qibin; Shao Mengle; Li Shoufeng; Huang Ping; Liu Yong

    2010-01-01

    Abstract Background Calorie restriction (CR) and endurance exercise are known to attenuate obesity and improve the metabolic syndrome. The aim of this study was to directly compare the effects of CR and endurance exercise in a mouse model of diet-induced obesity and insulin resistance. Methods Adult male C57BL/6N mice were randomly assigned and subjected to one of the six interventions for 8 weeks: low-fat diet (LC, 10% fat), low-fat diet with 30% calorie restriction (LR), high-fat diet (HC, ...

  4. Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T cell dependent and antibody mediated.

    Science.gov (United States)

    Harrop, Richard; Ryan, Matthew G; Myers, Kevin A; Redchenko, Irina; Kingsman, Susan M; Carroll, Miles W

    2006-09-01

    5T4 is a tumor associated antigen that is expressed on the surface of a wide spectrum of human adenocarcinomas. The highly attenuated virus, modified vaccinia Ankara, has been engineered to express human 5T4 (h5T4). In a pre-clinical murine model, the recombinant virus (TroVax) induces protection against challenge with CT26-h5T4 (a syngeneic tumor line expressing h5T4). Anti-tumor activity is long lived, with protection still evident 6 months after the final vaccination. In a therapeutic setting, injection of mice with TroVax results in a reduction in tumor burden of >90%. Depletion of CD8+ T cells has no effect upon therapy in the active treatment model, whereas depletion of CD4+ T cells completely abrogates anti-tumor activity. In a prophylactic setting, depletion of CD4+ and CD8+ T cells after the induction of a h5T4 immune response has no deleterious effect on protection following challenge with CT26-h5T4. In light of these studies, the role of antibodies in protection against tumor challenge was investigated. 5T4 specific polyclonal serum decreased tumor burden by approximately 70%. Thus, we conclude that CD4+ T cells are essential for the induction of a protective immune response and that antibodies are the likely effector moiety in this xenogeneic murine tumor model. PMID:16311730

  5. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  6. Nebivolol Ameliorates Cardiac NLRP3 Inflammasome Activation in a Juvenile-Adolescent Animal Model of Diet-Induced Obesity

    Science.gov (United States)

    Xie, Qihai; Wei, Tong; Huang, Chenglin; Liu, Penghao; Sun, Mengwei; Shen, Weili; Gao, Pingjin

    2016-01-01

    NLRP3 is involved in obesity-induced cardiac remodeling and dysfunction. In this study, we evaluated whether the cardiac protective effects of nebivolol relied on attenuating NLRP3 activation in a juvenile-adolescent animal model of diet-induced obesity. Weaning male Sprague-Dawley rats were fed with either a standard chow diet (ND) or a high-fat diet (HFD) for 8 weeks. The obese rats were subsequently subdivided into three groups: 1) HFD control group; 2) HFD with low-dose nebivolol (5 mg/kg/d); 3) HFD with high-dose nebivolol (10 mg/kg/d). Treatment with nebivolol prevented HFD-induced obesity associated excess cardiac lipid accumulation as well as myocardial mitochondrial dysfunction. Nebivolol attenuated pro-inflammatory cytokines secretion and NLRP3 inflammasome activation in myocardium of obese rats. In parallel, nebivolol treatment of obese animals increased cardiac β3-AR expression, reversing the reduction of endothelial nitric oxide synthase (eNOS). In vitro, nebivolol treatment of palmitate-incubated H9C2 cells suppressed autophagy, restored mitochondrial biogenesis, leading to decreased mitochondrial reactive oxygen species (mtROS) generation, and suppressed NLRP3 inflammasome activation. Meanwhile the presence of shRNA against β3-AR or against eNOS deteriorated the protective effects of nebivolol. These data suggest the beneficial effect of nebivolol on myocardial lipotoxicity contributing to inhibiting NLRP3 inflammasome activation possibly via improved mitochondrial dysfunction. PMID:27686325

  7. Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway.

    Science.gov (United States)

    Misawa, Koichi; Hashizume, Kojiro; Yamamoto, Masaki; Minegishi, Yoshihiko; Hase, Tadashi; Shimotoyodome, Akira

    2015-10-01

    The initiation of obesity entails an imbalance wherein energy intake exceeds expenditure. Obesity is increasing in prevalence and is now a worldwide health problem. Food-derived peroxisome proliferator-activated receptor δ (PPARδ) stimulators represent potential treatment options for obesity. Ginger (Zingiber officinale Roscoe) was previously shown to regulate the PPARγ signaling pathway in adipocytes. In this study, we investigated the antiobesity effects of ginger in vivo and the mechanism of action in vitro. Energy expenditure was increased, and diet-induced obesity was attenuated in C57BL/6J mice treated with dietary ginger extract (GE). GE also increased the number of Type I muscle fibers, improved running endurance capacity and upregulated PPARδ-targeted gene expression in skeletal muscle and the liver. 6-Shogaol and 6-gingerol acted as specific PPARδ ligands and stimulated PPARδ-dependent gene expression in cultured human skeletal muscle myotubes. An analysis of cellular respiration revealed that pretreating cultured skeletal muscle myotubes with GE increased palmitate-induced oxygen consumption rate, which suggested an increase in cellular fatty acid catabolism. These results demonstrated that sustained activation of the PPARδ pathway with GE attenuated diet-induced obesity and improved exercise endurance capacity by increasing skeletal muscle fat catabolism. 6-Shogaol and 6-gingerol may be responsible for the regulatory effects of dietary ginger on PPARδ signaling. PMID:26101135

  8. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity

    Science.gov (United States)

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  9. Undaria pinnatifida and Fucoxanthin Ameliorate Lipogenesis and Markers of Both Inflammation and Cardiovascular Dysfunction in an Animal Model of Diet-Induced Obesity.

    Science.gov (United States)

    Grasa-López, Ameyalli; Miliar-García, Ángel; Quevedo-Corona, Lucía; Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Reyes-Maldonado, Elba; Jaramillo-Flores, María-Eugenia

    2016-01-01

    Brown algae and its carotenoids have been shown to have a positive influence on obesity and its comorbidities. This study evaluated the effect of Undaria pinnatifida and fucoxanthin on biochemical, physiological and inflammation markers related to obesity and on the expression of genes engaged on white adipose tissue lipid metabolism in a murine model of diet-induced obesity. The treatments improved energy expenditure, β-oxidation and adipogenesis by upregulating PPARα, PGC1α, PPARγ and UCP-1. Adipogenesis was also confirmed by image analysis of the retroperitoneal adipose tissue, by measuring cell area, perimeter and cellular density. Additionally, the treatments, ameliorated adipose tissue accumulation, insulin resistance, blood pressure, cholesterol and triglycerides concentration in serum, and reduced lipogenesis and inflammation by downregulating acetyl-CoA carboxylase (ACC) gene expression, increasing serum concentration and expression of adiponectin as well as downregulating IL-6 expression. Both fucoxanthin and Undaria pinnatifida may be considered for treating obesity and other diseases related. PMID:27527189

  10. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  11. Chenodeoxycholic acid attenuates ovalbumin-induced airway inflammation in murine model of asthma by inhibiting the T(H)2 cytokines.

    Science.gov (United States)

    Shaik, Firdose Begum; Panati, Kalpana; Narasimha, Vydyanath R; Narala, Venkata Ramireddy

    2015-08-01

    Asthma is a complex highly prevalent airway disease that is a major public health problem for which current treatment options are inadequate. Recently, farnesoid X receptor (FXR) has been shown to exert anti-inflammatory actions in various disease conditions, but there have been no reported investigations of Chenodeoxycholic acid (CDCA), a natural FXR agonist, in allergic airway inflammation. To test the CDCA effectiveness in airway inflammation, ovalbumin (OVA)-induced acute murine asthma model was established. We found that lung tissue express FXR and CDCA administration reduced the severity of the murine allergic airway disease as assessed by pathological and molecular markers associated with the disease. CDCA treatment resulted in fewer infiltrations of cells into the airspace and peribronchial areas, and decreased goblet cell hyperplasia, mucus secretion and serum IgE levels which was increased in mice with OVA-induced allergic asthma. The CDCA treatment further blocked the secretion of TH2 cytokines (IL-4, IL-5 and IL-13) and proinflammatory cytokine TNF-α indicate that the FXR and its agonists may have potential for treating allergic asthma. PMID:26067554

  12. Impaired vascular responses to relaxin in diet-induced overweight female rats.

    Science.gov (United States)

    van Drongelen, Joris; van Koppen, Arianne; Pertijs, Jeanne; Gooi, Jonathan H; Parry, Laura J; Sweep, Fred C G J; Lotgering, Frederik K; Smits, Paul; Spaanderman, Marc E A

    2012-03-01

    Relaxin mediates renal and mesenteric vascular adaptations to pregnancy by increasing endothelium-dependent vasodilation and compliance and decreasing myogenic reactivity. Diet-induced overweight and obesity are associated with impaired endothelial dysfunction and vascular remodeling leading to a reduction in arterial diameter. In this study, we tested the hypothesis that local vascular responses to relaxin are impaired in diet-induced overweight female rats on a high-fat cafeteria-style diet for 9 wk. Rats were chronically infused with either relaxin or placebo for 5 days, and vascular responses were measured in isolated mesenteric arteries and the perfused kidney. Diet-induced overweight significantly increased sensitivity to phenylephrine (by 17%) and vessel wall thickness, and reduced renal perfusion flow (RPFF; by 16%), but did not affect flow-mediated vasodilation, myogenic reactivity, and vascular compliance. In the normal weight rats, relaxin treatment significantly enhanced flow-mediated vasodilation (2.67-fold), decreased myogenic reactivity, and reduced sensitivity to phenylephrine (by 28%), but had no effect on compliance or RPFF. NO blockade by l-NAME diminished most relaxin-mediated effects. In diet-induced overweight rats, the vasodilator effects of relaxin were markedly reduced for flow-mediated vasodilation, sensitivity to phenylephrine, and myogenic response compared with the normal diet rats, mostly persistent under l-NAME. Our data demonstrate that some of the vasodilator responses to in vivo relaxin administration are impaired in isolated mesenteric arteries and the perfused kidney in diet-induced overweight female rats. This does not result from a decrease in Rxfp1 (relaxin family peptide receptor) expression but is likely to result from downstream disruption to endothelial-dependent mechanisms in diet-induced overweight animals. PMID:22174401

  13. Reduced Capacity for Fatty Acid Oxidation in Rats with Inherited Susceptibility to Diet-Induced Obesity

    OpenAIRE

    Ji, Hong; Friedman, Mark I.

    2007-01-01

    High-fat, energy-dense diets promote weight gain and obesity in humans and other animals, but the mechanisms underlying such diet-induced obesity remain elusive. To determine whether a reduced capacity to oxidize fat is involved in the etiology of diet-induced obesity, we examined different measures of fatty acid oxidation in rats selectively bred for susceptibility (DIO) or resistance (DR) to dietary obesity before and after they were fed a high-fat diet and became obese. DIO rats eating a l...

  14. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    Science.gov (United States)

    Boon, Mariëtte R.; van den Berg, Sjoerd A. A.; Wang, Yanan; van den Bossche, Jan; Karkampouna, Sofia; Bauwens, Matthias; De Saint-Hubert, Marijke; van der Horst, Geertje; Vukicevic, Slobodan; de Winther, Menno P. J.; Havekes, Louis M.; Jukema, J. Wouter; Tamsma, Jouke T.; van der Pluijm, Gabri; van Dijk, Ko Willems; Rensen, Patrick C. N.

    2013-01-01

    Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to

  15. Curcumin ameliorates high-fat diet-induced spermatogenesis dysfunction

    Science.gov (United States)

    Mu, Yang; Yan, Wen-Jie; Yin, Tai-Lang; Yang, Jing

    2016-01-01

    Curcumin, a type of natural active ingredient, is derived from rhizoma of Curcuma, which possesses antioxidant, antitumorigenic and anti-inflammatory activities. The present study aimed to investigate whether treatment with curcumin reduced high-fat diet (HFD)-induced spermatogenesis dysfunction. Sprague-Dawley rats fed a HFD were treated with or without curcumin for 8 weeks. The testis/body weight, histological analysis and serum hormone levels were used to evaluate the effects of curcumin treatment on spermatogenesis dysfunction induced by the HFD. In addition, the expression levels of apoptosis associated proteins, Fas, B-cell lymphoma (Bcl)-xl, Bcl-associated X protein (Bax) and cleaved-caspase 3, were determined in the testis. The results of the present study suggested that curcumin treatment attenuated decreased testis/body weight and abnormal hormone levels. Morphological changes induced by a HFD were characterized as atrophied seminiferous tubules, decreased spermatogenetic cells and interstitial cells were improved by curcumin treatment. In addition, curcumin treatment reduced apoptosis in the testis, and decreased expression of Fas, Bax and cleaved-caspase 3, as well as increased expression of Bcl-xl. In conclusion, the present study revealed that curcumin treatment reduced HFD-induced spermatogenesis dysfunction in male rats. PMID:27600729

  16. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    Science.gov (United States)

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  17. Peroxisome proliferator-activated receptors-alpha and gamma are targets to treat offspring from maternal diet-induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    D'Angelo Carlo Magliano

    Full Text Available AIM: The aim of the present study was to evaluate whether activation of peroxisome proliferator-activated receptor (PPARalpha and PPARgamma by Bezafibrate (BZ could attenuate hepatic and white adipose tissue (WAT abnormalities in male offspring from diet-induced obese dams. MATERIALS AND METHODS: C57BL/6 female mice were fed a standard chow (SC; 10% lipids diet or a high-fat (HF; 49% lipids diet for 8 weeks before mating and during gestation and lactation periods. Male offspring received SC diet at weaning and were subdivided into four groups: SC, SC/BZ, HF and HF/BZ. Treatment with BZ (100 mg/Kg diet started at 12 weeks of age and was maintained for three weeks. RESULTS: The HF diet resulted in an overweight phenotype and an increase in oral glucose intolerance and fasting glucose of dams. The HF offspring showed increased body mass, higher levels of plasmatic and hepatic triglycerides, higher levels of pro-inflammatory and lower levels of anti-inflammatory adipokines, impairment of glucose metabolism, abnormal fat pad mass distribution, higher number of larger adipocytes, hepatic steatosis, higher expression of lipogenic proteins concomitant to decreased expression of PPARalpha and carnitine palmitoyltransferase I (CPT-1 in liver, and diminished expression of PPARgamma and adiponectin in WAT. Treatment with BZ ameliorated the hepatic and WAT abnormalities generated by diet-induced maternal obesity, with improvements observed in the structural, biochemical and molecular characteristics of the animals' livers and epididymal fat. CONCLUSION: Diet-induced maternal obesity lead to alterations in metabolism, hepatic lipotoxicity and adverse liver and WAT remodeling in the offspring. Targeting PPAR with Bezafibrate has beneficial effects reducing the alterations, mainly through reduction of WAT inflammatory state through PPARgamma activation and enhanced hepatic beta-oxidation due to increased PPARalpha/PPARgamma ratio in liver.

  18. Rhinacanthus nasutus leaf improves metabolic abnormalities in high-fat diet-induced obese mice

    Directory of Open Access Journals (Sweden)

    Supaporn Wannasiri

    2016-01-01

    Conclusions: To the best of our knowledge, the present study is the first report on the impact of R. nasutus extract in improving the impaired glucose and lipid metabolism in high-fat diet-induced obesity in mice via stimulating the insulin sensitivity in the liver and adipose tissues.

  19. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Science.gov (United States)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  20. Plasma lipidomics reveal profound perturbation of glycerophospholipids, fatty acids, and sphingolipids in diet-induced hyperlipidemia.

    Science.gov (United States)

    Miao, Hua; Chen, Hua; Pei, Songwen; Bai, Xu; Vaziri, Nosratola D; Zhao, Ying-Yong

    2015-02-25

    Hyperlipidemia is a major risk factor for coronary heart disease and has emerged as an important public health problem. Lipidomics is a powerful technology for assessment of global lipid metabolites in a biological system and for biomarker discovery. In the present study, hyperlipidemia was induced by feeding rats a high fat diet. A sensitive ultra-performance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry method was used for the analysis of plasma lipids. Orthogonal partial least squares-discriminant analysis, correlation analysis and heatmap analysis were performed to investigate the metabolic changes in rats with diet-induced hyperlipidemia. Potential biomarkers were detected using S-plot and were identified by accurate mass data, isotopic pattern and MS(E) fragments information. Significantly increased total cholesterol, triglycerides and low-density lipoprotein cholesterol as well as decreased high-density lipoprotein cholesterol were observed in diet-induced hyperlipidemic rats. Combined with standard serum biochemical results, significant differences in plasma lipid compounds including eleven glycerophospholipids, six fatty acids, two sphingolipids, one eicosanoid, one sterol lipid and one glycerolipid were observed, highlighting the perturbation of lipid metabolism in diet-induced hyperlipidemia. These findings provide further insights into the lipid profile across a wide range of biochemical pathways in diet-induced hyperlipidemia.

  1. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel;

    2010-01-01

    , namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization...

  2. Appropriateness of the hamster as a model to study diet-induced atherosclerosis

    Science.gov (United States)

    Golden-Syrian hamsters have been used as an animal model to assess diet-induced atherosclerosis since the early 1980s. Advantages appeared to include a low rate of endogenous cholesterol synthesis, receptor-mediated uptake of LDL cholesterol, cholesteryl ester transfer protein activity, hepatic apo...

  3. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    Science.gov (United States)

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  4. MK615 attenuates Porphyromonas gingivalis lipopolysaccharide-induced pro-inflammatory cytokine release via MAPK inactivation in murine macrophage-like RAW264.7 cells.

    Science.gov (United States)

    Morimoto, Yoko; Kikuchi, Kiyoshi; Ito, Takashi; Tokuda, Masayuki; Matsuyama, Takashi; Noma, Satoshi; Hashiguchi, Teruto; Torii, Mitsuo; Maruyama, Ikuro; Kawahara, Ko-Ichi

    2009-11-01

    The Japanese apricot, known as Ume in Japanese, has been a traditional Japanese medicine for centuries, and is a familiar and commonly consumed food. The health benefits of Ume are now being widely recognized and have been strengthened by recent studies showing that MK615, an extract of compounds from Ume, has strong anticancer and anti-inflammatory effects. However, the potential role of MK615 in the periodontal field remains unknown. Here, we found that MK615 significantly reduced the production of pro-inflammatory mediators (tumor necrosis factor-alpha and interleukin-6) induced by Porphyromonas gingivalis lipopolysaccharide (LPS), a major etiological agent in localized chronic periodontitis, in murine macrophage-like RAW264.7 cells. MK615 markedly inhibited the phosphorylation of ERK1/2, p38MAPK, and JNK, which is associated with pro-inflammatory mediator release pathways. Moreover, MK615 completely blocked LPS-triggered NF-kappaB activation. The present results suggest that MK615 has potential as a therapeutic agent for treating inflammatory diseases such as periodontitis. PMID:19706286

  5. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    Energy Technology Data Exchange (ETDEWEB)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Kopelovich, Levy [Division of Cancer Prevention, National Cancer Institute, 6130 Executive Blvd., Suite 2114, Bethesda, MD 20892 (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States)

    2013-01-15

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  6. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    International Nuclear Information System (INIS)

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation with large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.

  7. Antiobesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Souravh Bais

    2014-01-01

    Full Text Available In the present study, the methanolic extract of Moringa oleifera leaves (MEMOL was evaluated for antiobesity activity in rats. The antiobesity potential of MEMOL was studied against high fat diet-induced obesity (HFD in rats. In this study, chronic administration of HFD in rats produced hypercholesterolemia (116.2 ± 0.27 mg/dL, which led to an increase in the body weight (225 gr, total cholesterol, triglycerides (263.0 ± 4.69 mg/dL, and attenuation in the levels of HDL (34.51 ± 2.20 mg/dL as well as changes in body temperature of animals. Treatment of obese rats with MEMOL for 49 days resulted in a significant (P<0.001 change in body weight, total cholesterol, triglycerides, and LDL level along with a significant (P<0.001 increase in body temperature as compared to the HFD-induced obesity. MEMOL treated rats also showed a significant decrease in the level of liver biomarkers, organ weight, and blood glucose level. Further, rats treated with MEMOL (200 mg and 400 mg/kg show reduced atherogenic index (1.7 ± 0.6 and 0.87 ± 0.76. The results indicate that the rats treated with Moringa oleifera (MO have significantly attenuated the body weight without any change in the feed intake and also elicited significant thermogenic effect and to act as hypolipidemic and thermogenic property in obesity related disorders.

  8. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance

    DEFF Research Database (Denmark)

    Madsen, Lise; Guerre-Millo, Michéle; Flindt, Esben N;

    2002-01-01

    Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration...... completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA...... that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity....

  9. Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge

    OpenAIRE

    Clarke, Siobhan F.; Murphy, Eileen F.; O’Sullivan, Orla; Ross, R Paul; O’Toole, Paul W; Shanahan, Fergus; Cotter, Paul D.

    2013-01-01

    Links between the gut microbiota and host metabolism have provided new perspectives on obesity. We previously showed that the link between the microbiota and fat deposition is age- and time-dependent subject to microbial adaptation to diet over time. We also demonstrated reduced weight gain in diet-induced obese (DIO) mice through manipulation of the gut microbiota with vancomycin or with the bacteriocin-producing probiotic Lactobacillus salivarius UCC118 (Bac+), with metabolic improvement ac...

  10. High-Phosphorus Diet Induces Osteopontin Expression of Renal Tubules in Rats

    OpenAIRE

    Matsuzaki, Hiroshi; Katsumata, Shin-ichi; Uehara, Mariko; Suzuki, Kazuharu; Miwa, Misao

    2007-01-01

    High-phosphorus (P) diet induces nephrocalcinosis in rats; however, the mechanism for onset of this disorder is unclear. The calcium (Ca) deposits in kidney are a form of hydroxyapatite, while osteopontin is combined with hydroxyapatite. Based on these observations, we speculated that the osteopontin play an important role in the formation of the Ca deposits induced by high-P diet. This study was investigated the effect of high-P diet on osteopontin expression in kidney. Female Wistar rats we...

  11. Loss of p53 attenuates the contribution of IL-6 deletion on suppressed tumor progression and extended survival in Kras-driven murine lung cancer.

    Directory of Open Access Journals (Sweden)

    Xiaohong Tan

    Full Text Available Interleukin-6 (IL-6 is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6(-/- mice with Kras(G12D mutant mice, which develop lung tumors after activation of mutant Kras(G12D, to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. Kras(G12D; IL-6(-/- mice exhibited increased tumorigenesis, but slower tumor growth and longer survival, than Kras(G12D mice. Further, in order to investigate whether IL-6 deletion contributes to suppression of lung cancer metastasis, we generated Kras(G12D; p53(flox/flox; IL-6(-/- mice, which developed lung cancer with a trend for reduced metastases and longer survival than Kras(G12D; p53(flox/flox mice. Tumors from Kras(G12D; IL-6(-/- mice showed increased expression of TNFα and decreased expression of CCL-19, CCL-20 and phosphorylated STAT3(pSTAT3 than Kras(G12D mice; however, these changes were not present between tumors from Kras(G12D; p53(flox/flox; IL-6(-/- and Kras(G12D; p53(flox/flox mice. Upregulation of pSTAT3 and phosphorylated AKT(pAKT were observed in Kras(G12D tumors with p53 deletion. Taken together, these results indicate that IL-6 deletion accelerates tumorigenesis but delays tumor progression and prolongs survival time in a Kras-driven mouse model of lung cancer. However, these effects can be attenuated by p53 deletion.

  12. Antiatherosclerotic and Cardioprotective Potential of Acacia senegal Seeds in Diet-Induced Atherosclerosis in Rabbits

    Directory of Open Access Journals (Sweden)

    Heera Ram

    2014-01-01

    Full Text Available Acacia senegal L. (Fabaceae seeds are essential ingredient of “Pachkutta,” a specific Rajasthani traditional food. The present study explored antiatherosclerotic and cardioprotective potential of Acacia senegal seed extract, if any, in hypercholesterolemic diet-induced atherosclerosis in rabbits. Atherosclerosis in rabbits was induced by feeding normal diet supplemented with oral administration of cholesterol (500 mg/kg body weight/day mixed with coconut oil for 15 days. Circulating total cholesterol (TC, HDL-cholesterol (HDL-C, LDL-cholesterol (LDL-C, triglycerides, and VLDL-cholesterol (VLDL-C levels; atherogenic index (AI; cardiac lipid peroxidation (LPO; planimetric studies of aortal wall; and histopathological studies of heart, aorta, kidney, and liver were performed. Apart from reduced atherosclerotic plaques in aorta (6.34±0.72 and increased lumen volume (51.65±3.66, administration with ethanolic extract of Acacia senegal seeds (500 mg/kg/day, p.o. for 45 days to atherosclerotic rabbits significantly lowered serum TC, LDL-C, triglyceride, and VLDL-C levels and atherogenic index as compared to control. Atherogenic diet-induced cardiac LPO and histopathological abnormalities in aorta wall, heart, kidney, and liver were reverted to normalcy by Acacia senegal seed extract administration. The findings of the present study reveal that Acacia senegal seed extract ameliorated diet-induced atherosclerosis and could be considered as lead in the development of novel therapeutics.

  13. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress

    Institute of Scientific and Technical Information of China (English)

    Yan Deng; Xue-Ling Guo; Xiao Yuan; Jin Shang; Die Zhu; Hui-Guo Liu

    2015-01-01

    Background:The mechanism of the neural injury caused by chronic intermittent hypoxia (CIH) that characterizes obstructive sleep apnea syndrome (OSAS) is not clearly known.The purpose of this study was to investigate whether P2X7 receptor (P2X7R) is responsible for the CIH-induced neural injury and the possible pathway it involves.Methods:Eight-week-old male C57BL/6 mice were used.For each exposure time point,eight mice divided in room air (RA) and IH group were assigned to the study of P2X7R expression.Whereas in the 21 days-Brilliant Blue G (BBG,a selective P2X7R antagonist) study,48 mice were randomly divided into CIH group,BBG-treated CIH group,RA group and BBG-treated RA group.The hippocampus P2X7R expression was determined by Western blotting and real-time polymerase chain reaction (PCR).The spatial learning was analyzed by Morris water maze.The nuclear factor kappa B (NFκB) and NADPH oxidase 2 (NOX2) expressions were analyzed by Westem blotting.The expressions of tumor necrosis factor α,interleukin 1 β (IL-β),IL-18,and IL-6 were measured by real-time PCR.The malondialdehyde and superoxide dismutase levels were detected by colorimetric method.Cell damage was evaluated by Hematoxylin and Eosin staining and Terminal Transferase dUTP Nick-end Labeling method.Results:The P2X7R mRNA was elevated and sustained after 3-day IH exposure and the P2X7R protein was elevated and sustained after 7-day IH exposure.In the BBG study,the CIH mice showed severer neuronal cell damage and poorer performance in the behavior test.The increased NFκB and NOX2 expressions along with the inflammation injury and oxidative stress were also observed in the CIH group.BBG alleviated CIH-induced neural injury and consequent functional deficits.Conclusions:The P2X7R antagonism attenuates the CIH-induced neuroinflammation,oxidative stress,and spatial deficits,demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.

  14. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    OpenAIRE

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  15. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Roel A. van der Heijden

    2016-01-01

    Full Text Available Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n=52 received a control low-fat diet (LFD; 10 kcal% fat for 6 weeks followed by 24 weeks of either LFD (n=13 or high-fat diet (HFD; 45 kcal% fat; n=13 or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n=13 or an anthocyanin-rich bilberry extract (HFD+B; n=13. Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient

  16. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity.

    Science.gov (United States)

    van der Heijden, Roel A; Morrison, Martine C; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P H; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Tietge, Uwe J F; Koonen, Debby P Y; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n = 52) received a control low-fat diet (LFD; 10 kcal% fat) for 6 weeks followed by 24 weeks of either LFD (n = 13) or high-fat diet (HFD; 45 kcal% fat; n = 13) or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n = 13) or an anthocyanin-rich bilberry extract (HFD+B; n = 13). Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT) histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient and

  17. Quinoa extract enriched in 20-hydroxyecdysone protects mice from diet-induced obesity and modulates adipokines expression.

    Science.gov (United States)

    Foucault, Anne-Sophie; Mathé, Véronique; Lafont, René; Even, Patrick; Dioh, Waly; Veillet, Stanislas; Tomé, Daniel; Huneau, Jean-François; Hermier, Dominique; Quignard-Boulangé, Annie

    2012-02-01

    Besides their well-known effect in the molting control in insects, ecdysteroids are steroid hormones that display potential pharmacologic and metabolic properties in mammals. The most common ecdysteroid, 20-hydroxyecdysone (20E) is found in many plants such as quinoa. The aim of the present study was to investigate the ability of quinoa extract (Q) enriched in 20E supplementation to prevent the onset of diet-induced obesity and to regulate the expression of adipocyte-specific genes in mice. Mice were fed a standard low-fat (LF) or a high-fat (HF) diet with or without supplementation by 20E-enriched Q or pure 20E for 3 weeks. Supplementation with Q reduced adipose tissue development in HF mice without modification of their body weight gain. This adipose tissue-specific effect was mainly associated with a reduced adipocyte size and a decrease in the expression of several genes involved in lipid storage, including lipoprotein lipase and phosphoenolpyruvate carboxykinase. Furthermore, Q-treated mice exhibited marked attenuation of mRNA levels of several inflammation markers (monocyte chemotactic protein-1, CD68) and insulin resistance (osteopontin, plasminogen activator inhibitor-1 (PAI-1)) as compared to HF mice. Q supplementation also reversed the effects of HF-induced downregulation of the uncoupling protein(s) (UCP(s)) mRNA levels in muscle. Similar results were obtained in mice fed a HF diet supplemented with similar amounts of pure 20E, suggesting that the latter accounted for most of the Q effects. Our study indicates that Q has an antiobesity activity in vivo and could be used as a nutritional supplement for the prevention and treatment of obesity and obesity-associated disorders.

  18. Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity.

    Science.gov (United States)

    Arnoldussen, Ilse A C; Zerbi, Valerio; Wiesmann, Maximilian; Noordman, Rikko H J; Bolijn, Simone; Mutsaers, Martina P C; Dederen, Pieter J W C; Kleemann, Robert; Kooistra, Teake; van Tol, Eric A F; Gross, Gabriele; Schoemaker, Marieke H; Heerschap, Arend; Wielinga, Peter Y; Kiliaan, Amanda J

    2016-04-01

    Worldwide, the incidence of obesity is increasing at an alarming rate, and the number of children with obesity is especially worrisome. These developments raise concerns about the physical, psychosocial and cognitive consequences of obesity. It was shown that early dietary intake of arachidonic acid (ARA) and docosahexaenoic acid (DHA) can reduce the detrimental effects of later obesogenic feeding on lipid metabolism and adipogenesis in an animal model of mild obesity. In the present study, the effects of early dietary ARA and DHA on cognition and brain structure were examined in mildly obesogenic ApoE*3Leiden mouse model. We used cognitive tests and neuroimaging during early and later life. During their early development after weaning (4-13weeks of age), mice were fed a chow diet or ARA and DHA diet for 8 weeks and then switched to a high-fat and high-carbohydrate (HFHC) diet for 12weeks (14-26weeks of age). An HFHC-diet led to increased energy storage in white adipose tissue, increased cholesterol levels, decreased triglycerides levels, increased cerebral blood flow and decreased functional connectivity between brain regions as well as cerebrovascular and gray matter integrity. ARA and DHA intake reduced the HFHC-diet-induced increase in body weight, attenuated plasma triglycerides levels and improved cerebrovasculature, gray matter integrity and functional connectivity in later life. In conclusion, an HFHC diet causes adverse structural brain and metabolic adaptations, most of which can be averted by dietary ARA and DHA intake early in life supporting metabolic flexibility and cerebral integrity later in life. PMID:27012634

  19. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Directory of Open Access Journals (Sweden)

    Marie S A Palmnäs

    Full Text Available Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat or high fat (HF, 60% kcal fat and further into ad libitum water control (W or low-dose aspartame (A, 5-7 mg/kg/d in drinking water treatments for 8 week (n = 10-12 animals/treatment. Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05. Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  20. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Science.gov (United States)

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (Paspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  1. Cafeteria diet-induced obesity causes oxidative damage in white adipose.

    Science.gov (United States)

    Johnson, Amy R; Wilkerson, Matthew D; Sampey, Brante P; Troester, Melissa A; Hayes, D Neil; Makowski, Liza

    2016-04-29

    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods - the "cafeteria" diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet-fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes.

  2. Cafeteria diet-induced obesity causes oxidative damage in white adipose.

    Science.gov (United States)

    Johnson, Amy R; Wilkerson, Matthew D; Sampey, Brante P; Troester, Melissa A; Hayes, D Neil; Makowski, Liza

    2016-04-29

    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods - the "cafeteria" diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet-fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes. PMID:27033600

  3. Synthetic FXR Agonist GW4064 Prevents Diet-induced Hepatic Steatosis and Insulin Resistance

    OpenAIRE

    MA, YONGJIE; Huang, Yixuan; Yan, Linna; Gao, Mingming; Liu, Dexi

    2013-01-01

    The nuclear receptor farnesoid X receptor (FXR), an endogenous sensor for bile acids, plays an important role in cholesterol, lipid and carbohydrate metabolism. The objective of this study is to examine the effect of FXR activation on diet-induced obesity and hepatic steatosis. Activation of FXR by its synthetic agonist, 3-[2-[2-Chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid (GW4064), suppressed weight gain in C57BL/6 mice fed with either ...

  4. Hypolipidemic Activity of Spinacia Oleracea L. in Atherogenic Diet Induced Hyperlipidemic Rats.

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Giri

    2012-07-01

    Full Text Available Spinacia oleracea (spinach of family Amaranthaceae is an important plant used traditionally for medicinal purposes. Hyperlipidemia was induced by treated orally with atherogenic diet. In atherogenic diet induced hyperlipidemic model, the rats receiving Spinacia oleracea powder showed significant reduction in total cholesterol, triglycerides, total protein and elevation of high density lipoprotein cholesterol. Spinacia oleracea was found to possess significant hypolipidemic activity. The results also suggest that Spinacia oleracea powder at 200mg and 400 mg/kg b.wt. concentrations are an excellent lipid-lowering agent.

  5. Why does a high-fat diet induce preeclampsia-like symptoms in pregnant rats?*

    Institute of Scientific and Technical Information of China (English)

    Jing Ge; Jun Wang; Dan Xue; Zhengsheng Zhu; Zhenyu Chen; Xiaoqiu Li; Dongfeng Su; Juan Du

    2013-01-01

    Changes in neurotransmitter levels in the brain play an important role in epilepsy-like attacks after pregnancy-induced preeclampsia-eclampsia. Metabotropic glutamate receptor 1 participates in the onset of lipid metabolism disorder-induced preeclampsia. Pregnant rats were fed with a high-fat diet for 20 days. Thus, these pregnant rats experienced preeclampsia-like syndromes such as tension and proteinuria. Simultaneously, metabotropic glutamate receptor 1 mRNA and protein ex-pressions were upregulated in the rat hippocampus. These findings indicate that increased sion of metabotropic glutamate receptor 1 promotes the occurrence of high-fat diet-induced preec-lampsia in pregnant rats.

  6. Consumption of Milk-Protein Combined with Green Tea Modulates Diet-Induced Thermogenesis

    Directory of Open Access Journals (Sweden)

    Margriet S. Westerterp-Plantenga

    2011-07-01

    Full Text Available Green tea and protein separately are able to increase diet-induced thermogenesis. Although their effects on long-term weight-maintenance were present separately, they were not additive. Therefore, the effect of milk-protein (MP in combination with green tea on diet-induced thermogenesis (DIT was examined in 18 subjects (aged 18–60 years; BMI: 23.0 ± 2.1 kg/m2. They participated in an experiment with a randomized, 6 arms, crossover design, where energy expenditure and respiratory quotient (RQ were measured. Green tea (GT vs. placebo (PL capsules were either given in combination with water or with breakfasts containing milk protein in two different dosages: 15 g (15 MP (energy% P/C/F: 15/47/38; 1.7 MJ/500 mL, and 3.5 g (3.5 MP (energy% P/C/F: 41/59/0; 146.4 kJ/100 mL. After measuring resting energy expenditure (REE for 30 min, diet-induced energy expenditure was measured for another 3.5 h after the intervention. There was an overall significant difference observed between conditions (p < 0.001. Post-hoc, areas under the curve (AUCs for diet-induced energy expenditure were significantly different (P ≤ 0.001 for GT + water (41.11 [91.72] kJ·3.5 h vs. PL + water (10.86 [28.13] kJ·3.5 h, GT + 3.5 MP (10.14 [54.59] kJ·3.5 h and PL + 3.5 MP (12.03 [34.09] kJ·3.5 h, but not between GT + 3.5 MP, PL + 3.5 MP and PL + water, indicating that MP inhibited DIT following GT. DIT after GT + 15 MP (167.69 [141.56] kJ·3.5 h and PL + 15 MP (168.99 [186.56] kJ·3.5 h was significantly increased vs. PL + water (P < 0.001, but these were not different from each other indicating that 15 g MP stimulated DIT, but inhibited the GT effect on DIT. No significant differences in RQ were seen between conditions for baseline and post-treatment. In conclusion, consumption of milk-protein inhibits the effect of green tea on DIT.

  7. Intestinal GATA4 deficiency protects from diet-induced hepatic steatosis

    OpenAIRE

    Patankar, Jay V.; Obrowsky, Sascha; Doddapattar, Prakash; Hoefler, Gerald; Battle, Michele; Levak-Frank, Sanja; Kratky, Dagmar

    2012-01-01

    Background & Aims GATA4, a zinc finger domain transcription factor, is critical for jejunal identity. Mice with an intestine-specific GATA4 deficiency (GATA4iKO) are resistant to diet-induced obesity and insulin resistance. Although they have decreased intestinal lipid absorption, hepatic de novo lipogenesis is inhibited. Here, we investigated dietary lipid-dependent and independent effects on the development of steatosis and fibrosis in GATA4iKO mice. Methods GATA4iKO and control mice were f...

  8. The effect of milk proteins on appetite regulation and diet induced thermogenesis

    DEFF Research Database (Denmark)

    Lorenzen, Janne; Frederiksen, Rikke; Hoppe, Camilla;

    2012-01-01

    BACKGROUND/OBJECTIVES: There is increasing evidence to support that a high-protein diet may promote weight loss and prevent weight (re)gain better than a low-protein diet, and that the effect is due to higher diet-induced thermogenesis (DIT) and increased satiety. However, data on the effect...... for baseline values. There was no significant difference in effect on EE, protein oxidation or carbohydrate oxidation. CONCLUSIONS: Milk reduced subsequent EI more than isocaloric drinks containing only whey or casein. A small but significant increase in lipid oxidation was seen after casein compared with whey....

  9. Hematological and acute-phase responses to diet-induced obesity in IL-6 KO mice

    OpenAIRE

    Pini, Maria; Rhodes, Davina H.; Fantuzzi, Giamila

    2011-01-01

    Obesity is associated with chronic inflammation and elevated levels of IL-6. The role of IL-6 in induction of acute-phase proteins and modulation of haematological responses has been demonstrated in models of inflammation and aging, but not in obesity. We hypothesized that IL-6 is necessary to regulate the acute-phase response and hematological changes associated with diet-induced obesity (DIO) in mice. Feeding a 60% kcal/fat diet for 13 weeks to C57BL6 WT male mice induced a significant incr...

  10. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Su; Kim, Daeyoung; Jo, Keunae [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Translational Research Center for Protein Function Control, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2010-10-08

    Research highlights: {yields} NDGA decreases high-fat diet-induced body weight gain and adiposity. {yields} NDGA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} NDGA improves lipid storage in vitro through altering lipid regulatory proteins. {yields} Inhibition of lipid storage in vivo and in vitro is mediated by AMPK activation. -- Abstract: Nonalcoholic fatty liver disease, one of the most common causes of chronic liver disease, is strongly associated with metabolic syndrome. Nordihydroguaiaretic acid (NDGA) has been reported to inhibit lipoprotein lipase; however, the effect of NDGA on hepatic lipid metabolism remains unclear. We evaluated body weight, adiposity, liver histology, and hepatic triglyceride content in high-fat diet (HFD)-fed C57BL/6J mice treated with NDGA. In addition, we characterized the underlying mechanism of NDGA's effects in HepG2 hepatocytes by Western blot and RT-PCR analysis. NDGA (100 or 200 mg/kg/day) reduced weight gain, fat pad mass, and hepatic triglyceride accumulation, and improved serum lipid parameters in mice fed a HFD for 8 weeks. NDGA significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the liver and in HepG2 hepatocytes. NDGA downregulated the level of mature SREBP-1 and its target genes (acetyl-CoA carboxylase and fatty acid synthase), but, it upregulated expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor (PPAR){alpha}, PPAR{gamma} coactivator-1, carnitine palmitoyl transferase-1, and uncoupling protein-2. The specific AMPK inhibitor compound C attenuated the effects of NDGA on expression of lipid metabolism-related proteins in HepG2 hepatocytes. The beneficial effects of NDGA on HFD-induced hepatic triglyceride accumulation are mediated through AMPK signaling pathways, suggesting a potential target for preventing NAFLD.

  11. Green and Black Cardamom in a Diet-Induced Rat Model of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Maharshi Bhaswant

    2015-09-01

    Full Text Available Both black (B and green (G cardamom are used as flavours during food preparation. This study investigated the responses to B and G in a diet-induced rat model of human metabolic syndrome. Male Wistar rats were fed either a corn starch-rich diet (C or a high-carbohydrate, high-fat diet with increased simple sugars along with saturated and trans fats (H for 16 weeks. H rats showed signs of metabolic syndrome leading to visceral obesity with hypertension, glucose intolerance, cardiovascular remodelling and nonalcoholic fatty liver disease. Food was supplemented with 3% dried B or G for the final eight weeks only. The major volatile components were the closely related terpenes, 1,8-cineole in B and α-terpinyl acetate in G. HB (high-carbohydrate, high-fat + black cardamom rats showed marked reversal of diet-induced changes, with decreased visceral adiposity, total body fat mass, systolic blood pressure and plasma triglycerides, and structure and function of the heart and liver. In contrast, HG (high-carbohydrate, high-fat + green cardamom rats increased visceral adiposity and total body fat mass, and increased heart and liver damage, without consistent improvement in the signs of metabolic syndrome. These results suggest that black cardamom is more effective in reversing the signs of metabolic syndrome than green cardamom.

  12. Cinnamomum camphora Seed Kernel Oil Ameliorates Oxidative Stress and Inflammation in Diet-Induced Obese Rats.

    Science.gov (United States)

    Fu, Jing; Zeng, Cheng; Zeng, Zheling; Wang, Baogui; Gong, Deming

    2016-05-01

    Cinnamomum camphora seed kernel oil (CCSKO) was found to reduce body fat deposition and improve blood lipid in both healthy and obese rats. The study was aimed to investigate the antioxidative stress and anti-inflammatory effects of CCSKO in high-fat-diet-induced obese rats. The obese rats were treated with CCSKO, lard, and soybean oil, respectively, for 12 wk. The level of total antioxidant capacity (T-AOC), activities of superoxide dismutase (SOD), glutathione peroxidase, and catalase, and levels of malondialdehyde (MDA), tumor necrosis factor (TNF)-α, peroxisome proliferator-activated receptor (PPAR)-γ, interleukin (IL)-6, and P65 were compared among CCSKO, lard, and soybean oil groups. Our results showed that the level of T-AOC and activities of SOD and catalase were significantly increased and the level of MDA was significantly decreased in CCSKO group. In addition, CCSKO treatment reduced the activities of serum glutamic oxaloacetic transaminase and glutamate-pyruvate transaminase, and levels of serum TNF-α, IL-6, and P65 through raising the level of PPAR-γ. In conclusion, CCSKO has, for the first time, been found to ameliorate oxidative stress and inflammation in high-fat-diet-induced obese rats. PMID:27003858

  13. Lipidomics Biomarkers of Diet-Induced Hyperlipidemia and Its Treatment with Poria cocos.

    Science.gov (United States)

    Miao, Hua; Zhao, Yu-Hui; Vaziri, Nosratola D; Tang, Dan-Dan; Chen, Hua; Chen, Han; Khazaeli, Mahyar; Tarbiat-Boldaji, Mehrdokht; Hatami, Leili; Zhao, Ying-Yong

    2016-02-01

    Hyperlipidemia is a major cause of atherosclerotic cardiovascular disease. Poria cocos (PC) is a medicinal product widely used in Asia. This study was undertaken to define the alterations of lipid metabolites in rats fed a high-fat diet to induce hyperlipidemia and to explore efficacy and mechanism of action of PC in the treatment of diet-induced hyperlipidemia. Plasma samples were then analyzed using UPLC-HDMS. The untreated rats fed a high-fat diet exhibited significant elevation of plasma triglyceride and total and low-density lipoprotein (LDL) cholesterol concentrations. This was associated with marked changes in plasma concentrations of seven fatty acids (palmitic acid, hexadecenoic acid, hexanoylcarnitine, tetracosahexaenoic acid, cervonoyl ethanolamide, 3-hydroxytetradecanoic acid, and 5,6-DHET) and five sterols [cholesterol ester (18:2), cholesterol, hydroxytestosterone, 19-hydroxydeoxycorticosterone, and cholic acid]. These changes represented disorders of biosynthesis and metabolism of the primary bile acids, steroids, and fatty acids and mitochondrial fatty acid elongation pathways in diet-induced hyperlipidemia. Treatment with PC resulted in significant improvements of hyperlipidemia and the associated abnormalities of the lipid metabolites.

  14. Retinoic Acid Upregulates Preadipocyte Genes to Block Adipogenesis and Suppress Diet-Induced Obesity

    Science.gov (United States)

    Berry, Daniel C.; DeSantis, David; Soltanian, Hooman; Croniger, Colleen M.; Noy, Noa

    2012-01-01

    Retinoic acid (RA) protects mice from diet-induced obesity. The activity is mediated in part through activation of the nuclear receptors RA receptors (RARs) and peroxisome proliferator–activated receptor β/δ and their associated binding proteins cellular RA binding protein type II (CRABP-II) and fatty acid binding protein type 5 in adipocytes and skeletal muscle, leading to enhanced lipid oxidation and energy dissipation. It was also reported that RA inhibits differentiation of cultured preadipocytes. However, whether the hormone suppresses adipogenesis in vivo and how the activity is propagated remained unknown. In this study, we show that RA inhibits adipocyte differentiation by activating the CRABP-II/RARγ path in preadipose cells, thereby upregulating the expression of the adipogenesis inhibitors Pref-1, Sox9, and Kruppel-like factor 2 (KLF2). In turn, KLF2 induces the expression of CRABP-II and RARγ, further potentiating inhibition of adipocyte differentiation by RA. The data also indicate that RA suppresses adipogenesis in vivo and that the activity significantly contributes to the ability of the hormone to counteract diet-induced obesity. PMID:22396202

  15. Stress- and diet-induced fat gain is controlled by NPY in catecholaminergic neurons.

    Science.gov (United States)

    Zhang, Lei; Lee, I-Chieh J; Enriquez, Rondaldo F; Lau, Jackie; Vähätalo, Laura H; Baldock, Paul A; Savontaus, Eriika; Herzog, Herbert

    2014-08-01

    Neuropeptide Y (NPY) and noradrenaline are commonly co-expressed in sympathetic neurons. Both are key regulators of energy homeostasis and critical for stress-coping. However, little is known about the specific function of NPY in the catecholaminergic system in these regulations. Here we show that mice with NPY expression only in the noradrenergic and adrenergic cells of the catecholaminergic system (catNPY) exhibited exacerbated diet-induced obesity, lower body and brown adipose tissue temperatures compared to WT and NPY(-/-) mice under a HFD. Furthermore, chronic stress increased adiposity and serum corticosterone level in WT but not NPY(-/-) mice. Re-introducing NPY specifically to the catecholaminergic system in catNPY mice restored stress responsiveness associated with increased respiratory exchange ratio and decreased liver pACC to tACC ratio. These results demonstrate catecholaminergic NPY signalling is critical in mediating diet- and chronic stress-induced fat gain via effects on diet-induced thermogenesis and stress-induced increases in corticosterone levels and lipogenic capacity.

  16. Green and Black Cardamom in a Diet-Induced Rat Model of Metabolic Syndrome.

    Science.gov (United States)

    Bhaswant, Maharshi; Poudyal, Hemant; Mathai, Michael L; Ward, Leigh C; Mouatt, Peter; Brown, Lindsay

    2015-09-11

    Both black (B) and green (G) cardamom are used as flavours during food preparation. This study investigated the responses to B and G in a diet-induced rat model of human metabolic syndrome. Male Wistar rats were fed either a corn starch-rich diet (C) or a high-carbohydrate, high-fat diet with increased simple sugars along with saturated and trans fats (H) for 16 weeks. H rats showed signs of metabolic syndrome leading to visceral obesity with hypertension, glucose intolerance, cardiovascular remodelling and nonalcoholic fatty liver disease. Food was supplemented with 3% dried B or G for the final eight weeks only. The major volatile components were the closely related terpenes, 1,8-cineole in B and α-terpinyl acetate in G. HB (high-carbohydrate, high-fat + black cardamom) rats showed marked reversal of diet-induced changes, with decreased visceral adiposity, total body fat mass, systolic blood pressure and plasma triglycerides, and structure and function of the heart and liver. In contrast, HG (high-carbohydrate, high-fat + green cardamom) rats increased visceral adiposity and total body fat mass, and increased heart and liver damage, without consistent improvement in the signs of metabolic syndrome. These results suggest that black cardamom is more effective in reversing the signs of metabolic syndrome than green cardamom.

  17. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  18. Effect of diet-induced obesity on kinetic parameters of amino acid uptake by rat erythrocytes.

    Science.gov (United States)

    Picó, C; Pons, A; Palou, A

    1992-11-01

    The effects of cafeteria diet-induced obesity upon in vitro uptake of L-Alanine, Glycine, L-Lysine, L-Glutamine, L-Glutamic acid, L-Phenylalanine and L-Leucine by isolated rat erythrocytes have been studied. The total Phe and Leu uptakes followed Michaelis-Menten kinetics. The Glu uptake was fitted to diffusion kinetics. The uptakes of Ala, Gly, Lys and Gln were best explained by a two-component transport: one saturable and one diffusion. Obesity increased the Km value for Ala, Gln and Leu, and the Vmax value for Ala, but decreased the Vmax for Lys. Kinetic parameters of Phe uptake were unaffected by obesity. In addition, the pseudo-first order rate constant (Vmax/Km) for Ala, Gly, Gln, Lys and Leu uptake decreased as a result of cafeteria diet-induced obesity. The Kd value for Ala, Gly, Gln and Glu decreased and that of Lys increased as result of obesity. These adaptations could, at least in part, explain alterations in amino acid distribution between blood cells and plasma related to overfeeding or obesity.

  19. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    Science.gov (United States)

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  20. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance

    Science.gov (United States)

    Ringling, Rebecca E.; Gastecki, Michelle L.; Woodford, Makenzie L.; Lum-Naihe, Kelly J.; Grant, Ryan W.; Pulakat, Lakshmi; Vieira-Potter, Victoria J.; Padilla, Jaume

    2016-01-01

    We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis. PMID:27583382

  1. Loss of Nlrp3 Does Not Protect Mice from Western Diet-Induced Adipose Tissue Inflammation and Glucose Intolerance.

    Science.gov (United States)

    Ringling, Rebecca E; Gastecki, Michelle L; Woodford, Makenzie L; Lum-Naihe, Kelly J; Grant, Ryan W; Pulakat, Lakshmi; Vieira-Potter, Victoria J; Padilla, Jaume

    2016-01-01

    We tested the hypothesis that loss of Nlrp3 would protect mice from Western diet-induced adipose tissue (AT) inflammation and associated glucose intolerance and cardiovascular complications. Five-week old C57BL6J wild-type (WT) and Nlrp3 knockout (Nlrp3-/-) mice were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 24 weeks (n = 8/group). Contrary to our hypothesis that obesity-mediated white AT inflammation is Nlrp3-dependent, we found that Western diet-induced expression of AT inflammatory markers (i.e., Cd68, Cd11c, Emr1, Itgam, Lgals, Il18, Mcp1, Tnf, Ccr2, Ccl5 mRNAs, and Mac-2 protein) were not accompanied by increased caspase-1 cleavage, a hallmark feature of NLRP3 inflammasome activation. Furthermore, Nlrp3 null mice were not protected from Western diet-induced white or brown AT inflammation. Although Western diet promoted glucose intolerance in both WT and Nlrp3-/- mice, Nlrp3-/- mice were protected from Western diet-induced aortic stiffening. Additionally, Nlrp3-/- mice exhibited smaller cardiomyocytes and reduced cardiac fibrosis, independent of diet. Collectively, these findings suggest that presence of the Nlrp3 gene is not required for Western diet-induced AT inflammation and/or glucose intolerance; yet Nlrp3 appears to play a role in potentiating arterial stiffening, cardiac hypertrophy and fibrosis. PMID:27583382

  2. Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Hyo Geun Kim

    2015-01-01

    Full Text Available Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  3. Interleukin-10 Prevents Diet-Induced Insulin Resistance by Attenuating Macrophage and Cytokine Response in Skeletal Muscle

    OpenAIRE

    Hong, Eun-Gyoung; Ko, Hwi Jin; Cho, You-Ree; Kim, Hyo-Jeong; Ma, Zhexi; Yu, Tim Y.; Friedline, Randall H; Kurt-Jones, Evelyn; Finberg, Robert; Matthew A Fischer; Granger, Erica L.; Norbury, Christopher C.; Hauschka, Stephen D.; Philbrick, William M.; Lee, Chun-Geun

    2009-01-01

    OBJECTIVE Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with m...

  4. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice

    OpenAIRE

    Haizhao Song; Zihuan Zheng; Jianan Wu; Jia Lai; Qiang Chu; Xiaodong Zheng

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed ...

  5. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats

    Directory of Open Access Journals (Sweden)

    Yoon Hee Lee

    2016-10-01

    Full Text Available It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD, high-fat diet (HFD, high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat, high-fat diet with 0.2% HT048 (w/w; HFD + 0.2% HT048, and high-fat diet with 0.6% HT048 (w/w; HFD + 0.6% HT048. It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  6. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2016-01-01

    Full Text Available Korean pine nut oil (PNO has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO (PC, SC or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD, for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively compared with SHFD. Hepatic triacylglycerol (TG level was significantly lower in PHFD than the SHFD (26% lower. PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  7. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Park, Soyoung; Shin, Sunhye; Lim, Yeseo; Shin, Jae Hoon; Seong, Je Kyung; Han, Sung Nim

    2016-01-21

    Korean pine nut oil (PNO) has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD) can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO) (PC, SC) or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD), for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively) compared with SHFD. Hepatic triacylglycerol (TG) level was significantly lower in PHFD than the SHFD (26% lower). PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT) 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR) and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  8. Region-Specific Diet-induced and Leptin-Induced Cellular Leptin Resistance Includes the Ventral Tegmental Area in Rats

    OpenAIRE

    Matheny, M.; Shapiro, A.; Tümer, N.; Scarpace, P. J.

    2010-01-01

    Diet-induced obesity (DIO) results in region-specific cellular leptin resistance in the arcuate nucleus (ARC) of the hypothalamus in one strain of mice and in several medial basal hypothalamic regions in another. We hypothesized that the ventral tegmental area (VTA) is also likely susceptible to diet-induced and leptin-induced leptin resistance in parallel to that in hypothalamic areas. We examined two forms of leptin resistance in F344xBN rats, that induced by 6-months of high fat (HF) feedi...

  9. Diet-induced hypercholesterolemia impaired testicular steroidogenesis in mice through the renin-angiotensin system.

    Science.gov (United States)

    Martínez-Martos, José M; Arrazola, Marce; Mayas, María D; Carrera-González, María P; García, María J; Ramírez-Expósito, María J

    2011-08-01

    Hypercholesterolemia and low testosterone concentrations in men are associated with a high risk factor for atherosclerosis. It is known that cholesterol serves as the major precursor for the synthesis of the sex hormones. The bioactive peptides of the renin-angiotensin-system localized in the gonads play a key role in the relation between cholesterol and testosterone by modulating steroidogenesis and inhibiting testosterone production. In the present work, we evaluated the effects of diet-induced hypercholesterolemia on circulating testosterone levels and its relationship with the testicular RAS-regulating specific aminopeptidase activities in male mouse. A significant decrease in serum circulating levels of testosterone was observed after induced hypercholesterolemia. The changes found in aminopeptidase activities suggest a role of Ang III and Ang IV in the regulation of steroidogenesis.

  10. Hypolipidemic activity ofPiper betel in high fat diet induced hyperlipidemic rat

    Institute of Scientific and Technical Information of China (English)

    Thirunavukkarasu Thirumalai; Narayanaswamy Tamilselvan; Ernest David

    2014-01-01

    Objective:To evaluate the hypolipidemic effect ofPiper betel(P. betel) in high fat diet induced hyperlipidemia rat.Methods:The methanol leaf extract was tested for hypolipidemic effect in the albino rats at the selected optimum dosage of250 mg/kg body weight and administered orally.Adult male albino rats of six numbers in each group were undertaken study and evaluated. Results:In groupII animals, the activity levels of serum total cholesterol(TC), triglycerides (TG), low density lipoprotein(LDL) and very low density lipoprotein-cholesterol(VLDL) were significantly enhanced when compared to that of normal rat.Conclusion:It could be said that the methanolic leaf extract ofP. betel exhibited a significant hypolipidemic effect.

  11. Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    DEFF Research Database (Denmark)

    Axelsen, Lene Nygaard; Callø, Kirstine; Braunstein, Thomas Hartig;

    2015-01-01

    a significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during......BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS....... Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson's Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43...

  12. Hydrolyzed Casein Reduces Diet-Induced Obesity in Male C57BL/6J Mice

    DEFF Research Database (Denmark)

    Lillefosse, Haldis H.; Tastesen, Hanne Sørup; Du, Zhen-Yu;

    2013-01-01

    casein relative to those given intact casein. The mice fed hydrolyzed casein had greater ex vivo inguinal white adipose tissue non-CO2 β-oxidation capacity along with induced expression of genes involved in mitochondrial fatty acid oxidation and mitochondrial uncoupling. The physiological changes induced...... by hydrolyzed casein ingestion translated into decreased body and adipose tissue masses. We conclude that chronic consumption of extensively hydrolyzed casein reduces body mass gain and diet-induced obesity in male C57BL/6J mice....... used a factorial ANOVA design to investigate the effects of protein form (intact vs. hydrolyzed casein) and protein level (16 vs. 32 energy percent protein) on body mass gain and adiposity in obesity-prone male C57BL/6J mice fed Western diets with 35 energy percent fat. Mice fed the hydrolyzed casein...

  13. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N;

    2013-01-01

    The recently identified G protein-coupled receptor GPRC6A is activated by dietary amino acids and expressed in multiple tissues. Although the receptor is hypothesised to exert biological impact on metabolic and endocrine-related parameters, the role of the receptor in obesity and metabolic....... A significant increase in body weight, corresponding to a selective increase in body fat, was observed in Gprc6a KO mice exposed to an HFD relative to WT controls. The obese phenotype was linked to subtle perturbations in energy homoeostasis as GPRC6A deficiency resulted in chronic hyperphagia and decreased...... locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...

  14. Laxative effects of agarwood on low-fiber diet-induced constipation in rats

    Directory of Open Access Journals (Sweden)

    Shimazawa Masamitsu

    2010-11-01

    Full Text Available Abstract Background Agarwood (Aquilaria sinensis, well known as incense in Southeast Asia, has been used as a digestive in traditional medicine. We investigated the laxative effects of an ethanol extract of agarwood leaves (EEA in a rat model of low-fiber diet-induced constipation. Methods A set of rats was bred on a normal diet while another set was placed on a low-fiber diet to induce constipation. The laxative effect of agarwood was then investigated on both sets of rats. Results Pretreatment of normal rats with single dose of EEA (600 mg/kg, p.o. significantly increased frequency and weight of stools. Also, treatments with EEA (300 and 600 mg/kg, p.o. for 14 days caused a significant increase in stool frequency and weight. Feeding of the animals with a low-fiber diet resulted in a decrease in stool weight, frequency, and water content and also delayed carmine egestion. A single treatment with EEA (600 mg/kg or senna (150 and 300 mg/kg significantly increased stool frequency, weight, and water content and also accelerated carmine egestion in the model rats. Once daily administrations of EEA (150 mg/kg, for 14 days, caused a significant increase in water content of stools. The higher doses of EEA (300 and 600 mg/kg significantly increased frequency, weight, and water content of the stools while accelerating carmine egestion in the constipated rats. Senna (150 and 300 mg/kg produced similar effect as the higher doses of EEA but, in addition, induced severe diarrhea. Conclusion These findings indicate that EEA has a laxative effect, without causing diarrhea, in a rat model of low-fiber diet-induced constipation. These findings suggest that EEA may be highly effective on constipation as a complementary medicine in humans suffering from life style-induced constipation.

  15. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer

    Science.gov (United States)

    Asgharpour, Amon; Cazanave, Sophie C.; Pacana, Tommy; Seneshaw, Mulugeta; Vincent, Robert; Banini, Bubu A.; Kumar, Divya Prasanna; Daita, Kalyani; Min, Hae-Ki; Mirshahi, Faridoddin; Bedossa, Pierre; Sun, Xiaochen; Hoshida, Yujin; Koduru, Srinivas V.; Contaifer, Daniel; Warncke, Urszula Osinska; Wijesinghe, Dayanjan S.; Sanyal, Arun J.

    2016-01-01

    Background & Aims The lack of a preclinical model of progressive non-alcoholic steatohepatitis (NASH) that recapitulates human disease is a barrier to therapeutic development. Methods A stable isogenic cross between C57BL/6J (B6) and 129S1/SvImJ (S129) mice were fed a high fat diet with ad libitum consumption of glucose and fructose in physiologically relevant concentrations and compared to mice fed a chow diet and also to both parent strains. Results Following initiation of the obesogenic diet, B6/129 mice developed obesity, insulin resistance, hypertriglyceridemia and increased LDL-cholesterol. They sequentially also developed steatosis (4–8 weeks), steatohepatitis (16–24 weeks), progressive fibrosis (16 weeks onwards) and spontaneous hepatocellular cancer (HCC). There was a strong concordance between the pattern of pathway activation at a transcriptomic level between humans and mice with similar histological phenotypes (FDR 0.02 for early and 0.08 for late time points). Lipogenic, inflammatory and apoptotic signaling pathways activated in human NASH were also activated in these mice. The HCC gene signature resembled the S1 and S2 human subclasses of HCC (FDR 0.01 for both). Only the B6/129 mouse but not the parent strains recapitulated all of these aspects of human NAFLD. Conclusions We here describe a diet-induced animal model of non-alcoholic fatty liver disease (DIAMOND) that recapitulates the key physiological, metabolic, histologic, transcriptomic and cell-signaling changes seen in humans with progressive NASH. Lay summary We have developed a diet-induced mouse model of non-alcoholic steatohepatitis (NASH) and hepatic cancers in a cross between two mouse strains (129S1/SvImJ and C57Bl/6J). This model mimics all the physiological, metabolic, histological, transcriptomic gene signature and clinical endpoints of human NASH and can facilitate preclinical development of therapeutic targets for NASH. PMID:27261415

  16. Amelioration of diet-induced diabetes mellitus by removal of visceral fat.

    Science.gov (United States)

    Pitombo, Cid; Araújo, Eliana P; De Souza, Cláudio T; Pareja, José C; Geloneze, Bruno; Velloso, Lício A

    2006-12-01

    The effect of visceral fat removal upon glucose homeostasis, insulin signal transduction, and serum adipokine levels in an animal model of diet-induced obesity and diabetes mellitus (DIO) was evaluated. Swiss mice were initially divided into two groups fed with regular rodent chow or with chow containing 24 g% saturated fat (DIO). DIO mice became obese and overtly diabetic after 8 weeks. DIO mice were then divided into three groups: control, sham, and visceral (epididymal and perinephric) fat removal. All groups were submitted to evaluation of basal glucose and insulin levels and i.p. insulin tolerance test. Insulin signal transduction in muscle was evaluated by immunoprecipitation and immunoblot, and serum adipokine levels were determined by ELISA. DIO mice became diabetic (228 versus 115 mg/dl), hyperinsulinemic (7.59 versus 3.15 ng/ml) and insulin resistant (K(itt) 2.88 versus 4.97%/min) as compared with control. Visceral fat removal partially reverted all parameters (147 mg/dl glucose; 3.82 ng/ml insulin; and 4.20%/min K(itt)). In addition, visceral fat removal completely reversed the impairment of insulin signal transduction through insulin receptor, insulin receptor substrate (IRS)-1, IRS-2 and Akt in muscle. Finally, serum levels of the pro-inflammatory cytokines tumour necrosis factor-alpha, interleukin (IL)-1beta and IL-6 were significantly increased, while adiponectin levels were significantly reduced in DIO mice. After visceral fat removal the levels of adipokines returned to near control levels. The present study shows that removal of visceral fat improves insulin signal transduction and glucose homeostasis in an animal model of diet-induced obesity and diabetes mellitus and these metabolic and molecular outcomes are accompanied by the restoration of adipokine levels. PMID:17170226

  17. Use of hamster as a model to study diet-induced atherosclerosis

    Directory of Open Access Journals (Sweden)

    Lichtenstein Alice H

    2010-12-01

    Full Text Available Abstract Golden-Syrian hamsters have been used as an animal model to assess diet-induced atherosclerosis since the early 1980s. Advantages appeared to include a low rate of endogenous cholesterol synthesis, receptor-mediated uptake of LDL cholesterol, cholesteryl ester transfer protein activity, hepatic apoB-100 and intestinal apoB-48 secretion, and uptake of the majority of LDL cholesterol via the LDL receptor pathway. Early work suggested hamsters fed high cholesterol and saturated fat diets responded similarly to humans in terms of lipoprotein metabolism and aortic lesion morphology. Recent work has not consistently replicated these findings. Reviewed was the literature related to controlled hamster feeding studies that assessed the effect of strain, background diet (non-purified, semi-purified and dietary perturbation (cholesterol and/or fat on plasma lipoprotein profiles and atherosclerotic lesion formation. F1B hamsters fed a non-purified cholesterol/fat-supplemented diet had more atherogenic lipoprotein profiles (nHDL-C > HDL-C than other hamster strains or hamsters fed cholesterol/fat-supplemented semi-purified diets. However, fat type; saturated (SFA, monounsaturated or n-6 polyunsaturated (PUFA had less of an effect on plasma lipoprotein concentrations. Cholesterol- and fish oil-supplemented semi-purified diets yielded highly variable results when compared to SFA or n-6 PUFA, which were antithetical to responses observed in humans. Dietary cholesterol and fat resulted in inconsistent effects on aortic lipid accumulation. No hamster strain was reported to consistently develop lesions regardless of background diet, dietary cholesterol or dietary fat type amount. In conclusion, at this time the Golden-Syrian hamster does not appear to be a useful model to determine the mechanism(s of diet-induced development of atherosclerotic lesions.

  18. Beneficial Effects of Oolong Tea Consumption on Diet-induced Overweight and Obese Subjects

    Institute of Scientific and Technical Information of China (English)

    HE Rong-rong; CHEN Ling; LIN Bing-hui; MATSUI Yokichi; YAO Xin-sheng; KURIHARA Hiroshi

    2009-01-01

    Objective: To determine the anti-obesity effects of oolong tea on diet-induced overweight or obesity. Methods: A total of 8 g of oolong tea a day for 6 weeks was ingested by 102 diet-induced overweight or obese subjects. The body fat level of the subjects was determined at the same time by taking body weight, height and waist measurements. The thickness of the subcutaneous fat layer was also determined on the abdomen 3 cm to the right of the navel by the ultrasonic echo method. On the other hand, effects of oolong tea ingestion on plasma triglyceride (TG) and total cholesterol (TC) were determined. Inhibitions of pancreatic lipase by oolong tea extract and catechins in vitro were also determined. Results: A total of 70% of the severely obese subjects did show a decrease of more than 1 kg in body weight, including 22% who lost more than 3 kg. Similarly, 64% of the obese subjects and 66% of the overweight subjects lost more than 1 kg during the experiment, and the subcutaneous fat content decreased in 12% of the subjects. The correlation between weight loss and subcutaneous fat decrease in men (r=0.055) was obviously lower than that in women (r=0.440, P0.05). Moreover, the plasma levels of TG and TC of the subjects with hyperlipidemia were remarkably decreased after ingesting oolong tea for 6 weeks. In vitro assays for the inhibition of pancreatic lipase by oolong tea extract and catechins suggest that the mechanism for oolong tea to prevent hyperlipidemia may be related to the regulative action of oolong tea catechins in lipoprotein activity. Conclusions: Oolong tea could decrease body fat content and reduce body weight through improving lipid metabolism. Chronic consumption of oolong tea may prevent against obesity.

  19. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats.

    Directory of Open Access Journals (Sweden)

    Nicolas Deblon

    Full Text Available Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.

  20. Genetic Dissection of Tissue-Specific Apolipoprotein E Function for Hypercholesterolemia and Diet-Induced Obesity.

    Directory of Open Access Journals (Sweden)

    Tobias Wagner

    Full Text Available ApoE deficiency in mice (Apoe-/- results in severe hypercholesterolemia and atherosclerosis. In diet-induced obesity, Apoe-/- display steatohepatitis but reduced accumulation of triacylglycerides and enhanced insulin sensitivity in white adipose tissue (WAT. Although the vast majority of apoE is expressed by hepatocytes apoE is also abundantly expressed in WAT. As liver and adipose tissue play important roles for metabolism, this study aims to outline functions of both hepatocyte- and adipocyte-derived apoE separately by investigating a novel mouse model of tissue-specific apoE deficiency. Therefore we generated transgenic mice carrying homozygous floxed Apoe alleles. Mice lacking apoE either in hepatocytes (ApoeΔHep or in adipose tissue (ApoeΔAT were fed experimental diets. ApoeΔHep exhibited slightly higher body weights, adiposity and liver weights on diabetogenic high fat diet (HFD. Accordingly, hepatic steatosis and markers of inflammation were more pronounced compared to controls. Hypercholesterolemia evoked by lipoprotein remnant accumulation was present in ApoeΔHep mice fed a Western type diet (WTD. Lipidation of VLDL particles and tissue uptake of VLDL were disturbed in ApoeΔHep while the plasma clearance rate remained unaltered. ApoeΔAT did not display any detectable phenotype, neither on HFD nor on WTD. In conclusion, our novel conditional apoE deletion model has proven here the role of hepatocyte apoE for VLDL production and diet-induced dyslipidemia. Specific deletion of apoE in adipocytes cannot reproduce the adipose phenotype of global Apoe-/- mice, suggesting that apoE produced in other cell types than hepatocytes or adipocytes explains the lean and insulin-sensitive phenotype described for Apoe-/- mice.

  1. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induc

  2. A novel oral form of salmon calcitonin improves glucose homeostasis and reduces body weight in diet-induced obese rats

    DEFF Research Database (Denmark)

    Feigh, M; Henriksen, K; Andreassen, K V;

    2011-01-01

    To investigate the effects of acute and chronic administration of a novel oral formulation of salmon calcitonin (sCT) on glycaemic control, glucose homeostasis and body weight regulation in diet-induced obese (DIO) rats-an animal model of obesity-related insulin resistance and type 2 diabetes....

  3. Eicosapentaenoic acid prevents high fat diet-induced metabolic disorders: Genomic and metabolomic analyses of underlying mechanism

    Science.gov (United States)

    Previously our lab demonstrated eicosapenaenoic acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity by decreasing insulin resistance, glucose intolerance and inflammation. In the current study, we used genomic and metabolomic approaches to further investigate the molecular basis for t...

  4. Diet-induced thermogenesis and satiety in humans after full-fat and reduced-fat meals.

    NARCIS (Netherlands)

    Westerterp-Plantenga, M.S.; Wijckmans-Duijsens, N.E.; Verboeket-van de Venne, W.P.; Graaf, de K.; Weststrate, J.A.; Hof, van het K.H.

    1997-01-01

    Diet-induced thermogenesis was measured during and after a full-fat lunch, an identical but reduced-fat, reduced-energy lunch, and an iso-energetic reduced-fat lunch in 32 normal-weight men and women, age 35-55. Hunger and satiety were scored during and after the lunches, and their relationship to d

  5. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-κB pathway

    International Nuclear Information System (INIS)

    Highlights: ► Stevioside ameliorates high-fat diet-induced insulin resistance. ► Stevioside alleviates the adipose tissue inflammation. ► Stevioside reduces macrophages infiltration into the adipose tissue. ► Stevioside suppresses the activation of NF-κB in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-α, IL6, IL10, IL1β, KC, MIP-1α, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-κB) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-κB pathway.

  6. Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice.

    Science.gov (United States)

    Okubo, Hirofumi; Kushiyama, Akifumi; Sakoda, Hideyuki; Nakatsu, Yusuke; Iizuka, Masaki; Taki, Naoyuki; Fujishiro, Midori; Fukushima, Toshiaki; Kamata, Hideaki; Nagamachi, Akiko; Inaba, Toshiya; Nishimura, Fusanori; Katagiri, Hideki; Asahara, Takashi; Yoshida, Yasuto; Chonan, Osamu; Encinas, Jeffery; Asano, Tomoichiro

    2016-01-28

    Resistin-like molecule β (RELMβ) reportedly has multiple functions including local immune responses in the gut. In this study, we investigated the possible contribution of RELMβ to non-alcoholic steatohepatitis (NASH) development. First, RELMβ knock-out (KO) mice were shown to be resistant to methionine-choline deficient (MCD) diet-induced NASH development. Since it was newly revealed that Kupffer cells in the liver express RELMβ and that RELMβ expression levels in the colon and the numbers of RELMβ-positive Kupffer cells were both increased in this model, we carried out further experiments using radiation chimeras between wild-type and RELMβ-KO mice to distinguish between the contributions of RELMβ in these two organs. These experiments revealed the requirement of RELMβ in both organs for full manifestation of NASH, while deletion of each one alone attenuated the development of NASH with reduced serum lipopolysaccharide (LPS) levels. The higher proportion of lactic acid bacteria in the gut microbiota of RELMβ-KO than in that of wild-type mice may be one of the mechanisms underlying the lower serum LPS level the former. These data suggest the contribution of increases in RELMβ in the gut and Kupffer cells to NASH development, raising the possibility of RELMβ being a novel therapeutic target for NASH.

  7. Activation and increase of radio-sensitive CD11b+ recruited Kupffer cells/macrophages in diet-induced steatohepatitis in FGF5 deficient mice

    Science.gov (United States)

    Nakashima, Hiroyuki; Nakashima, Masahiro; Kinoshita, Manabu; Ikarashi, Masami; Miyazaki, Hiromi; Hanaka, Hiromi; Imaki, Junko; Seki, Shuhji

    2016-01-01

    We have recently reported that Kupffer cells consist of two subsets, radio-resistant resident CD68+ Kupffer cells and radio-sensitive recruited CD11b+ Kupffer cells/macrophages (Mφs). Non-alcoholic steatohepatitis (NASH) is characterized not only by hepatic steatosis but also chronic inflammation and fibrosis. In the present study, we investigated the immunological mechanism of diet-induced steatohepatitis in fibroblast growth factor 5 (FGF5) deficient mice. After consumption of a high fat diet (HFD) for 8 weeks, FGF5 null mice developed severe steatohepatitis and fibrosis resembling human NASH. F4/80+ Mφs which were both CD11b and CD68 positive accumulated in the liver. The production of TNF and FasL indicated that they are the pivotal effectors in this hepatitis. The weak phagocytic activity and lack of CRIg mRNA suggested that they were recruited Mφs. Intermittent exposure to 1 Gy irradiation markedly decreased these Mφs and dramatically inhibited liver inflammation without attenuating steatosis. However, depletion of the resident subset by clodronate liposome (c-lipo) treatment increased the Mφs and tended to exacerbate disease progression. Recruited CD11b+ CD68+ Kupffer cells/Mφs may play an essential role in steatohepatitis and fibrosis in FGF5 null mice fed with a HFD. Recruitment and activation of bone marrow derived Mφs is the key factor to develop steatohepatitis from simple steatosis. PMID:27708340

  8. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Ma, Qinyun, E-mail: qinyunma@126.com [State Key Laboratory of Medical Genomics, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  9. Effects of four Bifidobacteria on obesity in high-fat diet induced rats

    OpenAIRE

    Yin, Ya-Ni; Yu, Qiong-Fen; Fu, Nian; LIU, XIAO-WEI; Lu, Fang-Gen

    2010-01-01

    AIM: To compare the effects of four Bifidobacteria strains (Bifidobacteria L66-5, L75-4, M13-4 and FS31-12, originated from normal human intestines) on weight gain, lipid metabolism, glucose metabolism in an obese murine model induced by high-fat diet.

  10. The effect of aspirin on atherogenic diet-induced diabetes mellitus.

    Science.gov (United States)

    Sethi, Apoorva; Parmar, Hamendra S; Kumar, Anil

    2011-06-01

    Exploration of atherogenic diet-induced diabetes mellitus and the evaluation of antidiabetic potential of aspirin were carried out in this study. Male albino Wistar rats were divided into three groups of seven each (1, 2 and 3). Animals of groups 2 and 3 received CCT diet (normal rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5%, 2-thiouracil), whereas the animals of group 1 received normal feed and served as control. In addition to CCT, animals of group 3 (CCT + Asp) also received aspirin (8 gm/kg), commencing from day 8 till the end of study (day 15). In another experiment (exp. 2), aspirin-supplemented normal rat chow (Asp) was fed to the animals for 7 days and compared with the normal rat chow-fed control group. In experiment 3, an in vitro nitric oxide radical-scavenging potential of aspirin at three different doses (25, 50 and 100 μg/ml) was evaluated. In response to CCT diet, a decrease in serum insulin, α-amylase activity, hepatic glycogen, pancreatic calcium with a concomitant increase in serum glucose, lipid profile (except high-density lipoprotein cholesterol (HDL-C)), pancreatic nitrite and lipid peroxidation and the size of adipocytes along with macrophages infiltration were observed. Aspirin administration to CCT diet-fed animals (CCT + Asp) reverted all the studied biochemical and histological changes towards normality. In experiment 2, aspirin administration decreased the serum glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C) and VLDL-C with concomitantly increased HDL-C and insulin; however, it increased hepatic glycogen and pancreatic calcium concentration with a decrease in pancreatic and adipose lipid peroxidation. In vitro assay revealed the nitric oxide radical-scavenging potential of aspirin in all the studied doses. It is concluded that CCT diet-induced diabetes mellitus might be the outcome of nitric oxide radical-induced oxidative stress in pancreatic tissue, as well as diminished

  11. The effect of aspirin on atherogenic diet-induced diabetes mellitus.

    Science.gov (United States)

    Sethi, Apoorva; Parmar, Hamendra S; Kumar, Anil

    2011-06-01

    Exploration of atherogenic diet-induced diabetes mellitus and the evaluation of antidiabetic potential of aspirin were carried out in this study. Male albino Wistar rats were divided into three groups of seven each (1, 2 and 3). Animals of groups 2 and 3 received CCT diet (normal rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5%, 2-thiouracil), whereas the animals of group 1 received normal feed and served as control. In addition to CCT, animals of group 3 (CCT + Asp) also received aspirin (8 gm/kg), commencing from day 8 till the end of study (day 15). In another experiment (exp. 2), aspirin-supplemented normal rat chow (Asp) was fed to the animals for 7 days and compared with the normal rat chow-fed control group. In experiment 3, an in vitro nitric oxide radical-scavenging potential of aspirin at three different doses (25, 50 and 100 μg/ml) was evaluated. In response to CCT diet, a decrease in serum insulin, α-amylase activity, hepatic glycogen, pancreatic calcium with a concomitant increase in serum glucose, lipid profile (except high-density lipoprotein cholesterol (HDL-C)), pancreatic nitrite and lipid peroxidation and the size of adipocytes along with macrophages infiltration were observed. Aspirin administration to CCT diet-fed animals (CCT + Asp) reverted all the studied biochemical and histological changes towards normality. In experiment 2, aspirin administration decreased the serum glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C) and VLDL-C with concomitantly increased HDL-C and insulin; however, it increased hepatic glycogen and pancreatic calcium concentration with a decrease in pancreatic and adipose lipid peroxidation. In vitro assay revealed the nitric oxide radical-scavenging potential of aspirin in all the studied doses. It is concluded that CCT diet-induced diabetes mellitus might be the outcome of nitric oxide radical-induced oxidative stress in pancreatic tissue, as well as diminished

  12. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Uchida, Daisuke [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ohkura, Naoki [Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa (Japan); Horie, Shuichi [Department of Clinical Biochemistry, Kagawa Nutrition University, Sakado, Saitama (Japan)

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  13. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    Science.gov (United States)

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  14. Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer.

    Science.gov (United States)

    Ma, Yongjie; Gao, Mingming; Liu, Dexi

    2016-01-01

    Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders. PMID:27184920

  15. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Pacana, Tommy; Cazanave, Sophie; Verdianelli, Aurora; Patel, Vaishali; Min, Hae-Ki; Mirshahi, Faridoddin; Quinlivan, Eoin; Sanyal, Arun J

    2015-01-01

    Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, pmethionine ratio (pmethionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA methyltransferase Dnmt3a decreased, the global DNA methylation was unaltered. Among individual genes, only HMG-CoA reductase (Hmgcr) was hypermethylated, and no methylation changes were observed in fatty acid synthase (Fasn), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (Nfκb1), c-Jun, B-cell lymphoma 2 (Bcl-2) and Caspase 3. NAFLD was associated with hepatic methionine deficiency and homocysteine elevation, resulting mainly from impaired homocysteine remethylation, and aberrancy in methyltransferase reactions. Despite increased PRMT1 expression, hepatic ADMA was depleted while circulating ADMA was increased, suggesting increased export to circulation.

  16. Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance.

    Directory of Open Access Journals (Sweden)

    Caihong Zhu

    Full Text Available Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer's disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer's disease. In addition, impaired insulin signaling in the Alzheimer's disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.

  17. Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity.

    Science.gov (United States)

    Souza, Gabriela F P; Solon, Carina; Nascimento, Lucas F; De-Lima-Junior, Jose C; Nogueira, Guilherme; Moura, Rodrigo; Rocha, Guilherme Z; Fioravante, Milena; Bobbo, Vanessa; Morari, Joseane; Razolli, Daniela; Araujo, Eliana P; Velloso, Licio A

    2016-01-01

    Obesity is the result of a long-term positive energy balance in which caloric intake overrides energy expenditure. This anabolic state results from the defective activity of hypothalamic neurons involved in the sensing and response to adiposity. However, it is currently unknown what the earliest obesity-linked hypothalamic defect is and how it orchestrates the energy imbalance present in obesity. Using an outbred model of diet-induced obesity we show that defective regulation of hypothalamic POMC is the earliest marker distinguishing obesity-prone from obesity-resistant mice. The early inhibition of hypothalamic POMC was sufficient to transform obesity-resistant in obesity-prone mice. In addition, the post-prandial change in the blood level of β-endorphin, a POMC-derived peptide, correlates with body mass gain in rodents and humans. Taken together, these results suggest that defective regulation of POMC expression, which leads to a change of β-endorphin levels, is the earliest hypothalamic defect leading to obesity. PMID:27373214

  18. Odontella aurita-enriched diet prevents high fat diet-induced liver insulin resistance.

    Science.gov (United States)

    Amine, Hamza; Benomar, Yacir; Haimeur, Adil; Messaouri, Hafida; Meskini, Nadia; Taouis, Mohammed

    2016-01-01

    The beneficial effect of polyunsaturated omega-3 fatty acid (w-3 FA) consumption regarding cardiovascular diseases, insulin resistance and inflammation has been widely reported. Fish oil is considered as the main source of commercialized w-3 FAs, and other alternative sources have been reported such as linseed or microalgae. However, despite numerous reports, the underlying mechanisms of action of w-3 FAs on insulin resistance are still not clearly established, especially those from microalgae. Here, we report that Odontella aurita, a microalga rich in w-3 FAs eicosapentaenoic acid, prevents high fat diet-induced insulin resistance and inflammation in the liver of Wistar rats. Indeed, a high fat diet (HFD) increased plasma insulin levels associated with the impairment of insulin receptor signaling and the up-regulation of toll-like receptor 4 (TLR4) expressions. Importantly, Odontella aurita-enriched HFD (HFOA) reduces body weight and plasma insulin levels and maintains normal insulin receptor expression and responsiveness. Furthermore, HFOA decreased TLR4 expression, JNK/p38 phosphorylation and pro-inflammatory factors. In conclusion, we demonstrate for the first time, to our knowledge, that diet supplementation with whole Ondontella aurita overcomes HFD-induced insulin resistance through the inhibition of TLR4/JNK/p38 MAP kinase signaling pathways.

  19. Altered energy homeostasis and resistance to diet-induced obesity in KRAP-deficient mice.

    Directory of Open Access Journals (Sweden)

    Takahiro Fujimoto

    Full Text Available Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP(-/- mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP(-/- mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT in KRAP(-/- mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAP(-/- mice, although UCP (Uncoupling protein expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC-1, ACC-2 and fatty acid synthase in the liver of KRAP(-/- mice, which could in part account for the metabolic phenotype in KRAP(-/- mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases.

  20. Neuronal Deletion of Ghrelin Receptor Almost Completely Prevents Diet-Induced Obesity.

    Science.gov (United States)

    Lee, Jong Han; Lin, Ligen; Xu, Pingwen; Saito, Kenji; Wei, Qiong; Meadows, Adelina G; Bongmba, Odelia Y N; Pradhan, Geetali; Zheng, Hui; Xu, Yong; Sun, Yuxiang

    2016-08-01

    Ghrelin signaling has major effects on energy and glucose homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, growth hormone secretagogue receptor (GHS-R), is highly expressed in the brain and detectable in some peripheral tissues. To understand the roles of neuronal GHS-R, we generated a mouse line where Ghsr gene is deleted in all neurons using synapsin 1 (Syn1)-Cre driver. Our data showed that neuronal Ghsr deletion abolishes ghrelin-induced spontaneous food intake but has no effect on total energy intake. Remarkably, neuronal Ghsr deletion almost completely prevented diet-induced obesity (DIO) and significantly improved insulin sensitivity. The neuronal Ghsr-deleted mice also showed improved metabolic flexibility, indicative of better adaption to different fuels. In addition, gene expression analysis suggested that hypothalamus and/or midbrain might be the sites that mediate the effects of GHS-R in thermogenesis and physical activity, respectively. Collectively, our results indicate that neuronal GHS-R is a crucial regulator of energy metabolism and a key mediator of DIO. Neuronal Ghsr deletion protects against DIO by regulating energy expenditure, not by energy intake. These novel findings suggest that suppressing central ghrelin signaling may serve as a unique antiobesity strategy. PMID:27207529

  1. Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

    Directory of Open Access Journals (Sweden)

    Shian-Huey Chiang

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.

  2. Effect of Argyreia speciosa root extract on cafeteria diet-induced obesity in rats

    Directory of Open Access Journals (Sweden)

    Shiv Kumar

    2011-01-01

    Full Text Available Objectives : To evaluate the antiobesity effects of the ethanolic extract of Argyreia speciosa roots in rats fed with a cafeteria diet (CD. Materials and Methods : Obesity was induced in albino rats by feeding them a CD daily for 42 days, in addition to a normal diet. Body weight and food intake was measured initially and then every week thereafter. On day 42, the serum biochemical parameters were estimated and the animals were sacrificed with an overdose of ether. The, liver and parametrial adipose tissues were removed and weighed immediately. The liver triglyceride content was estimated. The influence of the extract on the pancreatic lipase activity was also determined by measuring the rate of release of oleic acid from triolein. Results : The body weight at two-to-six weeks and the final parametrial adipose tissue weights were significantly lowered (P < 0.01 and P < 0.05, respectively in rats fed with the CD with Argyreia speciosa extract 500 mg/kg/day as compared to the CD alone. The extract also significantly reduced (P < 0.01 the serum contents of leptin, total cholesterol, low density lipoprotein (LDL, and triglycerides, which were elevated in rats fed with CD alone. In addition, the extract inhibited the induction of fatty liver with the accumulation of hepatic triglycerides. The extract also showed inhibition of pancreatic lipase activity by using triolein as a substrate. Conclusions : The ethanolic extract of Argyreia speciosa roots produces inhibitory effects on cafeteria diet-induced obesity in rats.

  3. Codonopsis lanceolata Extract Prevents Diet-Induced Obesity in C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2014-10-01

    Full Text Available Codonopsis lanceolata extract (CLE has been used in traditional medicine in the Asian-Pacific region for the treatment of bronchitis, cough, and inflammation. However, it is still unclear whether obesity in mice can be altered by diet supplementation with CLE. To investigate whether CLE could have preventative effects on high fat diet (HFD-induced obesity, male C57BL/6 mice were placed on either a normal chow diet, 60% HFD, or a HFD supplemented with CLE (60, 180, and 360 mg/kg/day for 12 weeks. CLE decreased body weight and subcutaneous and visceral fat weights in HFD-induced obese mice. CLE group mice showed lower fat accumulation and a smaller adipocyte area in the adipose tissue compared with the HFD group mice. CLE group mice exhibited lower serum levels of triglycerides, total cholesterol, low density lipoprotein (LDL, glucose, and insulin compared with the HFD group mice. In addition, CLE decreased liver weight and lowered the increase in aspartate aminotransferase (AST and alanine transaminase (ALT levels in HFD-induced obese mice. These results indicate that CLE can inhibit the development of diet-induced obesity and hyperlipidemia in C57BL/6 mice.

  4. Antihypercholesterolemic effect of Bacopa monniera linn. on high cholesterol diet induced hypercholesterolemia in rats

    Institute of Scientific and Technical Information of China (English)

    Venkatakrishnan Kamesh; Thangarajan Sumathi

    2012-01-01

    Objective: To explore the effect of alcoholic extract of Bacopa monniera (AEBM) on high cholesterol diet-induced rats. Methods: The shade-dried and coarsely powdered whole plant material (Bacopa monniera) was extracted with 90% ethanol, finally filtered and dried in vacuum pump. The experimental rats were divided into 4 groups: control (group-I), Rats fed with hypercholesterolemic diet (HCD) for 45 days [4% cholesterol (w/w) and 1% cholic acid], Rats fed with HCD for 45 days+AEBM (40mg/kg, body weight/day orally) for last 30 days (group-III) and AEBM alone (group-IV). Blood and tissues (Aorta) were removed to ice cold containers for various biochemical and histological analysis. Results: AEBM treatment significantly decreased the levels of TC, TG, PL, LDL, VLDL, atherogenic index, LDL/HDL ratio, and TC/HDL ratio but significantly increased the level of HDL when compared to HCD induced rats. Activities on liver antioxidant status (SOD, CAT, GPx, GR, GST) were significantly raised with concomitant reduction in the level of LPO were obtained in AEBM treated rats when compared to HCD rats. Treatment with AEBM significantly lowered the activity of SGOT, LDH and CPK. Histopathology of aorta of cholesterol fed rat showed intimal thickening and foam cell deposition were noted. Conclusions:These results suggests that AEBM extended protection against various biochemical changes and aortic pathology in hypercholesterolemic rats. Thus the plant may therefore be useful for therapeutic treatment of clinical conditions associated hypercholesterolemia.

  5. Extract of Rhus verniciflua stokes protects the diet-induced hyperlipidemia in mice.

    Science.gov (United States)

    Jeong, Se-Jin; Park, Jong-Gil; Kim, Sinai; Kweon, Hyae Yon; Seo, Seungwoon; Na, Dae-Seung; Lee, Dongho; Hong, Cheol Yi; Na, Chun-Soo; Dong, Mi-Sook; Oh, Goo Taeg

    2015-11-01

    Rhus verniciflua stokes (RVS) is a popular medicinal plant in oriental medicines which is commonly used to resolve extravasated blood. To elucidate the molecular mechanism of the role of RVS extracts on the regulation of lipid and cholesterol biosynthesis, we investigated whether RVS extract protect the hyperlipidemia in western diet-induced C57BL6/J mice. Mice fed a western diet and additionally RVS extracts was administered orally at a dose of 0.1 or 1 g/kg/day for 2 weeks respectively. Group with higher dose of RVS extract showed a significantly decreased body weight compared with western diet fed mice groups. And total cholesterol, LDL-cholesterol levels and fatty liver formation were also improved especially in group of mice fed western diet supplemented high dose RVS extracts. Next, synthesis of hepatic bile acids were significantly increased in RVS extract fed groups. Furthermore, RVS extracts significantly increase promoter activity of Cyp7a1 via up-regulate the transcriptional expression level of LXRα. Our data suggest that RVS extracts could be a potent therapeutic ingredient for prevent a hyperlipidemia via increase of bile acids biosynthesis.

  6. Flavonoid derivative exerts an antidiabetic effect via AMPK activation in diet-induced obesity mice.

    Science.gov (United States)

    Chen, Ying; Zhang, Chang; Jin, Mei-Na; Qin, Nan; Qiao, Wei; Yue, Xiao-Long; Duan, Hong-Quan; Niu, Wen-Yan

    2016-09-01

    In our previous study, a derivative of tiliroside, 3-O-[(E)-4-(4-ethoxyphenyl)-2-oxobut-3-en-1-yl]kaempferol (Fla-OEt) significantly enhanced glucose consumption in insulin resistant HepG2 cells. This article deals with the antihyperglycemic and antihyperlipidemic effects of Fla-OEt in diet-induced obesity (DIO) mice. Daily administration of Fla-OEt significantly decreased oral glucose tolerance test, intraperitoneal insulin tolerance test and serum lipids. Hyperinsulinemic-euglycemic clamp and the ratio of high-density-lipoprotein/low-density-lipoprotein with Fla-OEt treatment were increased comparing with high-fat diet (HFD) group, so lipid metabolism was improved. Histopathology examination showed that the Fla-OEt restored the damage of adipose tissues and liver in DIO mice. Moreover, compared with HFD group, Fla-OEt treatment significantly increased the phosphorylation of AMPK and ACC in adiposity tissues, liver, and muscles. The mechanism of its action might be the activation of AMPK pathway. It appears that Fla-OEt is worth further study for development as a lead compound for a potential antidiabetic agent.

  7. Age and size at maturity: a quantitative review of diet-induced reaction norms in insects.

    Science.gov (United States)

    Teder, Tiit; Vellau, Helen; Tammaru, Toomas

    2014-11-01

    Optimality models predict that diet-induced bivariate reaction norms for age and size at maturity can have diverse shapes, with the slope varying from negative to positive. To evaluate these predictions, we perform a quantitative review of relevant data, using a literature-derived database of body sizes and development times for over 200 insect species. We show that bivariate reaction norms with a negative slope prevail in nearly all taxonomic and ecological categories of insects as well as in some other ectotherm taxa with comparable life histories (arachnids and amphibians). In insects, positive slopes are largely limited to species, which feed on discrete resource items, parasitoids in particular. By contrast, with virtually no meaningful exceptions, herbivorous and predatory insects display reaction norms with a negative slope. This is consistent with the idea that predictable resource depletion, a scenario selecting for positively sloped reaction norms, is not frequent for these insects. Another source of such selection-a positive correlation between resource levels and juvenile mortality rates-should similarly be rare among insects. Positive slopes can also be predicted by models which integrate life-history evolution and population dynamics. As bottom-up regulation is not common in most insect groups, such models may not be most appropriate for insects.

  8. Liquid enteral diets induce bacterial translocation by increasing cecal flora without changing intestinal motility.

    Science.gov (United States)

    Haskel, Y; Udassin, R; Freund, H R; Zhang, J M; Hanani, M

    2001-01-01

    The aim of this study was to determine the contribution of intestinal motility and cecal bacterial overgrowth to liquid diet-induced bacterial translocation (BT). Three different commercially available liquid diets were offered to mice for 1 week. BT to the mesenteric lymph nodes (MLN), spleen, and liver were examined as well as cecal bacterial counts and populations, small bowel length and weight, and histopathologic changes in the ileal and jejunal mucosa. In addition, the effect of the various diets on intestinal motility was measured by the transit index of a charcoal mixture introduced into the stomach. The incidence of BT to the mesenteric lymph nodes was significantly and similarly increased (p Vivonex (30%), Ensure (30%), and Osmolite (33%) compared with chow-fed controls (0%). Compared with chow-fed controls, all three liquid diets were associated with the development of cecal bacterial overgrowth (p < .01). There were no significant changes in the transit index for the three liquid diet groups compared with the chow-fed controls. BT to the MLN was induced by all three liquid diets tested, casting some doubts as to their role in preventing BT in clinical use. BT was associated with a statistically significant increase in cecal bacterial count but was not associated with gut motility changes in this model. In fact, no significant changes in intestinal motility were noted in all groups tested. PMID:11284471

  9. Targeting the microbiota to address diet-induced obesity: a time dependent challenge.

    Directory of Open Access Journals (Sweden)

    Siobhan F Clarke

    Full Text Available Links between the gut microbiota and host metabolism have provided new perspectives on obesity. We previously showed that the link between the microbiota and fat deposition is age- and time-dependent subject to microbial adaptation to diet over time. We also demonstrated reduced weight gain in diet-induced obese (DIO mice through manipulation of the gut microbiota with vancomycin or with the bacteriocin-producing probiotic Lactobacillus salivarius UCC118 (Bac(+, with metabolic improvement achieved in DIO mice in receipt of vancomycin. However, two phases of weight gain were observed with effects most marked early in the intervention phase. Here, we compare the gut microbial populations at the early relative to the late stages of intervention using a high throughput sequencing-based analysis to understand the temporal relationship between the gut microbiota and obesity. This reveals several differences in microbiota composition over the intervening period. Vancomycin dramatically altered the gut microbiota composition, relative to controls, at the early stages of intervention after which time some recovery was evident. It was also revealed that Bac(+ treatment initially resulted in the presence of significantly higher proportions of Peptococcaceae and significantly lower proportions of Rikenellaceae and Porphyromonadaceae relative to the gut microbiota of L. salivarius UCC118 bacteriocin negative (Bac(- administered controls. These differences were no longer evident at the later time. The results highlight the resilience of the gut microbiota and suggest that interventions may need to be monitored and continually adjusted to ensure sustained modification of the gut microbiota.

  10. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Nezami, Behtash Ghazi; Obukwelu, Blessing; Anitha, Mallappa; Marri, Smitha; Fu, Ping; Epperson, Monica F; Le, Ngoc-Anh; Shanmugam, Malathy; Sitaraman, Shanthi V; Tseng, Yu-Hua; Anania, Frank A; Srinivasan, Shanthi

    2014-03-01

    Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (PGDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.

  11. Effects of diet-induced hypercholesterolemia on amyloid accumulation in ovariectomized mice

    Indian Academy of Sciences (India)

    V Kaliyamurthi; V Thanigavelan; G Victor Rajamanickam

    2012-12-01

    A central hypothesis in the study of Alzheimer’s disease (AD) is the accumulation and aggregation of -amyloid peptide (A). Recent epidemiological studies suggest that patients with elevated cholesterol and decreased estrogen levels are more susceptible to AD through A accumulation. To test the above hypothesis, we used ovariectomized with diet-induced hypercholesterolemia (OVX) and hypercholesterolemia (HCL) diet alone mouse models. HPLC analysis reveals the presence of beta amyloid in the OVX and HCL mice brain. Congo red staining analysis revealed the extent of amyloid deposition in OVX and hypercholesterolemia mice brain. Overall, A levels were higher in OVX mice than in HCL. Secondly, estrogen receptors (ER) were assessed by immunohistochemistry and this suggested that there was a decreased expression of ER in OVX animals when compared to hypercholesterolemic animals. A was quantified by Western blot and ELISA analysis. Overall, Aβ levels were higher in OVX mice than in HCL mice. Our experimental results suggested that OVX animals were more susceptible to AD with significant increase in A peptide.

  12. Origin of Aberrant Blood Pressure and Sympathetic Regulation in Diet-Induced Obesity.

    Science.gov (United States)

    Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Armitage, James A; Head, Geoffrey A

    2016-08-01

    High fat diet (HFD)-induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin-stimulating hormone (α-MSH) and neuropeptide Y-positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet-fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (Pheart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension. PMID:27296999

  13. Anti-adipogenic effect of Artemisia annua in diet-induced-obesity mice model.

    Science.gov (United States)

    Baek, Hye Kyung; Shim, Hyeji; Lim, Hyunmook; Shim, Minju; Kim, Chul-Kyu; Park, Sang-Kyu; Lee, Yong Seok; Song, Ki-Duk; Kim, Sung-Jo; Yi, Sun Shin

    2015-01-01

    Obesity has increased continuously in western countries during the last several decades and recently become a problem in developing countries. Currently, anti-obesity drugs originating from natural products are being investigated for their potential to overcome adverse effects associated with chemical drugs. Artemisinic acid, which was isolated from the well-known anti-malaria herb Artemisia annua (AA) L., was recently shown to possess anti-adipogenic effects in vitro. However, the anti-adipogenic effects of AA in animal models have not yet been investigated. Therefore, we conducted daily oral administration with AA water extract in a diet-induced obesity animal model and treated 3T3-L1 cells with AA to confirm the anti-adipogenic effects in the related protein expressions. We then evaluated the physiology, adipose tissue histology and mRNA expressions of many related genes. Inhibition of adipogenesis by the AA water extract was observed in vitro. In the animal model, weight gain was significantly lower in the AA treated group, but there were no changes in food intake volume or calories. Reductions in lipid droplet size and mRNA expression associated with adipogenesis were also observed in animal epididymal fat. This study is the first to report that AA has an anti-obese effects in vivo. PMID:26243598

  14. Effects of Astrocaryum aculeatum Meyer (Tucumã) on Diet-Induced Dyslipidemic Rats

    Science.gov (United States)

    Craveiro Holanda Malveira Maia, Geórgia; da Silva Campos, Mozer; Barros-Monteiro, Janice; Eduardo Lucas Castillo, Juan; Soares Faleiros, Murilo; Souza de Aquino Sales, Rejane; Moraes Lopes Galeno, Denise; Lira, Edson; das Chagas do Amaral Souza, Francisca; Ortiz, Carmen

    2014-01-01

    An in vivo study was conducted to assess the effects of the consumption of Astrocaryum aculeatum Amazon Meyer (tucumã) in the treatment of diet-induced dyslipidemia in sedentary and exercised Wistar rats. With an average weight of 350 grams, 40 male rats were divided into 4 subgroups of 10. The sedentary control group (SCG) was fed with commercial feed, while the sedentary treatment group (STG) was fed with a ration of tucumã. In addition to the sedentary groups, two exercise groups were formed. The Exercised control group (ECG) was fed with commercial food and the exercised treatment group (ETG) was fed with a ration of tucumã. Body weight gain and food intake were monitored during the experiment. Plasma was analyzed for cholesterol, triglycerides, HDL-C, LDL-C, VLDL, total protein, glucose, insulin, and leptin concentrations. Our results show that the ECG group tended to consume more food, while the groups that were fed with tucumã pulp (STG and ETG) presented a greater tendency to gain body mass. ECG group showed a tendency towards a higher concentration of cholesterol in plasma, while STG and ETG presented higher absolute values for triglycerides and VLDL. No hypolipiemic effect was observed related to tucuma ingestion. PMID:25165578

  15. Effects of Astrocaryum aculeatum Meyer (Tucumã on Diet-Induced Dyslipidemic Rats

    Directory of Open Access Journals (Sweden)

    Geórgia Craveiro Holanda Malveira Maia

    2014-01-01

    Full Text Available An in vivo study was conducted to assess the effects of the consumption of Astrocaryum aculeatum Amazon Meyer (tucumã in the treatment of diet-induced dyslipidemia in sedentary and exercised Wistar rats. With an average weight of 350 grams, 40 male rats were divided into 4 subgroups of 10. The sedentary control group (SCG was fed with commercial feed, while the sedentary treatment group (STG was fed with a ration of tucumã. In addition to the sedentary groups, two exercise groups were formed. The Exercised control group (ECG was fed with commercial food and the exercised treatment group (ETG was fed with a ration of tucumã. Body weight gain and food intake were monitored during the experiment. Plasma was analyzed for cholesterol, triglycerides, HDL-C, LDL-C, VLDL, total protein, glucose, insulin, and leptin concentrations. Our results show that the ECG group tended to consume more food, while the groups that were fed with tucumã pulp (STG and ETG presented a greater tendency to gain body mass. ECG group showed a tendency towards a higher concentration of cholesterol in plasma, while STG and ETG presented higher absolute values for triglycerides and VLDL. No hypolipiemic effect was observed related to tucuma ingestion.

  16. Flavonoid derivative exerts an antidiabetic effect via AMPK activation in diet-induced obesity mice.

    Science.gov (United States)

    Chen, Ying; Zhang, Chang; Jin, Mei-Na; Qin, Nan; Qiao, Wei; Yue, Xiao-Long; Duan, Hong-Quan; Niu, Wen-Yan

    2016-09-01

    In our previous study, a derivative of tiliroside, 3-O-[(E)-4-(4-ethoxyphenyl)-2-oxobut-3-en-1-yl]kaempferol (Fla-OEt) significantly enhanced glucose consumption in insulin resistant HepG2 cells. This article deals with the antihyperglycemic and antihyperlipidemic effects of Fla-OEt in diet-induced obesity (DIO) mice. Daily administration of Fla-OEt significantly decreased oral glucose tolerance test, intraperitoneal insulin tolerance test and serum lipids. Hyperinsulinemic-euglycemic clamp and the ratio of high-density-lipoprotein/low-density-lipoprotein with Fla-OEt treatment were increased comparing with high-fat diet (HFD) group, so lipid metabolism was improved. Histopathology examination showed that the Fla-OEt restored the damage of adipose tissues and liver in DIO mice. Moreover, compared with HFD group, Fla-OEt treatment significantly increased the phosphorylation of AMPK and ACC in adiposity tissues, liver, and muscles. The mechanism of its action might be the activation of AMPK pathway. It appears that Fla-OEt is worth further study for development as a lead compound for a potential antidiabetic agent. PMID:26511291

  17. AHNAK KO mice are protected from diet-induced obesity but are glucose intolerant.

    Science.gov (United States)

    Ramdas, M; Harel, C; Armoni, M; Karnieli, E

    2015-04-01

    AHNAK is a 700 KD phosphoprotein primarily involved in calcium signaling in various cell types and regulating cytoskeletal organization and cell membrane architecture. AHNAK expression has also been associated with obesity. To investigate the role of AHNAK in regulating metabolic homeostasis, we studied whole body AHNAK knockout mice (KO) on either regular chow or high-fat diet (HFD). KO mice had a leaner phenotype and were resistant to high-fat diet-induced obesity (DIO), as reflected by a reduction in adipose tissue mass in conjunction with higher lean mass compared to wild-type controls (WT). However, KO mice exhibited higher fasting glucose levels, impaired glucose tolerance, and diminished serum insulin levels on either diet. Concomitantly, KO mice on HFD displayed defects in insulin signaling, as evident from reduced Akt phosphorylation and decreased cellular glucose transporter (Glut4) levels. Glucose intolerance and insulin resistance were also associated with changes in expression of genes regulating fat, glucose, and energy metabolism in adipose tissue and liver. Taken together, these data demonstrate that (a) AHNAK is involved in glucose homeostasis and weight balance (b) under normal feeding KO mice are insulin sensitive yet insulin deficient; and (c) AHNAK deletion protects against HFD-induced obesity, but not against HFD-induced insulin resistance and glucose intolerance in vivo.

  18. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications.

  19. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    Directory of Open Access Journals (Sweden)

    Deanna L. Gibson

    2012-08-01

    Full Text Available The gastrointestinal (GI microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed.

  20. High-oleic peanuts increase diet-induced thermogenesis in overweight and obese men

    Directory of Open Access Journals (Sweden)

    Raquel Duarte Moreira Alves

    2014-05-01

    Full Text Available Background: Evidences suggest that nuts consumption can improve energy metabolism. Purpose: This study aimed to compare the effects of acute ingestion of high-oleic and conventional peanuts on appetite, food intake, and energy metabolism in overweight and obese men. Methods: Seventy one subjects (29.8 ± 2.4 kg/m² were assigned to the groups: control (CT, n = 24; conventional peanuts (CVP, n = 23; high-oleic peanuts (HOP, n = 24. Subjects consumed 56 g of peanuts (CVP and HOP or control biscuits (CT after overnight fasting. Thereafter, energy metabolism was evaluated over 200 minutes, during which diet-induced thermogenesis (DIT and substrate oxidation were analyzed. Appetite sensation was recorded for 3 hours. Statistical analyses were performed using the SAS software considering 5% as the significance level. Results: Postprandial energy expenditure and DIT were significantly higher in HOP than in CVP. Substrate oxidation did not differ between groups. Only HOP presented score below 100 indicating incomplete compensation. CT and CVP showed a complete caloric compensation (scores > 100. Regarding appetite sensation, CVP group felt less "full" than HOP and CT. After 3 hours, satiety score of CVP returned to baseline, whereas HOP and CT remained significantly higher. Hunger scores returned to baseline in CVP and CT and they were maintained significantly lowered in HOP. Conclusion: High-oleic peanuts contributed to higher DIT, higher sensation of fullness and incomplete compensation for energy intake compared to conventional peanuts and may be useful to dietary intervention to reduce body weight.

  1. Genetic Ablation of CD38 Protects against Western Diet-Induced Exercise Intolerance and Metabolic Inflexibility.

    Science.gov (United States)

    Chiang, Shian-Huey; Harrington, W Wallace; Luo, Guizhen; Milliken, Naphtali O; Ulrich, John C; Chen, Jing; Rajpal, Deepak K; Qian, Ying; Carpenter, Tiffany; Murray, Rusty; Geske, Robert S; Stimpson, Stephen A; Kramer, Henning F; Haffner, Curt D; Becherer, J David; Preugschat, Frank; Billin, Andrew N

    2015-01-01

    Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet. PMID:26287487

  2. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state. PMID:26824042

  3. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  4. Positive correlation between serum taurine and adiponectin levels in high-fat diet-induced obesity rats.

    Science.gov (United States)

    You, Jeong Soon; Zhao, Xu; Kim, Sung Hoon; Chang, Kyung Ja

    2013-01-01

    The purpose of this study was to investigate the relationship between serum taurine level and serum adiponectin or leptin levels in high-fat diet-induced obesity rats. Five-week-old male Sprague-Dawley rats were randomly divided into three groups for a period of 8 weeks (normal diet, N group; high-fat diet, HF group; high-fat diet + taurine, HFT group). Taurine was supplemented by dissolving in feed water (3% w/v), and the same amount of distilled water was orally administrated to N and HF groups. In serum, adiponectin level was higher in HFT group compared to HF group. The serum taurine level was negatively correlated with serum total cholesterol (TC) level and positively correlated with serum adiponectin level. These results suggest that dietary taurine supplementation has beneficial effects on total cholesterol and adiponectin levels in high-fat diet-induced obesity rats.

  5. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    OpenAIRE

    Oosterveer, Maaike H.; Koolman, Anniek H; de Boer, Pieter T; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods: We evaluated adipose tissue differentiation/proliferation markers and q...

  6. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    OpenAIRE

    Kerstin Stemmer; Diego Perez-Tilve; Gayathri Ananthakrishnan; Anja Bort; Seeley, Randy J.; Tschöp, Matthias H.; Dietrich, Daniel R.; Pfluger, Paul T.

    2012-01-01

    SUMMARY Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO) promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens) or partially r...

  7. Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity

    OpenAIRE

    Cui, Wenpeng; Maimaitiyiming, Hasiyeti; Qi, Xinyu; Norman, Heather; Wang, Shuxia

    2013-01-01

    Obesity is prevalent worldwide and is a major risk factor for many diseases including renal complications. Thrombospondin 1 (TSP1), a multifunctional extracellular matrix protein, plays an important role in diabetic kidney diseases. However, whether TSP1 plays a role in obesity-related kidney disease is unknown. In the present studies, the role of TSP1 in obesity-induced renal dysfunction was determined by using a diet-induced obese mouse model. The results demonstrated that TSP1 was signific...

  8. Pro-opiomelanocortin Gene Transfer to the NTS but not ARC Ameliorates Chronic Diet-Induced Obesity

    OpenAIRE

    Zhang, Y.; Rodrigues, E.; Gao, Y.X.; King, M.; Cheng, K. Y.; Erdös, B.; Tümer, N.; Carter, C; Scarpace, P. J.

    2010-01-01

    Short-term pharmacological melanocortin activation deters diet-induced obesity (DIO) effectively in rodents. However, whether central pro-opiomelanocortin (POMC) gene transfer targeted to the hypothalamus or hindbrain nucleus of the solitary track (NTS) can combat chronic dietary obesity has not been investigated. Four-week-old Sprague Dawley rats were fed a high fat diet for five months, and then injected with either the POMC or control vector into the hypothalamus or NTS, and body weight an...

  9. Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Freese, Kim; Waligora-Dupriet, Anne-Judith; Nubret, Esther; Butel, Marie-Jo; Bergheim, Ina; De Bandt, Jean-Pascal

    2016-07-01

    A Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we sought, in a model of Western diet-induced NAFLD, to determine whether citrulline (Cit), an amino acid that regulates protein and energy metabolism, could decrease Western diet-induced liver injuries, as well as the mechanisms involved. Sprague-Dawley rats were fed a high-fat diet (45 %) and fructose (30 %) in drinking water or a control diet associated with water (group C) for 8 weeks. The high-fat, high-fructose diet (Western diet) was fed either alone (group WD) or with Cit (1 g/kg per d) (group WDC) or an isonitrogenous amount of non-essential amino acids (group WDA). We evaluated nutritional and metabolic status, liver function, intestinal barrier function, gut microbiota and splanchnic inflammatory status. Cit led to a lower level of hepatic TAG restricted to microvesicular lipid droplets and to a lower mRNA expression of CCAAT-enhancer-binding protein homologous protein, a marker of endoplasmic reticulum stress, of pro-inflammatory cytokines Il6 (Plevels. In the colon, it decreased inflammation (Tnfα and Tlr4 expressions) and increased claudin-1 protein expression. This was associated with higher levels of Bacteroides/Prevotella compared with rats fed the Western diet alone. Cit improves Western diet-induced liver injuries via decreased lipid deposition, increased insulin sensitivity, lower inflammatory process and preserved antioxidant status. This may be related in part to its protective effects at the gut level. PMID:27197843

  10. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats

    OpenAIRE

    Lee Si; Cha Min; Kim Jung; Lee Do; Park Shin; An Hyang; Lim Hyung; Kim Kyung; Ha Nam

    2011-01-01

    Abstract Background Recent studies have reported the preventive effects of probiotics on obesity. Among commensal bacteria, bifidobacteria is one of the most numerous probiotics in the mammalian gut and are a type of lactic acid bacteria. The aim of this study was to assess the antiobesity and lipid-lowering effects of Bifidobacterium spp. isolated from healthy Korean on high fat diet-induced obese rats. Methods Thirty-six male Sprague-Dawley rats were divided into three groups as follows: (1...

  11. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats

    OpenAIRE

    Betik, Andrew C.; Aguila, Jay; McConell, Glenn K.; McAinch, Andrew J.; Michael L. Mathai

    2016-01-01

    Background and Aims Obesity and impairments in metabolic health are associated with reductions in exercise capacity. Both whey protein isolates (WPIs) and vitamin E tocotrienols (TCTs) exert favorable effects on obesity-related metabolic parameters. This research sought to determine whether these supplements improved exercise capacity and increased glucose tolerance in diet-induced obese rats. Methods Six week old male rats (n = 35) weighing 187 ± 32g were allocated to either: Control (n = 9)...

  12. Dopamine receptor alterations in female rats with diet-induced decreased brain docosahexaenoic acid (DHA): interactions with reproductive status

    OpenAIRE

    Davis, Paul F.; Ozias, Marlies K.; Carlson, Susan E.; Reed, Gregory A.; Winter, Michelle K; McCarson, Kenneth E.; Levant, Beth

    2010-01-01

    Decreased tissue levels of n-3 (omega-3) fatty acids, particularly docosahexaenoic acid (DHA), are implicated in the etiologies of non-puerperal and postpartum depression. This study examined the effects of a diet-induced loss of brain DHA content and concurrent reproductive status on dopaminergic parameters in adult female Long–Evans rats. An α-linolenic acid-deficient diet and breeding protocols were used to produce virgin and parous female rats with cortical phospholipid DHA levels 20–22% ...

  13. Differential Effects of Diet-Induced Dyslipidemia and Hyperglycemia on Mesenteric Resistance Artery Structure and Function in Type 2 Diabetes

    OpenAIRE

    Sachidanandam, Kamakshi; Hutchinson, Jim R.; Elgebaly, Mostafa M.; Mezzetti, Erin M; Wang, Mong-Heng; Ergul, Adviye

    2008-01-01

    Type 2 diabetes and dyslipidemia oftentimes present in combination. However, the relative roles of diabetes and diet-induced dyslipidemia in mediating changes in vascular structure, mechanics, and function are poorly understood. Our hypothesis was that addition of a high-fat diet would exacerbate small artery remodeling, compliance, and vascular dysfunction in type 2 diabetes. Vascular remodeling indices [media/lumen (M/L) ratio, collagen abundance and turnover, and ma...

  14. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance

    OpenAIRE

    Su Gao; McMillan, Ryan P.; Qingzhang Zhu; Lopaschuk, Gary D.; Hulver, Matthew W.; Butler, Andrew A

    2015-01-01

    Objective: The peptide hormone adropin regulates fuel selection preferences in skeletal muscle under fed and fasted conditions. Here, we investigated whether adropin treatment can ameliorate the dysregulation of fuel substrate metabolism, and improve aspects of glucose homeostasis in diet-induced obesity (DIO) with insulin resistance. Methods: DIO C57BL/6 mice maintained on a 60% kcal fat diet received five intraperitoneal (i.p.) injections of the bioactive peptide adropin34-76 (450 nmol/k...

  15. Scavenger Receptor CD36 Expression Contributes to Adipose Tissue Inflammation and Cell Death in Diet-Induced Obesity

    OpenAIRE

    Lei Cai; Zhen Wang; Ailing Ji; Meyer, Jason M.; Deneys R. van der Westhuyzen

    2012-01-01

    OBJECTIVE: The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death. EXPERIMENTAL APPROACH: Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO) mice and wild type (WT) mice fed a high fat diet (60% kcal fat) fo...

  16. Antihyperlipidemic and antiatherogenic activities of Terminalia pallida Linn. fruits in high fat diet-induced hyperlipidemic rats

    Directory of Open Access Journals (Sweden)

    M T Sampathkumar

    2011-01-01

    Full Text Available Hyperlipidemia contributes significantly in the manifestation and development of atherosclerosis and coronary heart disease (CHD. Although synthetic lipid-lowering drugs are useful in treating hyperlipidemia, there are number of adverse effects. So the current interest has stimulated the search for new lipid-lowering agents with minimal side effects from natural sources. The present study was designed to investigate the antihyperlipidemic and antiatherogenic potentiality of ethanolic extract of Terminalia pallida fruits in high fat diet-induced hyperlipidemic rats. T. pallida fruits ethanolic extract (TPEt was prepared using Soxhlet apparatus. Sprague-Dawley male rats were made hyperlipidemic by giving high fat diet, supplied by NIN (National Institute of Nutrition, Hyderabad, India. TPEt was administered in a dose of 100 mg/kg.b.w./day for 30 days in high fat diet-induced hyperlipidemic rats. The body weights, plasma lipid, and lipoprotein levels were measured before and after the treatment. TPEt showed significant antihyperlipidemic and antiatherogenic activities as evidenced by significant decrease in plasma total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol levels coupled together with elevation of high-density lipoprotein cholesterol levels and diminution of atherogenic index in high fat diet-induced hyperlipidemic rats. There was a significantly reduced body weight gain in TPEt-treated hyperlipidemic rats than in the control group. The present study demonstrates that TPEt possesses significant antihyperlipidemic and antiatherogenic properties, thus suggesting its beneficial effect in the treatment of cardiovascular diseases.

  17. Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats

    Directory of Open Access Journals (Sweden)

    Muraki Etsuko

    2012-05-01

    Full Text Available Abstract Background Various therapeutic effects of fenugreek (Trigonella foenum-graecum L. on metabolic disorders have been reported. However, the bitterness of fenugreek makes it hard for humans to eat sufficient doses of it for achieving therapeutic effects. Fenugreek contains bitter saponins such as protodioscin. Fenugreek with reduced bitterness (FRB is prepared by treating fenugreek with beta-glucosidase. This study has been undertaken to evaluate the effects of FRB on metabolic disorders in rats. Methods Forty Sprague–Dawley rats were fed with high-fat high-sucrose (HFS diet for 12 week to induce mild glucose and lipid disorders. Afterwards, the rats were divided into 5 groups. In the experiment 1, each group (n = 8 was fed with HFS, or HFS containing 2.4% fenugreek, or HFS containing 1.2%, 2.4% and 4.8% FRB, respectively, for 12 week. In the experiment 2, we examined the effects of lower doses of FRB (0.12%, 0.24% and 1.2% under the same protocol (n = 7 in each groups. Results In the experiment 1, FRB dose-dependently reduced food intake, body weight gain, epididymal white adipose tissue (EWAT and soleus muscle weight. FRB also lowered plasma and hepatic lipid levels and increased fecal lipid levels, both dose-dependently. The Plasma total cholesterol levels (mmol/L in the three FRB and Ctrl groups were 1.58 ± 0.09, 1.45 ± 0.05*, 1.29 ± 0.07* and 2.00 ± 0.18, respectively (*; P P P  Conclusions Thus we have demonstrated that FRB (1.2 ~ 4.8% prevents diet-induced metabolic disorders such as insulin resistance, dyslipidemia and fatty liver.

  18. The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice.

    Science.gov (United States)

    Ceddia, Ryan P; Lee, DaeKee; Maulis, Matthew F; Carboneau, Bethany A; Threadgill, David W; Poffenberger, Greg; Milne, Ginger; Boyd, Kelli L; Powers, Alvin C; McGuinness, Owen P; Gannon, Maureen; Breyer, Richard M

    2016-01-01

    Mice carrying a targeted disruption of the prostaglandin E2 (PGE2) E-prostanoid receptor 3 (EP3) gene, Ptger3, were fed a high-fat diet (HFD), or a micronutrient matched control diet, to investigate the effects of disrupted PGE2-EP3 signaling on diabetes in a setting of diet-induced obesity. Although no differences in body weight were seen in mice fed the control diet, when fed a HFD, EP3(-/-) mice gained more weight relative to EP3(+/+) mice. Overall, EP3(-/-) mice had increased epididymal fat mass and adipocyte size; paradoxically, a relative decrease in both epididymal fat pad mass and adipocyte size was observed in the heaviest EP3(-/-) mice. The EP3(-/-) mice had increased macrophage infiltration, TNF-α, monocyte chemoattractant protein-1, IL-6 expression, and necrosis in their epididymal fat pads as compared with EP3(+/+) animals. Adipocytes isolated from EP3(+/+) or EP3(-/-) mice were assayed for the effect of PGE2-evoked inhibition of lipolysis. Adipocytes isolated from EP3(-/-) mice lacked PGE2-evoked inhibition of isoproterenol stimulated lipolysis compared with EP3(+/+). EP3(-/-) mice fed HFD had exaggerated ectopic lipid accumulation in skeletal muscle and liver, with evidence of hepatic steatosis. Both blood glucose and plasma insulin levels were similar between genotypes on a control diet, but when fed HFD, EP3(-/-) mice became hyperglycemic and hyperinsulinemic when compared with EP3(+/+) fed HFD, demonstrating a more severe insulin resistance phenotype in EP3(-/-). These results demonstrate that when fed a HFD, EP3(-/-) mice have abnormal lipid distribution, developing excessive ectopic lipid accumulation and associated insulin resistance. PMID:26485614

  19. Vascular Smooth Muscle Sirtuin-1 Protects Against Diet-Induced Aortic Stiffness.

    Science.gov (United States)

    Fry, Jessica L; Al Sayah, Leona; Weisbrod, Robert M; Van Roy, Isabelle; Weng, Xiang; Cohen, Richard A; Bachschmid, Markus M; Seta, Francesca

    2016-09-01

    Arterial stiffness, a major cardiovascular risk factor, develops within 2 months in mice fed a high-fat, high-sucrose (HFHS) diet, serving as a model of human metabolic syndrome, and it is associated with activation of proinflammatory and oxidant pathways in vascular smooth muscle (VSM) cells. Sirtuin-1 (SirT1) is an NAD(+)-dependent deacetylase regulated by the cellular metabolic status. Our goal was to study the effects of VSM SirT1 on arterial stiffness in the context of diet-induced metabolic syndrome. Overnight fasting acutely decreased arterial stiffness, measured in vivo by pulse wave velocity, in mice fed HFHS for 2 or 8 months, but not in mice lacking SirT1 in VSM (SMKO). Similarly, VSM-specific genetic SirT1 overexpression (SMTG) prevented pulse wave velocity increases induced by HFHS feeding, during 8 months. Administration of resveratrol or S17834, 2 polyphenolic compounds known to activate SirT1, prevented HFHS-induced arterial stiffness and were mimicked by global SirT1 overexpression (SirT1 bacterial artificial chromosome overexpressor), without evident metabolic improvements. In addition, HFHS-induced pulse wave velocity increases were reversed by 1-week treatment with a specific, small molecule SirT1 activator (SRT1720). These beneficial effects of pharmacological or genetic SirT1 activation, against HFHS-induced arterial stiffness, were associated with a decrease in nuclear factor kappa light chain enhancer of activated B cells (NFκB) activation and vascular cell adhesion molecule (VCAM-1) and p47phox protein expressions, in aorta and VSM cells. In conclusion, VSM SirT1 activation decreases arterial stiffness in the setting of obesity by stimulating anti-inflammatory and antioxidant pathways in the aorta. SirT1 activators may represent a novel therapeutic approach to prevent arterial stiffness and associated cardiovascular complications in overweight/obese individuals with metabolic syndrome. PMID:27432859

  20. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    International Nuclear Information System (INIS)

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding

  1. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters.

    Science.gov (United States)

    Di Pasqua, Laura G; Berardo, Clarissa; Rizzo, Vittoria; Richelmi, Plinio; Croce, Anna Cleta; Vairetti, Mariapia; Ferrigno, Andrea

    2016-08-01

    Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH. PMID:27357826

  2. Lamp-2 deficiency prevents high-fat diet-induced obese diabetes via enhancing energy expenditure

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda-Yamahara, Mako [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Kume, Shinji, E-mail: skume@belle.shiga-med.ac.jp [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Yamahara, Kosuke; Nakazawa, Jun; Chin-Kanasaki, Masami; Araki, Hisazumi; Araki, Shin-ichi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan); Koya, Daisuke [Department of Diabetology and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa (Japan); Haneda, Masakzu [Division of Metabolism and Biosystemic Science, Asahikawa Medical University, Asahikawa, Hokkaido (Japan); Ugi, Satoshi; Maegawa, Hiroshi; Uzu, Takashi [Department of Medicine, Shiga University of Medical Science, Otsu, Shiga (Japan)

    2015-09-18

    Autophagy process is essential for maintaining intracellular homeostasis and consists of autophagosome formation and subsequent fusion with lysosome for degradation. Although the role of autophagosome formation in the pathogenesis of diabetes has been recently documented, the role of the latter process remains unclear. This study analyzed high-fat diet (HFD)-fed mice lacking lysosome-associated membrane protein-2 (lamp-2), which is essential for the fusion with lysosome and subsequent degradation of autophagosomes. Although lamp-2 deficient mice showed little alteration in glucose metabolism under normal diet feeding, they showed a resistance against high-fat diet (HFD)-induced obesity, hyperinsulinemic hyperglycemia and tissues lipid accumulation, accompanied with higher energy expenditure. The expression levels of thermogenic genes in brown adipose tissue were significantly increased in HFD-fed lamp-2-deficient mice. Of some serum factors related to energy expenditure, the serum level of fibroblast growth factor (FGF) 21 and its mRNA expression level in the liver were significantly higher in HFD-fed lamp-2-deficient mice in an ER stress-, but not PPARα-, dependent manner. In conclusion, a lamp-2-depenedent fusion and degradation process of autophagosomes is involved in the pathogenesis of obese diabetes, providing a novel insight into autophagy and diabetes. - Highlights: • Lamp-2 is essential for autophagosome fusion with lysosome and its degradation. • Lamp-2 deficiency lead to a resistance to diet-induced obese diabetes in mice. • Lamp-2 deficiency increased whole body energy expenditure under HFD-feeding. • Lamp-2 deficiency elevated the serum level of FGF21 under HFD-feeding.

  3. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats.

    Directory of Open Access Journals (Sweden)

    Guillaume de Lartigue

    Full Text Available BACKGROUND AND AIMS: The gastrointestinal hormone cholecystokinin (CCK plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN. Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1 dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced. We tested the hypothesis that leptin resistance in VAN is responsible for reducing CCK signaling and satiation. RESULTS: Lean Zucker rats sensitive to leptin signaling, significantly reduced their food intake following administration of CCK8S (0.22 nmol/kg, i.p., while obese Zucker rats, insensitive to leptin, did not. CCK signaling in VAN of obese Zucker rats was reduced, preventing CCK-induced up-regulation of Y2 receptor and down-regulation of melanin concentrating hormone 1 receptor (MCH1R and cannabinoid receptor (CB1. In VAN from diet-induced obese (DIO Sprague Dawley rats, previously shown to become leptin resistant, we demonstrated that the reduction in EGR1 expression resulted in decreased sensitivity of VAN to CCK and reduced CCK-induced inhibition of food intake. The lowered sensitivity of VAN to CCK in DIO rats resulted in a decrease in Y2 expression and increased CB1 and MCH1R expression. These effects coincided with the onset of hyperphagia in DIO rats. CONCLUSIONS: Leptin signaling in VAN is required for appropriate CCK signaling and satiation. In response to high fat feeding, the onset of leptin resistance reduces the sensitivity of VAN to CCK thus reducing the satiating effects of CCK.

  4. Rhinacanthus nasutus leaf improves metabolic abnormalities in high-fat diet-induced obese mice

    Institute of Scientific and Technical Information of China (English)

    Supaporn Wannasiri; Pritsana Piyabhan; Jarinyaporn Naowaboot

    2016-01-01

    Objective: To investigate the effect of Rhinacanthus nasutus (R. nasutus) leaf extract on impaired glucose and lipid metabolism in obese ICR mice. Methods: Obesity was induced in the male ICR mice by feeding them a high-fat diet (60 kcal% fat) for 12 weeks. After the first six weeks of the diet, the obese mice were administered with the water extract of R. nasutus leaves at 250 and 500 mg/kg per day for the next six weeks. Subsequently, the blood glucose, lipid profiles, insulin, leptin, and adiponectin levels were measured. The liver and adipose tissues were excised for his-topathological examination and protein expression study. Results: After six weeks of the treatment, R. nasutus extract (at 250 and 500 mg/kg per day) was found to reduce the elevated blood glucose level, improve the insulin sensitivity, decrease the serum leptin, and increase the serum adiponectin levels. The obese mice treated with R. nasutus were found to have a reduction in the increased lipid concen-trations in their serum and liver tissues. Moreover, treatment with R. nasutus reduced the fat accumulation in the liver and the large adipocyte size in the fat tissues. Interestingly, the administration with R. nasutus extract was marked by an increase in the hepatic peroxisome proliferators-activated receptor alpha, fat cell adiponectin, and glucose transporter 4 proteins. Conclusions: To the best of our knowledge, the present study is the first report on the impact of R. nasutus extract in improving the impaired glucose and lipid metabolism in high-fat diet-induced obesity in mice via stimulating the insulin sensitivity in the liver and adipose tissues.

  5. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  6. Responses of brown adipose tissue to diet-induced obesity, exercise, dietary restriction and ephedrine treatment.

    Science.gov (United States)

    Slocum, Nikki; Durrant, Jessica R; Bailey, David; Yoon, Lawrence; Jordan, Holly; Barton, Joanna; Brown, Roger H; Clifton, Lisa; Milliken, Tula; Harrington, Wallace; Kimbrough, Carie; Faber, Catherine A; Cariello, Neal; Elangbam, Chandikumar S

    2013-07-01

    Drug-induced weight loss in humans has been associated with undesirable side effects not present in weight loss from lifestyle interventions (caloric restriction or exercise). To investigate the mechanistic differences of weight loss by drug-induced and lifestyle interventions, we examined the gene expression (mRNA) in brown adipose tissue (BAT) and conducted histopathologic assessments in diet-induced obese (DIO) mice given ephedrine (18 mg/kg/day orally), treadmill exercise (10 m/min, 1-h/day), and dietary restriction (DR: 26% dietary restriction) for 7 days. Exercise and DR mice lost more body weight than controls and both ephedrine and exercise reduced percent body fat. All treatments reduced BAT and liver lipid accumulation (i.e., cytoplasmic lipids in brown adipocytes and hepatocytes) and increased oxygen consumption (VO2 ml/kg/h) compared with controls. Mitochondrial biogenesis/function-related genes (TFAM, NRF1 and GABPA) were up-regulated in the BAT of all groups. UCP-1 was up-regulated in exercise and ephedrine groups, whereas MFSD2A was up-regulated in ephedrine and DR groups. PGC-1α up-regulation was observed in exercise and DR groups but not in ephedrine group. In all experimental groups, except for ephedrine, fatty acid transport and metabolism genes were up-regulated, but the magnitude of change was higher in the DR group. PRKAA1 was up-regulated in all groups but not significantly in the ephedrine group. ADRß3 was slightly up-regulated in the DR group only, whereas ESRRA remained unchanged in all groups. Although our data suggest a common pathway of BAT activation elicited by ephedrine treatment, exercise or DR, mRNA changes were indicative of additional nutrient-sensing pathways in exercise and DR.

  7. Adaptative nitric oxide overproduction in perivascular adipose tissue during early diet-induced obesity.

    Science.gov (United States)

    Gil-Ortega, Marta; Stucchi, Paula; Guzmán-Ruiz, Rocío; Cano, Victoria; Arribas, Silvia; González, M Carmen; Ruiz-Gayo, Mariano; Fernández-Alfonso, Maria S; Somoza, Beatriz

    2010-07-01

    Perivascular adipose tissue (PVAT) plays a paracrine role in regulating vascular tone. We hypothesize that PVAT undergoes adaptative mechanisms during initial steps of diet-induced obesity (DIO) which contribute to preserve vascular function. Four-week-old male C57BL/6J mice were assigned either to a control [low-fat (LF); 10% kcal from fat] or to a high-fat diet (HF; 45% kcal from fat). After 8 wk of dietary treatment vascular function was analyzed in the whole perfused mesenteric bed (MB) and in isolated mesenteric arteries cleaned of PVAT. Relaxant responses to acetylcholine (10(-9)-10(-4) m) and sodium nitroprusside (10(-12)-10(-5) m) were significantly ameliorated in the whole MB from HF animals. However, there was no difference between HF and LF groups in isolated mesenteric arteries devoid of PVAT. The enhancement of relaxant responses detected in HF mice was not attributable to an increased release of nitric oxide (NO) from the endothelium nor to an increased sensitivity and/or activity of muscular guanilylcyclase. Mesenteric PVAT of HF animals showed an increased bioavailability of NO, detected by 4,5-diaminofluorescein diacetate (DAF2-DA) staining, which positively correlated with plasma leptin levels. DAF-2DA staining was absent in PVAT from ob/ob mice but was detected in these animals after 4-wk leptin replacement. The main finding in this study is that adaptative NO overproduction occurs in PVAT during early DIO which might be aimed at preserving vascular function. PMID:20410199

  8. Diet-induced obesity causes ghrelin resistance in reward processing tasks.

    Science.gov (United States)

    Lockie, Sarah H; Dinan, Tara; Lawrence, Andrew J; Spencer, Sarah J; Andrews, Zane B

    2015-12-01

    Diet-induced obesity (DIO) causes ghrelin resistance in hypothalamic Agouti-related peptide (AgRP) neurons. However, ghrelin promotes feeding through actions at both the hypothalamus and mesolimbic dopamine reward pathways. Therefore, we hypothesized that DIO would also establish ghrelin resistance in the ventral tegmental area (VTA), a major site of dopaminergic cell bodies important in reward processing. We observed reduced sucrose and saccharin consumption in Ghrelin KO vs Ghrelin WT mice. Moreover, DIO reduced saccharin consumption relative to chow-fed controls. These data suggest that the deletion of ghrelin and high fat diet both cause anhedonia. To assess if these are causally related, we tested whether DIO caused ghrelin resistance in a classic model of drug reward, conditioned place preference (CPP). Chow or high fat diet (HFD) mice were conditioned with ghrelin (1mg/kg in 10ml/kg ip) in the presence or absence of food in the conditioning chamber. We observed a CPP to ghrelin in chow-fed mice but not in HFD-fed mice. HFD-fed mice still showed a CPP for cocaine (20mg/kg), indicating that they maintained the ability to develop conditioned behaviour. The absence of food availability during ghrelin conditioning sessions induced a conditioned place aversion, an effect that was still present in both chow and HFD mice. Bilateral intra-VTA ghrelin injection (0.33μg/μl in 0.5μl) robustly increased feeding in both chow-fed and high fat diet (HFD)-fed mice; however, this was correlated with body weight only in the chow-fed mice. Our results suggest that DIO causes ghrelin resistance albeit not directly in the VTA. We suggest there is impaired ghrelin sensitivity in upstream pathways regulating reward pathways, highlighting a functional role for ghrelin linking appropriate metabolic sensing with reward processing.

  9. Effects of diet-induced obesity on protein expression in insulin signaling pathways of skeletal muscle in male Wistar rats

    Directory of Open Access Journals (Sweden)

    Fatani S

    2012-07-01

    Full Text Available Sameer Fatani,1 Abdul-Razak Abubakari,2 Imose Itua,2 Christopher Wong,3 Cecil Thomas,3 Ebrahim K Naderali21Obesity Biology Unit, School of Clinical Sciences, University of Liverpool, 2Department of Health Sciences, Liverpool Hope University, Hope Park, 3Aintree University Hospital NHS Foundation Trust, Liverpool, UKBackground: The prevalence of diet-induced obesity is increasing globally, and posing significant health problems for millions of people worldwide. Diet-induced obesity is a major contributor to the global pandemic of type 2 diabetes mellitus. The reduced ability of muscle tissue to regulate glucose homeostasis plays a major role in the development and prognosis of type 2 diabetes. In this study, an animal model of diet-induced obesity was used to elucidate changes in skeletal muscle insulin signaling in obesity-induced diabetes.Methods: Adult male Wistar rats were randomized and assigned to either a control group or to a test group. Controls were fed a standard laboratory pellet diet (chow-fed, while the test group had free access to a highly palatable diet (diet-fed. After 8 weeks, the diet-fed animals were subdivided into three subgroups and their diets were altered as follows: diet-to-chow, diet-fed with addition of fenofibrate given by oral gavage for a further 7 weeks, or diet-fed with vehicle given by oral gavage for a further 7 weeks, respectively.Results: Untreated diet-fed animals had a significantly higher body weight and metabolic profile than the control chow-fed animals. Intramuscular triacylglyceride levels in the untreated obese animals were significantly higher than those in the control chow-fed group. Expression of protein kinase C beta, phosphatidylinositol 3, Shc, insulin receptor substrate 1, ERK1/2, and endothelial nitric oxide synthase was significantly increased by dietary obesity, while that of insulin receptor beta, insulin receptor substrate 1, and protein kinase B (Akt were not affected by obesity

  10. Increased susceptibility to diet-induced gallstones in liver fatty acid binding protein knockout mices⃞

    OpenAIRE

    Xie, Yan; Newberry, Elizabeth P.; Kennedy, Susan M; Luo, Jianyang; Davidson, Nicholas O.

    2009-01-01

    Quantitative trait mapping identified a locus colocalizing with L-Fabp, encoding liver fatty acid binding protein, as a positional candidate for murine gallstone susceptibility. When fed a lithogenic diet (LD) for 2 weeks, L-Fabp−/− mice became hypercholesterolemic with increased hepatic VLDL cholesterol secretion. Seventy-five percent of L-Fabp−/− mice developed solid gallstones compared with 6% of wild-type mice with an increased gallstone score (3.29 versus 0.62, respectively; P < 0.01). H...

  11. Effects of four Bifidobacteria on obesity in high-fat diet induced rats

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To compare the effects of four Bifidobacteria strains(Bifidobacteria L66-5,L75-4,M13-4 and FS31-12,originated from normal human intestines) on weight gain,lipid metabolism,glucose metabolism in an obese murine model induced by high-fat diet.METHODS:Forty-eight Sprague-Dawley rats were randomly divided into six groups.Control group received standard chow,model group received high-fat diet,and intervention groups received high-fat diet added with different Bifidobacteria strains isolated from healthy volu...

  12. 饮食诱导肥胖与肥胖抵抗大鼠ATP生成量的比较%The comparison of ATP contents between diet-induced obesity group and diet-induced obesity resistance group

    Institute of Scientific and Technical Information of China (English)

    王双; 胡丽贞; 于海涛; 梁冰; 薛宏凤; 李雅杰; 王舒然

    2013-01-01

    目的 比较饮食诱导肥胖大鼠与肥胖抵抗大鼠三磷酸腺苷(adenosine triphosphate,ATP)生成量的差异.方法 将健康雄性远交群(sprague dawley,SD)大鼠,随机分为基础饲料(control,CON)组和高脂饲料组,喂养2周后,将高脂饲料组按照体重增加量分为饮食诱导肥胖(diet-induced obesity,DIO)组和饮食诱导抵抗(diet-induced obesity resistance,DR)组.于喂养第10周末,麻醉处死动物,观察体重、摄食量、能量利用率以及肝脏、心脏、肌肉组织中ATP生成量的情况.结果 DIO组的体重一直高于DR组(均有P<0.05).DIO组总能量摄入高于DR组和CON组(均有P<0.001),但DIO组与DR组能量利用率差异无统计学意义.DR组大鼠肝脏、心脏和肌肉组织中ATP生成量比DIO组分别高出12.8%,30.6%和11.6%.结论 饮食诱导肥胖和肥胖抵抗大鼠的能量代谢存在差异,这种差异可能与主要能量器官中ATP的生成量有关.%Objective To compare the ATP contents in tissues between diet-induced obesity(DIO) group and diet-induced obesity resistance (DR) group. Methods Forty-eight male sprague dawley (SD) rats were randomly divided into control group and high-fat group which were given different diets. After 2-week feeding, the high-fat group were divided into diet-induced obesity group and diet-induced obesity resistance group. The rats were sacrificed for tissues and blood sample at the end of week 10. Results The body weight of DIO group was higher than that of DR group during the feeding (all P < 0. 05 ) . The total energy intake of DIO group was higher than that of DR group and CON group ( all P < 0. 001). No significance were observed of energy utilization between DIO group and DR group. The ATP contents of DIO group were 12. 8% , 30. 6% , and 11. 6% lower than that of DR group in liver, cardiac and muscle separately. Conclusions The differences of energy utilization between DIO group and DR group may be related with the ATP contents in

  13. Interaction of Dietary Composition and PYY Gene Expression in Diet-induced Obesity in Rats

    Institute of Scientific and Technical Information of China (English)

    YANG Nianhong; WANG Chongjian; XU Mingjia; MAO Limei; LIU Liegang; SUN Xiufa

    2005-01-01

    Summary: The interaction of high-fat diet and the peptide YY (PYY) gene expression in diet-induced obesity and the mechanisms which predisposed some individuals to become obese on high-fat diet were explored. Thirty-six male SD rats were randomly divided into high-fat diet group (n=27) and chow fed control group (n=9). After 15 weeks of either a high-fat diet or chew fed diet, the high-fat diet group was subdivided into dietary induced obesity (DIO) and dietary induced obesity resistant (DIR) group according to the final body weight. Then the DIO rats were subdivided into two groups for a 8-week secondary dietary intervention. One of the group was switched to chew fed diet, whereas the other DIO and DIR rats continued on the initial high-fat diet. Weight gain and food intake were measured, food efficiency was calculated, and the concentrations of plasma neuropeptide Y (NPY) and PYY were assayed. Hypothalamic NPY mRNA expression and PYY mRNA expression in ileum and colon was detected by RT-PCR. The results showed that at the end of 15th week, the levels of body weight and caloric intake were significantly higher in DIO group than in DIR or control group (P0.05). The concentration of plasma PYY was significantly higher in DIR group than in DIO and CF group, while no significant difference was found between DIO and CF group (P<0.01). After switching the DIO rats to chow fed diet, their body weight gains were significantly lower than that of the DIO-HF group. The expression of PYY mRNA was increased in DIO-HF/CF rats than in DIO-HF rats, and the expression of hypothalamic NPY mRNA was decreased in DIO-HF/CF rats than in DIO-HF group. It was concluded that both dietary composition and PYY gene expression could potently alter the hypothalamic NPY expression and result in different susceptibility to obese and overeating. The decreased PYY was associated with the increased NPY expression and their predisposal to obese and overeating in rats.

  14. Is Western Diet-Induced Nonalcoholic Steatohepatitis in Ldlr-/- Mice Reversible?

    Directory of Open Access Journals (Sweden)

    Kelli A Lytle

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a major public health burden in western societies. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH, is characterized by hepatosteatosis, inflammation, oxidative stress, and hepatic damage that can progress to fibrosis and cirrhosis; risk factors for hepatocellular carcinoma. Given the scope of NASH, validating treatment protocols (i.e., low fat diets and weight loss is imperative.We evaluated the efficacy of two diets, a non-purified chow (NP and purified (low-fat low-cholesterol, LFLC diet to reverse western diet (WD-induced NASH and fibrosis in Ldlr-/- mice.Mice fed WD for 22-24 weeks developed robust hepatosteatosis with mild fibrosis, while mice maintained on the WD an additional 7-8 weeks developed NASH with moderate fibrosis. Returning WD-fed mice to the NP or LFLC diets significantly reduced body weight and plasma markers of metabolic syndrome (dyslipidemia, hyperglycemia and hepatic gene expression markers of inflammation (Mcp1, oxidative stress (Nox2, fibrosis (Col1A, LoxL2, Timp1 and collagen crosslinking (hydroxyproline. Time course analyses established that plasma triglycerides and hepatic Col1A1 mRNA were rapidly reduced following the switch from the WD to the LFLC diet. However, hepatic triglyceride content and fibrosis did not return to normal levels 8 weeks after the change to the LFLC diet. Time course studies further revealed a strong association (r2 ≥ 0.52 between plasma markers of inflammation (TLR2 activators and hepatic fibrosis markers (Col1A, Timp1, LoxL2. Inflammation and fibrosis markers were inversely associated (r2 ≥ 0.32 with diet-induced changes in hepatic ω3 and ω6 polyunsaturated fatty acids (PUFA content.These studies establish a temporal link between plasma markers of inflammation and hepatic PUFA and fibrosis. Low-fat low-cholesterol diets promote reversal of many, but not all, features associated with WD-induced NASH and fibrosis in Ldlr

  15. DSS colitis promotes tumorigenesis and fibrogenesis in a choline-deficient high-fat diet-induced NASH mouse model.

    Science.gov (United States)

    Achiwa, Koichi; Ishigami, Masatoshi; Ishizu, Yoji; Kuzuya, Teiji; Honda, Takashi; Hayashi, Kazuhiko; Hirooka, Yoshiki; Katano, Yoshiaki; Goto, Hidemi

    2016-01-29

    Nonalcoholic steatohepatitis (NASH) patients progress to liver cirrhosis and even hepatocellular carcinoma (HCC). Several lines of evidence indicate that accumulation of lipopolysaccharide (LPS) and disruption of gut microbiota play contributory roles in HCC. Moreover, in a dextran sodium sulfate (DSS)-induced colitis model in mice, a high-fat diet increases portal LPS level and promotes hepatic inflammation and fibrosis. However, this diet-induced NASH model requires at least 50 weeks for carcinogenesis. In this study, we sought to determine whether increased intestinal permeability would aggravate liver inflammation and fibrosis and accelerate tumorigenesis in a diet-induced NASH model. Mice were fed a choline-deficient high-fat (CDHF) diet for 4 or 12 weeks. The DSS group was fed CDHF and intermittently received 1% DSS in the drinking water. Exposure to DSS promoted mucosal changes such as crypt loss and increased the number of inflammatory cells in the colon. In the DSS group, portal LPS levels were elevated at 4 weeks, and the proportions of Clostridium cluster XI in the fecal microbiota were elevated. In addition, levels of serum transaminase, number of lobular inflammatory cells, F4/80 staining-positive area, and levels of inflammatory cytokines were all elevated in the DSS group. Liver histology in the DSS group revealed severe fibrosis at 12 weeks. Liver tumors were detected in the DSS group at 12 weeks, but not in the other groups. Thus, DSS administration promoted liver tumors in a CDHF diet-induced NASH mouse over the short term, suggesting that the induction of intestinal inflammation and gut disruption of microbiota in NASH promote hepatic tumorigenesis.

  16. Diet-Induced Obesity Exacerbates Auditory Degeneration via Hypoxia, Inflammation, and Apoptosis Signaling Pathways in CD/1 Mice

    Science.gov (United States)

    Hwang, Juen-Haur; Hsu, Chuan-Jen; Yu, Wei-Hsuan; Liu, Tien-Chen; Yang, Wei-Shiung

    2013-01-01

    The aim of this study was to investigate the mechanisms of diet-induced obesity on hearing degeneration in CD/1 mice. Sixty 4-week-old male CD/1 mice were randomly and equally divided into 2 groups. For 16 weeks, the diet-induced obesity (DIO) group was fed a high fat diet and the control group was fed a standard diet of 13.43 % kcal fat. The morphometry, biochemistry, auditory brainstem response thresholds, omental fat, and histopathology of the cochlea were compared between the beginning and end of the study (4 vs. 20 weeks old). The results show that the body weight, fasting plasma triglyceride concentrations, and omental fat weight were higher in the DIO group than in the control group at the end of experiment. The auditory brainstem response thresholds at high frequencies were significantly elevated in the DIO group compared to those of the control group. Histology studies showed that, compared to the control group, the DIO group had blood vessels with smaller diameters and thicker walls in the stria vascularis at the middle and basal turns of the cochlea. The cell densities in the spiral ganglion and spiral ligament at the basal turn of the cochlea were significantly lower in the DIO group. Immunohistochemical staining showed that hypoxia-induced factor 1 (HIF-1), tumor necrosis factor alpha (TNF-α), nuclear factor kappa B (NF-κB), caspase 3, poly(ADP-ribose) polymerase-1, and apoptosis inducing factor were all significantly more dense in the spiral ganglion and spiral ligament at the basal turn of cochlea in the DIO group. Our results suggest that diet-induced obesity exacerbates hearing degeneration via increased hypoxia, inflammatory responses, and cell loss in the spiral ganglion and spiral ligament and is associated with the activation of both caspase-dependent and -independent apoptosis signaling pathways in CD/1 mice. PMID:23637762

  17. Diet-induced obesity exacerbates auditory degeneration via hypoxia, inflammation, and apoptosis signaling pathways in CD/1 mice.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available The aim of this study was to investigate the mechanisms of diet-induced obesity on hearing degeneration in CD/1 mice. Sixty 4-week-old male CD/1 mice were randomly and equally divided into 2 groups. For 16 weeks, the diet-induced obesity (DIO group was fed a high fat diet and the control group was fed a standard diet of 13.43 % kcal fat. The morphometry, biochemistry, auditory brainstem response thresholds, omental fat, and histopathology of the cochlea were compared between the beginning and end of the study (4 vs. 20 weeks old. The results show that the body weight, fasting plasma triglyceride concentrations, and omental fat weight were higher in the DIO group than in the control group at the end of experiment. The auditory brainstem response thresholds at high frequencies were significantly elevated in the DIO group compared to those of the control group. Histology studies showed that, compared to the control group, the DIO group had blood vessels with smaller diameters and thicker walls in the stria vascularis at the middle and basal turns of the cochlea. The cell densities in the spiral ganglion and spiral ligament at the basal turn of the cochlea were significantly lower in the DIO group. Immunohistochemical staining showed that hypoxia-induced factor 1 (HIF-1, tumor necrosis factor alpha (TNF-α, nuclear factor kappa B (NF-κB, caspase 3, poly(ADP-ribose polymerase-1, and apoptosis inducing factor were all significantly more dense in the spiral ganglion and spiral ligament at the basal turn of cochlea in the DIO group. Our results suggest that diet-induced obesity exacerbates hearing degeneration via increased hypoxia, inflammatory responses, and cell loss in the spiral ganglion and spiral ligament and is associated with the activation of both caspase-dependent and -independent apoptosis signaling pathways in CD/1 mice.

  18. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    Science.gov (United States)

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.

  19. Cognitive differences between Sprague-Dawley rats selectively bred for sensitivity or resistance to diet induced obesity.

    Science.gov (United States)

    Gurung, Sunam; Agbaga, Martin-Paul; Myers, Dean A

    2016-09-15

    Epidemiological studies have shown strong correlations between high fat diets, diet-induced obesity and cognitive impairment, primarily focusing on cognitive defects after the onset of obesity. A remaining question is whether cognitive impairment precedes obesity in individuals metabolically prone to diet-induced obesity. The inbred diet-induced obesity sensitive (DIO) and resistant (DR) strains of Sprague-Dawley rats serve as models for human polygenic obesity. DIO rats become overweight on a standard rat chow and have metabolic symptoms similar to overweight humans. We hypothesized that cognitive impairment pre-exists in adult male DIO rats prior to exposure to high fat diet. Male DIO and DR rats were fed a standard rat chow diet from 4 through 20 weeks of age and subjected to the Morris water maze at 12 weeks of age. At 5 and 20 weeks of age, brains of DIO and DR males were examined for indices of inflammation, lipid peroxidation and neuroproliferation. DIO rats showed significant memory impairment on water maze and increased indices of hippocampal inflammation at 20 weeks of age compared to DR rats. At 5 weeks of age, DIO rats exhibited significantly less neural progenitor cell (NPCs) proliferation in the dentate gyrus and increased hippocampal lipid peroxidation compared to DR rats. Therefore, we conclude that DIO rats exhibit early post-weaning indices of hippocampal inflammation, lipid peroxidation and decreased NPC proliferation, as well as impaired hippocampal dependent memory by early adulthood suggesting that inherent metabolic differences predispose the DIO strain to cognitive deficit prior to exposure to high fat diet and/or obesity. PMID:27173431

  20. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    Full Text Available It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR increases the susceptibility of offspring to high-fat (HF diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW, and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA, and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH and glucose-6-phosphate dehydrogenase (G6PD. These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.

  1. Pioglitazone can ameliorate insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Shi-ying DING; Zhu-fang SHEN; Yue-teng CHEN; Su-juan SUN; Quan Liu; Ming-zhi XIE

    2005-01-01

    Aim: To investigate the effect of the peroxisome proliferator-activator receptor (PPAR)-γ agonist, pioglitazone, on insulin resistance in low-dose streptozotocin and high sucrose-fat diet induced obese rats. Methods: Normal female Wistar rats were injected intraperitoneally with low-dose streptozotocin (STZ, 30 mg/kg) and fed with a high sucrose-fat diet for 8 weeks. Pioglitazone (20 mg/kg) was administered orally to the obese and insulin-resistant rats for 28 d. Intraperitoneal glucose tolerance tests, insulin tolerance tests and gluconeogenesis tests were carried out over the last 14 d. At the end of d 28 of the treatment, serums were collected for biochemical analysis. Glucose transporter 4 (GLUT4) and insulin receptor substrate-1 (IRS-1) protein expression in the liver and skeletal muscle were detected using Western blotting. Results: Significant insulin resistance and obesity were observed in low-dose STZ and high sucrose-fat diet induced obese rats. Pioglitazone (20 mg/kg) treatment significantly decreased serum insulin,triglyceride and free fatty acid levels, and elevated high density lipoprotein-cholesterol (HDL-C) levels. Pioglitazone also lowered the lipid contents in the liver and muscles of rats undergoing treatment. Gluconeogenesis was inhibited and insulin sensitivity was improved markedly. The IRS-1 protein contents in the liver and skeletal muscles and the GLUT4 contents in skeletal muscle were elevated significantly. Conclusion: The data suggest that treatment with pioglitazone improves insulin sensitivity in low-dose STZ and high sucrose-fat diet induced obese rats. The insulin sensitizing effect may be associated with ameliorating lipid metabolism, reducing hyperinsulinemia, inhibiting gluconeogenesis, and increasing IRS-1 and GLUT4 protein expression in insulin-sensitive tissues.

  2. Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis

    OpenAIRE

    Preitner, Frederic; Mody, Nimesh; Graham, Timothy E; Peroni, Odile D.; Kahn, Barbara B.

    2009-01-01

    The synthetic retinoid Fenretinide (FEN) increases insulin sensitivity in obese rodents and is in early clinical trials for treatment of insulin resistance in obese humans with hepatic steatosis (46). We aimed to determine the physiological mechanisms for the insulin-sensitizing effects of FEN. Wild-type mice were fed a high-fat diet (HFD) with or without FEN from 4–5 wk to 36–37 wk of age (preventive study) or following 22 wk of HF diet-induced obesity (12 wk intervention study). Retinol-bin...

  3. New Nordic Diet induced weight loss is accompanied by changes in metabolism and AMPK signalling in adipose tissue

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Anne-Marie; Jordy, Andreas Børsting;

    2015-01-01

    CONTEXT: The molecular mechanisms behind diet-induced metabolic improvements remain to be studied. The Objective was to investigate whether expression of proteins in skeletal muscle or adipose tissue could explain improvements in glucose and lipid homeostasis after weight loss. DESIGN: Volunteers...... adipose tissue (SCAT) were obtained at week 0 and 26. OUTCOME: Gene and protein expressions were analysed by real time PCR and western blotting. RESULTS: Improved HOMA-IR index and lowered plasma triacylglycerol concentration after NND coincided with molecular adaptations in SCAT, but not in skeletal...... regulation of key glucose and lipid handling proteins suggests an improved metabolic capacity in adipose tissue after weight loss....

  4. Dose-dependent effects, safety and tolerability of fenugreek in diet-induced metabolic disorders in rats

    OpenAIRE

    Muraki Etsuko; Hayashi Yukie; Chiba Hiroshige; Tsunoda Nobuyo; Kasono Keizo

    2011-01-01

    Abstract Background We previously reported that fenugreek (Trigonella foenum-graecum L.) improved diet-induced metabolic disorders in rats. The purpose of the present study was to examine the dose-dependent effects, safety and tolerability of fenugreek. Methods The diets used in this study were the high-fat high-sucrose diet (HFS; lard 50%kcal, sucrose 25%kcal) as a control (Ctrl group) or the HFS containing 0.25% (VL group), 1.25% (L group), 2.50% (M group), 5.00% (H group) or 12.30% (VH gro...

  5. Post-transcriptional Stabilization of Ucp1 mRNA Protects Mice from Diet-Induced Obesity

    OpenAIRE

    Akinori Takahashi; Shungo Adachi; Masahiro Morita; Miho Tokumasu; Tohru Natsume; Toru Suzuki; Tadashi Yamamoto

    2015-01-01

    Uncoupling protein 1 (Ucp1) contributes to thermogenesis, and its expression is regulated at the transcriptional level. Here, we show that Ucp1 expression is also regulated post-transcriptionally. In inguinal white adipose tissue (iWAT) of mice fed a high-fat diet (HFD), Ucp1 level decreases concomitantly with increases in Cnot7 and its interacting partner Tob. HFD-fed mice lacking Cnot7 and Tob express elevated levels of Ucp1 mRNA in iWAT and are resistant to diet-induced obesity. Ucp1 mRNA ...

  6. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria;

    2011-01-01

    and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted...... to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass...

  7. Diet-induced alterations in gut microflora contribute to lethal pulmonary damage in TLR2/TLR4 deficient mice

    OpenAIRE

    Yewei Ji; Shengyi Sun; Julia K. Goodrich; Hana Kim; Angela C. Poole; Gerald E. Duhamel; Ruth E. Ley; Ling Qi

    2014-01-01

    Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here we show that chronic intake of a high-fat diet (HFD), not a low-fat diet (LFD), leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors (TLR) 2 and 4 (DKO hereafter). Diet-induced pulmonary lesions are blocked by antibiotics treatment and transmissible to wildtype mice upon either cohousing or fecal transplantation, pointin...

  8. Gastrodia elata Ameliorates High-Fructose Diet-Induced Lipid Metabolism and Endothelial Dysfunction

    OpenAIRE

    Min Chul Kho; Yun Jung Lee; Jeong Dan Cha; Kyung Min Choi; Dae Gill Kang; Ho Sub Lee

    2014-01-01

    Overconsumption of fructose results in dyslipidemia, hypertension, and impaired glucose tolerance, which have documented correlation with metabolic syndrome. Gastrodia elata, a widely used traditional herbal medicine, was reported with anti-inflammatory and antidiabetes activities. Thus, this study examined whether ethanol extract of Gastrodia elata Blume (EGB) attenuate lipid metabolism and endothelial dysfunction in a high-fructose (HF) diet animal model. Rats were fed the 65% HF diet with/...

  9. Exercise Protects against Diet-Induced Insulin Resistance through Downregulation of Protein Kinase Cβ in Mice

    OpenAIRE

    Xiaoquan Rao; Jixin Zhong; Xiaohua Xu; Brianna Jordan; Santosh Maurya; Zachary Braunstein; Tse-Yao Wang; Wei Huang; Sudha Aggarwal; Muthu Periasamy; Sanjay Rajagopalan; Kamal Mehta; Qinghua Sun

    2013-01-01

    Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ) has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in exercise-attenuated insulin resistance in high-fat diet (HFD)-fed mice. PKCβ(-/-) and wild-type mice...

  10. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Jin [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Myoung-Su; Jo, Keunae [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Hwang, Jae-Kwan, E-mail: jkhwang@yonsei.ac.kr [Department of Biomaterials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Translational Research Center for Protein Functional Control, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-07-22

    Highlights: {yields} Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. {yields} PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. {yields} PRPA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} PRPAs attenuate HFD-induced obesity by activating AMPK and PPAR{delta}, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor {delta} (PPAR{delta}) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPAR{delta} protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also

  11. Piperidine alkaloids from Piperretrofractum Vahl. protect against high-fat diet-induced obesity by regulating lipid metabolism and activating AMP-activated protein kinase

    International Nuclear Information System (INIS)

    Highlights: → Piperidine alkaloids from Piperretrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, are isolated as the anti-obesity constituents. → PRPA administration significantly reduces body weight gain without altering food intake and fat pad mass. → PRPA reduces high-fat diet-induced triglyceride accumulation in liver. → PRPAs attenuate HFD-induced obesity by activating AMPK and PPARδ, and regulate lipid metabolism, suggesting their potential anti-obesity effects. -- Abstract: The fruits of Piperretrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor δ (PPARδ) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPARδ protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of

  12. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats.

    Science.gov (United States)

    Huang, Pan; Shen, Zhizhou; Liu, Jia; Huang, Yaqian; Chen, Siyao; Yu, Wen; Wang, Suxia; Ren, Yali; Li, Xiaohui; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    BACKGROUND. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. METHODS. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP), serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. RESULTS. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and (•)OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. CONCLUSIONS. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress. PMID:26823949

  13. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    Directory of Open Access Journals (Sweden)

    Pan Huang

    2016-01-01

    Full Text Available Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP, serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress.

  14. High-Fat Diet-Induced IL-17A Exacerbates Psoriasiform Dermatitis in a Mouse Model of Steatohepatitis.

    Science.gov (United States)

    Vasseur, Philippe; Serres, Laura; Jégou, Jean-François; Pohin, Mathilde; Delwail, Adriana; Petit-Paris, Isabelle; Levillain, Pierre; Favot, Laure; Samson, Michel; Yssel, Hans; Morel, Franck; Silvain, Christine; Lecron, Jean-Claude

    2016-09-01

    Recent studies suggest that psoriasis may be more severe in patients with nonalcoholic fatty liver disease, particularly in those with the inflammatory stage of steatohepatitis [nonalcoholic steatohepatitis (NASH)]. Herein, we investigated the impact of diet-induced steatohepatitis on the severity of imiquimod-induced psoriasiform dermatitis. Mice fed with a high-fat diet developed steatohepatitis reminiscent of human NASH with ballooning hepatocytes and significant liver fibrosis. Mice with steatohepatitis also displayed moderate cutaneous inflammation characterized by erythema, dermal infiltrates of CD45(+) leukocytes, and a local production of IL-17A. Moreover, steatohepatitis was associated with an epidermal activation of caspase-1 and cutaneous overexpression of IL-1β. Imiquimod-induced psoriasiform dermatitis was exacerbated in mice with steatohepatitis as compared to animals fed with a standard diet. Scale formation and acanthosis were aggravated, in correlation with increased IL-17A and IL-22 expression in inflamed skins. Finally, intradermal injection of IL-17A in standard diet-fed mice recapitulated the cutaneous pathology of mice with steatohepatitis. The results show that high-fat diet-induced steatohepatitis aggravates the inflammation in psoriasiform dermatitis, via the cutaneous production of IL-17A. In agreement with clinical data, this description of a novel extrahepatic manifestation of NASH should sensitize dermatologists to the screening and the management of fatty liver in psoriatic patients. PMID:27423696

  15. Administration of dried Aloe vera gel powder reduced body fat mass in diet-induced obesity (DIO) rats.

    Science.gov (United States)

    Misawa, Eriko; Tanaka, Miyuki; Nabeshima, Kazumi; Nomaguchi, Kouji; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    The aim of the present study was to investigate the anti-obesity effects of Aloe vera gel administration in male Sprague-Dawley (SD) rats with diet-induced obesity (DIO). SD rats at 7 wk of age were fed either a standard diet (10 kcal% fat) (StdD) or high-fat (60 kcal% fat) diet (HFD) during the experimental period. Four weeks after of HFD-feeding, DIO rats (11 wk of age) were orally administered with two doses of Aloe vera gel powder (20 and 200 mg/kg/d) for 90 d. Body weights (g) and body fat (%) of HFD fed rats were significantly higher than those of StdD-fed rats. Although a modest decrease of body weight (g) was observed with the administration of dried Aloe vera gel powder, both subcutaneous and visceral fat weight (g) and body fat (%) were reduced significantly in Aloe vera gel-treated rats. Serum lipid parameters elevated by HFD were also improved by the Aloe vera gel treatment. The oxygen consumption (VO(2)), an index of energy expenditure, was decreased in HFD-fed rats compared with that in StdD-fed rats. Administration of Aloe vera gel reversed the change in VO(2) in the HFD-fed rats. These results suggest that intake of Aloe vera gel reduced body fat accumulation, in part, by stimulation of energy expenditure. Aloe vera gel might be beneficial for the prevention and improvement of diet-induced obesity.

  16. Resveratrol Protects against High-Fat Diet Induced Renal Pathological Damage and Cell Senescence by Activating SIRT1.

    Science.gov (United States)

    Zhang, Nannan; Li, Zhongchi; Xu, Kang; Wang, Yanying; Wang, Zhao

    2016-01-01

    Obesity-related renal diseases have been a worldwide issue. Effective strategy that prevents high fat-diet induced renal damage is of great significance. Resveratrol, a natural plant polyphenol, is famous for its antioxidant activity, cardioprotective effects and anticancer properties. However whether resveratrol can play a role in the treatment of renal diseases is unknown. In this study, we added resveratrol in normal glucose or high glucose medium and provide evidences that resveratrol protects against high-glucose triggered oxidative stress and cell senescence. Moreover, mice were fed with standard diet, standard diet plus resveratrol, high-fat diet or high-fat diet plus resveratrol for 3 months, and results show that resveratrol treatment prevents high-fat diet induced renal pathological damage by activating SIRT1, a key member in the mammalian sirtuin family that response to calorie restriction life-extension method. This research confirms the potential role of resveratrol in the treatment of renal diseases and may provide an effective and convenient method to mimic the beneficial effects of calorie restriction. PMID:27582325

  17. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  18. Enhanced thermogenic program by non-viral delivery of combinatory browning genes to treat diet-induced obesity in mice.

    Science.gov (United States)

    Park, Hongsuk; Cho, Sungpil; Janat-Amsbury, Margit M; Bae, You Han

    2015-12-01

    Thermogenic program (also known as browning) is a promising and attractive anti-obesity approach. Islet amyloid polypeptide (IAPP) and irisin have emerged as potential browning hormones that hold high potential to treat obesity. Here, we have constructed a dual browning gene system containing both IAPP and irisin (derived from fibronectin type III domain containing 5; FNDC5) combined with 2A and furin self-cleavage sites. Intraperitoneal administration of the construct complexed with a linear polyethylenimine into diet-induced obese mice demonstrated the elevation of anti-obesogenic effects characterized as the decreased body weight, adiposity, and levels of glucose and insulin. In addition, the construct delivery increased energy expenditure and the expression of core molecular determinants associated with browning. The additional advantages of the dual browning gene construct delivery compared to both single gene construct delivery and dual peptide delivery can be emphasized on efficacy and practicability. Hence, we have concluded that dual browning gene delivery makes it therapeutically attractive for diet-induced obesity treatment.

  19. Ganglioside GM3 synthase depletion reverses neuropathic pain and small fiber neuropathy in diet-induced diabetic mice

    Science.gov (United States)

    Jayaraj, Nirupa D; Wilson, Heather M; Ren, Dongjun; Flood, Kelsey; Wang, Xiao-Qi; Shum, Andrew; Miller, Richard J; Paller, Amy S

    2016-01-01

    Background Small fiber neuropathy is a well-recognized complication of type 2 diabetes and has been shown to be responsible for both neuropathic pain and impaired wound healing. In previous studies, we have demonstrated that ganglioside GM3 depletion by knockdown of GM3 synthase fully reverses impaired wound healing in diabetic mice. However, the role of GM3 in neuropathic pain and small fiber neuropathy in diabetes is unknown. Purpose Determine whether GM3 depletion is able to reverse neuropathic pain and small fibers neuropathy and the mechanism of the reversal. Results We demonstrate that GM3 synthase knockout and the resultant GM3 depletion rescues the denervation in mouse footpad skin and fully reverses the neuropathic pain in diet-induced obese diabetic mice. In cultured dorsal root ganglia from diet-induced diabetic mice, GM3 depletion protects against increased intracellular calcium influx in vitro. Conclusions These studies establish ganglioside GM3 as a new candidate responsible for neuropathic pain and small fiber neuropathy in diabetes. Moreover, these observations indicate that systemic or topically applied interventions aimed at depleting GM3 may improve both the painful neuropathy and the wound healing impairment in diabetes by protecting against nerve end terminal degeneration, providing a disease-modifying approach to this common, currently intractable medical issue. PMID:27590073

  20. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice.

    Science.gov (United States)

    Hoek-van den Hil, E F; van Schothorst, E M; van der Stelt, I; Swarts, H J M; Venema, D; Sailer, M; Vervoort, J J M; Hollman, P C H; Rietjens, I M C M; Keijer, J

    2014-09-01

    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p lipid accumulation to 29 % of the amount present in the control mice (p lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet.

  1. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Lei Cai

    Full Text Available OBJECTIVE: The enlarged adipose tissue in obesity is characterized by inflammation, including the recruitment and infiltration of macrophages and lymphocytes. The objective of this study was to investigate the role of the scavenger receptor CD36 in high fat diet-induced obesity and adipose tissue inflammation and cell death. EXPERIMENTAL APPROACH: Obesity and adipose tissue inflammation was compared in CD36 deficient (CD36 KO mice and wild type (WT mice fed a high fat diet (60% kcal fat for 16 weeks and the inflammatory response was studied in primary adipocytes and macrophages isolated from CD36 KO and WT mice. RESULTS: Compared to WT mice, CD36 KO mice fed a high fat diet exhibited reduced adiposity and adipose tissue inflammation, with decreased adipocyte cell death, pro-inflammatory cytokine expression and macrophage and T-cell accumulation. In primary cell culture, the absence of CD36 expression in macrophages decreased pro-inflammatory cytokine, pro-apoptotic and ER stress gene expression in response to lipopolysaccharide (LPS. Likewise, CD36 deficiency in primary adipocytes reduced pro-inflammatory cytokine and chemokine secretion in response to LPS. Primary macrophage and adipocyte co-culture experiments showed that these cell types act synergistically in their inflammatory response to LPS and that CD36 modulates such synergistic effects. CONCLUSIONS: CD36 enhances adipose tissue inflammation and cell death in diet-induced obesity through its expression in both macrophages and adipocytes.

  2. Initial responses of articular tissues in a murine high-fat diet-induced osteoarthritis model: pivotal role of the IPFP as a cytokine fountain.

    Directory of Open Access Journals (Sweden)

    Munetaka Iwata

    Full Text Available Obesity and high body mass index are associated with a higher incidence of osteoarthritis (OA. The aim of this study is to investigate the involvement of the infrapatellar fat pad (IPFP in the sub-acute effect of a high fat diet (HFD on the development of knee-OA. C57BL/6J male mice were fed either a HFD or a normal diet beginning at seven weeks of age. Tissue sections were evaluated with immunohistological analysis. The IPFP was excised, and mRNA expression profiles were compared using real-time RT-PCR analysis. Osteoarthritic changes were initiated in the HFD group after eight weeks of the HFD. Increased synovial cell number and angiogenesis at the anterior edge of the tibial plateau were exhibited prior to osteophyte formation. Quantitative histological analysis indicated that osteophyte volume was significantly increased in the HFD group after eight weeks, along with an increase in the IPFP volume, the size of individual adipocytes and the number of vessels in the IPFP. Histomorphometrical analysis revealed osteophyte area was significantly associated with IPFP area, individual adipocyte area and vascular area. Real-time RT-PCR analysis demonstrated elevated mRNA expression of inflammatory cytokines, growth factor, and adipokines in the IPFP after eight weeks of the HFD. These findings are in parallel with increased expression of the CD68 macrophage marker after eight weeks of the HFD. Expression levels of the adipokines were significantly correlated with expression of TNF-α, VEGF and TGF-β. Immunohistological analysis revealed that the Nampt protein was highly expressed in the IPFP especially around the site of osteophyte formation. Apoptosis and proliferation of chondrocytes were both enhanced at the site of osteophyte formation, indicating higher cell turnover at this region. These observations suggest the IPFP plays a pivotal role in the formation of osteophytes and functions as a secretory organ in response to a HFD.

  3. Ameliorative potential of Tamarindus indica on high fat diet induced nonalcoholic fatty liver disease in rats.

    Science.gov (United States)

    Sasidharan, Suja Rani; Joseph, Joshua Allan; Anandakumar, Senthilkumar; Venkatesan, Vijayabalaji; Madhavan, Chandrasekharan Nair Ariyattu; Agarwal, Amit

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS) on high fat diet (HFD) induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms.

  4. Ameliorative Potential of Tamarindus indica on High Fat Diet Induced Nonalcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Suja Rani Sasidharan

    2014-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the prevalence of which is rising globally with current upsurge in obesity, is one of the most frequent causes of chronic liver diseases. The present study evaluated the ameliorative effect of extract of Tamarindus indica seed coat (ETS on high fat diet (HFD induced NAFLD, after daily administration at 45, 90, and 180 mg/kg body weight dose levels for a period of 6 weeks, in albino Wistar rats. Treatment with ETS at all tested dose levels significantly attenuated the pathological alterations associated with HFD induced NAFLD viz. hepatomegaly, elevated hepatic lipid and lipid peroxides, serum alanine aminotransferase, and free fatty acid levels as well as micro-/macrohepatic steatosis. Moreover, extract treatment markedly reduced body weight and adiposity along with an improvement in insulin resistance index. The study findings, therefore suggested the therapeutic potential of ETS against NAFLD, acting in part through antiobesity, insulin sensitizing, and antioxidant mechanisms.

  5. Exercise Ameliorates High Fat Diet Induced Cardiac Dysfunction by Increasing Interleukin 10

    Directory of Open Access Journals (Sweden)

    Varun eKesherwani

    2015-04-01

    Full Text Available Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α and attenuation of anti-inflammatory cytokine such as interleukin10 (IL-10 contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, eight week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1hr/day for 5 days/week for eight weeks. The four treatment groups: normal diet (ND, HFD, HFD + exercise (HFD + Ex and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.

  6. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Poudyal, Hemant; Brown, Lindsay

    2012-06-01

    Metabolic syndrome is a risk factor for cardiovascular disease and nonalcoholic fatty liver disease (NAFLD). We investigated the responses to the flavonol, quercetin, in male Wistar rats (8-9 wk old) divided into 4 groups. Two groups were given either a corn starch-rich (C) or high-carbohydrate, high-fat (H) diet for 16 wk; the remaining 2 groups were given either a C or H diet for 8 wk followed by supplementation with 0.8 g/kg quercetin in the food for the following 8 wk (CQ and HQ, respectively). The H diet contained ~68% carbohydrates, mainly as fructose and sucrose, and ~24% fat from beef tallow; the C diet contained ~68% carbohydrates as polysaccharides and ~0.7% fat. Compared with the C rats, the H rats had greater body weight and abdominal obesity, dyslipidemia, higher systolic blood pressure, impaired glucose tolerance, cardiovascular remodeling, and NAFLD. The H rats had lower protein expressions of nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and carnitine palmitoyltransferase 1 (CPT1) with greater expression of NF-κB in both the heart and the liver and less expression of caspase-3 in the liver than in C rats. HQ rats had higher expression of Nrf2, HO-1, and CPT1 and lower expression of NF-κB than H rats in both the heart and the liver. HQ rats had less abdominal fat and lower systolic blood pressure along with attenuation of changes in structure and function of the heart and the liver compared with H rats, although body weight and dyslipidemia did not differ between the H and HQ rats. Thus, quercetin treatment attenuated most of the symptoms of metabolic syndrome, including abdominal obesity, cardiovascular remodeling, and NAFLD, with the most likely mechanisms being decreases in oxidative stress and inflammation.

  7. Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity

    OpenAIRE

    Park, Sun-Young; Cho, Seong-A; Lee, Myung-Ki; Lim, Sang-Dong

    2015-01-01

    This study aimed to investigate the effects of Lactobacillus plantarum FH185 on the reduction of adipocyte size and gut microbial changes in mice with diet-induced obesity. The strain was found to have a lipase inhibitory activity of 70.09±2.04% and inhibited adipocyte differentiation of 3T3-L1 cells (18.63±0.98%) at a concentration of 100 µg/mL. To examine the effect of the strain supplementation on gut microbial changes in mice with diet-induced obesity, male C57BL/6J mice were fed on four ...

  8. Combined Treatment of Mulberry Leaf and Fruit Extract Ameliorates Obesity-Related Inflammation and Oxidative Stress in High Fat Diet-Induced Obese Mice

    OpenAIRE

    Lim, Hyun Hwa; Yang, Soo Jin; Kim, Yuri; Lee, Myoungsook; LIM, YUNSOOK

    2013-01-01

    The aim of this study was to investigate whether a combined treatment of mulberry leaf extract (MLE) and mulberry fruit extract (MFE) was effective for improving obesity and obesity-related inflammation and oxidative stress in high fat (HF) diet-induced obese mice. After obesity was induced by HF diet for 9 weeks, the mice were divided into eight groups: (1) lean control, (2) HF diet-induced obese control, (3) 1:1 ratio of MLE and MFE at doses of 200 (L1:1), (4) 500 (M1:1), and (5) 1000 (H1:1...

  9. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model

    DEFF Research Database (Denmark)

    Amrutkar, Manoj; Cansby, Emmelie; Chursa, Urszula;

    2015-01-01

    Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator...... of glucose and insulin homeostasis based on observations in myoblasts with acute depletion of STK25 and in STK25-overexpressing transgenic mice. Here, we challenged Stk25 knockout mice and wild-type littermates with a high-fat diet and showed that STK25 deficiency suppressed development of hyperglycemia...... and hyperinsulinemia, improved systemic glucose tolerance, reduced hepatic gluconeogenesis, and increased insulin sensitivity. Stk25−/− mice were protected from diet-induced liver steatosis accompanied by decreased protein levels of acetyl-CoA carboxylase, a key regulator of both lipid oxidation and synthesis. Lipid...

  10. A comparison of glycemic control, water retention, and musculoskeletal effects of balaglitazone and pioglitazone in diet-induced obese rats

    DEFF Research Database (Denmark)

    Henriksen, Kim; Byrjalsen, Inger; Nielsen, Rasmus H;

    2009-01-01

    of equipotent glucose lowering concentrations of the partial PPARgamma agonist balaglitazone and the full agonist pioglitazone in male diet-induced obese rats, to investigate effects on bone formation, fluid retention and fat accumulation. Sixty male dio induced obese rats were divided into five categories......Agonists of Perioxisome Proliferator-Activator Receptor gamma (PPARgamma), which work as insulin sensitizers, are approved for type 2 diabetes. However, adverse effects, such as oedemas, infarctions, and increased fracture rates, limit their applicability. We performed a head-to-head comparison......: vehicle, pioglitazone 10 mg/kg, pioglitazone 30 mg/kg, balaglitazone 5 mg/kg, balaglitazone 10 mg/kg. At day -7, 21 and 42 fasting serum samples were collected and whole body tissue composition was evaluated by MR scanning. Food intake and bodyweights were monitored during the study period. At day 42...

  11. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  12. High-fat diet induced adiposity and insulin resistance in mice lacking the myotonic dystrophy protein kinase.

    Science.gov (United States)

    Llagostera, Esther; Carmona, Mari Carmen; Vicente, Meritxell; Escorihuela, Rosa María; Kaliman, Perla

    2009-06-18

    Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3'-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients. PMID:19482024

  13. Beyond the Role of Dietary Protein and Amino Acids in the Prevention of Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Klaus J. Petzke

    2014-01-01

    Full Text Available High-protein diets have been shown to prevent the development of diet-induced obesity and can improve associated metabolic disorders in mice. Dietary leucine supplementation can partially mimic this effect. However, the molecular mechanisms triggering these preventive effects remain to be satisfactorily explained. Here we review studies showing a connection between high protein or total amino nitrogen intake and obligatory water intake. High amino nitrogen intake may possibly lower lipid storage, and prevent insulin resistance. Suggestions are made for further systematical studies to explore the relationship between water consumption, satiety, and energy expenditure. Moreover, these examinations should better distinguish between leucine-specific and unspecific effects. Research in this field can provide important information to justify dietary recommendations and strategies in promoting long-term weight loss and may help to reduce health problems associated with the comorbidities of obesity.

  14. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion

    Science.gov (United States)

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Romero, María del Mar; Fernández-López, José Antonio; Alemany, Marià

    2016-01-01

    Background. A “cafeteria” diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to “cafeteria” diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal. PMID:27547590

  15. Diet-induced alterations in gut microflora contribute to lethal pulmonary damage in TLR2/TLR4-deficient mice.

    Science.gov (United States)

    Ji, Yewei; Sun, Shengyi; Goodrich, Julia K; Kim, Hana; Poole, Angela C; Duhamel, Gerald E; Ley, Ruth E; Qi, Ling

    2014-07-10

    Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD), not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO). Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  16. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion.

    Science.gov (United States)

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Romero, María Del Mar; Fernández-López, José Antonio; Alemany, Marià; Remesar, Xavier

    2016-01-01

    Background. A "cafeteria" diet is a self-selected high-fat diet, providing an excess of energy, which can induce obesity. Excess of lipids in the diet hampers glucose utilization eliciting insulin resistance, which, further limits amino acid oxidation for energy. Methods. Male Wistar rats were exposed for a month to "cafeteria" diet. Rats were cannulated and fluorescent microspheres were used to determine blood flow. Results. Exposure to the cafeteria diet did not change cardiac output, but there was a marked shift in organ irrigation. Skin blood flow decreased to compensate increases in lungs and heart. Blood flow through adipose tissue tended to increase in relation to controls, but was considerably increased in brown adipose tissue (on a weight basis). Discussion. The results suggest that the cafeteria diet-induced changes were related to heat transfer and disposal. PMID:27547590

  17. Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass

    Directory of Open Access Journals (Sweden)

    Aki Uchida

    2014-10-01

    Full Text Available The current study examined potential mechanisms for altered circulating ghrelin levels observed in diet-induced obesity (DIO and following weight loss resulting from Roux-en-Y gastric bypass (RYGB. We hypothesized that circulating ghrelin levels were altered in obesity and after weight loss through changes in ghrelin cell responsiveness to physiological cues. We confirmed lower ghrelin levels in DIO mice and demonstrated elevated ghrelin levels in mice 6 weeks post-RYGB. In both DIO and RYGB settings, these changes in ghrelin levels were associated with altered ghrelin cell responsiveness to two key physiological modulators of ghrelin secretion – glucose and norepinephrine. In DIO mice, increases in ghrelin cell density within both the stomach and duodenum and in somatostatin-immunoreactive D cell density in the duodenum were observed. Our findings provide new insights into the regulation of ghrelin secretion and its relation to circulating ghrelin within the contexts of obesity and weight loss.

  18. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity.

    Science.gov (United States)

    Lim, Hyun Hwa; Lee, Sung Ok; Kim, Sun Yeou; Yang, Soo Jin; Lim, Yunsook

    2013-10-01

    The purpose of this study was to investigate the anti-inflammatory and antiobesity effect of combinational mulberry leaf extract (MLE) and mulberry fruit extract (MFE) in a high-fat (HF) diet-induced obese mice. Mice were fed a control diet or a HF diet for nine weeks. After obesity was induced, the mice were administered with single MLE at low dose (133 mg/kg/day, LMLE) and high dose (333 mg/kg/day, HMLE) or combinational MLE and MFE (MLFE) at low dose (133 mg MLE and 67 mg MFE/kg/day, LMLFE) and high dose (333 mg MLE and 167 mg MFE/kg/day, HMLFE) by stomach gavage for 12 weeks. The mulberry leaf and fruit extract treatment for 12 weeks did not show liver toxicity. The single MLE and combinational MLFE treatments significantly decreased plasma triglyceride, liver lipid peroxidation levels and adipocyte size and improved hepatic steatosis as compared with the HF group. The combinational MLFE treatment significantly decreased body weight gain, fasting plasma glucose and insulin, and homeostasis model assessment of insulin resistance. HMLFE treatment significantly improved glucose control during intraperitoneal glucose tolerance test compared with the HF group. Moreover, HMLFE treatment reduced protein levels of oxidative stress markers (manganese superoxide dismutase) and inflammatory markers (monocyte chemoattractant protein-1, inducible nitric oxide synthase, C-reactive protein, tumour necrosis factor-α and interleukin-1) in liver and adipose tissue. Taken together, combinational MLFE treatment has potential antiobesity and antidiabetic effects through modulation of obesity-induced inflammation and oxidative stress in HF diet-induced obesity.

  19. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  20. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity. PMID:25588195

  1. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats.

    Science.gov (United States)

    Novak, Colleen M; Kotz, Catherine M; Levine, James A

    2006-02-01

    Nonexercise activity thermogenesis (NEAT), the most variable component of energy expenditure, can account for differential capacities for human weight gain. Also highly variable, spontaneous physical activity (SPA) may similarly affect weight balance in animals. In the following study, we utilized the rat model of obesity, the diet-induced obese (DIO) rat, as well as the diet-resistant (DR) rat strain, to investigate how access to a high-fat diet alters SPA and the associated energy expenditure (i.e., NEAT). DIO and DR rats showed no differences in the amount of SPA before access to the high-fat diet. After 29 days on a high-fat diet, the DIO rats showed significant decreases in SPA, whereas the DR rats did not. Next, we wanted to determine whether the DIO and DR rats showed differential sensitivity to microinjections of orexin into the paraventricular nucleus of the hypothalamus (PVN). Unilateral guide cannulae were implanted, aimed at the PVN. Orexin A (0, 0.125, 0.25, and 1.0 nmol in 500 nl) was microinjected through the guide cannula into the PVN, then SPA and energy expenditure were measured for 2 h. Using the response to vehicle as a baseline, the DR rats showed significantly greater increase in NEAT compared with the DIO rats. These data indicate that diet-induced obesity is associated with decreases in SPA and a lack of increase in NEAT. A putative mechanism for changes in NEAT that accompany obesity is a decreased sensitivity to the NEAT-activating effects of neuropeptides such as orexin. PMID:16188908

  2. Antiobesity Effects of the Ethanol Extract of Laminaria japonica Areshoung in High-Fat-Diet-Induced Obese Rat

    Directory of Open Access Journals (Sweden)

    Woong Sun Jang

    2013-01-01

    Full Text Available Laminaria japonica Areshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects of Laminaria japonica Areshoung ethanol extract (LE and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet for 6 weeks; then they were treated with LE or tea catechin for another 6 weeks. LE administration significantly decreased the body weight gain, fat-pad weights, and serum and hepatic lipid levels in HD-induced obese rats. The histological analysis revealed that LE-treated group showed a significantly decreased number of lipid droplets and size of adipocytes compared to the HD group. To elucidate the mechanism of action of LE, the levels of genes and proteins involved in obesity were measured in the liver and skeletal muscle. LE treatment resulted in an increased expression of fatty acid oxidation and thermogenesis-related genes in obese rats. Conversely, the expression of the fat intake-related gene (ACC2 and lipogenesis-related genes was reduced by LE treatment. Additionally, LE treatment increased the phosphorylation of AMP-activated protein kinase and its direct downstream protein, acetyl coenzyme A carboxylase, which is one of the rate-limiting enzymes in fatty acid synthesis pathway. These findings demonstrate that LE treatment has a protective effect against a high-fat-diet-induced obesity in rats through regulation of expression of genes and proteins involved in lipolysis and lipogenesis.

  3. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.

  4. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis.

    Science.gov (United States)

    Han, Yong Hwan; Buffolo, Márcio; Pires, Karla Maria; Pei, Shaobo; Scherer, Philipp E; Boudina, Sihem

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress (OS). The causal role of adipose OS in the pathogenesis of these conditions is unknown. To address this issue, we generated mice with an adipocyte-selective deletion of manganese superoxide dismutase (MnSOD). When fed a high-fat diet (HFD), the AdSod2 knockout (KO) mice exhibited less adiposity, reduced adipocyte hypertrophy, and decreased circulating leptin. The resistance to diet-induced adiposity was the result of an increased metabolic rate and energy expenditure. Furthermore, palmitate oxidation was elevated in the white adipose tissue (WAT) and brown adipose tissue of AdSod2 KO mice fed an HFD, and the expression of key fatty acid oxidation genes was increased. To gain mechanistic insight into the increased fat oxidation in HFD-fed AdSod2 KO mice, we quantified the mitochondrial function and mitochondrial content in WAT and found that MnSOD deletion increased mitochondrial oxygen consumption and induced mitochondrial biogenesis. This effect was preserved in cultured adipocytes from AdSod2 KO mice in vitro. As expected from the enhanced fat oxidation, circulating levels of free fatty acids were reduced in the HFD-fed AdSod2 KO mice. Finally, HFD-fed AdSod2 KO mice were protected from hepatic steatosis, adipose tissue inflammation, and glucose and insulin intolerance. Taken together, these results demonstrate that MnSOD deletion in adipocytes triggered an adaptive stress response that activated mitochondrial biogenesis and enhanced mitochondrial fatty acid oxidation, thereby preventing diet-induced obesity and insulin resistance. PMID:27284109

  5. Hepatoprotective Effect and Synergism of Bisdemethoycurcumin against MCD Diet-Induced Nonalcoholic Fatty Liver Disease in Mice.

    Directory of Open Access Journals (Sweden)

    Sung-Bae Kim

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, the hepatic manifestation of the metabolic syndrome, has become one of the most common causes of chronic liver disease over the last decade in developed countries. NAFLD includes a spectrum of pathological hepatic changes, such as steatosis, steatohepatitis, advanced fibrosis, and cirrhosis. Bisdemethoxycurcumin (BDMC is polyphenolic compounds with a diarylheptanoid skeleton, curcumin close analogues, which is derived from the Curcumae Longae Rhizoma. While the rich bioavailability research of curcumin, BDMC is the poor studies. We investigated whether BDMC has the hepatoprotective effect and combinatory preventive effect with silymarin on methionine choline deficient (MCD-diet-induced NAFLD in C57BL/6J mice. C57BL/6J mice were divided into five groups of normal (normal diet without any treatment, MCD diet (MCD diet only, MCD + silymarin (SIL 100 mg/kg group, MCD + BDMC 100 mg/kg group, MCD + SIL 50 mg/kg + BDMC 50 mg/kg group. Body weight, liver weight, liver function tests, histological changes were assessed and quantitative real-time polymerase chain reaction and Western blot analyses were conducted after 4 weeks. Mice lost body weight on the MCD-diet, but BDMC did not lose less than the MCD-diet group. Liver weights decreased from BDMC, but they increased significantly in the MCD-diet groups. All liver function test values decreased from the MCD-diet, whereas those from the BDMC increased significantly. The MCD- diet induced severe hepatic fatty accumulation, but the fatty change was reduced in the BDMC. The BDMC showed an inhibitory effect on liver lipogenesis by reducing associated gene expression caused by the MCD-diet. In all experiments, the combinations of BDMC with SIL had a synergistic effect against MCD-diet models. In conclusion, our findings indicate that BDMC has a potential suppressive effect on NAFLD. Therefore, our data suggest that BDMC may act as a novel and potent therapeutic agent

  6. High-fat diet induces periodontitis in mice through lipopolysaccharides (LPS receptor signaling: protective action of estrogens.

    Directory of Open Access Journals (Sweden)

    Vincent Blasco-Baque

    Full Text Available BACKGROUND: A fat-enriched diet favors the development of gram negative bacteria in the intestine which is linked to the occurrence of type 2 diabetes (T2D. Interestingly, some pathogenic gram negative bacteria are commonly associated with the development of periodontitis which, like T2D, is characterized by a chronic low-grade inflammation. Moreover, estrogens have been shown to regulate glucose homeostasis via an LPS receptor dependent immune-modulation. In this study, we evaluated whether diet-induced metabolic disease would favor the development of periodontitis in mice. In addition, the regulatory role of estrogens in this process was assessed. METHODS: Four-week-old C57BL6/J WT and CD14 (part of the TLR-4 machinery for LPS-recognition knock-out female mice were ovariectomised and subcutaneously implanted with pellets releasing either placebo or 17β-estradiol (E2. Mice were then fed with either a normal chow or a high-fat diet for four weeks. The development of diabetes was monitored by an intraperitoneal glucose-tolerance test and plasma insulin concentration while periodontitis was assessed by identification of pathogens, quantification of periodontal soft tissue inflammation and alveolar bone loss. RESULTS: The fat-enriched diet increased the prevalence of periodontal pathogenic microbiota like Fusobacterium nucleatum and Prevotella intermedia, gingival inflammation and alveolar bone loss. E2 treatment prevented this effect and CD14 knock-out mice resisted high-fat diet-induced periodontal defects. CONCLUSIONS/SIGNIFICANCE: Our data show that mice fed with a diabetogenic diet developed defects and microflora of tooth supporting-tissues typically associated with periodontitis. Moreover, our results suggest a causal link between the activation of the LPS pathway on innate immunity by periodontal microbiota and HFD-induced periodontitis, a pathophysiological mechanism that could be targeted by estrogens.

  7. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yuting Tang

    Full Text Available An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week or control ASO Isis-141923 (25 mg/kg/week via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05. Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05. Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.

  8. Gastrodia elata Ameliorates High-Fructose Diet-Induced Lipid Metabolism and Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Min Chul Kho

    2014-01-01

    Full Text Available Overconsumption of fructose results in dyslipidemia, hypertension, and impaired glucose tolerance, which have documented correlation with metabolic syndrome. Gastrodia elata, a widely used traditional herbal medicine, was reported with anti-inflammatory and antidiabetes activities. Thus, this study examined whether ethanol extract of Gastrodia elata Blume (EGB attenuate lipid metabolism and endothelial dysfunction in a high-fructose (HF diet animal model. Rats were fed the 65% HF diet with/without EGB 100 mg/kg/day for 8 weeks. Treatment with EGB significantly suppressed the increments of epididymal fat weight, blood pressure, plasma triglyceride, total cholesterol levels, and oral glucose tolerance, respectively. In addition, EGB markedly prevented increase of adipocyte size and hepatic accumulation of triglycerides. EGB ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1 and adhesion molecules in the aorta. Moreover, EGB significantly recovered the impairment of vasorelaxation to acetylcholine and levels of endothelial nitric oxide synthase (eNOS expression and induced markedly upregulation of phosphorylation AMP-activated protein kinase (AMPKα in the liver, muscle, and fat. These results indicate that EGB ameliorates dyslipidemia, hypertension, and insulin resistance as well as impaired vascular endothelial function in HF diet rats. Taken together, EGB may be a beneficial therapeutic approach for metabolic syndrome.

  9. Exercise protects against diet-induced insulin resistance through downregulation of protein kinase Cβ in mice.

    Directory of Open Access Journals (Sweden)

    Xiaoquan Rao

    Full Text Available Physical exercise is an important and effective therapy for diabetes. However, its underlying mechanism is not fully understood. Protein kinase Cβ (PKCβ has been suggested to be involved in the pathogenesis of obesity and insulin resistance, but the role of PKCβ in exercise-induced improvements in insulin resistance is completely unknown. In this study, we evaluated the involvement of PKCβ in exercise-attenuated insulin resistance in high-fat diet (HFD-fed mice. PKCβ(-/- and wild-type mice were fed a HFD with or without exercise training. PKC protein expression, body and tissue weight change, glucose and insulin tolerance, metabolic rate, mitochondria size and number, adipose inflammation, and AKT activation were determined to evaluate insulin sensitivity and metabolic changes after intervention. PKCβ expression decreased in both skeletal muscle and liver tissue after exercise. Exercise and PKCβ deficiency can alleviate HFD-induced insulin resistance, as evidenced by improved insulin tolerance. In addition, fat accumulation and mitochondrial dysfunction induced by HFD were also ameliorated by both exercise and PKCβ deficiency. On the other hand, exercise had little effect on PKCβ(-/- mice. Further, our data indicated improved activation of AKT, the downstream signal molecule of insulin, in skeletal muscle and liver of exercised mice, whereas PKCβ deficiency blunted the difference between sedentary and exercised mice. These results suggest that downregulation of PKCβ contributes to exercise-induced improvement of insulin resistance in HFD-fed mice.

  10. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  11. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice.

    Science.gov (United States)

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-06-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment. PMID:27419109

  12. A low-fat diet has a higher potential than energy restriction to improve high-fat diet-induced insulin resistance in mice

    NARCIS (Netherlands)

    Muurling, M.; Jong, M.C.; Mensink, R.P.; Hornstra, G.; Dahlmans, V.E.H.; Pijl, H.; Voshol, P.J.; Havekes, L.M.

    2002-01-01

    Previous studies have shown that energy restriction (ER) or low-fat (LF) diets have beneficial effects on high-fat (HF) diet-induced obesity and non-insulin-dependent diabetes. However, comparison between ER and low-fat diet regarding the effect on insulin resistance and lipid metabolism has not bee

  13. A free-choice high-fat high-sugar diet induces glucose intolerance and insulin unresponsiveness to a glucose load not explained by obesity

    NARCIS (Netherlands)

    S.E. la Fleur; M.C.M. Luijendijk; A.J. van Rozen; A. Kalsbeek; R.A.H. Adan

    2011-01-01

    Objectives: In diet-induced obesity, it is not clear whether impaired glucose metabolism is caused directly by the diet, or indirectly via obesity. This study examined the effects of different free-choice, high-caloric, obesity-inducing diets on glucose metabolism. In these free-choice diets, satura

  14. Transgenic mice with astrocyte-targeted production of interleukin-6 are resistant to high-fat diet-induced increases in body weight and body fat

    DEFF Research Database (Denmark)

    Hidalgo, Juan; Florit, Sergi; Giralt, Mercedes;

    2010-01-01

    of increased sympathetic tone. The high-fat diet-induced impaired responses to an insulin tolerance test (ITT), and to an oral glucose tolerance test (OGTT) in both genotypes. The GFAP-IL6 mice did not differ from littermate wild-type (WT) mice in ITT, but they were more glucose intolerant following the high...

  15. Differential regulation of pancreatic digestive enzymes during chronic high-fat diet-induced obesity in C57BL/6J mice

    NARCIS (Netherlands)

    Birk, R.Z.; Rubio-Aliaga, I.; Boekschoten, M.V.; Danino, H.; Müller, M.R.; Daniel, H.

    2014-01-01

    Exocrine pancreatic digestive enzymes are essential for the digestion of dietary components and are regulated by them. Chronic excess dietary high fat (HF) consumption is a contributing factor of diet-induced obesity (DIO) and associated chronic diseases and requires adaptation by the pancreas. The

  16. The novel triple monoamine reuptake inhibitor tesofensine induces sustained weight loss and improves glycemic control in the diet-induced obese rat: comparison to sibutramine and rimonabant

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Hansen, Gitte; Tang-Christensen, Mads;

    2010-01-01

    Tesofensine, a novel triple monoamine reuptake inhibitor, produces a significant weight loss in humans. The present study aimed at characterizing the weight-reducing effects of tesofensine in a rat model of diet-induced obesity. Sibutramine and rimonabant were used as reference comparators...

  17. High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice

    NARCIS (Netherlands)

    van der Heijden, Roel A; Sheedfar, Fareeba; Morrison, Martine C; Hommelberg, Pascal H; Kor, Danny; Kloosterhuis, Niels J; Gruben, Nanda; Youssef, Sameh A; de Bruin, Alain; Hofker, Marten H; Kleemann, Robert; Koonen, Debby Y; Heeringa, Peter

    2015-01-01

    Metabolic inflammation in adipose tissue and the liver is frequently observed as a result of diet-induced obesity in human and rodent studies. Although the adipose tissue and the liver are both prone to become chronically inflamed with prolonged obesity, their individual contribution to the developm

  18. HPMC supplementation reduces fatty liver, intestinal permeability, and insulin resistance with altered hepatic gene expression in diet-induced obese mice

    Science.gov (United States)

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous nonfermentable soluble dietary fiber, were evaluated on global hepatic gene profiles, steatosis and insulin resistance in high-fat (HF) diet-induced obese (DIO) mice. DIO C57BL/6J mice were fed a HF diet supplemented with either ...

  19. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice

    NARCIS (Netherlands)

    Everard, A.; Derrien, M.M.N.; Possemiers, S.; Vos, de W.M.; Delzenne, N.M.; Schrenzel, J.; Cani, P.D.

    2011-01-01

    OBJECTIVE To investigate deep and comprehensive analysis of gut microbial communities and biological parameters after prebiotic administration in obese and diabetic mice. RESEARCH DESIGN AND METHODS Genetic (ob/ob) or diet-induced obese and diabetic mice were chronically fed with prebiotic-enriched

  20. Enhanced adipose afferent reflex contributes to sympathetic activation in diet-induced obesity hypertension.

    Science.gov (United States)

    Xiong, Xiao-Qing; Chen, Wei-Wei; Han, Ying; Zhou, Ye-Bo; Zhang, Feng; Gao, Xing-Ya; Zhu, Guo-Qing

    2012-11-01

    We recently found that adipose afferent reflex (AAR) induced by chemical stimulation of white adipose tissue (WAT) increased sympathetic outflow and blood pressure in normal rats. The study was designed to test the hypothesis that AAR contributes to sympathetic activation in obesity hypertension. Male rats were fed with a control diet (12% kcal as fat) or high-fat diet (42% kcal as fat) for 12 weeks to induce obesity hypertension. Stimulation of WAT with capsaicin increased renal sympathetic nerve activity and mean arterial pressure. Both AAR and WAT afferent activity were enhanced in obesity hypertension (OH) compared with obesity nonhypertension (ON) and in ON compared with obesity-resistant or control diet rats. WAT sensory denervation induced by resiniferatoxin caused greater decreases in renal sympathetic nerve activity and mean arterial pressure in OH than ON and in ON than obesity-resistant or control. The depressor effect of resiniferatoxin lasted ≥ 3 weeks in OH. Leptin antagonist in WAT reduced renal sympathetic nerve activity and mean arterial pressure in OH. WAT injection of capsaicin increased plasma renin, angiotensin II, and norepinephrine levels in OH and caused more c-fos expression in paraventricular nucleus in OH than ON and in ON than obesity-resistant or control rats. Inhibiting paraventricular nucleus neurons with lidocaine attenuated renal sympathetic nerve activity in OH and ON, decreased mean arterial pressure in OH, and abolished the capsaicin-induced AAR in all groups. The results indicate that enhanced AAR contributes to sympathetic activation in OH, and paraventricular nucleus plays an important role in the enhanced AAR and sympathetic activation in OH.

  1. An obligatory role for neurotensin in high-fat-diet-induced obesity.

    Science.gov (United States)

    Li, Jing; Song, Jun; Zaytseva, Yekaterina Y; Liu, Yajuan; Rychahou, Piotr; Jiang, Kai; Starr, Marlene E; Kim, Ji Tae; Harris, Jennifer W; Yiannikouris, Frederique B; Katz, Wendy S; Nilsson, Peter M; Orho-Melander, Marju; Chen, Jing; Zhu, Haining; Fahrenholz, Timothy; Higashi, Richard M; Gao, Tianyan; Morris, Andrew J; Cassis, Lisa A; Fan, Teresa W-M; Weiss, Heidi L; Dobner, Paul R; Melander, Olle; Jia, Jianhang; Evers, B Mark

    2016-05-19

    Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and

  2. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity.

    Directory of Open Access Journals (Sweden)

    Do-Young Park

    Full Text Available OBJECTIVE: To investigate the functional effects of probiotic treatment on the gut microbiota, as well as liver and adipose gene expression in diet-induced obese mice. DESIGN: Male C57BL/6J mice were fed a high-fat diet (HFD for 8 weeks to induce obesity, and then randomized to receive HFD+probiotic (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, n = 9 or HFD+placebo (n = 9 for another 10 weeks. Normal diet (ND fed mice (n = 9 served as non-obese controls. RESULTS: Diet-induced obese mice treated with probiotics showed reduced body weight gain and fat accumulation as well as lowered plasma insulin, leptin, total-cholesterol and liver toxicity biomarkers. A total of 151,061 pyrosequencing reads for fecal microbiota were analyzed with a mean of 6,564, 5,274 and 4,464 reads for the ND, HFD+placebo and HFD+probiotic groups, respectively. Gut microbiota species were shared among the experimental groups despite the different diets and treatments. The diversity of the gut microbiota and its composition were significantly altered in the diet-induced obese mice and after probiotic treatment. We observed concurrent transcriptional changes in adipose tissue and the liver. In adipose tissue, pro-inflammatory genes (TNFα, IL6, IL1β and MCP1 were down-regulated in mice receiving probiotic treatment. In the liver, fatty acid oxidation-related genes (PGC1α, CPT1, CPT2 and ACOX1 were up-regulated in mice receiving probiotic treatment. CONCLUSIONS: The gut microbiota of diet-induced obese mice appears to be modulated in mice receiving probiotic treatment. Probiotic treatment might reduce diet-induced obesity and modulate genes associated with metabolism and inflammation in the liver and adipose tissue.

  3. An obligatory role for neurotensin in high-fat-diet-induced obesity.

    Science.gov (United States)

    Li, Jing; Song, Jun; Zaytseva, Yekaterina Y; Liu, Yajuan; Rychahou, Piotr; Jiang, Kai; Starr, Marlene E; Kim, Ji Tae; Harris, Jennifer W; Yiannikouris, Frederique B; Katz, Wendy S; Nilsson, Peter M; Orho-Melander, Marju; Chen, Jing; Zhu, Haining; Fahrenholz, Timothy; Higashi, Richard M; Gao, Tianyan; Morris, Andrew J; Cassis, Lisa A; Fan, Teresa W-M; Weiss, Heidi L; Dobner, Paul R; Melander, Olle; Jia, Jianhang; Evers, B Mark

    2016-05-19

    Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and

  4. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    R.M. Banin

    2014-09-01

    Full Text Available Ginkgo biloba extract (GbE has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1, protein tyrosine phosphatase 1B (PTP-1B, and protein kinase B (Akt, as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD or a normal fat diet (NFD for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V, and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb. NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  5. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Banin, R.M.; Hirata, B.K.S. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil); Andrade, I.S.; Zemdegs, J.C.S. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Clemente, A.P.G. [Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL (Brazil); Dornellas, A.P.S.; Boldarine, V.T. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Estadella, D. [Departamento de Biociências, Universidade Federal de São Paulo, Baixada Santista, SP (Brazil); Albuquerque, K.T. [Curso de Nutrição, Universidade Federal do Rio de Janeiro, Macaé, RJ (Brazil); Oyama, L.M.; Ribeiro, E.B. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Telles, M.M. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil)

    2014-07-25

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  6. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Yan Y Lam

    Full Text Available We investigated the relationship between gut health, visceral fat dysfunction and metabolic disorders in diet-induced obesity. C57BL/6J mice were fed control or high saturated fat diet (HFD. Circulating glucose, insulin and inflammatory markers were measured. Proximal colon barrier function was assessed by measuring transepithelial resistance and mRNA expression of tight-junction proteins. Gut microbiota profile was determined by 16S rDNA pyrosequencing. Tumor necrosis factor (TNF-α and interleukin (IL-6 mRNA levels were measured in proximal colon, adipose tissue and liver using RT-qPCR. Adipose macrophage infiltration (F4/80⁺ was assessed using immunohistochemical staining. HFD mice had a higher insulin/glucose ratio (P = 0.020 and serum levels of serum amyloid A3 (131%; P = 0.008 but reduced circulating adiponectin (64%; P = 0.011. In proximal colon of HFD mice compared to mice fed the control diet, transepithelial resistance and mRNA expression of zona occludens 1 were reduced by 38% (P<0.001 and 40% (P = 0.025 respectively and TNF-α mRNA level was 6.6-fold higher (P = 0.037. HFD reduced Lactobacillus (75%; P<0.001 but increased Oscillibacter (279%; P = 0.004 in fecal microbiota. Correlations were found between abundances of Lactobacillus (r = 0.52; P = 0.013 and Oscillibacter (r = -0.55; P = 0.007 with transepithelial resistance of the proximal colon. HFD increased macrophage infiltration (58%; P = 0.020, TNF-α (2.5-fold, P<0.001 and IL-6 mRNA levels (2.5-fold; P = 0.008 in mesenteric fat. Increased macrophage infiltration in epididymal fat was also observed with HFD feeding (71%; P = 0.006 but neither TNF-α nor IL-6 was altered. Perirenal and subcutaneous adipose tissue showed no signs of inflammation in HFD mice. The current results implicate gut dysfunction, and attendant inflammation of contiguous adipose, as salient features of the metabolic dysregulation of diet-induced obesity.

  7. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity.

    Directory of Open Access Journals (Sweden)

    Alessandro Marsili

    Full Text Available BACKGROUND: The type 2 iodothyronine deiodinase (D2 converts the pro-hormone thyroxine into T3 within target tissues. D2 is essential for a full thermogenic response of brown adipose tissue (BAT, and mice with a disrupted Dio2 gene (D2KO have an impaired response to cold. BAT is also activated by overfeeding. METHODOLOGY/PRINCIPAL FINDINGS: After 6-weeks of HFD feeding D2KO mice gained 5.6% more body weight and had 28% more adipose tissue. Oxygen consumption (V0(2 was not different between genotypes, but D2KO mice had an increased respiratory exchange ratio (RER, suggesting preferential use of carbohydrates. Consistent with this, serum free fatty acids and β-hydroxybutyrate were lower in D2KO mice on a HFD, while hepatic triglycerides were increased and glycogen content decreased. Neither genotype showed glucose intolerance, but D2KO mice had significantly higher insulin levels during GTT independent of diet. Accordingly, during ITT testing D2KO mice had a significantly reduced glucose uptake, consistent with insulin resistance. Gene expression levels in liver, muscle, and brown and white adipose tissue showed no differences that could account for the increased weight gain in D2KO mice. However, D2KO mice have higher PEPCK mRNA in liver suggesting increased gluconeogenesis, which could also contribute to their apparent insulin resistance. CONCLUSIONS/SIGNIFICANCE: We conclude that the loss of the Dio2 gene has significant metabolic consequences. D2KO mice gain more weight on a HFD, suggesting a role for D2 in protection from diet-induced obesity. Further, D2KO mice appear to have a greater reliance on carbohydrates as a fuel source, and limited ability to mobilize and to burn fat. This results in increased fat storage in adipose tissue, hepatic steatosis, and depletion of liver glycogen in spite of increased gluconeogenesis. D2KO mice are also less responsive to insulin, independent of diet-induced obesity.

  8. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    International Nuclear Information System (INIS)

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment

  9. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle

    DEFF Research Database (Denmark)

    Pedersen, Line; Holkmann Olsen, Caroline; Pedersen, Bente Klarlund;

    2012-01-01

    Serum levels and muscle expression of the chemokine CXCL1 increase markedly in response to exercise in mice. Because several studies have established muscle-derived factors as important contributors of metabolic effects of exercise, this study aimed at investigating the effect of increased...... expression of muscle-derived CXCL1 on systemic and intramuscular metabolic parameters, with focus on fatty acid oxidation and oxidative metabolism in skeletal muscle. By overexpression of CXCL1 in the tibialis cranialis muscle in mice, significant elevations in muscle and serum CXCL1 within a physiological...... range were obtained. At 3 mo of high-fat feeding, visceral and subcutaneous fat mass were 32.4 (P CXCL1-overexpressing mice compared with control mice. Also, chow-fed CXCL-transfected mice had 35.4% (P

  10. Artemisia iwayomogi Extract Attenuates High-Fat Diet-Induced Obesity by Decreasing the Expression of Genes Associated with Adipogenesis in Mice

    Directory of Open Access Journals (Sweden)

    Yeji Choi

    2013-01-01

    Full Text Available The objective of the present study was to determine whether Artemisia iwayomogi (AI extract reduces visceral fat accumulation and obesity-related biomarkers in mice fed a high-fat diet (HFD, and if so, whether these effects are exerted by modulation of the expression of genes associated with adipogenesis and inflammation. AI extract supplementation for 11 weeks significantly prevented HFD-induced increments in body weight, visceral adiposity, adipocyte hypertrophy, and plasma levels of lipids and leptin. Additionally, AI extract supplementation resulted in downregulation of adipogenic transcription factors (PPARγ2 and C/EBPα and their target genes (CD36, aP2, and FAS in epididymal adipose tissue compared to the HFD alone. The AI extract effectively reversed the HFD-induced elevations in plasma glucose and insulin levels and the homeostasis model assessment of insulin resistance index. Furthermore, the extract significantly decreased gene expression of proinflammatory cytokines (TNFα, MCP1, IL-6, IFNα, and INFβ in epididymal adipose tissue and reduced plasma levels of TNFα and MCP1 as compared to HFD alone. In conclusion, these results suggest that AI extract may prevent HFD-induced obesity and metabolic disorders, probably by downregulating the expression of genes related to adipogenesis and inflammation in visceral adipose tissue.

  11. Artemisia iwayomogi Extract Attenuates High-Fat Diet-Induced Obesity by Decreasing the Expression of Genes Associated with Adipogenesis in Mice

    Science.gov (United States)

    Choi, Yeji; Yanagawa, Yasuko; Kim, Sungun; Whang, Wan Kyunn; Park, Taesun

    2013-01-01

    The objective of the present study was to determine whether Artemisia iwayomogi (AI) extract reduces visceral fat accumulation and obesity-related biomarkers in mice fed a high-fat diet (HFD), and if so, whether these effects are exerted by modulation of the expression of genes associated with adipogenesis and inflammation. AI extract supplementation for 11 weeks significantly prevented HFD-induced increments in body weight, visceral adiposity, adipocyte hypertrophy, and plasma levels of lipids and leptin. Additionally, AI extract supplementation resulted in downregulation of adipogenic transcription factors (PPARγ2 and C/EBPα) and their target genes (CD36, aP2, and FAS) in epididymal adipose tissue compared to the HFD alone. The AI extract effectively reversed the HFD-induced elevations in plasma glucose and insulin levels and the homeostasis model assessment of insulin resistance index. Furthermore, the extract significantly decreased gene expression of proinflammatory cytokines (TNFα, MCP1, IL-6, IFNα, and INFβ) in epididymal adipose tissue and reduced plasma levels of TNFα and MCP1 as compared to HFD alone. In conclusion, these results suggest that AI extract may prevent HFD-induced obesity and metabolic disorders, probably by downregulating the expression of genes related to adipogenesis and inflammation in visceral adipose tissue. PMID:23401719

  12. Metabolomic analysis of diet-induced type 2 diabetes using UPLC/MS integrated with pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Hui Sun

    Full Text Available Metabolomics represents an emerging discipline concerned with comprehensive assessment of small molecule endogenous metabolites in biological systems and provides a powerful approach insight into the mechanisms of diseases. Type 2 diabetes (T2D, called the burden of the 21st century, is growing with an epidemic rate. However, its precise molecular mechanism has not been comprehensively explored. In this study, we applied urinary metabolomics based on the UPLC/MS integrated with pattern recognition approaches to discover differentiating metabolites, to characterize and explore metabolic pathway disruption in an experimental model for high-fat-diet induced T2D. Six differentiating urinary metabolites were found in the negative mode, and two (2-(4-hydroxy-3-methoxy-phenyl acetaldehyde sulfate, 2-phenylethanol glucuronide of which were identified involving the key metabolic pathways linked to pentose and glucuronate interconversions, starch, sucrose metabolism and tyrosine metabolism. Our study provides new insight into pathophysiologic mechanisms and may enhance the understanding of T2D pathogenesis.

  13. Post-transcriptional Stabilization of Ucp1 mRNA Protects Mice from Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Akinori Takahashi

    2015-12-01

    Full Text Available Uncoupling protein 1 (Ucp1 contributes to thermogenesis, and its expression is regulated at the transcriptional level. Here, we show that Ucp1 expression is also regulated post-transcriptionally. In inguinal white adipose tissue (iWAT of mice fed a high-fat diet (HFD, Ucp1 level decreases concomitantly with increases in Cnot7 and its interacting partner Tob. HFD-fed mice lacking Cnot7 and Tob express elevated levels of Ucp1 mRNA in iWAT and are resistant to diet-induced obesity. Ucp1 mRNA has an elongated poly(A tail and persists in iWAT of Cnot7−/− and/or Tob−/− mice on a HFD. Ucp1 3′-UTR-containing mRNA is more stable in cells expressing mutant Tob that is unable to bind Cnot7 than in WT Tob-expressing cells. Tob interacts with BRF1, which binds to an AU-rich element in the Ucp1 3′-UTR. BRF1 knockdown partially restores the stability of Ucp1 3′-UTR-containing mRNA. Thus, the Cnot7-Tob-BRF1 axis inhibits Ucp1 expression and contributes to obesity.

  14. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  15. Antiobesity Effect of Garlic Extract Fermented by Lactobacillus plantarum BL2 in Diet-Induced Obese Mice.

    Science.gov (United States)

    Lee, Hee-Seop; Lim, Won-Chul; Lee, Sung-Jin; Lee, Seung-Hyun; Lee, Jin-Hyup; Cho, Hong-Yon

    2016-09-01

    Obesity is viewed as a serious public health problem. This study aimed to investigate the antiobesity effects of fermented garlic extract by lactic acid bacteria (LAFGE) on obesity. Male C57BL/6J mice were fed with high-fat diet (HFD) to induce obesity. The HFD-induced obese mice were orally administrated with 250 or 500 mg/kg LAFGE for 8 weeks. Feeding HFD-fed mice with 250 or 500 mg/kg LAFGE reduced body weight by 14% and 18%, respectively, compared to HFD. HFD-fed mice with 500 mg/kg LAFGE administration had lower epididymal, retroperitoneal, and mesenteric adipose tissue mass by 36%, 44%, and 63%, respectively, compared to HFD. The concentration of plasma triacylglyceride and total cholesterol was significantly lower in the HFD-fed mice with LAFGE administration. Moreover, LAFGE supplementation suppressed adipogenesis by downregulation in mRNA and protein expression of PPARγ, C/EBPα, and lipogenic proteins, including SREBP-1c, FAS, and SCD-1. Based on these findings, LAFGE may ameliorate diet-induced obesity by inhibiting adipose tissue hypertrophy by suppressing adipogenesis. PMID:27627701

  16. Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs.

    Science.gov (United States)

    Bruin, Jennifer E; Saber, Nelly; Braun, Natalie; Fox, Jessica K; Mojibian, Majid; Asadi, Ali; Drohan, Campbell; O'Dwyer, Shannon; Rosman-Balzer, Diana S; Swiss, Victoria A; Rezania, Alireza; Kieffer, Timothy J

    2015-04-14

    Human embryonic stem cell (hESC)-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD) feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.

  17. Protective effect of gymnema sylvestre ethanol extract on high fat diet-induced obese diabetic wistar rats

    Directory of Open Access Journals (Sweden)

    V Kumar

    2014-01-01

    Full Text Available Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate, serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose, cardiomyocyte apoptosis (cardiac caspase-3, Na + /K + ATPase activity and DNA fragmentation organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o. for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na + /K + ATPase activity and DNA laddering, visceral fat pad and organ′s weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus.

  18. White adipose tissue re-growth after partial lipectomy in high fat diet induced obese wistar rats.

    Science.gov (United States)

    Bueno, Allain Amador; Habitante, Carlos Alexandre; Oyama, Lila Missae; Estadella, Débora; Ribeiro, Eliane Beraldi; Oller do Nascimento, Cláudia Maria

    2011-01-01

    The effects of partial removal of epididymal (EPI) and retroperitoneal (RET) adipose tissues (partial lipectomy) on the triacylglycerol deposition of high fat diet induced obese rats were analyzed, aiming to challenge the hypothesized body fat regulatory system. Male 28-day-old wistar rats received a diet enriched with peanuts, milk chocolate and sweet biscuits during the experimental period. At the 90th day of life, rats were submitted to either lipectomy (L) or sham surgery. After 7 or 30 days, RET, EPI, liver, brown adipose tissue (BAT), blood and carcass were obtained and analyzed. Seven days following surgery, liver lipogenesis rate and EPI relative weight were increased in L. After 30 days, L, RET and EPI presented increased lipogenesis, lipolysis and percentage of small area adipocytes. L rats also presented increased liver malic enzyme activity, BAT lipogenesis, and triacylglycerol and corticosterone serum levels. The partial removal of visceral fat pads affected the metabolism of high fat diet obese rats, which leads to excised tissue re-growth and possibly compensatory growth of non-excised depots at a later time. PMID:21140253

  19. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danielle Cristina Tomaz da [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Lima-Leopoldo, Ana Paula; Leopoldo, André Soares [Departamento de Esportes, Centro de Educação Física e Desportos da Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil); Campos, Dijon Henrique Salomé de; Nascimento, André Ferreira do [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Oliveira, Sílvio Assis Junior de [Escola de Fisioterapia da Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Padovani, Carlos Roberto [Departamento de Bioestatística do Instituto de Ciências Biológicas da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Cicogna, Antonio Carlos, E-mail: dany.tomaz@gmail.com [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-02-15

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C{sub 15} and Ob{sub 15}) and 30 (C{sub 30} and Ob{sub 30}) consecutive weeks. Obesity was determined by adiposity index. The Ob{sub 15} group was similar to the C{sub 15} group regarding the expression of myocardial collagen type I; however, expression in the Ob{sub 30} group was less than C{sub 30} group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob{sub 30} when compared with Ob{sub 15}. Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression.

  20. Genetic deletion and pharmacological inhibition of phosphodiesterase 10A protects mice from diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Nawrocki, Andrea R; Rodriguez, Carlos G; Toolan, Dawn M; Price, Olga; Henry, Melanie; Forrest, Gail; Szeto, Daphne; Keohane, Carol Ann; Pan, Yie; Smith, Karen M; Raheem, Izzat T; Cox, Christopher D; Hwa, Joyce; Renger, John J; Smith, Sean M

    2014-01-01

    Phosphodiesterase 10A (PDE10A) is a novel therapeutic target for the treatment of schizophrenia. Here we report a novel role of PDE10A in the regulation of caloric intake and energy homeostasis. PDE10A-deficient mice are resistant to diet-induced obesity (DIO) and associated metabolic disturbances. Inhibition of weight gain is due to hypophagia after mice are fed a highly palatable diet rich in fats and sugar but not a standard diet. PDE10A deficiency produces a decrease in caloric intake without affecting meal frequency, daytime versus nighttime feeding behavior, or locomotor activity. We tested THPP-6, a small molecule PDE10A inhibitor, in DIO mice. THPP-6 treatment resulted in decreased food intake, body weight loss, and reduced adiposity at doses that produced antipsychotic efficacy in behavioral models. We show that PDE10A inhibition increased whole-body energy expenditure in DIO mice fed a Western-style diet, achieving weight loss and reducing adiposity beyond the extent seen with food restriction alone. Therefore, chronic THPP-6 treatment conferred improved insulin sensitivity and reversed hyperinsulinemia. These data demonstrate that PDE10A inhibition represents a novel antipsychotic target that may have additional metabolic benefits over current medications for schizophrenia by suppressing food intake, alleviating weight gain, and reducing the risk for the development of diabetes.

  1. White adipose tissue re-growth after partial lipectomy in high fat diet induced obese wistar rats.

    Science.gov (United States)

    Bueno, Allain Amador; Habitante, Carlos Alexandre; Oyama, Lila Missae; Estadella, Débora; Ribeiro, Eliane Beraldi; Oller do Nascimento, Cláudia Maria

    2011-01-01

    The effects of partial removal of epididymal (EPI) and retroperitoneal (RET) adipose tissues (partial lipectomy) on the triacylglycerol deposition of high fat diet induced obese rats were analyzed, aiming to challenge the hypothesized body fat regulatory system. Male 28-day-old wistar rats received a diet enriched with peanuts, milk chocolate and sweet biscuits during the experimental period. At the 90th day of life, rats were submitted to either lipectomy (L) or sham surgery. After 7 or 30 days, RET, EPI, liver, brown adipose tissue (BAT), blood and carcass were obtained and analyzed. Seven days following surgery, liver lipogenesis rate and EPI relative weight were increased in L. After 30 days, L, RET and EPI presented increased lipogenesis, lipolysis and percentage of small area adipocytes. L rats also presented increased liver malic enzyme activity, BAT lipogenesis, and triacylglycerol and corticosterone serum levels. The partial removal of visceral fat pads affected the metabolism of high fat diet obese rats, which leads to excised tissue re-growth and possibly compensatory growth of non-excised depots at a later time.

  2. New insights on the maternal diet induced-hypertension: potential role of the phenotypic plasticity and sympathetic-respiratory overactivity

    Directory of Open Access Journals (Sweden)

    JOAO HENRIQUE eDA COSTA SILVA

    2015-11-01

    Full Text Available Systemic arterial hypertension (SAH is an important risk factor for cardiovascular disease and affects worldwide population. Current environment including life style coupled with genetic programming have been attributed to the rising incidence of hypertension. Besides, environmental conditions during perinatal development such as maternal malnutrition can program changes in the integration among renal, neural and endocrine system leading to hypertension. This phenomenon is termed phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel or unusual input during development. Human and animal studies indicate that fetal exposure to an adverse maternal environment may alter the renal morphology and physiology that contribute to the development of hypertension. Recently, it has been shown that the maternal protein restriction alter the central control of SAH by a mechanism that include respiratory dysfunction and enhanced sympathetic-respiratory coupling at early life, which may contribute to adult hypertension. This review will address the new insights on the maternal diet induced-hypertension that include the potential role of the phenotypic plasticity, specifically the perinatal protein malnutrition, and sympathetic-respiratory overactivity.

  3. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    Lee Si

    2011-07-01

    Full Text Available Abstract Background Recent studies have reported the preventive effects of probiotics on obesity. Among commensal bacteria, bifidobacteria is one of the most numerous probiotics in the mammalian gut and are a type of lactic acid bacteria. The aim of this study was to assess the antiobesity and lipid-lowering effects of Bifidobacterium spp. isolated from healthy Korean on high fat diet-induced obese rats. Methods Thirty-six male Sprague-Dawley rats were divided into three groups as follows: (1 SD group, fed standard diet; (2 HFD group, fed high fat diet; and (3 HFD-LAB group, fed high fat diet supplemented with LAB supplement (B. pseudocatenulatum SPM 1204, B. longum SPM 1205, and B. longum SPM 1207; 108 ~ 109 CFU. After 7 weeks, the body, organ, and fat weights, food intake, blood serum levels, fecal LAB counts, and harmful enzyme activities were measured. Results Administration of LAB reduced body and fat weights, blood serum levels (TC, HDL-C, LDL-C, triglyceride, glucose, leptin, AST, ALT, and lipase levels, and harmful enzyme activities (β-glucosidase, β-glucuronidase, and tryptophanase, and significantly increased fecal LAB counts. Conclusion These data suggest that Bifidobacterium spp. used in this study may have beneficial antiobesity effects.

  4. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    International Nuclear Information System (INIS)

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C15 and Ob15) and 30 (C30 and Ob30) consecutive weeks. Obesity was determined by adiposity index. The Ob15 group was similar to the C15 group regarding the expression of myocardial collagen type I; however, expression in the Ob30 group was less than C30 group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob30 when compared with Ob15. Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression

  5. Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs

    Directory of Open Access Journals (Sweden)

    Jennifer E. Bruin

    2015-04-01

    Full Text Available Human embryonic stem cell (hESC-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.

  6. Effect of Ethanolic Extract of Fragaria Vesca on serum glucose levels and body weight in diet induced obese rats

    Directory of Open Access Journals (Sweden)

    Venkat ramana Yella

    2015-10-01

    Full Text Available Objective: to evaluate the effect of ethanolic extract Fragaria Vesca on serum glucose levels in diet induced obese rats.Material and methods: Male Wister albino rats weighing 200- 250 gm, were divided into 3 groups of 6 animals each. The animals of all the groups except normal group were given a lipid diet consisting of cholesterol (1%, cholic acid (0.5%, casein (20%, choline (0.25%, d-l-methionin1(0.4%, coconut oil (25%, multi vitamin mix (3.5% and sucrose (48.4% with standard pellet diet for 30 days [20]. Growth rate was monitored during the treatment. Results: There was significantly decrease in blood glucose in standard group compared to HFD model (P< 0.05.  But there was no significant change among other groupsConclusion:  There was no significant change in the blood glucose level in all the groups except the standard group, but there was reduction in body weight.

  7. Hypocholesterolemic effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rat

    Directory of Open Access Journals (Sweden)

    Yuanhong Xie

    2015-06-01

    Full Text Available To investigate the effects of Kluyveromyces marxianus M3 isolated from Tibetan mushrooms on diet-induced hypercholesterolemia in rats, female Wistar rats were fed a high-cholesterol diet (HCD for 28 d to generate hyperlipidemic models. Hyperlipidemic rats were assigned to four groups, which were individually treated with three different dosages of K. marxianus M3+HCD or physiological saline+HCD via oral gavage for 28 d. The total cholesterol (TC, triglycerides (TG, high-density lipoprotein cholesterol (HDL-C, and low-density lipoprotein cholesterol (LDL-C levels in the serum and liver of the rats were measured using commercially available enzyme kits. In addition, the liver morphology was also examined using hematoxylin and eosin staining and optical microscopy. According to our results, the serum and liver TC, TG, LDL-C levels and atherogenic index (AI were significantly decreased in rats orally administered K. marxianus M3 (p <0.01, and the HDL-C levels and anti atherogenic index (AAI were significantly increased (p <0.01 compared to the control group. Moreover, K. marxianus M3 treatment also reduced the build-up of lipid droplets in the liver and exhibited normal hepatocytes, suggesting a protective effect of K. marxianus M3 in hyperlipidemic rats.

  8. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Kathleen Kauter

    2013-02-01

    Full Text Available Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats.

  9. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  10. The Anti-Inflammatory Effect of Prunus yedoensis Bark Extract on Adipose Tissue in Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Hee Kang

    2015-01-01

    Full Text Available Chronic, low-grade inflammatory responses occur in obese adipose tissue and play a crucial role in the development of insulin resistance. Macrophages exposed to high glucose upregulate the expression of SRA, a macrophage-specific scavenger receptor. The present study investigated whether Prunus yedoensis (PY bark extract affects the inflammatory response and scavenger receptor gene expression observed in a diet-induced obesity model in vivo. Oral administration of PY extract significantly reduced fasting blood glucose levels without a change in body weight in mice fed a high fat diet for 17 weeks. PY extract significantly suppressed expression of inflammatory and macrophage genes such as tumor necrosis factor-α, interleukin-6, and F4/80 in epididymal adipose tissue. Among scavenger receptor genes, SRA expression was significantly reduced. The inhibitory responses of PY extract and its fractions were determined through evaluation of scavenger receptor expression in THP-1 cells. PY extract and its ethyl acetate fraction decreased the levels of SRA mRNA and phospho-ERK1/2 during monocyte differentiation. Our data indicate that the anti-inflammatory effects of PY extract and its downregulation of SRA seem to account for its hypoglycemic effects.

  11. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

    Science.gov (United States)

    Verdeguer, Francisco; Soustek, Meghan S; Hatting, Maximilian; Blättler, Sharon M; McDonald, Devin; Barrow, Joeva J; Puigserver, Pere

    2016-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  12. Skeletal muscle mitochondrial bioenergetics and morphology in high fat diet induced obesity and insulin resistance: focus on dietary fat source

    Directory of Open Access Journals (Sweden)

    Rosalba ePutti

    2016-01-01

    Full Text Available It has been suggested that skeletal muscle mitochondria play a key role in high fat diet induced insulin resistance. Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle insulin resistance. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to insulin resistance. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of insulin resistance. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift towards mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and insulin resistance development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle insulin resistance and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle insulin resistance, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance.

  13. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents.

    Directory of Open Access Journals (Sweden)

    Mario Perello

    Full Text Available The adipocyte-derived hormone leptin acts in the brain to reduce body weight and fat mass. Recent studies suggest that parvocellular oxytocin (OXT neurons of the hypothalamic paraventricular nucleus (PVN can mediate body weight reduction through inhibition of food intake and increased energy expenditure. However, the role of OXT neurons of the PVN as a primary target of leptin has not been investigated. Here, we studied the potential role of OXT neurons of the PVN in leptin-mediated effects on body weight regulation in fasted rats. We demonstrated that intracerebroventricular (ICV leptin activates STAT3 phosphorylation in OXT neurons of the PVN, showed that this occurs in a subpopulation of OXT neurons that innervate the nucleus of the solitary tract (NTS, and provided further evidence suggesting a role of OXT to mediate leptin's actions on body weight. In addition, our results indicated that OXT neurons are responsive to ICV leptin and mediate leptin effects on body weight in diet induced obese (DIO rats, which are resistant to the anorectic effects of the hormone. Thus, we conclude that leptin targets a specific subpopulation of parvocellular OXT neurons of the PVN, and that this action may be important for leptin's ability to reduce body weight in both control and obese rats.

  14. Skeletal Muscle Mitochondrial Bioenergetics and Morphology in High Fat Diet Induced Obesity and Insulin Resistance: Focus on Dietary Fat Source.

    Science.gov (United States)

    Putti, Rosalba; Migliaccio, Vincenzo; Sica, Raffaella; Lionetti, Lillà

    2015-01-01

    It has been suggested that skeletal muscle mitochondria play a key role in high fat (HF) diet induced insulin resistance (IR). Two opposite views are debated on mechanisms by which mitochondrial function could be involved in skeletal muscle IR. In one theory, mitochondrial dysfunction is suggested to cause intramyocellular lipid accumulation leading to IR. In the second theory, excess fuel within mitochondria in the absence of increased energy demand stimulates mitochondrial oxidant production and emission, ultimately leading to the development of IR. Noteworthy, mitochondrial bioenergetics is strictly associated with the maintenance of normal mitochondrial morphology by maintaining the balance between the fusion and fission processes. A shift toward mitochondrial fission with reduction of fusion protein, mainly mitofusin 2, has been associated with reduced insulin sensitivity and inflammation in obesity and IR development. However, dietary fat source during chronic overfeeding differently affects mitochondrial morphology. Saturated fatty acids induce skeletal muscle IR and inflammation associated with fission phenotype, whereas ω-3 polyunsaturated fatty acids improve skeletal muscle insulin sensitivity and inflammation, associated with a shift toward mitochondrial fusion phenotype. The present minireview focuses on mitochondrial bioenergetics and morphology in skeletal muscle IR, with particular attention to the effect of different dietary fat sources on skeletal muscle mitochondria morphology and fusion/fission balance. PMID:26834644

  15. CORRELATIONS BETWEEN BLOOD PRESSURE AND BODY WEIGHT, SERUM LEPTIN IN HIGH CALORIE DIET-INDUCED OBESE RATS

    Institute of Scientific and Technical Information of China (English)

    Hu Zhi; Ma Aiqun; Yang Chun; Tian Hongyan

    2006-01-01

    Objective To examine the change of body weight (BW) and blood pressure (BP) in obese rats, clarify relationships between BP and BW and other factors. Methods Male Spraque-Dawley rats were fed either with normal diet (ND) or high calorie diet (HC) for 20 weeks. BW and BP of tail artery were observed biweekly and tetraweekly respectively; serum leptin and fasting insulin (FINS) were detected by enzyme-linked immunoadsordent assay (ELISA) and radioimmunoassay (RIA) respectively. Fasting plasma glucose (FPG) and free fatty acid(FFA) were measured by conventional means. Results BW, abdominal fat weight (AFW), ratio of abdominal fat weight to body weight (RF/W), systolic blood pressure (SBP), diastolic blood pressure (DBP), serum levels of leptin and FINS, FPG, FFA increased in the HD group after 20 weeks diet intervention (P<0.05 or P<0.01). SBP was strongly correlated with BW, leptin, FINS and FFA (P<0.05), DBP was correlated with FFA (r=0.47, P<0.05). In addition, leptin was positively correlated with BW, AFW, RF/W, FINS and FFA (P<0.05 or P<0.01). Conclusion In this study of high calorie-diet induced rats, the gain of BW is accompanied by increased BP. The obese rats have hyperleptinemia, hyperinsulinemia, hyperglycemia and dyslipidemia which may have important effects on the development of obesity-related hypertension. RF/W is the key factor in which affect serum leptin level.

  16. Rapid response of the steatosis-sensing hepatokine LECT2 during diet-induced weight cycling in mice.

    Science.gov (United States)

    Chikamoto, Keita; Misu, Hirofumi; Takayama, Hiroaki; Kikuchi, Akihiro; Ishii, Kiyo-Aki; Lan, Fei; Takata, Noboru; Tajima-Shirasaki, Natsumi; Takeshita, Yumie; Tsugane, Hirohiko; Kaneko, Shuichi; Matsugo, Seiichi; Takamura, Toshinari

    2016-09-23

    Dieting often leads to body weight cycling involving repeated weight loss and regain. However, little information is available regarding rapid-response serum markers of overnutrition that predict body weight alterations during weight cycling. Here, we report the rapid response of serum leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine that induces insulin resistance in skeletal muscle, during diet-induced weight cycling in mice. A switch from a high-fat diet (HFD) to a regular diet (RD) in obese mice gradually decreased body weight but rapidly decreased serum LECT2 levels within 10 days. In contrast, a switch from a RD to a HFD rapidly elevated serum LECT2 levels. Serum LECT2 levels showed a positive correlation with liver triglyceride contents but not with adipose tissue weight. This study demonstrates the rapid response of LECT2 preceding body weight alterations during weight cycling in mice and suggests that measurement of serum LECT2 may be clinically useful in the management of obesity. PMID:27562717

  17. Cholesterol 7α-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders.

    Science.gov (United States)

    Ferrell, Jessica M; Boehme, Shannon; Li, Feng; Chiang, John Y L

    2016-07-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the first and rate-limiting enzyme in the conversion of cholesterol to bile acids in the liver. In addition to absorption and digestion of nutrients, bile acids play a critical role in the regulation of lipid, glucose, and energy homeostasis. We have backcrossed Cyp7a1(-/-) mice in a mixed B6/129Sv genetic background to C57BL/6J mice to generate Cyp7a1(-/-) mice in a near-pure C57BL/6J background. These mice survive well and have normal growth and a bile acid pool size ∼60% of WT mice. The expression of the genes in the alternative bile acid synthesis pathway are upregulated, resulting in a more hydrophilic bile acid composition with reduced cholic acid (CA). Surprisingly, Cyp7a1(-/-) mice have improved glucose sensitivity with reduced liver triglycerides and fecal bile acid excretion, but increased fecal fatty acid excretion and respiratory exchange ratio (RER) when fed a high-fat/high-cholesterol diet. Supplementing chow and Western diets with CA restored bile acid composition, reversed the glucose tolerant phenotype, and reduced the RER. Our current study points to a critical role of bile acid composition, rather than bile acid pool size, in regulation of glucose, lipid, and energy metabolism to improve glucose and insulin tolerance, maintain metabolic homeostasis, and prevent high-fat diet-induced metabolic disorders. PMID:27146480

  18. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice.

    Directory of Open Access Journals (Sweden)

    Rostislav Chudnovskiy

    Full Text Available To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25-50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ, ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13-17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.

  19. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Steven D Kunkel

    Full Text Available Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II, blood vessel recruitment (Vegfa and autocrine/paracrine IGF-I signaling (Igf1. As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness.

  20. Antioxidant efficacy of black pepper (Piper nigrum L.) and piperine in rats with high fat diet induced oxidative stress.

    Science.gov (United States)

    Vijayakumar, R S; Surya, D; Nalini, N

    2004-01-01

    The present study was aimed to explore the effect of black pepper (Piper nigrum L.) on tissue lipid peroxidation, enzymic and non-enzymic antioxidants in rats fed a high-fat diet. Thirty male Wistar rats (95-115 g) were divided into 5 groups. They were fed standard pellet diet, high-fat diet (20% coconut oil, 2% cholesterol and 0.125% bile salts), high-fat diet plus black pepper (0.25 g or 0.5 g/kg body weight), high-fat diet plus piperine (0.02 g/kg body weight) for a period of 10 weeks. Significantly elevated levels of thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and significantly lowered activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) in the liver, heart, kidney, intestine and aorta were observed in rats fed the high fat diet as compared to the control rats. Simultaneous supplementation with black pepper or piperine lowered TBARS and CD levels and maintained SOD, CAT, GPx, GST, and GSH levels to near those of control rats. The data indicate that supplementation with black pepper or the active principle of black pepper, piperine, can reduce high-fat diet induced oxidative stress to the cells.

  1. Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Maessen, Dionne E; Brouwers, Olaf; Gaens, Katrien H; Wouters, Kristiaan; Cleutjens, Jack P; Janssen, Ben J; Miyata, Toshio; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-04-01

    Obesity is associated with an increased risk for the development of type 2 diabetes and vascular complications. Advanced glycation end products are increased in adipose tissue and have been associated with insulin resistance, vascular dysfunction, and inflammation of adipose tissue. Here, we report that delayed intervention with pyridoxamine (PM), a vitamin B6 analog that has been identified as an antiglycating agent, protected against high-fat diet (HFD)-induced body weight gain, hyperglycemia, and hypercholesterolemia, compared with mice that were not treated. In both HFD-induced and db/db obese mice, impaired glucose metabolism and insulin resistance were prevented by PM supplementation. PM inhibited the expansion of adipose tissue and adipocyte hypertrophy in mice. In addition, adipogenesis of murine 3T3-L1 and human Simpson-Golabi-Behmel Syndrome preadipocytes was dose- and time-dependently reduced by PM, as demonstrated by Oil Red O staining and reduced expression of adipogenic differentiation genes. No ectopic fat deposition was found in the liver of HFD mice. The high expression of proinflammatory genes in visceral adipose tissue of the HFD group was significantly attenuated by PM. Treatment with PM partially prevented HFD-induced mild vascular dysfunction. Altogether, these findings highlight the potential of PM to serve as an intervention strategy in obesity. PMID:26718500

  2. Repeated Bouts of Aerobic Exercise Enhance Regulatory T Cell Responses in a Murine Asthma Model

    OpenAIRE

    Lowder, Thomas; Dugger, Kari; Deshane, Jessy; Estell, Kim; Schwiebert, Lisa M

    2009-01-01

    We have reported previously that moderate intensity aerobic exercise training attenuates airway inflammation in a murine asthma model. Recent studies implicate regulatory T (Treg) cells in decreasing asthma-related airway inflammation; as such, the current study examined the effect of exercise on Treg cell function in a murine asthma model. Mice were sensitized with ovalbumin (OVA) prior to the start of exercise training at a moderate intensity 3× / week for 4 wks; exercise was performed as t...

  3. Lagenaria siceraria fruit extract ameliorate fat amassment and serum TNF-αin high-fat diet-induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Sayyed Nadeem; Pradeep Dhore; Mohsin Quazi; Sunil Pawar; Navin Raj

    2012-01-01

    Objective:To investigate the effects of ethanolic extract ofLagenaria siceraria fruit(ELSF) on fat amassment and serumTNF-α in high-fat diet-induced obese rats.Methods:The high fat diet induced obese rats were orally treated with orlistat(50 mg/kg) andELSF(100,200,300 mg/kg/day) to the respective treatment groups.The body weight, fasting blood glucose level, lipid profile, serum levels of tumor necrosis factor-α(TNF-α) in rats were measured after30 days of treatment and compared to the obese control animals.Results:ELSF significantly(P <0.001) reduced the body weight gain, fasting blood glucose, total cholesterol, triglyceride, total protein andTNF-α.Conclusions:These encouraging findings suggest thatLagenaria siceraria has excellent pharmacological potential to prevent fat amassment.

  4. Effects of Berberine on Amelioration of Hyperglycemia and Oxidative Stress in High Glucose and High Fat Diet-Induced Diabetic Hamsters In Vivo

    OpenAIRE

    Cong Liu; Zhuo Wang; Yulong Song; Dan Wu; Xuan Zheng; Ping Li; Jin Jin; Nannan Xu; Ling Li

    2015-01-01

    This study investigated the effects of berberine on amelioration of hyperglycemia and hyperlipidemia and the mechanism involved in high glucose and high fat diet-induced diabetic hamsters. Golden hamsters fed with high glucose and high fat diet were medicated with metformin, simvastatin, and low or high dose of berberine (50 and 100 mg·kg−1) for 6 weeks. The results showed that the body weights were significantly lower in berberine-treated groups than control group. Histological analyses reve...

  5. MyD88 signaling in the CNS is required for development of fatty acid induced leptin resistance and diet-induced obesity

    OpenAIRE

    Kleinridders, Andre; Schenten, Dominik; Mauer, Jan; Wunderlich, F. Thomas; Okamura, Tomoo; Koenner, A. Christine; Belgardt, Bengt F.; Bruening, Jens C.; Medzhitov, Ruslan

    2009-01-01

    Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR-4 signaling by fatty acids. Here we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat-3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterize...

  6. Diet-Induced and Age-Related Changes in the Quadriceps Muscle: MRI and MRS in a Rat Model of Sarcopenia

    OpenAIRE

    Fellner, Claudia; Schick, Fritz; Kob, Robert; Hechtl, Christine; Vorbuchner, Marianne; Büttner, Roland; Hamer, Okka W.; Sieber, Cornel C.; Stroszczynski, Christian; Bollheimer, L Cornelius

    2014-01-01

    Background: Knowledge about the molecular pathomechanisms of sarcopenia is still sparse, especially with regard to nutritional risk factors and the subtype of sarcopenic obesity. Objective: The aim of this study was to characterize diet-induced and age-related changes on the quality and quantity of the quadriceps muscle in a rat model of sarcopenia by different magnetic resonance (MR) techniques. Methods: A total of 36 6-month-old male Sprague-Dawley rats were randomly subdivid...

  7. Prevention of diet-induced obesity by apple polyphenols in Wistar rats through regulation of adipocyte gene expression and DNA methylation patterns

    OpenAIRE

    Campion, J.; Martinez, J. A.; Rodriguez-Sanchez, S. (Sonia); Soria, A. C.; Bañuelos, O. (Oscar); Olivares, M.; Milagro, F. I.; Garza, A.L. (Ana Laura) de la; Iglesia, R. (Rocío) de la; Boque, N. (Noemi)

    2013-01-01

    This study was conducted to determine the mechanisms implicated in the beneficial effects of apple polyphenols (APs) against diet-induced obesity in Wistar rats, described in a previous study from our group. Supplementation of high-fat sucrose diet with AP prevented adiposity increase by inhibition of adipocyte hypertrophy. Rats supplemented with AP exhibited improved glucose tolerance while adipocytes isolated from these rats showed an enhanced lipolytic response to isoproterenol. AP intake ...

  8. Effect of Dietary Cocoa Tea (Camellia ptilophylla) Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    Science.gov (United States)

    Yang, Xiao Rong; Wat, Elaine; Wang, Yan Ping; Ko, Chun Hay; Koon, Chi Man; Siu, Wing Sum; Gao, Si; Cheung, David Wing Shing; Lau, Clara Bik San; Ye, Chuang Xing; Leung, Ping Chung

    2013-01-01

    Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups (n = 10) of C57BL/6 mice that were fed with (1) normal chow (N); (2) high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt) (HF); (3) a high-fat diet supplemented with 2% green tea extract (HFLG); (4) a high-fat diet supplemented with 4% green tea extract (HFHG); (5) a high-fat diet supplemented with 2% cocoa tea extract (HFLC); and (6) a high-fat diet supplemented with 4% cocoa tea extract (HFHC). From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a) body weight, (b) fat pad mass, (c) liver weight, (d) total liver lipid, (e) liver triglyceride and cholesterol, and (f) plasma lipids (triglyceride and cholesterol). These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome. PMID:23935682

  9. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice

    OpenAIRE

    Kim, Tae-Woon; Choi, Hyun-Hee; Chung, Yong-Rak

    2016-01-01

    Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippo...

  10. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    OpenAIRE

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background: Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food.Objective: The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis.Design: Rats were divided into four groups (n=6 per group) after 1 week of acclimatizati...

  11. Effect of Dietary Cocoa Tea (Camellia ptilophylla Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Rong Yang

    2013-01-01

    Full Text Available Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups of C57BL/6 mice that were fed with (1 normal chow (N; (2 high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt (HF; (3 a high-fat diet supplemented with 2% green tea extract (HFLG; (4 a high-fat diet supplemented with 4% green tea extract (HFHG; (5 a high-fat diet supplemented with 2% cocoa tea extract (HFLC; and (6 a high-fat diet supplemented with 4% cocoa tea extract (HFHC. From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a body weight, (b fat pad mass, (c liver weight, (d total liver lipid, (e liver triglyceride and cholesterol, and (f plasma lipids (triglyceride and cholesterol. These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome.

  12. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    OpenAIRE

    Steiner, Michel A.; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS...

  13. High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway

    Directory of Open Access Journals (Sweden)

    Napolitano Mariarosaria

    2011-04-01

    Full Text Available Abstract Background Hyperhomocysteinemia (HHcy causes increased oxidative stress and is an independent risk factor for cardiovascular disease. Oxidative stress is now believed to be a major contributory factor in the development of non alcoholic fatty liver disease, the most common liver disorder worldwide. In this study, the changes which occur in homocysteine (Hcy metabolism in high fat-diet induced non alcoholic fatty liver disease (NAFLD in rats were investigated. Methods and results After feeding rats a standard low fat diet (control or a high fat diet (57% metabolisable energy as fat for 18 weeks, the concentration of homocysteine in the plasma was significantly raised while that of cysteine was lowered in the high fat as compared to the control diet fed animals. The hepatic activities of cystathionine β-synthase (CBS and cystathionine γ-lyase (CGS, the enzymes responsible for the breakdown of homocysteine to cysteine via the transsulphuration pathway in the liver, were also significantly reduced in the high fat-fed group. Conclusions These results indicate that high fat diet-induced NAFLD in rats is associated with increased plasma Hcy levels caused by down-regulation of hepatic CBS and CGL activity. Thus, HHcy occurs at an early stage in high fat diet-induced NAFLD and is likely to contribute to the increased risk of cardiovascular disease associated with the condition.

  14. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Science.gov (United States)

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  15. Quercetin Alleviates High-Fat Diet-Induced Oxidized Low-Density Lipoprotein Accumulation in the Liver: Implication for Autophagy Regulation

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2015-01-01

    Full Text Available A growing body of evidence has indicated that high-fat diet-induced nonalcoholic fatty liver disease is usually accompanied by oxidized low-density lipoprotein (ox-LDL deposited in the liver. The current study aimed to investigate the effect of quercetin on high-fat diet-induced ox-LDL accumulation in the liver and to explore the potential underlying mechanisms. The results demonstrate that quercetin supplementation for 24 weeks significantly alleviated high-fat diet-induced liver damage and reduced hepatic cholesterol and ox-LDL level. Quercetin notably inhibited both mRNA and protein expression of CD36 (reduced by 53% and 71%, resp. and MSR1 (reduced by 25% and 45%, resp., which were upregulated by high-fat diet. The expression of LC3II was upregulated by 2.4 times whereas that of p62 and mTOR was downregulated by 57% and 63% by quercetin treatment. Therefore, the significantly improved autophagy lysosomal degradation capacity for ox-LDL may be implicated in the hepatoprotective effect of quercetin; scavenger receptors mediated ox-LDL uptake might also be involved.

  16. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Directory of Open Access Journals (Sweden)

    Johanna Abrigo

    2016-01-01

    Full Text Available Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  17. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice

    Science.gov (United States)

    Suzuki-Kemuriyama, Noriko; Matsuzaka, Takashi; Kuba, Motoko; Ohno, Hiroshi; Han, Song-iee; Takeuchi, Yoshinori; Isaka, Masaaki; Kobayashi, Kazuto; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Miyajima, Katsuhiro; Nakae, Dai; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs—eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)—in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis. PMID:27333187

  18. Gefitinib attenuates murine pulmonary fibrosis induced by bleomycin

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; TIAN Qing; LIANG Zhi-xin; YANG Zhen; XU Shu-feng; SUN Ji-ping; CHEN Liang-an

    2010-01-01

    Background Gefitinib, an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is an effective treatment for epithelial tumors, including non-small cell lung cancer (NSCLC), and is generally well tolerated.However, some clinical trials revealed that gefitinib exposure caused lung fibrosis, a severe adverse reaction.This study investigated the effect of gefitinib on lung fibrosis in mice.Methods We generated a mouse model of lung fibrosis induced by bleomycin to investigate the fibrotic effect of gefitinib.C57BL/6 mice were injected intratracheally with bleomycin or saline, with intragastric administration of gefitinib or saline.Lung tissues were harvested on day 14 or 21 for histology and genetic analysis.Results The histological results showed that bleomycin successfully induced lung fibrosis in mice, and gefitinib prevented lung fibrosis and suppressed the proliferation of S100A4-positive fibroblast cells.In addition, Western blotting analysis revealed that gefitinib decreased the expression of phosphorylated EGFR (p-EGFR).Furthermore, quantitative real-time PCR (qRT-PCR) demonstrated that gefitinib inhibited the accumulation of collagens Ⅰ and Ⅲ.Conclusions These results reveal that gefitinib reduces pulmonary fibrosis induced by bleomycin in mice and suggest that administration of small molecule EGFR tyrosine kinase inhibitors has the potential to prevent pulmonary fibrosis by inhibiting the proliferation of mesenchymal cells, and that targeting tyrosine kinase receptors might be useful for the treatment of pulmonary fibrosis in humans.

  19. Effect of Antioxidants Supplementation or Restricted Diet on Oxidative Stress in a Rat Model of Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    A.A. Vahidinia

    2011-04-01

    Full Text Available Introduction & Objective: Obesity is independently associated with increased oxidative stress in men and women. Natural antioxidants showed substantial antioxidative and anti-inflammatory activities in vivo. The aim of this study was to examine the preventive effect of antioxidant supplements and/or restricted diet on the stress oxidative index (8-Iso-PGF2α and total antioxidant capacity (TAC in obese rats induced by a high-fat (HF diet. Material and Methods: In this experimental study forty-eight male Wister rats were randomly assigned to HF purified diet (61% kcal from fat ad libitum, HF restricted (30%, HF supplemented with astaxanthin, vitamin E and C (HFS, HFS restricted (30% for 12 weeks. Their daily food intake and weekly body weight gain were measured. Serum 8-Iso-PGF2α and TAC measured by EIA methods. Results: Energy intake was not significant in HF with HFS (58.8 and 58.6 kcal/rat/d, respectively and in HF restricted with HFS restricted (41.7 and 41.6 kcal/rat/d, respectively. Serum 8-Iso-PGF2α in HF was 1416.2±443.5 and in HF restricted was 1209.4±424.4pg/ml (p>0.05 and equal for other groups. The lowest TAC was seen in HF and highest was in HFS (0.36±0.43 and 3.0±1.13 mM, respectively (p<0.001. Conclusions: These results suggest that antioxidant supplements and caloric restriction may improved TAC and partially suppress stress oxidative index in high fat diet induced obese rats. (Sci J Hamadan Univ Med Sci 2011;18(1:48-56

  20. Clodronate liposomes improve metabolic profile and reduce visceral adipose macrophage content in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Bin Feng

    Full Text Available BACKGROUND: Obesity-related adipose inflammation has been thought to be a causal factor for the development of insulin resistance and type 2 diabetes. Infiltrated macrophages in adipose tissue of obese animals and humans are an important source for inflammatory cytokines. Clodronate liposomes can ablate macrophages by inducing apoptosis. In this study, we aim to determine whether peritoneal injection of clodronate liposomes has any beneficial effect on systemic glucose homeostasis/insulin sensitivity and whether macrophage content in visceral adipose tissue will be reduced in diet-induced obese (DIO mice. METHODOLOGY/PRINCIPAL FINDINGS: Clodronate liposomes were used to deplete macrophages in lean and DIO mice. Macrophage content in visceral adipose tissue, metabolic parameters, glucose and insulin tolerance, adipose and liver histology, adipokine and cytokine production were examined. Hyperinsulinemic-euglycemic clamp study was also performed to assess systemic insulin sensitivity. Peritoneal injection of clodronate liposomes significantly reduced blood glucose and insulin levels in DIO mice. Systemic glucose tolerance and insulin sensitivity were mildly improved in both lean and DIO mice treated with clodronate liposomes by intraperitoneal (i.p. injection. Hepatosteatosis was dramatically alleviated and suppression of hepatic glucose output was markedly increased in DIO mice treated with clodronate liposomes. Macrophage content in visceral adipose tissue of DIO mice was effectively decreased without affecting subcutaneous adipose tissue. Interestingly, levels of insulin sensitizing hormone adiponectin, including the high molecular weight form, were significantly elevated in circulation. CONCLUSIONS/SIGNIFICANCE: Intraperitoneal injection of clodronate liposomes reduces visceral adipose tissue macrophages, improves systemic glucose homeostasis and insulin sensitivity in DIO mice, which can be partially attributable to increased adiponectin

  1. Antiobesity effect of Tamarindus indica L. pulp aqueous extract in high-fat diet-induced obese rats.

    Science.gov (United States)

    Azman, Khairunnuur Fairuz; Amom, Zulkhairi; Azlan, Azrina; Esa, Norhaizan Mohd; Ali, Rasadah Mat; Shah, Zamree Md; Kadir, Khairul Kamilah Abdul

    2012-04-01

    Obesity and overweight are associated with atherosclerosis, fatty liver, hyperlipemia, diabetes mellitus, and various types of cancer. The global prevalence of overweight and obesity has reached epidemic proportions. Here, we investigated the effect of Tamarindus indica pulp aqueous extract (TIE) in diet-induced obese Sprague-Dawley rats. The animals were divided into five groups and labeled as follows: the normal control (NC) group received normal diet; the positive control (PC) group received high-fat diet; and the TIE 5, 25, and 50 groups, after the induction of obesity via a high-fat diet, received TIE at 5, 25, or 50 mg/kg orally for 10 weeks. It was observed that TIE decreased the levels of plasma total cholesterol, low-density lipoprotein (LDL), and triglyceride, and increased high-density lipoprotein (HDL), with the concomitant reduction of body weight. Moreover, TIE decreased plasma leptin and reduced fatty acid synthase (FAS) activity and enhanced the efficiency of the antioxidant defense system. TIE exhibits antiobesity effects, as indicated by a significant reduction in adipose tissue weights, as well as lowering the degree of hepatic steatosis in the obesity-induced rats. The extract possesses hepatoprotective activity, as it reversed the plasma liver enzymes level elevation prior to the high-fat diet. In conclusion, TIE improved obesity-related parameters in blood, liver, and adipose tissue in a rat model and suppressed obesity induced by a high-fat diet, possibly by regulating lipid metabolism and lowering plasma leptin and FAS levels. A dose-dependant effect of TIE is detected, where TIE at 50 mg/kg showed the most prominent effect, followed by TIE at 25 mg/kg and, subsequently, 5 mg/kg.

  2. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  3. Blueberry, blackberry, and blackcurrant differentially affect plasma lipids and pro-inflammatory markers in diet-induced obesity mice

    Science.gov (United States)

    Kim, Bohkyung; Lee, Sang Gil; Park, Young-Ki; Ku, Chai Siah; Pham, Tho X.; Wegner, Casey J.; Yang, Yue; Koo, Sung I.; Chun, Ock K.

    2016-01-01

    BACKGROUND/OBJECTIVES Evidence indicates that berry anthocyanins are anti-atherogenic, antioxidant, and anti-inflammatory. However, berries differ vastly in their anthocyanin composition and thus potentially in their biological and metabolic effects. The present study compared hypolipidemic, antioxidant, and anti-inflammatory properties of blueberry (BB), blackberry (BK), and blackcurrant (BC) in a diet-induced obesity (DIO) mouse model. MATERIALS/METHODS Male C57BL/6J mice were fed a high fat (HF; 35% fat, w/w) control diet or a HF diet supplemented with freeze-dried 5% BB, 6.3% BK or 5.7% BC for 12 weeks (10 mice/group) to achieve the same total anthocyanin content in each diet. Plasma lipids, antioxidant status and pro-inflammatory cytokines were measured. The expression of genes involved in antioxidant defense, inflammation, and lipid metabolism was determined in the liver, epididymal adipose tissue, proximal intestine, and skeletal muscle. Histological analysis was performed to identify crown-like structure (CLS) in epididymal fat pads to determine macrophage infiltration. RESULTS No differences were noted between the control and any berry-fed groups in plasma levels of liver enzymes, insulin, glucose, ferric reducing antioxidant power, superoxide dismutase, and tumor necrosis factor α. However, BK significantly lowered plasma triglyceride compared with the HF control and other berries, whereas BC significantly reduced F4/80 mRNA and the number of CLS in the epididymal fat pad, indicative of less macrophage infiltration. CONCLUSIONS The present study provides evidence that BB, BK and BC with varying anthocyanin composition differentially affect plasma lipids and adipose macrophage infiltration in DIO mice, but with no differences in their antioxidant capacity and anti-inflammatory potential.

  4. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Frida Fåk

    Full Text Available OBJECTIVE: To investigate whether the specific strains of Lactobacillus reuteri modulates the metabolic syndrome in Apoe-/- mice. METHODS: 8 week-old Apoe-/- mice were subdivided into four groups who received either L. reuteri ATCC PTA 4659 (ATCC, DSM 17938 (DSM, L6798, or no bacterial supplement in the drinking water for 12 weeks. The mice were fed a high-fat Western diet with 0.2% cholesterol and body weights were monitored weekly. At the end of the study, oral glucose and insulin tolerance tests were conducted. In addition, adipose and liver weights were recorded along with analyses of mRNA expression of ileal Angiopoietin-like protein 4 (Angptl4, the macrophage marker F4/80 encoded by the gene Emr1 and liver Acetyl-CoA carboxylase 1 (Acc1, Fatty acid synthase (Fas and Carnitine palmitoyltransferase 1a (Cpt1a. Atherosclerosis was assessed in the aortic root region of the heart. RESULTS AND CONCLUSIONS: Mice receiving L. reuteri ATCC gained significantly less body weight than the control mice, whereas the L6798 mice gained significantly more. Adipose and liver weights were also reduced in the ATCC group. Serum insulin levels were lower in the ATCC group, but no significant effects were observed in the glucose or insulin tolerance tests. Lipogenic genes in the liver were not altered by any of the bacterial treatments, however, increased expression of Cpt1a was found in the ATCC group, indicating increased β-oxidation. Correspondingly, the liver trended towards having lower fat content. There were no effects on inflammatory markers, blood cholesterol or atherosclerosis. In conclusion, the probiotic L. reuteri strain ATCC PTA 4659 partly prevented diet-induced obesity, possibly via a previously unknown mechanism of inducing liver expression of Cpt1a.

  5. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  6. Ghrelin receptor deficiency does not affect diet-induced atherosclerosis in low-density lipoprotein receptor-null mice

    Directory of Open Access Journals (Sweden)

    Kirk M. Habegger

    2011-11-01

    Full Text Available Objective: Ghrelin, a stomach-derived, secreted peptide, and its receptor (growth hormone secretagogue receptor, GHSR are known to modulate food intake and energy homeostasis. The ghrelin system is also expressed broadly in cardiovascular tissues. Since ghrelin has been associated with anti-inflammatory and anti-atherogenic properties, but is also well known to promote obesity and impair glucose metabolism, we investigated whether ghrelin has any impact on the development of atherosclerosis. The hypothesis that endogenous ghrelin signaling may be involved in atherosclerosis has not been tested previously Methods and Results: We crossed ghrelin receptor knockout mice (GHSr-/- into a low-density lipoprotein receptor-null (Ldlr-/- mouse line. In this model, atherosclerotic lesions were promoted by feeding a high-fat, high-cholesterol Western-type diet for 13 months, following a standard protocol. Body composition and glucose homeostasis were similar between Ldlr-/- and Ldlr/GHSR -/- ko mice throughout the study. Absence or presence of GHSr did not alter the apolipoprotein profile changes in response to diet exposure on an LDLRko background. Atherosclerotic plaque volume in the aortic arch and thoracic aorta were also not affected differentially in mice without ghrelin signaling due to GHSR gene disruption as compared to control LDLRko littermates. In light of the associations reported for ghrelin with cardiovascular disease in humans, the lack of a phenotype in these loss-of- function studies in mice suggests no directly functional role for endogenous ghrelin in either the inhibition or the promotion of diet-induced atherosclerosis.Conclusions: These data indicate that, surprisingly, the complex and multifaceted actions of endogenous ghrelin signaling on the cardiovascular system have minimal direct impact on atherosclerotic plaque progression as based on loss-of-function in a mouse model of the disease.

  7. MsrA Overexpression Targeted to the Mitochondria, but Not Cytosol, Preserves Insulin Sensitivity in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    JennaLynn Hunnicut

    Full Text Available There is growing evidence that oxidative stress plays an integral role in the processes by which obesity causes type 2 diabetes. We previously identified that mice lacking the protein oxidation repair enzyme methionine sulfoxide reductase A (MsrA are particularly prone to obesity-induced insulin resistance suggesting an unrecognized role for this protein in metabolic regulation. The goals of this study were to test whether increasing the expression of MsrA in mice can protect against obesity-induced metabolic dysfunction and to elucidate the potential underlying mechanisms. Mice with increased levels of MsrA in the mitochondria (TgMito MsrA or in the cytosol (TgCyto MsrA were fed a high fat/high sugar diet and parameters of glucose homeostasis were monitored. Mitochondrial content, markers of mitochondrial proteostasis and mitochondrial energy utilization were assessed. TgMito MsrA, but not TgCyto MsrA, mice remain insulin sensitive after high fat feeding, though these mice are not protected from obesity. This metabolically healthy obese phenotype of TgMito MsrA mice is not associated with changes in mitochondrial number or biogenesis or with a reduction of proteostatic stress in the mitochondria. However, our data suggest that increased mitochondrial MsrA can alter metabolic homeostasis under diet-induced obesity by activating AMPK signaling, thereby defining a potential mechanism by which this genetic alteration can prevent insulin resistance without affecting obesity. Our data suggest that identification of targets that maintain and regulate the integrity of the mitochondrial proteome, particular against oxidative damage, may play essential roles in the protection against metabolic disease.

  8. Novel PPAR pan agonist, ZBH ameliorates hyperlipidemia and insulin resistance in high fat diet induced hyperlipidemic hamster.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Effective and safe pharmacological interventions for hyperlipidemia remains badly needed. By incorporating the key pharmacophore of fibrates into the natural scaffold of resveratrol, a novel structural compound ZBH was constructed. In present study, we found ZBH reserved approximately one third of the sirtuin 1 (SIRT1 activation produced by resveratrol at in-vitro enzyme activity assay, directly bound to and activated all three peroxisome proliferator-activated receptor (PPAR subtypes respectively in PPAR binding and transactivation assays. Moreover, ZBH (EC₅₀, 1.75 µM activate PPARα 21 fold more efficiently than the well-known PPAR pan agonist bezafibrate (EC₅₀ 37.37 µM in the cellular transactivation assays. In the high fat diet induced hyperlipidemic hamsters, 5-week treatment with ZBH significantly lowered serum triglyceride, total cholesterol, LDL-C, FFA, hyperinsulinemia, and improved insulin sensitivity more potently than bezafibrate. Meanwhile, serum transaminases, creatine phosphokinase and CREA levels were found not altered by ZBH intervention. Mechanism study indicated ZBH promoted the expression of PPARα target genes and SIRT1 mRNA. Hepatic lipogenesis was markedly decreased via down-regulation of lipogenic genes, and fatty acid uptake and oxidation was simultaneously increased in the liver and skeletal muscle via up-regulation of lipolysis genes. Glucose uptake and utilization was also significantly promoted in skeletal muscle. These results suggested that ZBH significantly lowered hyperlipidemia and ameliorated insulin resistance more efficiently than bezafibrate in the hyperlipidemic hamsters primarily by activating of PPARα, and SIRT1 promotion and activation. ZBH thus presents a potential new agent to combat hyperlipidemia.

  9. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice.

    Directory of Open Access Journals (Sweden)

    Frederique Respondek

    Full Text Available Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat or an isocaloric HF diet containing 10% of scFOS (HF-scFOS. Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia.

  10. BAFF knockout improves systemic inflammation via regulating adipose tissue distribution in high-fat diet-induced obesity.

    Science.gov (United States)

    Kim, Do-Hwan; Do, Myoung-Sool

    2015-01-01

    Obesity is recognized as a chronic low-grade inflammatory state due to adipose tissue expansion being accompanied by an increase in the production of proinflammatory adipokines. Our group is the first to report that B-cell-activating factor (BAFF) is produced from adipocytes and functions as a proinflammatory adipokine. Here, we investigated how loss of BAFF influenced diet-induced obesity in mice by challenging BAFF(-/-) mice with a high-fat diet for 10 weeks. The results demonstrated that weight gain in BAFF(-/-) mice was >30% than in control mice, with a specific increase in the fat mass of the subcutaneous region rather than the abdominal region. Expression of lipogenic genes was examined by quantitative real-time PCR, and increased lipogenesis was observed in the subcutaneous adipose tissue (SAT), whereas lipogenesis in the epididymal adipose tissue (EAT) was reduced. A significant decrease in EAT mass resulted in the downregulation of inflammatory gene expression in EAT, and more importantly, overall levels of inflammatory cytokines in the circulation were reduced in obese BAFF(-/-) mice. We also observed that the macrophages recruited in the enlarged SAT were predominantly M2 macrophages. 3T3-L1 adipocytes were cultured with adipose tissue conditioned media (ATCM), demonstrating that EAT ATCM from BAFF(-/-) mice contains antilipogenic and anti-inflammatory properties. Taken together, BAFF(-/-) improved systemic inflammation by redistributing adipose tissue into subcutaneous regions. Understanding the mechanisms by which BAFF regulates obesity in a tissue-specific manner would provide therapeutic opportunities to target obesity-related chronic diseases. PMID:25591987

  11. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice.

    Science.gov (United States)

    Roat, Regan; Rao, Vandana; Doliba, Nicolai M; Matschinsky, Franz M; Tobias, John W; Garcia, Eden; Ahima, Rexford S; Imai, Yumi

    2014-01-01

    The reduction of functional β cell mass is a key feature of type 2 diabetes. Here, we studied metabolic functions and islet gene expression profiles of C57BL/6J mice with naturally occurring nicotinamide nucleotide transhydrogenase (NNT) deletion mutation, a widely used model of diet-induced obesity and diabetes. On high fat diet (HF), the mice developed obesity and hyperinsulinemia, while blood glucose levels were only mildly elevated indicating a substantial capacity to compensate for insulin resistance. The basal serum insulin levels were elevated in HF mice, but insulin secretion in response to glucose load was significantly blunted. Hyperinsulinemia in HF fed mice was associated with an increase in islet mass and size along with higher BrdU incorporation to β cells. The temporal profiles of glucose-stimulated insulin secretion (GSIS) of isolated islets were comparable in HF and normal chow fed mice. Islets isolated from HF fed mice had elevated basal oxygen consumption per islet but failed to increase oxygen consumption further in response to glucose or carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP). To obtain an unbiased assessment of metabolic pathways in islets, we performed microarray analysis comparing gene expression in islets from HF to normal chow-fed mice. A few genes, for example, those genes involved in the protection against oxidative stress (hypoxia upregulated protein 1) and Pgc1α were up-regulated in HF islets. In contrast, several genes in extracellular matrix and other pathways were suppressed in HF islets. These results indicate that islets from C57BL/6J mice with NNT deletion mutation develop structural, metabolic and gene expression features consistent with compensation and decompensation in response to HF diet. PMID:24505268

  12. Alterations of pancreatic islet structure, metabolism and gene expression in diet-induced obese C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Regan Roat

    Full Text Available The reduction of functional β cell mass is a key feature of type 2 diabetes. Here, we studied metabolic functions and islet gene expression profiles of C57BL/6J mice with naturally occurring nicotinamide nucleotide transhydrogenase (NNT deletion mutation, a widely used model of diet-induced obesity and diabetes. On high fat diet (HF, the mice developed obesity and hyperinsulinemia, while blood glucose levels were only mildly elevated indicating a substantial capacity to compensate for insulin resistance. The basal serum insulin levels were elevated in HF mice, but insulin secretion in response to glucose load was significantly blunted. Hyperinsulinemia in HF fed mice was associated with an increase in islet mass and size along with higher BrdU incorporation to β cells. The temporal profiles of glucose-stimulated insulin secretion (GSIS of isolated islets were comparable in HF and normal chow fed mice. Islets isolated from HF fed mice had elevated basal oxygen consumption per islet but failed to increase oxygen consumption further in response to glucose or carbonyl cyanide-4-trifluoromethoxyphenylhydrazone (FCCP. To obtain an unbiased assessment of metabolic pathways in islets, we performed microarray analysis comparing gene expression in islets from HF to normal chow-fed mice. A few genes, for example, those genes involved in the protection against oxidative stress (hypoxia upregulated protein 1 and Pgc1α were up-regulated in HF islets. In contrast, several genes in extracellular matrix and other pathways were suppressed in HF islets. These results indicate that islets from C57BL/6J mice with NNT deletion mutation develop structural, metabolic and gene expression features consistent with compensation and decompensation in response to HF diet.

  13. Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway.

    Science.gov (United States)

    Li, Jinmei; Ding, Lili; Song, Baoliang; Xiao, Xu; Qi, Meng; Yang, Qiaoling; Yang, Qiming; Tang, Xiaowen; Wang, Zhengtao; Yang, Li

    2016-01-01

    Currently, obesity has become a worldwide epidemic associated with Type 2 diabetes, dyslipidemia, cardiovascular disease and chronic metabolic diseases. Emodin is one of the active anthraquinone derivatives from Rheum palmatum and some other Chinese herbs with anti-inflammatory, anticancer and hepatoprotective properties. In the present study, we investigated the anti-obesity effects of emodin in obese mice and explore its potential pharmacological mechanisms. Male C57BL/6 mice were fed with high-fat diet for 12 weeks to induce obesity. Then the obese mice were divided into four groups randomly, HFD or emodin (40mg/kg/day and 80mg/kg/day) or lovastatin (30mg/kg/ day) for another 6 weeks. Body weight and food intake were recorded every week. At the end of the treatment, the fasting blood glucose, glucose and insulin tolerance test, serum and hepatic lipid levels were assayed. The gene expressions of liver and adipose tissues were analyzed with a quantitative PCR assay. Here, we found that emodin inhibited sterol regulatory element-binding proteins (SREBPs) transactivity in huh7 cell line. Furthermore, emodin (80mg/kg/day) treatment blocked body weight gain, decreased blood lipids, hepatic cholesterol and triglyceride content, ameliorated insulin sensitivity, and reduced the size of white and brown adipocytes. Consistently, SREBP-1 and SREBP-2 mRNA levels were significantly reduced in the liver and adipose tissue after emodin treatment. These data demonstrated that emodin could improve high-fat diet-induced obesity and associated metabolic disturbances. The underlying mechanism is probably associated with regulating SREBP pathway. PMID:26626587

  14. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Minegishi, Yoshihiko; Hase, Tadashi

    2010-08-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is implicated in the control of energy metabolism and is considered to be a molecular target for the suppression of obesity and the treatment of metabolic syndrome. Here, we identified and characterized nootkatone, a constituent of grapefruit, as a naturally occurring AMPK activator. Nootkatone induced an increase in AMPKalpha1 and -alpha2 activity along with an increase in the AMP/ATP ratio and an increase the phosphorylation of AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC), in C(2)C(12) cells. Nootkatone-induced activation of AMPK was possibly mediated both by LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase. Nootkatone also upregulated PPARgamma coactivator-1alpha in C(2)C(12) cells and C57BL/6J mouse muscle. In addition, administration of nootkatone (200 mg/kg body wt) significantly enhanced AMPK activity, accompanied by LKB1, AMPK, and ACC phosphorylation in the liver and muscle of mice. Whole body energy expenditure evaluated by indirect calorimetry was also increased by nootkatone administration. Long-term intake of diets containing 0.1% to 0.3% (wt/wt) nootkatone significantly reduced high-fat and high-sucrose diet-induced body weight gain, abdominal fat accumulation, and the development of hyperglycemia, hyperinsulinemia, and hyperleptinemia in C57BL/6J mice. Furthermore, endurance capacity, evaluated as swimming time to exhaustion in BALB/c mice, was 21% longer in mice fed 0.2% nootkatone than in control mice. These findings indicate that long-term intake of nootkatone is beneficial toward preventing obesity and improving physical performance and that these effects are due, at least in part, to enhanced energy metabolism through AMPK activation in skeletal muscle and liver. PMID:20501876

  15. Vitis thunbergii var. taiwaniana Extracts and Purified Compounds Ameliorate Obesity in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Lin, Shyr-Yi; Huang, Guan-Cheng; Hsieh, Ying-Ying; Lin, Yin-Shiou; Han, Chuan-Hsiao; Wen, Chi-Luan; Chang, Chi-I; Hou, Wen-Chi

    2015-10-28

    The increasing prevalence of obesity continues to gain more attention worldwide. In this study, diet-induced obese mice were used to evaluate the antiobesity effects of extracts, fractions, and purified compounds from Vitis thunbergii var. taiwaniana (VTT). The C57BL/6J mice were fed a 5-week high-fat diet (HF) concurrently with ethanol extracts (Et-ext, 80 mg/kg) from roots (R), stems (S), and leaves (L) by oral gavage daily. Only R-Et-ext interventions showed significant weight reduction in mice compared with those in the HF group; however, mouse plasma contents of total cholesterols (TC), total triglycerides (TG) and low-density lipoproteins (LDL) of all three Et-ext intervened groups showed significant reductions compared with those in the HF group. Furthermore, intervention with the ethyl acetate-partitioned fraction (EA-fra, 60 mg/kg) from R-Et-ext but not the n-butanol-partitioned fraction or water fraction from R-Et-ext showed significant weight reduction in mice compared with those in the HF group. The same molecular weights of three resveratrol tetramers, (+)-hopeaphenol, (+)-vitisin A, and (-)-vitisin B, were isolated from the EA-fra of VTT-R. The (+)-vitisin A and fenofibrate (25 mg/kg) but not the (+)-hopeaphenol and (-)-vitisin B interventions showed significant weight reduction in mice compared with those in the HF group. The total feed intake among the HF groups with or without interventions showed no significant differences. The mouse plasma contents of TC, TG, LDL, free fatty acid, and plasma lipase activity of the three resveratrol tetramer-intervened groups showed reductions in the mice compared with those in the HF group. It was proposed that the lipase inhibitory activities of VTT extracts and purified resveratrol tetramers might contribute in part to the antiobesity effect, and these results suggested that VTT may be developed as functional food for achieving antiobesity objectives and requires further investigation.

  16. Depot-specific effects of treadmill running and rutin on white adipose tissue function in diet-induced obese mice.

    Science.gov (United States)

    Chen, Neng; Lei, Ting; Xin, Lili; Zhou, Lingmei; Cheng, Jinbo; Qin, Liqiang; Han, Shufen; Wan, Zhongxiao

    2016-09-01

    White adipose tissue (WAT) is a critical organ involved in regulating metabolic homeostasis under obese condition. Strategies that could positively affect WAT function would hold promise for fighting against obesity and its complications. The aim of the present study is to explore the effects of treadmill exercise training and rutin intervention on adipose tissue function from diet-induced obese (DIO) mice and whether fat depot-specific effects existed. In epididymal adipose tissue, high-fat diet (HFD) resulted in reduction in adiponectin mRNA expression, peroxisome proliferator-activated receptors (PPAR)-γ and DsbA-L protein expression, elevation in endoplasmic reticulum (ER) stress markers including 78 kDa glucose-regulated protein (GRP-78), C/EBP homologous protein (CHOP) and p-c-Jun N-terminal kinase (JNK). Isoproterenol-stimulated lipolysis and insulin stimulated Akt phosphorylation ex vivo were blunted from HFD group. The combination of rutin with exercise (HRE) completely restored GRP78 and p-JNK protein expression to normal levels, as well as blunted signaling ex vivo. In inguinal adipose tissue, HFD led to increased adiponectin mRNA expression, PPAR-γ, GRP78, and p-JNK protein expression, and reduction in DsbA-L. HRE is effective for restoring p-JNK, PPAR-γ, and DsbA-L. In conclusion, depot-specific effects may exist in regard to the effects of rutin and exercise on key molecules involved in regulating adipose tissue function (i.e., ER stress markers, PPAR-γ and DsbA-L, adiponectin expression, and secretion, ex vivo catecholamine stimulated lipolysis and insulin stimulated Akt phosphorylation) from DIO mice. PMID:27192989

  17. Anti-Obese Effect of Glucosamine and Chitosan Oligosaccharide in High-Fat Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Lanlan Huang

    2015-04-01

    Full Text Available Objective: This study is to evaluate the anti-obese effects of glucosamine (GLC and chitosan oligosaccharide (COS on high-fat diet-induced obese rats. Methods: The rats were randomly divided into twelve groups: a normal diet group (NF, a high-fat diet group (HF, Orlistat group, GLC high-, middle-, and low-dose groups (GLC-H, GLC-M, GLC-L, COS1 (COS, number-average molecular weight ≤1000 high-, middle-, and low-dose groups (COS1-H, COS1-M, COS1-L, and COS2 (COS, number-average molecular weight ≤3000 high-, middle-, and low-dose groups (COS2-H, COS2-M, COS2-L. All groups received oral treatment by gavage once daily for a period of six weeks. Results: Rats fed with COS1 gained the least weight among all the groups (P < 0.01, and these rats lost more weight than those treated with Orlistat. In addition to the COS2-H and Orlistat groups, the serum total cholesterol (CHO and low-density lipoprotein cholesterol (LDL-C levels were significantly reduced in all treatment groups compared to the HF group (P < 0.01. The various doses of GLC, COS1 and COS2 reduced the expression levels of PPARγ and LXRα mRNA in the white adipose tissue. Conclusions: The results above demonstrated that GLC, COS1, and COS2 improved dyslipidemia and prevented body weight gains by inhibiting the adipocyte differentiation in obese rats induced by a high-fat diet. Thus, these agents may potentially be used to treat obesity.

  18. Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue.

    Directory of Open Access Journals (Sweden)

    Audrey M Neyrinck

    Full Text Available BACKGROUND: Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®, at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity. METHODOLOGY/PRINCIPAL FINDINGS: Mice were fed either a control diet (CT, a high fat (HF diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet associated with white pepper (0.01 % for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation. CONCLUSIONS/SIGNIFICANCE: These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition.

  19. Alleviation of high-fat diet-induced fatty liver damage in group IVA phospholipase A2-knockout mice.

    Science.gov (United States)

    Ii, Hiromi; Yokoyama, Naoki; Yoshida, Shintaro; Tsutsumi, Kae; Hatakeyama, Shinji; Sato, Takashi; Ishihara, Keiichi; Akiba, Satoshi

    2009-12-01

    Hepatic fat deposition with hepatocellular damage, a feature of non-alcoholic fatty liver disease, is mediated by several putative factors including prostaglandins. In the present study, we examined whether group IVA phospholipase A(2) (IVA-PLA(2)), which catalyzes the first step in prostanoid biosynthesis, is involved in the development of fatty liver, using IVA-PLA(2)-knockout mice. Male wild-type mice on high-fat diets (20% fat and 1.25% cholesterol) developed hepatocellular vacuolation and liver hypertrophy with an increase in the serum levels of liver damage marker aminotransferases when compared with wild-type mice fed normal diets. These high-fat diet-induced alterations were markedly decreased in IVA-PLA(2)-knockout mice. Hepatic triacylglycerol content was lower in IVA-PLA(2)-knockout mice than in wild-type mice under normal dietary conditions. Although high-fat diets increased hepatic triacylglycerol content in both genotypes, the degree was lower in IVA-PLA(2)-knockout mice than in wild-type mice. Under the high-fat dietary conditions, IVA-PLA(2)-knockout mice had lower epididymal fat pad weight and smaller adipocytes than wild-type mice. The serum level of prostaglandin E(2), which has a fat storage effect, was lower in IVA-PLA(2)-knockout mice than in wild-type mice, irrespective of the kind of diet. In both genotypes, high-fat diets increased serum leptin levels equally between the two groups, but did not affect the serum levels of adiponectin, resistin, free fatty acid, triacylglycerol, glucose, or insulin. Our findings suggest that a deficiency of IVA-PLA(2) alleviates fatty liver damage caused by high-fat diets, probably because of the lower generation of IVA-PLA(2) metabolites, such as prostaglandin E(2). IVA-PLA(2) could be a promising therapeutic target for obesity-related diseases including non-alcoholic fatty liver disease.

  20. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model.

    Directory of Open Access Journals (Sweden)

    Yanzhang Li

    Full Text Available BACKGROUND: Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1 is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice. METHODOLOGY/PRINCIPAL FINDINGS: Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF or a high-fat (HF diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype. CONCLUSION: TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin

  1. Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Justin Chapman

    Full Text Available BACKGROUND: Insulin resistance is manifested in muscle, adipose tissue, and liver and is associated with adipose tissue inflammation. The cellular components and mechanisms that regulate the onset of diet-induced insulin resistance are not clearly defined. METHODOLOGY AND PRINCIPAL FINDINGS: We initially observed osteopontin (OPN mRNA over-expression in adipose tissue of obese, insulin resistant humans and rats which was normalized by thiazolidinedione (TZD treatment in both species. OPN regulates inflammation and is implicated in pathogenic maladies resulting from chronic obesity. Thus, we tested the hypothesis that OPN is involved in the early development of insulin resistance using a 2-4 week high fat diet (HFD model. OPN KO mice fed HFD for 2 weeks were completely protected from the severe skeletal muscle, liver and adipose tissue insulin resistance that developed in wild type (WT controls, as determined by hyperinsulinemic euglycemic clamp and acute insulin-stimulation studies. Although two-week HFD did not alter body weight or plasma free fatty acids and cytokines in either strain, HFD-induced hyperleptinemia, increased adipose tissue inflammation (macrophages and cytokines, and adipocyte hypertrophy were significant in WT mice and blunted or absent in OPN KO mice. Adipose tissue OPN protein isoform expression was significantly altered in 2- and 4-week HFD-fed WT mice but total OPN protein was unchanged. OPN KO bone marrow stromal cells were more osteogenic and less adipogenic than WT cells in vitro. Interestingly, the two differentiation pathways were inversely affected by HFD in WT cells in vitro. CONCLUSIONS: The OPN KO phenotypes we report reflect protection from insulin resistance that is associated with changes in adipocyte biology and adipose tissue inflammatory status. OPN is a key component in the development of HFD-induced insulin resistance.

  2. Anti-obesity Effect of Yogurt Fermented by Lactobacillus plantarum Q180 in Diet-induced Obese Rats.

    Science.gov (United States)

    Park, Sun-Young; Seong, Ki-Seung; Lim, Sang-Dong

    2016-01-01

    This study aimed to investigate the anti-obesity effects of yogurt fermented by Lactobacillus plantarum Q180 in diet-induced obese rats. To examine the effects, male Sprague-Dawley rats were fed on six different diets, as follows: Group A was fed an ND and orally administrated saline solution; Group B, an HFD and orally administrated saline solution; Group C, an HFD and orally administrated yogurt fermented by ABT-3 and L. plantarum Q180; Group D, an HFD and orally administrated yogurt with added Garcinia cambogia extract, fermented by ABT-3 and L. plantarum Q180; Group E, an HFD and orally administrated yogurt fermented by L. plantarum Q180; and Group F, an HFD and orally administrated yogurt with added Garcinia cambogia extract, fermented by L. plantarum Q180 for eight weeks. After eight weeks, the rate of increase in bodyweight was 5.14%, 6.5%, 3.35% and 10.81% lower in groups C, D, E and F, respectively, compared with group B; the epididymal fat weight of groups E and F was significantly lower than that of group B; and the level of triglyceride and leptin was significantly reduced in groups C, D, E and F compared to group B. In addition, the level of AST was reduced in group C compared to the other groups. To examine the effects of yogurt on the reduction of adipocyte size, the adipocyte sizes were measured. The number of large-size adipose tissue was less distributed in groups A, C, D, E and F than in group B. PMID:27499667

  3. αB-crystallin and HspB2 deficiency is protective from diet-induced glucose intolerance.

    Science.gov (United States)

    Toft, Daniel J; Fuller, Miles; Schipma, Matthew; Chen, Feng; Cryns, Vincent L; Layden, Brian T

    2016-09-01

    Emerging evidence suggests molecular chaperones have a role in the pathogenesis of obesity and diabetes. As αB-crystallin and HspB2 are molecular chaperones and data suggests their expression is elevated in the skeletal muscle of diabetic and obese animals, we sought to determine if αB-crystallin and HspB2 collectively play a functional role in the metabolic phenotype of diet-induced obesity. Using αB-crystallin/HspB2 knockout and littermate wild-type controls, it was observed that mice on the high fat diet gained more weight as compared to the normal chow group and genotype did not impact this weight gain. To test if the genotype and/or diet influenced glucose homeostasis, intraperitoneal glucose challenge was performed. While similar on normal chow diet, wild-type mice on the high fat diet exhibited higher glucose levels during the glucose challenge compared to the αB-crystallin/HspB2 knockout mice. Although wild-type mice had higher glucose levels, insulin levels were similar for both genotypes. Insulin tolerance testing revealed that αB-crystallin/HspB2 knockout mice were more sensitive to insulin, leading to lower glucose levels over time, which is indicative of a difference in insulin sensitivity between the genotypes on a high fat diet. Transcriptome analyses of skeletal muscle in αB-crystallin/HspB2 knockout and wild-type mice on a normal or high fat diet revealed reductions in cytokine pathway genes in αB-crystallin/HspB2 knockout mice, which may contribute to their improved insulin sensitivity. Collectively, these data reveal that αB-crystallin/HspB2 plays a role in development of insulin resistance during a high fat diet challenge. PMID:27330996

  4. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  5. Green tea extract suppresses adiposity and affects the expression of lipid metabolism genes in diet-induced obese zebrafish

    Directory of Open Access Journals (Sweden)

    Hasumura Takahiro

    2012-08-01

    Full Text Available Abstract Background Visceral fat accumulation is one of the most important predictors of mortality in obese populations. Administration of green tea extract (GTE can reduce body fat and reduce the risk of obesity-related diseases in mammals. In this study, we investigated the effects and mechanisms of GTE on adiposity in diet-induced obese (DIO zebrafish. Methods Zebrafish at 3.5 to 4.5 months post-fertilization were allocated to four groups: non-DIO, DIO, DIO + 0.0025%GTE, and DIO + 0.0050%GTE. The non-DIO group was fed freshly hatched Artemia once daily (5 mg cysts/fish daily for 40 days. Zebrafish in the three DIO groups were fed freshly hatched Artemia three times daily (60 mg cysts/fish daily. Zebrafish in the DIO + 0.0025%GTE and DIO + 0.0050%GTE groups were exposed to GTE after the start of feeding three times daily for 40 days. Results Three-dimensional microcomputed tomography analysis showed that GTE exposure significantly decreased the volume of visceral but not subcutaneous fat tissue in DIO zebrafish. GTE exposure increased hepatic expression of the lipid catabolism genes ACOX1 (acyl-coenzyme A oxidase 1, palmitoyl, ACADM (acyl-coenzyme A dehydrogenase, c-4 to c-12 straight chain, and PPARA (peroxisome proliferator-activated receptor alpha. GTE exposure also significantly decreased the visceral fat expression of SOCS3 (suppressor of cytokine signaling 3b which inhibits leptin signaling. Conclusions The present results are consistent with those seen in mammals treated with GTE, supporting the validity of studying the effects of GTE in DIO zebrafish. Our results suggest that GTE exerts beneficial effects on adiposity, possibly by altering the expression of lipid catabolism genes and SOCS3.

  6. Comparison of antihyperlipidaemic activity of eugenia jambolana fruit with punica granatum fruit in diet induced hyperlipidaemic rats

    International Nuclear Information System (INIS)

    Objective: To compare the antihyperlipidemic effects of Eugenia Jambolana fruit pulp with Punica Granatum fruit in diet induced hyperlipidaemic rats at the same dose level. Methods: An experimental randomized control study was conducted on seventy five male albino rats over a period of 14 weeks in University of Health Sciences Lahore. They were divided into five groups labelled A, B, C, D and E with fifteen rats in each group. Group A was kept as normal control, groups B, C, D and E were given hyperlipidaemic diet for six weeks. In group B no further intervention was done, group C and D were given ethanolic extract of Eugenia Jambolana and Punica Granatum respectively for eight weeks. Group E was given combination of both for same duration. Serum total cholesterol (TC), high density lipoprotein cholesterol (HDL-c), lowdensity lipoprotein cholesterol (LDL-c) and triglycerides (TG) were measured at zero, six and fourteen weeks. Results: At fourteenth week significant reductions in TC, LDL-c and TG and a rise in HDL-c was observed in interventional groups C, D and E as compared to experimental hyperlipidaemic control group B (p 0.57, p > 0.22, p > 0.56, p > 0.76, respectively. On sixth week, there was no significant difference between groups B, C, D and E (p > 0.05). However, 15 rats of group A had significant lower levels of cholesterol, high density lipoproteins, low density lipoproteins and triglycerides when compared to 60 rats of groups B, C, D and E (p<0.05). Conclusion: In male albino rats combination of ethanolic extracts of Eugenia Jambolana and Punica Granatum fruit pulps was most effective in lowering serum total cholesterol and triglycerides while decrease in low density lipoprotein cholesterol and rise in high density lipoprotein cholesterol was same as the extracts given alone. (author)

  7. Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Fang, Sungsoon; Suh, Jae Myoung; Atkins, Annette R; Hong, Suk-Hyun; Leblanc, Mathias; Nofsinger, Russell R; Yu, Ruth T; Downes, Michael; Evans, Ronald M

    2011-02-22

    The ligand-dependent competing actions of nuclear receptor (NR)-associated transcriptional corepressor and coactivator complexes allow for the precise regulation of NR-dependent gene expression in response to both temporal and environmental cues. Here we report the mouse model termed silencing mediator of retinoid and thyroid hormone receptors (SMRT)(mRID1) in which targeted disruption of the first receptor interaction domain (RID) of the nuclear corepressor SMRT disrupts interactions with a subset of NRs and leads to diet-induced superobesity associated with a depressed respiratory exchange ratio, decreased ambulatory activity, and insulin resistance. Although apparently normal when chow fed, SMRT(mRID1) mice develop multiple metabolic dysfunctions when challenged by a high-fat diet, manifested by marked lipid accumulation in white and brown adipose tissue and the liver. The increased weight gain of SMRT(mRID1) mice on a high-fat diet occurs predominantly in fat with adipocyte hypertrophy evident in both visceral and s.c. depots. Importantly, increased inflammatory gene expression was detected only in the visceral depots. SMRT(mRID1) mice are both insulin-insensitive and refractory to the glucose-lowering effects of TZD and AICAR. Increased serum cholesterol and triglyceride levels were observed, accompanied by increased leptin and decreased adiponectin levels. Aberrant storage of lipids in the liver occurred as triglycerides and cholesterol significantly compromised hepatic function. Lipid accumulation in brown adipose tissue was associated with reduced thermogenic capacity and mitochondrial biogenesis. Collectively, these studies highlight the essential role of NR corepressors in maintaining metabolic homeostasis and describe an essential role for SMRT in regulating the progression, severity, and therapeutic outcome of metabolic diseases.

  8. Increased plasma citrulline in mice marks diet-induced obesity and may predict the development of the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Manuela Sailer

    Full Text Available In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA and aromatic amino acids (AAA increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic

  9. Antihyperlipidemic and Antioxidant Activities of Edible Tunisian Ficus carica L. Fruits in High Fat Diet-Induced Hyperlipidemic Rats.

    Science.gov (United States)

    Belguith-Hadriche, Olfa; Ammar, Sonda; Contreras, Maria Del Mar; Turki, Mouna; Segura-Carretero, Antonio; El Feki, Abdelfattah; Makni-Ayedi, Fatma; Bouaziz, Mohamed

    2016-06-01

    The phenolic constituents of the aqueous-ethanolic extract of Tunisian Ficus carica (F. carica) fruit (FE) and its antihyperlipidemic and antioxidant activities in high-fat diet-induced hyperlipidemic rats (HFD) were evaluated. The obtained results demonstrated that the FE improved the lipid profile by decreasing the total cholesterol, triglyceride, low-density lipoprotein cholesterol and increasing high-density lipoprotein cholesterol levels. It also reduced the content of thiobarbituric acid-reactive substances and increased the antioxidant enzymes in liver, heart and kidney in HFD-fed rats. These antihyperlipidemic effects and in vivo antioxidative effects correlated with the in vitro phenolic content scavenging ability. Thus, the major phenolic compounds were identified using reversed-phase ultra-high-performance liquid chromatography (RP-UHPLC) coupled with two detection systems: diode-array detection (DAD) and quadrupole time-of-flight (QTOF) mass spectrometry (MS). Therefore, in the negative ionization mode, 28 phenolic compounds, including hydroxybenzoic acids, hydroxycinnamic acids, flavanoids and hydroxycoumarins were characterized. Dihydroxybenzoic acid di-pentoside, the flavonol quercetin 3-O-rutinoside and the flavone assigned as apigenin 8-C-glucoside were the main representative compounds in 'Tounsi' fruits. This work was complemented by the detection of seven other phenolic compounds in the positive ionization mode, including anthocyanins and furanocoumarins. Overall, these results have shown that the FE has a significant hypocholesterolemic effect and antioxidant activity in HFD-fed rats. This beneficial effect may be partly due to these phenolic constituents, especially vitexin, dihydroxybenzoic acid di-pentoside as well as rutin.

  10. Dipeptidyl peptidase-4 inhibitor MK-626 restores insulin secretion through enhancing autophagy in high fat diet-induced mice.

    Science.gov (United States)

    Liu, Limei; Liu, Jian; Yu, Xiaoxing

    2016-02-12

    Autophagy is cellular machinery for maintenance of β-cell function and mass. The current study aimed to investigate the regulatory effects of MK-626, a dipeptidyl peptidase-4 inhibitor, on insulin secretion through the activation of autophagy in high fat diet-induced obese mice. C57BL/6 mice were fed with a rodent diet containing 45 kcal% fat for 16 weeks to induce obesity and then were received either vehicle or MK-626 (3 mg/kg/day) orally during the final 4 weeks. Mouse islets were isolated. Phosphorylation of serine/threonine-protein kinase mTOR and levels of light chain 3B I (LC3B I), LC3B II, sequestosome-1 (SQSTM1/p62) and autophagy-related protein-7 (Atg7) were examined by Western blotting. Glucagon like-peptide-1 (GLP-1) level and insulin secretion were measured by ELISA. GLP-1 level in plasma was decreased in obese mice, which was elevated by dipeptidyl peptidase-4 inhibitor MK-626. In the islets of obese mice, phosphorylation of mTOR, ratio of LC3B I and LC3B II, and level of p62 were elevated and the expression of Atg7 and insulin secretion were reduced compared to those of C57BL/6 mice. However, such effects were reversed by MK-626. Autophagy activator rapamycin stimulated insulin secretion in obese mice but autophagy inhibitor chloroquine treatment inhibited insulin secretion in obese mice administrated by MK-626. Furthermore, the beneficial effects of MK-626 were inhibited by GLP-1 receptor antagonist exendin 9-39. The present study reveals the activation of autophagy to mediate the anti-diabetic effect of GLP-1.

  11. Oxygen restriction as challenge test reveals early high-fat-diet-induced changes in glucose and lipid metabolism.

    Science.gov (United States)

    Duivenvoorde, Loes P M; van Schothorst, Evert M; Derous, Davina; van der Stelt, Inge; Masania, Jinit; Rabbani, Naila; Thornalley, Paul J; Keijer, Jaap

    2015-06-01

    Challenge tests stress homeostasis and may reveal deviations in health that remain masked under unchallenged conditions. Ideally, challenge tests are non-invasive and applicable in an early phase of an animal experiment. Oxygen restriction (OxR; based on ambient, mild normobaric hypoxia) is a non-invasive challenge test that measures the flexibility to adapt metabolism. Metabolic inflexibility is one of the hallmarks of the metabolic syndrome. To test whether OxR can be used to reveal early diet-induced health effects, we exposed mice to a low-fat (LF) or high-fat (HF) diet for only 5 days. The response to OxR was assessed by calorimetric measurements, followed by analysis of gene expression in liver and epididymal white adipose tissue (eWAT) and serum markers for e.g. protein glycation and oxidation. Although HF feeding increased body weight, HF and LF mice did not differ in indirect calorimetric values under normoxic conditions and in a fasting state. Exposure to OxR; however, increased oxygen consumption and lipid oxidation in HF mice versus LF mice. Furthermore, OxR induced gluconeogenesis and an antioxidant response in the liver of HF mice, whereas it induced de novo lipogenesis and an antioxidant response in eWAT of LF mice, indicating that HF and LF mice differed in their adaptation to OxR. OxR also increased serum markers of protein glycation and oxidation in HF mice, whereas these changes were absent in LF mice. Cumulatively, OxR is a promising new method to test food products on potential beneficial effects for human health. PMID:24974902

  12. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    NARCIS (Netherlands)

    van der Heijden, Roel A; Morrison, Martine C; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P H; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Tietge, Uwe J F; Koonen, Debby P Y; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae e

  13. Decrease in myostatin by ladder-climbing training is associated with insulin resistance in diet-induced obese rats

    Institute of Scientific and Technical Information of China (English)

    Tang Liang; Luo Kai; Liu Chentao; Wang Xudan; Zhang Didi; Chi Aiping; Zhang Jing

    2014-01-01

    Background Suppression of myostatin (MSTN) has been associated with skeletal muscle atrophy and insulin resistance (IR).However,few studies link MSTN suppression by ladder-climbing training (LCT) and IR.Therefore,we intended to identify the correlation with IR between LCT and to analyze the signaling pathways through which MSTN suppression by LCT regulates IR.Methods The rats were randomly assigned to two types of diet:normal pellet diet (NPD,n=8) and high-fat diet (HFD,n=16).After 8 weeks,the HFD rats were randomly re-assigned to two groups (n=8 for each group):HFD sedentary (HFD-S) and high-fat diet ladder-climbing training (HFD-LCT).HFD-LCT rats were assigned to LCT for 8 weeks.Western blotting,immunohistochemistry and enzyme assays were used to measure expression levels and activities of MSTN,GLUT4,PI3K,Akt and Akt-activated targets (mTOR,FoxO1 and GSK-3β).Results The LCT significantly improved IR and whole-body insulin sensitivity in HDF-fed rats.MSTN protein levels decreased in matching serum (42%,P=0.007) and muscle samples (25%,P=0.035) and its receptor mRNA expression also decreased (16%,P=0.041) from obese rats after LCT.But the mRNA expression of insulin receptor had no obvious changes in LCT group compared with NPD and HFD-S groups (P=0.074).The ladder-climbing training significantly enhanced PI3K activity (1.7-fold,P=0.024) and Akt phosphorylation (83.3%,P=0.022) in HFD-fed rats,significantly increased GLUT4 protein expression (84.5%,P=-0.036),enhanced phosphorylation of mTOR (4.8-fold,P <0.001) and inhibited phosphorylation of FoxO1 (57.7%,P=0.020),but did not affect the phosphorylation of GSK-3β.Conclusions The LCT significantly reduced IR in diet-induced obese rats.MSTN may play an important role in regulating IR and fat accumulation by LCT via PI3K/Akt/mTOR and PI3K/Akt/FoxO1 signaling pathway in HFD-fed rats.

  14. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets.

    Directory of Open Access Journals (Sweden)

    Juen Guo

    Full Text Available BACKGROUND: Does diet-induced obesity persist after an obesigenic diet is removed? We investigated this question by providing male C57BL/6 mice with free access to two different obesigenic diets followed by a switch to chow to determine if obesity was reversible. METHODOLOGY/PRINCIPAL FINDINGS: Male C57BL/6 mice were randomly assigned to five weight-matched groups: 1 C group that continuously received a chow diet; 2 HF group on a 60% high fat diet; 3 EN group on the high fat diet plus liquid Ensure; 4 HF-C group switched from high fat to chow after 7 weeks; 5 EN-C group switched from high fat plus Ensure to chow after 7 weeks. All food intake was ad libitum. Body weight was increased after 7 weeks on both obesigenic diets (44.6+/-0.65, 39.8+/-0.63, and 28.6+/-0.63 g for EN, HF, and C groups, respectively and resulted in elevated concentrations of serum insulin, glucose, and leptin and lower serum triglycerides. Development of obesity in HF and EN mice was caused by increased energy intake and a relative decrease of average energy output along with decreased ambulatory activity. After the switch to chow, the HF-C and EN-C groups lost weight but subsequently maintained a state of persistent obesity in comparison to the C group (34.8+/-1.2, 34.1+/-1.2 vs. 30.8+/-0.8 g respectively; P<0.05 with a 40-50% increase of body fat. All serum hormones and metabolites returned to control levels with the exception of a trend for increased leptin. The HF-C and EN-C groups had an average energy output in line with the C group and the persistent obesity was maintained despite a non-significant increase of energy intake of less than 1 kcal/d at the end of the study. CONCLUSION: Our results illustrate the importance of considering the history of energy imbalance in determining body weight and that a persistent elevation of body weight after removal of obesigenic diets can result from very small increases of energy intake.

  15. Regulation of mouse hepatic genes in response to diet induced obesity, insulin resistance and fasting induced weight reduction

    Directory of Open Access Journals (Sweden)

    Mantzoros Christos

    2005-06-01

    Full Text Available Abstract Background Obesity is associated with insulin resistance that can often be improved by caloric restriction and weight reduction. Although many physiological changes accompanying insulin resistance and its treatment have been characterized, the genetic mechanisms linking obesity to insulin resistance are largely unknown. We used DNA microarrys and RT-PCR to investigate significant changes in hepatic gene transcription in insulin resistant, diet-induced obese (DIO-C57/BL/6J mice and DIO-C57/BL/6J mice fasted for 48 hours, whose weights returned to baseline levels during these conditions. Results Transcriptional profiling of hepatic mRNA revealed over 1900 genes that were significantly perturbed between control, DIO, and fasting/weight reduced DIO mice. From this set, our bioinformatics analysis identified 41 genes that rigorously discriminate these groups of mice. These genes are associated with molecular pathways involved in signal transduction, and protein metabolism and secretion. Of particular interest are genes that participate in pathways responsible for modulating insulin sensitivity. DIO altered expression of genes in directions that would be anticipated to antagonize insulin sensitivity, while fasting/ weight reduction partially or completely normalized their levels. Among these discriminatory genes, Sh3kbp1 and RGS3, may have special significance. Sh3kbp1, an endogenous inhibitor of PI-3-kinase, was upregulated by high-fat feeding, but normalized to control levels by fasting/weight reduction. Because insulin signaling occurs partially through PI-3-kinase, increased expression of Sh3kbp1 by DIO mice may contribute to hepatic insulin resistance via inhibition of PI-3-kinase. RGS3, a suppressor of G-protein coupled receptor generation of cAMP, was repressed by high-fat feeding, but partially normalized by fasting/weight reduction. Decreased expression of RGS3 may augment levels of cAMP and thereby contribute to increased, c

  16. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    Science.gov (United States)

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  17. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity.

    Science.gov (United States)

    Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G; Steinberg, Gregory R; Schertzer, Jonathan D

    2016-06-01

    Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces.

  18. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Background: Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective: The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design: Rats were divided into four groups (n=6 per group after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w./day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50 with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results: We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG, and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions: These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis.

  19. Aberrant expression of soluble B and T lymphocyte attenuator and its ligand in murine herpetic stromal keratitis%可溶性B、T淋巴细胞衰减因子及其配体在单纯疱疹性角膜基质炎小鼠体内的异常表达

    Institute of Scientific and Technical Information of China (English)

    夏丽坤; 李琰; 张胜男; 曹哲瑶; 陆岩; 杨宏伟

    2011-01-01

    膜上皮层和内皮层也有表达.结论 在HSK小鼠模型中,BTLA及其配体HVEM蛋白在角膜组织中及外周血CD4+T细胞上表达明显增强,共抑制信号BTLA-HVEM参与了CD4+T细胞介导的HSK的免疫病理过程.%Objective To investigate the role of negative costimulatory signals lymphocyte attenuator (BTLA) and herpes virus entry mediator (HVEM) in murine herpetic stromal keratitis (HSK) mediated by CD4+ T cells by testing the expression of BTLA and HVEM in corneal tissues and CD4+ T cells of peripheral blood. Methods Corneas of BALB/c mice were infected with 106 plague forming unit( PFU) of herpes simplex virus type 1 (HSV-1) KOS strain for establishing HSK animal models. About 1 Ml orbital venous sinus blood was collected from left eyes of rats before corneal inoculation and on the 3rd,7th, 10th, 14th,21st day after corneal inoculation with HSV-1. Lymphocytes were segregated and taken fluorescent antibody staining. By flow cytometry,the expression of CD4+ BTLA+ T cells and CD3+ CD4+ HVEM in murine peripheral blood was evaluated. The clinical evaluation of infected eyes was taken under the slit lamp microscope, and the characteristic expression of BTLA and HVEM surface protein on corneas was evaluated by immunohistochemistry. Results Replication of HSV-1 was found in corneal clean and polish liquid at 1 to 5 days after corneal inoculation with HSV-1, which indicated that rats had infected herpes virus. Slit lamp microscope had shown that all rats had infected with acute epithelial keratitis on the 3rd day after corneal inoculation with HSV-1 ,and cured at 1 week after infection;There were changes of corneal interstitial keratitis on the 8th day after inoculation with HSV-1 .showing gray opacity of corneal stroma,went to peak at the 10th day and gradually decreased at the 14th day after corneal inoculation. Flow cytome-try detection had shown that positive rates of CD3+ CD4+ BTLA+ T cells and CD3 + CD4 + HVEM+ T cells were(3.15 ±0.60)% and(9. 84 ± 1.06)% at the day

  20. Disruption of Inducible 6-Phosphofructo-2-kinase Ameliorates Diet-induced Adiposity but Exacerbates Systemic Insulin Resistance and Adipose Tissue Inflammatory Response*

    OpenAIRE

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y. Eugene; Ye, Jianping; Chapkin, Robert S.; Wu, Chaodong

    2009-01-01

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3+/− mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high...

  1. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    OpenAIRE

    Brandt, Nina; De Bock, Katrien; Richter, Erik A.; Hespel, Peter

    2010-01-01

    Brandt N, De Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab 299: E215-E224, 2010. First published May 18, 2010; doi:10.1152/ajpendo.00098.2010.-Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptatio...

  2. Serum growth hormone-binding protein in obesity: effect of a short-term, very low calorie diet and diet-induced weight loss

    DEFF Research Database (Denmark)

    Rasmussen, M H; Ho, K K; Kjems, L;

    1996-01-01

    positively correlated to insulin as well as proinsulin levels (r = 0.60; P < 0.001 and r = 0.55; P < 0.001, respectively). After diet-induced massive weight loss, GHBP levels were restored to normal in obese subjects (BMI, 27.8 +/- 1.4 kg/m2). Multiple stepwise regression analysis revealed that changes in...... waist circumference and abdominal sagittal diameter during weight loss were the major determinants of and accounted for 54% of the fall in GHBP levels. Neither insulin nor proinsulin was an independent predictor. No changes were observed in GHBP in normal, obese, or reduced weight obese subjects after 4...

  3. Effects of treadmill exercise on skeletal muscle mTOR signaling pathway in high-fat diet-induced obese mice

    OpenAIRE

    Woo, Jin Hee; Shin, Ki Ok; Lee, Yul Hyo; Jang, Ki Soeng; Bae, Ju Yong; Roh, Hee Tae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effects of regular treadmill exercise on skeletal muscle Rictor-Akt and mTOR-Raptor-S6K1 signaling pathway in high-fat diet-induced obese mice. [Subjects and Methods] Four- week-old C57BL/6 mice were adopted and classified into normal diet group (ND, n = 10), normal diet and training group (NDT, n = 10), high-fat diet group (HF, n = 10), and high-fat diet and training group (HFT, n = 10). The exercise program consisted of a treadmill exer...

  4. Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Kwon Eun-Young

    2012-09-01

    Full Text Available Abstract Background Visceral white adipose tissue (WAT hypertrophy, adipokine production, inflammation and fibrosis are strongly associated with obesity, but the time-course of these changes in-vivo are not fully understood. Therefore, the aim of this study was to establish the time-course of changes in adipocyte morphology, adipokines and the global transcriptional landscape in visceral WAT during the development of diet-induced obesity. Results C57BL/6 J mice were fed a high-fat diet (HFD or normal diet (ND and sacrificed at 8 time-points over 24 weeks. Excessive fat accumulation was evident in visceral WAT depots (Epidydimal, Perirenal, Retroperitoneum, Mesentery after 2–4 weeks. Fibrillar collagen accumulation was evident in epidydimal adipocytes at 24 weeks. Plasma adipokines, leptin, resistin and adipsin, increased early and time-dependently, while adiponectin decreased late after 20 weeks. Only plasma leptin and adiponectin levels were associated with their respective mRNA levels in visceral WAT. Time-course microarrays revealed early and sustained activation of the immune transcriptome in epididymal and mesenteric depots. Up-regulated inflammatory genes included pro-inflammatory cytokines, chemokines (Tnf, Il1rn, Saa3, Emr1, Adam8, Itgam, Ccl2, 3, 4, 6, 7 and 9 and their upstream signalling pathway genes (multiple Toll-like receptors, Irf5 and Cd14. Early changes also occurred in fibrosis, extracellular matrix, collagen and cathepsin related-genes, but histological fibrosis was only visible in the later stages. Conclusions In diet-induced obesity, early activation of TLR-mediated inflammatory signalling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches

  5. Effect of diet fermentability and unsaturated fatty acid concentration on recovery from diet-induced milk fat depression.

    Science.gov (United States)

    Rico, D E; Holloway, A W; Harvatine, K J

    2015-11-01

    Diet-induced milk fat depression is caused by highly fermentable and high-unsaturated fatty acid (FA) diets, and results in reduced milk fat concentration and yield, reduced de novo FA, and increased trans isomers of the alternate biohydrogenation pathways. The hypothesis of the current experiment was that a diet higher in fermentability and lower in unsaturated FA (UFA) would accelerate recovery compared with a high-UFA and lower-fermentability diet. Eight ruminally cannulated and 9 noncannulated multiparous Holstein cows were randomly assigned to treatment sequences in a replicated Latin square design. During each period milk fat depression was induced for 10 d by feeding a low-fiber, high-UFA diet [25.9% neutral detergent fiber (NDF) and 3.3% C18:2]. Following the induction phase, cows were switched to recovery treatments for 18 d designed to correct dietary fermentability, UFA, or both fermentability and UFA concentration. Treatments during recovery were (1) correction of fiber and UFA diet [control; 31.8% NDF and 1.65% C18:2], (2) a diet predominantly correcting fiber, but not UFA [high oil (HO); 31.3% NDF and 2.99% C18:2], and (3) a diet predominantly correcting UFA, but not fiber concentration [low fiber (LF); 28.4% NDF and 1.71% C18:2]. Milk and milk component yield, milk FA profile, ruminal pH, and 11 rumen microbial taxa were measured every third day during recovery. Milk yield decreased progressively in HO and control, whereas it was maintained in the LF diet. Milk fat concentration increased progressively during recovery in all treatments, but was on average 9% lower in LF than control from d 12 to 18. Milk fat yield increased progressively in all treatments and was not different between control and LF at any time point, but was lower in HO than control on d 15. Milk trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid decreased progressively in all treatments, but was higher in HO than control from d 3 to 18 [136 ± 50 and 188 ± 57% (mean ± SD

  6. Murine myocardium OCT imaging with a blood substitute

    Science.gov (United States)

    Kim, Jeehyun; Villard, Joseph W.; Lee, Ho; Feldman, Marc D.; Milner, Thomas E.

    2002-06-01

    Imaging of the in vivo murine myocardium using optical coherence tomography (OCT) is described. Application of conventional techniques (e.g. MRI, Ultrasound imaging) for imaging the murine myocardium is problematic because the wall thickness is less than 1.5mm (20g mouse), and the heart rate can be as high as six-hundred beats per minute. To acquire a real-time image of the murine myocardium, OCT can provide sufficient spatial resolution (10 micrometers ) and imaging speed (1000 A-Scans/s). Strong light scattering by blood in the heart causes significant light attenuation making delineation of the endocardium-chamber boundary problematic. By replacing whole blood in the mouse with an artificial blood substitute we demonstrate significant reduction of light scattering in the murine myocardium. The results indicate a significant reduction in light scattering as whole blood hematocrit is diminished below 5%. To measure thickness change of the myocardium during one cycle, a myocardium edge detection algorithm is developed and demonstrated.

  7. Combined Ethanol Extract of Grape Pomace and Omija Fruit Ameliorates Adipogenesis, Hepatic Steatosis, and Inflammation in Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Su-Jung Cho

    2013-01-01

    Full Text Available The aim of this study was to evaluate the long-term effects of grape pomace ethanol extract (GPE with or without omija fruit ethanol extract (OFE on adiposity, hepatic steatosis, and inflammation in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD as the control diet and HFD plus GPE (0.5%, w/w with or without OFE (0.05%, w/w as the experimental diet for 12 weeks. GPE alone did not significantly affect adipogenesis and hepatic steatosis. However, the supplementation of GPE + OFE significantly lowered body weight gain, white adipose tissue weight, adipocyte size, and plasma free fatty acid and adipokines (leptin, PAI-1, IL-6, and MCP-1 levels in HFD-fed mice compared to those of the control group. These beneficial effects of GPE + OFE were partly related to the decreased expression of lipogenic and inflammatory genes in white adipose tissue. GPE + OFE supplementation also significantly lowered liver weight and ameliorated fatty liver by inhibiting expression of hepatic genes involved in fatty acid and cholesterol syntheses as well as inflammation and by activating hepatic fatty acid oxidation. These findings suggest that the combined ethanol extract of grape pomace and omija fruit has the potential to improve adiposity and fatty liver in diet-induced obese mice.

  8. p53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity.

    Science.gov (United States)

    Litwak, Sara A; Loh, Kim; Stanley, William J; Pappas, Evan G; Wali, Jibran A; Selck, Claudia; Strasser, Andreas; Thomas, Helen E; Gurzov, Esteban N

    2016-01-01

    BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14-17 weeks. We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters were indistinguishable between wild type and knockout mice on chow diet and were modified equally by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity. PMID:27033313

  9. The combined action of omega-3 polyunsaturated fatty acids and grape proanthocyanidins on a rat model of diet-induced metabolic alterations.

    Science.gov (United States)

    Ramos-Romero, Sara; Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Taltavull, Núria; Dasilva, Gabriel; Romeu, Marta; Medina, Isabel; Torres, Josep Lluís

    2016-08-10

    It has been suggested that food components such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and (poly)phenols counteract diet-induced metabolic alterations by common or complementary mechanisms. To examine the effects of a combination of ω-3 PUFAs and (poly)phenols on such alterations, adult Wistar-Kyoto rats were fed an obesogenic high-fat high-sucrose diet supplemented, or not, for 24 weeks with: eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1 : 1 (16.6 g kg(-1) feed); proanthocyanidin-rich grape seed extract (GSE, 0.8 g kg(-1) feed); or EPA/DHA 1 : 1 + GSE. Body weight, feed intake, and plasma glucose were evaluated every 6 weeks, while adipose tissue weight, insulin, glucagon, ghrelin, leptin, adiponectin, cholesterol, and triglycerides were evaluated at the end of the experiment. ω-3 PUFAs reduced plasma leptin and cholesterol levels, but did not modify diet-induced perigonadal fat or plasma insulin levels; while GSE increased plasma triglyceride levels. The combined action of ω-3 PUFAs and the proanthocyanidins reduced plasma insulin and leptin, as well as partially prevented perigonadal fat accumulation. While separate supplementation with ω-3 PUFAs or grape proanthocyanidins may not counteract all the key metabolic changes induced by a high-energy-dense diet, the combination of both supplements reverts altered insulin, leptin and triglyceride levels to normal. PMID:27418399

  10. Intestine-specific deletion of acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 protects mice from diet-induced obesity and glucose intolerance.

    Science.gov (United States)

    Nelson, David W; Gao, Yu; Yen, Mei-I; Yen, Chi-Liang Eric

    2014-06-20

    The absorption of dietary fat involves the re-esterification of digested triacylglycerol in the enterocytes, a process catalyzed by acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2. Mice without a functional gene encoding MGAT2 (Mogat2(-/-)) are protected from diet-induced obesity. Surprisingly, these mice absorb normal amounts of dietary fat but increase their energy expenditure. MGAT2 is expressed in tissues besides intestine, including adipose tissue in both mice and humans. To test the hypothesis that intestinal MGAT2 regulates systemic energy balance, we generated and characterized mice deficient in MGAT2 specifically in the small intestine (Mogat2(IKO)). We found that, like Mogat2(-/-) mice, Mogat2(IKO) mice also showed a delay in fat absorption, a decrease in food intake, and a propensity to use fatty acids as fuel when first exposed to a high fat diet. Mogat2(IKO) mice increased energy expenditure although to a lesser degree than Mogat2(-/-) mice and were protected against diet-induced weight gain and associated comorbidities, including hepatic steatosis, hypercholesterolemia, and glucose intolerance. These findings illustrate that intestinal lipid metabolism plays a crucial role in the regulation of systemic energy balance and may be a feasible intervention target. In addition, they suggest that MGAT activity in extraintestinal tissues may also modulate energy metabolism.

  11. Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ER{alpha} in the liver of male lizard Podarcis sicula

    Energy Technology Data Exchange (ETDEWEB)

    Verderame, Mariailaria; Prisco, Marina; Andreuccetti, Piero [Department of Biological Sciences, Evolutionary and Comparative Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy); Aniello, Francesco [Department of Biological Sciences, Genetic and Molecular Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy); Limatola, Ermelinda, E-mail: limatola@unina.it [Department of Biological Sciences, Evolutionary and Comparative Biology Division, University Federico II of Naples, Via Mezzocannone 8, 80134 Naples (Italy)

    2011-05-15

    Endocrine Disruptor Chemicals (EDCs) with estrogen-like properties i.e nonylphenol (NP) induce vitellogenin (VTG) synthesis in males of aquatic and semi-aquatic specie. In the oviparous species VTG is a female-specific oestrogen dependent protein. Males are unable to synthesize VTG except after E{sub 2} treatment. This study aimed to verify if NP, administered via food and water, is able to induce the expression of VTG even in males of vertebrates with a terrestrial habitat such as the lizard Podarcis. By means of ICC, ISH, W/B and ELISA we demonstrated that NP induces the presence of VTG in the plasma and its expression in the liver. VTG, undetectable in untreated males, reaches the value of 4.34 {mu}g/{mu}l in the experimental ones. Expression analysis and ISH in the liver showed that an NP-polluted diet also elicits the expression of ER{alpha} in the liver which is known to be related to VTG synthesis in Podarcis. - Highlights: > Nonylphenol (NP) polluted diet induces VTG synthesis in a terrestrial vertebrate. > VTG and ER{alpha} genes are unexpressed in the liver of untreated male lizards Podarcis. > In the liver cells of NP-treated males the expression of both VTG and ER{alpha} occurs. > In treated males VTG synthesis is coupled with ER{alpha} expression as in breeding females. - NP-polluted diet induces the expression of ER{alpha} and VTG in the liver.

  12. Study on Diet-induced Obesity Resistance Phenomenon and Its Mechanism%肥胖抵抗现象及其机制研究

    Institute of Scientific and Technical Information of China (English)

    刘春阳; 黄徐根

    2014-01-01

    随着肥胖症在全球迅速蔓延,国内外学者对肥胖的研究也逐渐深入,食源性肥胖抵抗(diet-induced obesity resistance,DIO-R)表现为肥胖易感程度低,与肥胖机体相比能量代谢状况较好,是机体能量代谢研究中较新的研究方向.本研究探讨了现阶段国内外肥胖抵抗大鼠的主要筛选方法,就食源性肥胖抵抗与食源性肥胖(diet-induced obesity,DIO)机体代谢差异最新研究成果进行综述,从瘦素敏感性、胰岛素敏感性、脂联素水平、食物利用率等方面分析了肥胖抵抗现象的发生机制,并从运动生理生化的角度提出现阶段肥胖抵抗研究存在的问题,对肥胖抵抗大鼠代谢及机制差异的研究前景进行展望.

  13. Cinnamomum camphora Seed Kernel Oil Improves Lipid Metabolism and Enhances β3-Adrenergic Receptor Expression in Diet-Induced Obese Rats.

    Science.gov (United States)

    Fu, Jing; Zeng, Cheng; Zeng, Zheling; Wang, Baogui; Wen, Xuefang; Yu, Ping; Gong, Deming

    2016-06-01

    The effects of dietary Cinnamomum camphora seed kernel oil (CCSKO) containing medium-chain triacylglycerols on lipid metabolism and mRNA and protein expression of β-3 adrenergic receptor in adipose tissue were studied in diet-induced obese rats. High fat food-induced obese rats were randomly divided into CCSKO group, Lard group, Soybean oil (SOY) group and naturally restoring group (n = 10). Rats fed with low fat food were used as a normal control group. Significant decreases in body mass and abdominal fat mass/body mass after 12 weeks were found in CCSKO group as compared with Lard and SOY groups (p triglyceride, free fatty acid, fasting insulin and insulin resistance in the CCSKO group were decreased significantly, and noradrenaline level and insulin sensitivity index in the CCSKO group were significantly higher than other groups. Meanwhile liver TC and triglyceride levels in the CCSKO group were also decreased markedly. Expression levels of β3-adrenergic receptor mRNA and protein were higher in CCSKO group than in Lard and SOY groups. These results suggest that CCSKO may contribute to reduction of the body fat mass, promote lipid metabolism and up-regulate β3-adrenergic receptor expression in high fat diet-induced obese rats. PMID:27068065

  14. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    Science.gov (United States)

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.

  15. Chrysobalanus icaco L. Leaves Normalizes Insulin Sensitivity and Blood Glucose and Inhibits Weight Gain in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    White, Pollyanna A S; Araújo, Jessica M D; Cercato, Luana M; Souza, Lucas A; Barbosa, Ana Paula Oliveira; Quintans-Junior, Lucindo José; Machado, Ubiratan F; Camargo, Enilton A; Brito, Luciana C; Santos, Marcio Roberto V

    2016-02-01

    Chrysobalanus icaco L. is a medicinal plant present in the Brazilian coastline and known for its hypoglicemic and antioxidant properties. Here, we assessed the beneficial metabolic effects of the aqueous extract of C. icaco (AECI) leaves in diet-induced obese mice. Swiss mice were fed standard chow (SC used as controls) or high-fat diet (HFD) to induce obesity. After 10 weeks, mice on each diet were divided into two groups with one group used as control while the other group treated with AECI for 4 weeks resulting in four groups of mice: SC; SC treated with AECI (SC + AECI); HFD; and HFD treated with AECI (HFD + AECI). AECI was administered drinking water at about 200 mg/kg. AECI was able to normalize insulin (13,682 ± 1090 vs. 9828 ± 485 AU, P < .05) and fasting blood glucose (192.8 ± 14.2 vs. 132.3 ± 6.4 mg/dL, P < .05) and inhibit weight gain (39 ± 5.7%) and fat storage in liver (72.60 ± 3.83%, P < .0001), despite the high-fat intake. These findings reinforce the use of AECI in hyperglycemia and highlight the potential extract's effect in preventing weight gain and fat accumulation in liver of diet-induced obese mice. PMID:26854845

  16. Renin-angiotensin system blockers protect pancreatic islets against diet-induced obesity and insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Eliete Dalla Corte Frantz

    Full Text Available BACKGROUND: The associations between obesity, hypertension and diabetes are well established, and the renin-angiotensin system (RAS may provide a link among them. The effect of RAS inhibition on type 2 diabetes is still unclear; however, RAS seems to play an important role in the regulation of the pancreas and glucose intolerance of mice fed high-fat (HF diet. METHODS: C57BL/6 mice fed a HF diet (8 weeks were treated with aliskiren (50 mg/kg/day, enalapril (30 mg/kg/day or losartan (10 mg/kg/day for 6 weeks, and the protective effects were extensively compared among groups by morphometry, stereological tools, immunostaining, Western blotting and hormonal analysis. RESULTS: All RAS inhibitors significantly attenuated the increased blood pressure in mice fed a HF diet. Treatment with enalapril, but not aliskiren or losartan, significantly attenuated body mass (BM gain, glucose intolerance and insulin resistance, improved the alpha and beta cell mass and prevented the reduction of plasma adiponectin. Furthermore, enalapril treatment improved the protein expression of the pancreatic islet Pdx1, GLUT2, ACE2 and Mas receptors. Losartan treatment showed the greatest AT2R expression. CONCLUSION: Our findings indicate that ACE inhibition with enalapril attenuated several of the deleterious effects of the HF diet. In summary, enalapril appears to be responsible for the normalization of islet morphology and function, of alpha and beta cell mass and of Pdx1 and GLUT2 expression. These protective effects of enalapril were attributed, primarily, to the reduction in body mass gain and food intake and the enhancement of the ACE2/Ang (1-7 /Mas receptor axis and adiponectin levels.

  17. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    OpenAIRE

    van der Heijden, Roel A; Morrison, Martine C.; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P. H.; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Uwe J F Tietge; Koonen, Debby P. Y.; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n=52) received a control low-fat diet (LFD; 10 kcal% fat) for 6 weeks followed by 24 weeks of either LFD (n=13) or high-fat d...

  18. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  19. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice.

    Science.gov (United States)

    Tsai, Shih-Yin; Rodriguez, Ariana A; Dastidar, Somasish G; Del Greco, Elizabeth; Carr, Kaili Lia; Sitzmann, Joanna M; Academia, Emmeline C; Viray, Christian Michael; Martinez, Lizbeth Leon; Kaplowitz, Brian Stephen; Ashe, Travis D; La Spada, Albert R; Kennedy, Brian K

    2016-08-16

    Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism. PMID:27498874

  20. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production.

    LENUS (Irish Health Repository)

    Lynch, Lydia

    2012-09-21

    Invariant natural killer T (iNKT) cells are evolutionarily conserved innate T cells that influence inflammatory responses. We have shown that iNKT cells, previously thought to be rare in humans, were highly enriched in human and murine adipose tissue, and that as adipose tissue expanded in obesity, iNKT cells were depleted, correlating with proinflammatory macrophage infiltration. iNKT cell numbers were restored in mice and humans after weight loss. Mice lacking iNKT cells had enhanced weight gain, larger adipocytes, fatty livers, and insulin resistance on a high-fat diet. Adoptive transfer of iNKT cells into obese mice or in vivo activation of iNKT cells via their lipid ligand, alpha-galactocylceramide, decreased body fat, triglyceride levels, leptin, and fatty liver and improved insulin sensitivity through anti-inflammatory cytokine production by adipose-derived iNKT cells. This finding highlights the potential of iNKT cell-targeted therapies, previously proven to be safe in humans, in the management of obesity and its consequences.

  1. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice

    Directory of Open Access Journals (Sweden)

    Shih-Yin Tsai

    2016-08-01

    Full Text Available Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism.

  2. Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus: a novel model for diet-induced type 2 diabetes and the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Maslova Ekaterina

    2010-04-01

    Full Text Available Abstract Background The prevalence of Metabolic Syndrome and related chronic diseases, among them non-insulin-dependent (type 2 diabetes mellitus, are on the rise in the United States and throughout the world. Animal models that respond to environmental stressors, such as diet, are useful for investigating the outcome and development of these related diseases. Objective Within this context, growth and energy relationships were characterized in the Nile rat, an exotic African rodent, as a potential animal model for diet-induced type 2 diabetes mellitus and Metabolic Syndrome. Methods Compiled data from several studies established the relationship between age, body weight gain (including abdominal adiposity, food and water consumption, and blood glucose levels as determinants of diabetes in male and female Nile rats. Glucose Tolerance Testing, insulin, HbA1c, blood pressure measurements and plasma lipids further characterized the diabetes in relation to criteria of the Metabolic Syndrome, while diet modification with high-fat, low-fiber or food restriction attempted to modulate the disease. Results The Nile rat fed lab chow demonstrates signs of the Metabolic Syndrome that evolve into diet-induced non-insulin-dependent (type 2 diabetes mellitus characterized by hyperinsulinemia with rising blood glucose (insulin resistance, abdominal adiposity, and impaired glucose clearance that precedes increased food and water intake, as well as elevated HbA1c, marked elevation in plasma triglycerides and cholesterol, microalbuminuria, and hypertension. Males are more prone than females with rapid progression to diabetes depending on the challenge diet. In males diabetes segregated into early-onset and late-onset groups, the former related to more rapid growth and greater growth efficiency for the calories consumed. Interestingly, no correlation was found between blood glucose and body mass index (overall adiposity in older male Nile rats in long term studies

  3. Supplementation of a Fermented Soybean Extract Reduces Body Mass and Prevents Obesity in High Fat Diet-Induced C57BL/6J Obese Mice

    Science.gov (United States)

    Lee, Jae Yeon; Aravinthan, Adithan; Park, Young Shik; Hwang, Kyo Yeol; Seong, Su-Il; Hwang, Kwontack

    2016-01-01

    Obesity is a growing health problem that many countries face, mostly due to the consumption of a Westernized diet. In this present study we observed the effects of a soybean extract fermented by Bacillus subtilis MORI (BTD-1) containing 1-deoxynojirimycin against high fat diet-induced obesity. The results obtained from this study indicated that BTD-1 reduced body weight, regulated hepatic lipid content and adipose tissue, and also affected liver antioxidant enzymes and glucose metabolism. These results suggest that administration of BTD-1 affects obesity by inhibiting hyperglycemia and free radical-mediated stress; it also reduces lipid accumulation. Therefore, BTD-1 may be potentially useful for the prevention of obesity and its related secondary complications. PMID:27752494

  4. Anti-obesity and anti-diabetic effects of flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice.

    Science.gov (United States)

    Qin, Nan; Chen, Ying; Jin, Mei-Na; Zhang, Chang; Qiao, Wei; Yue, Xiao-Long; Duan, Hong-Quan; Niu, Wen-Yan

    2016-01-20

    3-O-[(E)-4-(4-cyanophenyl)-2-oxobut-3-en-1-yl]kaempferol (Fla-CN), a semi-synthesized flavonoid derivative of tiliroside, reduces whole-body adiposity, ameliorates metabolic lipid disorder, improves insulin sensitivity and benefits other disorders characterized by insulin resistance in high fat diet induced obesity mice. The improvement of insulin sensitivity and the reduction of weight gain are correlated with the changes of leptin and adiponectin levels. As a result, Fla-CN treatment could increase the expressions of pAMPK and miR-27 in the liver and adipose tissues. Meanwhile, we discovered that the expressions of various adipogenesis genes were downregulated, which were target genes of miR-27. This is the first report for the action of miR-27 by flavonoid derivative in rodents. The action of Fla-CN might be through multiple approaches including AMPK activation and enhancement in miR-27 expression.

  5. Effect of short-term hyperglycemia on adipose tissue fluxes of selected cytokines in vivo during multiple phases of diet-induced weight loss in obese women

    DEFF Research Database (Denmark)

    Siklova, Michaela; Simonsen, Lene; Polak, Jan;

    2015-01-01

    CONTEXT: Hyperglycemia is suggested to be one of the drivers of the proinflammatory state observed in obese and diabetic patients. OBJECTIVES: The objectives of the study was to investigate whether sc abdominal adipose tissue (scAT) could be one of the important sources of proinflammatory cytokines...... released in response to short-term hyperglycemia and whether this secretion capacity could be influenced by weight loss. DESIGN, PATIENTS, AND INTERVENTIONS: Output of cytokines and proteins of acute phase from scAT in response to a 3-hours hyperglycemic clamp was evaluated in nine obese women in vivo...... was assessed. RESULTS: Hyperglycemia increased the output of cytokines IL-6, MCP-1, and IL-1Ra from scAT. This effect had a tendency to be reduced after weight loss. The output of other proinflammatory substances from scAT into circulation was not detected. The diet-induced weight loss was associated...

  6. Tissue inhibitor of matrix metalloproteinase-1 is required for high-fat diet-induced glucose intolerance and hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Fjære, Even; Andersen, Charlotte; Myrmel, Lene Secher;

    2015-01-01

    expenditure, oral glucose tolerance, as well as insulin tolerance. In addition, the histology of liver and adipose tissues was examined and expression of selected genes involved in lipid metabolism and inflammation in liver and adipose tissues was determined by RT-qPCR. RESULTS: TKO mice gained less weight......BACKGROUND: Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are elevated in obesity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is unclear. Here we investigated how the presence or absence of TIMP-1 affected the development of diet......-induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy...

  7. Early Onset Inflammation in Pre-Insulin-Resistant Diet-Induced Obese Rats Does Not Affect the Vasoreactivity of Isolated Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Raun, Kirsten; Boonen, Harrie C M;

    2012-01-01

    Background: Obesity is an increasing burden affecting developed and emerging societies since it is associated with an increased risk of diabetes and consequent cardiovascular complications. Increasing evidence points towards a pivotal role of inflammation in the etiology of vascular dysfunction....... Our study aimed to investigate signs of inflammation and their relation to vascular dysfunction in rats receiving a high fat diet. Methods: Diet-induced obese (DIO) rats were used as a model since these rats exhibit a human pre-diabetic pathology. Oral glucose and insulin tolerance tests were...... concomitant vascular dysfunction. The results show that inflammation and obesity are tightly associated, and that inflammation is manifested prior to significant insulin resistance and vascular dysfunction....

  8. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Jensen, Majbrit M; Overgaard, Agnete;

    2013-01-01

    Tesofensine is a triple monoamine reuptake inhibitor which inhibits noradrenaline, 5-HT and dopamine reuptake. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong and sustained effects in obesity management...... is not clarified. Tesofensine effectively induces appetite suppression in the diet-induced obese (DIO) rat partially being ascribed to an indirect stimulation of central dopamine receptor function subsequent to blocked dopamine transporter activity. This is interesting, as obese patients have reduced central......, tesofensine produces weight loss together with reversal of lowered forebrain dopamine levels in DIO rats, suggesting that tesofensine's anti-obesity effects, at least in part, are associated with positive modulation of central dopaminergic activity....

  9. Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats.

    Science.gov (United States)

    Wu, Tao; Guo, Yu; Liu, Rui; Wang, Kuan; Zhang, Min

    2016-05-18

    With the current changes in diet and living habits, obesity has become a global health problem. Thus, the weight-reducing function of tea has attracted considerable attention. This study investigated the anti-obesity effect and the mechanism of black tea (BT) polyphenols and polysaccharides in male Sprague-Dawley rats. The BT polyphenols and polysaccharides reduced the body weight, Lee's index, visceral fat weight, and fat cell size but improved the biochemical profile and increased the fecal fatty acid content, thereby preventing high-fat diet-induced obesity. A gene expression profile array was used to screen eight upregulated and five downregulated differentially expressed genes that affect fat metabolic pathways, such as glycerolipid and glycerophospholipid metabolism, fatty acid degradation, glycolysis and gluconeogenesis, bile and pancreatic secretion, the insulin signaling pathway, and steroid hormone secretion. The BT polyphenols and polysaccharides suppressed the formation and accumulation of fat and promoted its decomposition to prevent obesity. PMID:27161951

  10. Indomethacin treatment prevents high fat diet-induced obesity and insulin resistance but not glucose intolerance in C57BL/6J Mice

    DEFF Research Database (Denmark)

    Fjære, Even; Aune, Ulrike Liisberg; Røen, Kristin;

    2014-01-01

    a high fat/high sucrose (HF/HS) diet or a regular diet supplemented or not with indomethacin (±INDO) for 7 weeks. Development of obesity, insulin resistance, and glucose intolerance was monitored, and the effect of indomethacin on glucose-stimulated insulin secretion (GSIS) was measured in vivo...... and in vitro using MIN6 β-cells. We found that supplementation with indomethacin prevented HF/HS-induced obesity and diet-induced changes in systemic insulin sensitivity. Thus, HF/HS+INDO-fed mice remained insulin-sensitive. However, mice fed HF/HS+INDO exhibited pronounced glucose intolerance. Hepatic glucose...... output was significantly increased. Indomethacin had no effect on adipose tissue mass, glucose tolerance, or GSIS when included in a regular diet. Indomethacin administration to obese mice did not reduce adipose tissue mass, and the compensatory increase in GSIS observed in obese mice was not affected...

  11. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1

    DEFF Research Database (Denmark)

    Shang, Quan; Saumoy, Monica; Holst, Jens Juul;

    2009-01-01

    Bile acid sequestrants have been shown to lower glucose levels in patients with type 2 diabetes. To investigate how colesevelam (CL) HCl improves hyperglycemia, studies were conducted in diet-induced obesity (F-DIO) rats, which develop insulin resistance when fed a high-energy (high fat....../high sucrose) diet (HE). The rats were fed HE; HE + 2% CL; HE + 0.02% SC-435 (SC), an apical sodium-dependent bile acid transporter inhibitor; and regular chow (controls). After 4 wk of treatment, both in the HE group and the SC + HE group, plasma glucose and insulin levels remained elevated compared with...... activation compared with controls. We concluded that CL reduces plasma glucose levels by improving insulin resistance in this rat model. It is unlikely that the improvement is attributable to decreased bile acid flux to the liver but is likely secondary to induced GLP-1 secretion, which improves insulin...

  12. Combined treatment of mulberry leaf and fruit extract ameliorates obesity-related inflammation and oxidative stress in high fat diet-induced obese mice.

    Science.gov (United States)

    Lim, Hyun Hwa; Yang, Soo Jin; Kim, Yuri; Lee, Myoungsook; Lim, Yunsook

    2013-08-01

    The aim of this study was to investigate whether a combined treatment of mulberry leaf extract (MLE) and mulberry fruit extract (MFE) was effective for improving obesity and obesity-related inflammation and oxidative stress in high fat (HF) diet-induced obese mice. After obesity was induced by HF diet for 9 weeks, the mice were divided into eight groups: (1) lean control, (2) HF diet-induced obese control, (3) 1:1 ratio of MLE and MFE at doses of 200 (L1:1), (4) 500 (M1:1), and (5) 1000 (H1:1) mg/kg per day, and (6) 2:1 ratio of MLE and MFE at doses of 200 (L2:1), (7) 500 (M2:1), and (8) 1000 (H2:1) mg/kg per day. All six combined treatments significantly lowered body weight gain, plasma triglycerides, and lipid peroxidation levels after the 12-week treatment period. Additionally, all combined treatments suppressed hepatic fat accumulation and reduced epididymal adipocyte size. These improvements were accompanied by decreases in protein levels of proinflammatory markers (tumor necrosis factor-alpha, C-reactive protein, interleukin-1, inducible nitric oxide synthase, and phospho-nuclear factor-kappa B inhibitor alpha) and oxidative stress markers (heme oxygenase-1 and manganese superoxide dismutase). M2:1 was the most effective ratio and dose for the improvements in obesity, inflammation, and oxidative stress. These results demonstrate that a combined MLE and MFE treatment ameliorated obesity and obesity-related metabolic stressors and suggest that it can be used as a means to prevent and/or treat obesity.

  13. Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice.

    Science.gov (United States)

    Harada, Kenji; Shen, Wen-Jun; Patel, Shailja; Natu, Vanita; Wang, Jining; Osuga, Jun-ichi; Ishibashi, Shun; Kraemer, Fredric B

    2003-12-01

    To elucidate the role of hormone-sensitive lipase (HSL) in diet-induced obesity, HSL-deficient (HSL-/-) and wild-type mice were fed normal chow or high-fat diets. HSL-/- mice were resistant to diet-induced obesity showing higher core body temperatures. Weight and triacylglycerol contents were decreased in white adipose tissue (WAT) but increased in both brown adipose tissue (BAT) and liver of HSL-/- mice. Serum insulin levels in the fed state and tumor necrosis factor-alpha mRNA levels in adipose tissues were higher, whereas serum levels of adipocyte complement-related protein of 30 kDa (ACRP30)/adiponectin and leptin, as well as mRNA levels of ACRP30/adiponectin, leptin, resistin, and adipsin in WAT, were lower in HSL-/- mice than in controls. Expression of transcription factors associated with adipogenesis (peroxisome proliferator-activated receptor-gamma, CAAT/enhancer-binding protein-alpha) and lipogenesis (carbohydrate response element-binding protein, adipocyte determination- and differentiation-dependent factor-1/sterol regulatory element-binding protein-1c), as well as of adipose differentiation markers (adipocyte lipid-binding protein, perilipin, lipoprotein lipase), lipogenic enzymes (glycerol-3-phosphate acyltransferase, acyl-CoA:diacylglycerol acyltransferase-1 and -2, fatty acid synthase, ATP citrate lyase) and insulin signaling proteins (insulin receptor, insulin receptor substrate-1, GLUT4), was suppressed in WAT but not in BAT of HSL-/- mice. In contrast, expression of genes associated with cholesterol metabolism (sterol-regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl-CoA reductase, acyl-CoA:cholesterol acyltransferase-1) and thermogenesis (uncoupling protein-2) was upregulated in both WAT and BAT of HSL-/- mice. Our results suggest that impaired lipolysis in HSL deficiency affects lipid metabolism through alterations of adipose differentiation and adipose-derived hormone levels.

  14. High-fat diet-induced hypertension and autonomic imbalance are associated with an upregulation of CART in the dorsomedial hypothalamus of mice.

    Science.gov (United States)

    Chaar, Laiali J; Coelho, Aline; Silva, Natalia M; Festuccia, William L; Antunes, Vagner R

    2016-06-01

    We evaluated herein whether diet-induced obesity alters sympathovagal balance, blood pressure, and neuropeptides levels at the hypothalamus and brainstem of mice. Male C57BL6J mice fed with a high-fat (HFD) or a high-fat high-sucrose (HFHSu), or a regular chow diet (C) for 8 weeks were evaluated for metabolic parameters and blood pressure, the latter being performed in conscious freely moving mice. Spectral analysis from the records of systolic blood pressure (SBP) and cardiac pulse intervals (PI) was performed to analyse the autonomic balance in the cardiovascular system. HFD-fed mice developed two distinct hemodynamic phenotypes: hypertensive mice (HFD-H) with high systolic and diastolic BP levels and hypertension-resistant mice (HFD-R) whose BP levels were similar to C group. Spectral analysis of SBP and PI variabilities indicate that the low-frequency (LF)/high-frequency (HF) ratio, which is an index of sympathovagal balance, is higher in HFD-H compared to HFD-R. Along with hypertension and higher LF/HF ratio, HFD-H mice presented increased hypothalamic mRNA levels of cocaine- and amphetamine-regulated transcript (CART), and increased CART-positive neurones in the dorsomedial hypothalamus (DMH) by high-fat diet when compared to C group. Despite developing obesity to similar levels than HFD feeding, intake of a HFHSu was not associated with hypertension in mice neither CART levels increase. Collectively, our main findings indicate that high-fat diet induced-hypertension and autonomic imbalance are associated to an upregulation of CART levels in the DMH of mice.

  15. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier.

    Directory of Open Access Journals (Sweden)

    Yong Fan

    Full Text Available Obesity is a complex metabolic disease that is a serious detriment to both children and adult health, which induces a variety of diseases, such as cardiovascular disease, type II diabetes, hypertension and cancer. Although adverse effects of obesity on female reproduction or oocyte development have been well recognized, its harmfulness to male fertility is still unclear because of reported conflicting results. The aim of this study was to determine whether diet-induced obesity impairs male fertility and furthermore to uncover its underlying mechanisms. Thus, male C57BL/6 mice fed a high-fat diet (HFD for 10 weeks served as a model of diet-induced obesity. The results clearly show that the percentage of sperm motility and progressive motility significantly decreased, whereas the proportion of teratozoospermia dramatically increased in HFD mice compared to those in normal diet fed controls. Besides, the sperm acrosome reaction fell accompanied by a decline in testosterone level and an increase in estradiol level in the HFD group. This alteration of sperm function parameters strongly indicated that the fertility of HFD mice was indeed impaired, which was also validated by a low pregnancy rate in their mated normal female. Moreover, testicular morphological analyses revealed that seminiferous epithelia were severely atrophic, and cell adhesions between spermatogenic cells and Sertoli cells were loosely arranged in HFD mice. Meanwhile, the integrity of the blood-testis barrier was severely interrupted consistent with declines in the tight junction related proteins, occludin, ZO-1 and androgen receptor, but instead endocytic vesicle-associated protein, clathrin rose. Taken together, obesity can impair male fertility through declines in the sperm function parameters, sex hormone level, whereas during spermatogenesis damage to the blood-testis barrier (BTB integrity may be one of the crucial underlying factors accounting for this change.

  16. Citrange Fruit Extracts Alleviate Obesity-Associated Metabolic Disorder in High-Fat Diet-Induced Obese C57BL/6 Mouse

    Directory of Open Access Journals (Sweden)

    Yan Lu

    2013-12-01

    Full Text Available Obesity is becoming one of the global epidemics of the 21st century. In this study, the effects of citrange (Citrus sinensis × Poncirus trifoliata fruit extracts in high-fat (HF diet-induced obesity mice were studied. Female C57BL/6 mice were fed respectively a chow diet (control, an HF diet, HF diet supplemented with 1% w/w citrange peel extract (CPE or 1% w/w citrange flesh and seed extract (CFSE for 8 weeks. Our results showed that both CPE and CFSE regulated the glucose metabolic disorders of obese mice. In CPE and CFSE-treated groups, the body weight gain, blood glucose, serum total cholesterol (TC and low density lipoprotein cholesterol (LDL-c levels were significantly (p < 0.05 reduced relative to those in the HF group. To explore the mechanisms of action of CPE and CFSE on the metabolism of glucose and lipid, related genes’ expressions in liver were assayed. In liver tissue, the expression level of peroxisome proliferator-activated receptor γ (PPARγ and its target genes were down-regulated by CPE and CFSE supplementation as revealed by qPCR tests. In addition, both CPE and CFSE decreased the expression level of liver X receptor (LXR α and β, which are involved in lipid and glucose metabolism. Taken together, these results suggest that CPE and CFSE administration could ameliorate obesity and related metabolic disorders in HF diet-induced obesity mice probably through the inhibition of PPARγ and LXRs gene expressions.

  17. The Hypolipidemic Effect of Total Saponins from Kuding Tea in High-Fat Diet-Induced Hyperlipidemic Mice and Its Composition Characterized by UPLC-QTOF-MS/MS.

    Science.gov (United States)

    Song, Chengwu; Yu, Qingsong; Li, Xiaohua; Jin, Shuna; Li, Sen; Zhang, Yang; Jia, Shuailong; Chen, Cheng; Xiang, Yi; Jiang, Hongliang

    2016-05-01

    Kuding tea are used as a traditional tea material and widely consumed in China. In this study, total saponins (TS) from water extract of Kuding tea was prepared by D101 macroporous resins and analyzed by UPLC-QTOF-MS/MS. Then the hypolipidemic effect of TS extract was investigated in high-fat diet-induced hyperlipidemic mice. For comprehensive identification or characterization of saponins in TS extract, 3 major saponins of Kudinoside A, Kudinoside F, and Kudinoside D were isolated and used as standards to investigate the MS/MS fragmentation pattern. As a result, 52 saponins were identified or characterized in TS extract from Kuding tea. In addition, the increased levels of mice serum TC, LDL-C, HDL-C, and atherogenic index (AI) were significantly reduced after the treatment of TS extract. Also, the liver protective effect of TS extract was obviously judged from the photographs stained with oil red-O staining. Meanwhile, TS extract significantly upregulated the expression of hepatic scavenger receptors including SR-AI, SR-BI, and CD36. Therefore, it is reasonable to assume that the overexpression of hepatic scavenger receptors was involved in the hypolipidemic effect of Kuding tea on the high-fat diet-induced hyperlipidemic mice. The TS extract could influence these scavenger receptors, and this could be the potential mechanism of TS extract from Kuding tea in the treatment of lipid disorders. These results give the evidence that the saponins in Kuding tea could provide benefits in managing hypercholesterolemia and may be a good candidate for development as a functional food and nutraceutical. PMID:27074384

  18. Apolipoprotein E-dependent inverse regulation of vertebral bone and adipose tissue mass in C57Bl/6 mice: modulation by diet-induced obesity.

    Science.gov (United States)

    Bartelt, Alexander; Beil, F Timo; Schinke, Thorsten; Roeser, Kerstin; Ruether, Wolfgang; Heeren, Joerg; Niemeier, Andreas

    2010-10-01

    The long prevailing view that obesity is generally associated with beneficial effects on the skeleton has recently been challenged. Apolipoprotein E (apoE) is known to influence both adipose tissue and bone. The goal of the current study was to examine the impact of apoE on the development of fat mass and bone mass in mice under conditions of diet-induced obesity (DIO). Four week-old male C57BL/6 (WT) and apoE-deficient (apoE(-/-)) mice received a control or a diabetogenic high-fat diet (HFD) for 16 weeks. The control-fed apoE(-/-) animals displayed less total fat mass and higher lumbar trabecular bone volume (BV/TV) than WT controls. When stressed with HFD to induce obesity, apoE(-/-) mice had a lower body weight, lower serum glucose, insulin and leptin levels and accumulated less white adipose tissue mass at all sites including bone marrow. While WT animals showed no significant change in BV/TV and bone formation rate (BFR), apoE deficiency led to a decrease of BV/TV and BFR when stressed with HFD. Bone resorption parameters were not affected by HFD in either genotype. Taken together, under normal dietary conditions, apoE-deficient mice acquire less fat mass and more bone mass than WT littermates. When stressed with HFD to develop DIO, the difference of total body fat mass becomes larger and the difference of bone mass smaller between the genotypes. We conclude that apoE is involved in an inverse regulation of bone mass and fat mass in growing mice and that this effect is modulated by diet-induced obesity. PMID:20633710

  19. Muscle expression of a malonyl-CoA-insensitive carnitine palmitoyltransferase-1 protects mice against high-fat/high-sucrose diet-induced insulin resistance.

    Science.gov (United States)

    Vavrova, Eliska; Lenoir, Véronique; Alves-Guerra, Marie-Clotilde; Denis, Raphaël G; Castel, Julien; Esnous, Catherine; Dyck, Jason R B; Luquet, Serge; Metzger, Daniel; Bouillaud, Frédéric; Prip-Buus, Carina

    2016-09-01

    Impaired skeletal muscle mitochondrial fatty acid oxidation (mFAO) has been implicated in the etiology of insulin resistance. Carnitine palmitoyltransferase-1 (CPT1) is a key regulatory enzyme of mFAO whose activity is inhibited by malonyl-CoA, a lipogenic intermediate. Whereas increasing CPT1 activity in vitro has been shown to exert a protective effect against lipid-induced insulin resistance in skeletal muscle cells, only a few studies have addressed this issue in vivo. We thus examined whether a direct modulation of muscle CPT1/malonyl-CoA partnership is detrimental or beneficial for insulin sensitivity in the context of diet-induced obesity. By using a Cre-LoxP recombination approach, we generated mice with skeletal muscle-specific and inducible expression of a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA inhibition. When fed control chow, homozygous CPT1mt transgenic (dbTg) mice exhibited decreased CPT1 sensitivity to malonyl-CoA inhibition in isolated muscle mitochondria, which was sufficient to substantially increase ex vivo muscle mFAO capacity and whole body fatty acid utilization in vivo. Moreover, dbTg mice were less prone to high-fat/high-sucrose (HFHS) diet-induced insulin resistance and muscle lipotoxicity despite similar body weight gain, adiposity, and muscle malonyl-CoA content. Interestingly, these CPT1mt-protective effects in dbTg-HFHS mice were associated with preserved muscle insulin signaling, increased muscle glycogen content, and upregulation of key genes involved in muscle glucose metabolism. These beneficial effects of muscle CPT1mt expression suggest that a direct modulation of the malonyl-CoA/CPT1 partnership in skeletal muscle could represent a potential strategy to prevent obesity-induced insulin resistance. PMID:27507552

  20. Circadian Disruption and Diet-Induced Obesity Synergize to Promote Development of β-Cell Failure and Diabetes in Male Rats.

    Science.gov (United States)

    Qian, Jingyi; Yeh, Bonnie; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2015-12-01

    There are clear epidemiological associations between circadian disruption, obesity, and pathogenesis of type 2 diabetes. The mechanisms driving these associations are unclear. In the current study, we hypothesized that continuous exposure to constant light (LL) compromises pancreatic β-cell functional and morphological adaption to diet-induced obesity leading to development of type 2 diabetes. To address this hypothesis, we studied wild type Sprague Dawley as well as Period-1 luciferase reporter transgenic rats (Per1-Luc) for 10 weeks under standard light-dark cycle (LD) or LL with concomitant ad libitum access to either standard chow or 60% high-fat diet (HFD). Exposure to HFD led to a comparable increase in food intake, body weight, and adiposity in both LD- and LL-treated rats. However, LL rats displayed profound loss of behavioral circadian rhythms as well as disrupted pancreatic islet clock function characterized by the impairment in the amplitude and the phase islet clock oscillations. Under LD cycle, HFD did not adversely alter diurnal glycemia, diurnal insulinemia, β-cell secretory function as well as β-cell survival, indicating successful adaptation to increased metabolic demand. In contrast, concomitant exposure to LL and HFD resulted in development of hyperglycemia characterized by loss of diurnal changes in insulin secretion, compromised β-cell function, and induction of β-cell apoptosis. This study suggests that circadian disruption and diet-induced obesity synergize to promote development of β-cell failure, likely mediated as a consequence of impaired islet clock function. PMID:26348474

  1. DNAs from Brucella Strains Activate Efficiently Murine Immune System with Production of Cytokines, Reactive Oxygen and Nitrogen Species

    OpenAIRE

    Zahra Tavakoli; Sussan K. Ardestani; Taghi Lashkarbolouki; Amina Kariminia; Taghi Zahraei Salehi; Nasser Tavassoli

    2009-01-01

    Brucellosis is an infectious disease with high impact on innate immune responses which is induced partly by its DNA. In the present study the potential differences of wild type and patients isolates versus attenuated vaccine strains in terms of cytokines, ROS and NO induction on murine splenocytes and peritoneal macrophages were investigated.This panel varied in base composition and included DNA from B. abortus, B. melitensis, B.abortus strain S19 and melitensis strain Rev1, as attenuated liv...

  2. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters.

    Science.gov (United States)

    Dai, Fan-Jhen; Hsu, Wei-Hsuan; Huang, Jan-Jeng; Wu, She-Ching

    2013-03-01

    Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome. PMID:23287313

  3. Magnolia Extract (BL153 Ameliorates Kidney Damage in a High Fat Diet-Induced Obesity Mouse Model

    Directory of Open Access Journals (Sweden)

    Wenpeng Cui

    2013-01-01

    Full Text Available Accumulating evidence demonstrated that obesity is a risk factor for renal structural and functional changes, leading to the end-stage renal disease which imposes a heavy economic burden on the community. However, no effective therapeutic method for obesity-associated kidney disease is available. In the present study, we explored the therapeutic potential of a magnolia extract (BL153 for treating obesity-associated kidney damage in a high fat diet- (HFD- induced mouse model. The results showed that inflammation markers (tumor necrosis factor-α and plasminogen activator inhibitor-1 and oxidative stress markers (3-nitrotyrosine and 4-hydroxy-2-nonenal were all significantly increased in the kidney of HFD-fed mice compared to mice fed with a low fat diet (LFD. Additionally, proteinuria and renal structure changes in HFD-fed mice were much more severe than that in LFD-fed mice. However, all these alterations were attenuated by BL153 treatment, accompanied by upregulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α and hexokinase II (HK II expression in the kidney. The present study indicates that BL153 administration may be a novel approach for renoprotection in obese individuals by antiinflammation and anti-oxidative stress most likely via upregulation of PGC-1α and HK II signal in the kidney.

  4. Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics.

    Science.gov (United States)

    Cowan, Theresa E; Palmnäs, Marie S A; Yang, Jaeun; Bomhof, Marc R; Ardell, Kendra L; Reimer, Raylene A; Vogel, Hans J; Shearer, Jane

    2014-04-01

    Epidemiological data confirms a strong negative association between regular coffee consumption and the prevalence of type 2 diabetes. Coffee is initially absorbed in the stomach and small intestine but is further fermented in the colon by gut microbiota. The bioavailability, production and biological activity of coffee polyphenols is modulated, in part, by gut microbiota. The purpose of this study was to determine if chronic coffee consumption could mitigate negative gut microbiota and metabolomic profile changes induced by a high-fat diet. Male Sprague-Dawley rats were randomized to chow (12% kcal fat) or high-fat (60% kcal fat) diet. Each group was further divided into water or caffeinated coffee for 10 weeks. Coffee consumption in high-fat-fed rats was associated with decreased body weight, adiposity, liver triglycerides and energy intake. Despite a more favorable body composition, rats displayed profound systemic insulin resistance, likely due to caffeine. Coffee consumption attenuated the increase in Firmicutes (F)-to-Bacteroidetes (B) ratio and Clostridium Cluster XI normally associated with high-fat feeding but also resulted in augmented levels of Enterobacteria. In the serum metabolome, coffee had a distinct impact, increasing levels of aromatic and circulating short-chain fatty acids while lowering levels of branched-chain amino acids. In summary, coffee consumption is able to alter gut microbiota in high-fat-fed rats although the role of these changes in reducing diabetes risk is unclear given the increased insulin resistance observed with coffee in this study.

  5. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters.

    Science.gov (United States)

    Dai, Fan-Jhen; Hsu, Wei-Hsuan; Huang, Jan-Jeng; Wu, She-Ching

    2013-03-01

    Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome.

  6. Endurance and Resistance Training Affect High Fat Diet-Induced Increase of Ceramides, Inflammasome Expression, and Systemic Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Cornelia Mardare

    2016-01-01

    Full Text Available The study aimed to investigate the effects of differentiated exercise regimes on high fat-induced metabolic and inflammatory pathways. Mice were fed a standard diet (ST or a high fat diet (HFD and subjected to regular endurance training (ET or resistance training (RT. After 10 weeks body weight, glucose tolerance, fatty acids (FAs, circulating ceramides, cytokines, and immunological mediators were determined. The HFD induced a significant increase in body weight and a disturbed glucose tolerance (p<0.05. An increase of plasma FA, ceramides, and inflammatory mediators in adipose tissue and serum was found (p<0.05. Both endurance and resistance training decreased body weight (p<0.05 and reduced serum ceramides (p<0.005. While RT attenuated the increase of NLRP-3 (RT expression in adipose tissue, ET was effective in reducing TNF-α and IL-18 expression. Furthermore, ET reduced levels of MIP-1γ, while RT decreased levels of IL-18, MIP-1γ, Timp-1, and CD40 in serum (p<0.001, respectively. Although both exercise regimes improved glucose tolerance (p<0.001, ET was more effective than RT. These results suggest that exercise improves HFD-induced complications possibly through a reduction of ceramides, the reduction of inflammasome activation in adipose tissues, and a systemic downregulation of inflammatory cytokines.

  7. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    Science.gov (United States)

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Variable laser attenuator

    Science.gov (United States)

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  9. Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet

    NARCIS (Netherlands)

    Guidotti, Stefano; Meyer, Neele; Przybyt, Ewa; Scheurink, Anton J.W.; Harmsen, Martin C.; Garland Jr., Theodore; van Dijk, Gertjan

    2016-01-01

    Female mice from independently bred lines previously selected over 50 generations for increased voluntary wheel-running behavior (S1, S2) resist high energy (HE) diet-induced obesity (DIO) at adulthood, even without actual access to running wheels, as opposed to randomly bred controls (CON). We inve

  10. Anti-Obesity Effects of Aster spathulifolius Extract in High-Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Kim, Sa-Jic; Bang, Chae-Young; Guo, Yuan-Ri; Choung, Se-Young

    2016-04-01

    The aim of this study was to investigate the anti-obesity and antihyperlipidemic efficacy and molecular mechanisms of Aster spathulifolius Maxim extract (ASE) in rats with high-fat diet (HFD)-induced obesity. Rats were separately fed a normal diet or a HFD for 8 weeks, then they were treated with ASE (62.5, 125, or 250 mg/kg) for another 4.5 weeks. The ASE supplementation significantly lowered body weight gain, visceral fat pad weights, serum lipid levels, as well as hepatic lipid levels in HFD-induced obese rats. Histological analysis showed that the ASE-treated group showed lowered numbers of lipid droplets and smaller size of adipocytes compared to the HFD group. To understand the mechanism of action of ASE, the expression of genes and proteins involved in obesity were measured in liver and skeletal muscle. The expression of fatty acid oxidation and thermogenesis-related genes (e.g., PPAR-α, ACO, CPT1, UCP2, and UCP3) of HFD-induced obese rats were increased by ASE treatment. On the other hand, ASE treatment resulted in decreased expression of fat intake-related gene ACC2 and lipogenesis-related genes (e.g., SREBP-1c, ACC1, FAS, SCD1, GPATR, AGPAT, and DGAT). Furthermore, ASE treatment increased the level of phosphorylated AMPKα in obese rats. Similarly, the level of phosphorylated ACC, a target protein of AMPKα in ASE groups, was increased by ASE treatment compared with the HFD group. These results suggest that ASE attenuated visceral fat accumulation and improved hyperlipidemia in HFD-induced obese rats by increasing lipid metabolism through the regulation of AMPK activity and the expression of genes and proteins involved in lipolysis and lipogenesis. PMID:26908215

  11. A green algae mixture of Scenedesmus and Schroederiella attenuates obesity-linked metabolic syndrome in rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-04-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  12. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-04-01

    Full Text Available This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC containing protein (46.1% of dry algae, insoluble fibre (19.6% of dry algae, minerals (3.7% of dry algae and omega-3 fatty acids (2.8% of dry algae as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68% and fats (saturated and trans fats from beef tallow, total 24%. High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome.

  13. Comparison of Dietary Control and Atorvastatin on High Fat Diet Induced Hepatic Steatosis and Hyperlipidemia in Rats

    Directory of Open Access Journals (Sweden)

    Liu Peiyi

    2011-01-01

    Full Text Available Abstract Background Treatment with atorvastatin (ATO or dietary control has been demonstrated to benefit patients with non-alcoholic fatty liver disease (NAFLD and hyperlipidemia. However, little is known on whether combination of dietary control and ATO treatment could enhance the therapeutic effect. Methods We employed a rat model of NAFLD to examine the therapeutic efficacy of dietary control and/or ATO treatment. Sprague-Dawley rats were fed with normal chow diet as normal controls or with high fat diet (HFD for 12 weeks to establish NAFLD. The NAFLD rats were randomized and continually fed with HFD, with normal chow diet, with HFD and treated with 30 mg/kg of ATO or with normal chow diet and treated with the same dose of ATO for 8 weeks. Subsequently, the rats were sacrificed and the serum lipids, aminotranferase, hepatic lipids, and liver pathology were characterized. The relative levels of fatty acid synthesis and β-oxidation gene expression in hepatic tissues were measured by quantitative real-time polymerase chain reaction (qRT-PCR. Hepatic expression of hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase was determined by Western blot assay. Results While continual feeding with HFD deteriorated NAFLD and hyperlipidemia, treatment with dietary control, ATO or ATO with dietary control effectively improved serum and liver lipid metabolism and liver function. In comparison with ATO treatment, dietary control or combined with ATO treatment significantly reduced the liver weight and attenuated the HFD-induced hyperlipidemia and liver steatosis in rats. Compared to ATO treatment or dietary control, combination of ATO and dietary control significantly reduced the levels of serum total cholesterol and low density lipoprotein cholesterol (LDL-C. However, the combination therapy did not significantly improve triglyceride and free fatty acid metabolism, hepatic steatosis, and liver function, as compared with dietary control alone. Conclusions

  14. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Milos Lazic

    Full Text Available Obesity is associated with metabolic perturbations including liver and adipose tissue inflammation, insulin resistance, and type 2 diabetes. Omega-6 fatty acids (ω6 promote and omega-3 fatty acids (ω3 reduce inflammation as they can be metabolized to pro- and anti-inflammatory eicosanoids, respectively. 12/15-lipoxygenase (12/15-LO enzymatically produces some of these metabolites and is induced by high fat (HF diet. We investigated the effects of altering dietary ω6/ω3 ratio and 12/15-LO deficiency on HF diet-induced tissue inflammation and insulin resistance. We examined how these conditions affect circulating concentrations of oxidized metabolites of ω6 arachidonic and linoleic acids and innate and adaptive immune system activity in the liver. For 15 weeks, wild-type (WT mice were fed either a soybean oil-enriched HF diet with high dietary ω6/ω3 ratio (11∶1, HFH, similar to Western-style diet, or a fat Kcal-matched, fish oil-enriched HF diet with a low dietary ω6/ω3 ratio of 2.7∶1 (HFL. Importantly, the total saturated, monounsaturated and polyunsaturated fat content was matched in the two HF diets, which is unlike most published fish oil studies in mice. Despite modestly increased food intake, WT mice fed HFL were protected from HFH-diet induced steatohepatitis, evidenced by decreased hepatic mRNA expression of pro-inflammatory genes and genes involved in lymphocyte homing, and reduced deposition of hepatic triglyceride. Furthermore, oxidized metabolites of ω6 arachidonic acid were decreased in the plasma of WT HFL compared to WT HFH-fed mice. 12/15-LO knockout (KO mice were also protected from HFH-induced fatty liver and elevated mRNA markers of inflammation and lymphocyte homing. 12/15-LOKO mice were protected from HFH-induced insulin resistance but reducing dietary ω6/ω3 ratio in WT mice did not ameliorate insulin resistance or adipose tissue inflammation. In conclusion, lowering dietary ω6/ω3 ratio in HF diet

  15. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wahlang, Banrida [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Song, Ming [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Beier, Juliane I. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cameron Falkner, K. [Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Al-Eryani, Laila [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Clair, Heather B.; Prough, Russell A. [Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Osborne, Tanasa S.; Malarkey, David E. [Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Christopher States, J. [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Cave, Matthew C., E-mail: matt.cave@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202 (United States); Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206 (United States)

    2014-09-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  16. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20 mg/kg or 200 mg/kg in corn oil) for 12 weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260 + HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20 mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200 mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200 mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant “second hit” in the transformation of steatosis to steatohepatitis. - Highlights: • Aroclor 1260 exposure decreased adiposity in mice fed with high fat diet • Aroclor 1260 exposure induced steatohepatitis in diet-induced obese mice • Aroclor 1260 (20 and 200 mg/kg) induced

  17. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  18. Electroacupuncture Improves Insulin Resistance by Reducing Neuroprotein Y/Agouti-Related Protein Levels and Inhibiting Expression of Protein Tyrosine Phosphatase 1B in Diet-induced Obese Rats.

    Science.gov (United States)

    Liu, Xia; He, Jun-Feng; Qu, Ya-Ting; Liu, Zhi-Jun; Pu, Qing-Yang; Guo, Sheng-Tong; Du, Jia; Jiang, Peng-Fei

    2016-04-01

    Electroacupuncture (EA) has been shown to exert beneficial effects on obesity, but the mechanism is unclear. This study investigated the effects of EA on diet-induced obese (DIO) rats. Fifty male Sprague-Dawley rats were randomly divided into low-fat diet (LFD, 10 rats) and high-fat diet (HFD, 40 rats) groups. After the DIO models had been established, successful model rats were randomly divided into HFD, EA, and orlistat (OLST) groups. The EA group received EA at Zusanli (ST36) and Quchi (LI11) for 20 minutes once per day for 28 days. The OLST group was treated with orlistat by gavage. The body weight, homeostasis model assessment-insulin resistance index, adipocyte diameters, and neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B levels were significantly lower in the EA group than in the HFD group. The rats of the OLST group showed watery stools and yellow hairs whereas those of the EA group had regular stools and sleek coats. The effect of EA on weight loss may be related to improved insulin resistance caused by changes in the adipocyte size and by reductions in the expressions of neuroprotein Y/agouti-related protein and protein tyrosine phosphatase 1B. This study indicates that EA may be a better method of alternative therapy for treating obesity and other metabolic diseases. PMID:27079226

  19. Anti-obesity potential of enzymatic fragments of hyaluronan on high-fat diet-induced obesity in C57BL/6 mice.

    Science.gov (United States)

    Park, Byong-Gon; Park, Yoon-Sun; Park, Joo Woong; Shin, Eunji; Shin, Woon-Seob

    2016-04-22

    Hyaluronan has diverse biological activities depending on its molecular size. The hyaluronan fragments (50 kDa) can decrease adipogenic differentiation in vitro. However, in vivo anti-obesitic effects of hyaluronan fragments have not been elucidated. Therefore, we examined the anti-obesity effects of hyaluronan fragments on high-fat diet induced obesity in C57BL/6 mice. Oral administration of hyaluronan fragments (200 mg/kg for 8 weeks) decreased body weight, adipose tissues, serum lipid (low-density lipoprotein cholesterol, triglyceride), and leptin level. Hyaluronan fragments decreased the hypertrophy of adipose tissue and ameliorated liver steatosis. The mRNA expression of leptin was reduced in adipocyte by treatment with hyaluronan fragments. Additionally, hyaluronan fragments enhanced the mRNA expression of PPAR-α and its target genes UCP-2 and decreased mRNA expression of PPAR- γ and fatty acid synthase in liver. In conclusions, hyaluronan fragments had marked effects on inhibiting the development of obesity in obese mice fed the high-fat diet. It suggested that enhancing PPAR-α and suppressing PPAR-γ expression are two possible mechanisms for the anti-obesitic effect of hyaluronan fragments. PMID:27012203

  20. Effect of Exercise and Calorie Restriction on Tissue Acylcarnitines, Tissue Desaturase Indices, and Fat Accumulation in Diet-Induced Obese Rats.

    Science.gov (United States)

    Gopalan, Venkatesh; Michael, Navin; Ishino, Seigo; Lee, Swee Shean; Yang, Adonsia Yating; Bhanu Prakash, K N; Yaligar, Jadegoud; Sadananthan, Suresh Anand; Kaneko, Manami; Zhou, Zhihong; Satomi, Yoshinori; Hirayama, Megumi; Kamiguchi, Hidenori; Zhu, Bin; Horiguchi, Takashi; Nishimoto, Tomoyuki; Velan, S Sendhil

    2016-01-01

    Both exercise and calorie restriction interventions have been recommended for inducing weight-loss in obese states. However, there is conflicting evidence on their relative benefits for metabolic health and insulin sensitivity. This study seeks to evaluate the differential effects of the two interventions on fat mobilization, fat metabolism, and insulin sensitivity in diet-induced obese animal models. After 4 months of ad libitum high fat diet feeding, 35 male Fischer F344 rats were grouped (n = 7 per cohort) into sedentary control (CON), exercise once a day (EX1), exercise twice a day (EX2), 15% calorie restriction (CR1) and 30% calorie restriction (CR2) cohorts. Interventions were carried out over a 4-week period. We found elevated hepatic and muscle long chain acylcarnitines with both exercise and calorie restriction, and a positive association between hepatic long chain acylcarnitines and insulin sensitivity in the pooled cohort. Our result suggests that long chain acylcarnitines may not indicate incomplete fat oxidation in weight loss interventions. Calorie restriction was found to be more effective than exercise in reducing body weight. Exercise, on the other hand, was more effective in reducing adipose depots and muscle triglycerides, favorably altering muscle/liver desaturase activity and improving insulin sensitivity. PMID:27197769

  1. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance.

    Science.gov (United States)

    Lo, Kinyui Alice; Labadorf, Adam; Kennedy, Norman J; Han, Myoung Sook; Yap, Yoon Sing; Matthews, Bryan; Xin, Xiaofeng; Sun, Lei; Davis, Roger J; Lodish, Harvey F; Fraenkel, Ernest

    2013-10-17

    Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBβ is a potential key regulator of adipose insulin resistance.

  2. Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870) on Mechanical Sensitivity in Diet-Induced Obesity Model

    Science.gov (United States)

    Brandsborg, Erik

    2016-01-01

    Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota, as an endogenous factor, influences obesity and pain sensitivity but the effect of oral probiotic supplementation on musculoskeletal pain perception has not been studied systematically. The present study examined the effect of a single daily oral dose (1 × 109 CFU) of probiotics (Lactobacillus rhamnosus PB01, DSM14870) supplement on mechanical pain thresholds in behaving diet-induced obese (DIO) mice and their normal weight (NW) controls. The mice (N = 24, 6-week-old male) were randomly divided into four groups on either standard or high fat diet with and without probiotic supplementation. Both DIO and NW groups with probiotic supplementation maintained an insignificant weight gain while the control groups gained significant weight (P < 0.05). Similarly, both DIO and NW probiotics supplemented groups demonstrated a significantly (P < 0.05) lower sensitivity to mechanical stimulation compared to their corresponding control. The results of this study suggest a protective effect of probiotics on nociception circuits, which propose a direct result of the weight reduction or an indirect result of anti-inflammatory properties of the probiotics. Deciphering the exact underlying mechanism of the weight loss and lowering nociception effect of the probiotic applied in this study require further investigation. PMID:27647980

  3. Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Ojo, Opeolu O; Srinivasan, Dinesh K; Owolabi, Bosede O; McGahon, Mary K; Moffett, R Charlotte; Curtis, Tim M; Conlon, J Michael; Flatt, Peter R; Abdel-Wahab, Yasser H A

    2016-08-01

    The frog skin host-defense peptide tigerinin-1R stimulates insulin release in vitro and improves glucose tolerance and insulin sensitivity in animal models of type 2 diabetes. This study extends these observations by investigating the molecular mechanisms of action underlying the beneficial metabolic effects of the analogue [Arg4]tigerinin-1R in mice with diet-induced obesity, glucose intolerance and insulin resistance. The study also investigates the electrophysiological effects of the peptide on KATP and L-type Ca2+ channels in BRIN-BD11 clonal β cells. Non-fasting plasma glucose and glucagon concentrations were significantly (pinsulin increased by twice daily treatment with [Arg4]tigerinin-1R (75 nmol/kg body weight) for 28 days. Oral and intraperitoneal glucose tolerance were significantly (pinsulin. The peptide blocked KATP channels and, consistent with this, improved beta cell responses of isolated islets to a range of secretagogues. Peptide administration resulted in up-regulation of key functional genes in islets involved insulin secretion (Abcc8, Kcnj11, Cacna1c and Slc2a2) and in skeletal muscle involved with insulin action (Insr, Irs1, Pdk1, Pik3ca, and Slc2a4). These observations encourage further development of tigerinin-1R analogues for the treatment of patients with type 2 diabetes. PMID:26966929

  4. Allomyrina Dichotoma Larvae Regulate Food Intake and Body Weight in High Fat Diet-Induced Obese Mice Through mTOR and Mapk Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jongwan Kim

    2016-02-01

    Full Text Available Recent evidence has suggested that the Korean horn beetle (Allomyrina dichotoma has anti-hepatofibrotic, anti-neoplastic, and antibiotic effects and is recognized as a traditional medicine. In our previous works, Allomyrina dichotoma larvae (ADL inhibited differentiation of adipocytes both in vitro and in vivo. However, the anorexigenic and endoplasmic reticulum(ER stress-reducing effects of ADL in obesity has not been examined. In this study, we investigated the anorexigenic and ER stress-reducing effects of ADL in the hypothalamus of diet-induced obese (DIO mice. Intracerebroventricular (ICV administration of ethanol extract of ADL (ADE suggested that an antagonizing effect on ghrelin-induced feeding behavior through the mTOR and MAPK signaling pathways. Especially, ADE resulted in strong reduction of ER stress both in vitro and in vivo. These findings strongly suggest that ADE and its constituent bioactive compounds are available and valuable to use for treatment of various diseases driven by prolonged ER stress.

  5. Soy Isoflavones Regulate Lipid Metabolism through an AKT/mTORC1 Pathway in Diet-Induced Obesity (DIO Male Rats

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2016-05-01

    Full Text Available The pandemic tendency of obesity and its strong association with serious co-morbidities have elicited interest in the underlying mechanisms of these pathologies. Lipid homeostasis, closely involved in obesity, has been reported to be regulated by multiple pathways. mTORC1 is emerging as a critical regulator of lipid metabolism. Here, we describe that the consumption of soy isoflavones, with a structural similarity to that of estradiol, could mitigate obesity through an AKT/mTORC1 pathway. Fed with soy isoflavones, the diet-induced obesity (DIO male rats exhibited decreased body weight, accompanied with suppressed lipogenesis and adipogenesis, as well as enhanced lipolysis and β‑oxidation. The phosphorylation of AKT and S6 were decreased after soy isoflavone treatment in vivo and in vitro, suggesting an inhibition effect of soy isoflavones on mTORC1 activity. Our study reveals a potential mechanism of soy isoflavones regulating lipid homeostasis, which will be important for obesity treatment.

  6. Effects of diet supplementation with Camu-camu (Myrciaria dubia HBK McVaugh fruit in a rat model of diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Ozanildo V Nascimento

    2013-03-01

    Full Text Available Amazonian Camu-camu fruit (Myrciaria dubia HBK Mc Vaugh has attracted interest from food and cosmetics industries because of its rich content of vitamin C, flavonoids and anthocyanins. The goal of this study was investigates the antiobesity action of the ingestion of the Camu-camu pulp in a rat model of diet-induced obesity. Wistar rats with obesity induced by subcutaneous injection of monosodium glutamate receiving diet ad libitum. The rats were divided in two groups: an experimental group that ingested 25 mL/day of Camu-camu pulp (CCG and a non treated group (CG. After 12 weeks, the animals were sacrificed. Blood, liver, heart, white adipose tissues were collected and weighted, biochemical and inflammatory profiles were determinate as well. Animals that received the pulp of Camu-camu reduced their weights of the fat in white adipose tissues, glucose, total cholesterol, triglycerides, LDL-c and insulin blood levels. There was an increase in HDL-c levels. No change was observed in inflammatory markers and liver enzymes. Camu-camu pulp was able to improve the biochemical profile of obesity in rats suggesting that this Amazonian fruit can be further used such a functional food ingredient in control of chronic diseases linked to obesity.

  7. Potential Nociceptive Regulatory Effect of Probiotic Lactobacillus rhamnosus PB01 (DSM 14870 on Mechanical Sensitivity in Diet-Induced Obesity Model

    Directory of Open Access Journals (Sweden)

    Fereshteh Dardmeh

    2016-01-01

    Full Text Available Treatments for obesity have been shown to reduce pain secondary to weight loss. Intestinal microbiota, as an endogenous factor, influences obesity and pain sensitivity but the effect of oral probiotic supplementation on musculoskeletal pain perception has not been studied systematically. The present study examined the effect of a single daily oral dose (1 × 109 CFU of probiotics (Lactobacillus rhamnosus PB01, DSM14870 supplement on mechanical pain thresholds in behaving diet-induced obese (DIO mice and their normal weight (NW controls. The mice (N=24, 6-week-old male were randomly divided into four groups on either standard or high fat diet with and without probiotic supplementation. Both DIO and NW groups with probiotic supplementation maintained an insignificant weight gain while the control groups gained significant weight (P<0.05. Similarly, both DIO and NW probiotics supplemented groups demonstrated a significantly (P<0.05 lower sensitivity to mechanical stimulation compared to their corresponding control. The results of this study suggest a protective effect of probiotics on nociception circuits, which propose a direct result of the weight reduction or an indirect result of anti-inflammatory properties of the probiotics. Deciphering the exact underlying mechanism of the weight loss and lowering nociception effect of the probiotic applied in this study require further investigation.

  8. PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in r